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Summary

This thesis contains three essays on the macroeconomic effects of labor markets with a special

emphasis on the determinants of internal migration, spatial inequality, labor market power, and the

determination of wages.

In the first chapter, I study a potential reason of why workers stay in economically distressed

areas: people like to live close to what they call home. Using administrative data for France, I

find: (i) the share of migrants who return to their birthplace is almost twice as large as the share of

migrants who go to any other particular location; (ii) there is a negative relationship between labor

flows and distance from the workers’ birthplace; and (iii) workers accept a wage discount between

9 to 11 percent to live in their home location. To understand the implications of these findings, I

build a dynamic quantitative migration model into which I introduce home bias, understood as a

utility cost of living away from one’s birthplace. I use the model to separately identify home bias

and migration costs from the data. I find that differences in birth location lead to average welfare

differences of up to 30 percent in consumption-equivalent terms, and explain 43 percent of the total

dispersion in welfare. Finally, I show that a migration model without home bias overstates the

migration response of agents. This underestimates the pass-through of local productivity to real

wages and overestimates the efficiency costs associated with place-based policies.

In the second chapter, Miren Azkarate-Askasua and I study the efficiency and welfare effects of

employer and union labor market power. We use data of French manufacturing firms to first doc-

ument a negative relationship between employment concentration and wages and labor shares. At

the micro-level, we identify the effects of employment concentration thanks to mass layoff shocks

to competitors. Second, we develop a bargaining model in general equilibrium that incorporates

employer and union labor market power. The model features structural labor wedges that are

heterogeneous across firms and potentially generate misallocation of resources. We propose an

estimation strategy that separately identifies the structural parameters determining both sources

of labor market power. Furthermore, we allow different parameters across industries which con-

tributes to the heterogeneity of the wedges. We show that observing wage and employment data

is enough to compute counterfactuals relative to the baseline. Third, we evaluate the efficiency and

welfare losses from labor market distortions. Eliminating employer and union labor market power

increases output by 1.6% and the labor share by 21 percentage points translating into significant

welfare gains for workers. Workers’ geographic mobility is key to realize the output gains from

competition.

In the third chapter, Miren Azkarate-Askasua and I propose a bias correction method for estima-

tions of quadratic forms in the parameters of linear models. It is known that those quadratic forms

exhibit small-sample bias that appears when one wants to perform a variance decomposition such



as decomposing the sources of wage inequality. When the number of covariates is large, the direct

computation for a bias correction is not feasible and we propose a bootstrap method to estimate the

correction. Our method accommodates different assumptions on the structure of the error term in-

cluding general heteroscedasticity and serial correlation. Our approach has the benefit of correcting

the bias of multiple quadratic forms of the same linear model without increasing the computational

cost and being very flexible. We show with Monte Carlo simulations that our bootstrap procedure

is effective in correcting the bias and we compare it to other methods in the literature. Using ad-

ministrative data for France, we apply our method by doing a variance decomposition of a linear

model of log wages with person and firm fixed effects. We find that the person and firm effects are

less important in explaining the variance of log wages after correcting for the bias and depending

on the specification the correlation becomes positive after the correction.



Résumé

Ce travail de thèse est composé de trois chapitres traitant des effets macroéconomiques du

marché du travail en mettant l’accent sur les déterminants de la migration interne, les inégalités

spatiales, le pouvoir du marché du travail et la détermination des salaires.

Dans le premier chapitre, j’étudie une raison potentielle pour laquelle les travailleurs restent

dans des zones économiquement en difficulté: les gens aiment vivre près de leur location d’origine.

En utilisant des données administratives françaises, j’obtiens les résultats suivants: (i) la part de

migrants qui retournent dans leur lieu de naissance est presque deux fois plus grande que la part

de migrants qui se rendent dans une autre localité; (ii) il existe une relation négative entre les flux de

main-d’œuvre et la distance par rapport au lieu de naissance des travailleurs; et (iii) les travailleurs

acceptent une réduction de salaire de 9 à 11 pourcent pour vivre dans leur localité d’origine. Pour

comprendre les implications de ces résultats, je construis un modèle de migration quantitative

dynamique dans lequel j’introduis un biais d’origine, compris comme un coût en terme d’utilité

de la vie loin de son lieu de naissance. J’utilise le modèle pour identifier séparément le biais

domestique et les coûts de migration à partir des données. Je trouve que les différences de lieu

de naissance entraînent des différences de bien-être moyen allant jusqu’à 30 pourcent en termes

d’équivalence de consommation et expliquent 43 pourcent de la dispersion totale du bien-être.

Enfin, je montre qu’un modèle de migration sans biais d’origine surestime la réponse migratoire des

agents. Cela sous-estime la répercussion de la productivité locale sur les salaires réels et surestime

les coûts d’efficacité associés aux politiques territoriales.

Dans le second chapitre, Miren Azkarate-Askasua et moi étudions les effets du pouvoir du

marché des employeurs et les syndicats sur l’efficience et le bien-être. Nous utilisons des don-

nées du secteur de la production industrielle française pour documenter premièrement la relation

négative entre concentration d’emploi avec les salaires et la partie de la valeur ajoutée qui va au

paiement du travail. Au niveau micro, nous identifions les effets de la concentration d’emploi grâce

à un choque de licenciement aux compétiteurs. À la suite nous construisons un modèle de négo-

ciations en équilibre général avec pouvoir de marché des employeurs et les syndicats. Ce modèle

délivre des wedges structurelles hétérogènes à travers des entreprises que génère potentiellement

une mis-allocation des ressources. Nous proposons une estimation qu’identifie séparément chaque

source de pouvoir du marché au marché de travail. En outre nous permettons que les paramètres

soient flexibles à travers des secteurs ce qui contribue à l’hétérogénéité des wedges. Nous montrons

que l’observation des salaires et niveau d’emploi est suffisant pour calculer des contrefactuelles rel-

atives à la base. Nous évaluons le coût des distorsions du marché du travail. Éliminer le pouvoir

du marché des employeurs et les syndicats augmente la production en 1.6% et la partie qui va au

paiement de la main d’oeuvre en 21 points pourcentuelles ce qui signifie une augmentation signi-



ficative du bien-être des salariés. La mobilité géographique est la clé pour réaliser les gains de la

compétition.

Dans le dernier chapitre, Miren Azkarate-Askasua et moi proposons une méthode de correction

de biais qui apparait dans les estimations des formes quadratiques des paramètres de modèles

linéaires. Ce biais de faible échantillonnage apparait quand nous voulons faire une décomposition

de variance comme par exemple pour décomposer les sources des inégalités salariales. Quand le

nombre de variables indépendantes est grand, le calcul directe du biais n’est pas faisable. Nous

proposons une méthode de bootstrap pour corriger le biais. Notre méthode s’adapte à différentes

hypothèses de la structure des erreurs comme heteroscdecasticité et autocorrélation. Nous pouvons

corriger le biais de plusieurs formes quadratiques d’un modèle linéaire sans augmenter le coût

des calculs. Nous montrons à travers de simulations de Monte Carlo que notre procédure de

bootstrap effectivement corrige le biais et nous le comparons à d’autres méthodes de la littérature.

Nous misons en application notre méthode avec des données administratives françaises pour faire

une décomposition de la variance des salaires avec effets fixes de travailleur et entreprise. Nous

trouvons que les effets de personne et entreprise sont moins importants une fois nous avons corrigé

pour le biais.
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Chapter 1

The Birthplace Premium

Miguel Zerecero1

Abstract

Why do people stay in economically distressed areas? In this paper, I explore a simple, yet overlooked hy-

pothesis: people like to live close to what they call home. Using administrative data for France, I find: (i)

the share of migrants who return to their birthplace is almost twice as large as the share of migrants who go

to any other particular location; (ii) there is a negative relationship between labor flows and distance from

the workers’ birthplace; and (iii) workers accept a wage discount between 9 to 11 percent to live in their

home location. To understand the implications of these findings, I build a dynamic quantitative migration

model into which I introduce home bias, understood as a utility cost of living away from one’s birthplace. I

use the model to separately identify home bias and migration costs from the data. I find that differences in

birth location lead to average welfare differences of up to 30 percent in consumption-equivalent terms, and

explain 43 percent of the total dispersion in welfare. Finally, I show that a migration model without home

bias overstates the migration response of agents. This underestimates the pass-through of local productivity

to real wages and overestimates the efficiency costs associated with place-based policies.
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1.1 Introduction

Large groups of people tend to stay in less favorable areas within the same countries. It is puzzling

that, even without legal impediments, they don’t move to supposedly attractive locations. The lit-

erature has offered two main explanations. First, migration costs reduce mobility across regions,

which limits workers’ ability to arbitrage away differences in welfare.2 Second, the observed vari-

ation in pecuniary measures, like real wages, might only reflect variation in local amenities. Thus,

low-wage regions might only reflect a high level of amenities.3

In this paper, I focus on a different explanation for low mobility: people like to live close to their

home. This home bias makes workers born in attractive regions better-off, as they don’t have to

compete with workers born in poorer regions who are reluctant to leave their home. Home bias can

then generate significant average utility differences across space and birth cohorts. For example,

considering the case of France, I find that the average worker born in an attractive area—like Paris,

Nice, or Toulouse—has 5 to 7 percent more utility than the average French worker, measured in

consumption terms. In contrast, the average worker born in Cantal, within the Massif Central

region, or in Haute Marne in the North-East, has around 20 percent less utility than the average

French worker. Thus, the difference between having a “good” and a “bad” birthplace can turn

into a welfare difference of more than 30 percent, which is significant considering that France is a

centralized and well-connected country.

In relative terms, these numbers imply that differences in birth location explain 43 percent of the

overall welfare dispersion. With 53 percent of the welfare dispersion due to workers’ idiosyncratic

shocks, this means that differences in birth location account for almost all the rest of the variation.

This result reflects the importance of home bias in shaping workers’ location decisions which,

combined with location-specific heterogeneity, makes the birthplace an important driver of expected

lifetime utility. Ignoring the effect of home bias overstates the role of migration costs and the

potential for policies to enhance mobility. It also overstates the costs of subsidizing poor locations,

that may drive away workers from productive to unproductive regions.

I proceed in four steps. First, using administrative data for France, I document the prevalence

of home bias in workers’ migration decisions. The French data stand out as they register the birth

location for all workers. This feature allows me to look at labor flows between two regions for

workers who were born in different places, which is key for isolating the home bias from the effect

of proximity in migration decisions. I find that labor flows are biased towards workers’ home

locations, even after controlling for proximity between origin and destination locations, and that

workers who live in their home location have lower wages. Second, I build a general equilibrium

dynamic Roy model of migration in which workers with heterogeneous preferences—defined by

their birthplace—sort across locations with heterogeneous productivities and amenities. I use the

structure of the model and the observed data on labor flows and wages to separately identify the

standard migration costs from the home bias. Third, I use the estimated model to quantify the
2Bryan and Morten (2019) and Caliendo et al. (2019) have models with costly adjustment of labor across regions; Ahlfeldt et al. (2015)

and Monte et al. (2018) propose a model where commuting is costly.
3Compensating variation in real wages because of amenities is a standard result in the traditional urban framework of Rosen (1979)-

Roback (1982).

2



birthplace premium: the average utility a worker from a particular birthplace has in excess of the

national average. Fourth, I illustrate the effect of ignoring home bias when modeling workers’

mobility decisions.

I start by briefly describing the data in Section 1.2 and explaining how I define the different lo-

cations within France. The most disaggregated level of information for place of birth is the départe-

ment. There are 94 départements in continental France with great variation in size and connectivity.4

I aggregate them according to commuting flows, such that every location is a well integrated local

labor market. I end up with 73 locations which still allows me for a disaggregated analysis of the

home bias.

Section 1.3 provides empirical evidence of the home bias. I examine the labor flows across

locations in France for the years 2002 to 2017. I find that the share of migrants who return to

their birthplace is, on average, almost twice as large as the share of migrants who go to any other

particular location. To distinguish between the effect of standard migration costs and home bias,

I run a gravity-type regression, as used in the trade literature, and find that the labor flows to a

particular destination is negatively related to distance from the workers’ birthplace. This result

holds while controlling for distance between origin and destination locations, that would capture

normal migration frictions, as well as origin and destination fixed effects.

The biased labor flows suggest that workers dislike living away from their birthplace. This

allows me to test whether idiosyncratic differences in wages are an important driver of workers’

migration decisions. If workers select across locations based on differences in potential wages, and

leaving the birthplace is costly, then workers who move away from their birthplace should have, on

average, higher wages than those workers who stayed in their birth location. I find that for the vast

majority of locations/periods of my sample the wages of workers living outside their birthplace

are larger than the wages of workers living within their birthplace. This corresponds to an average

15 percent wage difference between the two groups. Thus, the evidence suggests that selection via

wages is an important driver of the workers’ location decision. I then estimate the average penalty

workers face by living in their birthplace. I find that among workers who changed jobs between

years, those who move back to their birthplace face a wage discount of 9 to 11 percent compared to

going to another location.

In Section 1.4, I build a quantitative migration model in the spirit of Bryan and Morten (2019)—

where differences in idiosyncratic productivities drive workers’ migration decisions—but allowing

for migration to be a dynamic decision, as in Caliendo et al. (2019). I add a fixed worker character-

istic, birthplace, that biases the migration decision of workers towards their home. The static part of

the model is a trade model à la Eaton and Kortum (2002) with housing, which works as a congestion

mechanism. The combination of all these elements results in a dynamic discrete choice model—

where workers with heterogeneous preferences defined by birthplace sort across heterogeneous

locations based on idiosyncratic productivity shocks—with a static trade equilibrium determining

output at each location.

