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Overview

The first chapter develops a general framework for models, static or dynamic, in which agents

simultaneously make both discrete and continuous choices. I show that such models are non-

parametrically identified. Based on the constructive identification arguments, I build a novel two-

step estimation method in the lineage of Hotz and Miller (1993) but extended to discrete and con-

tinuous choice models. The method is especially attractive for complex dynamic models because

it significantly reduces the computational burden associated with their estimation. To illustrate

my new method, I estimate a dynamic micro-model of female labor supply and consumption. The

method is also illustrated in the third chapter of the thesis.

In the second chapter, I build a dynamic search model to examine the decision problem of a

homeowner who maximizes her expected profit from the sale of her property when market condi-

tions are uncertain. Using a large dataset of real estate transactions in Pennsylvania between 2011

and 2014, I verify several stylized facts about the housing market. I develop a dynamic search

model of the home-selling problem in which the homeowner learns about demand in a Bayesian

way. I estimate the model and find that learning, especially the downward adjustment of the beliefs

of sellers facing low demand, explains some of the key features of the housing data, such as the

decreasing list price overtime and time on the market. By comparing with a perfect information

benchmark, I derive an unexpected result: the value of information is not always positive. Indeed,

an imperfectly informed seller facing low demand can obtain a better outcome than her perfectly

informed counterpart thanks to a delusively stronger bargaining position.

In the third chapter, joint work with Thierry Magnac, we estimate a dynamic discrete and

continuous choices model of households’ decisions regarding their consumption, housing tenure and

housing services over the life-cycle. We use non parametric identification arguments as in the first

chapter to formulate an empirical strategy in two steps that (1) estimates discrete choice probabil-

ities and continuous choices distribution summaries to be used in (2) Bellman and Euler equations

that estimate the structural parameters. Specific modelling strategies are adopted because of unfre-

quent mobility due to housing transaction costs. Counterfactuals that can be evaluated are related

to those transaction costs as well as of prudential policies such as downpayments.
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Chapter 1

Discrete-Continuous Dynamic Choice Models:

Identification and Conditional Choice Probability Estimation

Christophe Bruneel-Zupanc1

Abstract

This paper develops a general framework for models, static or dynamic, in which agents

simultaneously make both discrete and continuous choices. I show that such models

are non-parametrically identified. Based on the constructive identification arguments, I

build a novel two-step estimation method in the lineage of Hotz and Miller (1993) but

extended to discrete and continuous choice models. The method is especially attractive

for complex dynamic models because it significantly reduces the computational burden

associated with their estimation. To illustrate my new method, I estimate a dynamic

model of female labor supply and consumption.

Keywords: Discrete and continuous choice, dynamic model, identification, structural

estimation, female labor supply.

1E-mail address: christophe.bruneel@tse-fr.eu.
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1.1 Introduction

Many economic problems involve joint discrete and continuous choices. For example, a firm can

decide on a pricing scheme (per unit, flat rate) and the corresponding price level (Timmins, 2002).

It can decide what to produce and the corresponding sales price (Crawford et al., 2019). Firms also

decide whether to register their business and how many workers to hire (Ulyssea, 2018). Students

select their majors and decide how much effort to exert into their study (Ahn et al., 2019). Con-

sumers can decide what to buy and how much of it to consume (e.g. appliance choice and demand

for energy, Dubin and McFadden, 1984). In housing, buyers decide their house size and housing

tenure (Hanemann, 1984; Bajari et al., 2013). The buyer of a car selects a model and the mileage of

the car (Bento et al., 2009). Individuals decide whether to retire or not and how much they plan to

consume accordingly (Iskhakov et al., 2017). Similarly, labor force participation and consumption

are joint choices for potential workers (Altuǧ and Miller, 1998; Blundell et al., 2016a).

In these cases, a rational agent makes both decisions simultaneously. Here ‘simultaneous’ means

that given the information she has, the agent jointly make both choices. As a result, the discrete

choice is endogenous with respect to the continuous choice and vice versa. To take a labor market

example, if she works, a woman consumes differently than if she does not work: she has two different

conditional consumption choices. And at the same time, her decision of whether to work or not is

dependent on these two conditional continuous choices. Unfortunately, the identification of models

with simultaneous choices is difficult (Matzkin, 2007). Indeed, there is a core observability problem

because we only observe the continuous choice made in the selected discrete alternative, and we

do not know the counterfactual choices the individual would have made in the other alternatives.

Ideally, we would like to recover counterfactual continuous choices using the choices of individuals

with similar characteristics but who chose another alternative. However, doing so is not possible

if individuals also differ on factors which are unobserved by the econometrician and affect both

continuous and the discrete choices. In this case, two identical individuals as measured by their

observed covariates might still differ on the unobserved dimension. There is a problem of selec-

tion on unobservables, which prevents the identification of counterfactual continuous choices. To

7



further pursue the example, if an econometrician observes that working individuals consume more

than unemployed individuals, she cannot identify whether this is because the consumption choice

conditional on working is truly higher or because individuals with an unobserved higher taste for

consumption select themselves more into working.

This paper develops a general framework of simultaneous discrete-continuous choice models

suited for static or dynamic problems. I provide minimal necessary conditions under which non-

parametric identification of the model can be obtained, using an instrument for the unobserved

selection. Then, building upon the identification, I provide an estimation method for these models.

The method is attractive because it yields significant computational gains over the estimation of

dynamic models, in the lineage of Hotz and Miller (1993). I also show how to apply this method to

a dynamic discrete-continuous choice model of female labor force participation and consumption.

The first contribution of this paper is that I provide a constructive proof for the non-parametric

identification of a general class of structural models in which agents simultaneously make a discrete

and a continuous choices. To do so, I require an instrument that must be relevant for the selection

into the discrete choice and excluded from the conditional continuous choices. For example, the

previous discrete choice can be a good instrument in the presence of switching costs. Indeed, it im-

pacts the current discrete decision through the switching cost. Conditional on the current discrete

decision, it is excluded from the current continuous choice. In this way, observable differences in the

distribution of the choices with respect to the instrument can be attributed to unobserved differ-

ences in selection and not differences in continuous choices. I show that, paired with restrictions on

the effect of unobserved heterogeneity on the continuous choice (monotonicity, rank invariance), the

instrument allows us to achieve non-parametric identification of the optimal discrete and continuous

choices. Once the optimal choices are identified, it can be further shown that the rest of the model

is identified, for example, by exploiting first-order conditions (in the spirit of Blundell et al., 1997).

The second contribution of the paper is in terms of estimation. I build a two-step estimation

method, similar to Hotz and Miller (1993) but for discrete and continuous choices. In the first

step, one estimates the policies, which I name after Hotz-Miller’s CCPs: Conditional Continuous

8



Choices (CCCs), and Conditional Choice Probabilities (CCPs). This step is built on the identifi-

cation arguments. The policies are estimated directly from the data without solving the structural

model. To this end, I propose a novel method that estimates the entire monotone continuous choice

functions directly instead of proceeding pointwise. In the second step, one uses the estimated CCCs

and CCPs to estimate the structure of the model. For example, I exploit the fact that within my

general framework, the payoffs are related to optimal choices through the first-order conditions. My

estimation method is attractive because it yields sizeable computational gains. Typical dynamic

discrete or continuous choice models are difficult to estimate because they involve solving the theo-

retical model (either by backward recursion or fixed point algorithms). Dynamic discrete-continuous

choices model are even more difficult to estimate because the mixed choices can introduce kinks and

non-concavities in the value function (Iskhakov et al., 2017). Given that I can recover the CCCs

and CCPs in the first stage, I can exploit them to estimate the rest of the model without having

to compute the value function or solve the model. It yields computational gains comparable to the

computational gains generated by Hotz and Miller (1993) in the dynamic discrete choice literature.

The gains are so important that they not only reduce the time required to estimate the models,

but also make it possible to estimate models that have thus far been deemed computationally in-

tractable. In this respect, my method may facilitate the use of simultaneous discrete-continuous

choice models.

Finally, I illustrate my method by building and estimating a dynamic life-cycle model of women’s

consumption and labor force participation, in the spirit of Blundell et al. (1997, 2016a). This ap-

plication has been implemented under a parametric framework for practical reasons. First, doing

so avoids ‘curse of dimensionality’ concerns, and second, it makes my empirical findings compara-

ble to the existing literature. I add to existing models a more flexible distribution of unobserved

heterogeneity. Thanks to my method, I flexibly estimate the complete distribution of consumption

choices and working probabilities at any given set of observed covariates (assets, earnings, family

status, education, etc.). Hence, I can recover distributions such as that of the marginal propensity

to consume when earnings or benefits increase for any individual. I use these estimated policies
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to estimate the parameters of the structural model. For example, I find a constant relative risk

aversion of 1.63, close to the value of 1.56 in Blundell et al. (1994) and the value of 1.53 in Alan et al.

(2009). All things considered, the method developed in this paper allows for more complete models

in terms of unobserved heterogeneity, with a faster estimation and I still find estimates consistent

with the existing literature. Therefore the method is very attractive in practice.

Related Literature:

There is a vast empirical literature that uses dynamic discrete choice models. For example, such

works study labor market transition and career choice (Keane and Wolpin, 1997), fertility choice

(Eckstein and Wolpin, 1989) and education choice (Arcidiacono, 2004). Starting from the bus

replacement problem of Rust (1987), developments have been made in the estimation and iden-

tification of these models. They include non-exhaustively: Hotz and Miller (1993); Hotz et al.

(1994); Rust (1994); Magnac and Thesmar (2002); Aguirregabiria and Mira (2002, 2007); Kasahara

and Shimotsu (2009); Arcidiacono and Miller (2011); Hu and Shum (2012); Arcidiacono and Miller

(2019, 2020); Abbring and Daljord (2020). For a survey, see Aguirregabiria and Mira (2010) or

Arcidiacono and Ellickson (2011).

Similarly, the literature on dynamic continuous choice models is also voluminous, especially con-

cerning consumption/saving choices (Carroll, 2006) or investment choices (Hong and Shum, 2010).

There are also methods such as Bajari et al. (2007) that can be applied to either dynamic discrete

choice models or dynamic continuous choice models (but not both).

However, in many cases, economic problems involve several joint decisions, not only one discrete

choice or only one continuous choice. For example, labor force participation is very much related

to saving decisions. By focusing only on one of these two dimensions and ignoring the other en-

dogenous choice, one might be missing something important. Unfortunately, empirical applications

of the dynamic discrete-continuous choice framework are less popular, as there was no generally

identified setup prior to this work. For example, Blundell et al. (1997) provide identification of

such models once the optimal choices are identified but do not directly address the identification
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of the choices. The existing literature employs several tricks to overcome the unobserved selec-

tion problem. The most common is to have implicit or explicit assumptions about the unobserved

selection process. For example, Dubin and McFadden (1984), Hanemann (1984) or Bento et al.

(2009) have specific assumptions about their error disturbances (independence, measurement er-

rors, known joint distribution), which generate a specific selection process. Blevins (2014) studies

the non-parametric identification of dynamic discrete-continuous choice models but assumes a very

specific timing in which the discrete choice takes place before the realization of the nonsepara-

ble shock and the continuous decision. Hence, unobserved selection is not allowed to depend on

nonseparable shock realization. Similarly, Iskhakov et al. (2017) break the simultaneity issue by

assuming that the discrete retirement choice is taken before and based on the expectations about

the continuous consumption choice. Murphy (2018) also imposes that the two choices are taken

sequentially. In his paper, parcel owners first decide whether to build or not, and only afterwards,

a nonseparable price shock is realized and they decide on their house size accordingly if they chose

to build in the first stage. The problem is that the sequentiality of the choices is a strong assump-

tion, and it might lead to biased results if the true decision process is in fact simultaneous. For

example, in Murphy (2018), it is likely that small price realization will increase both the house size

and the probability of building a house. The imposed timing ignores this, as the discrete building

choice is only based on expectations about the price shock and corresponding house size choice.

Thus it might miss part of what is truly happening in the data. My general simultaneous choice

framework nests these different timing assumptions, which have testable implications within the

framework. Thus I can verify when the sequentiality assumption is reasonable. Another technique

is to discretize the continuous choice such that the model becomes a dynamic discrete choice model.

For example, De Groote and Verboven (2019) study the adoption of solar photovoltaic systems and

discretize the continuous level of adopted capacities. This is appealing, as it allows the application

of known techniques in the dynamic discrete choice literature. However, discretizing the continuous

choice is implicitly equivalent to making an assumption about the unobserved selection process via

the assumption on the distribution of the additive discrete error terms. I show in this paper that
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by exploiting the continuous nature of the choice, the unobserved selection process can be identified

instead of being assumed. Therefore, one can focus on the true discrete-continuous choice problem

without discretizing the continuous choice. Another solution is to completely abstract from the

nonseparable shock, i.e., to assume that individuals with the same observed covariates will make

the same continuous choice. A more convincing alternative is to reduce the level of unobserved

heterogeneity, for example, by including only a finite number of unobserved types (Blundell et al.,

2016a). My approach is more general, as I allow for a more flexible distribution of unobserved

heterogeneity.

The closest literature for the identification of simultaneous discrete-continuous choice can be

found in static reduced-form identification analysis of non-parametric simultaneous equations (Matzkin,

2007, 2008; Imbens and Newey, 2009), nonseparable models (Chesher, 2003; Chernozhukov et al.,

2020), the discrete-continuous Roy model (Newey, 2007), treatment effects with endogenous selec-

tion into treatment (Heckman and Vytlacil, 2005; Chernozhukov and Hansen, 2005, 2006, 2008),

or in reduced-form identification analysis of dynamic treatment effects (Heckman and Navarro,

2007; Heckman et al., 2016). In this literature, the idea of using an instrument for non-parametric

identification of simultaneous equations is frequent (Newey and Powell, 2003). However, my main

contribution here is that I obtain identification under very weak and testable assumptions on the

instrument. I only need a condition that the instrument is relevant, except at most at a finite set of

points. This relevance yields a non-overlapping condition, similar to what Torgovitsky (2015) and

D’Haultfœuille and Février (2015) employ in a different context with continuous treatment. Using

the additional assumption that the optimal choice is monotone with respect to the unobserved

nonseparable shock (as in quantile regression), the relevance is sufficient to recover identification.

Indeed, I show that there exists a unique monotone function identified by the system, while if I had

proceeded pointwise, uniqueness would have not held. By proceeding pointwise, other studies men-

tioned above need either stronger assumptions on the effect of the instrument (often regarding the

rank of a matrix of the probabilities of selecting into treatment with respect to the instrument) or

a different, less general setup for the selection mechanism (e.g., an additive process). To the best of
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my knowledge, Vuong and Xu (2017) are the only other authors to exploit the power of monotonicity

in a similar fashion as I do for identification. However, they use it to relax strict monotonicity and

still maintain a strong rank condition on the effect of the instrument on the selection process, while

I am as general as possible with my mild condition of relevance. By developing a framework where

the optimal choices take the form of a triangular simultaneous system of equations, I establish a

connection and show how one can use the results from this literature on reduced-form identification

to identify more general dynamic structural models.

I also contribute to the literature on faster estimation methods that avoid the computation of

the value function (Rust, 1987; Hotz and Miller, 1993; Hotz et al., 1994; Carroll, 2006; Arcidiacono

and Miller, 2011; Iskhakov et al., 2017). I provide a faster alternative to indirect inference and the

most recent developments of endogenous grid methods (Iskhakov et al., 2017). A comparison of

different estimation methods can be found in section 1.6.

Finally, my application contributes to a large literature on labor market participation and con-

sumption, focusing on women. For example, see, Heckman and Macurdy (1980); Blundell et al.

(2016a). Thanks to my method, I estimate the complete distribution of individual responses.

This paper is organized as follows. Section 1.2 describes a general simultaneous discrete-

continuous choice framework. Section 1.3 discusses identification. Section 1.4 shows how dynamic

models are embedded in the framework. Section 1.5 describes the estimation method built on the

constructive identification arguments. Section 1.6 compares my novel method with existing meth-

ods using Monte-Carlo simulations. Section 1.7 estimates an empirical discrete-continuous choice

model of women’s labor supply and consumption. Section 1.8 concludes the paper.

1.2 Framework

I consider the general problem with the following timing where the agent:
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Starts
with state z

Shocks (ǫ, η) Simultaneously
picks (d, cd)

The individual simultaneously selects a discrete action d ∈ D = {0, 1} and accordingly makes

one continuous choice cd ∈ Cd ⊂ R to maximize his payoff. The simultaneous decision is made

given some state z ∈ Z observed by the researcher, as well as two random preference shocks

ǫ = (ǫ0, ǫ1) ∈ E ⊂ R2 and η ∈ H ⊂ R that are unobserved by the econometrician. ǫ only affects the

discrete choice d, while η impacts the continuous choice c and the discrete choice. Note that the

same η impacts the continuous choice decision in both discrete states (c0 and c1). In other words,

I have rank invariance (Heckman et al., 1997; Chernozhukov and Hansen, 2005), that is, η is not

discrete-choice specific.2 The payoffs of the agent are given by the function Vd(cd, z, η, ǫ). The agent

simultaneously selects d and cd to solve:

max
d,cd

Vd(cd, z, η, ǫ) (1.1)

I require additional assumptions for tractability and identification of the model.

Assumption 1 (Additive Separability) The shock ǫ enters the payoff additively such that ∀d ∈

{0, 1}:

Vd(cd, z, η, ǫ) = ṽd(cd, z, η) + ǫd.

The additive separability assumption is usual in the discrete choice model literature (Rust, 1987;

Arcidiacono and Miller, 2011). It applies to ǫ, while η can still enter the payoff in a nonseparable

manner. A consequence of Assumption 1 is that the optimal continuous policy functions will not

depend directly on ǫ. Indeed, cd are defined as the (interior) solutions to the maximization of the

2In theory, the continuous choices could even represent different variables depending on the discrete option selected:
for example, if d represents the choice between working and studying, c might represent the amount of time worked
and the effort of the student respectively, hence the possibly different support. The main restriction is that even if
they represent two different choices, these two continuous choices are impacted by the same unobserved shock η.
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conditional payoff. Here, because of the additivity, we have that

cd = argmax
c

(ṽd(c, z, η) + ǫd) ⇐⇒ cd = argmax
c

ṽd(c, z, η).

Assumption 2 (Instrument) State z contains two kinds of variables z = (x, w), where x ∈ X

represent general state variables and w is an instrument such that ∀d ∈ {0, 1}:

ṽd(cd, z, η) = ṽd(cd, x, w, η) = vd(cd, x, η) +md(x, w, η).

The support W of w contains two different values, as D = {0, 1}.3

w is an ‘instrument’ to recover the optimal continuous policies. On the one hand, with the

additive functional form of md(x, w, η), w is excluded from the optimal continuous policy choice.

Indeed,

cd = argmax
c

(vd(c, x, η) +md(x, w, η) + ǫd) = argmax
c

vd(c, x, η)

On the other hand, it might still be relevant and impact the discrete choice.

Assumption 3 (Monotonicity) The conditional payoff functions are twice continuously differ-

entiable such that ∀d ∈ {0, 1}
∂2vd(cd, x, η)

∂cd∂η
> 0.

Assumption 3 implies that, conditional on (D = d,X = x), the conditional optimal policy

function c∗d(η, x) is C1 and strictly increases with respect to η.4 It ensures that there will be a

one-to-one mapping from η ∈ H to cd ∈ Cd for all d and x. This kind of monotonicity condition

has been widely used for identification (Chernozhukov and Hansen, 2005; Bajari et al., 2007; Hong

3w being binary is a minimal condition for identification when d is binary. You can have discrete or even continuous
w, the identification proof follows the same line, the md objects to be identified are just slightly different.

4Note Assumption 3 is equivalent to ∂2ṽd(cd, x, w, η)/(∂cd∂η) > 0. Indeed, because of additivity in Assumption
2:

∂2ṽd(cd, x, w, η)

∂cd∂η
=

∂2vd(cd, x, η)

∂cd∂η
+

∂

∂η

(
∂md(x,w, η)

∂cd

)

︸ ︷︷ ︸
=0

.
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and Shum, 2010). In a sense, it means that I only identify monotone effects of the unobserved

nonseparable source of heterogeneity (η, here). A very important implication of Assumption 3

is that this framework applies to problems where we observe continuous choices in each discrete

option. For example, it does not apply directly to the problem of an investor who decides whether

to invest (d = 1) or not (d = 0) and the corresponding investment conditional on investing (d = 1)

(Hong and Shum, 2010). Indeed, in this case, c∗0(h) = 0 for all h and it is not strictly increasing.

However, it would apply to a discrete choice of portfolio and corresponding conditional investment.

Similarly, it does not apply directly to the house construction problem of Murphy (2018), where

the agent only decides of his house size if he chooses to build one d = 1. However, this setup still

applies to a slightly modified version of the building problem where the discrete decision would be

to build (d = 1) or to buy (or rent) an existing house (d = 0), and cd would be the corresponding

house size/housing service.

Assumptions 1, 2 and 3 yield the following triangular structure for the optimal choices:





Cd = c∗d(X, η)

D = d∗(c0, c1, X,W, η, ǫ)
=⇒





Cd = c∗d(X, η)

D = d∗(X,W, η, ǫ)
.

With this triangular structure, there is a link between my general structure and (reduced-form)

systems of simultaneous equations (Chesher, 2003; Matzkin, 2008; Imbens and Newey, 2009), as

well as with the related literature on heterogeneous/quantile treatment effects (Chernozhukov and

Hansen, 2005; Vuong and Xu, 2017). To identify the structure, one needs to first identify the

choices. To identify the system of choices, I need additional assumptions on the shocks.

Assumption 4 (Independent of w) Conditional on X = x, the pair of shocks (ǫ, η) is indepen-

dent and identically distributed and is independent of W .

Assumption 5 (Independent Shocks) Conditional on X = x, the discrete choice-specific and

the continuous choice-specific shocks are independent of one another: η ⊥ ǫ

Assumption 6 (Continuous choice shock distribution) Conditional on X = x, the continu-

ous choice-specific shock η has an atomless distribution.

Normalization 1 (Continuous shock) Conditional on X = x, η is distributed as U(0, 1).
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Assumption 7 (Discrete choice shock distribution) Conditional on X = x, the discrete choice-

specific shock ǫ has continuous support and is independent and identically distributed with continuous

distribution Fǫ|X=x(ǫ) over the full support R.

Assumption 8 (Regularity) ∀d ∈ {0, 1},

∀(x, w, η) : max
c

vd(c, x, w, η) <∞.

Assumption 4 is an independence assumption between the shocks and the instrument, conditional

on the other observables X. Assumption 5 assumes independence between the two shocks. Both of

these assumptions are not as restrictive as they may appear. Indeed, note that the additive term

md(x, w, η) can be interpreted in two different ways that we cannot identify separately. First, in

Assumption 2, I describe md as an additive part of the payoff ṽd. Second, it can also be interpreted

as part of a more general additive discrete shock term ǫ̃d where ǫ̃d could depend on w, x and η, i.e.,

ǫ̃d(x, w, η) = md(x, w, η) + ǫd. Therefore, in this sense, the independence assumptions 4 and 5 on ǫd

are still general: we could have a general ǫ̃d that is not independent of z = (x, w) or η. Then, ǫd is

the remaining part of the discrete shock that is independent of η and w.

The main restriction is the exclusion restriction that η ⊥ W |X. It is crucial for the identification

to have the same distribution of η, regardless of the value of w.

The atomless Assumption 6 is made to obtain smooth conditional distributions of continuous

choices. Here, I cannot identify the distribution of η separately from the rest of the problem.

Therefore, as is standard in the literature (Blundell et al., 1997; Matzkin, 2003), I normalize it

to a uniform distribution, which represents the quantiles of any atomless continuous distribution

(conditional on X), in Normalization 1.

Assumption 7 is a regularity condition on the distribution of the discrete choice-specific shock.

Along with Assumption 7, Assumption 8 is another regularity condition on the functional form that

ensures that 0 < Pr(d|η, z) < 1 for all d, η, z. Indeed:

Pr(D = 0|η, z) = Pr
(
ǫ0 − ǫ1 > (max

c
ṽ1(c, z, η))− (max

c
ṽ0(c, z, η)) | η, z

)
.

By Assumption 7, ǫ0 − ǫ1 has full support R, independent of η (Assumption 5). By Assumption

8, the payoff functions difference is bounded. Thus, 0 < Pr(D = 0|η, z) < 1 ∀η, z. Since Pr(D =
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1|η, z) = 1− Pr(D = 0|η, z), we have that:

∀d, η, z 0 < Pr(d|η, z) < 1.

Similar to the distribution of η, the distribution of ǫ will not be identified in my setup. Thus,

I need to assume that this distribution is known. Therefore, in practice, I will later follow the

literature on (static or dynamic) discrete choice models (McFadden, 1980; Rust, 1987; Hotz and

Miller, 1993; Matzkin, 1993; Magnac and Thesmar, 2002; Arcidiacono and Miller, 2011) and assume

(generalized) extreme-value distributions. This family of distributions is convenient as it yields

closed-form solutions linking the conditional value functions and the choice probabilities.5 However,

other distributions can be used (Chiong et al., 2016).

We need one last (testable) condition under which the framework is identified.

Assumption 9 (Instrument Relevance)

Assumption 9a For any x ∈ X , the additive terms of the payoff are such that there is, at most,

a finite set of K (with 0 ≤ K <∞) values h of η such that

m0(x, w = 0, h)−m1(x, w = 0, h) = m0(x, w = 1, h)−m1(x, w = 1, h).

Assumption 9b For any x ∈ X , there exist two different values of w, denoted w = 0 and w = 1,

for which the additive terms of the payoff are such that there is, at most, a finite set of K (with

0 ≤ K <∞) values h of η such that

Pr(D = 0|η = h, x,W = 1)− Pr(D = 0|η = h, x,W = 0) = 0.

Identification of the optimal policies requires that the instrument is sufficiently relevant. As

stated in Assumption 9: there must be at most a finite set of values of η at which the instrument is

not relevant for identification. In other words, m0(w = 0, x, h)−m1(w = 0, x, h) 6= m0(w = 1, x, h)−

m1(w = 1, x, h) or Pr(D = 0|η = h, x,W = 1) 6= Pr(D = 0|η = h, x,W = 0) except at most at a

finite set of values h. If this is the case, the instrument provides sufficient information to identify

5Notice that generalized extreme-value distributions implicitely eliminates the possible dependence of the distri-
bution of ǫ on X. Dependence is allowed, but as the distribution is not identified anyway, one usually abstracts from
it in practice.
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the continuous policies. This condition is fairly intuitive and is considerably less restrictive than

full rank assumptions and other assumptions made for the identification of heterogeneous/quantile

treatment effects (Newey and Powell, 2003; Chernozhukov and Hansen, 2005, 2006, 2008). As

shown later in the identification proof, the idea is that by fully exploiting the monotonicity of the

conditional continuous choices, full rank conditions on the selection process with respect to the

instrument are more restrictive than necessary for their identification. A similar intuition about

the power of monotonicity can be found in Vuong and Xu (2017). Note that Condition 9b has

testable implications for the observed reduced forms. It allows to test whether the structural model

is identified, I will discuss this in the next section.

Lemma 1 (Equivalence) Under Assumptions 2, 4 and 5, Assumptions 9a and 9b are equivalent.

Proof. By construction:

Pr(D = 0|η, x, w) = Pr
(
ǫ0 − ǫ1

> (max
c

v1(c, x, η))− (max
c

v0(c, x, η))

+ m1(x, w, η)−m0(x, w, η)
∣∣∣ η, x, w

)
.

Since (max
c

v1(c, x, η))−(max
c

v0(c, x, η)) is independent of w (Assumption 2) and since ǫd ⊥ (w, η)|x

(Assumptions 4 and 5), we have that:

Pr(D = 0|η, x, w = 0) 6= Pr(D = 0|η, x, w = 1)

⇐⇒ m0(x, w = 0, η)−m1(x, w = 0, η) 6= m0(x, w = 1, η)−m1(x, w = 1, η).

Thus, Assumption 9a expressed in terms of structural forms is equivalent to Assumption 9b on the

optimal conditional choice probabilities.

Summary of the setup:

Under the assumptions above, I consider the general problem where an individual selects (d, cd) to
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maximize his payoff:

max
d,cd

vd(cd, x, η) + md(x, w, η) + ǫd.

The general setup described here can apply not only to a wide range of static but also dynamic

discrete-continuous choice models. I provide one static example below, and I will describe how it

embeds dynamic models in section 1.4. The idea is that, in the dynamic case, vd represents the

current conditional value functions, embedding the expectations about the future, as in Hotz and

Miller (1993).

Example 1: Static demand for energy

In the spirit of Dubin and McFadden (1984), consider the demand for energy with discrete appliance

choice. The agent simultaneously decides between two energy sources d = 0 or 1 and the corre-

sponding amount of energy she will consume (cd). x contains observable information about the cost

of each energy source and possibly the wealth or income of the agents. ǫd represents individual-

specific unobserved preferences for each energy type. η could represent some other unobserved

characteristics of the consumer impacting both her preference for the energy type and the amount

of energy she wants to consume. The higher η is, the higher cd for all d.

In practice, the greatest challenge is to find a good instrument w. Here, a good w could be

some variable about the accessibility of each energy alternative. For example, the previous alter-

native selected by the individual might be a good instrument. First, conditional on the present

alternative choice (d) and on current wealth (included in x), the past (w) should have no impact on

the current energy consumption level (cd). Thus, it would be an exogenous instrument. Moreover,

changing alternatives is costly in terms of time, so individuals who were previously using energy 0

are less likely to use energy 1 now than their counterparts who were already using it. In this case,

the agent incurs some disutility cost of switching from one alternative to the other and no cost if

he does not switch. In other words, for all x and h, for alternative 1, m1(x, w = 0, h) < 0 and

m1(x, w = 1, h) = 0, and for alternative 0 m0(x, w = 0, h) = 0 and m0(x, w = 1, h) < 0. In this

case, m0(x, w = 0, h)−m0(x, w = 1, h) > 0 and m1(x, w = 0, h)−m1(x, w = 1, h) < 0, so they are

different, and the instrument is relevant (Assumption 9).
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Discussion of Simultaneity:

My general simultaneous choice framework nests the non-simultaneous timings where either the

discrete or continuous choice is taken before and based on expectations about the other choice (and

its shock realization). These two timings have testable implications for the optimal choices within

the simultaneous framework:

• If the discrete choice is taken first, before the realization of η and the continuous choice, then

the CCP Pr(D = d|η,X,W ) is independent of η. Indeed, η is not yet realized. The discrete

choice is only based on expectations about η and the corresponding c∗d(x, η).

• Conversely, if the continuous choice is made first, before the discrete choice and the realization

of ǫ, then the CCCs c∗d(x, η) are independent of d, i.e., c∗0(x, η) = c∗1(x, η) ∀η.

Since I identify the policy functions c∗d and Pr(D = 1|η,X,W ) in the simultaneous framework, I

can test the timing of the model.

In the next section, I study the identification of the discrete-continuous choice model.

1.3 Identification

I observe data on the variables (D,Cd, X,W ). I only observe C0 if D = 0 and C1 if D = 1. For

all (x, w, η) in X ×W ×H, I study non-parametric identification of the following objects: the opti-

mal Conditional Continuous Choices (CCCs) c∗d(η, x), the optimal Conditional Choice Probabilities

(CCPs) Pr(d|η, w, x) for d = 0 and d = 1, and the indirect payoff functions (taken at the optimal

c) max
c

vd(c, x, η) and md(x, w, η). Without loss of generality, in this section, I focus on any given x

value and omit x from what follows. This is not an issue because x is exogenous in this problem, and

my assumptions about the distribution of the shocks are conditional on X = x. First, I characterize

the reduced forms and constraints imposed by the structure. Then, I discuss the identification of

the optimal policies (CCCs and CCPs) and of the payoffs.

1.3.1 Reduced forms and constraints

In the data, I observe (d, cd, w). w is exogenous in the model while cd and d are endogenous choices.

There is a fundamental observability problem, as I only observe one value of cd depending on the
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discrete choice selected:

cd = c0(1− d) + c1d.

I do not observe both ‘potential outcomes’, only the selected one. Therefore, from the data, I recover

the distribution of c conditional on d and w. I denote it FCd|d,w(cd) = Pr(Cd ≤ cd|D = d,W = w). I

also recover the conditional probability of selecting d knowing w, denoted as pd|w = Pr(D = d|W =

w). In other words, the data provide us with the following reduced-form functions, which exhaust

all relevant information:

R = {{pd|w}(d,w)∈{0,1}×{0,1}, {FCd|d,w(cd)}∀cd∈Cd,(d,w)∈{0,1}×{0,1}}.

An important vocabulary remark is in order: in this paper, Pr(D = d|W = w) is part of the reduced

forms, while Pr(D = d|η = h,W = w) is what I call the conditional choice probabilities (CCPs) or

selection on unobservables (η) that I want to identify. This differs from the dynamic discrete choice

literature, where Pr(D = d|W = w) are actually called CCPs (Hotz and Miller, 1993; Arcidiacono

and Miller, 2011). However, here, I have simultaneous choices and a nonseparable shock η, which

affects both choices. Thus, the true counterparts to the usual CCPs are Pr(D = d|η = h,W = w)

for all d and not Pr(D = d|W = w), hence the different terminology.

Now let us see the constraints implied by the structure on the reduced forms.

Lemma 2 Under Assumptions 3-8 of the structural model, the distribution FCd|d,w(cd): Cd → [0, 1]

is C1 and strictly increasing.

Proof. The distribution of η is C1 and strictly increasing (Assumption 6). As previously explained,

under Assumptions 5, 7 and 8, the probability of selecting d knowing η = h is different from zero

(or one) for all h and for both w (i.e., 0 < Pr(d|h, w) < 1). As a consequence, the distribution

function of η conditional on d and w is also C1 and strictly increasing. Now, note that, by the

monotonicity Assumption 3, the distribution functions of cd (conditional on w) are strictly monotone
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transformations of the distribution of η|d. In other words:

Pr(η ≤ h |d, w)︸ ︷︷ ︸
=Fη|d,w(h)

= Pr(Cd ≤ c∗d(h) |d, w)︸ ︷︷ ︸
=FCd|d,w

(c∗d(h))

∀d, w.

Therefore, since Fη|d,w(h) is C1 and strictly increasing (with respect to h), FCd|d,w(c
∗
d(h)) is also C1

and strictly increasing (with respect to h). Now, since c∗d(h) are C1 and strictly increase with re-

spect to h (Assumption 3), FCd|d,w(cd) are also C1 and strictly increase with respect to cd for all d.

Lemma 2 provides some regularity conditions on the distributions generated by the structural form.

The fact that FCd|d,w(cd) are C1 is helpful for the testable conditions of our model provided in what

follows.

Lemma 3 Under Assumption 9b in which K is defined, there is the same finite number K of values

of c0 and c1 such that

d
( ∆FCd

(cd)︷ ︸︸ ︷
FCd|d,W=1(cd)pd|1 − FCd|d,W=0(cd)pd|0

)

dcd
= 0 ∀d.

Proof. Appendix 1.A

Under the relevance Assumption 9, there is only a finite number K of values h of η such that

the instrument has no effect Pr(d|η = h, w = 1) = Pr(d|η = h, w = 0). I will show that when

this happens, we have d(Pr(η ≤ h|d,W = 1) − Pr(η ≤ h|d,W = 0))/dh = 0. Now, by the

monotonicity of the optimal continuous choice, the observed conditional distributions of Cd|d are

transformations of the unobserved conditional distribution of η|d. Therefore, even if we do not

observe the conditional distribution of η|d, we know that if the instrument is sufficiently relevant

(Assumption 9), Lemma 3 will be fulfilled.