The methodological challenge is to disentangle the role of home bias from standard migra-

tion costs along with identifying location-specific characteristics, like productivities and amenities,
4For continental France I mean the French départements that are in Europe, excluding the island of Corsica.
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that are common in the trade and urban economics literature. Adding worker heterogeneity—like

birthplace—allows for a richer analysis of phenomena, but it comes with a cost. A common feature

in the discrete choice literature, especially when choices are persistent, is that a large probability

mass is concentrated in a single alternative. Then, is usual to observe in the data a large fraction

of alternatives where the number of people taking them is zero. Adding group heterogeneity, by

conditioning in an extra dimension, increases the prevalence of zeros in the data. This represents a

challenge when trying to bring together model and data. In my context, although the data consists

of millions of observations, the number of workers migrating in a given year is around 4 percent

of the total sample. Moreover, the number of origin-destination combinations per each group of

workers with same birthplace is 73× 73 ≈ 5, 000. These two elements make the data on observed

combinations, conditional on birthplace, very sparse.5

As in Dingel and Tintelnot (2020), I address the “many-zeros” problem by assuming a discrete

number of workers in the model. This assumption rationalizes the zeros in the data and guides the

identification strategy in a transparent way. However, it poses challenges when solving the general

equilibrium of the model.6 Thus, I present two versions of the model: one with a discrete number

of workers where the equilibrium needs not be in steady-state, and a more standard steady-state

continuous-population model, which I use for computing general equilibrium counterfactuals.

In Section 1.5, I show how to identify and estimate the parameters of the model, using data on

labor flows and wages. I show that, if migration costs are symmetric, they are non-parametrically

identified from labor flows across locations.7 I relax the sufficient identification conditions provided

by Bryan and Morten (2019)—and the associated data requirements—such that the migration costs

are identified from the location-pair fixed effects of a gravity Poisson regression on labor flows.8

Bryan and Morten show that migration costs can be directly identified from the gross migration

flows between two locations. In the context of my application, this requires to observe, for every

pair of locations, an out-flow and an in-flow of labor for workers with the same birthplace and in

the same year. In the data, less than 70 percent of the location pairs satisfy Bryan and Morten’s

conditions. With my weaker conditions, this number increases to more than 98 percent.

For tractability, I assume that the idiosyncratic productivity shocks are distributed Type 1 Ex-

treme Value (or Gumbel). This assumption—ubiquitous in the discrete choice literature—delivers

a closed form expression for the migration probability as a function of the expected utility and

the migration costs.9 Using the identified migration costs and count data on labor flows I esti-

mate the underlying migration probabilities via maximum likelihood. I show that the solution to
5The sum of origin-destination combinations across workers with different birthplace is then 733 = 389, 017. I observe around 5% of

the combinations each year.
6The lack of information about different alternatives might lead researchers to aggregate the alternatives into a smaller choice set,

which makes it easier to combine model and data. This is a reasonable route for some applications. For example, Heise and Porzio (2019)

analyze the effect of home bias for location decisions of East and West German workers. Germany stands out against other countries as

it is obvious in how to group different locations in few regions for its analysis. For France though, is not obvious how to group locations

into two, three or few more aggregate regions. Thus, aggregation could mask the effect of home bias in workers’ migration decisions.
7By non-parametric I mean that I identify a single migration costs for every pair of locations.
8The gravity Poisson regression would be a three-way regression in the sens that it includes origin, destination and location-pair fixed

effects.
9For a textbook treatment, see Train (2009).
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this maximization problem is equivalent to solving for the ’source-country effects’ of a balanced

trade condition from a gravity-trade model.10 I use the identified migration probabilities to impute

model-consistent wages for those missing combinations in the data.

The result linking the maximization of the conditional likelihood and the gravity model com-

plements the work of Dingel and Tintelnot (2020) on how to combine spatial quantitative models

and sparse data on alternatives. Within my migration context, the system to solve is a collection of

labor-movement equations, where the total labor at a destination is the sum of the probability of

migrating to the destination—which is a function of the fixed effects—times the number of workers

at origin locations. Thus, the fixed effects are estimated with the number of workers at every origin

and destination in a given time and not the labor flows which are oftentimes unobserved. Fortu-

nately, trade economists have already tackled the problem of how to efficiently solve these type

of systems.11 Thus, my result adds to the set of ’computational tricks’ that allow for the feasible

estimation of quantitative spatial models.

Next, I identify the home bias parameters using the information contained in the difference

between the average wage of workers living outside their birthplace and the average wage of those

returning to home. The idea is that the worker who returns home would accept a wage penalty,

everything else equal. Similar to Artuç et al. (2010), I use the information from next period wages

to control for the option value of future employment opportunities at each location which are

embedded in the workers’ continuation values. Similarly to the migration costs, I assume the home

bias is symmetric across locations and birthplaces to non-parametrically identify them from the

data.

I identify the remaining parameters, the distributions of productivities and amenities, following

the standard approach in the quantitative spatial economics literature; see Redding and Rossi-

Hansberg (2017). I identify the distribution of productivities by inverting the static part of the

model such that the recovered distribution is consistent with the equilibrium and the observed

wages. The amenities are recovered as a residual that explains the remaining variation in labor

flows.

In Section 1.6 I compute counter-factuals to assess the welfare impact of birthplace preferences

using the steady-state continuous-population version of the model.

As my main result, I compute the different birthplace premia and decompose welfare inequality

where I distinguish between aggregate dispersion at the birthplace/location level and idiosyncratic

dispersion, stemming from the individual-specific productivity shocks and geographic sorting. I

find that individual heterogeneity and sorting explain 53% of the variance of individual welfare lev-

els. Variance of between-birthplace average welfare explains 43% of the variance. The importance of

home bias in determining where workers end up living—along with heterogeneity in attractiveness

of locations—means that birthplace is a big determinant of expected lifetime utility.

10The term ’source-country effects’ is borrowed from Eaton and Kortum (2002). In a gravity-type equation, let Xi,j be the share of

expenditure a country i spends in goods from country j. If Xi,j = f (F j) is a function of some fixed effect F j specific of the source country

j, then all of these fixed-effects {F j} are the ’source-country effects’.
11In particular, I borrow the algorithm proposed by Pérez-Cervantes (2014) which is well suited for a very large number of fixed effects

and very easy to implement. Ahlfeldt, Redding, Sturm, and Wolf (2015) propose an alternative algorithm in the web appendix of their

paper.
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The main result shows that geography shapes long-run welfare inequality through birthplace.

The reason is that home bias changes workers’ location patterns in the long-run by making them

gravitate around their home location. Thus, large differences across locations imply large welfare

differences across workers with different birthplaces.12 In contrast, without home bias, workers

can arbitrage away the differences across locations, especially in the long-run. This makes initial

geographic differences less important in shaping inequality.

Next, I compare the magnitudes of migration costs and home bias. To make migration costs,

which are paid once, comparable to home bias, which corresponds to a flow utility costs, I rely on

a compensating variation argument. I compute how much more consumption a migrant worker

needs to have the same utility as a non-migrant worker. Similarly, I compute the compensating

variation in consumption for a worker who lives outside her birthplace to have the same lifetime

utility as a worker who lives in her birthplace. I find that the compensation for a migrant is 55.6

percent, while the compensation for a worker who lives outside her birthplace is 18.6 percent.

I then compare the effects of removing migration costs or home bias on output. Removing the

home bias increases output by 11%, while removing migration costs raises output by more than

30%. In both cases, productivity gains are the result of better sorting of workers by idiosyncratic

productivities, while gains from reallocation to more productive areas are minor and can even be

negative.

In addition, I compare my model to one without home bias. I find that, while the estimated

average migration cost is 10% larger, the average migration elasticity is 8% larger in the model

without home bias, overstating the mobility response of agents. This in turn underestimates the

average pass-through of productivity to real wages by 50% in the model without home bias, as the

in-migration flow is larger which increases the price of housing.

In a similar vein, the model without home bias changes the predictions when evaluating place-

based policies compared to my model with home bias. A common concern of such policies, is

that, while aiming at some spatial redistribution of income, it also distorts the location decisions of

workers of non-targeted locations. Thus, it can drive workers away from productive to unproduc-

tive locations, resulting in efficiency losses. However, if workers mobility is limited by their home

bias, the associated efficiency costs to a place-based policy is limited. I impose a labor subsidy to

each location, and compare the response on social welfare one-by-one in both models.13 I find that

the model without home bias has a misdiagnosis rate of 52%. This means that for more than half

of the cases, the model without home bias predicts that subsidizing a particular location has the

opposite effect on social welfare than a model with home bias.

All together, the different exercises teach us that home bias matters for the aggregate economy.

By hindering the mobility of workers, home bias makes the birthplace an important determinant

of overall welfare inequality. Neglecting its importance leads to over-stating the role of worker

mobility as a force for welfare equalization.
12Consider the extreme case where home bias is prohibitive, and all workers live in their respective birthplace. Then, if geography

would be the same, then there should be no dispersion of welfare across workers with different birthplaces.
13The social welfare would correspond to the sum of welfare across all agents in the economy, not just those that live in the subsidized

location.
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Literature This paper is related to several strands of the literature. First, it adds to the empirical

evidence of the presence of a home bias in migration decisions. For example, Kennan and Walker

(2011) find, for a sample of U.S. individuals, that half of the people who move return to their home

location; Bryan and Morten (2019) find, for the case of Indonesia, that the share of people that

migrate to a location from a particular birthplace is negatively correlated with distance; similarly,

Heise and Porzio (2019) using data from Germany for the years 2009-2014, find that people born in

East Germany are more attracted to live in East counties than individuals born in West Germany.

My paper contributes to this literature by documenting a home bias effect for France. The presence

of a strong home bias effect in France is not obvious a priori as: (i) it is a relatively small and

well connected country, at least compared to the U.S. and Indonesia; (ii) it has been historically

unified, in contrast to Germany; and (iii) it faces no linguistic or geographical barriers, which is

the case of Indonesia.14 Furthermore, the administrative data that I use allow for a clear separation

of birthplace versus origin of the labor flow. This allows me to disentangle the effect of home bias

versus the effect of proximity in driving the labor flows.

Second, the paper is related to the growing literature on the macroeconomic implications of

worker sorting.15 Akin to Bryan and Morten (2019), my paper bridges this literature on worker

selection with the literature on the aggregate implications of workers’ geographic mobility across

heterogeneous locations.16 Differently from them though, I combine selection and costly mobility

in a dynamic framework to disentangle migration costs from the home bias. I also allow for costly

trade across regions, where workers benefit from living close to a productive location. Without

costly trade, all locations benefit equally from a productive location regardless of proximity.

Third, my work is related to the fast-growing quantitative spatial economics literature. I con-

tribute to this literature by expanding the results of Dingel and Tintelnot (2020) on how to estimate

these models without neglecting the sparsity of the data. Normally, quantitative spatial models are

composed of agents making discrete choices from a large set of alternatives. It is usual for those

models to assume a continuum of agents such that choice probabilities and the share of individuals

taking that choice are (almost surely) equivalent. When the number of choices is large, say, the

number of products or commuting patterns, these models encounter a ’many-zeros’ problem, i.e.,

the observed data has many choices with no individuals taking them. This creates a disconnect

between theory and data that is either ignored, or is addressed by ex-ante ’smoothing’ the data,

like in Almagro and Domınguez-Iino (2020).

In contrast to the previous literature, Dingel and Tintelnot (2020), propose a model with a dis-

crete number of agents, which can rationalize the zeros in the data. They show that the estimation
14Indonesia is an archipelago that consists of 17,508 islands and there are more than 300 different native languages. Bahasa Indonesia

is the official language, which is the mother tongue for only 7% of the population.
15Lagakos and Waugh (2013) and Young (2013) focus on the role of selection on unobservable skills to explain the rural-urban wage gap.

Adão (2015) and Galle et al. (2017) present trade models where heterogeneous workers select across sectors. They use such frameworks to

quantify the impact of trade on inequality and welfare. Young (2014) quantifies to what extent the differences in measured productivity

between the manufacturing and service sector are due to worker selection. Hsieh et al. (2019), using a model of occupational choice due

to heterogeneous skills, study how discrimination of minorities affected aggregate productivity in the U.S.
16For example, see Redding (2016), Diamond (2016), Monte et al. (2018), Caliendo et al. (2019), Caliendo et al. (2020), Schmutz and

Sidibé (2019) and Monras (2020).
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of such a model by means of maximum likelihood, which consists on estimating a non-linear

model with a large number of fixed effects, is computationally feasible. They rely on a result from

Guimaraes et al. (2003), who show that there is an equivalence relation between the likelihood func-

tion of the conditional logit and the Poisson regression.17 Given the identification strategy I follow

in my paper, I cannot exploit this result. Instead I show that the maximization of the conditional

logit likelihood with one dimension of fixed effects is equivalent to solving the ’source-country

effects’ of a balance-trade condition in a gravity-type model.

The closest precedent to my paper are the works of Heise and Porzio (2019) and Zabek (2020).

In addition to documenting a home bias effect when comparing East and West German workers,

Heise and Porzio develop a general equilibrium job-ladder spatial model, where workers of het-

erogeneous productivity select across locations given their observed wage offers. They distinguish

between traditional migration costs and the home bias. They calibrate and solve the model for two

regions: East and West Germany. They find that spatial frictions are relatively small compared to

other labor market frictions that prevent the reallocation of labor across firms. This creates modest

output gains from removing migration costs.

Similar to Heise and Porzio (2019), I allow for a labor market friction that prevents workers

to change jobs even within locations.18 Different from them though, I show how to incorporate

home bias and selection in an otherwise standard quantitative migration model which is suitable

for the analysis of a geography consisting of a much larger number of locations.19 In contrast

to their results, I find that migration costs are actually important and removing them increases

output by more than 30%, which dwarfs their change in output of 0.46%.20 In both models, the

wage premium to induce a worker to migrate must account for direct migration costs as well as

changes in the option value of future employment opportunities. In my model changes in future

employment opportunities are small relative to migration costs, since the probability of changing

jobs is independent of one’s birthplace and current residence. In their estimates, future wage offers

depend on a worker’s current residence and origin, suggesting that changes in future job prospects

may constitute an important hidden cost of migration.

As in both this paper and in Heise and Porzio (2019), Zabek (2020) recognizes the importance

of home bias to generate persistent differences in welfare across locations. He presents a Rosen-

Roback model where workers of identical skills have stochastic preferences for staying at their home

location. The distribution of these home preferences are the same conditional on birthplace, but

in equilibrium, depressed places are going to endogenously retain workers who value their home
17Currently, there are several statistical packages that can handle the estimation of Poisson regressions involving a large number of

fixed effects.
18In my model, I let migration to be a persistent choice, by understanding a movement across locations as a job-change, and assuming

that an exogenous process determines with some probability if a worker has to change jobs between periods. Therefore, when a

worker makes a migration decision, it takes into account that, whatever job she takes, it might last for long. Hence, initial differences

in idiosyncratic productivities are magnified by the exogenous persistence of jobs, increasing the perceived variation of jobs across

locations. This effect reduces the labor supply elasticity to a location.
19Furthermore, the French data that I use register birthplace, in contrast to Heise and Porzio, who assign a worker’s home location to

be the first location registered in the data. Also my data consists of more than 10 million observations per year which allows for a more

disaggregated analysis of the home bias and migration costs.
20See Table 5 in Heise and Porzio (2019).
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highly. This will generate lower real wages and smaller migration elasticities as the average inhabi-

tant of a depressed place is more reluctant to leave. In contrast, in my model I don’t have stochastic

preferences but rather the home bias enters as a location-pair-specific utility cost. Nevertheless, it

still generates smaller migration elasticities in depressed areas, as the proportion of natives would

be endogenously larger in such places, making the average inhabitant also reluctant to go.21 An-

other distinction is that the U.S. data he uses does not allow him to observe the place of previous

residence, so he can’t distinguish between home bias and standard migration costs. Finally, in

his model, he allows for an endogenous evolution of the population birthplaces. This generates a

spatial equilibirium force that would lead to eventual convergence in welfare, however it would be

very persistence as it takes generations to change the home bias of workers. Given this very slow

process of convergence, I abstract from such endogenous formation of workers’ birthplaces in my

model and focus on the evolution within a single generation.

1.2 Data

Most of my analysis relies on the Déclaration Annuelle des Données, fichier Postes (DADS Postes) data

set for the years 2002-2010 and 2012-2017, which contains information about all non-agricultural

workers in private and semi-public establishments in France. I don’t include the year 2011 in my

sample because there is no information about the birth department of workers for that year.22

Appendix 1.E contains the details on the sample selection.

The unit of observation is a job, which is defined as a worker-establishment pair in a given year.

This means that there might be more than one observation per worker every year. An establishment

is a combination of firm/location. Therefore, by definition, a worker who moves across locations

and does not commute to work in her old establishment would appear as having a new job.

The data have information on the workers’ age, gender, wage, place of birth, residence and

work. Starting in 2002, there is an indicator of which observation per worker is the main job (Poste

Principal). A main-job is defined as the job with longest duration that a worker has in a given year.

To keep one yearly observation per worker, I only use these main-job observations in the analysis.

There is also information on the starting and ending dates of the job. While not being a panel, the

data include information on the previous year’s values for almost all of the variables. This allows

me to recover migration patterns for people with different birthplace. It also allows me to identify

which individuals changed jobs, even if they did not move. In Appendix 1.E.1 I explain in more

detail how to identify these job switchers in the data.

The most disaggregated level of information for place of birth is the département. I constrain the

analysis to continental France which excludes all the territories outside Europe, i.e. the Départe-

ments et Régions d’Outre-Mer (DROM), and the island of Corsica. In continental France there are

94 departements, which vary very much in size and connectivity among each other. For example,
21This composition mechanism is also present in Zabek’s model. However, in his paper, he chooses to emphasize the mechanism that,

conditional on being native, the preference to stay at the home location is on average higher for depressed places.
22For the interested reader, a similar dataset, DADS Poste Principal which is a sub-sample of DADS Postes does have the information

for the year 2011. I currently don’t have access to these data.

9



Figure 1 – Aggregation of départements. The locations that are aggregated are shaded in

blue, while the old departemental borders are shown within the shaded area. In total I

consider 73 locations for continental France.

there are 8 departements just in the super-dense region of Île-de-France, which has just about the

same surface as the departement of Gironde—where Bordeaux is located.23

To make the geographical unit of analysis comparable, instead of using directly the departe-

ments, I aggregate a few departements according to their commuting patterns. Given data on

departement of residence and of work for each worker, I can retrieve all the inter-departement

commuting flows. I group two departements if two conditions are satisfied: first, the number of

workers who commute from one departement to another is larger than 10% of the number of work-

ers from the origin departement; second, both departements belong to the same région before the

2015 territorial reform.24 After aggregating the different departements, I keep only the observations

of workers who live and work within that same location.

In total I end up with 73 locations for continental France. Figure 1 shows the different locations

I use in the analysis. The locations that are the union of different departements are shaded in

blue. Within aggregated locations, the departemental borders are visible with finer lines. Most

of the aggregated locations consist of two departements. The notable exceptions are the areas

surrounding the cities of Paris, Lyon and Toulouse, which are, respectively, the first, third and

fourth most populated cities of France.25 The departement that has Marseille, which ranks as

second in terms of populous cities, only aggregates with one neighboring departement.

My final sample consists of 202,521,533 job-worker observations distributed along 15 years and

the different 733 = 389, 017 origin-destination-birthplace combinations.

23The surface of Île-de-France is 12, 012.27 km2 while that of Gironde is 10, 000.14 km2.
24There are 21 old régions in continental France. These would be similar to a State in the United States. In 2015 there was a territorial

reform grouping some of these regions together. Currently there are 12 régions in continental France.
25The other exception would be the group formed by the Northeastern departements of Doubs, Haute Saône and Territoire de Belfort.

The latter is, outside Île-de-France, the smallest departement in whole France and includes the relatively large city of Belfort, whose

metropolitan area also includes a commune–Châllonvillars—that is in the departement of Haute Saône. Thus, the commuting flows

between the two are large.
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1.2.1 Basic terminology

Before describing the summary statistics let me introduce some terminology that I use in the rest

of the paper. I say that a worker is a native if she lives in the same location where she was born.

A migrant is a worker who just moved to a particular location in the current year, regardless of her

birthplace. If in the next year the migrant stays in her current location, then she would stop being

classified as a migrant. I call a birth cohort, or birthplace cohort, all the workers who were born

in the same location. A migration cohort corresponds to all the workers with the same birthplace

and with the same origin-destination locations in a given year. Thus, all those workers with the

same birthplace who stay in the same location from one year to the next would constitute as well a

migration cohort. Finally, I call a worker switcher if she changes jobs from one year to the next.

1.2.2 Summary Statistics

Table 1 presents worker and location level summary statistics for the final sample. The left panel

shows some statistics about the number of workers per year/location in the sample. I observe

over 13 million workers per year, but naturally the data at end of the sample—in 2017—are larger.

The average number of workers per location-year is more than 180,000. However, as there are

locations that are much larger—like Île-de-France or Lyon—the standard deviation is almost twice

as large as the average number of workers per location. As the number of locations and birthplaces

is the same, the average number of workers per birthplace-year is the same as the average for

location-year. However, there is less heterogeneity across birth cohorts size than that of locations

as the standard deviation is 5% smaller. This probably reflects the fact that some workers move

out of their birthplace and concentrate in the most populous locations. There is a surprisingly high

persistence in the relative number of workers of either locations or birth cohorts. The correlation

between the number of workers in each location or with a particular birthplace for the first and last

year of my sample—the years 2002 and 2017— is greater than 0.99.

The top-right panel in the table describes some details about different sub-groups of workers in

the sample. The average proportion of workers who change jobs between years—or switchers—is

13 percent. Using the entire sample or only the switchers, I find that a similar proportion of around

65 percent of workers live within their birthplace. Only an average of 0.5 percent of the total

sample migrates from year to year. When considering only switchers, the proportion of migrants

increases to almost 4 percent. This is not surprising as each job is, by definition, linked to a

location, so workers who migrate are necessarily switchers. Nonetheless, even for those workers

who are changing jobs the proportion that migrate is still low. I also find that women have a smaller

propensity to migrate, but not by much.

Regarding the age composition of the different groups in my sample, I find that, in general,

switchers are younger, as shown in the bottom-right panel of the table. This can reflect that older

workers find better, more stable jobs. In general, natives, non-natives and non-migrants have similar

average age either for the whole sample or just focusing on switchers. Migrants have a similar age

as those that don’t migrate but change jobs. Finally, I find that those who return to their birthplace

are on average older than those who leave it. This can indeed reflect that most workers start their
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Table 1 – Summary statistics

Value All Switchers

Number of workers Workers (%)

Per year 13,501,436 Switching jobs 13 –

Year 2002 11,052,111 Workers within birthplace 66 64

Year 2017 15,493,563 Workers Migrating 0.5 3.8

Women Migrating 0.4 3.1

Average per Location/Year 184,951.2

S.D. per Location/Year 339,745.6 Age (years) 40.58 35.04

S.D. per Birth Cohort/Year 325,787.1 Natives 40.07 34.06

Non-Natives 41.57 36.86

Correlations, 2002-2017 Non-Migrants 40.61 35.08

Workers per Location 0.996 Migrants – 34.25

Workers per Birthplace 0.998 Return Birthplace – 36.21

Leave Birthplace – 30.96

Note: The left panel shows summary statistics regarding the number of workers in the sample. Average number of workers

per location is the same as the average number of workers per birth cohort as the number of locations and birthplaces is

the same. The first correlation is between the population vector living in each location in the years 2002 and 2017. The

second correlation is the same but comparing size of birth cohorts. The right panel distinguishes, when possible, between the

whole sample and using just the subset of workers who switch jobs. The top-right panel has summary statistics about the

proportion of workers: (i) that change, or switch, jobs; (ii) that live within their birthplace; (iii) that migrate; and (iv) that are

women. The bottom-right panel shows average ages for different sub-groups of the sample.

work life in their birthplace, so their first migration move has to be out of their birthplace.

1.3 Empirical Evidence on Home Bias and Selection

Using the labor flows and average wages, I document four empirical facts about the French labor

market. These facts help to motivate the model I present in the next section.

Fact 1: Most workers live in their birthplace.

The average proportion of workers who live in their place of origin is 66%, as was already shown

in Table 1. This could reflect just that workers tend to start their work life in their home location

and later face strong migration costs. However, looking closer at the labor flows, systematic biases

can be found, as Fact 2 below shows.

Fact 2: Labor flows are biased towards birthplace.

To establish Fact 2, I first show that the share of workers who returns towards the birthplace is

larger, on average, than the share of workers migrating to any other location. Using workers with

the same birthplace, I compute the number of workers who migrated between any two locations

as a share of the total number of workers who migrated from the origin location. More formally, I
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Figure 2 – Distribution of conditional migration shares. These are defined as s̃
i,j
b,t =

L
i,j
t,b

∑k 6=i Li,k
t,b

, where L
i,j
t,b

is the number of workers who were born in location b and that moved from location i to j at year t. Both

plots distinguish between the migration shares that returned to the workers birthplace versus all the other

locations. The left panel plots the densities while the right panel plots the cumulative distribution function.

compute

s̃
i,j
b,t =

L
i,j
t,b

∑k 6=i Li,k
t,b

,

where L
i,j
t,b is the labor flow, i.e., the number of workers who were born in location b and that moved

from location i to j at year t.

Using these migration shares, I find that the share of migrants who return to their birthplace is,

on average, almost twice as large as the share of migrants who go to any other particular location.

For example, consider workers from Toulouse who live in Paris. Of those who are moving away

from Paris, the share that moves back to Toulouse is, on average, twice as large as the share that

goes to, say, Lyon.

The bias of migration shares towards workers birthplace becomes more evident if I look at the

distributions instead of just the averages. I compare the distribution of migration shares s̃i,b
t,b for

which b = j—where the destination is equal to the birthplace—with the distribution of all other

migration shares, for which b 6= j. Without home bias, a worker’s propensity to move to any other

location should be independent of their birthplace, hence the two distributions of migration shares

should look similar. The left panel of Figure 2 plots the densities of both distributions. The two

distributions are very different: the distribution of return migration has a larger mean, median

and mode, and is less skewed to the right. Moreover, as the right panel of Figure 2 shows, the

distribution of shares associated with workers returning to their birthplace first-order stochastically

dominates the distribution of migration shares going to alternative destinations.26

Although the share of workers who migrated back home is on average larger, this could just

reflect that the origin locations were close to their home to begin with. Thus, the distribution
26As both figures show, some of the migration shares are equal to one. This means that for a particular year, the group of workers with

the same birthplace that moved out of their current location all went to one particular destination. This is a reflection of the sparsity of

the data that arises from conditioning migration shares by birthplace.
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differences are only reflecting the effect of proximity, not home bias. To disentangle the effect of

proximity from home bias, I estimate a gravity-type model directly over the labor flows. I find that

labor flows are biased to the birthplace even if I control for traditional migration frictions, proxied

by distance between origin and destination locations. In particular, I run the following Poisson

regression

L
i,j
t,b = exp

(
Dt,j + Ot,i + 1j 6=b(α1 + β1 log(db,j)) + 1j 6=i(α2 + β2 log(di,j)) + ε

i,j
t,b

)
,

where L
i,j
t,b is defined as above, the labor flow of workers born in b that move from location i to j

at time t. The fixed effects Ot,i and Dt,j are, respectively, origin/year and destination/year specific

and should control for any differences between the origin and destination that are constant across

migration cohorts. This would include differences in size, amenities, cost of living, etc. The variable

di,j denotes the distance between locations i and j, while 1j 6=i is an indicator function.

The model is in levels—instead of logs—to accommodate all the zero labor flows observed in

the data. These zero flows are pervasive as the number of options per year is quite large and the

percentage of people migrating every year is low.27 If I were to estimate the model on log terms

using only positive flows, I would lose a lot of information, potentially biasing the results. Thus, I

estimate the previous model doing a Poisson regression.28

The first three columns of Table 2 show the results using different variables for distance.29 As

the table shows, there is a statistically significant negative relation between moving away from

one’s birthplace, as reflected by the estimated coefficient β1. Both distance elasticities, β1 and β2 are

estimated of similar magnitude. Although for some specifications the constant term α1, associated

to the dummy of living outside one’s birthplace is estimated positive, this is only a reflection of

the choice of unit of measurement for distance. The overall effect on the labor flows is always

negative.30

What happens if, instead of using directly the labor flows, I use the workers who move as a

share of the origin population, i.e., L
i,j
t,b/ ∑k Li,k

t,b? The last three columns of Table 2 show the results

of those regressions. With this specification, although the elasticity with respect to distance from

birthplace β1 is still negative, its magnitude is nowhere close to the elasticity of distance across

origin and destination β2. However, looking at the overall effect of living outside the birthplace, i.e.

considering α1, this is always negative and significant.31

The key takeaway from the gravity regressions is that, even after controlling for traditional mi-

gration frictions, the labor flows are negatively related to distance from the workers’ birthplace.