Lemma 3 yields observable and testable implications on the reduced forms. Indeed, the functions

∆Fcd(cd) are directly observable for all d, as is d∆Fcd(cd)/dcd (the derivative is well defined, cf

Lemma 2). It can be used to test the relevance Assumption 9 that is crucial for identification. The

idea is that if the function ∆Fcd(cd) is flat on a segment of values of cd, then there is a segment of
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values of η such that the instrument is not relevant. In this case, the instrument has no differential

impact on the conditional choice probabilities, so it does not help to identify the optimal continuous

policy. If this is the case, the model is not point identified for this segment of η.

Lemmas 2 and 3 fully characterize the impact of my structure on the reduced forms. With

these reduced forms, one would like to identify the structural form, i.e., the values of the payoffs

vd(c
∗
d(h), h) (taken at the optimal continuous choice) and md(w, h).

The difficulty for the identification is that the shock η is unobserved and nonseparable. As a

consequence, there is an unobserved variable that affects every structural object we would like to

identify: the conditional payoffs vd(c∗d(h), h) and md(w, h), the optimal discrete choice d∗(h, w, ǫ),

the corresponding conditional choice probabilities (CCPs) Pr(d|h, w) = Eǫ[d
∗(h, w, ǫ)|h, w] and the

optimal conditional continuous choices c∗d(h) (CCCs) for all d. Thus, I first need to back out the

value h of η. To do so, I will first identify the conditional continuous choices c∗d(h) from the reduced

forms R by exploiting monotonicity, Bayes’ law and the relevant instrument w. Then, I will use

monotonicity to identify η from the data by inverting the monotone c∗d(h): h = (c∗d)
−1(cd). Once I

identify the values h of the shock η, I can identify the conditional choice probabilities (CCPs) of

selecting alternative d knowing η = h, w: Pr(d|h, w). Then, I use these Pr(d|h, w) as in Hotz and

Miller (1993) to identify the difference in payoffs between the two alternatives. Finally, I discuss

identification of the payoffs under additional structural assumptions in the next section.

1.3.2 Identification of Conditional Continuous Choices (CCCs)

Difficulty: observability problem

As in the literature on continuous choices (Matzkin, 2003; Bajari et al., 2007; Hong and Shum,

2010), I would like to exploit the monotonicity Assumption 3 to identify the optimal continuous

choices. For any value of w, by monotonicity, we have that

Pr(η ≤ h |d) = Pr(Cd ≤ c∗d(h) |d) ∀d

under Lemma 2
⇐⇒ c∗d(h) = F−1

Cd|d
(Pr(η ≤ h|d)) ∀d.

Thus, if we knew the distribution of η conditional on d, we could recover the optimal conditional

continuous choices c∗d(h) by using the monotonicity of the conditional distribution of Cd knowing d
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to invert it. However, here we only know the unconditional distribution of η (by Assumption 6).6

The conditional distributions of η|d are unobserved. They depend on an unobserved selection mech-

anism: Pr(η ≤ h|d) = Pr(d|η ≤ h)Pr(η ≤ h)/Pr(d). Because of this selection with simultaneous

discrete and continuous choices, we cannot use usual inversion methods based on monotonicity for

identification.

Another way to see the problem would be the following. Knowing that η is uniform and inde-

pendent of observables (Assumptions 4 and 6), we have:

Pr(η ≤ h) =

unobserved︷ ︸︸ ︷
Pr(Cd ≤ c∗d(h)) ∀d

= Pr(Cd ≤ c∗d(h); (D = 0 ∪D = 1))

= Pr(C0 ≤ c∗0(h); D = 0)︸ ︷︷ ︸
observed

+Pr(C0 ≤ c∗0(h); D = 1)︸ ︷︷ ︸
unobserved

= Pr(C1 ≤ c∗1(h); D = 0)︸ ︷︷ ︸
unobserved

+Pr(C1 ≤ c∗1(h); D = 1)︸ ︷︷ ︸
observed

.

Imagine that we observed both c0 and c1 for every individual, independently of the discrete choice

d, i.e., if D = 0 or D = 1 is selected, we observe both c0 and c1. Then, we observe the unconditional

distribution of c∗d(h): Pr(Cd ≤ c∗d(h)). In this case, knowing that η is uniform, one could exploit

monotonicity to recover c∗d(h) by inverting its unconditional distribution: c∗d(h) = F−1
Cd

(Pr(η ≤ h)).

However, here again, we observe c0 if D = 0 and c1 if D = 1. Because of this selection, we cannot

identify the optimal continuous choice policies.

Identification via the instrument:

Instead, to identify c∗d(h), I use the properties of the instrument (Assumption 2) to obtain structural

6Note that instead of normalizing the unconditional distribution, we could normalize the functional form of one
of the conditional η|d distributions. η|D=0 ∼ U(0, 1) for example. However, the problem would be the same, as we
still would not know the distribution of the other conditional shock η|D=1.
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restrictions. Using Bayes’ law we have, ∀h ∈ [0, 1]:

h = Pr(η ≤ h)

= Pr(η ≤ h|w)

= Pr(η ≤ h | D = 0, w)Pr(D = 0|w) + Pr(η ≤ h | D = 1, w)Pr(D = 1|w)

= Pr(c ≤ c∗0(h) | D = 0, w)Pr(D = 0|w)

+ Pr(c ≤ c∗1(h) | D = 1, w)Pr(D = 1|w)

= FC0|D=0,w(c
∗
0(h))Pr(D = 0|w) + FC1|D=1,w(c

∗
1(h))Pr(D = 1|w)

= FC0|D=0,w(c
∗
0(h))p0|w + FC1|D=1,w(c

∗
1(h))p1|w,

where the first equality comes from the fact that η ∼ U [0, 1] by normalization. The second follows

because η ⊥ w by Assumption 4. The third equality comes from the law of total probability. The

fourth equality comes from the monotonicity of c∗d(h). The fifth and sixth equalities are just changes

in notation.

Thus:

h = FC0|D=0,w(c
∗
0(h))p0|w + FC1|D=1,w(c

∗
1(h))p1|w ∀h ∈ [0, 1] ∀w ∈ {0, 1}. (1.2)

Take equation 1.2 for both w, which yields the following system ∀h:





h = FC0|D=0,W=0(c
∗
0(h))p0|0 + FC1|D=1,W=0(c

∗
1(h))p1|0

h = FC0|D=0,W=1(c
∗
0(h))p0|1 + FC1|D=1,W=1(c

∗
1(h))p1|1

.

Thanks to the instrument, we have a system of two equations to identify two unknown increasing

functions. The role of the instrument and Assumption 2 is now clearer. The instrument being ex-

ogenous to cd is crucial here, otherwise, we would have two equations with four unknown functions:

c∗0(h,W = 0), c∗0(h,W = 1), c∗1(h,W = 0), c∗1(h,W = 1), which would not be identified. Similarly,

without a relevant instrument (i.e., if d ⊥ w), the distributions conditional on w would be the same

(i.e., p0|0 = p0|1 and FCd|d,W=0(c) = FCd|d,W=1(c)), so the two equations would in fact contain exactly

the same information.
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Identification problem: Let the reduced form be described as:

R = {{pd|w}(d,w)∈{0,1}×{0,1}, {FCd|d,w(cd)}∀cd∈Cd,(d,w)∈{0,1}×{0,1}}

The conditional continuous choice (CCCs) policy functions are identified if and only if there exists

a unique set of structural functions {cd(h)}∀h∈[0,1],d∈{0,1} strictly increasing with respect to h, which

satisfies equation (1.2), and is compatible with R.

Theorem 1 (Identification) For any reduced form drawn from the structural model, there exist

unique conditional continuous choice (CCC) functions cd(h) (for d = 0 and d = 1) mapping [0, 1]

into Cd, which are strictly increasing and solve the system of equations (1.2):

h = FC0|D=0,w(c0(h))p0|w + FC1|D=1,w(c1(h))p1|w ∀h ∈ [0, 1] ∀w ∈ {0, 1}.

As a consequence, the optimal CCCs, c∗d(h) for d = 0 and d = 1, are point identified from the

reduced form R as the unique increasing solutions to the identification problem.

Proof. The complete proof appears in Appendix 1.B.

Sketch of the proof:

Existence of the solution is trivial: since the reduced forms are drawn from the structural model,

the true c∗d(h) will be the solution to our system of equations (1.2) by construction.

What is more difficult to prove is the uniqueness of the solution. First, we show that the

mapping between the conditional continuous choices, denoted c̃0(c1), is identified from the reduced

forms. Once we have it, using system (1.2), it is trivial to show that the continuous policies are also

identified.

Combining the two equations in the system of equation (1.2), we have that:

FC0|D=0,W=0(c
∗
0(h))p0|0 + FC1|D=1,W=0(c

∗
1(h))p1|0 = FC0|D=0,W=1(c

∗
0(h))p0|1 + FC1|D=1,W=1(c

∗
1(h))p1|1

⇐⇒ FC0|D=0,W=1(c
∗
0(h))p0|1 − FC0|D=0,W=0(c

∗
0(h))p0|0 = −

(
FC1|D=1,W=1(c

∗
1(h))p1|1 − FC1|D=1,W=0(c

∗
1(h))p1|0

)

⇐⇒ ∆FC0
(c∗0(h)) = −∆FC1

(c∗1(h)),
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where ∆FCd
(c) are directly observed from the data, and are C1 as a sum of C1 functions (Lemma

2). However, the problem is that h is unobserved. Now, even without observing h, if two conditional

choices c̃0 and c̃1 correspond to the same unobserved h, we will have: ∆FC0
(c̃0) = ∆FC1

(c̃1). Thus,

for the true mapping c̃0(c1) between the two continuous conditional choices we will have

∀c1 ∆FC0
(c̃0(c1)) = −∆FC1

(c1). (1.3)

The mapping is identified if and only if there exists a unique function c̃0(c1) solution to equation

(1.3). What are these ∆FCd
(c) functions? They are observable C1 functions (Lemma 2). They are

related to the unknown conditional choice probabilities as follows (cf proof of Lemma 3):

∀h ∆FCd
(c∗d(h)) =

∫ h

0

(
Pr(D = d|η = h̃,W = 1)− Pr(D = d|η = h̃,W = 0)

)
dh̃.

Moreover, since Pr(D = 1|η,W ) = 1− Pr(D = 0|η,W ), we have by construction that, ∀h:

∆FC0
(c∗0(h)) =

∫ h

0

(
Pr(D = 0|η = h̃,W = 1)− Pr(D = 0|η = h̃,W = 0)

)
dh̃ = −∆FC1

(c∗1(h)).

(1.4)

Which is what we had by rewriting system (1.2). However, it is very important: it means that

∆FC0
(c) and −∆FC1

(c) are transformations (through unknown c∗d(h)) of the same underlying object,

which is based on the difference in conditional choice probabilities Pr(D = 0|η = h,W = 1) −

Pr(D = 0|η = h,W = 0). Thus, by construction, ∆FC0
(c) and −∆FC1

(c) will go ‘through the same

values, in the same order’, just not at the same ‘speed’. The shape of ∆FCd
is directly determined

by the difference in conditional choice probabilities, hence the reason why we make our identification

Assumption 9 on these probabilities directly.

Now, take the easier case where Pr(D = 0|η = h,W = 1) > Pr(D = 0|η = h,W = 0) for

all h.7 In other words, the identification Assumption 9 is satisfied with K = 0. Equation (1.4)

implies that ∆FC0
(c0) and −∆FC1

(c1) will be strictly increasing from Pr(D = 0|η = 0,W =

1) − Pr(D = 0|η = 0,W = 0) at the minimum values of c0 and c1 (corresponding to c∗0(0) and

c∗1(0)) to
∫ 1

0

(
Pr(D = 0|η = h̃,W = 1)−Pr(D = 0|η = h̃,W = 0)

)
dh̃ at the maximum values of c0

and c1 (corresponding to c∗0(1) and c∗1(1)). ∆FCd
(cd) are thus C1 and strictly monotone: they are

7Obviously, the same reasoning applies in the reverse case where Pr(D = 0|η = h,W = 1) < Pr(D = 0|η =
h,W = 0) for all h.
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invertible. In this case, the unique mapping between c0 and c1 is obtained by inverting equation

(1.3):

∀c1 c̃0(c1) = ∆F−1
C0

(
−∆FC1

(c1)
)
.

The solution exists and is unique. Thus c̃0(c1) is identified in this case.

Now, we can show that the continuous policies are still identified even if ∆FCd
(cd) are not

strictly monotone but only piecewise monotone. This is the general case covered by our identi-

fication Assumption 9: if there exists a finite set of K > 0 (and K < ∞) values of h at which

Pr(D = 0|η = h,W = 1) = Pr(D = 0|η = h,W = 0), then by equation (1.4), we can show that

∆FCd
(cd) are piecewise monotone. Piecewise monotonicity is not a problem for identification here.

We are not solving equation (1.3) point by point, in which case there could exist several solutions for

some values of c1. Instead, we are solving for the entire monotone policy functions c∗d(h) directly.

Therefore, even if pointwise there might exist several solutions, there exists a unique monotone

function on the whole support of c1 that solves equation (1.3). In practice, we first identify these

K points at which d∆FCd
(cd)/dcd = 0 (Lemma 3). We know that these points are increasingly

matched together by construction. Then, we split the support of c0 and c1 accordingly. On the

subsegments, ∆FCd
(cd) are strictly monotone and C1, thus invertible. Therefore, we can recover

the mapping piece by piece.

The only case in which identification does not hold is when ∆FCd
are flat on some segment.

This corresponds to the case where our identification assumption 9 is violated, and the instrument

is not relevant to a set of nonnull masses. In this case, we only have partial identification of the

policy functions: they are point identified everywhere outside of the flat segment (on which there

is an infinite number of possible mappings between c1 and c0).

Once we identify the mapping c̃0(c1), we can recover the policies using any equation of the initial

system (1.2), as:

∀c1 h(c1) = FC0|D=0,W=0(c̃0(c1))p0|0 + FC1|D=1,W=0(c1)p1|0.

Thus we have a unique increasing solution (h(c1), c̃0(c1))∀c1 ∈ C1. Since everything is increasing,
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we can simply change the arguments to obtain the unique solution (c∗0(h), c
∗
1(h)) ∀h ∈ [0, 1].

One of the main take-aways from this the proof is that, with this setup, by exploiting knowledge

about the monotonicity of the optimal continuous policies and directly solving for the complete

function, I identify the policies with assumptions that are considerably less restrictive than what

is usually imposed in related studies. For example, full rank assumptions on the effect of the

instrument on the selection in identification of IV quantile treatment effects (Newey and Powell,

2003; Chernozhukov and Hansen, 2005, 2006, 2008) are too strong in this framework. In fact, even

my subcase where K = 0 was already less restrictive than full rank, for example. There is one

notable exception of Vuong and Xu (2017), who are also solving for a complete function and not

pointwise. However, they choose to use this method to relax strict monotonicity (and still impose

some constraint on the conditional choice probabilities), while I use it to be as agnostic as possible

about the conditional choice probabilities. My main identification requirement is to have a relevant

instrument (Assumption 9), which seems fairly natural. Moreover, it is testable by observations of

the ∆FCd
(cd) functions: as long as they are not flat, the policies are identified.

1.3.3 Identification of Conditional Choice Probabilities (CCPs)

Now that the conditional continuous choices (CCCs) are identified, I can directly identify the

conditional choice probabilities (CCPs). Indeed, knowing the strictly monotone (and invertible)

(c∗0(h), c
∗
1(h))∀h, one can recover h from observing (d, cobsd ). If D = d,

h = (c∗d)
−1
(
cobsd

)
.

From there, it is as if η = h were observed. I observe (d, cd, w, h) from the data. Thus, I can directly

recover the conditional choice probabilities:

∀(d, w, h) ∈ {0, 1} × {0, 1} × [0, 1] : Pr(D = d|η = h,W = w).

Thus, the CCPs are identified once h is recovered from inverting the CCCs.
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Inclusion of unobserved types in the model

The fact that η acts as an observed covariate once the CCCs are identified is crucial. Thanks to

this, one can apply standard methods from the dynamic discrete choice literature where η would be

among the observed covariates. This means that once η is identified, one could include unobserved

state variables/types in the framework as in Arcidiacono and Miller (2011). The non-parametric

identification is given by Kasahara and Shimotsu (2009) or Hu and Shum (2012).

1.3.4 Identification of the payoffs

Now that the optimal policy choices are identified, we can proceed to identify the structural model,

i.e., the payoff functions vd(c∗d(h), h) and md(w, h). First, I focus on the identification of the differ-

ences in payoff between the discrete alternatives.

Identification of the differences in payoffs:

The conditional choice probabilities are identified in the data. We can use them with our structural

assumptions to identify difference in payoffs in the model. We know that the CCPs are related to

the structure of the model as follows:

Pr(D = 0|η = h, w) = Pr
(
ǫ0 − ǫ1 > (max

c
v1(c, h) +m1(w, h))− (max

c
v0(c, h) +m0(w, h))

∣∣∣ h, w
)

= Pr
(
ǫ0 − ǫ1 > v∗1(h) +m1(w, h)−

(
v∗0(h) +m0(w, h)

) ∣∣∣ h, w
)
,

where v∗d(h) ≡ vd(c
∗
d(h), h) = max

c
v1(c, h).

If the distribution of ǫ0− ǫ1 is known (and invertible), given that we know the CCPs, the difference

in payoffs will also be identified. As is standard in the discrete choice literature, identification

depends on the distribution of the difference in ǫ here.

For example, let us assume that ǫ follows a Gumbel/extreme-value type-I distribution(with lo-

cation 0 and scale 1), as is commonly used in the discrete choice literature (McFadden, 1980; Hotz

and Miller, 1993). In this case, we are in the logistic regression scenario and we have:

Pr(D = 0|η = h, w) =
1

1 + exp
(
v∗1(h) +m1(w, h)−

(
v∗0(h) +m0(w, h)

)) .
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Thus we identify the difference in payoffs as:

v∗1(h) +m1(w, h)−
(
v∗0(h) +m0(w, h)

)
= log

(
1

Pr(D = 0|η = h, w)
− 1

)
.

Moreover, since v∗d(h) are independent of w by Assumption 2, we can also identify the difference in

the effect of the instrument :

m1(w = 1, h)−m0(w = 1, h)− (m1(w = 0, h)−m0(w = 0, h))

= log

(
1

Pr(D = 0|η = h, w = 1)
− 1

)
− log

(
1

Pr(D = 0|η = h, w = 0)
− 1

)
.

The differences in payoffs are also non-parametrically identified for other distributions of ǫ. Ap-

plications often use generalized-extreme value distributions as they yield easily tractable closed-form

solutions (Arcidiacono and Miller, 2011), but other distributions are possible.

Identification of the payoffs:

To non-parametrically identify the payoffs directly using the CCPs and CCCs, one needs to add

some structure to the problem. In other words, we need additional behavioural conditions to know

how the agents behave. For example, by considering the framework applied to dynamic problems, I

can use the identification power of the first-order conditions/Euler equation to non-parametrically

directly identify the payoffs using the identified CCPs and CCCs. This is what I do in the next

section by extending the framework to a dynamic setup.

1.4 Extension to Dynamic models

The general framework that I developed embeds dynamic models: vdt must simply be understood

as current conditional value functions, embedding expectations about the future. Here, I show

how general (non-stationary) dynamic models of agents enter the setup and are non-parametrically

identified (in the spirit of Blundell et al., 1997). The model is very general and nests many life-cycle
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empirical applications of interest (e.g., Blundell et al., 2016a; Iskhakov et al., 2017).

1.4.1 Dynamic Life-Cycle Framework of Labor and Consumption

In this section, I describe how a general dynamic model of labor and consumption choices enters

the general framework described in section 1.2.

Each period t until T , the timing of the problem is as follows:

t

t t+ t++ t+1

Starts
with states
zt = (xt, wt)

Shocks (ǫt, ηt) Simultaneously
picks (dt, cdt)

...

Current period utility:

The current period conditional utility for action (d, cd) at time t is given by:

Udt(cdt, xt, wt, ηt, ǫt). (1.5)

In this example, ct is consumption, and cdt are conditional consumptions, with ct = c0t(1−dt)+c1tdt.

dt is the work decision (Blundell et al., 1997, 2016a). xt represents all the covariates. These include

covariates impacting current utility such as age, education and other demographics. For notational

convenience, xt also include variables such as asset or income that do not necessarily directly impact

preferences but still have an impact on consumption choice (and labor choice), notably through their

transitions. wt is again the instrumental variable that must fulfil some conditions I describe below.

I impose some conditions on current utility which are necessary (not sufficient) for the dynamic

setup described here to fit into the structure described in section 1.2.

Assumption D1 (Additive Separability) The shock ǫt enters the payoff additively such that:

Udt(cdt, xt, wt, ηt, ǫt) = ũdt(cdt, xt, wt, ηt) + ǫdt.
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Assumption D2 (Instrument) wt ∈ W = {0, 1} is an instrumental variable such that

ũdt(cdt, xt, wt, ηt) = udt(cdt, xt, ηt) +mdt(xt, wt, ηt).

Assumption D3 (Monotonicity) The conditional current utility functions are twice continu-

ously differentiable such that

∂2udt(cdt, xt, ηt)

∂cdt∂ηt
> 0 ∀dt, cdt, xt, ηt

Transitions:

In a dynamic context, the individual chooses (dt, cdt) to maximize not only her current utility but

also to maximize her expected discounted sum of future payoffs. She discounts the future period

utilities at a rate β. In this context, the agent form rational expectations about the transition proba-

bilities. These transitions from (xt, wt, ǫt, ηt) and the current choices (ct, dt) to (xt+1, wt+1, ǫt+1, ηt+1)

matter for the choices. In particular, how the current choices impact these transitions is especially

important for the optimal choice decision. The impacts of the choices on the transitions are often

expressed through a budget constraint like

at+1 = (1 + rt)at − ct + ytdt.

For now I stay more general and simply assume the existence of general transitions of states and

errors which depend on the choices:

ft(xt+1, wt+1, ǫt+1, ηt+1|ct, dt, xt, wt, ǫt, ηt).

I need to make additional assumptions on these transitions for the setup to be identified (and to

enter the general framework).

Assumption 10 (Conditional Independence) For all xt ∈ X , wt ∈ W, ǫt ∈ E, ηt ∈ H, we

have:

ft(xt+1, wt+1, ǫt+1, ηt+1|ct, dt, xt, wt, ǫt, ηt) = ft(xt+1, wt+1|ct, dt, xt, wt) fǫ(ǫt+1) fη(ηt+1).
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Assumption 11 (Instrument Transition Exclusion) For all xt ∈ X , wt ∈ W, the current

instrument is excluded from the transitions, i.e.,

ft(xt+1, wt+1|ct, dt, wt, xt) = ft(xt+1, wt+1|ct, dt, xt).

Solution:

Knowing these transition probabilities, the individual chooses (dt, cdt) to sequentially maximize her

expected discounted sum of payoffs. Let us define Vt(zt) = Vt(xt, wt) as the (ex ante) value function

of this discounted sum of future payoffs at the beginning of t, just before the shocks (ǫt, ηt) are

revealed and conditional on behaving according to the optimal decision rule:

Vt(zt) ≡ E

[ T∑

τ=t

βτ−tmax
d,cdτ

[ udτ (cdτ , xτ , ητ ) +md(xτ , wτ , ητ ) + ǫdτ ]
]
.

Given the state variable zt and choice (d, cdt) in period t, the expected value function in period t+1

is

Ezt+1
[Vt+1(zt+1)|zt, ct, dt] =

∫

zt+1

Vt+1(zt+1)ft(zt+1|zt, ct, dt)dzt+1.

By the conditional independence Assumption 10 and instrument exclusion from the transition (As-

sumption 11), we can remove wt from the conditioning variables, which yields:

Ezt+1
[Vt+1(zt+1)|zt, ct, dt] = Ezt+1

[Vt+1(zt+1)|xt, ct, dt] =

∫

zt+1

Vt+1(zt+1)ft(zt+1|xt, ct, dt)dzt+1.

The ex ante value function can be written recursively:

Vt(zt) = Eǫ,η

[
max
dt,cdt

[
udt(cdt, xt, ηt) +mdt(xt, wt, ηt) + ǫdt + βEzt+1

[Vt+1(zt+1)|xt, cdt, dt]
] ]

.

Thus, in each period, after observing (ǫt, ηt), the individual chooses dt and cdt to maximize her

expected payoff:

max
dt,cdt

udt(cdt, xt, ηt) + βEzt+1
[Vt+1(zt+1)|xt, cdt, dt] +mdt(xt, wt, ηt) + ǫdt.
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Denote the conditional value functions vdt as:

vdt(cdt, xt, ηt) ≡ udt(cdt, xt, ηt) + βEzt+1
[Vt+1(zt+1)|xt,cdt,dt ]. (1.6)

So that we return to our general setup. Indeed, the dynamic model can be interpreted as a static

model, where in every period the agent selects dt and cdt to solve:

max
dt,cdt

vdt(cdt, xt, ηt) +mdt(xt, wt, ηt) + ǫdt.

Lemma 4 (Dynamic Framework) Under Assumptions D1, D2, D3, 10 and 11, Assumptions

1, 2 and 3 are satisfied for the conditional value functions defined in equation (1.6) in the dynamic

setup.

The other Assumptions 4, 5, 6, 7, 8 and 9 as well as Normalization 1 are imposed contemporane-

ously (with index t) and unconditionally on Xt (for simplicity).

If Assumption D1 holds for the current utility function, Assumption 1 will hold for the condi-

tional value functions by construction in equation (1.6). Assumptions D2 and D3 on the current

utility do not translate directly into Assumptions 2 and 3 for the conditional value function. One

needs additional assumptions about the transitions, i.e., Assumptions 10 and 11.

Conditional independence assumptions are standard for the identification and empirical tractabil-

ity of dynamic discrete choice models (Rust, 1987; Blevins, 2014). Here, Assumption 10 implies

that the transitions of the state variables are independent of the shocks (ǫt, ηt). Similarly, the shock

transitions are independent of the variables here. There is no time dependence on the shocks, which

are thus iid every period. Note that one can include some unobserved heterogeneous types cor-

related over time in the covariates following Arcidiacono and Miller (2011). This allows for some

unobserved auto-correlation in the unobservables and attenuates the strength of the conditional

independence.

Crucially, here, in addition to the standard conditional independence 10, Assumption 11 also im-

plies that conditional on (dt, ct, xt), the transitions are independent of the current instrument value

wt. In particular, the instrument is excluded from its own transition to future values, conditional
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on (dt, ct, xt), i.e.,

wt+1 ⊥ wt | ct, dt, xt ∀ct, dt, xt

or equivalently fw(wt+1|ct, dt, xt, wt) = fw(wt+1|ct, dt, xt).

It implies that instruments that are time independent wt = w for all t cannot be included. Assump-

tion D2 combined with Assumption 11 will satisfy Assumption 2 on the conditional value as stated

in Lemma 4 and as shown in the computation above. However, if the exclusion of the instrument

from the transition (Assumption 11) does not hold, then wt affects the expected future value func-

tion Ezt+1
[Vt+1(zt+1|xt, wt, cdt, dt] and enters the conditional value functions vdt in equation (1.6),

which are rewritten as vdt(cdt, xt, wt, ηt) for all d in this case. In this case, it is obvious that the

original exclusion of the instrument from vd in Assumption 2 is violated. Thus, the dynamic setup

does fit into the general framework of section 1.2 without Assumption 11.

Similarly, Assumption D3 is just a necessary condition for Assumption 3 to hold. I also require

the expectations about the future to be independent of current (ηt, ǫt). In this case, the monotonic-

ity Assumption 3 in the general framework is also satisfied. Indeed, if the future is independent of

the current ηt (Assumption 10), then we can write:

∂vdt(cdt, xt, ηt)

∂cdt∂ηt
=
∂udt(cdt, xt, ηt)

∂cdt∂ηt
+
∂Ezt+1

[Vt+1(zt+1)|xt, cdt, dt]

∂cdt∂ηt︸ ︷︷ ︸
=0

.

Therefore, if the conditional independence and monotonicity of the current utility function hold

(Assumptions 10 and D3), then the monotonicity of the conditional value functions vdt (Assump-

tion 3) also holds.

Instrument example:

The question that remains is, what could be a good instrument satisfying this restrictive conditional

independence and exclusion from the transition in practice? In general, a good instrument would

be to allow for switching cost and to use wt = dt−1 in this setup. Indeed, in this case, the exclusion

assumption 11 is easily satisfied for the instrument: wt+1 is dt. Therefore, conditional on the cur-

rent dt choice, wt+1 is directly known. wt = dt−1 does not provide any additional information, so it
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can be dropped from the conditioning variables in the transition. Moreover, it is unlikely that wt

provides any information about the other future covariates xt+1 after conditioning on the current

dt. Similarly, conditional on xt, which could include for example, the experience of the individual,

it is unlikely that dt−1 has an impact on udt. The exclusion restriction D2 is satisfied. Finally, we

just need the instrument to be relevant (Assumption 9). This would be the case if one had some

utility switching cost from entering or exiting the workforce for example.8 In this case, we would

have: m0t(xt, wt = 0, ηt) −m1t(xt, wt = 0, ηt) 6= m0t(xt, wt = 1, ηt) −m1t(xt, wt = 1, ηt). And the

instrument would be relevant.

Relaxing time independence of η:

One can loosen Assumption 10 and allow for first-order time dependence in ηt in this setup. In

other words, I can have fη(ηt|ηt−1). In fact, as I identify ηt separately for all t, I can identify

these transitions, which are particularly interesting in some applications (e.g., if η represents some

unobserved ability or productivity). The only problem is that it is more difficult to find a good

instrument in practice in this case. Indeed, in the presence of auto-correlation in ηt, wt = dt−1 is no

longer a good instrument, as it violates its independence from ηt in the initial period (Assumption

4). Indeed, in the initial period of the data, η−1 is not observed and is correlated with η0. However,

in this case, d−1 was a choice taken based on η−1 and thus correlated with η−1. Therefore, in the first

period, w0 = d−1 is correlated with η−1 and thus with η0. The instrument w0 is not independent

of η0, which violates Assumption 4. If we were able to condition on ηt−1, we could identify ηt:

conditional on ηt−1, wt = dt−1 ⊥ ηt. However, there is no way to recover η−1 which is outside the

sample. Thus, I cannot allow for transition in ηt with wt = dt−1 as an instrument. Therefore,

the best way to account for unobserved auto-correlation with wt = dt−1 as an instrument would

be to include unobserved types à la Arcidiacono and Miller (2011) in the model and still impose

conditional independence with an iid ηt.

If there exists another instrument satisfying Assumptions 4, D2 and 11, then one can allow for

auto-correlated ηt. In fact, even if such an instrument is available only in one period t0 (e.g., a

8Alternatively, one could have some auto-correlation in dt. Recall that mdt() can be interpreted as some observable
part of the ǫt shocks. Thus, the relevance assumption with wt = dt−1 could also be interpreted as the existence of
auto-correlation in a general ǫ̃t term, with

ǫ̃dt = mdt(xt, wt, ηt) + ǫdt.

Thus, the assumption about no correlation in ǫt is less restrictive than it seems.
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unique unexpected event), then one can still allow for auto-correlation in ηt. Indeed, one can use

the instrument in the period to identify the ηt0 . For all the following periods, wt = dt−1 can be used

as a proper instrument if I include ηt−1 in the covariates list.

1.4.2 Identification of the dynamic model

First, I show how the CCCs and CCPs are identified in this dynamic model. Then, I show how the

payoffs are also non-parametrically identified under additional assumptions.

Optimal choices: CCCs and CCPs

Under Lemma 4, the dynamic framework described in Section 1.4 fits into the general framework

described in Section 1.2. Therefore the CCCs and CCPs are identified period by period follow-

ing exactly the same proof I developed in the previous section. In other words, from data on

(Dt, Ct, Xt,Wt, t), I recover reduced forms

R =
{
{Pr(Dt = d|Xt = x,Wt = w, t)}(d,w,x,t)∈D×W×Xt×{0,...,T},

{FCd|Dt=d,Xt=x,Wt=w,t(cd)}∀cd∈Cdt, (d,w,x,t)∈D×W×Xt×{0,...,T}

}
.

From these reduced forms, following Section 1.3, I identify the CCCs and CCPs

c∗dt(x, η = h) and Pr(d|η = h, x, w, t) ∀d ∈ {0, 1}, w ∈ {0, 1}, h ∈ [0, 1], x ∈ Xt, t ∈ {0, ..., T}.

Special case: identification of the choices with terminal/absorbing actions

Imagine dt = 1 is a terminal action or an absorbing state. For example dt = 1 if the individual

retires, dt = 0 if she stays active. Assuming that an individual cannot go back to the working

life, the retirement choice is absorbing (Iskhakov et al., 2017). In this case, assuming all the other

modeling assumptions still hold, identification is more direct and simpler. I still use wt = dt−1

as the instrument, so the Assumption 11 on the transitions is still verified. Now, conditional on

wt = 1, an individual only has the choice to stay retired, i.e., dt = 1. Thus, focus on previously
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retired individuals (Wt = 1), we have:

h = Pr(ηt ≤ h|Xt,Wt = 1, t)

= Pr(ηt ≤ h|Dt = 1, Xt,Wt = 1, t)

= Pr(c ≤ c∗1t(h,Xt)|Dt = 1, Xt,Wt = 1, t)

= FC1|Dt=1,Xt,Wt=1,t(c
∗
1t(h,Xt)) ∀Xt ∈ Xt, h ∈ [0, 1].

Since FC1|Dt=1,Xt,Wt=1,t(c) are invertible (Lemma 2), we recover the continuous choices conditional

on being retired as:

c∗1t(h,Xt) = F−1
C1|Dt=1,Xt,Wt=1,t(h) ∀Xt ∈ Xt, h ∈ [0, 1].

It remains to identify the other conditional continuous policy, and to do that one simply needs to

take the equation (1.2) at Wt = 0, i.e., for individuals who did not select the absorbing state yet.

It yields

h = FC0|Dt=0,Xt,Wt=0,t(c
∗
0t(h,Xt))Pr(Dt = 0|Xt,Wt = 0, t)

+ FC1|Dt=1,Xt,Wt=0,t(c
∗
1t(h,Xt))Pr(Dt = 1|Xt,Wt = 0, t)

⇐⇒ FC0|Dt=0,Xt,Wt=0,t(c
∗
0t(h,Xt)) =

h− FC1|Dt=1,Xt,Wt=0,t(c
∗
1t(h,Xt))Pr(Dt = 1|Xt,Wt = 0, t)

Pr(Dt = 0|Xt,Wt = 0, t)

⇐⇒ c∗0t(h,Xt) = F−1
C0|Dt=0,Xt,Wt=0,t

(
h− FC1|Dt=1,Xt,Wt=0,t(c

∗
1t(h,Xt))Pr(Dt = 1|Xt,Wt = 0, t)

Pr(Dt = 0|Xt,Wt = 0, t)

)
.

Since everything on the right hand side of the equation is known (as I identified c∗1t previously),

the other conditional policies c∗0t(h,Xt) are also identified ∀Xt ∈ Xt, h ∈ [0, 1]. Once the CCCs are

identified, we proceed as usual to identify the CCPs.

Transitions

The transitions f(xt+1|ct, dt, xt) are identified directly from the data by observing the conditional

transitions of the variables between consecutive periods t and t+1. The transition of the instrument
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is known by construction if wt+1 = dt. In other cases, it can also be recovered from the data (and

one can test if it is indeed independent from wt).

As standard in the dynamic model literature, I assume agents are rational so that the observed

transitions are the same as the one expected by the agents. This way, the transitions recovered from

the data can be used to build agents expectations at each time t, and help recover the primitives.

Payoff function

Once the CCCs, CCPs and transitions are identified, I can build upon existing literature to identiy

the payoffs (Hotz and Miller, 1993; Blundell et al., 1997; Magnac and Thesmar, 2002; Escanciano

et al., 2015). I need to introduce some additional structure to the dynamic model for non-parametric

identification: I introduce additional structure on the covariates transition and current utility func-

tion.

Budget Constraint: let us introduce additional structure on the transitions via a budget con-

straint :

at+1 = (1 + rt)at − ct + ytdt, (1.7)

where at is the individual asset holdings, yt is her income and rt is the interest rate. The asset plays

a different role than the other covariates. Indeed, its transition to at+1 is directly impacted by the

choice ct through the budget constraint (1.7). Denote more generally all the covariates xt = (x̃t, at)

to emphasize the role of the asset.9

Assumption 12 (Asset exclusion) The asset is excluded from the current period utility, i.e.,

udt(cdt, xt, ηt) = udt(cdt, x̃t, at, ηt) = udt(cdt, x̃t, ηt).

Or equivalently, the exclusion Assumption 12 can be stated as:

∂udt(cdt, x̃t, at, ηt)

∂at
= 0.

9Note that yt and rt are included in x̃t. Even though, in most applications they will also be excluded from the
current period utility. For notational simplicity and generality, I let them into the general x̃t term which enters in
the current utility and represents all the covariates other than asset, i.e., all the covariates whose transitions are not
impacted by ct (Assumption 13).
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Assumption 13 (General Covariates Transitions) For all x̃t ∈ X̃ , ∀dt ∈ D, ∀ct ∈ C, ct does

not impact the x̃t and wt transitions, i.e.,

ft(x̃t+1, wt+1|ct, dt, x̃t) = ft(x̃t+1, wt+1|dt, x̃t).

I also need some additional structure on the current period utility:

Assumption 14 (Stationary utility) The current period utility is independent from time

udt(cdt, x̃t, ηt) = ud(cdt, x̃t, ηt) ∀t.

Assumption 15 (Monotonicity of c on the current utility) The current period utility is mono-

tone increasing with respect to c

∂udt(cdt, x̃t, ηt)

∂c
> 0 ∀dt, cdt, x̃t, ηt.

Marginal utilities identification:

Lemma 5 (Escanciano et al. (2015)) Following Escanciano et al. (2015), under Assumptions

D1-D3 and 4-15, the conditional marginal utilities at optimal continuous choices

∂

∂cdt
ud(cdt, x̃t, ηt)|cdt=c∗dt(ηt,xt)

are identified up to a scale by the Euler Equation for all d, xt, ηt.

Proof.

Let us define

u′∗d (xt, ηt) =
∂

∂cdt
ud(cdt, x̃t, ηt)|cdt=c∗dt(ηt,xt),

i.e., the conditional marginal utilities at the optimal CCCs. Notice that these functions depend

on xt = (x̃t, at). In other words, the optimal conditional marginal utilities depend on the asset,
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through the optimal CCCs. Then, the Euler equations for all d can be rewritten as:

u′∗d (xt, ηt) = β(1 + rt)Et

[
u′∗dt+1

(xt+1, ηt+1)
∣∣∣xt, cdt = c∗dt(ηt, xt), dt = d

]
. (1.8)

We have a system of two equations with two unknown functions u′∗0 and u′∗1 . Hence the importance of

Assumption 14, otherwise we would have a different unknown function on each side of the equation.

Now, under Assumption D3 and 15, I have

∂u′∗d (xt, ηt)/∂ηt > 0 ∀d, xt, ηt.

In this case, Escanciano et al. (2015) show that these functions are non-parametrically globally

point identified by the system (1.8).

Conditional values:

Once the marginal utilities are identified through Lemma 5, I follow Blundell et al. (1997) to identify

the conditional values.

Lemma 6 (Blundell et al. (1997)) Under Assumptions D1-D3 and 4-15, the conditional value

functions at optimal choices vdt(c
∗
dt(xt, ηt), xt, ηt) are identified up to an unknown constant of inte-

gration K independent from the asset for all d, xt, ηt. i.e.,

vdt(c
∗
dt(ηt, xt), xt, ηt) = Gdt(x̃t, at, ηt) +Kdt(x̃t, ηt),

where G and K are defined in the proof.

Proof. Recall that xt = (x̃t, at). We have the first order conditions, holding at optimal CCCs:

∀d : ∀at
∂

∂at
vdt(cdt, x̃t, at, ηt) = (1 + rt)

∂

∂cdt
ud(cdt, x̃t, ηt) |cdt=c∗dt(ηt,x̃t,at). (1.9)

Denote v∗d is the conditional value taken at the optimal continuous choice, and similarly define u′∗d

as before. We can rewrite the FOC as:

∀d : ∀at
∂

∂at
v∗dt(x̃t, at, ηt) = (1 + rt) u

′∗
d (x̃t, at, ηt). (1.10)
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Crucially, following Assumption 12, the asset is excluded from the current period utilities and

marginal utilities. The identification strategy relies on this exclusion. Indeed, from this FOC (1.9)

at the optimal CCCs, I can integrate with respect to the continuous asset and obtain

∀d : ∀at v∗dt(x̃t, at, ηt) =

∫ at

0

(1 + rt) u
′∗
d (x̃t, at, ηt) da,

where the lower bound 0 is taken arbitrarily. Since u′∗d are identified, we can identify the optimal

conditional value functions non-parametrically as:

v∗dt(x̃t, at, ηt) ≡ Gdt(x̃t, at, ηt) +Kdt(x̃t, ηt).

Where the only remaining unknowns are Kdt(x̃t, ηt) which are unknown constant of integration,

independent from at, and which depends on the arbitrary lower bound of integration.

Additive term mdt(xt, wt, ηt):

It remains to identify the additive terms. I identify the differences in total conditional values by

relating them to the CCPs using an Hotz and Miller (1993)’s inversion, as in section 1.3.4. In other

words,

∆v∗t (x̃t, at, ηt) + ∆mt(xt, wt, ηt) = v∗1t(x̃t, at, ηt)− v∗0t(x̃t, at, ηt) +m1t(xt, wt, ηt)−m0(xt, wt, ηt)

= G1t(x̃t, at, ηt)−G0t(x̃t, at, ηt) +K1t(x̃t, ηt)−K0t(x̃t, ηt) +m1t(xt, wt, ηt)−m0(xt, wt, ηt)

are identified through the CCPs Pr(d|ηt, xt, wt, t) for all d, xt, ηt, wt, t. Note that I cannot identify

Kdt separately from mdt. A natural normalization is to impose

Kdt(x̃t, ηt) = 0 ∀d, x̃t, ηt, t

Such that the only remaining additive terms aremdt. Under this normalization, given that v∗dt(x̃t, at, ηt) =

Gdt(x̃t, at, ηt) have been previously identified, it means that ∆mt(xt, wt, ηt) are identified for all

d, xt, ηt, wt, t. Obviously, since these are identified through the discrete choice probabilities, one can

only non-parametrically identify the differences in md, not their separate values at each d.

44



About the role of each assumptions:

Assumption 12 excludes the asset from the utility. Having an excluded asset is essential to

recover the conditional values once the marginal current utilities are identified.

Assumption 13 implies that the only covariate whose transition is impacted by the choice ct is

the asset, through the budget constraint (1.7). This assumption is made to pin down a simpler

Euler equation than with general transitions with several variables impacted by ct.

To identify the marginal utility non-parametrically from the Euler Equation, one needs to im-

pose some structure on the effect of time in the utility function. I impose that the current period

utility is time independent through Assumption 14. Note that, in general, even if the current period

utility is time independent, the conditional value functions are still time-dependent, because of a

finite horizon, or because of time-dependent transitions. Also note that this assumption is only

necessary for non-parametric identification. In parametric models, I can identify time-dependent

utilities.

Assumption 15 is a slightly stronger monotonicity condition than the ones I imposed before. In

most empirical applications it will be satisfied though.

1.5 Estimation

I build a two-step estimation process in the spirit of Hotz and Miller (1993); Arcidiacono and Miller

(2011) in the discrete choice literature. In the first step, I estimate the conditional continuous choices

(CCCs) and the conditional choice probabilities (CCPs) based on reduced forms directly estimated

from the data. This step is data-driven and is independent from the model specification. In a

second step, I use the estimated optimal policies to estimate the structural parameters. Therefore,

my estimation method is an analogous to that of Hotz and Miller (1993) and Hotz et al. (1994)

but extended to discrete-continuous choices. Its main desirable feature concerns computational

gains. By estimating the optimal choices only once, the computational burden of the estimation is

significantly reduced. Indeed, one does not need to solve for the value function or the likelihood

for each new set of selected parameters. This allows us to estimate models that were previously

computationally intractable. It does so at minimal efficiency costs (compared to simulated method
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of moments, for example). I expose the estimation method in this section, and I compare my

estimator’s performance with several alternatives in terms of speed and efficiency in the next section

1.6.

1.5.1 1st stage: conditional choices

Reduced forms:

I observe data about (Dt, Ct, Xt,Wt, t). Where ct = (1 − dt)c0t + dtc1t. From the data, I estimate

the reduced forms:

R =
{
{Pr(Dt = d|Xt = x,Wt = w, t)}(d,w,x,t)∈D×W×Xt×{0,...,T},

{FCd|Dt=d,Xt=x,Wt=w,t(cd)}∀cd∈Cdt, (d,w,x,t)∈D×W×Xt×{0,...,T}

}
.

This initial estimation of the reduced forms is crucial, as all the subsequent estimates are de-

rived from it. The reduced forms probabilities Pr(Dt = d|Xt = x,Wt = w, t) can be estimated

non-parametrically by kernel or by Sieve logistic or probit regressions. Recall that these probabili-

ties are not the CCPs, as the CCPs are also conditional on ηt.

The continuous choice conditional distributions can also be estimated with non-parametric ker-

nel methods (e.g. Hayfield and Racine, 2008). Another alternative is to first estimate the quantile

functions via non-crossing conditional quantile estimation (Muggeo, 2018; Lipsitz et al., 2017, for

example), and then invert them to recover the conditional distributions.

In the dynamic setup, the reduced forms also include the transition probabilities from t to t+1:

ft(xt+1, wt+1|ct, dt, xt) is estimated as usual. Let us distinguish again the asset from other covariates:

xt = (x̃t, at). Under Assumption 13, ft(x̃t+1, wt+1|dt, x̃t) can be estimated using auto-regressive pro-

cesses for the general covariates x̃t. In the special case where wt = dt−1, then the transition of the

instrument is given by construction. The asset plays a particular role and its transition is given by

the budget constraint (1.7): at+1 = (1 + rt)at − ct + ytdt.

Conditional Continuous Choices (CCCs):

I estimate the CCCs based on the identification proof. The idea is that we want to solve for the
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monotone functions cdt(h, x), which solves the empirical counterpart of system (1.2):

h = F̂C0t|Dt=0,xt,wt(c0t(h, xt))
̂Pr(Dt = 0|wt, xt) + F̂C1t|Dt=0,xt,wt(c1t(h, xt))

̂Pr(Dt = 1|wt, xt) ∀wt, h, xt, t,

where I replaced the reduced forms by their empirical counterparts. In practice, solving for two

functions c0 and c1 is not convenient. To simplify, I build upon the identification proof and I first

estimate the monotone mapping ĉ0t(c1t, xt) between the two consumptions. Then I will estimate

ĥ(c1). Consider the empirical counterpart to equation (1.3):

∆̂FC0t|xt(c0t(c1t, xt)) = −∆̂FC1t|xt(c1t) ∀c1t

Thus, for any given xt, I estimate the conditional consumption mapping ĉ0t(c1t, xt) by solving for

the whole monotone mapping functions c0t(c1t, xt) minimizing

argmin
c0t(c1t,xt)

∫

C1

(
∆̂FC0t|xt(c0t(c1t, xt)) + ∆̂FC1t|xt(c1t)

)2
weight(c1t) dc1t.

It gives a weighted minimum distance estimator to solve for the whole function, instead of proceeding

pointwise c1 by c1.10 On a practical note, I resort to constrained optimization to solve for the

function: select a grid of c1, and search for the corresponding c0 by imposing the monotonicity

constraint that if ca1 < cb1, then c0(c
a
1) < c0(c

b
1) for every point in the grid. I repeat this estimation

procedure separately for several values of xt.

Once ĉ0t(c1t, xt) is estimated for all xt, I can estimate ĥt(c1, xt) using any equation of system

10For the weight(c1t), I put uniform weights on the quantile of c1t. More precisely, I do not solve for the optimal
consumption mapping, but for the optimal quantile mapping between the two consumptions. I look for the quantile
of γ0 of c0 which corresponds to a given quantile of c1 denoted γ1. Thus, following the notation in the Appendix 1.B
for the identification proof, the objective can in fact be written as:

argmin
γ0t(γ1t,xt)

∫ 1

0

(
∆̂F 0|xt

(γ0t(γ1t, xt)) + ∆̂F 1|xt
(γ1t)

)2
weight(γ1t) dγ1t.

In this case, weight(γ1t) = 1 for all γ1t. And the support of the integral is simply [0, 1] since the quantiles are uniform.
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(1.2) (with wt = 0 or wt = 1) as:11

ĥt(c1t, xt) = F̂C0t|Dt=0,wt,xt(ĉ0t(c1t, xt))
̂Pr(Dt = 0|wt, xt) + F̂C1t|Dt=0,wt,xt(c1t)

̂Pr(Dt = 1|wt, xt).

Once I have estimated the monotone functions (ĥt(c1t, xt), ĉ0t(c1t, xt)) for all c1t ∈ C1 and for all xt,

I easily recover the CCCs:

{ĉ0t(h, xt), ĉ1t(h, xt)} ∀(h, xt) ∈ [0, 1]×X

by flipping the arguments (because everything is monotone).

Conditional Choice Probabilities (CCPs):

Once the monotone CCCs are estimated, I estimate ht from observed (ct, dt, xt) in the data, by

inverting the CCCs.

If dt = d : ĥt = ĉ−1
dt (c

obs
t , xt).

Then, you can use ĥt as if it was observed (like a generated covariate), and estimate the Conditional

Choice Probabilities

P̂ r(Dt = d|ηt = h,Xt = xt,Wt = wt).

Again, similarly to the reduced forms probabilities, this estimation can be done non-parametrically

with kernel or by Sieve logistic or probit regressions.

Alternative methods:

One could resort to estimation methods proposed in the IV-quantile treatment effect literature and

based on Chernozhukov and Hansen (2006, 2008), or that based on Vuong and Xu (2017), described

in Feng et al. (2020). With respect to these methods, the advantage of the method developed here is

11In practice, the two equations might not yield exactly the same results because of the noise in the estimation
of the reduced forms. Therefore, I will estimate two different h with each equation (with w = 0 and w = 1) and
obtain my final estimate by weighting the two estimates by the number of observations when (Xt = xt,Wt = 0) and
(Xt = xt,Wt = 1).
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that it is entirely based on the constructive identification proof and does not impose any additional

assumptions. The estimation is more flexible, and does not require full rank or other assumptions

on the conditional choice probabilities (as in the practical estimation paper of Feng et al. (2020))

to hold, for example.

Alternatively, the CCCs and CCPs coud be jointly estimated by Sieve, directly from the data,

without estimating reduced forms beforehand. Indeed, for any CCC guess (which has to be mono-

tone in η), one can recover the corresponding η from observing cd in the data. Joint with a CCP

guess, one can derive the likelihood of any data point. Therefore, the CCCs and CCPs can be

estimated directly by Sieve maximum likelihood.

1.5.2 2nd stage: structural model

I provide an estimation method for parametric models here. I do so for practical reasons since

this avoids the curse of dimensionality and because it fits most applications. Assume the model is

parametrized by θ ∈ Θ. As I did not address the identification of β (Magnac and Thesmar, 2002),

I do not estimate it either, so it does not enter θ. The parameters θ can be divided into two parts

θ = (θ0, θ1): where θ0 enters the marginal utility and θ1 does not. In the setup, u is parametrized by

θ0, and denoted ud(cdt, x̃t, ηt, θ0). The additive term mdt(xt, wt, ηt, θ1) is parametrized by θ1. More

precisely, θ1 impacts the difference ∆mt(xt, wt, ηt, θ1) of m1t(xt, wt, ηt) −m0t(xt, wt, ηt), since only

the difference is identified by the discrete choices.

I want to estimate θ. To do so, I use the CCCs, the CCPs and the transition estimated in the

first stage. My estimation method is based on the minimization of two different objectives identi-

fying different parameters: one based on the Euler equation and the other based on the conditional

choice probabilities.

Euler objective:

Recall the notation for the marginal utilities at the optimal CCCs:

u′∗d (x̃t, at, ηt, θ0) =
∂

∂cdt
ud(cdt, x̃t, ηt, θ0)|cdt=c∗dt(ηt,x̃t,at).
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Thus, we have the Euler equation:

u′∗d (x̃t, at, ηt, θ0) = β(1 + rt)Et

[
u′∗dt+1

(x̃t+1, at+1, ηt+1, θ0)
∣∣∣xt, cdt = c∗dt(ηt, xt), dt = d

]

def
⇐⇒ q1(t, dt, ηt, xt, θ0) = q2(t, dt, ηt, xt, θ0),

where xt = (x̃t, at).

The CCCs and the CCPs have been estimated in the first stage for all dt, xt, ηt, t. I also estimated

the transitions. Thus, I can estimate θ0 as:

min
θ0

Qeuler(θ0) =
∑

i

(q1(t, dt, ηt, xt, θ0)− q2(t, dt, ηt, xt, θ0))
2 .

In other words, θ̂0 minimizes the differences between the two sides of the Euler equation for every

observation i in the sample.12 Now, q1 is directly given as a function of θ0 and of the observed

characteristics and choices. q2, on the other hand, contains an expectation and can be computed in

several ways.

The first way is to use individuals present for two consecutive periods and to estimate the

expectation of future utility using all individuals with the same current states xt, cdt, dt. Since c

is continuous and x contains continuous covariates, this can be done parametrically or via non-

parametric kernel mean regression. This method is the simplest, but it requires many observations.

It is close to the idea of Euler-GMM estimation, as pioneered by Hansen and Singleton (1982). The

problem is that when the marginal utilities are highly nonlinear, the expectation is poorly estimated

and this type of GMM estimation does not work well and needs to be refined Alan et al. (2009).

Hence, I prefer to use an alternative approach based on forward simulations, in the spirit of

(Hotz et al., 1994). The idea is to use the CCCs, the CCPs and the transition to estimate the

expectation term via one-period-ahead simulation. This method is slightly longer but less affected

by the nonlinearity problem. It requires to estimate the transitions consistently.

12In practice, it is better to rewrite the objective such that it is scale invariant and comparable for all the values of
θ0. For example, if ceteris paribus a specific parameter value in θ0 scales down everything in q1 and q2, the errors will
be small at this parameter value, regardless of whether or not this parameter is far from the truth. To avoid that,
one need that, for any set of parameters θ0, the Euler Equation errors are on a similar scale. Log-linearization can
be used to achieve this, for example. In the next section the parametric model is such that I can isolate consumption
on the left-hand side of the Euler Equation. In this case, the left-hand side of the equation is based on consumption
data and is independent of the parameters. Thus I can compare the results between parameters on the same basis.
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Probability objective:

Now, the Euler equation does not provide any information about the parameters impacting the

differences of the additive term, θ1. To estimate these parameters, I use the relation between the

choice probabilities and the conditional value function (Hotz and Miller, 1993). In particular, if ǫ

is extreme value type I, we have:

Pr(D = 0|ηt,xt, wt, θ) =

1

1 + exp (v∗1t(xt, ηt, θ) +m1t(xt, wt, ηt, θ1)− (v∗0t(xt, ηt, θ) +m0(xt, wt, ηt, θ1)))
(1.11)

Knowing θ, one can estimate the conditional optimal values v∗dt(xt, ηt, θ) by forward simulation of

the life-cycle, for example (Hotz et al., 1994). Note that the value functions are parametrized by

θ and not only θ1. Thus, a way to estimate the parameters is to minimize the differences between

the estimated CCPs and the theoretical probabilities (equation (1.11)) with respect to θ for all

observations:

min
θ

Qproba(θ) =
∑

i

(
Pr(D = 0|ηt, xt, wt, θ)− ̂Pr(D = 0|ηt, xt, wt)

)2
.

Global objective:

There are two consistent ways to estimate θ. The faster one is to perform the estimation in two

separate steps: (i) estimate θ0 from the Euler equation and (ii) estimate the remaining θ1 from the

probability objective (taking θ̂0 as given). This yields a consistent estimation of θ.

However, the probability objective also depends on (part of) θ0 which is identified by the Euler

equation. An efficient way to account for this information is to perform the estimation in one step

and find the parameters θ that minimize a weighted sum of both objectives:

θ̂ = argmin
θ

weighteulerQeuler(θ0) + weightprobaQproba(θ),

where the optimal weights are to be determined. At the optimal weights, the one step method is

consistent and more efficient than the two-step estimation.
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1.6 Estimator Performance

I test my estimator’s performance with Monte Carlo simulations of the estimation of a parametric

toy model of simultaneous labor and consumption choices. This model is a simplified version of the

application performed in the next section. I provide additional robustness checks in Appendix 1.C.

1.6.1 Toy model

The agent chooses to work (dt) and consume/save (ct) from t = 1 to t = T . Then she retires for

one period in t = T + 1. She dies in t = T + 2.

Working life:

In each period the agent obtains utility:

udt(ct, xt, ηt) +mdt(xt, wt, ηt) + ǫdt =





c1−σ
t /(1− σ) η̃0t (ηt, γ0, s0) + ǫ0t if dt = 0

c1−σ
t /(1− σ) η̃1t (ηt, γ1, s1) + α + ω(1− wt) + ǫ1t if dt = 1

subject to the budget constraint:

at+1 = (1 + r)at + dtyt − ct + (1− dt)bt.

t is the age of the agent. ct is the individual consumption. dt is the labor choice, equal to 1 if she

works. wt is the instrument, equal to the past labor choice dt−1. at is the asset holdings. bt rep-

resents benefits earned by unemployed people. yt represents the earnings. yt take only two values,

yL and yH , for low and high income. In this way, the asset is the only continuous covariate, and I

can reduce the state space with only two values in the support of y. I observe the income for every

individual, even when she does not work. The interest rate r is fixed and equal to 0.05. ǫt = (ǫ0t, ǫ1t)

are additive idiosyncratic shocks impacting preferences for work. They are extreme-value type I.

η̃d are nonseparable taste shocks to utility. η̃d(η, γd, sd) is the ηth quantile of a lognormal(γd, sd)

distribution. In other words, η̃d ∼ LN (γd, sd), so that η̃d are labor-dependent monotone trans-
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formations of the uniform η. Having η as quantiles of some specific distribution is a convenient

way of modelling unobserved taste shocks in this type of setup. Thus, (γ0, γ1, s0, s1) capture the

different effects of unobserved taste shocks on the utility depending on working choice. I normalize

γ0 = 0, s0 = 0.25 to interpret the parameters of working individuals with respect to this reference.

The other parameters are more conventional: σ is the risk aversion or intertemporal elasticity

of substitution, α is the utility cost of work, and ω is the cost of searching for a job when one

was previously unemployed (wt = 0). Thus, θ = (

≡θ0︷ ︸︸ ︷
σ, γ0, γ1, s1,

≡θ1︷︸︸︷
α, ω), where θ1 only impacts the

probability of working and not the consumption choices, and θ0 impacts both.

Transitions:

The asset transition is given by the budget constraint.

In the income transitions, I model gains from working experience: Pr(yt+1 = yH |dt = 1, yt) >

Pr(yt+1 = yH |dt = 0, yt) ∀yt. Income is also persistent, so if one had a high income in t, one is more

likely to obtain a high income in t+ 1: Pr(yt+1 = yH |dt, yt = yH) > Pr(yt+1 = yH |dt, yt = yL) ∀dt.

It yields the following transition matrix:

Pr(y1 = yH |d0, y0) = Π(d0, y0) =



π0L π0H

π1L π1H




where π1L > π0L, π1H > π0H , π1H > π1L, and π0H > π0L.

These four parameters are estimated directly from the data by estimating Pr(yt = yH |yt−1, dt−1)

with a bin operator, i.e., by computing the number of observations with y = yH over the total of

observations with each specific yt−1, dt−1 combination.

The shocks are iid and uncorrelated over time ηt+1 ⊥ ηt and ǫt+1 ⊥ ǫt.

The agent discounts the future with discount factor β. I set it to 0.98 and do not estimate it.

Retirement:

At period T + 1 the woman retires. She only consumes and can no longer work. She obtains

the same period utility as when she was unemployed, without the additive ǫ shock. She obtains

a pension(yT ), which is a proportion set to 50% of her last income yT . She lives for only one
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period in retirement and knows that she will die at t = T + 2.13 There is no bequest motive. As a

consequence, she will consume everything, i.e., aT+2 = 0. Thus, the last period consumption has a

closed-form solution:

c∗T+1 = (1 + r)aT+1 + pension(yT ).

1.6.2 Comparison

I run Monte Carlo simulations of this toy model and estimate the parameters θ = (σ, γ0, γ1, s1, α, ω)

using my method. I compare my results with indirect inference Simulated Method of Moments

(SMM) where the model is solved using Endogenous Grid Method (Iskhakov et al., 2017).

Results: (Table 1.1)

Table 1.1 shows the estimation results for a model with T = 2 periods.14

In terms of speed, my two-step method (DCC for Discrete-Continuous Choices) yields sizeable

computational gains, even with respect to the state-of-the-art indirect inference method with en-

dogenous grid (Carroll, 2006; Iskhakov et al., 2017). The idea is simple: I have a fixed computational

cost of estimating the CCCs and CCPs in the first stage. However, thereafter, when solving for the

optimal θ, I do not need to solve the model again, as I already have the optimal choices. I only need

to perform some quick computations of the marginal utilities. Concerning the forward simulation,

it is also a fixed cost, as the simulated path depends on first-stage CCCs, CCPs and transitions but

not on θ. Thus, I only simulate forward once, and I retain the same path (as it is recommended to

have the same basis for every set of parameters and to avoid adding some simulation noise to the

estimation) for the computation of the expectations and conditional value functions for each tested

set of parameters. The other methods, on the other hand, do not have my first-stage fixed cost,

but they require considerably more computations in the second stage. If the model is very simple

and the second stage is estimated quickly, these methods can perform quicker than mine in theory.

However, as is well known, life-cycle models require a long time to solve, and the computational

burden increases almost exponentially with the complexity of the model (more covariates, more

13This is a simplification; one could easily allow for a known length of retirement and solve the dynamic consumption
problem of the retiree accordingly (as I do in the application). However, this does not deliver any particular insights
in terms of estimator comparison, so I have agents live for only one period of retirement for simplicity.

14Coded in R, without parallelization here. Time results obtained from an Intel(R) Core(TM) i7-9750H CPU.
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Table 1.1: T = 2 periods

Method
Truth DCC SMM

N 10,000 10,000

σ 1.60 1.6253 1.5924
(0.0410) (0.0156)

γ1 0.00 0.0070 -0.0052
(0.0238) (0.0055)

s1 0.40 0.4078 0.4001
(0.0228) (0.0071)

α -0.50 -0.4727 -0.5023
(0.0498) (0.0348)

ω -1.00 -0.9982 -0.9972
(0.0581) (0.0523)

Average Time taken:
1st stage: CCPs and CCCs 118s 9s
2nd stage: Structural parameters 170s 14328s
Overall 288s 14337s

Other initializations: Number of Monte-Carlo = 1, 000
Pr(w1 = 1) = 0.70. y1 = yH with probability 0.50. a1 ∼ U(0, 30). r = 0.05.

parameters, more periods). It can take several minutes to solve for one tested set of parameters,

and finding the optimal parameters may require hundreds or even thousands of tests. Even here,

in this very simple example with two periods, solving the model and estimating the moments for

one set of parameters takes about 25 seconds with EGM. While with my method, computing the

objective for one set of parameter takes less than a second. The more complex the model, the more

this gap widens, as solving the model becomes even longer relatively speaking, while the fixed cost of

computing the first stage policy only takes slighly longer. As a consequence, my two-stage method

yields significant computational gains by reducing the burden of the second stage. Interestingly,

the more complex the model is, the more computation gains from my estimation method relative
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to others. Obviously, having more complex models increases my computation time, but not in the

same exponential manner as for the alternative methods.

In terms of statistical performances, my two-step method (DCC) estimates the parameters con-

sistently and with small standard errors. As also shown in the simpler case of Appendix 1.C where

T = 1, Simulated Method of Moments (SMM) is consistent and more efficient for most param-

eters (if one uses a lot of moments). Both methods build upon the same initial estimation of

the reduced forms conditional consumption distribution FCd|Dt,Xt,Wt,t(c) and probability of working

Pr(Dt = 1|Xt,Wt, t). The moments are selected in these two objects.15 And my first stage estima-

tion of the CCCs is also built on these objects. Therefore, it is not surprising that both methods

yield close results. I lose some efficiency due to the two-step nature of my method, similar to the

efficiency loss of CCPs estimators. In theory, MLE is more efficient than both (see the T = 1 case

in Appendix 1.C), but it quickly becomes intractable to compute empirical likelihood with more

periods.

Another advantage of my method is that if the model is misspecified, I still recover correct op-

timal choice estimates because the first stage is independent of the model assumptions (except for

the choice of covariates to include). This is not the case for the alternative methods. Also, as I do

not solve numerically for the optimal choices, I do not need to smooth potential kinks introduced

by joint discrete-continuous choices, contrary to indirect inference with endogenous grid method

(Iskhakov et al., 2017).

Overall, I have a method that is statistically consistent, with small standard errors, and con-

siderably faster, by several orders of magnitude, than alternative state-of-the-art indirect inference

with endogenous grid method. SMM built upon moments drawn from the reduced forms is also

consistent and more efficient but the computational burden is too heavy for complex life-cycle mod-

els.

1.7 Application: women’s labor and consumption

I illustrate the method developed in this paper with a parametric dynamic model of simultane-

ous employment and consumption choices for women over their life cycle. I choose a parametric

15If we do not pick moments in the reduced forms, i.e., moments conditioned by w, then the model is not identified
and the SMM estimation will not be consistent.

56



application for practical reasons: to avoid the curse of dimensionality and to be able to compare

my parameter estimates with the literature. This model especially matters for understanding how

different benefit schedules affect the careers of women, particularly mothers, who are known to be

the most responsive to incentives (Blundell and Macurdy, 1999; Blundell et al., 2016a). It allows

us to understand the mechanism underlying individual choices and thus to carry out counterfactual

policy analysis in the long run.

My method is of particular interest for two main reasons here. First, life-cycle models such as

that presented here are extremely computationally intensive to estimate, to the extent that one

often needs to restrict the complexity of the model for the estimation to be tractable. By first

estimating the optimal choices (CCCs and CCPs) and only then the structural parameters in a sec-

ond step, I do not need to solve the model, and I am able to drastically reduce the computational

cost, in the spirit of Hotz and Miller (1993), Hotz et al. (1994) and Arcidiacono and Miller (2011).

Faster computation means that one can include more features in existing models, for example, more

heterogeneity, observed or unobserved, and still be able to estimate them in a reasonable time. The

complete estimation of this complex model only takes me a few hours here, while it could take weeks

or months with alternative methods.

In addition to the speed increase, I also include more unobserved heterogeneity in the model with

the η term. Thus, by construction, I estimate the distribution of consumption choices and working

probabilities at any given set of observed covariates, and not only the average choices. This yields

new insights in this literature.

1.7.1 Model

Overview:

The parametric model enters the general dynamic framework described in section 1.4.1. It is a

more realistic version of the toy model described previously, with the same key features. I model

the annual consumption and labor supply choices of women from t = 26 to t = 60 years of age.

Each period, women determine their household consumption ct, and whether they work dt.16 At

the age 60, they retire and live for 15 more years on their accumulated savings and their pension,

which depends on their last income. Throughout their life, women may bear children. Fertility oc-

16I focus on the extensive margin, not on the number of hours worked. Individuals are assumed to either work full
time or be unemployed. This might be restrictive, particularly for single mothers, who are known to resort more to
part-time jobs.
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curs randomly following the trend observed in the data, and is not explicitly modelled as a choice.

Couples do not divorce, and new couples are not formed in the model. This is for simplicity to

avoid dividing the assets or modelling individual husbands’ assets. Women’s productivities (and

thus wages) evolve over their careers. Labor supply choice plays a key role in this evolution, as

working experience increases expected future wages, while productivity can depreciate for unem-

ployed women. Similarly, asset holdings evolves over the life cycle following a budget constraint

that depends on previous asset holdings, consumption, women’s productivities and labor choices

(they are paid only if they work), their potential husband’s annual income and the tax schedule

to which they are subject. The benefit/tax schedule is simplified and estimated based on observed

data. It differs depending on the individual’s family situation, wealth and labor choice. Finally,

women are subject to unobserved preference shocks η and ǫ. η is their unobserved taste shock for

consumption, and ǫ represents their unobserved preference for work. With η, I can estimate het-

erogeneous consumption choices for individuals who are identical as measured by their covariates.

I now describe the model in greater detail.

Working life:

t

t t+ t++ t+ 1

Starts
with states
zt = (xt, wt)

Shocks (ǫt, ηt) Simultaneously
picks (dt, cdt)

Draw
zt+1|zt, ct, dt

...

From age t0 = 26 to age T = 60, a woman is in her working life. She makes her decision (dt,

ct) to maximize her expected lifetime utility given her characteristics. These characteristics include

her age (t), her income (yt), her assets (at) and some demographics x̃t: her number of children

(nchildt), whether she is in a couple (couplet), and if so, her partner’s annual income (ypt ) and labor

force participation dpt . All these covariates are included in xt = (at, yt, x̃t).17 Her decision to work is

also influenced by whether she worked before wt = dt−1, for which we observe w0 = d−1. wt matters

because of the utility cost of switching from being unemployed to employed. She also makes her

decision based on two idiosyncratic shocks ηt and ǫt, unobserved by the econometrician. To satisfy

17A small detail: yt is now excluded from x̃t, at minimal risk of confusion. It is because yt does not enter the
current period utility directly.
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the distributional Assumptions 4-7, we have ηt ∼ U(0, 1) iid over time, and ǫt is i.i.d. extreme-value

type I.

Each period, the agent obtains utility:

u(ct, dt, wt, xt, ηt, ǫt) =





(ct/nt)
1−σ /(1− σ) η̃0t (ηt, couplet, nchildt) + ǫ0t if dt = 0

(ct/nt)
1−σ /(1− σ) η̃1t (ηt, couplet, nchildt) + α + ω(1− wt) + ǫ1t if dt = 1

≡





u0(ct, x̃t, ηt) + ǫ0t

u1(ct, x̃t, ηt) + α + ω(1− wt)︸ ︷︷ ︸
=m1(wt)

+ ǫ1t
.

where ct is the total household consumption over the period, nt is an equivalence scale, which de-

pends on the number of consumption units in the household, i.e., nt(couplet, nchildt), with nt(0, 0) =

1, nt(1, 0) = 1.6, nt(0, 1 or more) = 1.4, nt(1, 1 or more) = 2 (Blundell et al., 2016a). Thus, ct/nt rep-

resents individual consumption. σ is the elasticity of intertemporal substitution/risk aversion param-

eter. The effect of the unobserved shock ηt varies depending on the work choice (dt) and family situ-

ation (couplet, nchildt). η̃dt are transformations of ηt, where η̃dt ∼ LN (γd+γ
c
dcouplet+γ

n
dnchildt, sd).