This result is robust to different specifications which are further explored in Appendix 1.H. I esti-

mate both models using département as locations instead of the aggregated regions I used here.
27Recall that the number of options per year is equal to 733 = 389, 017.
28See Silva and Tenreyro (2006) regarding the advantages of using the Poisson regression over OLS with log terms for the estimation

of gravity models.
29I use geodesic distance, driving distances and driving hours from Google Maps.
30In particular, the minimum value of log geodesic distance in kilometers in the sample is 3.82. The analogous for diving distance is

4.13. Thus, the maximum value of the total effect for a worker leaving her birthplace is always negative, i.e. i.e. maxb,j(α1 + β1 log(db,j)) <

0.
31The reason why the estimates between specifications differ so much is because using flows versus shares changes the relative weights

when solving for the score function of the Poisson likelihood. For more details, see Sotelo (2019).
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Table 2 – Gravity regression

Labor flows, L
i,j
t,b Migration shares, L

i,j
t,b/ ∑k Li,k

t,b

PPML PPML

(1) (2) (3) (4) (5) (6)

Geodesic (km) Driving (km) Driving (hours) Geodesic (km) Driving (km) Driving (hours)

1(j 6= b) 1.337∗∗∗ 1.947∗∗∗ −3.122∗∗∗ −0.112∗∗∗ −0.109∗∗∗ −0.127∗∗∗

(0.199) (0.218) (0.059) (0.003) (0.004) (0.004)

1(j 6= b) log(db,j) −1.105∗∗∗ −1.157∗∗∗ −1.267∗∗∗ −0.004∗∗∗ −0.004∗∗∗ −0.005∗∗∗

(0.037) (0.038) (0.040) (0.000) (0.000) (0.000)

1(j 6= n) 1.099∗∗∗ 1.859∗∗∗ −4.512∗∗∗ 0.403∗∗ 1.033∗∗∗ −6.578∗∗∗

(0.206) (0.204) (0.036) (0.130) (0.132) (0.025)

1(j 6= i) log(di,j) −1.908∗∗∗ −1.945∗∗∗ −2.242∗∗∗ −1.735∗∗∗ −1.752∗∗∗ −2.021∗∗∗

(0.045) (0.042) (0.049) (0.027) (0.026) (0.028)

Adj. Pseudo R2 0.964 0.965 0.948 0.789 0.789 0.789

Observations 5,835,255 5,835,255 5,835,255 5,835,255 5,835,255 5,835,255

Note: This table stores the results of two models, both estimated using Poisson Pseudo Maximum Likelihood (PPML). The first

model uses the labor flows of workers with birthplace b that moved from location i to location j, L
i,j
b,t as a dependent variable.

The second model uses the migration shares L
i,j
t,b/ ∑k Li,k

t,b. For each model I use three different distance measures: geodesic

distance in hundreds of kilometers, driving distance in hundreds of kilometers, and driving time between locations in hours. I

get driving distances and hours from Google Maps. Standard errors are in parenthesis. Significance levels: ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01

Fact 3: Workers select across locations via wages.

To establish Fact 3, I confront two different selection mechanisms across locations. Thus, I test

the predictions if workers move primarily because of pecuniary reasons or instead they move for

other reasons unrelated to income.

Consider a situation where there are costs of moving away from one’s birthplace, as the evidence

presented under Fact 2 suggests. Now, if selection is driven by differences in potential wages across

different locations, and leaving the birthplace is costly, then we should expect that workers who

move away from their birthplace to have, on average, higher wages than those workers who stayed

in their birth location. Therefore, this selection mechanism gives the following prediction

E [wage|No Native] > E [wage|Native] ,

meaning that the average wage of non-natives in a particular location should be larger than the

average wage of natives. In contrast, if selection is driven by other elements orthogonal to wages,

like, say, heterogeneous tastes for different locations, we should not observe a systematic difference

between the wages of natives and non-natives.32

Figure 3a shows a plot where the y-axis corresponds to the mean of (log) wages in a particular

location/period of natives after a normalization, whereas the x-axis does the same but for non-

natives.33 I include the 45 degree line to compare the relative magnitudes. Each of the blue circles

in the Figure correspond to a location/year and the diameter of each circle is a function of the

number of workers in such location. The graph shows that for almost all the locations/periods, the
32In reality, probably both mechanisms operate. However, using the prediction on average wages, I can see if the data rejects the

selection-on-wages mechanism.
33I subtract the average wage of the entire sample used to each observation. This leaves the relative magnitudes unchanged.

15



(a) Selection Non-Natives (b) Selection Migrants

Figure 3 – Selection via wages. The left panel compares the average (log) wages of non-native workers vs

native workers. Wages from both groups are normalized by the average (log) wage of all the sample. The plot

distinguishes two cases: when using the sample consisting of all workers and using the sample of workers

who switched jobs. The plot in the right panel is analogous to the plot on the right, but compares (log) wages

of migrants vs non-migrants.

average (log) wage of natives is lower than that of non-natives, consistent with the hypothesis that

idiosyncratic differences in wages are an important driver of workers’ migration decisions. Instead,

if idiosyncratic differences not related to wages are the only thing that matters for migration, I

would expect the points to gravitate around the 45 degree line.

I can restrict the sample to those workers who switched jobs from one year to the next. Using

that sample, the selection mechanism appears to be stronger when comparing the wages of natives

versus non-natives using all the workers. The orange circles in Figure 3a show this. Compared to

the whole sample, the difference in the wages of non-natives versus natives is larger when using

only the switchers. This is evident as the bulk of orange circles corresponding to job switchers are

further down and to the right than the blue circles where I used all the workers.

If there are costs of migrating across locations, the same logic as above should apply with respect

to wages of migrant versus non-migrant workers. The prediction would be that the average wage

of migrants is larger than the average wage of those workers who stayed in the same location.

The blue circles in Figure 3b shows the average wage of migrant versus non-migrant workers for

every location/period after a normalization. The figure suggests that selection is less strong for

year-to-year migration than when comparing natives vs non-natives, especially for large locations.

The closer alignment to the 45 degree line can just reflect that some workers who were migrants in

previous years and kept the same job are now classified as non-migrants. For example, if a worker

migrated in a previous year because of a highly paid job and kept her job in subsequent years,

she would appear as a non-migrant in the data, even though she clearly selected herself to that

location via wages. On the other hand, migrant workers are, by definition, taking new jobs. Thus,

a fair comparison would be to use those workers who changed jobs but stayed in the same location

versus the workers who migrate into that location in the same year.
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The selection mechanism via wages appears stronger when using workers who switched jobs

from one year to another. Indeed, Figure 3b shows that the selection via wages appears to be

stronger than when using all the workers. And not only is it stronger, the magnitude of the dif-

ference is very large: the horizontal distance between most of the circles and the 45 degree line is

around 1. As I am comparing averages of log wages, this means that the wages of migrants are

twice as large as those of non-migrants.34

The key takeaway for Fact 3 is that idiosyncratic differences in wages across locations are an

important driver of workers’ migration decisions. Also, that this selection mechanism appears

stronger when using workers who change jobs between years, and that non-natives and migrants

have higher average wages than natives and non-migrants, respectively.

Fact 4: Workers who Live in their Birthplace accept a Wage Penalty.

Facts 2 and 3 above show evidence of potential mobility frictions between a worker’s birthplace

and other locations, and that workers select into locations mainly via wages. Taken together, this

suggests that workers who change jobs and move away from their birthplace should experience

wage gains. In contrast, workers who change jobs but decide to stay in their birthplace or return to

it, are likely to suffer a wage penalty.

To shed some light on these wage gains and penalties related to working within the birthplace,

I estimate the following linear regression

∆ log w
i,j
ι;t,b = P

i,j
t + 1j=bβ In + 1i=b × 1j 6=bβOut + ε

i,j
ι;t,b,

where ∆ log w
i,j
ι;t,b is the year-to-year change in the log wage of worker ι who was born in b that

moves from location i to j in t; P i,j
t denotes an origin/destination pair fixed effect for year t that

should absorb any constant differences across the two locations, as well as the compensation the

worker needs for migrating; the dummy 1j=b indicates when a worker’s destination j is her birth-

place b; the interaction 1i=b × 1j 6=b indicates if a workers previous residence—or origin—i is the

same as her birthplace b and that the destination j is different than the birthplace. This interaction

captures all the workers who leave their birthplace in that period. The total gain from leaving the

birthplace would be the composite of both effects, one that is from moving out from the birthplace

plus not receiving the penalty of staying in the birthplace.

Table 3 shows the estimated wage gains of a worker who moves out of her birthplace and the

penalty she incurs for staying/returning to it. The specification in the second column includes

a quadratic polynomial in age and a gender dummy to account for possible differences in the

composition of those workers who move back—or from—their birthplace.

The estimated penalty that workers entail to live in their home is between 4 and 8 percent.

On the other hand, the expected wage gain a worker gets by moving away from her birthplace is

between 9 and 11 percent. These results do not mean that in order for a worker to be indifferent

between moving out of her birthplace, she needs to be compensated between 9 and 11 percent more
34In Appendix 1.H I make the same figures but using residual wages after running a regression for each year of log wages on a

quadratic polynomial in age and a gender dummy. This controls for the differences in gender and age compositions across groups.

Compared to the analysis using observed wages, the results are very similar and have the same implications. In particular, even after

controlling for age and gender, the average wages of migrants are twice as large as non-migrants who changed jobs.
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Table 3 – Birthplace penalty on wages

Dependent variable: ∆ log wt,ι

OLS

(1) (2)

Destination = Birthplace −0.042∗∗∗ −0.079∗∗∗

(0.000) (0.000)

Leaving Birthplace 0.072∗∗∗ 0.008∗∗∗

(0.002) (0.002)

Origin/Dest./Year FE X X

Age and Gender Controls X

R2 0.019 0.042

Observations 26,221,763 26,221,763

Note: The table shows the results of two linear regressions estimated using

Ordinary Least Squares (OLS). The dependent variable is the time difference of

the logarithm of the wage of an individual who switch jobs across years. Column

2 adds as controls a quadratic polynomial in age and a gender dummy. Standard

errors in parenthesis. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

than her outside option. For this to be true, the outside option of the worker should be the wage

she received in the previous period. However, the true outside option is not observed in the data

as it will be the second best offer that a worker gets from a different location.

Taken together, Facts 1 to 4 suggest that workers prefer to live close to their home. This motivates

the migration model I present in the next section, which I use to estimate this home bias. I then use

the model to study the general equilibrium effects of the home bias in the aggregate economy and

on the welfare distribution across birthplace cohorts.

1.4 A Migration Model with Home Bias

In this section, I first present a dynamic migration model with a finite number of workers. This

assumption—which is not common in most macro-migration models—allows for a more transpar-

ent identification strategy later on. After this, I present the more standard steady-state continuous-

population version of the discrete model, which I use later on to analyze the general equilibrium

effects of the home bias.

My model is based on Caliendo et al. (2019) in that it combines a dynamic discrete choice

problem for workers’ migration decisions with a static trade equilibrium model determining output

at each location. I add these new elements to their model: (i) I include home bias in workers’

preferences; (ii) differences in idiosyncratic wages drive the migration decision of workers; and (iii)

an exogenous process determines if a worker changes jobs, and therefore, whether she may migrate

or not. As I show below, differences (ii) and (iii) combined have implications with respect to the

labor supply elasticity.

I consider a discrete-time, infinite-horizon economy that consists of I locations, indexed by i, j

and k. Each worker has a specific birthplace, indexed b. I assume there is a large, but discrete,

number of workers who were born in location b, which is denoted by Lb, and I assume that it is

18



constant across time.

Workers get utility from consuming a final good, assembled locally from a housing and non-

housing good. Housing is in fixed supply. The non-housing good is assembled locally by a firm

that uses tradable inputs, which are produced by intermediate firms from different locations.

In each location there are a finite number of fixed intermediate good firms produce a continu-

ous mass of varieties, each of these produced according to a Cobb-Douglas technology that uses

efficiency units of labor and housing as inputs. I assume that each firm-variety has different pro-

ductivities and, following Eaton and Kortum (2002), I assume these are distributed Fréchet with a

dispersion parameter equal to ϕ.35 These firms trade across regions, subject to some iceberg costs,

and non-housing good producers use the intermediate inputs to assemble the non-housing local

good which is in turn used as an input by the final good producer.36 The joint demand for housing

by workers and firms generates a congestion force in the model: if a location attracts workers, this

raises the price of housing and lowers the real wage.

Workers are forward-looking and have rational expectations. In every period, two things can

happen: with some probability the worker keeps the same job and moves to the following period,

or it becomes a job switcher, in which case the worker has to look for another job. If this is the case,

then at the end of each period, workers observe a vector of location-specific idiosyncratic labor-

augmenting productivity shocks for the next period. Given this information, workers optimally

decide where to move in the following period subject to some migration costs. In addition to the

migration costs, workers also pay a cost, in utility terms, from moving away from their birthplace.

Admittedly, the exogenous process that determines whether a worker has an opportunity to

change jobs, and therefore migrate, is very simplistic. It can reflect several aspects of the labor

market: separation rates and job finding rates, as well as on-the-job search. Regardless of how

we interpret this exogenous process, it mainly captures that most workers do not take a migration

decision in every period, and indeed just keep the same job.

Appendix 1.A contains the detailed derivations of the expressions in this section.

1.4.1 Workers

In period t, there is a discrete number Li
t,b of workers with birthplace b that live in each location

i ∈ I . Each worker ι supplies her efficiency units of labor, exp(θi
t−1,ι) inelastically and receives a

competitive efficiency wage wi
t.