η̃dt are the ηth quantiles of these distributions. This is a convenient way to include covariates in this

setup. Since ηt ∼ U(0, 1), the transformation to η̃dt allows for a wide range of effects of ηt. Note that

with this functional form, the monotonicity Assumption D3 is satisfied. The parameters (γd, sd)

represent the baseline effect of unobserved heterogeneity depending on working behaviour, for single

women without children. The parameters (γnd , γ
c
d) determine the effect of the family situation. I

set γ0 to 0 and s0 to 0.5 so that the other coefficients are interpreted with respect to this baseline.

The agents incur a utility cost α from working. wt is the instrument that corresponds to the past

labor choice, wt = dt−1. The agents incur a an utility cost ω from searching for a job (if they were

previously unemployed). Thus, mdt(wt, xt, ηt) = αdt + ω(1 − wt)dt, and it is independent of xt, ηt

and t in this application (which is stronger than necessary for the identification). By the additivity

of the instrument wt, Assumption D2 is satisfied. Similarly, additive separability of ǫt (Assumption

D1) is satisfied. Note that I have time independent current utility. However in the parametric

framework I can identify time-varying utility (Assumption 14 is only necessary for non-parametric

identification). Thus one could include and estimate time fixed effects for example.
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Transition:

The woman makes her choice of dt, ct subject to the household budget constraint :

at+1 = (1 + r)at − ct + dtyt + coupletd
p
ty

p
t + T (dt, xt).

This budget constraint describes the asset transition over time. r is the real interest rate. If the

woman works dt = 1, she obtains a wage yt. If she has a husband (couplet = 1) who works (dpt = 1),

the household also obtains his total income (= 0 if he does not work). T (dt, xt) is the benefit-tax

schedule. It is a function of the covariates and labor choice. I estimate it directly from the data.

Earnings yt and husband’s earnings ypt evolve over time according to an auto-regressive process:

yt+1 = (ρyyt + ρddt + ρaget)× educt + ut

ypt+1 = ρpyy
p
t + ρpdd

p
t + vt,

where ut, vt may be correlated. Working (dt = 1) allows individuals to change their expected earn-

ings and potentially increase them. Unemployment will decrease productivity if ρy < 1, i.e., human

capital depreciates. Therefore, working is important not only for current consumption and savings

but also for its impact on human capital accumulation. All these coefficients vary with the education

level (≤secondary, high school or university) of the woman, educt. I do not include the education

of the partner to avoid having too many variables in the model, since I focus on the woman. The

earning process is estimated directly from the data on observed transitions.

Auto-regressive processes are also estimated for fertility (having a new-born child) and for the

husband’s work decisions. These depend on past xt only. dt and ct do not enter the transitions

here.

Finally, by construction, the next value of the instrument wt+1 = dt and the other covariates

than dt are irrelevant for its transition. Since conditional on current (dt, ct, xt), wt does not enter

the transition of the other variables, the conditional independence Assumption 10 is satisfied.

Retirement:

At age T , the woman retires, and can no longer decide to work. She obtains the same utility as
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when she did not work, with dt = 0, without the additive ǫ shock.18 She lives for another 15

years on her accumulated assets and receives a pension that is a proportion of her last income

yT . I include no bequest motive in the model. One can easily solve the consumption problem of

retirees, which depend on their last income and assets, to obtain the expected retirement utility :

R(xT ) = R(aT , yT , y
p
T , coupleT , nchildT ).

Life-cycle problem:

The working life decision problem is the one that interests us. Given the development above, at

any age t during her working life, the woman decision problem can be written as:

Vt(zt) ≡ E

[ T∑

τ=t

βτ−tmax
d,cdτ

[ ud(cdτ , x̃τ , ητ ) +md(x̃τ , wτ , ητ ) + ǫdτ ] + βT−tR(xT )
]
,

where the future is discounted at a rate β.

For notational simplicity, denote VT+1(zT+1) = R(xT ), a special form of the value function for

the retirement period. We have already verified that the identification assumptions hold. Therefore,

following computations performed in section 1.4.1, we return to the general setup, where the woman

selects dt and ct at each age t to solve:

max
dt,cdt

vd(cdt, xt, ηt) +md(x̃t, wt, ηt) + ǫdt, (1.12)

where the conditional value function is given by:

vdt(cdt, xt, ηt) ≡ ud(cdt, x̃t, ηt) + βEzt+1
[Vt+1(zt+1)|xt,cdt,dt ].

The agent internalizes the effect of her choice on her future, discounting it at a rate β. Note that

even here where the current utility has a known parametric form, the conditional value’s form is

generally more complex, with no closed form solution. It depends on complex transitions and expec-

tations about the future. Therefore, the advantage of my method, i.e., that I am able to estimate

18Instead, I can normalize the utility of retired women with parameters γr and sr. In which case, I could estimate
the γ0 and s0 of unemployed women with respect to the retirees baseline. However, my estimation would then be
driven by the data comparison of the Euler equation at the retirement age, which represents only a small subset of
my panel. Therefore, I prefer to set the utility of retirees equal to the utility of unemployed individuals.
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both the optimal policies (CCCs and CCPs) and the parameters of interest without numerically

solving for the conditional value, also applies to parametric dynamic models, hence the sizeable

computational gains.

1.7.2 Data

To estimate the model, I use EU-SILC French survey data. It is a survey conducted every year and

follows households from 2004 to 2015. The data contain information about the labor market status

(income, job tenure), asset holdings (financial and housing), tax paid and benefits received, and

personal characteristics of the individuals (family situation, education, etc.). Data are available for

all the individuals within the household, which is why I also have detailed information about the

partner.

Consumption is not directly available in the data, I reconstruct it for households present over

two consecutive years based assets evolution and savings.

I set that a woman works (d = 1) if she worked more than 6 months during the year.

Income is only reported for employed women and husbands. I estimate y and yp based on the

income information of workers using the standard Heckman correction (Heckman, 1979) before-

hand. For simplicity, I assume that income is observed for everyone using these estimations when

I estimate the model.19 I estimate this on the subsample of full-time working individuals so that I

obtain a productivity yt representing full-time equivalent productivity. In this estimation, I include

covariates other than those used in the model, including education, experience, some parent back-

ground information, and zone and year fixed effects.

After cleaning the data for outliers and missing values, I end up with an unbalanced panel of

7, 391 women between 26 and 60 years of age, yielding a total of 21, 945 observations over 11 years.

I fix the real interest rate r at the average of the period (= 0.05), as given by the IMF French data.

Descriptive statistics:

Table 1.2 describes the sample of data I use; 76% of women work, with a strong auto-correlation in

19Obviously, given that the probability of working is a key part of the model, ideally one would prefer to build
our own Heckman correction within the model here, with some kind of nested iteration with the CCP, CCC and
productivity estimation, in the spirit of Aguirregabiria and Mira (2002) for example. Another good way to deal with
it would be to include unobserved types, as in Arcidiacono and Miller (2011), and have wage depend on these types.
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Table 1.2: EU-SILC unbalanced panel, 2004− 2015, 7391 women

Statistic N Mean St. Dev. Min Median Max

Choices:
Annual household c (k euros) 21,945 36.58 20.99 3.88 32.54 211.54
c|d = 0 5,330 30.04 19.32 4.02 25.58 204.48
c|d = 1 16,615 38.67 21.07 3.88 34.78 211.54

d 21,945 0.76 0.43 0 1 1
w 21,945 0.76 0.43 0 1 1
d|w = 0 5,354 0.14 0.35 0 0 1
d|w = 1 16,591 0.96 0.20 0 1 1

Covariates:
Age 21,945 42.37 9.39 26 42 60
Annual Income y (Heckman) 21,945 19.74 5.29 8.10 19.07 43.32
Asset 21,945 108.29 118.55 −32 69.0 528
Nb of children 21,945 1.71 1.09 0 2 4
Couple 21,945 0.75 0.43 0 1 1
Working partner|Couple 16,442 0.93 0.25 0 1 1
Partner’s income yp |Couple 16,442 26.41 13.21 4.02 23.20 147.54

Completed Education 21,945
≤ Secondary 5,240 0.24
High School 9,999 0.46
University 6,706 0.30

Other:
Receives Benefits 21,945 0.66 0.47 0 1 1
Benefits|Benefits > 0 14,478 5.16 4.46 0.002 3.60 23.07

c, y, yp, asset and benefits expressed in real terms (base 2010) and in thousands of euros.

employment: if a woman worked before (wt = dt−1 = 1), Pr(Dt = 1|wt = 1) is very high = 0.96,

while if she did not, Pr(Dt = 1|wt = 0) = 0.14 is low. This suggests that w should be a relevant

instrument for d. On average, households consume 36k5 euros per year. Observed consumption

conditional on working (c1t|dt = 1) is higher than consumption conditional on being unemployed

(c0t|dt = 0). However, we do not yet know how much of this is due to the selection: it is pos-

sible that women with high ηt select more into employment, boosting the average consumption

conditional on working. Regarding the covariates, there is considerable variance in asset holdings.

Most women (75%) are in couples, with a median number of 2 children. Their partner is generally
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working (93%), far more frequently than the women. The partner’s income is also larger than

the woman’s annual income. Finally, approximately 66% of the households received some kind of

benefit. These benefits include not only unemployment benefits, but also family benefits, for ex-

ample. This is why there are more people receiving benefits than the number of unemployed people.

1.7.3 1st stage: Optimal Choices Estimation

Estimation

I follow the procedure described in section 1.5. First, I estimate the reduced-form probabilities

and conditional distributions. The probabilities are estimated with a sieve logistic regression. The

conditional distributions are estimated via non-parametric kernel methods (R package np, Hayfield

and Racine, 2008).

Then, I estimate the CCCs cdt(ht, xt) for all ht, xt accordingly. Once I have the CCCs, I estimate

ĥt from the observed (ct, dt, xt). I then recover the CCPs P̂ r(Dt = d|ηt = h,Xt = x,Wt = wt) using

a sieve logistic regression.

I also estimate the transitions toXt+1|Xt, Dt, Ct according to the description provided previously.

Results

Optimal Choices:

Figure 1.1 shows the optimal choice estimates for the median 26 year-old woman. Potential con-

sumption when working is always greater than alternative consumption when unemployed, with an

average difference of approximately 3, 930 euros of consumption per year. By construction, these

functions are monotone with respect to the taste shock h.

The conditional choice probabilities are more complicated. First, note that the probability of

working is always greater and close to 1 for individuals who were employed previously. If the me-

dian woman was previously unemployed, however, her probability of working today is less than

50%. The relation between the employment decision and the taste shock is complex. By working,

the woman will obtain an income that she will be able to consume. However, at the same time,

she will have less leisure time. There is a trade-off between a substitution and wealth effect. If she

was previously employed (wt = 1), the higher her taste shock (ηt) was, the less likely the median
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Figure 1.1: CCCs and CCPs estimates
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woman was to work. The substitution effect dominates. Note that even is she is less likely to work,

in any case, the higher ηt is, the more she consumes. If she was previously unemployed, the case is

more complicated. Up to approximately the median taste shock, the wealth effect dominates, and

she will choose to work more to consume more. After this threshold, it decreases, and the more she

wants to consume, the less she will work.

Life-cycle simulation:

Figure 1.2 shows the average results over 1, 000 life-cycle simulation for the median 26 year-old

woman and for an alternative woman with the same characteristics but two children. First, con-

sumption, income and asset all increase throughout the life cycle. Her partner’s income also increases

in a similar fashion. Once they enter the labor force, women are increasingly likely to work until

retirement. By having two children, the alternative woman is less likely to work initially, and this

persists throughout her life cycle. As a consequence, she on average has an income disadvantage,

while her husband seems to suffer no particular penalty. However, with two children she will ini-

tially obtain more benefits and be able to accumulate slightly more assets. The households with

two children consume only slightly more, which suggests that they obtain considerably lower utility

from their individual consumption.
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Figure 1.2: Life-cycle simulations
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1.7.4 2nd stage: Structural model Estimation

Estimation

Now, I want to estimate the set of structural parameters: θ = (σ, γc0, s
c
0, γ

n
0 , s

n
0 , γ

c
1, s

c
1, γ

n
1 , s

n
1︸ ︷︷ ︸

≡ θ0

, α, ω︸︷︷︸
≡ θ1

).

Following section 1.4.2, denote the marginal utilities at optimal CCCs as:

u′∗d (x̃t, at, ηt) =
∂

∂cdt
ud(cdt, x̃t, ηt)|cdt=c∗dt(ηt,x̃t,at).
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Thus I have the Euler equation for all d:

u′∗d (x̃t, at, ηt, θ0) = β(1 + rt)Et

[
u′∗dt+1

(x̃t+1, at+1, ηt+1, θ0)
∣∣∣xt, cdt, dt

]
.

Here, the functional form of ∂ud(cd, x̃, η)/∂cd is known and depends on the parameter θ0. Thus, θ0

are estimated in a first step by minimizing the differences between the two sides of the equation. For

the left-hand side of the equation, I use every observation in the data, including the estimated η̂ as

if it was observed and the corresponding observed cdt. For the right-hand side, one can either take

the empirical expectation about the future, or simulate it using the estimated CCCs, the CCPs and

the transitions. Given the small number of observations I have, I prefer to use the former solution

in this application.

The other parameters α and ω (in γ1) additively enter the utility, so they are not in the Euler

equation. They are identified via the CCPs. To recover α and ω, I choose to simulate complete

life cycles for each set of parameters θ using the reduced forms. In this way, I obtain estimates

of the conditional value functions vd(), and using extreme-value type-1 form of ǫ, I can recover

the theoretical Pr(Dt = 1|ηt, Xt,Wt) and compare them to the CCPs. The optimal parameters

θ minimize these differences. I run the two-stage estimates, so I estimate θ̂1 by minimizing the

difference in probabilities with respect to θ1 with θ0 fixed to the θ̂0 estimated in the first stage.

Results

Structural Parameters: (Table 1.3)

I find a coefficient for risk aversion (and the elasticity of intertemporal substitution) similar to the

literature: 1.63 versus 1.56 in Blundell et al. (1994), or 1.53 in Alan et al. (2009). It suggests my

method yields consistent estimations, with more complex model and faster computation.

As expected, the utility cost of searching for a job when previously unemployed is high. In

comparison, the utility cost of working is almost null. For the effect of the taste for consumption,

note first that the smaller the coefficient is, the higher the utility since 1 − σ < 0. Thus, note

that, for a given consumption level, single working women without children have higher utility (on

average) than if they were unemployed (γ1 = −1.04 < γ0 = 0). When they are in couples without

children, their utility is similar (−1.04 − 0.65 versus −1.80). Additional children yield more disu-

tility for employed women (−0.10 > −0.31). The variances are similar (s1 = 0.54 close to the fixed
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Table 1.3: Structural parameter estimates

Parameter estimates

Parameter Estimate

Discount factor β 0.98
(fixed)

Constant Relative Risk Aversion σ 1.63

Effect of η by family...
... when unemployed:
LN (γc0couple+ γn0nchild, s0) γ0 0

(fixed)
γc0 -1.80
γn0 -0.31
s0 0.50

(fixed)
... when employed: γ1 -1.04
LN (γ1 + γc1couple+ γn1nchild, s1) γc1 −0.65

γn1 −0.10
s1 0.54

Additive terms:
Utility cost of working α −0.04
Utility cost of search ω −2.14

s0 = 0.50). e

One could use this estimated model to perform counterfactual analysis and study the effect of

different labor market reforms on women’s consumption and career choice, such as, the effect of

increasing the age of retirement or changing the benefits given to single mothers.

1.8 Conclusion

This paper develops a general class of discrete-continuous choice models and provides a list of

conditions to achieve non-parametric identification. The identification proof is original as it solves

for a unique monotone function instead of proceeding pointwise, which allows identification under
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weaker relevance conditions than in the existing literature.

Given the identification, I provide a new estimation procedure yielding sizeable computational

gains with respect to the existing alternatives for the estimation of dynamic models. The gains are

so large that they should facilitate the use of complex dynamic discrete-continuous models in the

future and offer greater latitude to researchers to test for several model specifications. This will

allow us to find new results in several fields where my methodology can be applied: labor, housing,

education, industrial organization, etc.

On a final note, part of the method described here applies more broadly to discrete-continuous

dynamic processes, choices or not. This yields additional interesting dynamic applications.
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Appendix

1.A Proof: Lemma 3

I prove Lemma 3.

Proof. First, let us relate Pr(d|η = h,W = 1)−Pr(d|η = h,W = 0) to the distributions/quantiles.

Recall that using Bayes and η ⊥ w, we have ∀w:

h = Pr(η ≤ h)

= Pr(η ≤ h|w)

= Pr(η ≤ h | D = 0, w)Pr(D = 0|w) + Pr(η ≤ h | D = 1, w)Pr(D = 1|w)

= Fη|D=0,w(h)p0|w + Fη|D=1,w(h)p1|w. (1.13)

Then, combining (1.13) at w = 1 and w = 0, we obtain ∀h:

Fη|D=0,W=1(h)p0|1 − Fη|D=0,W=0(h)p0|0 = −
(
Fη|D=1,W=1(h)p1|1 − Fη|D=1,W=0(h)p1|0

)

def
⇐⇒ ∆Fη0(h) = ∆Fη1(h). (1.14)

Moreover, notice that we can rewrite Fηd|w(h):

Fη|d,w(h) = Pr(η ≤ h|d, w)

= Pr(η ≤ h, d|w)/Pr(d|w)

= Pr(d|η ≤ h, w)Pr(η ≤ h|w)/Pr(d|w). (1.15)
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Let us focus on the choice D = 0 (by symmetry it will be the same for D = 1) and rewrite (1.14)

by plugging (1.15) into it:

∆Fη0(h) =
[
Pr(D = 0|η ≤ h,W = 1)Pr(η ≤ h|W = 1)/

✭
✭
✭
✭
✭
✭
✭
✭

✭✭

Pr(D = 0|W = 1)
]
✭
✭
✭
✭

✭
✭
✭
✭
✭✭

Pr(D = 0|W = 1)

−
[
Pr(D = 0|η ≤ h,W = 0)Pr(η ≤ h|W = 0)/

✭
✭
✭
✭

✭
✭
✭
✭
✭✭

Pr(D = 0|W = 0)
]
✭
✭
✭
✭

✭
✭

✭
✭
✭✭

Pr(D = 0|W = 0).

Moreover, since W ⊥ η: Pr(η ≤ h|W = 1) = Pr(η ≤ h|W = 0) = Pr(η ≤ h) = h, we have:

∆Fη0(h) =
[
Pr(D = 0|η ≤ h,W = 1)− Pr(D = 0|η ≤ h,W = 0)

]
h. (1.16)

Now, note that if η ∼ U(0, 1):

Pr(D = 0|η ≤ h0, w) =

∫ h0

0

Pr(D = 0|η = h, w)/F (h0)dh =

∫ h0

0

Pr(D = 0|η = h, w)/h0dh.

(1.17)

Thus, we can rewrite (1.16) ∀h0 as:

∆Fη0(h0) =
[ ∫ h0

0

Pr(D = 0|η = h,W = 1)/h0dh−

∫ h0

0

Pr(D = 0|η = h,W = 0)/h0dh
]
h0

=

∫ h0

0

(
Pr(D = 0|η = h,W = 1)− Pr(D = 0|η = h,W = 0)

)
dh. (1.18)

Which leads to:

Pr(D = 0|η = h,W = 1)− Pr(D = 0|η = h,W = 0) =
d∆Fη0(h)

dh
.

Moreover, if cd(h) is a strictly monotone solution to our problem, we have Fη|d,w(h) = FCd|d,w(cd(h)),

and thus ∀h:

∆Fη0(h) = Fη|D=0,1(h)p0|1 − Fη|D=0,0(h)p0|0

= FC0|D=0,W=1(c0(h))p0|1 − FC0|D=0,W=0(c0(h))p0|0

def
= ∆FC0

(c0(h)).

71



Thus:

Pr(D = 0|η = h,W = 1)− Pr(D = 0|η = h,W = 0) =
d∆Fη0(h)

dh

=
d∆FC0

(c0(h))

dh

=
d∆FC0

(c0)

dc0

dc0(h)

dh︸ ︷︷ ︸
>0

.

So, under assumption 9b, there is a finite set of K points h ∈ [0, 1] such that Pr(D = 0|η =

h,W = 1) − Pr(D = 0|η = h,W = 0) = 0. Then there is a finite set of K points c0(hk) such that

d∆FC0
(c0(h))/dh = 0. And since c′0(h) > 0 because of the monotonicity of the quantiles, it implies

that there is a finite set of K points such that d∆FC0
(c0)/dc0 = 0.

We can follow exactly the same reasoning for D = 1. We obtain that, if there is a finite set

of K points h ∈ [0, 1] such that Pr(D = 1|η = h,W = 1) − Pr(D = 1|η = h,W = 0) = 0, then

there is a finite set of K points c1(hk) such that d∆FC1
(c1(h))/dh = 0. Since c′1(h) > 0 because

of the monotonicity of the quantiles, it implies that there is a finite set of K points such that

d∆FC1
(c1)/dc1 = 0.

1.B Proof of Identification Theorem 1

I develop the complete proof of Theorem 1 about the identification of the continuous choice policies.

Proof. For a given increasing solution cd(h), let us first introduce the notation:

pd|w ≡ Pr(D = d|W = w)

γd(h) ≡ FCd|D=d,W=0(cd(h))

Ψd1(γd(h)) ≡ FCd|D=d,W=1(cd(h)) = FCd|D=d,W=1(F
−1
Cd|D=d,W=0(︸ ︷︷ ︸

≡Ψd1()

FCd|D=d,W=0(cd(h))︸ ︷︷ ︸
≡γd(h)

).

Recall from Lemma 2 that FCd|d,w(c): Cd → [0, 1] is C1 and strictly increasing function of c. Now,

under assumption 3, a solution cd(h) is also a strictly increasing and C1 function of h. Thus γd(h)

are C1 and strictly increasing functions of h, from γd(0) = 0 to γd(1) = 1. The mappings Ψd1(γd)
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give us the mapping from the quantiles of cd with instrument value W = 0 to their counterpart

with instrument value W = 1. Similarly, given Lemma 2, we have that Ψd1 are also C1 and strictly

increasing functions of γd from Ψd1(0) = 0 to Ψd1(1) = 1. These mappings are directly reconstructed

from the data since the data identifies FCd|d,w ∀d, w. So, from data on (cd, d, w) we now recover:

∀(d, w) pd|w and ∀d Ψd1(γd) .

Under this reparametrization, the system described in equation (1.2) rewrites, ∀h, with increas-

ing γd(h): 



h = γ0(h)p0|0 + γ1(h)p1|0

h = Ψ01(γ0(h))p0|1 + Ψ11(γ1(h))p1|1

. (1.19)

The conditional distribution functions FCd|d,w=0 are known, strictly increasing and invertible (Lemma

2). So if there is a unique solution {γd(h)}d∈{0,1} to system (1.19), there is a unique solution

{cd(h)}d∈{0,1} to the original system (1.2). Thus, we first show uniqueness of {γd(h)}d∈{0,1} to sys-

tem (1.19), and then we will come back to {cd(h)}d∈{0,1}.

Lemma 7 (Identification) (in the reparametrized problem)

Under assumption 9, there exists a unique strictly increasing γd(h) solution to system (1.19) starting

from (γ0(0), γ1(0)) = (0, 0) to (γ0(1), γ1(1)) = (1, 1).

Proof of Lemma 7.

We prove that there exists a unique increasing solution to system (1.19).

Existence: existence is straightforward. Indeed, we are only focusing on images of the structural

model. So by construction, with the true optimal policies, γ∗d(h) = FCd|D=d,W=0(c
∗
d(h)) are solutions

to the system.

Uniqueness: we need to show this is the unique strictly increasing solution to this problem. To

do this, we procede in two-steps. First we show that there is a unique increasing mapping between

the two conditional quantiles, denoted γ∗1(γ0), which solves the system. Then this mapping yields a

unique increasing solutions γ∗d(h). The idea is that, in the end, we want to identify which conditional
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quantiles γ0 and γ1 corresponds to a given h. But to do that, we will first recover the conditional

quantile mapping, i.e., which γ1 corresponds to a given quantile γ0 in choice 0. And then we recover

to which h they both corresponds.

Step 1: Let us recover the conditional quantile mapping: γ̃1(γ0), i.e., which γ1 corresponds to a

given γ0, without knowing to which h they correspond. We want to show that there exist a unique

conditional quantile mapping solution to our problem under assumption 9. First, note that γ0(h)

and γ1(h) are C1 and strictly increasing functions of h. Thus, a higher γ0 corresponds to a higher

h and thus to a higher γ1. As a consequence, the mapping γ̃1(γ0) will also be C1 and strictly

increasing function of γ0 starting from γ̃1(0) = 0 (since γ1(0) = γ0(0) = 0) to γ̃1(1) = 1 (since

γ1(1) = γ0(1) = 1). As a consequence, we need to show that there exists a unique increasing

mapping γ̃1(γ0) : [0, 1] → [0, 1], with γ̃1(0) = 0 and γ̃1(1) = 1, solution to our system of equations

(1.19).

We can get restrictions on our mapping using our structural system (1.19). Subtract the first

line from the second line in the system of equations (1.19).

Ψ01(γ0(h))p0|1 − γ0(h)p0|0 = −
(
Ψ11(γ1(h))p1|1 − γ1(h)p1|0

)

def
⇐⇒ ∆F0(γ0(h)) = ∆F1(γ1(h)) ∀h (1.20)

Notice that the functions ∆F0 and ∆F1 are directly observed from the data as both Ψd1 and pd|w are

known ∀d, w. We also know they are C1 functions of γd as the sum of C1 functions (since Ψd1(γd)

are C1).

Now, even if we do not observe h, if γ1 and γ0 correspond to the same unobserved h, we have:

∆F0(γ0) = ∆F1(γ1) by equation (1.20). As a consequence, a conditional quantile mapping γ̃1(γ0)

solution to the system (1.19) must solve the equation:

∆F0(γ0) = ∆F1(γ̃1(γ0)) ∀γ0 ∈ [0, 1] (1.21)

Now we show that there exists a unique increasing mapping γ̃1(γ0) : [0, 1] → [0, 1], with γ̃1(0) = 0

and γ̃1(1) = 1, solution to this equation (1.21) under assumption 9b.
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First, let us see the implications of Lemma 3 in our reparametrized problem.

Lemma 3 bis: There is the same finite number K of values of γ0 and γ1 such that

d∆Fd(γd)

dγd
= 0 ∀d

Proof. This is just a consequence of Lemma 3. First, notice that using our reparametrization:

∆Fd(γd(h)) = Ψd1(γd(h))pd|1 − γd(h)pd|0

= FCd|D=d,W=1(cd(h))pd|1 − FCd|D=d,W=0(cd(h))pd|0

= ∆FCd
(cd(h))

So:

d∆FCd
(cd(h))

dh
=
d∆Fd(γd(h))

dh

⇐⇒
d∆FCd

(cd)

dcd

dcd(h)

dh
=
d∆Fd(γd)

dγd

dγd(h)

dh

Now, dcd(h)/dh > 0 and dγd(h)/dh > 0 by strict monotonicity of the solution. So, if d∆FCd
(cd)/dcd =

0 then d∆Fd(γd)/dγd = 0. As a consequence, Lemma 3 implies Lemma 3 bis in our reparametrized

problem.

Case K = 0: in the particular case where K = 0, there exists no point such that d∆Fd(γd)
dγd

= 0 ∀d.

∆Fd are C1 with no points at which the derivative is zero, so they are monotone and invertible.

As a consequence, we can easily recover the unique quantile mapping by inverting ∆F1 in system

(1.21). We have:

γ̃1(γ0) = (∆F1)
−1(∆F0(γ0)) ∀γ0 ∈ [0, 1]

General case K > 0: There is a finite number K < ∞ of γ0 and γ1 such that d∆Fd(γd)/dγd = 0.

Let us denote γ10 < γ20 < ... < γK0 the ordered K γ0 such that d∆F0(γ0)/dγ0 = 0. And similarly,

denote γk1 from k = 1, ..., K the ordered K γ1 such that d∆F1(γ1)/dγ1 = 0.
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First, we want to show that if the mapping γ̃1(γ0) solves the system, then γ1(γ
k
0 ) = γk1 . Let us

take the derivative version of the system (1.21):

d∆F0(γ0)

dγ0
=
d∆F1(γ̃1(γ0))

dγ0
=
d∆F1(γ1)

dγ1

dγ̃1(γ0)

dγ0
∀γ0

Since the mapping γ̃1(γ0) must be increasing, we have: dγ̃1(γ0)/dγ0 > 0. As a consequence, if a

mapping γ̃1(γ0) is a solution, then when γ0 is such that d∆F0(γ0)/dγ0 = 0, the mapped γ1 must

also have a null derivative, i.e., d∆F1(γ̃1(γ0))/dγ1 = 0. So, in a solution, the K points such that

d∆F0(γ0)/dγ0 = 0 are mapped to the K points such that d∆F1(γ1)/dγ1 = 0.

Moreover, since we are looking for an increasing solution mapping γ̃1(γ0)), we necessarily have that

these K points are sorted, i.e.:

γ̃1(γ
k
0 ) = γk1 ∀k ∈ {1, ..., K}

If this was not the case, the γ̃1(γ0) would not be increasing. Thus we have a unique solution for the

K γk0 points.

Now, we show that γ̃1(γ0) is also uniquely defined at other points than the γk0 . We use that the

function ∆Fd are piecewise monotone and invertible (because C1 with finite number of points with

null derivatives) between the points of null derivative. It is similar to the K = 0 case, except that

here we can only use piecewise monotonicity and partition the set accordingly.

Formally we procede as follows:

• Split the compact set [0, 1] of γ0 into K + 1 sub-intervals Γk
0:

Γ1
0 = [0, γ10 ], Γ

2
0 = [γ10 , γ

2
0 ], ... , Γ

K+1
0 = [γK0 , 1] such that [0, 1] = ∪

k∈{1,...,K+1}
Γk
0

We denote Sk
0 the image of those subsets by ∆F0. We have ∆F0 : Γ

k
0 → Sk

0 .

• Do the same with the set of γ1: split the compact set [0, 1] of γ0 into K + 1 sub-intervals Γk
1:

Γ1
1 = [0, γ11 ], Γ

2
1 = [γ11 , γ

2
1 ], ... , Γ

K+1
1 = [γK1 , 1] such that [0, 1] = ∪

k∈{1,...,K+1}
Γk
1.

We denote Sk
1 the image of those subsets by ∆F1. We have ∆F1 : Γ

k
1 → Sk

1 .

• Since ∆Fd are C1, in between the points of null derivative, ∆Fd are strictly monotone and

invertible. It implies that Sk
d are compact sets, as image of compact sets by strictly monotone

functions. Moreover, Ψd1(0) = 0 for all d. Thus, ∆Fd(0) = 0 for all d. We also have

76



Ψd1(1) = 1 for all d. Thus, ∆F0(1) = p0|1 − p0|0 = (1 − p1|1) − (1 − p1|0) = −(p1|1 − p1|0) =

∆F1(1). Moreover, since we showed that a solution must have γ̃1(γk0 ) = γk1 , and given that we

know a solution exists, then the K points must satisfy our original equation (1.21). Which

means that ∆F0(γ
k
0 ) = ∆F1(γ

k
1 ) ∀k. It implies that Sk

0 = Sk
1 and we denote them Sk for

all k ∈ {1, ..., K + 1}. We have: S0 = [0,∆F0(γ
1
0)], S1 = [∆F0(γ

1
0),∆F0(γ

2
0)], ..., SK+1 =

[∆F0(γ
K
0 ),∆F0(1)]. Notice that we could have defined the image sets based on ∆F1 instead

of ∆F0, as ∆F0(γ
k
0 ) = ∆F1(γ

k
1 ) ∀k.

Now, we are looking for an increasing mapping solution to the system. By monotonicity, we

know that for a solution γ1 : Γ
k
0 → Γk

1 since the upper bounds (γkd ) of these sets are image of

each other. On each subintervals Γk
d, the corresponding function ∆Fd is strictly monotone and

C1 ∀d. And we have that ∆F0 : Γ
k
0 → Sk and ∆F1 : Γ

k
1 → Sk. So we can invert it segment by

segment and get for any given k:

γ̃1(γ0) = (∆F1)
−1(∆F0(γ0)) ∀γ0 ∈ Γk

0

This uniquely define the solution γ̃1(γ0) on Γk
0.

• We repeat this ∀k ∈ {1, ..., K + 1} to obtain a unique mapping γ̃1(γ0) covering the whole set

of γ0, i.e., ∪
k∈{1,...,K+1}

Γk
0 = [0, 1].

So, we have a unique mapping γ̃1(γ0) solution to equation (1.21).

Step 2: From this unique mapping between the conditional quantiles, we would like to recover the

unique quantile functions γd(h). To recover the functions γd(h), we just need to use any equations

of our original system (1.19) (the first one, for example) to obtain the h(γ0) corresponding to a

given (γ0, γ̃1(γ0)) as

h(γ0) = γ0p0|0 + γ̃1(γ0)p1|0

So we have a unique increasing solution (γ̃1(γ0), h(γ0)) ∀γ0 ∈ [0, 1]. By changing the arguments it

means that there exists a unique increasing solution (γ0(h), γ1(h)) to the system (1.19), starting

from (γ0(0), γ1(0)) = (0, 0) to (γ0(1), γ1(1)) = (1, 1). We denote this unique solution γ∗d(h).

Therefore, we proved Lemma 7.
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Thus, we have a unique increasing solution γ∗d(h) to system (1.19). Now recall that γd(h) =

FCd|d,w=0(cd(h)). By Lemma 2, FCd|d,w=0(cd) are strictly increasing and C1, thus invertible. As a

consequence:

c∗d(h) = F−1
Cd|d,w=0(γ

∗
d(h))

So, if there exists a unique set of solution {γd(h)}d∈{0,1} to the rewritten system (1.19), there exists

a unique set of increasing functions {cd(h)}d∈{0,1} solution to the original system (1.2).

This unique set of functions identify the optimal CCCs c∗d(h) from the data (cd, d, w).

1.C Appendix of Estimator Performance

1.C.1 T = 1 Special case

Let us focus on the one-shot decision problem with T = 1. This case is interesting because I can

obtain closed-form solutions to the problem, and easily compare true Maximum Likelihood Esti-

mator with my estimator. Obviously, because of the existence of this closed-form solution, the

time comparison between the methods is irrelevant. But this T = 1 example is useful for efficiency

comparison with maximum likelihood.

Closed form solution:

The agent works in t = 1, retires in t = 2 and dies in t = 3. The retiree consumes everything she

has left, to obtain a3 = 0. Thus the consumption of the retiree is c2 = (1+ r)a2 + pension(y2), and

is independent from η2. Moreover, by the budget constraint, a2 = (1+ r)a1+y1d1− cd1+(1−d1)b1.

I set the benefits b1 equal to 0 in this example. Thus in period t = 1, the only period of her working
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life, conditional on d, the agent solves:

max
cd1

c1−σ
d1

1− σ
η̃d(η1, γd, sd) + αd1 + ω(1− w)d1 + ǫd1

+ βE
[((1 + r)2a1 + (1 + r)y1d1 − (1 + r)cd1 + pension(y2))

1−σ

1− σ
η̃d(η2, γ0, s0)

]
.

where E[η̃d(η2, γ0, s0)] = eγ0+s2
0
/2, also there is no ǫ2 shock in the retirement period, and the retire-

ment utility is the same as the utility when unemployed.