The worker uses her labor income to purchase and consume a local final good Ci
t,ι whose price

is Pi
t . Formally, the worker’s budget constraint is

Pi
t Ci

t,ι = wi
t exp(θi

t−1,ι).

The final good is a composite of housing Hi
t and non-housing good Qi

t which is assembled locally

35This assumption on the discrete number of firms allows me to accommodate a discrete number of workers and to keep the tractability

that comes from assuming a Fréchet productivity distribution over a continuum of goods.
36The input output relation is as follows: Intermediate good→ non-housing good→ final good.
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from tradable intermediates. These two goods are aggregated with a Cobb-Douglas technology

Ci
t =

(
Qi

t

)1−α (
Hi
)α

.

Denote the housing and non-housing good prices as Pi
H,t and Pi

Q,t. Then, the price index for the

final good Ci
t is

Pi
t =

(
Pi

Q,t

1− α

)1−α(
Pi

H,t

α

)α

.

The flow utility that a worker ι, with birthplace b receives for living in location i at period t is

Bi + log
(

Ci
t,ι

)
− κi

b,

where Bi is a location specific amenity; κi
b ≥ 0 is the utility cost of living away from one’s birthplace,

which I call the home bias: the larger κi
b is, the larger the preference of workers with birthplace b to

stay home vis-a-vis location i. The home bias is common for all workers with birthplace b that live

in location i.

At the beginning of each period, workers produce in their current location. Each of them then

receives an independent shock that determines their immediate working situation: with probability

ρ they stay in the same job and keep their same location-specific efficiency unit, and with probability

1− ρ they have to change jobs. If a worker has to change jobs, then she observes a vector of location

specific idiosyncratic efficiency unit shocks Θt,ι ≡ {θk
t,ι}k∈I . After observing the shocks, the worker

optimally decides where to move, subject to some migration costs τi,k
t ≥ 0 measured in utility

terms.

Workers discount the future at rate β. Given the assumptions on workers’ behavior, I can write

the lifetime utility of a worker with birthplace b living at location j recursively as:

vi
t,b(θ

i
t−1,ι, Θt,ι) =Bi + log (Ct,ι)− κi

b + βρEt

(
vi

t+1,b(θ
i
t−1,ι, Θt+1,ι)

)
+ (1.1)

β(1− ρ)max
k

[
Et

(
vk

t+1,b(θ
k
t,ι, Θt+1,ι)

)
− τi,k

]
. (1.2)

The sources of uncertainty in the model can be grouped in two: first, there is idiosyncratic

uncertainty, i.e. the future realizations of the location specific efficiency unit shocks. Second, there

is aggregate uncertainty. The sources of aggregate uncertainty can, in turn, be also grouped in

two. First, location productivities might change from period to period given a known distribution.

Second, given the discrete number of workers, labor supply at each location is stochastic. This last

aspect differs from several macro-migration models with a continuum of agents. In such cases, this

particular source of uncertainty would not be present. I summarize all the sources of aggregate

uncertainty in a variable Zt, which evolves according to the conditional distribution F(Zt+1|Zt).

Keep in mind though that in the steady-state continuous-population version of the model Zt = Z,

so the further characterization of its evolution is not necessary when solving that version of the

model. I only include it to make clear that the identification strategy later on will not depend on

the dynamics of Zt.

I assume that the idiosyncratic efficiency shocks are distributed Gumbel with zero mean and

variance equal to π2

6 δ2. This assumption, ubiquitous in the discrete choice literature, allows for
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a simple computation of the expectation of the maximum lifetime utility for next period. Let

Vi
t,b ≡ EΘt

(
vi

t,b(·)−
θi

t−1,ι
1−βρ

∣∣∣∣ Zt

)
be the expected lifetime utility net of current discounted efficiency

shocks θi
t−1,ι/(1− βρ), conditional on the aggregate shock vector Zt. Then, given the assumption

on the distribution of the idiosyncratic shocks, and substituting the budget constraint, I obtain

Vi
t,b = Bi + log

(
wi

t

Pi
t

)
− κi

b + βρV
i
t+1,b + β(1− ρ)EΘt

(
max

k

[
V

k
t+1,b − τi,k +

θk
t,ι

1− βρ

])
. (1.3)

where V
k
t+1,b =

∫
Vk

b (Zt+1)dF(Zt+1|Zt) is the expected lifetime utility of moving to location k at

period t + 1. The scaled-up shock
θk

t,ι
1−βρ is distributed Gumbel with mean zero but variance π2

6 λ2,

where λ = δ/(1− βρ). Using the properties of the Gumbel distribution I can rewrite equation (1.3)

as

Vi
t,b = Bi + log

(
wi

t

Pi
t

)
− κi

b + βρV
i
t+1,b + β(1− ρ)λ log

(
∑
k

exp
(

V
k
t+1,b − τi,k

)1/λ
)

. (1.4)

The assumption on the distribution of the efficiency shocks allows me to compute a closed formed

expression for the conditional migration probabilities. Conditional on changing jobs, the probability

of a worker with birthplace b to move from location i to j, denoted p
i,j
t,b, is equal to

p
i,j
t,b =

exp(V
j
t+1,b − τi,j)

1
λ

∑k∈N exp(V
k
t+1,b − τi,k)

1
λ

. (1.5)

The parameter λ ≡ δ/(1− βρ), which appears in expressions (1.4) and (1.5), represents the disper-

sion of the efficiency shocks after taking into account the probability of getting the same efficiency

unit in the next period with probability ρ. Given the expression for the conditional probability of

migrating (1.5), I interpret λ as the inverse labor supply elasticity. If the dispersion of shocks is

smaller, jobs across locations are more alike, i.e. easier to substitute, which turns the labor supply

more elastic.

When there is no persistence in the model, i.e. ρ = 0, the inverse supply elasticity is just

the dispersion of the original efficiency shocks δ < λ. But then, why is the persistence in the

model making the labor supply more inelastic? When a worker is comparing different jobs across

locations, she understands that with probability ρ she will keep the same job in the following

period. Therefore, initial differences in efficiency units are magnified and their perceived variance

increases. So the worker behaves as if the shocks she observes are distributed Gumbel with scale

parameter λ > δ. While other papers have considered exogenous persistence in the decision of

workers, whether to migrate or change sector of employment, to the best of my knowledge, I am

the first to link it to the (extensive margin) labor supply elasticity.37 This is a consequence of workers

selecting across locations via different job opportunities, as reflected in their efficiency shocks θ j.

As there is a discrete number of workers in each location, the movement of labor from one

location to another is a stochastic process governed by the above migration probabilities. Denote
37See section 5.3.2 in Caliendo et al. (2019) for an extension of their model where they add exogenous persistence in the migration

decision. Also, Appendix 3 in the Online Appendix of Artuç et al. (2010) adds an extension to their sectoral choice model where some

type of workers can’t change sectors while others can. However, every worker has a probability to change type, so it is similar to a model

with only exogenous persistence.
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ℓ
i,j
t,b as the number of workers who migrate from i to j with birthplace b at the end of period t. Then,

the distribution of labor in any location is equal to

L
j
t+1,b = ∑

i∈I
ℓ

i,j
t,b.

To conclude the characterization of the dynamic sub-problem of the model, I show how the

efficiency units per location evolve. The assumption on the distribution of the idiosyncratic shocks

allows me to characterize analytically the expected amount of (idiosyncratic) efficiency units of a

worker who, conditional on changing jobs, moved from location i to j. This is equal to

Eι(exp(θt,ι)|i→ j) =
Γ(1− δ)

exp(γδ)
(p

i,j
t,b)
−δ, (1.6)

where Γ(·) denotes the Gamma function and γ is the Euler-Mascheroni constant. The previous

expression is intuitive: given the selection of individuals across locations, all infra-marginal work-

ers have higher efficiency units than the marginal worker. Then, the more workers move into a

particular location, the lower the average efficiency unit of that particular migration cohort.

Denote h
i,j
t,b as the total amount of efficiency units of workers who have the opportunity to

migrate and move from location i to j. Using (1.6), then

h
i,j
t+1,b =

Γ(1− δ)

exp(γδ)
(p

i,j
t,b)
−δ

ℓ
i,j
t,b + χ

i,j
t+1,b,

where χ
i,j
t+1,b is a zero mean expectation shock that captures deviations between the expected and

realized efficiency units. Thus, the total amount of efficiency units per migration cohort is also a

random variable as the labor flow L
i,j
t+1,b and the expectation shock χ

i,j
t+1,b are stochastic variables.

Define the sum of total efficiency units of workers who did not switch jobs from one period

to the next as Ñ
j
t,b. Then, the evolution of the total amount of efficiency units of workers from

birthplace b that live in location j is equal to

N
j
t,b = Ñ

j
t,b + ∑

i∈I
h

i,j
t,b.

Finally, the total amount of efficiency units in location n is the sum of efficiency units across the

different birth cohorts

N
j
t = ∑

b

N
j
t,b.

The previous equations characterize the evolution of the total efficiency units supplied to each

location j at every period t. Conditional on these allocations, I can now specify the static sub-

problem of the model, and solve for the equilibrium efficiency wages at each time t such that labor

markets clear in each location.

1.4.2 Production

The production side of the model is very similar to the one presented in the one-sector model of

Caliendo et al. (2019) with the difference that the labor input is efficiency units. Another difference

22



is that I assume balanced trade. This is because I lack data on trade flows across locations within

France.38

In each location j I assume that there is a finite number of perfectly competitive intermediate

firms each producing a continuum of varieties of intermediate goods. In order to produce a vari-

ety, the intermediate good firms use as inputs the total amount of efficiency units h̃ and housing

H̃.39 The total factor productivity is composed of two terms: a time-varying location specific com-

ponent A
j
t, which is common for all varieties produced within the same location, and a variety

specific component zj, which is specific to variety z. This idiosyncratic productivity zj is distributed

Fréchet(1, ϕ). Formally, the output of an intermediate producer with efficiency zj for a given variety

z is:

q
j
t

(
zj
)
= zj A

j
t

(
H̃ j
)η (

h̃
j
t

)1−η
,

Intermediate firms pay the efficiency wage w
j
t for each effective unit of labor. The price of housing

is P
j
H . Therefore, the unit price of an input bundle for the firm is

xj =

(
wj

1− η

)1−η
(

P
j
H

η

)η

.

Cost minimization implies that the unit cost of an intermediate good zj at time t is

x
j
t

zj A
j
t

.

Trade costs are represented by ψj,i. These are ’iceberg costs’, meaning that, for one unit of any

variety shipped from region i to j, it requires producing ψj,i ≥ 1 units in location i. I assume

that these costs are constant across periods. Competition in turn implies that the price paid for a

particular variety z in location j is

min
i∈N

ψj,ixi
t

zi Ai
t

.

Local manufacturing goods in location j are produced by aggregating intermediate inputs from

all the different locations in N . Let Q
j
t be the quantity produced of local manufacturing goods in j

and q̃
j
t(z

j) the quantity demanded of an intermediate good of a given variety from the lowest-cost

supplier. The production of local manufacturing goods is given by

Q
j
t =

(∫ (
q̃

j
t(z

j)
) σ−1

σ
dξ(z)

) σ
σ−1

,

where ξ(z) = exp
(
−∑i∈N

(
zi
)−ϕ

)
is the joint distribution over the vector z = (z1, z2, ..., zI). Using

the properties of the Fréchet distribution, the price of the consumption good at location j is

P
j
T,t = Γ


∑

i∈I

(
xi

tψ
j,i

Ai
t

)−ϕ


−1/ϕ

,

38This flows would have allowed me to compute the trade deficits for each location.
39I assume that the firm can split the efficiency units of a worker across the production of any variety
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where Γ is just a constant term equal to (Γ (1 + (1− σ)/ϕ))1/(1−σ) and, as it is standard, I assume

that 1 + ϕ > σ.

The share of total expenditure in location j on goods from i is

π
j,i
t =

(
xi

tψ
j,i/Ai

)−ϕ

∑k∈N
(
xk

t ψj,k/Ak
)−ϕ .

Housing, as mentioned before is supplied inelastically, and is rented by both workers and in-

termediate firms in a perfect competition environment. I assume that owners of the housing stock

consume just the local non-housing good Q
j
t.

1.4.3 Market clearing

In equilibrium, the sum of efficiency units and housing across all firms must be equal to the total

supply in each location.

Let P
j
T,tE

j
t be the total expenditure in location j on non-housing goods. Also, let P

j
T,tY

j
t be the

total income of intermediate firms in location j. Then, non-housing goods market clearing implies

P
j
T,tY

j
t = ∑

i∈I
π

i,j
t Pi

T,tE
i
t.

The labor market clearing condition implies

w
j
tN

j
t = (1− η)P

j
T,tY

j
t .

while the market clearing condition for housing is

P
j
H,tH

j = αw
j
tN

j
t + ηP

j
T,tY

j
t =

η + α(1− η)

(1− η)
w

j
tN

j
t .

Finally, I assume trade is balanced, meaning

P
j
T,tY

j
t = P

j
T,tE

j
t = (1− α)w

j
tN

j
t︸ ︷︷ ︸

Final demand workers

+ αw
j
tN

j
t + ηY j

︸ ︷︷ ︸
Final demand Housing owners

=
1

1− η
w

j
tN

j
t .

Substituting into the non-housing goods market clearing condition

w
j
tN

j
t = ∑

i∈I
π

i,j
t wi

tN
i
t .