It yields the closed form solution for the conditional consumption in t = 1:

cd1 =
1

(1 + r) +
(
β(1 + r)eγ0+s2

0
/2/η̃d(η1, γd, sd)

)1/σ
(
(1 + r)2a+ (1 + r)y1d+ pension(y2)

)
.

The agent consumes a share of available income which depends on the decision. Since the retiring

utility is the same as the unemployed one, I only identify γ1, s1 with respect to γ0, s0 and β.20 Thus,

the parameters to estimate are θ = (σ, γ1, s1, α, ω). β is fixed at 0.98, γ0 = 0, s0 = 0.25.

Results: (Table 1.C.1)

First, the speed comparison is irrelevant here. Indeed with one period one does not need to solve

for the value function so it is considerably easier, especially since we also have closed-form solutions

to simulate the model and compute the likelihood. On average here SMM already takes longer than

my DCC method but only because it requires to test more set of parameters to find the optimum,

as the objective are different between the two functions. It could be the reverse, and one could

expect both methods to go at relatively similar speed when T = 1 in general. The real benefits of

my method are when it allows to avoid solving for the value function, i.e., as soon as T > 1.

Concerning the statistical efficiency, as expected when you have a closed form solution for the

likelihood, MLE is always the most efficient. It is also the quickest as I do not need to estimate

any reduced form in a first stage and I am using a known closed form solution in this T = 1

case. Obviously once I go to more period, MLE becomes the longest method, and is becoming

untractable.

My method (DCC) is consistent and relatively efficient, but less than the MLE benchmark.

20Notice that if I had a specific retirement utility, different from the unemployment one, I could also identify
parameters of unemployed with respect to retirees.
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Table 1.C.1: Comparison of the estimators when T = 1

Method
Truth DCC MLE SMM

1,000 10,000 1,000 10,000 1,000 10,000

σ 1.60 1.5806 1.5782 1.6042 1.5992 1.6135 1.5970
(0.1759) (0.0827) (0.0444) (0.0137) (0.0560) (0.0211)

γ1 0.00 0.0071 0.0040 -0.0061 0.0007 -0.0269 -0.0009
(0.0714) (0.0286) (0.0205) (0.0072) (0.0213) (0.0078)

s1 0.40 0.4246 0.4043 0.4005 0.4001 0.3926 0.3857
(0.0747) (0.0366) (0.0187) (0.0060) (0.0245) (0.0073)

α -0.50 -0.4782 -0.5092 -0.4928 -0.5000 -0.4986 -0.4850
(0.3266) (0.1016) (0.0852) (0.0268) (0.0989) (0.0401)

ω -1.00 -1.0689 -1.0044 -1.0115 -0.9931 -1.0308 -1.0029
(0.1715) (0.0484) (0.1577) (0.0441) (0.2919) (0.0665)

Avg Time taken: 16s 32s 1s 9s 16s 50s

Other initializations: Number of Monte-Carlo = 1, 000.
Pr(w1 = 1) = 0.7. yH is set to 20 and in this case I impose Pr(y = yH) = 1.

a1 = 12.5 for everyone here. Benefits b = 0. Pension Percentage of income = 50%.
Fixed parameters: γ0 = 0, s0 = 0.25, β = 0.98, r = 0.05.

Simulated Method of Moments (SMM) with moments drawn from the reduced forms conditional

distributions of cd|d, w, x and conditional probabilities pd|w,x is also consistent. It is also more

efficient (except for the additive parameter ω). I lose efficiency because of the two-step nature of

my method, since I’m always computing the second step using first step optimal choices estimates.

But overall, the efficiency loss is largely compensated by time gains in more complicated models.

80



Chapter 2

Imperfect Information, Learning and Housing Market

Dynamic

Christophe Bruneel-Zupanc1

Abstract

This paper examines the decision problem of a homeowner who maximizes her expected

profit from the sale of her property when market conditions are uncertain. Using a large

dataset of real estate transactions in Pennsylvania between 2011 and 2014, I verify sev-

eral stylized facts about the housing market. I develop a dynamic search model of the

home-selling problem in which the homeowner learns about demand in a Bayesian way.

I estimate the model and find that learning, especially the downward adjustment of the

beliefs of sellers facing low demand, explains some of the key features of the housing

data, such as the decreasing list price overtime and time on the market. By compar-

ing with a perfect information benchmark, I derive an unexpected result: the value of

information is not always positive. Indeed, an imperfectly informed seller facing low

demand can obtain a better outcome than her perfectly informed counterpart thanks to

a delusively stronger bargaining position.

1E-mail address: christophe.bruneel@tse-fr.eu.
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JEL classification: D83, R2, R3.

Keywords: housing, pricing, imperfect information, Bayesian learning.

2.1 Introduction

Real estate transactions involve large financial amounts ($206k, on average, in Pennsylvania be-

tween 2011 and 2014) and take time (109 days). A lengthy or negative outcome of the home-selling

process can make a substantial difference to the seller’s well-being, and making a successful sale

can be challenging. Contrary to many other markets, the homeowner does not post a take-it or

leave-it price. Instead, she posts a list price which impacts transaction outcomes less directly (Han

and Strange, 2016). Indeed, even though the list price influences negotiations between sellers and

buyers, the transaction frequently occurs at a different sale price (85% of the time in my sample).

Of utmost importance to the seller is that a higher list price should yield a higher sale price but

at the expense of a longer time on the market (Miller and Sklarz, 1987). This trade-off is complex,

especially because the seller has imperfect information about the demand (Salant, 1991). Indeed,

houses are highly differentiated assets and the seller is often unable to observe more than a few

recent transactions of similar properties nearby. This lack of information impacts the seller’s welfare

(Anenberg, 2016).

In this article, I investigate the home-selling decision of imperfectly informed sellers. I build

a single-agent dynamic search model of the housing market in which a rational seller is uncertain

and learns about demand in a Bayesian way. I estimate the model using an original dataset of real

estate transactions in Pennsylvania between 2011 and 2014. The estimated model yields insights

on the optimal list pricing strategies and how information frictions affect them. In particular, I

estimate the cost of uncertainty for the seller.

The literature establishes several stylized facts about the home-selling problem, and my model

aims to explain three of them. First, we observe that transactions are occurring at a price mostly

below, but also sometimes above or exactly equal to, the list price (Merlo and Ortalo-Magne, 2004).

Second, the housing market is illiquid. Third, the list prices are duration-dependent and adjust

downwards throughout the listing process, even when market conditions seem stable (Salant, 1991).

My main contribution is to make sense of the two first facts by modeling the number of buyers
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on the market explicitly, independently from their valuations for the house.

First, there can be several buyers on the market. This allows me to explain the relationship between

the list and the sale prices. Indeed, as explained earlier, the sale price is determined after bargaining

between the seller and the buyer(s). In these negotiations, the list price serves as a ceiling: the seller

commits to accept any offer equal to or above it (Horowitz, 1992; Chen and Rosenthal, 1996a,b).

Thus, if there is only one buyer for the house, he will never make an offer greater than the list

price. Sales will occur either below, or exactly at, the list price (Arnold, 1999), but never above

it. I endogenize such above list prices by introducing competition between several buyers, as in

Han and Strange (2016). More precisely, I derive the solution to a sequential bargaining game à la

Rubinstein (1982) with several buyers and one seller who commits to accepting offers higher than

her list price. In this setup, the seller can obtain a price above her list price. Indeed, when she

bargains with the highest valuation buyer, the second-highest buyer’s valuation serves as an outside

option for the seller (Shaked and Sutton, 1984). This second-highest valuation can be above the

list price, which sometimes allows the seller to obtain a price above the ceiling set by the list price.

Through this mechanism, modeling the number of buyers allows us to endogenize sales above the

list price in order to gain a better understanding of the phenomenon. This is especially relevant

since the proportion of sales greater than the list price has been non-negligible in recent years: from

only 4% in the mid-1990s (Han and Strange, 2014) to 15% in the US during the 2000s boom, 10%

after the bust (Han and Strange, 2016) and 11.42% in my sample.

Second, modeling the number of buyers in addition to their valuations helps to understand the

market’s illiquidity and how much of it is caused by the list price. Indeed, the list price serves

as a signal to attract buyers. The higher this price, the more buyers expect to pay and the less

likely they are to visit the house and bargain to buy it. If we observe no transaction, it is either

because there are no buyers on the market, or because the list price is too high and repels buyers.

My specification of the demand helps to disentangle the ‘list price induced illiquidity’ (low buyers

valuations) from demand illiquidity (no buyer on the market). For example, even with an extremely

low list price (such that even low valuation individuals would be willing to buy), the seller is not

guaranteed to sell her home, as there may simply be no buyer on the market during this period.

My model explains this kind of illiquid demand situation observed in the data. Moreover, using

data on time on the market, list and sale prices, I can identify the valuation process independently

from the market thinness.
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The third key fact is that the list price is non-stationary. To model this, I assume that un-

certain sellers dynamically learn about the demand. The gradual acquisition of information about

an uncertain demand can explain why a list price varies, even if market conditions are unchanged

(Anenberg, 2016). More precisely, the seller is uncertain about the liquidity process (the number

of buyers on the market) and progressively learns about it by observing visits. Recall that a buyer

only visits the house if his valuation is high enough with respect to the signal given by the list

price. Thus, by only observing visits, the seller does not necessarily observe all of the buyers on

the market. If she sets a low list price all buyers will visit and she directly observes the number

of buyers on the market. Otherwise, by setting a higher list price she may select some buyers, and

learn less about the true number of buyers on the market. In this original application of Bayesian

learning, the decision variable (list price) influences the informational flow (by influencing the odds

of observable entries) and thus the learning pace. In addition to the usual trade-off between high

price and short time on the market, the list price also embeds a learning externality here: the lower

the list price, the faster you learn.

Estimating the parameters of such a model in which optimal strategies are time-dependent

(non-stationary) requires detailed microdata. I use an original dataset of approximately 100,000

complete listing histories (dated initial list price and revisions up to the final sale) of sold (with the

help of a realtor) single-family homes in Pennsylvania between 2011 and 2014. I collected the data

from the American real estate website, zillow.com. I study the home-selling problem in this new

context (Pennsylvania 2011-2014) and observe similar stylized facts as the one described previously

(see Knight, 2002; Merlo and Ortalo-Magne, 2004; Han and Strange, 2014; Anenberg, 2016).

In terms of results, my learning model (seven structural parameters only) closely matches the

data. I find that progressive learning (in particular the downward adjustment of the initial rational

beliefs of sellers facing low demand) is key to explaining the observed decline of the list price. The

model also reproduces the distribution of time spent on market.

Finally, this paper contributes to the literature on the role of overconfidence (Odean, 1998; Pi-

azzesi and Schneider, 2009). I estimate the cost of uncertainty or value of information. To do so, I

simulate the model and compare it to a perfect information benchmark. Counterintuitively, I find

that being misinformed is not necessarily bad for the seller, at least for sellers facing low demand

who are thus initially ‘overconfident’. For them, the value of additional information may even be

negative, as an overconfident seller may obtain a further discounted sale price than her perfectly
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informed counterpart. Indeed, by being wrongfully overconfident, she overestimates her reservation

value. She has a genuinely stronger position in the bargaining game, resulting in a higher sale price.

However, she also refuses offers more easily and sets higher list prices, implying fewer visits, leading

to a longer time spent on the market because of the overestimation. There is an ‘overconfidence

area’, where the gain in sale price offsets the overly long time spent on the market, resulting in a

better outcome. Thus, sellers facing low demand can be better off by not knowing this and starting

with imperfect information rather than being perfectly informed.

On the other hand, sellers facing high demand suffer twice from the imperfect information: they

do not pick the list price that maximizes their true outcome, and they have a weaker bargaining

position.

Related Literature: The role of the asking price has been extensively studied in the literature

(see Han and Strange, 2015, for a complete survey).

First, the literature establishes some key stylized facts about the relationship between sale and

list prices. On average, the ratio of sale to list price is around 96% (Case and Shiller, 1988, 2003;

Merlo and Ortalo-Magne, 2004; Han and Strange, 2014). Sales frequently occur below the ask-

ing price: generally close to 75% of the recent sales in the US (Carrillo, 2013; Anenberg, 2016).

Sometimes transactions occur at a price greater than the list price. As mentioned, this was very

uncommon in the 1990s: around 4% of all transactions in England (Merlo and Ortalo-Magne, 2004)

and in the US (Han and Strange, 2014). However, this has recently become more frequent (15%

during the 2000s boom, and is currently around 10%).

There also exists a mass point of sales (from 10% to 25%) occurring exactly at the list price. To

explain this, most housing search models treat the list price as a binding ceiling (Horowitz, 1992;

Chen and Rosenthal, 1996a,b).

Yet, as already mentioned, these models cannot explain why some sales occur above the list price.

Han and Strange (2016) fill the gap by modeling a bargaining search model between one seller and

several buyers. As in my model, competition can generate prices above the list price. In fact, their

bargaining rule is a particular distinction of this study: I allow for any valuations (for the seller

and buyers) while they specify a discrete distribution with only two types (high and low valuations

buyers). They picked this bargaining rule based on common sense to fit the data. I go further and
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show theoretically that it is the solution to a sequential bargaining problem à la Rubinstein (1982).

The impact of the list price on time on the market has also been studied. A lower list price

increases the probability of visits and sale of the house (Salant, 1991; Horowitz, 1992; Carrillo,

2012). Similarly, within a listing process, a downward adjustment of the list price increases the

probability of sale (de Wit and van der Klaauw, 2013). Using unique survey data about a buyer’s

search behavior, Han and Strange (2016) show that the list price directs the buyer in his search.

In addition, sellers of atypical houses are more likely to spend a longer time on the market (Haurin,

1988). This is consistent with the imperfect information story developed in my paper. Indeed,

sellers of atypical houses observe fewer past transactions of houses similar to theirs, thus, they are

less informed about the demand they face than their neighbors are. This may explain the difference

in behavior: as shown in reduced form evidence by Anenberg (2016), information frictions impact

the seller’s decision.

Fewer studies have focused on the dynamics of list prices. In order to address this, it is neces-

sary to build a model with some time-dependence. Only two recent papers have done this, to date:

Merlo et al. (2015) and Anenberg (2016).

Merlo et al. (2015) focus on dynamics, with their main objective to explain list price stickiness:

77.3% of the sales occur without any list price adjustment, and 20.8% with only one adjustment.

They show that an extremely small menu cost can generate the observed stickiness. Because it is

already well explained in their paper, I abstract from price stickiness in my model. To make sense

of the optimal decline in list price, they estimate a model with a rich time-dependent arrival prob-

ability function. Overall, they fit their data very closely at the expense of a heavily parametrized

model, while I get a decent fit using only seven structural parameters by introducing learning and

imperfect information in the model.

Anenberg (2016) is the closest paper to mine. He builds a home-selling model with imperfect

information and learning. He formulates and estimates a model in which the seller is uncertain

about the buyer’s valuation for her property. However, she has a prior about the mean of the

valuations distribution. In this context, as in my work, the gradual acquisition of information by

the seller can explain the time-varying list price choices (which declines, but also rarely increases,

for example). Because of information frictions, a short-run aggregate price may take a longer time

to adjust.

The main contrast with this paper is that I model the number of buyers explicitly, and not only
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their valuations for the house. This allows the study of some aspects of the home-selling prob-

lems, which were not the focus of Anenberg’s paper. First, I can give a micro-foundation to the

bargaining side of the problem. I endogenously generate sales above the list prices, while models

with only valuations cannot. Anenberg (2016) generates them with an exogenous probability, for

instance. Given the important share of sales above the list price (more than 10% of sales in the US

after 2010), being able to endogenize and explain them is crucial: even more so because of their

pro-cyclicality (Liu et al., 2014). Moreover, my micro-founded bargaining rule also allows me to

derive the paradoxical result that uncertainty can be beneficial to the seller. Finally, using data on

list prices, sale prices and time on the market, I can separately identify low valuations (list-price

induced illiquidity) from illiquidity (no buyer).

This paper proceeds as follows. Section 2 describes the data. Section 3 develops a dynamic

micro-search model of the home-selling problem in which sellers learn. Section 4 details the estima-

tion methods and Section 5 presents the estimation results. Section 6 uses the estimated model to

analyze the value of information. I conclude the paper in Section 7.

2.2 Data

2.2.1 Source

My data contain transaction records of properties sold between August 2011 and July 2014 in

Pennsylvania, gathered from the real estate platform, zillow.com. The website is one of the leading

online real estate marketplace sites. It is a real estate listing aggregator which gathers listings from

real estate agents, in partnership with MLS services and from private national companies (Century

21, Coldwell Banker and Sotheby’s, for example). Consequently, this is a collection of some of the

most exhaustive data about real estate transactions in Pennsylvania.

I focus on the sales of single-family homes for which there is a complete history record of the trans-

action available. For each of these sales, the data include the usual property attributes (square

footage, lot size, number of beds, number of baths, year when the house was built, etc.). For ap-

proximately 33% of all transactions, a complete record of the last transaction history is available.
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As displayed in Figure 2.2.1, this history contains all of the seller’s decisions: the initial list price,

its eventual adjustments through the sale process, potential intermediary listing removals, and the

final sale price.

Figure 2.2.1: Example of transaction history record

This property was sold after five months on market in 2013,
after four list price adjustments. It was finally sold at a price of
$328, 000, slightly below the final list price of $329, 900.

In order to study list price dynamics and time on the market, I focus only on transactions for

which the history is available. It yields a standard selection bias. Indeed, the detailed history is

available for properties of better quality, resulting in a significantly higher sale price than the com-

plete pool of transactions on average. However, this selection bias is present in most data used in the

reference literature, which are obtained from real estate agencies. In theory, zillow.com (hereafter,

Zillow) allows homeowners to list their house on their own (‘for sale by owner’). Unfortunately,

these listings represent less than 1% of the observations. As a consequence, these data cannot be

used to understand the seller’s choice to resort (or not) to using a real estate agent (as modeled by

Salant (1991)), and I focus only on transactions in which a real estate agent has intervened (as in

Merlo et al. (2015) or Anenberg (2016)).

Zillow’s data exhibit two main flaws. First, the data are right-censored: I only observe transac-

tions which ended up in a success (sale). I do not observe properties that are still on the market or

were withdrawn by the sellers (except if they were relisted and sold afterwards). In the transaction
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history of sold properties, I know whether or not the seller previously decided to pull her property

off the market (before relisting it for the final sale that I observe). As I observe the complete sale

history, I know the price choices/adjustments made before a potential withdrawal. A total of 17%

of the final sales have been withdrawn from the market and relisted later before being sold.2 One

could imagine that a seller who has already tried to sell her property (and failed) differs from a

‘new’ seller. In particular, these two types of sellers should differ in terms of the information they

have about the market conditions (one of the two having accumulated information about the market

demand with her failed listing). In order to avoid these differences, and since I do not focus on the

withdrawal decision here, I drop properties which were withdrawn at least once from my sample

and focus only on ‘first time’ sellers.

Second, as in most of the real estate data, I lack information about buyers’ offers and the eventual

rejection of these offers by the sellers. Thus, I am forced to keep the buyer’s side of my model

relatively simple (contrary to Merlo et al. (2015) who have information about buyers’ bids and can

use it to model their bargaining process, for example).

After selecting the observations and cleaning the data, I have 97,451 real estate transactions in

Pennsylvania between August 2011 and July 2014. The data are described in the next section.

2This implies that the proportion of sellers who fail to sell their property is larger than 17% overall, since I only
observe a part of the withdrawals: the properties that were relisted and sold afterwards.

89



2.2.2 Summary statistics

Table 2.2.1: Summary Statistics

Variable Mean Std. Dev. Min Median Max

Price and Timing:
Price 206512 122209 15000 179000 745000
Days before sale (from last listing) 109 108 0 76 1112
Days before sale (from first listing) 118 110 7 84 1141
Number of adjustment before sale 1.12 1.56 0 1 10
Proportion of listing with adjustments 0.5046
Ratio sale/Final list price 0.9546 0.0847 0.1316 0.9679 4.3337
Ratio sale/Initial list price 0.9121 0.1089 0.1316 0.9365 4.3337
Proportion of sale price > Final list price 0.1142
Proportion of sale price = Final list price 0.1495
————————–
Properties characteristics:
Living area (sqft) 1850 711 780 1682 4572
Number of beds 3.34 0.74 1 3 7
Number of baths 2.1 0.81 0.5 2 5.5
————————–
Number of transactions 97451
Number of census tracts 1806

Table 2.2.1 and Figure 2.2.2 present the summary statistics of my sample. The Pennsylvanian data

exhibit common stylized facts to those observed in the literature and which have been extensively

detailed by Merlo and Ortalo-Magne (2004). First, prices are sticky and often not adjusted (see

Figure 2.2.2a). However, in my sample they are not as ‘sticky’ as usual: only 50% of the sellers sell

their properties without changing their list price at least once. This percentage is generally closer

to 75%: equal to 76.79% in Merlo and Ortalo-Magne (2004) in the UK for example, and also closer

to 75% in another Zillow data set of properties on the East Coast of the United States. I choose not

to focus on the stickiness and not to model it. It has already been well explained by Merlo et al.

(2015) and including a menu cost in my model would be too computationally costly (I would need

to add the previous period list price as a state variable) and provide no interesting new insight.

The average time on the market is about 16 weeks (Figure 2.2.2b). This is within the usual range:

higher than that observed by Merlo et al. (2015) in the UK (about 10 weeks), and slightly lower than

that observed by Anenberg (2016) in San Francisco and Los Angeles (about 18 weeks on market).
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Figure 2.2.2: Descriptive Statistics
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The list price is decreasing through the selling process: minus 8% between the first and the 30th

week (Figure 2.2.2c). Most sales happen below the list price (73.63%), many occur exactly at the

list price (14.95%) and the 11.42% remaining occur above it. This number of sales above the list

price is considerably greater than in the English data (3.9% in Merlo et al., 2015): this is why my

model emphasizes the endogenization of sales above the list price.

Unobserved private information: Figure 2.2.2d shows the distribution of sale prices normal-
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ized either by the final list prices or by the predicted prices (hedonic values). The distribution of

prices normalized by the hedonic values of the property is less concentrated than the one normalized

by list prices. The list price contains extra private information about the property value, which is

not contained in the explanatory variables used in the hedonic estimation (number of bathrooms,

number of beds, living area, census tracts, etc.). I find that the list price is a better predictor of the

sale price than the hedonic fitted price, as is well known in the literature (Horowitz, 1992; Merlo

et al., 2015). To soften the impact of this private information unobserved by the econometrician, I

use mostly ‘relative moments’ normalized by the list price when I estimate the model, for example,

sale price distribution relative to the final list price, or list price dynamics relative to initial list

price.

2.3 Model

I model a discrete-time (with periods of two weeks), infinite horizon problem of a homeowner de-

ciding to sell her property with the objective of maximizing the sale price. As in Anenberg (2016),

I introduce uncertainty and Bayesian learning into this framework. To explain the previously de-

scribed stylized facts, one of the main features of the model is that the seller is imperfectly informed

about the true demand. More precisely, she has rational expectations about the distribution of the

number of buyers in the population, but she does not know the distribution of buyers interested in

her house specifically for each period, and she is learning about it progressively.

Each period t, given her information set, the seller picks a list price pLt in order to maximize her

expected gains from the sale. The chosen optimal list price will balance a classic trade-off between

high sale price and short time on the market. To this classic trade-off, the model adds a learning

externality to the list price decision: ceteris paribus, a lower list price choice allows the seller to

learn more quickly about the market conditions.

In addition to her dynamic list price decision, the seller also decides whether or not to accept an

offer, knowing that if she refuses (or if she receives no offer), she will incur a holding cost of keeping

her house for sale one more period, modeled as a discount factor δ.

In what follows, I first describe the within-period game: the explicit bargaining rules defining the

sale price, the demand modelization and the seller’s learning process. Next, I focus on the seller’s

dynamic optimization problem specification.
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2.3.1 Bargaining rules

The sale price is determined after a sequential bargaining game (Rubinstein, 1982) of offers/counteroffers

with complete information between one seller (valuation vs) and n inspecting/visiting buyer(s) (with

ordered valuations vb(1) < vb(2) < ... < vb(n)). The list price pL serves as a commitment device in the

model: if a buyer makes an offer greater or equal to it, the seller has to accept it and sell him the

property. This bargaining game between n buyers and one seller with complete information has a

unique subgame-perfect equilibrium outcome (see Appendix 2.A) which is my bargaining rule:

• if vs > vb(n) (or if n = 0): no sale.

• Otherwise, gains from trade exist with at least one buyer, thus under complete information

the seller will sell her house to the highest valuation buyer at the price pS, where

pS = max
{
vb(n−1) , min

(
pL , vs +

1

2
(vb(n) − vs)

)}

If n = 1, remove the vb(n−1) part (or consider it = 0).

In words, trade only occurs if there are gains from trade (vb(n) ≥ vs). If this is the case, under

complete information the seller will sell her property to the highest valuation buyer (buyer(n)) from

whom she can extract the higher sale price.

Without the presence of other buyers and without a list price, bilateral sequential bargaining be-

tween the seller and buyer(n) would yield the classic Rubinstein (1982) outcome whereby they share

the ‘transaction gains’. The seller gets a portion φ of (vb(n) − vs) while the buyer gets the rest

(the portion 1 − φ). Thus the sale price would be pS = vs + φ(vb(n) − vs). For simplicity, I make

assumptions such that they share the transaction gains equally (φ = 0.5).3

Moreover, the seller has to accept any offer higher or equal to the list price. Thus, if the bilateral

bargaining price is greater than pL, this gives an opportunity for the buyer to make a lower offer,

equal to pL, that the seller must accept. As a consequence, bilateral bargaining between the seller

and buyer(n) with a list price would yield the sale price pS = min
(
pL , vs + 1

2
(vb(n) − vs)

)
.

Now, if another buyer (the second-highest valuation buyer, denoted buyer(n−1)) is present on the

3To end up with an equal sharing of the pie as in Rubinstein (1982) sequential bargaining, I assume either that
the bargaining period length tends to zero or that all the agents are equally impatient with impatience factor tending
to one (see Appendix 2.A).
An alternative to the equal share would be to give all the bargaining power to the seller (i.e. having her infinitely
more patient than the buyer), as done implicitly in Anenberg (2016).
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market, his valuation vb(n−1) can serve as an outside option for the seller.4 If vb(n−1) is high enough

(greater than the bilateral bargaining with list price outcome), the seller can threaten buyer(n) to

sell her property to buyer(n−1) instead. Competition between the two buyers forces buyer(n) to offer

at least pS = vb(n−1) in order to ensure that the seller sells him the property. Adding this competitive

outside option to the bilateral bargaining of the seller with only buyer(n) yields the general sale price

formula.

The main advantage of this bargaining rule is that it can endogenously generate prices below

the list price (vs + 1/2(vb(n) − vs)), at the list price (pL), and above it (in case of competition, with

vb(n−1) which can be higher than pL sometimes). The challenge here is to reproduce it in proportions

comparable to the data (15% equal to pL, 11.5% above and the rest below).

The bargaining rule is known by the seller (and the buyers). This implies that, though the seller

does not know the exact buyers’ valuations before meeting them, knowing the bargaining rule allows

her to compute what the hypothetical bargaining outcomes may be (sale or not, and eventual sale

price) for any scenario. Therefore, for a given number of buyers, if she knows the buyers’ valuations

distribution, the seller is able to build an expectation about the bargaining outcomes (using order

statistics of the highest and second-highest valuation for the given number of buyers). If she also

has an idea of the distribution of the number of buyers on the market, she can compute her expected

profit from sale as a function of the list price. Then she can pick the list price to maximize it: this

is what the seller does in this model.

The demand side of the model is detailed in the next section.

2.3.2 Buyer

The demand side is split in two main components: the number of buyers on the market during the

period (Nmarket
t ∼ Poisson(λ)) and the valuations of each of these buyers for the given property

(vb ∼ LN (µ, σ)).

For each property s and for each period t of two weeks, the number of buyers on the market

potentially interested in the property (Nmarket
t ) is drawn from a Poisson(λs) distribution. The

rate of arrival λ is a key demand parameter in the model. Each seller faces a specific λs drawn

from the true distribution Gamma(α0, β0). They have rational expectation and know that λs ∼

4Notice that only the second-highest valuation can impact the sale price: ceteris paribus the other buyers’ valua-
tions are irrelevant.
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Gamma(α0, β0), but they do not know the value of their individual draw λs. With the information

they obtain through their own listings, the sellers progressively update their initial rational belief

about λs using Bayesian learning.

The reservation values of every buyer on the market for a given property are defined as follows:

V b = ηs exp(θb)

⇐⇒ vb :=
V b

ηs
= exp(θb) with θb ∼ N (µ, σ)

⇐⇒ vb ∼ LN (µ, σ)

where θb represents the buyer specific taste for a given property and ηs represents the property

intrinsic/predicted value (estimated via hedonic regression). I assume that the buyer knows his taste

θb for the property, as well as the property intrinsic value ηs. Thus, he also knows his reservation

value (V b) and his reservation value normalized by the hedonic value (vb). I focus on normalized

values (vb) rather than real monetary values (V b) in order to compare any type of homes on the

same scale. By doing this, I implicitly assume a linear homogeneity of the home-selling problem

between the different properties, as in Merlo et al. (2015). In other words, I assume that a $10, 000

deviation for a property worth $100, 000 is perceived similarly to a $20, 000 deviation for a property

worth $200, 000. In this way, I build a single representative problem for every seller, independently

of the ‘quality’ of their properties. Then, under the linear homogeneity assumption, I can compare

data counterparts to the model price outcomes; that is, the data prices normalized by their hedonic

values.

The seller knows the buyer’s reservation value distribution vb ∼ LN (µ, σ) (but she does not know

the buyer’s exact taste shock realization before entering into bargaining with him). Thus, to build

expectations about the demand at the start of each period, her only unknown demand parameter

is λs.

Inspection rule: Depending on his valuation, each buyer on the market will choose to inspect

the property (or not). An ‘inspection’ means that the buyer ‘visits the property and bargains with

the seller’: once he visits he always bargains in the model. Before inspecting, the buyer observes

a detailed advertisement about the property on the listing website and already knows his own
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valuation for it (vb) without inspecting it.5 However, he only discovers the seller’s and potentially

other inspecting buyers valuations if he meets and start to bargain with them when he inspects the

house. Since the buyer suffers a cost of inspecting the property (I assume this cost to be infinitesimal

for simplicity), he only does so if he expects to have a chance to buy it (and thus benefit from his

inspection). With an infinitesimal inspection cost, it will be the case as long as vb > vs (as there is

always a chance for him to have no better competitor and to be able to buy the home in this case).

Thus, to determine whether or not it is beneficial for him to enter, the buyer must build expectation

about unknown vs. The buyer has limited rationality and uses the list price pL as a signal about vs

to build a naive conjecture that v̂s = g(pL).6 I use a simple affine functional form g(x) = a0 + a1x

with 0 < a1 < 1. It yields the following simple inspection/entry rule that all buyers follow:

a buyer inspects the property if vb > g(pL) = a0 + a1p
L

The seller only observes the number of inspections (Nt) and not the latent number of buyers

on the market (Nmarket
t ). Obviously, the seller can only sell her property to the inspecting buyers.

She knows the buyers inspection rule g(), and since she knows that vb ∼ LN (µ, σ), she is able to

compute any Pr(vb > g(pL)) for any pL > 0. As a consequence, the homeowner faces a classic

trade-off when she sets her list price; ceteris paribus, a high list price allows her to ‘sort’ buyers

with a higher taste for her property, leading to a higher expected sale price. However, this also

signals a higher reservation value to the buyers and thus reduces the probability that a buyer will

visit and enter the bargaining process (Pr(vb > g(pL))), leading to a longer time on the market.

As staying on the market is costly for the seller (she has to keep her home tidy, spend time for

5An alternative story would be to say that visits are not costly at all (so all buyers visit and discover vb when they
do), but it is the decision to make a first offer which is costly. In this case the ‘inspection’ event would correspond to
an ‘entry in bargaining’ or ‘offer to the seller’ instead of corresponding to a ‘visit’. Because of its cost (going to the
bank and dealing with all financial details), buyers also need to decide whether or not to ‘inspect’ (make an offer).
If one chooses to enter the bargaining, he learns about the seller and his competitors values. The final outcome is
determined via the bargaining rule.

6Buyers are very naive and uninformed in this model. This can be justified by the fact that they are simple
one-shot buyers, staying on the market only for one period. They do not have the time to gather information, thus
they have a naive expectation.
Obviously, the seller’s list price choice is more complex than the buyers’ conjecture and depends only partially on
vs. In fact, the list price choice even depends on the buyers’ believed functional form g() itself. I show in the results
that this belief turns out not to be self-fulfilling: sellers reservation values differ from the buyers’ simple conjecture.
Since the conjecture g(pL) might not be correct, i.e. v̂s 6= vs, a buyer entry in the bargaining process does not
necessarily result in a sale: in particular if vs > vb > v̂s, the buyer enters in a bargain with the seller, but both
agents quickly realize that there will be no profitable trade for both of them, and no transaction occurs (as specified
in the bargaining rule).
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potential visits, etc.), the optimal list price, which maximizes the seller’s expected profit from sale,

balances two opposite objectives: short time on the market and high sale price.

In addition to this classic trade-off, the list price also embeds an informational externality : ceteris

paribus, a lower list price allows faster learning about λs. I detail the seller’s learning process in

the next section.

2.3.3 Seller’s information and learning

When the seller decides to set her list price, she knows most parameters of the problem: she knows

the bargaining rules, the buyers’ inspection rule, the distribution of buyers’ valuations (she does not

know the realized value at the start of the period, but she knows that vb ∼ LN (µ, σ) and knows µ

and σ values), and that the number of buyers on the market will follow a Poisson(λs) distribution.

However, she has imperfect information about the demand since she does not know the value of λs:

she only knows that in the population, λs ∼ Gamma(α0, β0).

In period 0 (at the start of the listing), the seller forms an initial belief about λs, based on her

rational expectation that λs ∼ Gamma(α0, β0). Then for each period, she will update this belief

via Bayesian learning rules, using the information she will acquire.

Let us drop the index s from λs and denote it only λ from now on (but remember it is an individual

draw which is seller specific).

I determine the general learning rule for any period t. Suppose that the seller enters any period

t with the prior belief that λ ∼ Gamma(αt, βt) (i.e. fλ(λ) = λαt−1 β
αt
t e−βtλ

Γ(αt)
, E[λ] = αt/βt and

V[λ] = αt/β
2
t ).

7 To learn about λ, the seller will observe the number of inspections Nt (and not the

latent number of buyers on the market Nmarket
t directly) in period t, and update her belief using

this information.

First, recall that Nmarket
t ∼ Poisson(λ), and each of these buyers choose to inspect the property

if their valuation is greater than g(pL). Thus, the process for the number of inspections depends

on the list price of the period, Nt ∼ Poisson
(
λ Pr(vb > g(pLt ))

)
: to learn about λ, the seller does

not directly observe the latent process determined solely by λ, but by another process which is

more or less close to it depending on the choice of list price. Nonetheless, computing the posterior

distribution remains quite simple in this case. For simplicity, we denote Pr(vb > g(pLt )) = ct. Then,

7In this model, λ is fixed and does not vary with time. However, making λ vary through time in an unknown way
for the seller would not change the learning rule at all (the seller would still only be able to observe the number of
inspections).