1.4.4 Static equilibrium under symmetric costs

Let W
j
t = w

j
t/P

j
T,t be the the efficiency wage deflated by the price of the local non-housing good in

each location. Also, define Ãj = Aj
(

H j
)η

as a composite of both productivity and housing supply

in location j. Then, if the trade costs are symmetric, i.e. ψi,j = ψj,i, the static equilibrium conditions

can be collapsed into a single equation per location

(
Wi
)ϕ̃ϕ(1+ϕ) (

Ni
)(1+ηϕ)(1−ϕ̃(1+ϕ))

= ∑
j

(
ψj,i
)−ϕ (

Ãi
)ϕ
(

Ãj

Ãi

)ϕϕ̃(1+ϕ) (
W j
)ϕ(ϕ̃(1+ϕ)−1) (

N j
)1−ϕ̃(1+ϕ)

,

where ϕ̃ = 1/(1 + 2ϕ). Appendix 1.A.3 contains the detailed derivations to get the expression

above.
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1.4.5 Steady-State continuous-population case

The model presented above with a finite number of workers per birthplace will guide the identi-

fication strategy in the next section. Solving such a model, however, is extremely challenging. To

solve for the model, I consider a version of it where the economy fundamentals do not change and

each birthplace cohort consists of a mass Lb of workers. These two assumptions render the model

deterministic, in particular Vi
t,b = V

i
t,b, while also putting the economy’s aggregate variables on a

steady state. Let

Ui
b = exp

(
Vi

b

)
, Ωi

b =

(
∑
k

exp
(

Vk
b − τi,k

)1/λ
)λ

, Bi = exp
(

Bi
)1/δ (

H j
)α/δ

,

Ti,j = exp(τi,j)−1/λ, and K
j
b = exp(κ j

b)
−1/δ.

I can now summarize the steady-state continuous-population model. The static part of the

equilibrium remains identical, which relates total efficiency units per location {Ni} and deflated

wages {Wi}

(
Wi
)ϕ̃ϕ(1+ϕ) (

Ni
)(1+ηϕ)(1−ϕ̃(1+ϕ))

= ∑
k

ψ̃k,i
(

Ãi
)ϕ
(

Ãk

Ãi

)ϕϕ̃(1+ϕ) (
Wk
)ϕ(ϕ̃(1+ϕ)−1) (

Nk
)1−ϕ̃(1+ϕ)

.

(1.7)

The total efficiency units in a location

Ni = ∑
b

Ni
b. (1.8)

The rest of the equations characterize the total efficiency units in a location i per birthplace cohort

b. The lifetime utility for a worker who was born in b and lives in location i is

(
Ui

b

)1/λ
= Bi

(
Wi
) 1−α

δ
(

Ni
)−α/δ

Ki
b

(
Ωi

b

) β(1−ρ)
δ . (1.9)

The option value of living in location i is equal to
(

Ωi
b

)1/λ
= ∑

k

Ti,k
(

Uk
b

)1/λ
. (1.10)

The evolution of the distribution of labor Li
b is characterized by

Li
b

(
Ui

b

)−1/λ
= ∑

k

Ti,k
(

Ωk
b

)−1/λ
Lk

b. (1.11)

The previous equation is scale invariant in {Li
b}. The sum of total number of workers of a particular

birthplace cohorts pins down the relative scale. Thus,

Lb = ∑
k

Lk
b. (1.12)

Finally, the total amount of efficiency units Ni
b is characterized as follows

Ni
b

(
Ui

b

) δ−1
λ

= ∑
k

(
Ti,k
)1−δ (

Ωk
b

) δ−1
λ

Lk
b. (1.13)

Appendix 1.A.5 provides a detailed derivation of these expressions.
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Table 4 – Parameter values

Parameter Description Value Source

β Discount factor 0.96 –

α Share of housing consumption 0.3 Friggit (2013)

ϕ Dispersion productivities 4.14 Simonovska and Waugh (2014)

η Output elasticity 0.1 Gutierrez (2017)
(
ψi,j)−ϕ

Trade Costs — Combes, Lafourcade, and Mayer (2005)

ρ Prob of keeping job 0.867 (s.e. 2.4e−5) 1 - Proportion of Switchers

Definition 1 (Steady-State continuous-population competitive equilibrium). Given a distribution of

birthplace cohorts {Lb}b∈I , the competitive equilibrium for the steady-state continuous-population econ-

omy is a vector of deflated wages, {Wi}i inI , total efficiency units per location {Ni}i inI , lifetime utilities

{Ui
b}b,i∈I , option values {Ωi

b}b,i∈I , labor flows {Li
b}b,i∈I and efficiency units per birthplace cohort/location

{Ni
b}b,i∈I , such that equations (1.7)-(1.13) are satisfied for all i, b ∈ I .

1.5 Identification and Estimation

The model presented in the previous section, entails a large number of parameters, as well as

distributions of fundamentals, which need to be estimated or calibrated. In this section I explain

how to identify and estimate the key parameters and the distributions of fundamentals.

Given that the static part of the equilibrium is fairly standard, I calibrate externally the param-

eters governing that part of the model, the trade costs and the discount factor, β. I choose values

to match moments from other studies. For the discount factor β, I choose a value of 0.96 which

is standard in the literature for annual frequencies. The trade elasticity ϕ is set to 4.14 which is

the value proposed by Simonovska and Waugh (2014). The consumption elasticity with respect

to housing α is set to 0.3, which is in line with survey studies on workers expenditures in France

(Friggit (2013)). The output elasticity η is set to 0.1, in line with the profit share reported for France

by Gutierrez (2017).40 The internal trade costs,
(
ψi,j)−ϕ

are taken from Combes et al. (2005) who

use data on commodity flows to estimate trade costs at the département level. Given that some of

my locations are aggregates of different departements, I need to do some adjustments. I first com-

pute all the trade costs across departements and then compute a population weighted average of

these departemental trade costs to get the aggregate location trade cost. Regarding the persistence

parameter ρ, in the data I can identify which workers changed main jobs between years. Appendix

1.E.1 explains how I do this. I estimate ρ using the average across years of the proportion of work-

ers who stay in the same job between years. Table 4 summarizes the information of the parameters

mentioned so far.
40The profit share is defined as total value added of non-financial corporations minus payments to labor and capital. As I don’t have

capital in the model, and given the Cobb-Douglass and perfect competition assumptions, the profit share would correspond to η in my

model.
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I use the structure of the model to identify the remaining parameters: the dispersion parameter δ,

the mobility costs, {τi,j, κ
j
b}, and the distribution of composite productivities and amenities {Ãj,B j}.

I follow a sequential identification strategy which is inspired by Bryan and Morten (2019), Dingel

and Tintelnot (2020) and Artuç et al. (2010). The merit of any identification strategy is related to its

practical implementation. Thus, the steps in the identification sequence are not arbitrary, but are

chosen such that the estimation procedure that follows is computationally feasible.

The main identification steps are as follows. First, I show how to use observed labor flows

to identify the migration costs. I show how to relax the identification conditions provided by

Bryan and Morten (2019), which in turn relaxes the data requirements. As I show later on, this

will be important in the context of my application. Second, I show how to recover the dispersion

parameter δ from the effect of migration costs on migrants’ wages. Third, using the migration costs

and labor flows, I show how to identify the underlying distribution of migration probabilities by

means of maximum likelihood. I show that the maximization of such likelihood corresponds to

solving a system of equations characterizing the balanced trade condition present in most gravity

trade models. Trade economists have shown the existence and uniqueness of the solution of such

systems and provided fast and efficient algorithms to find it.41 Fourth, I show that efficiency wages

are identified using average wages and the estimated migration probabilities. Fifth, I use average

wage differentials across locations of the different migration cohorts to identify the home bias. The

idea is that the wage of a worker outside home should be larger, all else equal, than the wage at

home. I show how to control for all the other factors influencing the wage differential to isolate

the effect of the home bias. Sixth, as in the trade literature, I show how to invert the static part of

the model using observed wages to recover the underlying productivity distribution. Finally, as is

standard in the urban economics literature, I identify the amenities as a residual that explains the

remaining variation in labor flows.42

In what follows I explain with more detail each of the steps to identify the relevant parameters

of the model.

1.5.1 (Scaled) Migration Costs τi,j/λ

Given the logit structure of the migration probability, the conditional expectation of the labor flow

between preiod t and t + 1 ℓ
i,j
t,b can be rewritten as

Et(ℓ
i,j
t,b) = p

i,j
t,bLi

t,b = exp
(
Oi

t,b +D
j
t,b − τi,j/λ

)
, (1.14)

where D j
t,b = Vt+1,b/λ and Oi

t,b = − log
(

∑k exp(V
k
t+1,b − τi,k)1/λ

)
+ log Li

t,b. Then, conditioning

on origin, destination and the location pair fixed effects, the conditional expectation of the labor

flow is equal to the right hand side of (1.14). This moment condition is equivalent to the first order

condition of a Poisson regression (or Poisson Pseudo Maximum Likelihood).
41For the existence and uniqueness results, see for example Ahlfeldt et al. (2015) and Allen et al. (2020a). For the algorithm, see

Pérez-Cervantes (2014).
42For a discussion of the inversion of the model to recover fundamentals, as well as the identification of amenities as residuals, see

Redding and Rossi-Hansberg (2017).
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Identification of the migration costs by running a Poisson regression with fixed effects is not a

priori obvious. For example, suppose there is an origin destination i with flows going to several

destinations. Now, assume there is only one labor flow going to location j. Then, I could not

separately identify, the destination fixed effect D
j
t,b from the migration cost τi,j.43 In this section I

show sufficient conditions for the identification of the migration costs when running a regression

with fixed effects. First, I make the following assumption,

Assumption 1. The migration costs are symmetric τi,j = τ j,i for all i, j in I . Also, the cost of staying in

the same location is zero, i.e. τi,i = 0 for all i in I .

Now consider two locations, i and j. Then, for a particular birthplace cohort b at time t

p
i,j
t,b

pi,i
t,b

p
j,i
t,b

p
j,j
t,b

= exp
(
D j

t,b −Di
t,b − τi,j/λ

)
exp

(
Di

t,b −D
j
t,b − τi,j/λ

)
= exp(−2τi,j/λ). (1.15)

Notice that I have used both the normalization and symmetry assumption to form this expression.

The expression above means that if the data for a particular birthplace/year contains positive flows

of workers going from i to j, workers going in the reverse direction, j to i, and workers staying

within those two locations, then the (scaled) migration cost τi,j/λ is identified.

There is a simple intuition for why the product of these probability ratios identify the migration

cost. First, the ratio p
i,j
t,b/pi,i

t,b controls for origin specific differences. The remaining variation is

explained by the migration cost and differences in destination fixed effects. To control for the latter,

I can use the same ratio but for the reversed flow p
j,i
t,b/p

j,j
t,b. Indeed, the variation in the reversed

ratio accounts for the reversed difference of destination fixed effects and the migration cost. In the

end, the larger the gross migration flow is, the smaller the migration cost. These are the conditions

pointed out by Bryan and Morten (2019) which are summarized in the following proposition

Proposition 1. Bryan and Morten (2019). The (scaled) migration cost τi,j/λ < ∞ is identified if L
i,j
t,b >

0, L
j,i
t,b > 0 and Li,i

t,b > 0, L
j,j
t,b > 0, for some birth cohort b and period t.

Proof. It follows from (1.14) and (1.15).

These sufficient conditions for identification of the migration cost might be difficult to fulfill in

my context. For example, I would need to observe, for a particular year, someone born in Toulouse

migrating from Paris to Lyon, and someone born in Toulouse migrating from Lyon to Paris. In

addition, I would need to observe, for the same year, someone from Toulouse staying in both Paris

and Lyon. Maybe for this particular example, the data would easily fulfill the requirements for

above’s identification conditions, but these become increasingly hard to satisfy when comparing

scarcely populated locations. Only 69.3% of the bilateral connections satisfy the conditions of

Proposition 1. Thus, for 30.7% of the connections I would not be sure if I am actually identifying

the migration costs when running a Poisson regression.

My objective is to relax the restrictions imposed by Proposition 1 to find a larger number of

bilateral connections that are identified. In the rest of this subsection I provide an informal discus-
43This is an extreme example. However, finding other examples of data where I would fail to identify the migration costs are not hard

to come up.
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Figure 4 – Identification of Migration Costs in a Three Locations Example. The three locations are Toulouse

(T), Paris (P) and Lyon (L). The left and right panel plot the graph representation of data where each (solid)

edge represents some positive worker flow. The middle panel is an undirected graph where each (dashed)

edge represents that the migration cost between the locations are directly identified (see main text).

sion of how to relax the data requirements for the identification of the migration costs and leave for

Appendix 1.C.1 a more formal discussion of the details.

To keep things simple, suppose that there are only three locations in the data: Toulouse, Paris

and Lyon. Suppose that for a particular period t and birth cohort b, I observe positive flows

of migrants from Toulouse to Paris, and vice-versa, as well as workers who just stayed in each

location. There are no outflows of workers from Lyon. The graph representation of such data is

found in Figure 4a. From such data I can identify the (scaled) migration cost between Toulouse and

Paris τT,P/λ. Then I would say that the migration cost is directly identified from data for period t

and birth cohort b.

I can do the same graph representation for different periods and birth cohorts. Suppose that for

one of these periods and birth cohorts I can directly identify the migration cost from Paris to Lyon,

τP,L/λ. So using two different pairs of periods/birthplace I would have identified the migration

costs between Toulouse to Paris and Lyon to Paris. This is represented in the graph in Figure 4b,

where the edges as dashed lines represent that the migration costs between the connected locations

are directly identified.

Now suppose there is a third pair of period/birth cohort data, t′, b′. The following proposition

summarizes sufficient conditions for identification of the migration cost from Toulouse to Lyon for

the three location example, when the migration costs from Paris to Lyon and to Toulouse were

already identified.

Proposition 2. Three locations. Suppose that τP,L/λ and τP,T/λ are identified. Then, the (scaled)

migration cost from Toulouse to Lyon τT,L/λ < ∞ is identified from the labor flow data {Ln,m
t,b }n,m∈{T,P,L}

if, for some birth cohort b and period t

1. There is a positive flow from Toulouse to Lyon, or viceversa.

2. There is an undirected path of labor flows from Toulouse to Lyon via Paris.

3. In all three locations there is a flow that stays.

Proof. See Appendix 1.C.1
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An example of period/birth cohort data fulfilling the identification conditions of Proposition 2,

but not of Proposition 1, is represented in Figure 4c. The Figure also includes the dashed edges

which represent the previously identified migration costs with data for other periods/birth cohorts.