97



the likelihood of observing Nt = k inspections follows a Poisson(λct) distribution and is given by

f(Nt = k|λct) = (λct)
ke−λct/k!.

Observing Nt, the seller updates her initial belief using Bayes formula to compute the posterior

belief :

fλ(λ|Nt = k) =
f(Nt = k | λct) fλ(λ)

f(Nt = k)

= ...

=
(βt + ct)

αt+k

Γ(αt + k)
λαt+k−1e−(βt+ct)λ

⇐⇒ Posterior belief: λ ∼ Gamma
(
αt+1 = αt +Nt, βt+1 = βt + Pr(vb > g(pLt ))

)

The learning rule is fairly simple: the α parameter of the prior is updated by adding to it the

observed number of inspections, while we add the individual probability of inspection to the β

parameter.

In this context, the list price pLt embeds a learning externality. To see this, note that when the

list price is so high that Pr(vb > g(pL)) → 0, the seller will always observe Nt = 0, no matter what

λ is. Her listing does not provide her any information about λ in this case, and the seller does not

learn anything, her belief stays the same over the period (since Pr(vb > g(pL)) = 0, she will observe

Nt = 0 ∀ Nmarket
t and thus αt+1 = αt and βt+1 = βt). As pL decreases, Pr(vb > g(pL)) increases

and non-entries of some buyers are more and more likely due to the fact that there was indeed no

buyer on the market (instead of being likely caused by a too low Pr(vb > g(pL))). This continues

up to the opposite extreme scenario where pL is so small that Pr(vb > g(pL)) → 1, in which case a

‘non-entry’ only occurs when there is no buyer and Nt = Nmarket
t (and the learning rule is actually

equivalent to simple Bayesian updating with the basic Poisson(λ) distribution where one adds 1

to β each period).

In general, a smaller list price leads to a higher probability of inspection, which makes the ‘number

of inspection process’ closer to the latent ‘number on market process’ and allows us to learn faster

about the demand parameter (λ) determining the number of buyers on the market.
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2.3.4 Seller’s optimization problem

Figure 2.3.1: Timeline of events in the model

t
Seller
sets pLt

given his
information

Given pLt ,
the buyers present on the market

choose to visit or not

Seller observes the number
of visits and updates his belief
about the demand accordingly

If gains from trade exist
the seller sells his property

(the bargaining rule determines the price)

Otherwise, no trade
seller incurs cost δ (discount)

and goes to next period

...

The timing of the model is summarized in Figure 2.3.1. At the start of each period, the seller sets an

optimal list price pLt in order to maximize her expected profit from the sale given her information

set. Her information set consists of her belief about λ at the start of the period (which can be

summarized by the two parameters (αt, βt)), and the knowledge of all the other parameters of the

problem.

The number of buyers on the market is then drawn (from Poisson(λ)), as well as their valuations

for the property. Given pLt and the inspection rule, each buyer chooses to inspect the property (or

not). The seller then observes the number of inspections and updates her belief about λ according

to the Bayesian learning rule: it determines her updated reservation value for the bargaining.

Once the seller has updated her vs and all the buyers are entered, if at least one of the buyer has

a valuation greater than the seller’s, trade will occur according to the bargaining rule.8 Otherwise,

there is no room for beneficial trade and no trade occurs, the seller incurs a cost of keeping her

property on the market (δ under the form of a discount factor) and goes to the next period where

she repeats the same process, starting with her updated belief.

I repeat this game over an infinite horizon up to the point where the seller sells her property.9

Denote Ωt = (αt, βt) the seller information set at time t. Also denote the seller value vs(Ωt, µ, σ, a0, a1, δ)

simply as vs(Ωt). Notice that the seller’s valuation does not depend on λ directly and only depends

8The bargaining game is done within-period, meaning that future periods buyers can never enter it before the
end of the process: it is as if I assumed that the sequential bargaining period was infinitely smaller than the dynamic
game period of two weeks. The dynamic game only impacts the seller’s reservation value that is built based on her
expected gain (in the present or future): thus it only impacts her choice to leave the table in the bargaining process.

9In practice, to reduce the computational burden of the simulation, we choose a maximum number of weeks (e.g.
two years) on the market, after which we stop the simulation if no sale has occurred.
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on what the seller believes λ to be. The true λ will only impact the updating process of this belief

(by generating the true number of buyers on the market that the seller will observe).

This value is pinned down by the following Bellman’s equation which represents the problem of the

homeowner when she sets her list price optimally given her information set at the start of each

period:

vs(Ωt) = max
pLt

∞∑

k=0

E

[
Pr(Nt = k |pLt , λ)

∣∣∣Ωt

]
E

[
Πs(Nt = k, pLt , Ωt)

]

where the expected probabilities of receiving k visits based on the starting beliefs (Ωt) are

E

[
Pr(Nt = k |pLt , λ)

∣∣∣Ωt

]
=

∫
(x̂ P (vb > g(pLt )))

ke−x̂ P (vb>g(pLt ))/k! fλ(x̂)dx̂

with fλ(x|Ωt) =
βα
t

Γ(αt)
xαt−1e−βtx

and the corresponding profit function depends on the number of inspections and known updating

in the case where this number of inspection indeed happens (i.e. vs(Ωt+1) instead of Ωt), as defined

below:10

Πs(Nt = k, pLt ) =





δvs
(
Ωt+1

)
if vs(Ωt+1) > vb(k)

ps
(
vb(k), v

b
(k−1), v

s(Ωt+1), p
L
t

)

︸ ︷︷ ︸
bargaining rule function

otherwise

with Ωt+1 =
(
αt+Nt, βt+Pr(v

b > g(pLt ))
)
. With the special case that Πs(Nt = 0, pLt ) = δvs(Ωt+1).

The expectation of seller profit is taken with respect to the two highest buyers’ values (which are

the only ones which potentially matter in the bargaining rule, and which are unknown to the seller

when she sets her list price) using the joint density of the two highest order statistics among k.

This joint density of two order statistics is in general given for any i < j ∈ 1, 2, ..., n, ∀x < y ∈ R

10For any number of visits that occur when the seller chooses to set a given pLt , she knows how she will update
Ωt to Ωt+1, thus she knows the corresponding updated value that she would bargain with in each specific entry case
(vs(Ωt+1)). The probability of observing each specific number of entries are computed using the period starting belief
Ωt.
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by:

f(i,j):n(x, y) =
n!

(i− 1)!(j − i− 1)!(n− j)!
[F (x)]i−1[F (y)− F (x)]j−i−1[1− F (y)]n−jf(x)f(y)

where f is the truncated lognormal(µ, σ) on x > g(pL), and F its cdf.

This value function is estimated via value function iteration. The iteration is done on a discrete

grid of α and β values. Values for points inside the state space but out of the grids are approximated

via bilinear interpolation between the four surrounding points.

2.4 Estimation method and identification

The structural parameters that I want to estimate are: (µ, σ, a0, a1, δ, α0, β0). Denote the structural

parameters vector θ. θ is estimated via simulated method of moments (SMM). The idea of this

estimation method is to find the set of parameters for which the simulated sellers’ behavior will

be the closest to the observed sellers’ behavior. To do so, I select features from the empirical data

that I want to reproduce by picking a vector of N empirical moments of interest. I denote md this

N × 1 vector of moments. Then, for a given θ, I construct the corresponding counterpart vector of

simulated moments msim(θ). These simulated moments are computed on the selling outcomes data

of S (=100000) iid simulations of my model with underlying structural parameters θ.11

I estimate the seven unknown parameters by minimizing a distance function between empirical and

simulated moments such that:

θ̂ = argmin
θ

[
md −msim(θ)

]′
W
[
md −msim(θ)

]

whereW is a N×N positive definite weighting matrix equal to the inverse of the variance-covariance

matrix of my moments (computed using bootstrap). To find θ̂ I use a controlled random search

algorithm (Price, 1983).

To estimate the seven structural parameters I pick a list of N = 61 moments representing the

features I want to reproduce with my model. These moments can be categorized in three main

11Recall that I normalized the data by the predicted sale price, which allows me to compare everything on the
same scale by using a single representative problem for every seller (independent of the ‘quality’ of the property).
Hence, I can run iid simulations of the representative problem and compare it to the normalized real data.
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dimensions of the selling process: the time on the market, the distribution of sale price and the

list price dynamics (see Appendix 2.B for a list of all the moments). Most of the price moments

are relative to the initial list price. This allows me to reduce issues caused by the ‘scaling’ of the

problem or to soften the impact of unobserved heterogeneity not accounted for in the hedonic value

estimation. I have only two ‘non-relative’ price moments: the average sale price and the average

list price. They are compared to their counterparts normalized by the predicted financial value

(estimated by hedonic regression) in the data.

These moments allow us to identify the parameters. Intuition about identification is non-trivial

as most parameters influence several features of the model simultaneously. (α0, β0) determines the

initial value and list price choice. By pinning down the λ distribution, they also determine the list

price dynamics and have a strong influence on the time on the market. (µ, σ) pin down the buyer

valuations, and thus the seller value and the list price level he can set. They also influence the final

sale price through the buyer and the seller value. In particular, (µ, σ) will directly determine the

distribution of sale price when it is above the final list price (as the model imply that in this case

ps = vb(n−1) and these two parameters solely determine the distribution of vb(n−1)). a0 and a1 are also

identified via the sale price distribution. In particular, they determine the minimum level of entry

of buyers and thus the minimum ratio of sale over list prices. δ only impacts the seller valuation

and allows to adjust it better than (a0, a1, µ and σ) which face more restrictions (as they determine

more specific moments).
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2.5 Results

2.5.1 Value function and optimal list price

Figure 2.5.1: vs(α, β)
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I obtain intuitive results for the value function (Figure 2.5.1) and optimal list price (Figure 2.5.2).

For the interpretations, recall that if λ ∼ Gamma(α, β), then E(λ) = α/β and V (λ) = α/β2.

First, the value increases with the expected number of buyers on the market. Second, at the

fixed average belief, the less uncertain the seller is (i.e., the smaller variance of the belief), the

higher the value she obtains: as the uncertainty decreases, the value converges to the perfect

information benchmark (as if the seller knew its own λ draw). As for the optimal list price, the

higher the expected latent number of buyers on the market (higher expected λ), the smaller the

chosen probability of inspection (via a higher list price), which balances the expected number of

inspections overall (depending on λPr
(
vb > g(pL)

)
.

2.5.2 Parameters and Moments

Table 2.5.1: Parameter Estimates of the Structural Model

Parameter Description Estimate Std.
Errors

δ Subjective discount factor (and cost of listing) 0.986 0.00009

Demand parameters
Valuation process: vb ∼ LN (µ, σ)
µ Mean of buyer valuation -0.0425 0.00044
σ Standard deviation of buyer valuation 0.1902 0.00039

Number of buyers: Nmarket ∼ Poisson(λ) and λ ∼ Gamma(α0, β0)
(and initial rational belief)

α0 α prior belief and true distribution 4.48 0.005
β0 β prior belief and true distribution 11.21 0.0057

Inspection rule buyer inspects if vb > a0 + a1p
L

a0 Buyer’s conjecture about seller reservation value: constant 0.409 0.0018
a1 Buyer’s conjecture about seller reservation value: slope 0.58 0.0015

Table 2.5.1 reports the parameter estimates. To understand the mechanism at play, we focus on

the screening of buyers implicitly done by the seller at the optimal parameters. Take the screening in

the initial period for example. The seller face a demand vb ∼ LN (µ = −0.0425, σ = 0.19002). She

sets an initial listing price of 1.106 (no heterogeneity in the first period since it is a representative
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agent model and everyone starts with the same rational expectation). In this case, g(pL) = 1.05021,

Pr(vb > g(pL)) = 31.52%: the seller aims for high quantiles of the demand (top 31.52%). For

example, if λ is drawn at its average value (α0/β0 = 0.4), then the true rate of inspection λPr(vb >

g(pL)) is equal to 12.61%.

The sellers with a high draw of λ will have a considerably higher probability of sale than they

expect, and will thus spend a shorter time on the market than they would like to if they had perfect

information (however, some will stay on the market and increase their price in the next period

if they received multiple visits, they often choose to sell at a price they would have refused with

perfect information in the end). On the contrary, sellers with a low draw of λ have a very small

probability of sale and are aiming at too high quantiles of the demand (compared to what they

would do if they had perfect information about λ): they will ‘survive’ longer on the market (than

people with high λ). As they stay on the market and obtain information that their λ is low, they

will decrease their list price to aim at lower quantiles of the buyer valuations in order to compensate

for their lower λ and still have a chance to sell their property.

The model is able to match the decreasing list price dynamics observed in the data thanks to the

fact that sellers who stay longer on the market (‘survivors’) are sellers with low draw of λ. These

sellers progressively learn and adjust their expectation about the demand (λ) downwards, and thus

decrease their list price choice. For these individuals with low draws of λ, the initial belief was too

‘optimistic’: the correction of their initial belief via learning is the reason for decreasing list price.

In addition to this, the decreasing list price is also due to some selection/survivor effect (even for

high draws of λ): those who are unlucky (no matter what λ is) and observe no entries will stay

longer on market and have a decreasing belief. Thus, in general, those who stay longer on the

market are likely to have observed fewer entries (even though some stay because they refused offers,

the majority stays because they received none), and thus have a more ‘downward updated’ belief.
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Table 2.5.2: Actual and Simulated Moments

Moment Actual Simulated

Mean sale price 1.008 1.02
Mean ratio sale/final listing price 0.955 0.962
Mean initial list price 1.107 1.106
% of accepted offers equal to list price 0.15 0.235
% of accepted offers below list price 0.734 0.712
Mean week on the market (knowing that <52 weeks) 14.817 14.736

Table 2.5.2 and Figure 2.5.3 illustrate how the model matches the moments. Overall, for a

small number of parameters (7), it fits the data reasonably well. The list price dynamics and the

distribution of the time on the market are well fitted. The sale price distribution (relative to the

list price) is matched correctly, except for the tails. In particular, I fail to reproduce the number of

sales above the list price (only 5.3% in the simulation against 11.6% in the data). This is because,

even with the split demand, the model is still unable to match the time on the market distribution

and the sales above the list price at the same time.

2.6 Value of information

All of the comparisons in this section are completed using the model at the estimated optimal pa-

rameters given previously.

I use my estimated model to get an idea of the value of information: how much the seller would

gain from being better informed? To answer this, I compare the imperfect information outcomes

to the outcomes obtained by a perfectly informed (denoted PI) seller, who would know the value of

her λ draw.

I compare this benchmark to the value obtained by an imperfectly informed (denoted II) seller who

does not know her draw λ and starts from rational expectation Gamma(α0, β0). To compute the

‘realized value’ of this imperfectly informed seller, I simulate the complete selling process (with

corresponding dynamic belief updating) and observe the price pS and time spent on the market by

the seller. From period 0, the average (over several simulations) discounted sale price (δtpS) gives

the empirical counterpart to the theoretical seller value.
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Figure 2.5.3: Actual and Simulated Moments
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To establish an idea of the value of information, I compare the perfectly informed benchmark valua-

tions to the counterparts’ realized outcomes of imperfectly informed sellers. In particular, I do this

for several values of λ. In this way, I can see how far II sellers end up from the perfect information

benchmark as a function of their initial information error (how far the initial rational belief was

from their true λ).
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Figure 2.6.1: Value of Information: Sale Price and TOM
(average computed over 10000 simulations)
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Figure 2.6.1a shows the average sale price and time on the market (simulated) for different values

of λ. This is done for a PI seller who knows λ, and for a II seller who starts from initial rational

belief that λ ∼ Gamma(α0, β0) (calibrated at the model estimates) and who progressively updates

it.

First for both types of sellers, I observe that the higher the λ the higher the sale price obtained and

the shorter the time spent on market.

More interestingly, we see that the sale price reacts more to λ for perfectly informed sellers. Indeed,

the average sale price obtained by a PI seller varies from 0.797 when λ = 0.05, to 1.187 when λ = 1.

While the average sale price obtained by a II seller (with initial belief Gamma(α0, β0)) varies from

0.986 when λ = 0.05, to 1.049 when λ = 1. The fact that imperfectly informed agents start from

the same initial belief smooths the obtained sale price: at the time they sell, despite their updating,

they are generally still far from perfect information. Thus, their list price is far from the optimal

one (if perfectly informed they would set a lower price to sell faster), hence the final sale price

difference. In terms of sale price, sellers with bad draws of λ benefits from this, while sellers with

high draws of λ get a smaller price than what they could.

However, as shown in Figure 2.6.1b, imperfectly informed sellers with bad draws are able to earn
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more only because they spend too much time on the market (about 99 weeks on average for a II

seller with draw λ = 0.05, compared to 62 weeks for her PI counterpart). In terms of value obtained

by the II seller, this overly-long time on the market attenuates the higher sale price obtained.

Similarly, imperfectly informed sellers with high draws spend a shorter time on the market than

their perfectly informed counterparts, since they put their listing at a suboptimal list price (and

screen less the demand than they would if they were perfectly informed). This could offset the loss

in the sale price they endure compared to the PI benchmark.

The question now is to determine how the effects on sale price and time on the market translates

into the average ‘value’ (average discounted sale price) obtained (from period 0).

Figure 2.6.2: Value of Information: Information Paradox
(average computed over 10000 simulations)
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Figure 2.6.2 shows how these two effects translate in terms of value. Obviously, the higher the

demand λ, the higher the value obtained for perfectly and imperfectly informed agents. However,

one can notice an informational paradox.

Indeed, one would expect the perfectly informed agent to always outperform the imperfectly in-

formed counterpart because she is solving the ‘true’ problem (knowing λ), and thus optimizes cor-

rectly. However, this is not always the case, and the imperfectly informed agent can perform better
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than her perfectly informed counterpart in this model. Indeed, there is an area where the value

obtained by the imperfectly informed agent who starts from the belief that λ ∼ Gamma(α0, β0) is

higher than that obtained by her perfectly informed counterpart who knows λ (i.e. the area where

the red-dotted curve is above the black curve in Figure 2.6.2). This happens only to agents with

bad draws (i.e., imperfectly informed agents who expect λ to be considerably higher than what it

truly is). The realized outcomes (discounted sale price) with an ‘overoptimistic’ belief can be higher

than the ones the agent could obtain if she were perfectly informed and optimizing (choosing her

list price) knowing the exact value of λ. This means that having better information about λ is not

necessarily beneficial for the seller, as the value of additional information may indeed be negative.

This seems somewhat perplexing, as one should not be able to do better than a perfectly optimizing

agent who knows exactly what demand she should expect, and thus, what her true value vs should

be. The explanation lies in the estimation of her reservation value by the seller. Indeed, even if

the overoptimistic seller is not optimizing correctly with respect to the true λ (she sets a too high

pL and stays too long on the market by ‘screening’ too much and ‘over-rejecting’ some buyers of-

fers), she genuinely overestimates her reservation value vs(α, β). This gives her a better ‘bargaining

position’ (the threshold at which she leaves the bargaining game) in the bargaining game, which

allows her to obtain a higher sale price than the one a PI seller would obtain if she was trading with

the same buyers. One can directly see this in the bargaining rule: ceteris paribus, if vs is higher,

vs + 0.5(vb(n) − vs) = 0.5vs + 0.5vb(n) is also higher. There is some level of overconfidence where the

overconfident seller obtains a sale price sufficiently high to offset the longer time she spends on the

market, yielding a better outcome overall.

At some point (not visible in Figure 2.6.2), the gains in the bargaining position are offset by a

too large ‘expectation error’. By being ‘too overoptimistic’ the agents spend too long time on the

market, which offset the stronger bargaining position and yields a lower value than being perfectly

informed.12

Notice that the highest values in case of overoptimism are only explained by this improved bargain-

ing position. To check this, I can recompute a variant of the model where the seller is infinitely more

patient than the buyers in the bargaining game. This way she has all the bargaining power and can

always extract the highest buyer valuation (vb(n)) without splitting the pie. Thus, she already has

12It does not appear with our estimated set of parameters, but with other parameters, for very small λ draws, the
black curve will again be higher than the red one. There is an ‘optimal level’ of ‘overconfidence’ (not too large or too
small) for which the misinformed agent performs better than her perfectly informed counterpart. You can see this
by zooming in on Figure 2.6.2: the positive gap between II and PI values (when λ is low) has an inverted U shape.
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full bargaining power and cannot have a stronger bargaining position due to her overconfidence. In

this case, the information paradox disappears: the perfectly informed agent always performs better

(not displayed here).13

This explains that while the imperfectly informed with a high draw of λ is, on the other hand, con-

siderably worse off than her perfectly informed counterpart, she does not only commit optimization

errors (setting a too low list price, resulting in less screening of buyers, lower sale price and shorter

time spent on market) due to her imperfect information set, but she also has a weaker bargaining

position because she is too ‘pessimistic’ in her reservation value estimation vs.

Thus, the cost of imperfect information is higher for people facing high demand. High demand

sellers would prefer to be perfectly informed of the demand that they face, while on some levels,

the low demand sellers can be better off by being overoptimistic and ignorant that they face a low

demand.

2.7 Conclusion

Taking advantage of a new large dataset of real estate listings, I highlight some evidence that im-

perfect information and sellers’ learning impact the selling outcomes on the housing market. I have

developed a simple theoretical model with a new Bayesian learning application in order to explain

some of the housing market stylized facts.

Learning about the demand by rational but imperfectly informed home-sellers is a key feature of the

model used to explain these facts. In particular, the progressive downward adjustment/correction of

the belief of individuals facing low demand is key to explaining the decreasing list price dynamics,

and matches well the distribution of time spent on market. My work also highlights a paradox

that the value of information is not necessarily positive. Indeed, by being imperfectly informed

and overconfident about the demand, a seller can overestimate her reservation value and have a

stronger bargaining position. This allows her to extract a higher sale price, which can compensate

her mis-optimization and longer time spent on the market (with respect to her perfectly informed

13Technically, when the seller is infinitely more patient, her reservation value (vs) vanishes from the bargaining
equation determining the sale price. For a given buyer value (vb), vs now only impacts the decision to reject an
offer, without impacting the sale price. Thus, it will only lead to a misguided rejection decision and the stronger
bargaining position will not matter (because the seller already has all the power). To be clear, II seller will still get
a higher average sale price (because she screens higher value buyers with her rejections). However, the longer time
on the market will offset this advantage and the PI seller will always be better off.
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counterpart).

This theoretical work could serve as the foundation for future applications relative to the home-

selling problem. For example, it can be easily extended to study learning within complete neighbor-

hoods, or to study dynamic entry/withdrawal decisions of listings by the sellers to match market

stocks.
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Appendix

2.A Bargaining rule

I study a simplified version of the problem with one seller and only two buyers and with normalized

valuations (as described next). This generalizes easily to N buyers with ordered valuations: only

the two buyers with the two highest valuations matter with complete information.

The proof is inspired from Shaked and Sutton (1984) and Binmore et al. (1989), i.e. bilateral

bargaining with outside option (for the player playing second). The problem setup and thus the

result is also close to the ‘auctioning model’ in Binmore et al. (1992).14

2.A.1 The Problem: 1 Seller - 2 Buyers

There is one seller of an indivisible good, with reservation value vs = 0. The seller can sell it to one

of two buyers H and L (high and low) with valuations vH = 1 > vL = v.15 The three agents have a

common discount factor ρ. The period length is τ . Denote for simplicity δ = ρτ . If the good is sold

at price p after t periods, the seller’s payoff is pδt, the successful buyer’s payoff is (vb − p)δt and the

losing buyer gets zero. Information is complete.

The timeline of the problem is as follow:

t

t=0 t=1 t=2

Buyers’
proposals

(simultaneous)

Seller
accepts
or not

Seller’s
common

counteroffer

Buyer H
accepts
or not

Buyer L
accepts
or not

Buyers’
proposals

(simultaneous)

...

14Except for a different timeline (buyers start for me, which change the result), and some notation/normalization
changes. However, no proof is provided in the book, and the references given to find the proofs are unavail-
able/unpublished or do not contained the proof at all.

15I normalize vH = 1 so that the ‘size of the cake’ to share is one as usual. I denote vL as v for simplicity.
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In period t = 0, each buyer simultaneously makes a proposal to the seller. She may accept one of

these offer or reject both. If the seller accept one of the offer, the two players trade and the game

ends. For simplicity, if the seller wants to accept an offer that both buyers made (i.e., in the case

of a tie), the tie breaking rule is that the seller will opt for buyer H.

If the seller reject both offers, there is a delay τ and they go to the next bargaining period. The

seller then makes a common counteroffer to both buyers. The highest valuation buyer either accept

or reject it. If he rejects it, the low valuation buyer can then choose whether or not to accept it. If

both buyers reject the offer, they go to the next period (with delay τ) where they make simultaneous

counteroffers, as in the first period, and the game repeats itself, etc.

2.A.2 Solution

This game always has a unique subgame-perfect equilibrium outcome where the good is sold imme-

diately to buyer H (the seller accepts his offer directly) at a price:

• p = δ
1+δ

if δ
1+δ

≥ v. Notice that this is the bilateral bargaining price of the seller with buyer

H, in this case, it is as if the second buyer was absent (he represents a non-credible threat for

buyer H / non-credible outside option for the seller).

• p = v if δ
1+δ

< v. In this case the presence of the buyer L matters, gives more ‘power’ to the

seller, and forces buyer H to pay a higher price than if buyer L was absent.

2.A.3 Proof

As in the classic Shaked and Sutton (1984) proof, let mb and Mb be the infimum and supremum of

equilibrium payoffs to the buyer H in the game. Let ms and Ms be the infimum and supremum of

equilibrium payoffs to the seller in the companion game in which she would move first (i.e. starting

from period t = 1, for example). Let us also assume for now that the buyer L always makes the

same equilibrium offer denoted s (≤ 1 since vL ≤ 1 = vH). From the point of view of bilateral

bargaining between the seller and buyer H, it acts as an ‘outside option’ for the seller: if she accepts

it, she obtains s and she ‘leaves’ buyer H with nothing.16

16Obviously since buyer H can give more than L (since vH = 1 ≥ vL), he is always able to attract the seller to
trade with himself, by offering something greater or equal than s if necessary.
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As in the bilateral bargaining with outside option proof from Binmore et al. (1989), I have the

following system of inequalities which hold:

mb ≥ v −max{δMs, s} (2.1)

v −Mb ≥ max{δms, s} (2.2)

ms ≥ v − δMb (2.3)

v −Ms ≥ δmb (2.4)

Inequality (1) can be explained as follows: the seller must accept any opening offer greater than

what she can get by making a counteroffer to buyer H in the next period, or by accepting the low

buyer offer (thus no δ cost). As a consequence, the buyer H cannot get less than v−max{δMH
s , s},

hence the first inequality. Inequality (2) follows from the fact that the seller must get at least either

δmH
s by making a counteroffer to buyer H, or s by accepting the low buyer offer. As a consequence,

the buyer H can get at most Mb ≤ v − max{δmH
s , s}, hence the second inequality. Similarly,

inequality (3) and (4) comes from the same reasoning but for buyer H and thus, there is no s

involved (as if s = 0, i.e. no offer from another seller that he could accept for example/no ‘outside

option’).

Now, to determine the equilibrium outcomes, distinguish three cases:

• If s ≤ δms: ( ⇐⇒ the offer from L is irrelevant)

Combining (1) and (4) yields:

δ − δ2Ms ≤ δmb ≤ 1−Ms, thus δ − δ2Ms ≤ 1−Ms, which gives: Ms ≤ 1/(1 + δ).

Combining (2) and (3) (rewritten) yields:

1−ms ≤ δMb ≤ δ − δ2ms, thus 1−ms ≤ δ − δ2ms, which gives: 1/(1 + δ) ≤ ms.

Thus:

1

1 + δ
≤ ms ≤Ms ≤

1

1 + δ

Similarly, combining (2) and (3) for the upper bound, and (1) and (4) for the lower bound,
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yields:

1

1 + δ
≤ mb ≤Mb ≤

1

1 + δ

Thus, ms = Ms = mb = Mb = 1/(1 + δ) in this case (and buyer should offer 1/(1 + δ) to the

seller, who will accept in this case). Thus, this case should happen when δms = δ/(1+ δ) ≥ s

⇐⇒ s ≤ δ/(1 + δ). 17

• If δms < s < δMs: (2) becomes: 1−Mb ≥ s > δms, but we still have, as before: 1−Mb ≥ δms,

thus we will still find 1
1+δ

≤ ms ≤Ms ≤
1

1+δ
, which is a contradiction.

Thus, this case is not possible.

• If δMs ≤ s: ( ⇐⇒ the offer from L is greater than what the seller could get with classical

bilateral bargaining with H)

For the buyer, we directly have from (2) that: Mb ≤ 1− s, and from (1) mb ≥ 1− s. Thus:

1− s ≤ mb ≤Mb ≤ 1− s ⇐⇒ mb =Mb = 1− s

Which means that the buyer should immediately make an offer of s to the seller, and he will

not be able to obtain more.

We still need to compute the seller outcomes (to check when this case happen).

As before, from (1) and (4) we have: Ms ≤ 1−δ(1−s). From (2) and (3) we have: 1−δ(1−s) ≤

ms.

1− δ(1− s) ≤ ms ≤Ms ≤ 1− δ(1− s) ⇐⇒ ms =Ms = 1− δ(1− s)

17Intuitively, instead of resorting to inequalities, see the proof as in Shaked and Sutton (1984) in each case. Let’s
take an example with the proof for the upper bound of Mb.
We focus on the subgame starting from period t = 2. The game which starts at this point is the same as the initial
game (its first repetition) but with a discounted sum of payoffs = δ2 (cannot get more than this). By definition,
the buyer can get at most δ2Mb at this point. Now, consider the (companion) subgame starting in the preceding
period t = 1. Any offer by the seller which gives the buyer more than the supremum of its payoffs (δ2Mb) should be
accepted. So there is no perfect equilibrium in which the buyer receives more than δ2Mb, and thus it follows that
the seller should get at least δ − δ2Mb in this period (it is δ − δ2Mb and not 1− δ2Mb since the discounted value of
the total payoff at time t = 1 is δ and not 1). In other words, ms ≥ δ − δ2Mb. As a consequence, starting in period
t = 0, the seller will not accept anything less than the infimum of what she will receive in the game beginning next
period (which has present value δ − δ2Mb). Thus, the buyer can get, at most Mb ≥ 1− δ + δ2Mb. This finally gives
the upper bound: Mb ≤ 1/(1 + δ).
Obtain that mb ≥ 1/(1 + δ) and the results for the seller by similar reasoning.
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Thus, this case should happen when δMs = 1− δ(1− s) ≤ s ⇐⇒ s ≤ δ/(1 + δ).

Therefore, if subgame-perfect equilibria exist, they generate a unique subgame-perfect equilibrium

outcome. In addition, existence is trivial: each player always demands his equilibrium payoff when

proposing, and accept his equilibrium payoff (or more) when responding.

Thus, we have the result that the buyer H makes an offer at p, which is immediately accepted by

the seller with the offer from the low buyer s as her outside option. With p defined as:

p =





1− 1/(1 + δ) = δ/(1 + δ), if s ≤ δ/(1 + δ)

s, if s ≥ δ/(1 + δ)

The result is quite intuitive: either the offer from buyer L is too low and is not taken into account

by the buyer H and the seller (irrelevant outside option for the seller, they do classic bilateral bar-

gaining), or it is high enough and allows the seller to gain a credible threat, which increases her

payoff.

Now the question is to determine what is s, the equilibrium offer from the buyer L (if it exists).

Let’s assume that the buyer L cannot make an offer greater than his valuation v.18

• If δ/(1 + δ) > v then anyway L has no power to disturb bilateral bargaining between the

18Even if it seems natural, this is an important assumption to get rid of absurd equilibria where L would bid
more than v in this setup. Because the buyers bids simultaneously with perfect information, it is close to the case
of first price sealed bid auction with perfect information without restrictions on bids. It is well known that the set
of Nash equilibria of this kind of auction is determined by three conditions: it is the set of profiles b of bids with
bH ∈ [vL, vH ] = [v, 1], bj ≤ bH∀j 6= H and bj = bH for some j 6= 1. Thus we could have any equilibrium offer > v
from the low buyer, and the proof may fall down.
On the other hand, if we impose that he cannot bid more than his valuation v - which makes sense in the context
of bargaining where the set of possible offers is between the valuation of the seller and the one of the corresponding
buyer - then the only Nash equilibrium is bH = bL = v (and because of the tie breaking rule, H wins). Indeed, it
is clear that any outcome with bH < v and bL < v is not an equilibrium since one of the two players would gain
more by increasing his bid. Similarly: bH = v and bL < v is not an equilibrium either, since in this case H would be
tempted to decrease slightly his offer in order to get more.
Otherwise, instead of making this assumption, one solution would simply be to make the buyers bid non simulta-
neously: H first, then L, in which case L would never have interest to bid more than H’s offer if it’s higher than v,
and thus H would never bid more than v in a first price auction... One has to choose between the sequential bids or
the simultaneous bids with the natural assumption that the buyers cannot bid more than their value. I prefer the
former since it seems unnatural to make them bid sequentially with predefined order based on the valuations.

117



seller and H, s does not matter at all in the problem (irrelevant outside option). Buyer L

could make any offer s ≤ v in equilibrium, it would not change the equilibrium outcomes,

let’s assume he bids s = v in this case.

• If δ/(1+δ) < v then L has some power (it is close to first price sealed bid auction with perfect

information in this case).

We find that s = v in this case is the only equilibrium. Indeed: if v > s, it is possible that

buyer H wins the auction by bidding bH below v and above s which is not an equilibrium

since in this case L would be better off by increasing his bid above bH . At the same time, it

is not possible that buyer L wins the auction in equilibrium (buyer H can always bid more).

The only equilibrium offer from L is s = v.

Thus, as expected, in equilibrium the low buyer will bid his valuation s = v. This yields the final

result that the only equilibrium payoffs is that buyer H makes an offer at p which is immediately

accepted by the seller (who have an offer v from the low buyer as outside option). With p defined

as:

p =





δ/(1 + δ), if v ≤ δ/(1 + δ)

v, if v ≥ δ/(1 + δ)

2.A.4 Extension to N buyers

One can easily generalize to more than two buyers. Indeed, we do not really care about additional

buyers choices: as long as they are lower than v, they will not have any impact on the equilibrium

outcomes. Only the two highest valuations matter, so simply consider that in the proof here; that

buyer H and L are the two buyers with the highest valuations and the proof is already generalized

for any number of buyers.

2.A.5 Extension: list price

I slightly modify the problem by adding an exogenous list price pl. The list price serves as a com-

mitment device; thus, if a buyer makes an offer greater or equal to the list price in the first period,
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the seller is obliged to accept to sell her good. If two buyers make offers greater than the list price,

she obviously accepts the greatest offer (and in case of tie, she chooses buyer H). The list price

only works in the first period; after which, the game is unchanged (in period t = 2 we go back to

previous case where the seller can refuse an offer greater than pL).

The problem is as follows:

t

t=0 t=1 t=2

Buyers’
proposals

(simultaneous)

Seller
accepts or not
has to accept

if proposal ≥ pL

Seller’s
common

counteroffer

Buyer H
accepts
or not

Buyer L
accepts
or not

Buyers
proposals

(simultaneous)

...

Consequently, the list price only affects the buyer’s choice (in the first period), not the seller’s (who

only endure it). From the point of view of the seller, either she receives an offer higher than pL and

then she cannot ‘play’, or, she can play the game as before.

From the point of view of the buyer H, his choice is just to choose between offering pL (or more) or

bargaining with the seller as usual (i.e. entering the classic game). Thus it will be quite simple: if

he gets more by offering just pL, he will do that, otherwise he won’t. Buyer H simply has a choice

to resort to an ‘outside option’ before the game even starts. The only trick is that buyer L is still

present and can also offer more than pL: thus we still have a competition between H and L, even if

H wants to bid more than pL. It means that we do not have a classic outside option = pL for buyer

H, but instead an outside option = max{pL, v}: because there is no equilibrium where H has to pay

less than v, thus if v ≥ pL, then he will pay v instead of just pL immediately (and obviously we have

no concern about any bargaining since v ≥ pL implies that the seller must accept immediately).

Basically we only have bargaining when pL > max{δ/(1 + δ), v} now.

The equilibrium outcome is still that the seller accepts immediately (but sometimes because she

has to accept) the initial offer from the buyer H at price p, where p is now defined as follows:
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p =





δ/(1 + δ), if v ≤ δ/(1 + δ) ≤ pL

v, if δ/(1 + δ) ≤ v ≤ pL

if pL ≤ v

pL, if v ≤ pL ≤ δ/(1 + δ)

= max

{
v, min

(
δ/(1 + δ), pL

)}

Now, if we assume that δ → 1 (either because the bargaining period τ → 0 or because both individ-

ual discount patience parameter ρ→ 1), we get an equal share of the pie δ/(1+δ) = 0.5. Moreover,

if we rescale the problem to correspond to the one in the article, we get the same bargaining rule.

2.B Complete list of actual and simulated moments

Table 2.B.1: Actual and Simulated moments (complete table)

Moment Actual Simulated

Mean sale price 1.008 1.02

Mean ratio sale/final listing price 0.955 0.962

Mean initial list price 1.107 1.106

% of accepted offers equal to list price 0.15 0.235
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% of accepted offers below list price 0.734 0.712

Mean week on the market (knowing that <52 weeks) 14.817 14.736

% unsold after 2 weeks 0.911 0.88

% unsold after 4 weeks 0.802 0.78

% unsold after 6 weeks 0.709 0.692

% unsold after 8 weeks 0.626 0.608

% unsold after 10 weeks 0.546 0.534

% unsold after 12 weeks 0.482 0.474

% unsold after 14 weeks 0.425 0.415

% unsold after 16 weeks 0.376 0.366

% unsold after 18 weeks 0.332 0.323

% unsold after 20 weeks 0.294 0.284

% unsold after 22 weeks 0.26 0.254

% unsold after 24 weeks 0.23 0.227

% unsold after 26 weeks 0.202 0.201

% unsold after 28 weeks 0.174 0.178

% unsold after 30 weeks 0.153 0.158

% unsold after 32 weeks 0.135 0.14

% unsold after 34 weeks 0.12 0.124

% unsold after 36 weeks 0.105 0.11

% unsold after 38 weeks 0.093 0.097

% unsold after 40 weeks 0.082 0.087

% unsold after 42 weeks 0.073 0.079

% unsold after 44 weeks 0.064 0.07

% unsold after 46 weeks 0.056 0.062

% unsold after 48 weeks 0.049 0.056

% unsold after 50 weeks 0.043 0.051
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Mean list price in week 3 0.997 0.996

Mean list price in week 5 0.99 0.989

Mean list price in week 7 0.982 0.981

Mean list price in week 9 0.973 0.974

Mean list price in week 11 0.966 0.967

Mean list price in week 13 0.958 0.96

Mean list price in week 15 0.952 0.954

Mean list price in week 17 0.946 0.949

Mean list price in week 19 0.94 0.944

Mean list price in week 21 0.935 0.932

Mean list price in week 23 0.931 0.922

Mean list price in week 25 0.927 0.923

Mean list price in week 27 0.922 0.915

Mean list price in week 29 0.917 0.906

% sales/listing <0.70 0.014 0

% sales/listing <0.80 0.036 0

% sales/listing <0.85 0.064 0

% sales/listing <0.90 0.129 0.053

% sales/listing <0.92 0.186 0.213

% sales/listing <0.94 0.279 0.368

% sales/listing <0.95 0.344 0.436

% sales/listing <0.96 0.426 0.505

% sales/listing <0.97 0.522 0.564

% sales/listing <0.98 0.618 0.619

% sales/listing <0.99 0.697 0.669

% sales/listing <1.00 0.886 0.947

% sales/listing <1.02 0.949 0.959
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% sales/listing <1.05 0.981 0.973

% sales/listing <1.10 0.992 0.988

% sales/listing <1.20 0.997 0.997
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Chapter 3

Dynamics of Households’ Consumption and Housing

Decisions

Christophe Bruneel-Zupanc1 and Thierry Magnac2

Abstract

We estimate a dynamic discrete and continuous choice model of households’ decisions

regarding their consumption, housing tenure and housing services over the life-cycle. We

use non parametric identification arguments as in Bruneel-Zupanc (2021) to formulate

an empirical strategy in two steps that (1) estimates discrete choice probabilities and

continuous choice distribution summaries to be used in (2) Bellman and Euler equations

that estimate the structural parameters. Specific modelling strategies are adopted be-

cause of unfrequent mobility due to housing transaction costs. Counterfactuals that can

be evaluated are related to those transaction costs as well as of prudential policies such

as downpayments.

Keywords: Dynamic models, discrete and continuous choices, non parametric identi-

fication, housing, policy evaluation.

JEL codes: C25, C61, D15, H31, R21

1E-mail address: christophe.bruneel@tse-fr.eu.
2E-mail address: thierry.magnac@tse-fr.eu
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3.1 Introduction

Housing accounts for the bulk of assets of most households (61% out of an average wealth 276,000

e in France in 2018, Cazenave-Lacrouts et al., 2019). Housing is however a very specific asset

since most of it also provides a non-monetary flow of housing services to its owner over time at

the difference of many other assets (Li and Yao, 2007). Any shock on the value of housing may

thus have strong impacts on consumption of other goods and consumer welfare (Ortalo-Magné and

Rady, 2006). Moreover, housing is the target of sizeable public policies either in terms of household

allowances or taxation. Transaction costs under the form of taxes on buying and selling houses are

in France among the highest in the OECD and strongly affect the mobility of French households.3

In consequence, the evaluation of the impact of those transaction costs is high on the agenda of

economists. For this, different types of dynamic models of housing are set up : partial equilibrium

macro models such as Attanasio et al. (2012) or Li et al. (2016); general equilibrium macro models

(Sommer and Sullivan, 2018; Bontemps et al., 2019); a sufficient statistics approach on the impact

of prices (Berger et al., 2018; Etheridge, 2019). Those approaches nevertheless significantly restrict

the heterogeneity between households. A few alternatives are offered by Bajari et al. (2013) and

Khorunzhina and Miller (2019) using dynamic discrete choice models.

In this paper, we build upon these latter approaches and propose a dynamic continuous and

discrete dynamic model whose non parametric identification has been recently analyzed by Bruneel-

Zupanc (2021). We estimate a dynamic housing model in which the choice of housing tenure

(ownership or renting), of housing services (e.g. house size) and consumption are the endogenous

variables observed during several periods.

We follow Bajari et al. (2013) by having time-specific heterogeneity affecting preferences over

consumption and housing services in a Constant Elasticity of Substitution (CES) set up. A second

time-specific heterogeneity term among households governs the tenure decision between ownership

and renting. In contrast, we follow a more standard Euler approach model by having consumption

modeled with measurement errors only, which is typical of micro data in panels (Alan et al., 2009).

There are also various idiosyncrasies in housing data we take on board. First, the frequency

of households moving at each period is rather small (between 5% for owners and 10% for renters)

so that it creates selection that we deal with using information on consumption and restricting

somewhat the dimension of heterogeneity. Second, when they move, some households are still

3https://www.globalpropertyguide.com/investment-analysis/Housing-transaction-costs-in-the-OECD
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choosing a level of housing services which is very similar to the previous level. This should be

hindered by the existence of transaction costs, so that to reconcile the data with the model, we

introduce an exogenous shock to mobility. This could be caused by shocks to employment although

those are not directly observed in the data.

Structural parameters are estimated in two steps as in Hotz and Miller (1993) although using the

mix of discrete and continuous variables. In a first step, we estimate in a flexible way three static

equations that concern housing services, consumption and housing tenure. At the second step,

and using the approach suggested by non-parametric identification, we impose Euler and Belmann

restrictions to recover structural parameters.

The data we use as the basis for our modelling strategy is the French extract of the European

Survey of Income and Living Conditions (SILC) a 10-years rolling panel data set between 2004

and 2015. The advantages of this quite short panel is that it has reasonable good income and

asset data, including house values, mortgages and variables related to labour earnings and benefits.

Consumption however is to be reconstructed from asset and income data and this is also why we

choose to model it with measurement errors.

As this paper remains preliminary, we present descriptive statistics, identification arguments

and our empirical strategy. We do not report empirical results of the full estimation, nor the results

of any counterfactual exercises. An interesting exercise would be to simulate the effects of the

decrease in transaction costs on tenure, consumption and housing services as well as household

welfare. Evaluating prudential policies such as down-payments, would also be an object of interest.

In the following, Section 3.2 briefly describes the data we intend and started to use. Section 3.3

sets up the theoretical framework. Identification arguments and the empirical strategy in two steps

are presented in Section 3.4 and Section 3.5. Section 3.6 concludes.

Literature Review: The closest studies in a continuous and discrete dynamic set-up such as

to ours are Bajari et al. (2013) and Li et al. (2016). They are both based on the now canonical

dynamic model of housing in which housing tenure, housing services and consumption are modelled

in a context in which credit constraints are important (e.g. Li and Yao, 2007; Attanasio et al., 2012).

Bajari et al. (2013) uses the Panel Study of Income Dynamics data and a two-step method proposed

in previous work by the first author (Bajari et al., 2007). It differs from our own two-step method in

the second stage and consists in setting up moment conditions that use that some deviations from
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observed decisions are suboptimal. In contrast, we use all restrictions of the model in the second

stage and the conditions on the way heterogeneity terms enter the model are clearer than theirs.

Li et al. (2016) estimates the parameters of their housing model by the simulated method of

moments (SMM), the standard estimation method in the literature at the intersection of consump-

tion studies and partial equilibrium macroeconomics. Among other results, these authors estimate

the elasticity of substitution between non-durable consumption and housing services using a Con-

stnat Elasticity of Substitution (CES) specification for preferences and find that this substitution

elasticity is significantly lower than one. In this vein, Khorunzhina (2021) provides an interesting

way of identifying this substitution elasticity by using maintenance expenses in the PSID. It allows

an household specific price index to be constructed and used as exogenous variation affecting the

ratio of consumption and housing services. This identifies this substitution elasticity, at least for

owners staying in the same house.

Bruneel-Zupanc (2021) provides the main identification arguments used in our paper, as well as

an empirical application to the canonical dynamic model of household consumption and labour mar-

ket participation. He does not analyze a two-consumption good case as we do and does not consider

measurement errors in consumption. Our procedure also relates to non linear GMM estimation of

the Euler equation as in Alan et al. (2009).

In terms of economic results, our paper belongs to the strand of economic studies analyzing

the mitigation of income risks by households through intertemporal smoothing of consumption

(Blundell et al., 2008). We can indeed use our results in order to model the degree of insurance that

households can achieve at various points over their life-cycle. Furthermore, we can also compare our

results to recent analyses by Browning et al. (2013) on the impact of house prices on consumption.

The authors find that the effect is mainly due the collateral value of housing and not to a wealth

effect.

Berger et al. (2018) also tries to assess the impact of housing prices on consumption and finds

a significant effect that can be summarized by a simple "sufficient statistics" which is the product

of the household marginal propensity to consume and the value of their housing. In a close con-

tribution, Etheridge (2019) uses the same decomposition exercise as Blundell et al. (2008) in the

case of linear income and housing risks and shows that a positive common shock to house prices

in the UK increases consumption inequality in cross-section. His empirical conclusions also hold in

a more non-linear structural model. In particular, income and housing risk interactions are shown
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to be important to understand consumer behaviour because increases in house price alleviate bor-

rowing constraints whereas decreases strengthen them. Paz-Pardo (2021) is another example of

recent analyses on how households deal with risks arising either from their incomes or assets. Using

the PSID, the author shows that changes in the dynamics of income account for a large part of

the recent reduction of homeownership by young households and that these investments are not

compensated by other assets in their portfolios.

Other key dimensions of the decision making of households are not modelled here although some

are developed in the recent literature. Blundell et al. (2016b) analyzes how family labour supply

adjusts to directly mitigate risks in income. Öst (2012) models the simultaneous housing and fertility

decisions in a reduced form setting, and finds a positive correlation between homeownership and

fertility in particular for younger households. In a more structural set-up, Khorunzhina and Miller

(2019) models how households choose homeownership, fertility and labor supply. Interestingly, they

use a two-step method in a dynamic discrete choice model (Hotz and Miller, 1993) and this is the

inspiration for our own estimation method although it also uses continuous choices although in a

setting where labour participation and hours are exogenous.

The importance of credit constraints in relation to housing tenure has been shown repetitively

as in the early work of Ortalo-Magné and Rady (2006). Pizzinelli (2017) is a more recent example

studying the interaction between prudential regulations on credit – imposing loan to value and

loan to income ratios to household mortgages – and labour supply of households, and their impact

on homeownership. This literature, as well as Berger et al. (2018), points out that the leverage

position of households severely restricts their ability to smooth income risks. Iacoviello and Pavan

(2013) also shows the importance of loan to value ratio, or downpayment constraints, as well as the

importance of non-convex adjustments costs in housing models. The very large transaction costs

in France when purchasing a house dampens liquidity and is a important explanatory factor of the

low level of mobility across houses for owners.

Finally, our results could also be compared to those of studies using French micro-data and

that evaluate housing policies. Housing allowances, zero-interest loans, housing tax credit, real-

estate transaction cost and residence tax have been the focus of such policy evaluations in recent

years. Grislain-Letremy and Trévien (2014) estimates the impact of housing allowances on prices

of housing services in France between 1987 and 2012 and confirms the inflationary effect that Fack

(2006) uncovered. Zero-interest access-to-ownership loans are evaluated by Gobillon and le Blanc
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(2008). Housing tax credits and their inflationary effects are evaluated uisng difference-in-difference

methods by Bono and Trannoy (2019) and Chapelle et al. (2018). Bérard and Trannoy (2018)

analyses the impact on prices and quantities of an increase of the transaction tax in various local

areas in 2014. Bontemps et al. (2019) uses a Sommer and Sullivan (2018) general equilibrium model

to analyze counterfactuals such as the impact of a decrease in transaction costs and housing taxes.

A reduced form analysis of dynamic housing and labour-market participation decisions is provided

by Kamionka and Lacroix (2018) and uses the same data as in our study. Although they model

income in a richer way than we do, they do not estimate the structural parameters of a housing

model.

3.2 Data

We use the French extract of the European Survey of Income and Living Conditions (EU-SILC), a

ten-years rolling panel dataset between 2004 and 2015. We select only couples that stayed together

during the survey, in order to avoid modeling the merge or division of assets when couples are

formed or when they divorce. We focus on individuals less than 60 years old as retirees may face

very different housing market condition (borrowing in particular).

After cleaning the data, we are left with 7,108 unique couples, giving 22,625 household-year obser-

vations. The descriptive statistics of the data, by ownership status, are given in Table 3.2.1. 73% of

the household own their properties. On average homeowners are older than renters, they consume

more, live in larger houses and get less benefits. The housing mobility is quite low in the French

data: overall, only 7% of the households change their residence during a year, i.e. we observe a

total of 1,542 moves. It suggests that there is a very high cost of moving for the households.
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All Owner Renter

Mean (SD) Mean (SD) Mean (SD)

Consumption (c) 39.18 (40.68) 40.56 (43.85) 35.46 (30.20)
House size in sqm (s) 107.98 (37.47) 117.13 (36.85) 83.17 (26.22)
Homeownership (d) 0.73 (0.44) 1.00 (0.00) 0.00 (0.00)
Past Homeownership 0.71 (0.45) 0.97 (0.18) 0.02 (0.13)
House price/rent (yearly) in K euros 228.91 (92.22) 6.08 (2.74)
Est. House value 221.89 (69.10) 6.10 (2.18)
Moved this year 0.07 (0.25) 0.05 (0.22) 0.12 (0.32)
Age 42.67 (9.36) 43.81 (9.07) 39.57 (9.42)
Financial Asset 24.11 (51.16) 27.89 (55.23) 13.85 (36.07)
Landlord Asset 32.54 (90.42) 38.29 (97.06) 16.99 (66.87)
Income 45.02 (20.67) 48.21 (21.06) 36.37 (16.75)
Benefits 4.18 (5.32) 3.58 (4.83) 5.79 (6.19)
Housing Benefits 0.41 (1.08) 0.17 (0.66) 1.07 (1.61)
Live in Social Housing 0.11 (0.31) 0.00 (0.00) 0.41 (0.49)
Number of children 1.35 (1.12) 1.38 (1.10) 1.26 (1.17)
Number of children below 3 y.o. 0.24 (0.48) 0.21 (0.46) 0.32 (0.53)
Number of children below 6 y.o. 0.49 (0.73) 0.45 (0.71) 0.59 (0.76)
Number of children below 18 y.o. 1.30 (1.13) 1.30 (1.10) 1.29 (1.20)
Age of the youngest child 7.55 (5.65) 8.09 (5.68) 5.99 (5.26)

Observations 22625 16525 6100

Table 3.2.1: Descriptive Statistics of the complete sample and by homeownership status.

d−1 / d 0 1 Total

0 597 565 1162
(51.4) (48.6) (100.0)

1 109 271 380
(28.7) (71.3) (100.0)

Total 706 836 1542
(45.8) (54.2) (100.0)

Table 3.2.2: Housing Tenure (d) change when moving

Renters are more mobile (12%) than homeowners (5%). As described in Table 3.2.2, 48.6% of

renters who move are becoming homeowners, while homeowners are considerably less likely to be-

come renters (71.3% become owner of a new house and only 28.7% become renters). This suggests

some differential cost of switching tenures for households who were owners and household who were

renters.
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Figure 3.2.1: Histogram of s− s−1 conditional on moving and same tenure

Finally, as shown in Figure 3.2.1, conditional on moving, people move to larger houses, with an

average house size change (s − s−1) of about 20 square meters.4 Surprisingly though, we observe

that some households also move to very similar properties. This is at odds with the high cost of

moving, and it suggests that some households are probably moving for some non-housing reasons,

e.g. labor mobility shocks.

3.3 Framework

We build a dynamic life-cycle model from 25 to 60 y.o. which incorporates all the empirical facts

described in the previous section.

Each period, the timing of the problem is as follows:

4We also observe the same pattern when using the house value adjustment: on average households move to houses
with higher estimated value.
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t

t t+ t++ t+1

Starts
with states

(zt, at, st−1, dt−1)

Shocks (ǫt, ηt) Simultaneously
picks (dt, sdt, cdt)

...

Each period, the household decide of its housing tenure (d, = 1 for owners, = 0 for renters), housing

services (sd) and non-housing consumption (c).5 They do so given three endogenous states: their

previous housing tenure (d−1) and housing services (s−1), their asset (a). And also given some

exogenous states z, including the household income and other demographics (x) which mainly in-

clude the age, the number of children and their age. They also know prices (and forecast them):

p for rent, q for house prices and interest rate (r). Two iid shocks occur each period. They are

unobserved by the econometrician, but known by the households. Additively separable shocks ǫ

affect the housing-tenure choice. ǫ follows an extreme value type 1 distribution, as in the discrete

choice literature (McFadden, 1980; Hotz and Miller, 1993). A non-separable shock η affects the sub-

stitution between housing services and non-housing consumption. η also affect the housing-tenure

choice. As its distribution is not identified, we normalize η ∼ U(0, 1).

Finally, there is a random exogenous binary move shock m. With probability pm, m = 1 and the

household must move for exogenous reasons (e.g. labor mobility shock).6 When m = 0 (with prob-

ability 1 − pm), the household can choose freely to move or not, yielding endogenous moves. m is

not observed by the econometrician. We include it to capture the fact that some households move

to very similar houses, even though the fixed cost of moving should be high.

Period utility function:

5The data counterpart to housing services s can either be the housing size in square meters s, or other housing
variables such as the housing value. The advantage of our identification method is that sd can be a different variable
for each d, e.g. for owners s1 is the estimated housing prices and for renters s0 is the rent.

6We can allow for a pm that depend on our variables, especially the demographics and the income.
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The utility function take a CES form (close to Li et al., 2016) and is given by

U(d, c, s, s−1, d−1, x,m, η, ǫ) = γ(x)

(
c1−1/γd + φ(η)s1−1/γd

) 1−σ
1−1/γd

1− σ

+ ( µ0 + µ1d−1)︸ ︷︷ ︸
fixed moving cost

(1{{d 6= d−1} or {s 6= s−1, d = d−1} or {m = 1}})

+ ( ν0 + ν1d−1︸ ︷︷ ︸
tenure swapping cost

)1{d 6= d−1} + ǫd

γ(x) is an equivalence scale as a function of the demographics x. c and s are non separable choices

under this CES specification. The shock η mainly affects the substitution between cd and sd and

φ(η) is simply a strictly increasing transformation with respect to η (e.g. φ(η) = a+bη) to get more

general effects of the shock. The CES parameters γd and σ are such that ∂U(·)/∂sd∂η > 0 and

∂U(·)/∂cd∂η < 0. It means that the optimal housing service consumption (s∗d) is strictly increasing

with η and the optimal non-housing consumption (c∗d) is strictly decreasing with it: η governs the

substitution between c and s.7

You also have some additively separable costs in the utility function. In the model, we observe that

an household move if d 6= d−1 or s 6= s−1 and d = d−1. In this case, the household endures a fixed

moving cost µ0 + µ1d−1. With µ0 < 0 and µ0 + µ1 < 0 because it is costly to move. This cost

depends on the past tenure, as suggested in the data where owners do not move as much as renters

(suggesting µ1 < 0). This fixed utility cost will yield optimal choice where individuals will choose

not to move in the model, and stay in their current house: s = s−1 and d = d−1.8 Individuals are

also forced to move when m = 1. In this case, they endure the fixed utility cost, which becomes

irrelevant for their choices because they face it no matter what they do. Thus, these individuals are

not ‘constrained’ to choose s = s−1 by the fixed cost (and there is a zero likelihood that they will

pick exactly s = s−1 since s is a continuous choice). The exogenous move friction m only enters the

household problem here.

Moreover, there is also a tenure swapping cost ν0+ν1d−1. We expect ν0 < 0 and ν0+ν1 < 0 because

it is costly to swap tenure. And probably ν1 < 0 because it is even more costly for previous home-

owners to become renters: as observed in the data, homeowners are less likely to become renters.

7Note that we can also have a specification with complementary goods that would both increase with respect to
η. We only need both choices to be stricly monotone with respect to η, increasing or decreasing.

8Notice that we also include monetary transaction costs in the model, which also explains part of the staying
behaviour.
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Transitions:

The budget constraint is:

a+1 ≤ (1 + r)a+ income − c− T (x, d, s, d−1, s−1)︸ ︷︷ ︸
Tax

−ps(1− d)︸ ︷︷ ︸
Net rent

− q(s− s−1)dd−1︸ ︷︷ ︸
Price of house change

− qsd(1− d−1)︸ ︷︷ ︸
Price of new house

+ qs(1− d)d−1︸ ︷︷ ︸
Gains from selling and renting

.

Notice that d−1 enters the budget constraint as previous owners (d−1 = 1) are potentially richer than

previous renters (d−1 = 0) because they can sell their housing asset when they move. It also enters

the tax schedule. The tax (benefits) schedule T () can be modelled realistically from the French law

to include income tax, payroll tax, residential tax, property tax, housing sale and purchase tax and

housing benefits.

The transitions of the other variables: household income and family demographics are exogenous

in the model. Households can exogenously have a new child. They cannot divorce in this model.

And we focus on couples so there is no couple formation either. This simplifies the asset and housing

transition in cases of divorce or couple formation. Transitions of income and demographics depends

on current income and demographics, not on s−1 or d−1.

Dynamic life-cycle problem:

Let’s introduce the dynamic optimization problem of the households. Slightly change the notation

to add the index t to each variable. Here the households choose (dt, sdt, cdt) in order to sequentially

maximize their discounted sum of payoffs, with discount factor β. Let’s define Vt(zt, dt−1, st−1) the

ex ante value function of this discounted sum of future payoffs at the beginning of period t, just

before the shocks (ǫt, ηt) are revealed and conditional on behaving according to the optimal decision

rule afterwards.

Vt(zt, at, dt−1, st−1) = E

[ T∑

τ=t

βτ−t max
dτ ,sdτ ,cdτ

U(dτ , cdτ , sdτ , sτ−1, dτ−1, xτ ,mτ , ητ , ǫτ )
]

s.t. at+1 ≤ (1 + rt)at + incomet − ct − T (xt, dt, st, dt−1, st−1)

− ptst(1− dt)− qt(st − st−1)dtdt−1 − qtstdt(1− dt−1) + qtst(1− dt)dt−1
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Thus, each period, the household chooses d, sd and cd to maximize their expected sum of payoffs:

max
dt,sdt,cdt

Ut(dt, cdt, sdt, st−1, dt−1, xt,mt, ηt, ǫt) + βEzt+1

[
Vt+1(zt+1, at+1, dt, st)

∣∣∣zt, at, sdt, cdt, dt, dt−1, st−1

]
.

Remember that zt include the exogenous states, i.e. the demographics xt, but also the income and

the prices.

Retirement :

At 60 years old, we assume the household retire, and live off of their pension and wealth (housing

and non-housing) for 15 more years.

Measurement errors :

Moreover, the non-housing consumption is observed with measurement error ζ by the econometri-

cian, i.e.

cobs = c∗ + ζ.

But ζ does not enter the household problem. The measurement error is independent from every

other variables, and is iid every periods.

3.4 Identification

At each period, we observe data on the variables (d, sd, cd, s−1, d−1, a, z). We only observe s0 and c0

if d = 0 and s1 and c1 if d = 1. In other words:

sd = s0(1− d) + s1d

cd = c0(1− d) + c1d.

Shocks m, η and ǫ are observed by the agents but not observed by the econometrician. Moreover,

a noisy measure of cd is observed because of measurement errors, i.e. we observe cd + ζ.

We first study identification of the following objects: the optimal Conditional Continuous Choices
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(CCCs) s∗d(η, s−1, d−1, a, z,m) and c∗d(η, s−1, d−1, a, z,m), as well as the optimal Conditional Choice

Probabilities (CCPs) Pr(d|η, s−1, d−1, a, z,m). Then, following Bruneel-Zupanc (2021) we will use

the identified optimal choices to identify the structural parameters of the model.

The identification proof will use arguments of Bruneel-Zupanc (2021). However, this paper

cannot be applied directly as the setup here is more complicated for three main reasons. (i) d−1

violates the exclusion restriction of Bruneel-Zupanc (2021), and is not directly an instrument.

Indeed, it affects the budget constraint and thus the future value. (ii) Because of fixed costs, the

optimal choice s will not be strictly monotone. In a related note, the presence of unobserved m

binary shock implies there are additional objects to identify. (iii) Consumption is an additional

choice and this was not dealt with in the previous paper.9 We show how to identify it if it is

measured with errors.

To show how the identification works here, we proceed stepwise. First we show how the optimal

choices would be identified if everyone was moving freely, i.e. if the fixed cost was irrelevant

(everyone pays it even if they do not move). Then we show how the optimal choices are identified

with a fixed moving cost in the model that makes some households stay in their previous house.

Finally, we show how the consumption choice is also identified despite the measurement errors and

how it can be used to identify the housing tenure probability choice even for stayers.

Without loss of generality, we proceed conditional on any given exogenous state z in this section,

and we omit z in what follows.

3.4.1 Identification when everyone moves

Assume everyone moves. In other words, everyone pays the fixed cost, even if they do not move,

such that households will no longer choose s = s−1 to avoid paying the fixed cost. The utility

function is then written as:

U(d, c, s, s−1, d−1, x,m, η, ǫ) = γ(x)

(
c1−1/γd + φ(η)s1−1/γd

) 1−σ
1−1/γd

1− σ

+ (µ0 + µ1d−1) + (ν0 + ν1d−1)1{d 6= d−1} + ǫd

9Notice that sd in this paper would be the direct counterpart to cd in Bruneel-Zupanc (2021). Because cd is
measured with additional errors, so it cannot be used directly to recover η.
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Very importantly, notice that this is equivalent to the general setup when m = 1, i.e. where

households are forced to move. A model without any fixed cost (µ0 + µ1d−1) term would also

be equivalent in terms of optimal choices. Indeed, the fixed cost does not differentially affect the

discrete alternatives so the optimal choice d∗ does not depend on it. Furthermore, by additive

separability, s∗d and c∗d are also independent from it.

Even when everyone moves, we cannot apply the strategy employed by Bruneel-Zupanc (2021)

directly. Indeed, d−1 is not excluded from the budget constraint. So the optimal continuous choices

s∗d and c∗d will depend on d−1 since, everything else equal, a previously homeowner is richer than a

previously renter.

We adopt the following solution in this specific setup. One can show that d−1 only affect housing

wealth in the budget constraint when everyone moves. Denote s̃∗d the optimal choices in this setup

where everyone moves, or the optimal housing service choice conditional on moving. We can also

call it the unconstrained optimal choice, in the sense that it is not constrained by the fixed cost. One

can show that for all η, d and s′−1:

s̃∗d(η, d−1 = 1, s−1, a) = s̃∗d(η, d−1 = 0, s′−1 = ·, a′ = a+ q
s−1

1 + r
). (3.1)

In other words, conditional on moving, ex-homeowners with financial asset a and house of size s−1

will have a total wealth equal to (1+ r)a+ qs−1 (plus their income and taxes, that we abstract from

here). They will make the same choice as ex-renters with the same total wealth, i.e. with financial

asset a′ = a+qs−1/(1+r). Because ex-renters (d−1 = 0) do not own their house, their previous house

size s′−1 do not affect their wealth, so the property holds for all s′−1. The property holds because

s−1 only matters in terms of wealth for the previous homeowners without fixed cost of moving

here. Apart from the housing wealth it provides them when they move, previous homeowners are

exactly equivalent to previous renters here. So, conditional on total wealth, (1+r)a+qs−1d−1, the

optimal housing service choice s̃∗d is independent from d−1. It is true because d−1 only matters in

determining the total wealth, it does not play a role anywhere else in the other variables transition.

Notice also that d−1 is (strictly) relevant for the choice to be a homeowner or a renter at a given

total wealth. Indeed, because of the tenure swapping cost (ν0 + ν1d−1)1{d 6= d−1}, we have that:

Pr(D = 1|η, d−1 = 1, s−1, a) > Pr(D = 1|η, d−1 = 0, s′−1 = ·, a′ = a+ q
s−1

1 + r
), (3.2)
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in which the strict inequality comes from the fact that ν0 + ν1d−1 < 0 for all d−1, i.e. it is costly to

swap tenure, no matter the previous tenure. In other words, at equal total wealth, ex-homeowners

are strictly more likely to be homeowners today than ex-renters.

Therefore, even if we cannot count on an exclusion restriction as defined in Bruneel-Zupanc (2021),

we can apply refined version of the identification proof in the paper using property (3.1). In short,

the idea of the proof is to match ex-homeowners (d−1 = 1) with endogenous states (s−1, a) to ex-

renters (d−1 = 0) with endogenous states yielding the same total wealth, i.e. a′ = a+ qs−1/(1 + r)

(and any s′−1), instead of matching them with ex-renters with the same covariates (a′ = a and

s′−1 = s−1). For these pairs, we have the ‘exclusion’ and the ‘relevance’ of d−1, conditional on the

total wealth, and we can apply the same reasoning as in Bruneel-Zupanc (2021). We show how it

works in what follows.

Sketch of the proof:

When d−1 = 1, conditional on moving, we have:

h = Pr(η ≤ h)

= Pr(η ≤ h|s−1, a, d−1 = 1)

= Pr(η ≤ h|D = 0, s−1, a, d−1 = 1)Pr(D = 0|s−1, a, d−1 = 1)

+ Pr(η ≤ h|D = 1, s−1, a, d−1 = 1)Pr(D = 1|s−1, a, d−1 = 1)

= Pr
(
s ≤ s̃∗0(h, s−1, a, d−1 = 1)|D = 0, s−1, a, d−1 = 1

)
Pr(D = 0|s−1, a, d−1 = 1)

+ Pr
(
s ≤ s̃∗1(h, s−1, a, d−1 = 1)|D = 1, s−1, a, d−1 = 1

)
Pr(D = 1|s−1, a, d−1 = 1)

= FS0|D=0,s−1,a,d−1=1(s̃
∗
0(h, s−1, a, d−1 = 1)) Pr(D = 0|s−1, a, d−1 = 1)

+ FS1|D=1,s−1,a,d−1=1(s̃
∗
1(h, s−1, a, d−1 = 1)) Pr(D = 1|s−1, a, d−1 = 1), (3.3)

where the first equality comes from η ∼ U(0, 1) by normalization. The second is because η ⊥

(d−1, a, s−1). The third equality comes from the law of total probability. The fourth equality comes

from the strict monotonicity of s̃∗d(η, ·) with respect to η. The fifth equality is just a notation change

for the conditional distribution functions.
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Similarly, when d−1 = 0, conditional on moving, we have:

h = Pr(η ≤ h)

= Pr(η ≤ h|s′−1, a
′, d−1 = 0)

= Pr(η ≤ h|D = 0, s′−1, a
′, d−1 = 0)Pr(D = 0|s′−1, a

′, d−1 = 0)

+ Pr(η ≤ h|D = 1, s′−1, a
′, d−1 = 0)Pr(D = 1|s′−1, a

′, d−1 = 0)

= Pr
(
s ≤ s̃∗0(h, s

′
−1, a

′, d−1 = 0)|D = 0, s′−1, a
′, d−1 = 0

)
Pr(D = 0|s′−1, a

′, d−1 = 0)

+ Pr
(
s ≤ s̃∗1(h, s

′
−1, a

′, d−1 = 0)|D = 1, s′−1, a
′, d−1 = 0

)
Pr(D = 1|s′−1, a

′, d−1 = 0)

= FS0|D=0,s′−1
,a′,d−1=0(s̃

∗
0(h, s

′
−1, a

′, d−1 = 0)) Pr(D = 0|s′−1, a
′, d−1 = 0)

+ FS1|D=1,s′−1
,a′,d−1=0(s̃

∗
1(h, s

′
−1, a

′, d−1 = 0)) Pr(D = 1|s′−1, a
′, d−1 = 0),

for the same reasons as what we have for d−1 = 1.10

Now, recall property (3.1) that, for all η, d and s′−1:

s̃∗d(η, d−1 = 1, s−1, a) = s̃∗d(η, d−1 = 0, s′−1 = ·, a′ = a+ q
s−1

1 + r
). (3.4)

Thus, conditional on moving, with a′ = a+ qs−1/(1 + r), we have:

h = FS0|D=0,s−1,a,d−1=1(s̃
∗
0(h, s−1, a, d−1 = 1)) Pr(D = 0|s−1, a, d−1 = 1)

+ FS1|D=1,s−1,a,d−1=1(s̃
∗
1(h, s−1, a, d−1 = 1)) Pr(D = 1|s−1, a, d−1 = 1)

= FS0|D=0,s′−1
,a′,D−1=0(s̃

∗
0(h, s

′
−1, a

′, d−1 = 0)) Pr(D = 0|s′−1, a
′, d−1 = 0)

+ FS1|D=1,s′−1
,a′,d−1=0(s̃

∗
1(h, s

′
−1, a

′, d−1 = 0)) Pr(D = 1|s′−1, a
′, d−1 = 0).