Differently from Figure 4a, there is only one flow going from Toulouse to Lyon, so the direct

identification argument—the one from Proposition 1—is no longer valid to identify the migration

cost between these two locations. The issue is that after normalizing the flow from Toulouse to

Lyon by the flow that remains in Toulouse, the resulting expression

pT,L
t′,b′

pT,T
t′,b′

= exp
(
DL

t′,b′ −DT
t′,b′ − τT,L/λ

)

still contains the aggregate destination differences between the two locations. However, as Propo-

sition 2 tells us that the data should be sufficient to identify the migration cost between Toulouse

and Lyon. To see this, note that the destination dependent differences can be controlled by pivot-

ing via Paris: use the difference between the probability of going to Toulouse from Paris and the

probability of going to Lyon from Paris. Then, the remaining variation is

pT,L
t′,b′

pT,T
t′,b′

pP,T
t′,b′

pP,L
t′,b′

= exp(−τT,L/λ− τP,T/λ + τP,L/λ). (1.16)

The ratio of labor flows going from Paris to Toulouse and to Lyon has information in the relative

attractiveness of Toulouse versus Lyon, as well as the relative differences in migration costs. As

both the migration costs of going from Paris to Toulouse and Lyon were already identified using

data for other period/birth cohorts, then the migration cost between Toulouse and Lyon is also

identified.

The example above is just one particular situation where the data fulfills the conditions of Propo-

sition 2. However, note that in this example I identify the migration cost from Toulouse to Lyon

under weaker conditions than those stated in Proposition 2, in particular the third condition: in

equation (1.16) I did not use the labor flows that stayed in Lyon and in Paris. Similar case-by-case

scenarios can be analyzed, but this becomes exponentially harder when the number of locations

grows.44 Therefore, for my context, I need identification conditions that are simple and easy to

verify. Proposition 7 in Appendix 1.C.1 generalizes Proposition 2 and gives sufficient conditions for

identification of a migration cost beyond the three location example.

As with Proposition 2, the more general Proposition 7 uses as a starting point some previously

identified connections. It does not say how these have to be identified, though. Therefore, the

identification argument is recursive: I can start with the directly identified migration costs and

check which extra connections are identified. Then, I can use these new set of identified migration

costs to find new ones, and so on. This recursive algorithm is explained with more detail in

Appendix 1.C.1.

Although I can relax the data requirements for identification of the migration costs, the non-

linear procedure that I use to estimate them might introduce some small-sample bias. I correct for
44Strictly speaking, the conditions are not weaker. I don’t have to fulfill all the restrictions stated by the third condition of Proposition 3

because of the out-flows from Paris. This imposes a restriction in the direction of flows. However, the second condition of the Proposition

says nothing about the direction of flows.
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the bias by applying the split/panel jackknife estimation proposed by Dhaene and Jochmans (2015).

The main idea is to split the panel in two and estimate for each half the migration costs. Then

τ̂
i,j
BC

λ
= 2

τ̂i,j

λ
− 1

2

(
τ̂

i,j
1
λ

+
τ̂

i,j
2
λ

)
,

is a bias-corrected estimate of the migration cost, where τ̂i,j

λ correspond to the estimate with the

whole sample, and τ̂
i,j
1
λ and τ̂

i,j
2
λ correspond to the estimates for each half of the panel.45

Relaxing the data requirements for identification is even more important when doing the split-

jacknife bias correction: compared to using the whole sample—where 69.3% of the connections

satisfy the identification conditions of Proposition 1—only 47.9% satisfy the conditions for both

sub-samples. In contrast, the connections satisfying the weaker conditions of Proposition 7 are

98.9% when using the entire sample, while 93.4% are satisfied in both sub-samples.

I parameterize those migration costs that are not identified in both sub-samples as a function

of distance. Using the identified migration costs, I fit a linear model that depends on distance. I

then use these estimates to impute the missing migration cost values. The function that parame-

terizes the (scaled) migration costs needs to fulfill an important property, besides the identification

assumptions of normalization and symmetry. This property is that the change in a possible coun-

terfactual scenario that corresponds to bringing all costs equal to zero should be invariant to the

choice of unit of measurement for distance. Therefore, I parameterize the missing migration costs

as:

τi,j

λ
=

{
0 if i = j

Cτ + ντ log(di,j) otherwise,

where di,j is the distance between locations i and j, so ντ is just an elasticity. Cτ is a constant that can

be interpreted as a fixed cost of migrating, but that is linked with the choice of unit of measurement

of distance. I choose geodesic distance in kilometers for parameterization of the migration costs,

in order to fulfill the symmetry identification assumption. Figure 5 shows the estimated migration

costs and the estimated values of Cτ and ντ are, respectively, −0.474 (s.e. 0.319) and 1.427 (s.e.

0.054). As expected, the migration costs increase with distance. I leave their interpretation for

section 1.6.2.

1.5.2 Wage dispersion parameter δ

In Appendix 1.A.2, I show that the expected log wage of a worker with birthplace b conditional on

migrating from location i to j is

E

(
log
(

wagei,j
t,b

))
= log(wj

t)− δ log(p
i,j
t−1,b). (1.17)

Because of selection, the average wage of workers of a particular migration cohort is negatively

related to the size of the migration cohort—which is related to the migration probability. When
45In a very simplified manner, what the correction is doing is to subtract an estimate of the bias. The idea is that the difference between

the average of the difference between the estimates from one half of the sample and the entire sample is an estimate of the bias. By

plugging in the negative of this average one can get the expression above.
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Figure 5 – Migration Costs vs Distance. The graph plots the migration costs vs (log)

geodesic distance. Each point corresponds to a mobility cost and (log) geodesic distance of

a pair of locations. The lines correspond to fitted a linear model. The slope corresponding

is 1.43, s.e. 0.05 and the R2 is 0.22.

more workers migrate, the efficiency of the marginal worker is smaller, reducing the average wage.

The elasticity of average wage with respect to the migration probability is thus equal to −δ.46

Variation in migration costs imply variation in migration probabilities, which ultimately identifies

δ. Substituting 1.5 into 1.17, I can write the previous expression as

E

(
log
(

wagei,j
t,b

))
= Õi

t,b + D̃
j
t,b + δ

τi,j

λ
,

where Õi
t,b and D̃ j

t,b are origin/birthplace/period and destination/birthplace/period fixed effects.

Note that the efficiency wage of the destination location is absorbed within the destination fixed

effect. This expression reveals that the average compensation a worker needs in order to be willing

to move from i to j is δ τi,j

λ . Then, I can run a regression with origin/birthplace and destina-

tion/birthplace fixed effects of individual (log) wages on the previously identified (scaled) migra-

tion costs to identify δ.47

I can control for differences in age and gender characteristics of individuals that should not
46The intuition of this elasticity is as follows: if efficiency shocks are more dispersed, i.e. higher δ, the gap in efficiency between

marginal and average worker increases. Then, the average wage falls faster with the increase in cohort size, as the efficiency of the

marginal migrant falls also at a faster rate.
47The idea of using the average wages to identify the dispersion parameter δ is similar in spirit to what Donaldson (2018) does to

identify the trade elasticity. Donaldson collects data on different prices for a commodity, salt, as well as where production took place.

Because of perfect competition and non-arbitrage, differences in prices between origin and destination should reflect the cost of trading

across locations. Thus, high trade costs imply high prices. Donaldson uses the effect of trade costs on trade to recover the trade elasticity,

which, in the context of his trade model à la Eaton and Kortum (2002) has a structural interpretation. In his model, buyers select

where to import given differences in prices. The strength of this selection effect is driven by the trade elasticity, whose absolute value

is negatively related to the dispersion of firms’ efficiencies in each location. Higher values of the trade elasticity means that the relative

efficiencies are more similar across goods, thus weakening the force of comparative advantage. Then, the effect of changes in trade

costs over total imports is stronger when the comparative advantage motive is weaker. Similarly, in my model, migration locations are

selected via wages, so high migration costs would imply high wages. I do the reverse as Donaldson as I use the labor flows—which

would correspond to trade flows in his case—to infer (scaled) migration costs. Then I use the effect of migration costs on wages to

infer the dispersion parameter of efficiency units. Analogous to his case, the dispersion parameter governs the strength of how workers

pursue their comparative advantage in selecting migration destinations.
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affect the migration decision, but might affect the wages in dimensions not captured by the model.

Thus, before running the regression of migration costs on individual wages, for every year in my

sample, I first run a regression of all wages on a quadratic polynomial in age and a gender dummy.

I then take the residuals of those regressions as the main input for the remaining estimation steps.

Given the sequential identification strategy, the migration costs that I use to identify the disper-

sion parameter are measured with error. Even more so after the bias correction procedure, as it

adds some variance as a cost for correcting the bias. This measurement error creates an attenuation

bias on δ. To control for the bias, I instrument the migration costs. The estimated migration costs

have a high correlation with geodesic distance, where pairs of locations that are further apart have

on average a larger migration cost. For this reason, I instrument migration costs using geodesic

distance and correct for the attenuation bias. 48 Details of the first stage regression are in Appendix

1.D.

After instrumenting, the estimated value of δ is 0.145 (s.e. 2e−4), while the OLS estimate is lower,

with an estimated value of 0.126 (s.e. 2e−4).49 My estimate is larger than the estimates found by

Bryan and Morten (2019) for the U.S, 0.035, and Indonesia, 0.077, although their methodology only

compares flows of natives versus non-natives.50 Taking their estimate as a benchmark, this means

that, in absence of a persistence force, i.e. ρ = 0, the migration elasticity in France 1/0.126 ≈ 8 is

three and a half times smaller than that found for the U.S, 1/0.035 ≈ 28. This is in line with the

idea that the U.S. has a much more mobile and dynamic labor market, although given the different

models and identification steps, this should be taken with a grain of salt.

1.5.3 Conditional migration probabilities

Using the expression for the migration probabilities and the count data from workers migration

decisions, I can write the conditional (log) likelihood function:

logL = ∑
t

∑
b

∑
i,j

ℓ
i,j
t,b log




exp
(
D j

t+1,b − τi,j/λ
)

∑k exp
(
Dk

t+1,b − τi,k/λ
)


 , (1.18)

where D j
t+1,b ≡ V

j
t+1,b/λ are destination/birthplace/period specific fixed effects; and ℓ

i,j
t,b is the

number of workers who changed jobs and moved from i to j with birthplace b at end of period

t. It turns out that the direct maximization of the conditional (log) likelihood when the (scaled)

migration costs are fixed is a highly tractable problem.

Proposition 3. The values of the fixed effects D j
t+1,b, for all j, b and t that maximize the conditional (log)

likelihood (1.18) are the same that solve the following system of equations

∑
i

ℓ
i,j
t,b = ∑

i

exp
(
D j

t+1,b − τi,j/λ
)

∑k exp
(
Dk

t+1,b − τi,k/λ
) ∑

h

ℓ
i,h
t,b, ∀i, j ∈ I . (1.19)

48I consider as an instrument 1(i 6= j) log(di,j), so that the instrument is equal to zero for observations of workers who do not migrate.

The correlation between the instrument and the migration costs is 0.93.
49Table 11 in Appendix 1.H contains the regression table of both the IV and OLS regressions.
50Bryan and Morten (2019) estimate the dispersion parameter by running a regression of average log wages against the (log) migration

probabilities corresponding to equation (1.17).
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Proof. See Appendix 1.C.2.

The proof boils down to manipulating the first-order conditions of the maximization of the (log)

likelihood.

The system above can be written more succinctly as L
j,dest
t,b = ∑i p

i,j
t,bL

i,orig
t,b , where the inward labor

flow is L
j,dest
t,b = ∑i ℓ

i,j
t,b and the outward labor flow is L

i,orig
t,b = ∑h ℓ

i,h
t,b for all locations i, j in I . In

other words, each of these expressions are just equal to a labor movement equation, where the sum

of all the labor flows from a particular origin, p
i,j
t,bL

i,orig
t,b , have to be equal to the total labor observed

in that destination, L
j,dest
t,b . Therefore the maximization of the likelihood corresponds to finding

the fixed effects such that the migration probabilities satisfy such labor movement equations. The

system is analogous to a balanced-trade equation that arises from gravity type-models. Trade

economists have established the existence and uniqueness of the solution as well as developed

efficient algorithms for computing it.51

The connection between the maximization of the conditional (log) likelihood and the labor flow

equilibrium equation comes from relating two results: (i) there is a close relation between the

maximization of the log likelihood and the PPML; (ii) estimation of gravity equations using PPML

automatically satisfy the structural restrictions of gravity models.

Previous literature has pointed out, separately, these two connections. First, Guimaraes et al.

(2003) show that solving jointly for the fixed effects D j
t+1,b and migration costs τi,j/λ to maxi-

mize the conditional likelihood (1.18) is equivalent to doing a Poisson-Pseudo-Maximum Likeli-

hood (PPML) estimation adding origin fixed effects, whose moment condition is equal to equation

(1.14).52 This moment condition is derived from the equilibrium expression of labor flows, which

corresponds to a ’general gravity’ framework.53 Second, Fally (2015) shows that in a trade model

where output and expenditures are consistent with the sum of outward and inward trade flows—

which in my migration context is analogous to a consistent definition of inward and outward labor

flows—the estimation of a ’general gravity’ equation with origin and destination fixed effects using

PPML automatically satisfies the structural restrictions imposed by the model.54 Given that the

maximization of the (log) likelihood and the PPML are closely related, it is therefore not surprising

that the first order conditions of the maximization of the likelihood are as well closely related to

the structural equations of a gravity model.

So why not estimate together the destination fixed effects and the (scaled) migration costs doing

PPML? In doing so I would estimate, in one single step, the (scaled) migration costs and the

underlying conditional migration probabilities. As pointed out by Dingel and Tintelnot (2020),

doing the PPML instead of the maximization of the multinomial logistic log-likelihood is much

more tractable as there are widely available algorithms which are extremely efficient, especially for

high dimensional models like the one I consider here. The reason is that not all of the migration
51In Appendix 1.C.2 I use a general result from Allen et al. (2020a) and provide a simple proof for existence and uniqueness (up to a

constant). I also describe the algorithm proposed by Pérez-Cervantes (2014) to find the solution.
52For a derivation of this result, see Appendix 1.G.
53Head and Mayer (2014) define as ’general gravity’ for trade models when the trade flows can be written as Xi,j = exp(Oi + Dj −

ϑ log(d̂i,j)) where Oi and Dj are origin and destination specific fixed effects and ϑ is the trade elasticity.
54These restrictions are dubbed ’multilateral resistance’ indexes by Anderson and Van Wincoop (2003).