10Notice here that s̃∗d(·, d−1 = 0) ⊥ s−1. We see later that s−1 only matters to determine the position of the mass
point of the optimal s when the household does not move if d−1 = 0. So, for the conditional distribution function of
s, we could remove s′−1.
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Therefore, we can proceed as in Bruneel-Zupanc (2021), and rewrite it as:

(
FS0|D=0,s−1,a,D−1=1(s̃

∗
0(h, s−1, a, d−1 = 1)) Pr(D = 0|s−1, a,D−1 = 1)

− FS0|D=0,s′−1
,a′,D−1=0(s̃

∗
0(h, s

′
−1, a

′, d−1 = 0)) Pr(D = 0|s′−1, a
′, D−1 = 0)

)

= −

(
FS1|D=1,s−1,a,D−1=1(s̃

∗
1(h, s−1, a, d−1 = 1)) Pr(D = 1|s−1, a,D−1 = 1)

− FS1|D=1,s′−1
,a′,D−1=0(s̃

∗
1(h, s

′
−1, a

′, d−1 = 0)) Pr(D = 1|s′−1, a
′, D−1 = 0)

)
.

Under property (3.1), we have a mapping between the policy functions with different previous

housing wealth but similar total wealth. Thus we have only two policy functions to identify (instead

of four, two for each d), with four different conditional distributions thanks to the relevance of d−1.

It yields

(
FS0|D=0,s−1,a,D−1=1(s̃

∗
0(h, s−1, a, d−1 = 1)) Pr(D = 0|s−1, a,D−1 = 1)

− FS0|D=0,s′−1
,a′,D−1=0(s̃

∗
0(h, s−1, a, d−1 = 1)) Pr(D = 0|s′−1, a

′, D−1 = 0)

)

= −

(
FS1|D=1,s−1,a,D−1=1(s̃

∗
1(h, s−1, a, d−1 = 1)) Pr(D = 1|s−1, a,D−1 = 1)

− FS1|D=1,s′−1
,a′,D−1=0(s̃

∗
1(h, s−1, a, d−1 = 1)) Pr(D = 1|s′−1, a

′, D−1 = 0)

)

⇐⇒ ∆FS0
(s̃∗0(h, s−1, a, d−1 = 1)) = ∆FS1

(s̃∗1(h, s−1, a, d−1 = 1)). (3.5)

In the model when everyone moves, the functions ∆FSd
can be directly estimated, from the data

(as conditional distributions). It only remains to identify policies: s̃∗d(h, s−1, a, d−1 = 1). One can

directly apply Bruneel-Zupanc (2021) to show that functions s̃∗d(h, s−1, a, d−1 = 1) are identified as

the unique solution to this system of equation (3.5).

In fact here, because we have strict relevance (3.2), one can show that ∆FS0
and ∆FS1

are invertible.

Thus, the mapping between s̃∗0 and s̃∗1 is identified directly. Indeed, since s̃∗d are strictly monotone
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with respect to η, we can rewrite (3.5) as:

∆FS0
(s̃∗0(s1, s−1, a, d−1 = 1)) = ∆FS1

(s1).

And there is a unique mapping between s1 and s0, obtain by taking the inverse:

s̃∗0(s1, s−1, a, d−1 = 1) = ∆F−1
S0

(
∆FS1

(s1)
)

Now, to obtain s̃∗d as a function of η for both d, simply plug these into (3.3).

Therefore, in the model with only movers (m = 1), the optimal housing service s̃∗d(h, s−1, a, d−1 = 1)

are identified for all d, η, s−1 and a.

Moreover, these policies are strictly increasing, so one can invert them to recover the unobserved

η for each observation of sd in the data.

η = (s̃∗d)
−1(sobsd , s−1, a, d−1)

From there, it is as if η = h were observed. We can use it to compute the conditional choice

probabilities (CCPs)

Pr(D = 1|η, d−1, s−1, a).

Thus, the optimal discrete choice probabilities are also identified.

As for the consumption choice c̃∗d(h, s−1, a, d−1), we can also use the inversion of s̃∗d(η, ·) to recover

η and proceed as if it was observed. Thus, one just need to run the non parametric regression

cobsd = c̃∗d(η, s−1, a, d−1) + ζ,

which directly identifies the optimal consumption policies and the distribution of the measurement

errors ζ.

Therefore, the three policy choices are identified without fixed moving costs in a model where

everyone moves.
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3.4.2 Identification with fixed costs, when some households do not move

In a model with fixed costs, when not everyone is moving, the identification will be more complicated

because some households will choose not to move, and select s∗d = s−1, d
∗ = d−1.

s−1

s

η
0 1

s∗d(η, ·)

s̃∗d(η, ·)

ηd ηd

s∗d
(
ηd, ·

)

s∗d(ηd, ·)

Figure 3.4.1: Optimal housing services function

The presence of the fixed cost transforms the problem as shown in Figure 3.4.1. Between two

values of η, η
d
(a, s−1, d−1) and η̄d(a, s−1, d−1), with 0 ≤ η ≤ η̄ ≤ 1, households will choose to stay

and s∗d(η, a, s−1, d−1) = s−1. Outside the interval [η
d
(a, s−1, d−1), η̄d(a, s−1, d−1)], households will

move, and select the optimal housing service defined in the previous section: s̃∗d(η, ·). Notice that it

is possible that η
d
= 0 or η̄d = 1 for some values of the covariates (in particular s−1). In fact we can

even have η
d
= η̄d = 0 or η

d
= η̄d = 1, in which case no one moves given these state variables. If

d 6= d−1, s∗d(η, a, s−1, d−1 6= d) = s̃∗d(η, a, s−1, d−1 6= d) because if they swap tenure these households

are already moving by construction. So the boundaries only matter when d = d−1.

Another property is that the mass point is shifting with the value of s−1. In other words, if

sa−1 < sb−1, then η
d
(a, sa−1, d−1) ≤ η

d
(a, sb−1, d−1) and η̄d(a, s

a
−1, d−1) ≤ η̄d(a, s

b
−1, d−1). This ordering

also translate in the sd.

Moreover, households who endure the exogenous move shock m = 1 are necessarily moving and

their optimal housing service choice s∗d(η, ·,m = 1) = s̃∗d(η, ·) for all η. So if we observe that an

household does not move in the data, it means that m = 0. Households with m = 0 will never pick

an optimal sd different from s−1 between [s∗d(ηd, ·), s
∗
d(η̄d, ·)] if they keep the same tenure d = d−1.
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Which means that households who move without changing tenure with an optimal s∗d choice in

[s∗d(ηd, ·), s
∗
d(η̄d, ·)] endured the exogenous move shock m = 1. In other words, moves to houses sim-

ilar to the previous one (close to s−1) are due to the exogenous move shock in the model. Because

of the fixed cost, households would never pick such a choice if they were not forced to move.

Identification with fixed costs is more complicated as the optimal s∗d are not strictly monotone

with respect to η anymore, and there are more objects to identify (the bounds). We proceed piece

by piece for the identification. First, we show how to identify the boundaries in terms of sd, i.e.

how to identify s∗d(ηd, s−1, a, d−1) and s∗d(η̄d, s−1, a, d−1) for all (s−1, a, d−1). Second, we show how

to identify the probability of receiving and exogenous moving shock, pm. Third, we show how

to identify s∗d outside boundaries sd, s̄d. Fourth, we show how to identify s∗d(η, ·,m = 1) between

boundaries. Finally, we show how to recover Pr(D = 1|η, ·,m = 1), as well as the consumption

choice of movers and the measurement error distribution.

Step 1: identification of s∗d(ηd) and s∗d(η̄d)

We drop the dependence of η
d
, η̄d, sd(ηd), sd(η̄d) on (a, s−1, d−1) in the notation here to simplify the

exposition. As already mentioned, η
d

and η̄d only matters when d−1 = d.

First, notice that if there was no moving shock, i.e. if m = 0 for all household, then the boundaries

are straightforward to identify. Indeed, they correspond to the highest value of sd before s∗d = s−1

and the lowest value of sd such that s∗d = s−1 (conditional on the covariates).

The presence of exogenous moving shocks prevents us from identifying the boundaries as easily

because household with m = 1 will move freely and could pick sd close to s−1 without changing

tenure. The idea for the identification of the boundaries rely on the fact that, above sd and below

s̄d, we should observe jumps (proportional to pm) in the conditional density of s∗d because only the

population with m = 1 will remain, while the households with m = 0 will all choose to stay at

s∗d = s−1.

Formally, since m is an exogenous shock, independent from everything else, for all s we have

FSd|D=d,D−1=d,s−1,a(sd) = pm FSd|D=d,D−1=d,s−1,a,m=1(sd) + (1− pm) FSd|D=d,D−1=d,s−1,a,m=0(sd),
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and for all s 6= s−1 (because at s−1 the density has a mass point):

dFSd|D=d,D−1=d,s−1,a(sd)

dsd
= pm

dFSd|D=d,D−1=d,s−1,a,m=1(sd)

dsd
+ (1− pm)

dFSd|D=d,D−1=d,s−1,a,m=0(sd)

dsd

⇐⇒ fSd|D=d,D−1=d,s−1,a(sd) = pm fSd|D=d,D−1=d,s−1,a,m=1(sd) + (1− pm) fSd|D=d,D−1=d,s−1,a,m=0(sd),

where we define the density fSd|D=d,D−1=d,s−1,a(sd) = dFSd|D=d,D−1=d,s−1,a(sd)/dsd, and where pm =

Pr(m = 1).

Now notice that, for all s 6∈ [s∗d(ηd), s
∗
d(η̄d)]:

FSd|D=d,D−1=d,s−1,a(sd) = FSd|D=d,D−1=d,s−1,a,m=1(sd) =FSd|D=d,D−1=d,s−1,a,m=0(sd)

and

fSd|D=d,D−1=d,s−1,a(sd) = fSd|D=d,D−1=d,s−1,a,m=1(sd) =fSd|D=d,D−1=d,s−1,a,m=0(sd).

While, for all s ∈ [s∗d(ηd), s
∗
d(η̄d)] \ {s−1}:

fSd|D=d,D−1=d,s−1,a,m=0(sd) = 0.

Then, for all s ∈ [s∗d(ηd), s
∗
d(η̄d)] \ {s−1}:

fSd|D=d,D−1=d,s−1,a(sd) = pm fSd|D=d,D−1=d,s−1,a,m=1(sd)

Thus, we can identify s∗d(ηd) and s∗d(η̄d) by observing discontinuities in the density. Indeed, in a

close neighborhood to s∗d(ηd),

fSd|D=d,D−1=d,s−1,a(sd)
∣∣∣
sd=s̃∗d(ηd)

=





pm fSd|D=d,D−1=d,s−1,a,m=1(sd)

+ (1− pm) fSd|D=d,D−1=d,s−1,a,m=0(sd) if sd < s∗d(ηd)

pm fSd|D=d,D−1=d,s−1,a,m=1(sd) if sd ≥ s∗d(ηd)

Thus, if η
d
> 0, we identify s̃∗d(ηd) as the only sd < s−1 such that there is a jump in the density.And

if there is no such point, it means that η
d
= 0, meaning that the fixed cost covers all the optimal
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choices s̃d below s−1.

Similarly, in a close neighborhood to s̃∗d(η̄d),

fSd|D=d,D−1=d,s−1,a(sd)
∣∣∣
sd=s̃∗d(η̄d)

=





pm fSd|D=d,D−1=d,s−1,a,m=1(sd) if sd < s∗d(η̄d)

pm fSd|D=d,D−1=d,s−1,a,m=1(sd)

+ (1− pm) fSd|D=d,D−1=d,s−1,a,m=0(sd) if sd ≥ s∗d(η̄d)

Thus, if η̄d < 1, we identify s̃∗d(η̄d) as the only sd > s−1 such that there is a jump in the density.

And if we observe no such point, it means that η̄d = 1.

Notice that the knowledge of pm is not required for the identification of the boundaries: one just

need to observe a jump in the density, which will occur as long as pm ∈ (0, 1). In the extreme case

where pm = 1, everyone moves and the result of the previous section holds. In the other extreme

where pm = 0, there is no exogenous move and so we identify the boundaries as stated previously:

as the lowest value sd below s−1 and the highest value greater than s−1.

Step 2: identification of pm

To identify pm now, we will exploit the knowledge of the probability of not moving sd = s−1.

Notice that, by construction, since m ⊥ η, ǫ

Pr
(
Sd ∈ [s̃∗d(ηd), s̃

∗
d(η̄d)]

∣∣∣D = d,D−1 = d, s−1, a
)

= Pr
(
Sd ∈ [s̃∗d(ηd), s̃

∗
d(η̄d)]

∣∣∣D = d,D−1 = d, s−1, a,m = 0
)

(
and also = Pr

(
Sd ∈ [s̃∗d(ηd), s̃

∗
d(η̄d)]

∣∣∣D = d,D−1 = d, s−1, a,m = 1
))

Moreover, we know that:

Pr
(
Sd ∈ [s̃∗d(ηd), s̃

∗
d(η̄d)]

∣∣∣D = d,D−1 = d, s−1, a,m = 0
)
= Pr

(
Sd = s−1

∣∣∣D = d,D−1 = d, s−1, a,m = 0
)

Now, Pr(Sd = s−1

∣∣∣D = d,D−1 = d, s−1, a,m = 0) is not directly estimable as we do not observe m.
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But we observe Pr(Sd = s−1

∣∣∣D = d,D−1 = d, s−1, a). And we know that:

Pr
(
Sd = s−1

∣∣∣D = d,D−1 = d, s−1, a
)
= (1− pm) Pr

(
Sd = s−1

∣∣∣D = d,D−1 = d, s−1, a,m = 0
)

+ pm Pr
(
Sd = s−1

∣∣∣D = d,D−1 = d, s−1, a,m = 1
)

︸ ︷︷ ︸
=0 by continuity of s̃∗d(·)

= (1− pm) Pr
(
Sd = s−1

∣∣∣D = d,D−1 = d, s−1, a,m = 0
)
.

We obtain this because, when m = 1, the household adopts the optimal choice s̃∗d(·). Thus Pr(Sd =

s−1

∣∣∣D = d,D−1 = d, s−1, a,m = 1) = 0 because s̃∗d(·) is continuous, so the likelihood of choosing s̃∗d

exactly equal to s−1 is zero.

By mixing the three previous properties, we obtain

Pr
(
Sd ∈ [s̃∗d(ηd), s̃

∗
d(η̄d)]

∣∣∣D = d,D−1 = d, s−1, a
)

= Pr
(
Sd ∈ [s̃∗d(ηd), s̃

∗
d(η̄d)]

∣∣∣D = d,D−1 = d, s−1, a,m = 0
)

= Pr
(
Sd = s−1

∣∣∣D = d,D−1 = d, s−1, a,m = 0
)

=
Pr
(
Sd = s−1

∣∣∣D = d,D−1 = d, s−1, a
)

1− pm
,

where only pm is unknown since we already identified s̃∗d(ηd), s̃
∗
d(η̄d). It gives that

pm =
Pr
(
Sd ∈ [s̃∗d(ηd), s̃

∗
d(η̄d)]

∣∣∣D = d,D−1 = d, s−1, a
)
− Pr

(
Sd = s−1

∣∣∣D = d,D−1 = d, s−1, a
)

Pr
(
Sd ∈ [s̃∗d(ηd), s̃

∗
d(η̄d)]

∣∣∣D = d,D−1 = d, s−1, a
) ,

which identifies pm.11

Step 3: identification of s∗d(η, ·) outside the boundary points η
d
, η̄d

As displayed in Figure 3.4.1, outside of the boundaries (η
d
(a, s−1, d−1), η̄d(a, s−1, d−1)), households

move and s∗d(η, a, s−1, d−1) = s̃∗d(η, a, s−1, d−1) for all (a, s−1, d−1). In other words, outside of the

boundaries, s∗d(η, a, s−1, d−1,m = 0) = s∗d(η, a, s−1, d−1,m = 1) = s̃∗d(η, a, s−1, d−1), and the presence

11Notice that, since we are studying identification at given exogenous covariates, it means that we could allow for
a pm that depend on these covariates z.
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of the moving shock is irrelevant: households endogenously choose to move and make the same choice

as if they were facing a moving shock.

We build upon Section 3.4.1, using property (3.1) for the identification of the optimal s∗d outside

the boundaries, i.e. conditional on moving. i.e. we use:

s̃∗d(η, d−1 = 1, s−1, a) = s̃∗d(η, d−1 = 0, s′−1 = ·, a′ = a+ q
s−1

1 + r
),

where s′−1 is the previous housing service of the previously renting household (d−1 = 0), which does

not matter on their choice conditional on moving since ex renters have no housing wealth.

The bounds introduce some specificities though. Depending on what a, s−1 and s′−1 are, and using

a′ = a+ qs−1/(1+ r), we will have four boundaries. For d = 1, we will have household staying when

d−1 = 1 and the boundaries will depend on a and s−1, i.e. η
1
(a, s−1, d−1 = 1), η̄1(a, s−1, d−1 = 1).

Similarly, previous renters (d−1 = 0) only stays in their home if they remain renters (d = 0) and

the boundaries in this case will depend on a′ and s′−1, i.e. η
0
(a′, s′−1, d−1 = 0), η̄0(a′, s′−1, d−1 = 0).

So, in fact for any given (a, s−1, s
′
−1) and a′ = a + qs−1/(1 + r), we will have identification of the

optimal choices s∗d for

η 6∈ [η
0
(a′, s′−1, d−1 = 0), η̄0(a

′, s′−1, d−1 = 0)] ∪ [η
1
(a, s−1, d−1 = 1), η̄1(a, s−1, d−1 = 1)].

Now, notice that property (3.1) holds for any s′−1. So, provided that we have enough varia-

tion in the observed support of s−1, [η0, η̄0] are not important. One can identify s∗1 and s∗0 for all

η 6∈ [η
1
(a, s−1, d−1 = 1), η̄1(a, s−1, d−1 = 1)]. Only the boundaries for a, s−1 when d = 1 matters.

Indeed, we will proceed to the identification by taking several value of s′−1 in order to move the

η
0
, η̄0 such that they ‘do not matter’. Recall that η

0
, η̄0 increase with s′−1. So typically, to identify

s∗1(η, a, s−1, d−1 = 1) and s∗0(η, a, s−1, d−1 = 1) on [0, η
1
(a, s−1, d−1 = 1)], pick a sufficiently high s′−1

such that η
0
(a′, s′−1, d−1 = 0) > η

1
(a, s−1, d−1 = 1). If we observe enough variation in s′−1, such an

s′−1 should always exists.12 Similarly, to identify s∗1(η, a, s−1, d−1 = 1) and s∗0(η, a, s−1, d−1 = 1) on

[η
1
(a, s−1, d−1 = 1), 1], pick a sufficiently low s′−1 such that η̄0(a′, s′−1, d−1 = 0) > η̄1(a, s−1, d−1 = 1).

Therefore, for all (a, s−1), s∗0(η, a, s−1, d−1 = 1) and s∗1(η, a, s−1, d−1 = 1) are identified for

12Notice that in the first step we only identify the bounds in terms of s and not the value of η, η̄ directly. So this
is a guessing game: take s′−1, it yields s0 = s∗0(η0(a

′, s′−1, d−1 = 0), d−1 = 0, a′, s′−1). Now run the identification
procedure in step 1. If we notice that s∗1(s0) < s1 ≡ s∗1(η1(a, s−1, d−1 = 1), d−1 = 1, a, s−1), it means that s′−1 was
not high enough (because η

0
< η

1
), and one need to run it again with a higher s′−1.
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all η 6∈ [η
1
(a, s−1, d−1 = 1), η̄1(a, s−1, d−1 = 1)].13 In other words, we fully identify functions

s̃∗d(η, a, s−1, d−1 = 1) and s∗d(η, a, s−1, d−1 = 1,m = 1) on this subset, i.e. conditional on endoge-

nously moving.

Step 4: identification of s̃∗d(η, ·) for η ∈ [η
1
, η̄1]

It remains to identify s∗d(η, a, s−1, d−1 = 1,m = 1) for both d, on the subset of η ∈ [η
1
, η̄1]. Notice

that for m = 0, we do not need to identify s∗1(η, a, s−1, d−1 = 1,m = 0) because by definition it is

equal to s−1 on this subsample. So what remains to be identified are the policies for movers s̃d, or

equivalently the policies conditional on m = 1.

The idea for the identification is close to what we did in the previous step: we will once again shift

s−1 in order to shift the mass point. Notice that

s̃d(η, d−1 = 1, s−1, a) =s̃d(η, d−1 = 1, s′−1, a
′) (3.6)

∀ s′−1, a
′ s.t.

qs′−1

1 + r
+ a′ =

qs−1

1 + r
+ a.

In words, property (3.6) is similar to the idea in property 3.1. We have that conditional on moving,

only the total wealth matters for households. So, even two ex-owners (d−1 = 1) with the same total

wealth will make the same housing service choice when they move. How their wealth is composed

of financial or housing assets does not matter once they move.

Therefore, conditional on having enough variation in s−1, we can vary s′−1 at fixed total wealth

(= qs−1/(1 + r) + a) in order to identify sd(η, d−1 = 1, s−1, a) for all η. For example, one can

proceed to the identification procedure described in the previous step with two different values of

s−1: s−1 and s′−1. With s′−1, a
′ such that

s∗1(η1(a
′, s′−1, d−1 = 1), d−1 = 1, a′, s′−1) > s∗1(η̄1(a, s−1, d−1 = 1), d−1 = 1, a, s−1).

In which case the optimal choice for the movers s̃∗1 and s̃∗0 are identified for all η ∈ [0, 1].

Step 5: identification of η for movers and of Pr(D = 1|η, d−1, s−1, a,m = 1) for all η ∈ [0, 1]

We proceed exactly as in steps 3 and 4 by shifting s−1. While we identify s∗d(·,m = 1), we can directly

13And the policies when d−1 = 0 are identified using the ones with d−1 = 1 through property (3.1), as in Section
3.4.1.
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invert them, to recover η = (s̃∗d)
−1(sobsd , s−1, a, d−1). In other words, for movers, η is identified, as if

it was an observed variable. Then we use it to compute the conditional choice probabilities (CCPs)

of movers:

Pr(D = 1|η, d−1, s−1, a,m = 1) for all η ∈ [0, 1]

Remark, on the subsample of moving households, Pr(D = 1|η, d−1, s−1, a,m = 1) = Pr(D =

1|η, d−1, s−1, a,m = 0) = Pr(D = 1|η, d−1, s−1, a). So the only case where we do not directly iden-

tify Pr(D = 1|η, d−1, s−1, a,m = 0) is when s∗d = s−1. Because in this case, we cannot invert s∗d to

recover the corresponding value of the unobserved shock η.

Step 6: identification of c∗d(η, d−1, a,m = 1) for all η ∈ [0, 1] and the measurement error ζ

Similarly, we invert s∗d(·,m = 1) to recover η from observed sd for households who move exogenously.

Then we use this η as if it was observed to run the non parametric regression

cobsd = c∗d(η, s−1, a, d−1,m = 1) + ζ

This regression directly identifies the optimal consumption policies of movers and the distribution

of measurement errors ζ, denoted Fζ . As for Pr(D = 1|η, ·), for movers, c∗d(η, s−1, a, d−1,m = 1) =

c∗d(η, s−1, a, d−1,m = 0). So we also identify c∗d(·,m = 0) for movers. It remains to identify the

optimal consumption choice of stayers.

3.4.3 Identification of c for stayers

Contrary to sd, when η ∈ [η
d
(a, s−1, d−1 = d), η̄d(a, s−1, d−1 = d)], cd varies and is not fixed (as sd

is equal to s−1). So it remains to identify c∗d(η, s−1, a, d−1 = d,m = 0) for η ∈ [η
d
(a, s−1, d−1 =

d), η̄d(a, s−1, d−1 = d)]. It is interesting that consumption provides some information on η (though

the information is noisy because of measurement errors).

In the data, we only observe cobsd = c∗d + ζ and the distribution of cobsd . However, ζ is an

independent measurement error and we have identified its distribution Fζ on the subset of movers

in step 6 of the previous section. So, by deconvolution (e.g. Comte and Lacour, 2011), we can

recover the distribution of the true c∗d(η, ·), denoted FCd|D=d,·(cd), from any conditional distribution
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of observed cobsd .

Let us identify c∗d(η, s−1, a, d−1 = d,m = 0) for all η. Recall that c∗d(η, s−1, a, d−1 = d,m = 0)

is already identify outside of the boundaries. So we only need to identify it for stayers, i.e. for

η ∈ [η
d
(a, s−1, d−1 = d), η̄d(a, s−1, d−1 = d)]. Proceed by values of d. Start with d = 1. In the data,

if households choose sd = s−1 and d = d−1, it means that m = 0: they did not move so it means

that they did not endure an exogenous shock forcing them to move. It is as if m = 0 was observed

in this case. Using these observations, we recover FCd|D=d,·,m=0(cd) (using deconvolution).

Do the following computation at any given (a, s−1), from which we abstract in the following notation.

For any h ∈ [η
d
(a, s−1, d−1 = d), η̄d(a, s−1, d−1 = d)], we have

Pr(η ≤ h) = Pr(η ≤ h|D−1 = 1)

= Pr(η ≤ h|D = 1, D−1 = 1)Pr(D = 1|D−1 = 1)

+ Pr(η ≤ h|D = 0, D−1 = 1)Pr(D = 0|D−1 = 1)

= Pr(η ≤ h|D = 1, D−1 = 1,m = 0)Pr(D = 1|D−1 = 1,m = 0)(1− pm)

+ Pr(η ≤ h|D = 1, D−1 = 1,m = 1)Pr(D = 1|D−1 = 1,m = 1)pm

+ Pr(η ≤ h|D = 0, D−1 = 1)Pr(D = 0|D−1 = 1)

= Pr(C∗
1 ≥ c∗1(h, d−1 = 1,m = 0)|D−1 = 1, D = 1,m = 0)Pr(D = 1|D−1 = 1,m = 0)(1− pm)

+ Pr(η ≤ h|D = 1, D−1 = 1,m = 1)Pr(D = 1|D−1 = 1,m = 1)pm

+ Pr(η ≤ h|D = 0, D−1 = 1)Pr(D = 0|D−1 = 1). (3.7)

The first equality holds because η ⊥ d−1. The second and third equalities come from the law of

total probability, where pm = Pr(m = 1). We obtain the fourth equality because c∗1(η, ·) is a

strictly monotone (decreasing) function of η. The only thing that is unknown in this equation (3.7)

is the optimal policy. Now, when d 6= d−1, the households move and we identified η by inverting

the optimal s∗d choice. So, Pr(η ≤ h|D = 0, D−1 = 1) is known. Pr(D = 0|D−1 = 1) can be

directly estimated from the data too. Similarly, Pr(η ≤ h|D = 1, D−1 = 1,m = 1) was also already

identified, because when m = 1 we observe moves in sd, we can reverse it to identify η and its

distribution. Pr(D = 1|D−1 = 1,m = 1) is also known as we identified Pr(D = 1|η,D−1 = 1,m =

1) for all η when m = 1. Finally, we can show that Pr(D = 1|η,D−1 = 1,m = 0) is also known.
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Indeed, by the law of total probability,

Pr(D = 1|D−1 = 1) = Pr(D = 1|D−1 = 1,m = 1) pm + (1− pm) Pr(D = 1|D−1 = 1,m = 0).

Where pm is identified, Pr(D = 1|D−1 = 1) is observed from the data and Pr(D = 1|D−1 = 1,m =

1) has also been identified. So,

Pr(D = 1|D−1 = 1,m = 0) =
Pr(D = 1|D−1 = 1)− pm Pr(D = 1|D−1 = 1,m = 1)

1− pm

and Pr(D = 1|D−1 = 1,m = 0) is known.

So, since the distribution FC1|D=1,D−1=1,m=0(cd) has been identified by deconvolution, the only

unknown in equation (3.7) is the optimal consumption choice c∗1(η, d−1 = 1,m = 0). Thus, it is

identified by:

1−FC1|D=1,D−1=1,m=0(c
∗
1(h, d−1 = 1,m = 0))

=
(
Pr(η ≤ h)

− Pr(η ≤ h|D = 1, D−1 = 1,m = 1)Pr(D = 1|D−1 = 1,m = 1)pm

− Pr(η ≤ h|D = 0, D−1 = 1)Pr(D = 0|D−1 = 1)
) 1

Pr(D = 1|D−1 = 1,m = 0)(1− pm)

Which means that:

c∗1(h, d−1 = 1,m = 0)

= F−1
C1|D=1,D−1=1,m=0

(
1−

(
Pr(η ≤ h)

− Pr(η ≤ h|D = 1, D−1 = 1,m = 1)Pr(D = 1|D−1 = 1,m = 1)pm

− Pr(η ≤ h|D = 0, D−1 = 1)Pr(D = 0|D−1 = 1)
) 1

Pr(D = 1|D−1 = 1,m = 0)(1− pm)

)
,

and c∗1(h, d−1,m = 0) is identified for all η in the boundaries. Since it was already identified outside

the boundaries, it is identified for all η ∈ [0, 1].
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We apply exactly the same reasoning for d = 0 to identify c∗0(η, d−1 = 0,m = 0) for all η in the

boundaries [η
0
(a, s−1, d−1 = 0), η̄0(a, s−1, d−1 = 0)], and thus for all η ∈ [0, 1].

Information on Pr(D = 1|η, d−1, s−1, a,m = 0) for η in [η
d
, η̄d]:

We can use the identified c∗d(η, s−1, a, d−1 = d,m = 0) to identify Pr(D = 1|η, d−1, s−1, a,m = 0) for

η ∈ [η
d
(a, s−1, d−1 = d), η̄d(a, s−1, d−1 = d)]. Indeed, inside this set, s∗d = s−1. Thus we cannot invert

the observation of sd to recover the value of η. However, c∗d is still varying, and we identify it. As

a consequence, the observed consumption contains information on η. Because of the measurement

errors we cannot directly invert the observed consumption to recover η as we are proceeding for the

housing services. Yet cobsd still contains some information about η: the higher it is, the more likely

it is that η is low for example (since cd is decreasing with respect to η). More precisely, given that

we observe cd, d, a, d−1, s−1, we have

Pr(η = h|cobsd , d, s−1, d−1 = d, a) = Pr
(
ζ = cobsd − c∗d(h, s−1, a, d−1 = d,m = 0)

)
,

where we drop the conditioning in the right hand side since ζ is independent from the rest.

Therefore, we can again compute the CCPs, Pr(D = 1|η, d−1, s−1, a,m = 0) from the data but

using the probabilistic likelihood of each η (instead of the knowledge of η which is identified for

movers) for the observations where sd = s−1.

Therefore, we identify the optimal Conditional Continuous Choices (CCCs) s∗d(η, s−1, d−1, a, z,m)

and c∗d(η, s−1, d−1, a, z,m) and the optimal Conditional Choice Probabilities (CCPs) Pr(d|η, s−1,

d−1, a, z,m), for all η, a, s−1, d−1. We also identify the measurement errors distribution Fζ , and the

probability to undergo an exogenous moving shock, pm.

3.4.4 Identification of the structural parameters

We have proved the identification of the optimal choices in every period. Now we can use them and

apply Bruneel-Zupanc (2021) directly to identify the structural parameters of our dynamic model.
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3.5 Empirical Strategy

We build a two step estimation method of the parametric model. In a first stage, we estimate

parametric optimal policies via maximum likelihood. More non-parametric alternative estimation

methods can also be used, see Bruneel-Zupanc (2021). However here, we do not have many ob-

servations of moving individuals, so we prefer to use a more parametric estimation procedure for

the optimal choices. In the second stage, we estimate the structural parameters of the model via

forward simulation methods using the optimal policies estimated in the first stage, in the spirit of

Hotz et al. (1994).

3.5.1 Optimal policies

We specify parametric functional forms for the optimal policies. Then we estimate the parameters

by maximum likelihood, since the likelihood is known given the parametric functional form. We

will specify functional forms for s∗d(·), c
∗
d(·) and Pr(D = 1|·). As well as functional forms for the

boundaries η
d
, η̄d, the measurement errors and the probability of exogenous move shock pm.

Housing service s:

First, we specify a functional form for the housing service conditional on moving s̃∗d:

log(s̃∗) = δ + δ1d+ α0(1− d)ψ(η) + α1dψ(η)

+ γ0(1− d)
[
d−1

( q

1 + r
s−1 + a

)
+ (1− d−1)a+

income
1 + r

]

+ γ1d
[
d−1

( q

1 + r
s−1 + a

)
+ (1− d−1)a+

income
1 + r

]

+ λ′x,

where d−1(
q

1+r
s−1+a)+(1−d−1)a+

income
1+r

represents the total wealth. ψ(η) is a monotone transfor-

mation of η applied to account for nonlinear effect of η, e.g. ψ(η) = F−1(η) where F is a standard

normal distribution. By monotonicity, we have the constraint on the parameters α0 > 0 and α1 > 0.
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Now, recall that with fixed costs, the true optimal choice is:

s∗ =





s−1 if d = d−1 and (η
d
≤ η ≤ η̄d) ⇐⇒ (sd ≤ s̃∗ ≤ s̄d)

s̃∗ otherwise.

Thus, we need a parametric specification for (sd, s̄d), which depend on s−1. For now, we use a

simple specification with two parameters for each d, κd and κ̄d:

sd(s−1) = s−1 − κd and s̄d(s−1) = s−1 + κ̄d.

We can include additional effect from the other variables (asset, income, demographics) on the

boundaries but we keep it simple for now.

Housing tenure d:

For the housing tenure choice probability d, we use a logistic specification:

Pr(D = 1|η, d−1, s−1, x) =
1

1 + exp(−(θ0d−1 + θ1ψ(η) + θ2total wealth))
.

Consumption c:

We use a specification similar to the specification of housing services for non-housing consumption.

Except that we include s into it, such that for non movers, we will have a fixed s−1 but still have

variation through η. And for the movers the variation will be captured through s, which is a strictly

increasing function mapped to η anyway.

log(c∗) = δc + δc1d+ αc
0(1− d)s+ αc

1d s

+ 1{s = s−1}
(
αc
2(1− d)ψ(η) + αc

3dψ(η)
)

+ γc0(1− d)(total wealth) + γc1d(total wealth) + λc′x.
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And consumption is observed with measurement errors

c = c∗ + ǫc with ǫc ∼ N (0, σc),

where σc is another parameter to estimate.

Estimation via Maximum Likelihood :

Given the specification, including also a parameter pm for the exogenous moving shock probability,

we can compute the likelihood of each observation (s, d, c) in the data. Even when s = s−1 we know

the likelihood of observing it happening. So we can estimate all the parameters of the optimal

choices laid down above via maximum likelihood.

3.5.2 Structural parameters

Once the parametric optimal choices are estimated, we use them in forward simulations of the model

in order to estimate the structural parameters of the dynamic model, in the spirit of Hotz et al.

(1994). In order to run these forward simulation, we also estimate the transition of the exogenous

state variables (income and demographics) parametrically directly from the data beforehand.

As shown in Bruneel-Zupanc (2021), this two step estimation method has the advantage of being

fast, as it avoids having to solve for the optimal choices in the model for each set of parameters.

3.6 Conclusion

This paper builds a dynamic model of household consumption and housing decisions. We provide

identification conditions of this dynamic model and an estimation method built upon the identifi-

cation proof. The planned estimation of the model will allow to estimate key parameters for this

sample of French households, such as the substitution between housing and non-housing consump-

tion and fixed housing switching costs. Once the model is estimated, we will be able to run many

relevant policy counterfactuals, by modifying transaction costs for example.
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