34



costs are actually identified. Primarily because there are pairs of locations where no worker in the

data migrated between the two in any year.

If the problem are the missing migration values I could, in principle, reverse the order of the

identification steps I have followed so far. I could use the relationship between wages and migration

costs to estimate them and impute values related to distance to those few that are missing. A slight

difference is that the identified migration costs would have a different scaling factor. In particular

the migration costs identified from the wages would be δ
λ τi,j. Using the migration costs estimates I

could then estimate the underlying migration probability distribution and the dispersion parameter

δ by doing a PPML estimation with origin and fixed effects.55 A drawback of such an alternative is

that the correction from the possible bias in the estimation of δ introduced by using the migration

costs with measurement error is not trivial, especially from a computational point of view.

When taking the (scaled) migration costs τi,j/λ as given, I cannot benefit anymore from the

computational advantages of the PPML estimation procedure when maximizing the conditional

likelihood. In contrast to linear models, I cannot just re-define the endogenous variable of the

Poisson regression and do the same estimation algorithm.56 For example, when running a Pois-

son regression with origin and destination fixed effects whose left-hand-side variable is equal to

ℓ
i,j
t,b exp(τi,j/λ), the estimated destination fixed effects would differ from those estimated by directly

maximizing the conditional likelihood (1.18).

I use the fitted values that come from the maximization of the likelihood to compute estimates

of the conditional migration probabilities. I use them in the next steps of my estimation strategy.

1.5.4 Efficiency wages w
j
t

Having identified both the dispersion parameter δ and the migration probabilities, I can identify

the efficiency wage using the expression for the expected log wage of a worker (1.17). Passing

δ log(p
i,j
t−1,b) to the left-hand-side, a simple average across migration cohorts with same destination

would identify the efficiency wage.

1.5.5 Home Bias κ
j
b

To identify the home bias κ
j
b, I exploit the information contained in the expected log wages of the

different migration cohorts. To ease notation, define the the expected log wage of a worker with

birthplace b conditional on migrating from location i to j as

ω
i,j
t,b ≡ E

(
log
(

wagei,j
t,b

))
.

55Such an alternative identification strategy is developed formally in Appendix 1.G.
56Consider a linear model y = X1β1 + X2β2 + ε to be estimated via Ordinary Least Squares. If X2β2 is fixed, I can redefine the

endogenous variable as y− X2β2 and follow the same least squares algorithm to get an estimate of β1.
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The difference between the expected log wages of workers who move to j from location i with

respect to the expected log wages of workers who return home b from i is

ω
i,j
t,b −ωi,b

t,b = log(wj
t)− log(wb

t )− δ
(

log(p
i,j
t−1,b)− log(pi,b

t−1,b)
)

= log(wj
t)− log(wb

t )−
δ

λ

(
V

j
t,b −V

b
t,b − (τi,j − τi,b)

)

= log(wj
t)− log(wb

t )−
δ

λ

(
V

j
t,b −Vb

t,b − (τi,j − τi,b)
)
+ exp. error.

The last step exploits the rational expectations assumption: the migration decision at the end of

period t− 1 depends on the workers’ expectation of the state of the world in period t, as reflected

by the expected lifetime utility V
j
t,b. Then, rational expectations imply that the difference between

the expected utility V
j
t,b and V

j
t,b, which is the utility conditional on the realization of aggregate

uncertainty in period t, is a mean zero expectation error.

The wage differentials reflect more than just aggregate differences between locations and migra-

tion costs. The utility differentials V
j
t,b − Vb

t,b capture as well the effect of the home bias κ
j
b. I now

show how to control for all the things that are not the home bias driving the wage differentials.

The lifetime utility V
j
t,b of a location j is a function of: (i) a flow utility term that is constant

across birthplace cohorts; (ii) the discounted expected utility of next period; and (iii), a birthplace

specific option value for living in that particular location. Define

ζ
i,j
t,b =

(
ω

i,j
t,b −ωi,b

t,b

)
− ρβ

(
ω

i,j
t+1,b −ωi,b

t+1,b

)
− (1− ρβ)

(
ω

j,i
t+1,b −ωb,i

t+1,b

)
.

Given that I have values for the discount factor β and the persistence parameter ρ, I can construct

the sample analog of ζ
i,j
t,b using average wages for periods t and t + 1. Substituting the equations for

expected log wages (1.17), conditional migration probabilities (1.5), and lifetime utility (1.4), after

some algebra I obtain that

ζ
i,j
t,b = C

j
t − Cb

t +

(
(1− β)δ

λ

)
(τi,j − τi,b) +

δ

λ
κ

j
b + exp. error, (1.20)

where C j
t captures all the terms related to location j that are independent of birthplace.57

The expression above shows that the collection of wage differentials ζ
i,j
t,b depends only in aggre-

gate differences across the two locations, relative differences in migration costs, and the home bias.

The next-period wage differential ω
i,j
t+1,b − ωi,b

t+1,b controls for differences in next-period expected

utilities. The third term in ζ
i,j
t,b, the difference in average wages of the reverse migration cohorts for

the next period, ω
j,i
t+1,b − ωb,i

t+1,b, controls for differences in option values. The idea is that average

wages of a migration cohort from a particular origin are informative about the option value of that

origin location. The intuition is as follows. First, given selection of workers, the average log wage

of a migration cohort is negatively related to their migration probability, as shown in equation

(1.17). Now, consider the migration probability of going, lets say, from Toulouse to Paris versus

the migration probability of going from Lyon to Paris. Assume, for the sake of the argument, that

migration costs are the same. Then, as in both cases the destination is the same, the differences

57Formally, the constant term is defined as C j
t = log(wj

t)− ρβ log(wj
t+1)− δ

λU
j
t , where U j

t is the flow utility for living in location j net

of the home bias.
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in probabilities should reflect origin specific differences. If the probability of going to Paris from

Toulouse is smaller than the probability of going to Paris from Lyon, it means that the alternative

migration options attainable from Toulouse are relatively more attractive than those alternative op-

tions attainable from Lyon. In other words, the option value of being in Toulouse is higher than

that of Lyon. Therefore, the difference between these two probabilities—and thus, of wages—are

informative about the relative difference of option values between Toulouse and Lyon.58

The only thing left to control for are the aggregate differences C j
t − Cb

t . So, similarly to the

migration costs, to get rid of the aggregate differences I make the following symmetry assumption

Assumption 2. The home bias is symmetric κ
j
b = κb

j for all b, j in I . Also, the cost of staying in the same

location is zero, i.e. κb
b = 0 for all b in I .

Proposition 4 below shows that this assumption allows me to identify the home bias.

Proposition 4. Let κ
j
b = κb

j be symmetric, as defined by assumption 2. Then,

ζ
i,j
t,b + ζ i,b

t,j

2δ
=

1
λ

κ
j
b + exp. error. (1.21)

Proof. It follows from equation (1.20).

The Proposition shows how to exploit the wage information of workers with birthplace j, who

mirror the behavior of those workers with birthplace b to identify the home bias. This means to

use the information from the wage differentials by just interchanging the destination location with

the birthplace location, i.e., to use the information in ζ i,b
t,j to control for the remaining aggregate

differences in ζ
i,j
t,b. So the birthplace/destination pair fixed effects from a simple linear regression

on
ζ

i,j
t,b+ζ i,b

t,j
2δ would identify the home bias scaled by 1/λ.

I use the estimates of efficiency wages, the dispersion parameter δ, and the migration probabili-

ties to complete the sample of average wages for those combinations that do not appear in the data.

I impute values according to expression (1.17). If I were to impute all the average wages—instead

of those that are just missing—it would be equivalent to use only the information contained in the

estimated migration probabilities. I find the completion method a simple compromise to use both

sources of information.59

Figure 6 plots the estimated home bias κ
j
b against distance. As it is clear, the relation is clearly

positive, although it increases the variance the further the distance.60 At first glance the birthplace

costs are in general smaller than the migration costs. But keep in mind that the migration costs are

paid only once, while home bias is present year after year. Thus, in present value the differences

are less stark. I leave the discussion on how to interpret the migration costs and home bias costs

for the next section.
58Similar to what I do with the next-period wages, Artuç et al. (2010) and Caliendo et al. (2019) use the next-period migration

probabilities to control for the option value component of the expected utility. A slight difference is that in my case I also need to control

for the persistence component in the expected utility.
59I could use both sources of information, the migration probabilities and the average wages and have an overidentified model and

estimate it with GMM. I plan to do this in the future.
60Some of the estimated home bias are actually small and negative. These generally correspond to neighboring locations, like Deux-

Sevres and Charente Maritime or Gironde and Pyrénées Atlantiques.
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Figure 6 – Home Bias vs Distance. The graph plots the home bias vs (log) geodesic

distance. Each point corresponds to a mobility cost and (log) geodesic distance of a pair of

locations. The lines correspond to fitted a linear model. The slope corresponding is 0.14

s.e. 0.006 and the R2 is 0.18.

At this stage I can perform a simple statistical test of the presence of home bias. Consider the null

hypothesis H0 : κ
j
b = 0 for all b, j ∈ I . The model with home bias nests the model without them,

and then—under the null—all migration probabilities and lifetime utilities per location/period are

the same across birthplaces. Under the null, the endogenous variables in equation (1.21) should all

be equal to zero. Then, I can do all the previous steps of the estimation and do a joint significance

test when estimating the home bias effects. The null hypothesis is rejected as the p-value associated

to the F-stat is numerically indistinguishable from zero.61 Therefore, I reject the hypothesis that

there is no home bias.

I can also test whether I am overly complicating the model by estimating a home bias term for

every location/birthplace combination instead of just a dummy that indicates whether a worker is

outside her birthplace. In other words, I can test the null hypothesis H0 : κ
j
b = κ for b 6= j. Again, I

reject the null that home bias is constant across locations.62

1.5.6 Productivities A
j
t and Prices of Non-Housing Goods P

j
Q,t

In this section I explain how to invert the static part of the model to recover the underlying produc-

tivities that are consistent with the observed data. This will also allow me to recover price indices

of non-housing goods, up to a constant.

Combining the goods and labor market clearing conditions we get:

w
j
tN

j
t = ∑

i∈I

Sjψ̃i,j

∑k∈N Sk ˜ψi,k
wi

tN
i
t , (1.22)

where Sj ≡
(

A
j
t

x
j
t

)ϕ

is a source effect and ψ̃i,j =
(
ψi,j)−ϕ

. Notice that these source effects also appear

61The F-stat is 8.03 with 2,628 and 2,560,620 degrees of freedom. The number 2,628 comes from the squared number of locations

732 = 2, 701 minus 73, as the constant term forces the normalization of a fixed effect per birth cohort.
62The associated p-value is again numerically indistinguishable from zero. The F-stat is 6.79 with degrees of freedom equal to 2,627

and 2,560,620.
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(a) Productivities (b) Amenities

Figure 7 – Estimated composite productivities and amenities. Both figures plot a composite value that in-

cludes also housing supply (see Section 1.5). The values of productivities are with respect to the national

average. The values for amenities are with respect to the amenity in Île-de-France. The values for productiv-

ities correspond to the year 2017.

in the equation for the price index of the non-housing good P
j
Q,t.

As shown in Appendix 1.C.3, given the trade costs ψ̃i,j and the observed wage bills in the data,

there is a unique solution, up to a constant, of the source effects. Using these soure effects along

with the trade elasticity ϕ, I can identify the distribution of prices of non-housing goods (up to a

constant).

Let, Ãj ≡ Aj
(

H j
)η

be a composite of productivity and housing supply. It summarizes how

cheap is to produce something in location j by using an additional efficiency unit of labor. Substi-

tuting the price of the input bundle into the source effects and developing we get

Ãj =
(

Sj
)1/ϕ

(
wj

1− η

)1−η (
wjN j

η

)η

.

This means that given the estimated efficiency wages, the observed wage bills and the trade and

output elasticities, along with the source effects, I can identify the distribution of the composite

productivity/housing term Ãj, up to a constant, which is all I need to solve the model. Figure 7a

shows the map of composite productivities, where I have normalized the mean to be equal to one.

As expected, the more productive regions are the most populated ones like Île-de-France, Lyon,

Marseille, Toulouse, and Lille.

1.5.7 Amenities Bj

I conclude the identification section by explaining how I get the overall amenities from the residual

variation in identified migration probabilities.

The Cobb-Douglas assumption on the technology of the final good plus market clearing imply

that the price of housing is equal to P
j
H,t ∝

w
j
t N

j
t

H j . Substituting into the final good price index and
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then into the expression for lifetime utility (1.3) we get

V
j
t,b = B̃j − α log

(
N

j
t

)
+ (1− α) log


 w

j
t

P
j
T,t


+ βρV

j
t+1,b

+ β(1− ρ)λ log

(
∑

k∈N
exp(V

k
t+1,b − τi,j)

1
λ

)
,

where B̃j ∝ Bj + α log H j is a composite of overall amenities and housing supply. As is clear from

the expression above, the introduction of housing into the model works as a congestion force: the

more efficiency units are in one location, the less attractive it becomes as the real wage decreases

when the price of housing increases.

So I identify the composite amenity by exploiting the variation across migration probabilities,

similar to what I did to identify the home bias. As will become clear, I can only identify the compos-

ite amenity up to a normalization, for which I pick a reference location x and put its corresponding

value to be equal to zero. Then, the following ratio of probabilities is:

log





 p

i,j
t,b

pi,x
t,b




 pi,x

t+1,b

p
i,j
t+1,b




βρ
 px,i

t+1,b

p
j,i
t+1,b




β(1−ρ)

 =

B̃j

λ
− α

λ
log

(
N

j
t+1

Nx
t+1

)
+

(1− α)

λ
log


 w

j
t+1

P
j
T,t+1

Px
T,t+1

wx
t+1




−
(

1− β

λ

)
(τi,j − τi,x)− 1

λ
(κ

j
b − κx

b ) + exp. error.

Arranging all the terms to the left except for B̃j, taking the averages for each location across the

different periods would identify the composite of amenities and housing for each location.

Figure 7b show the map with the spatial distribution of the estimated composite amenities,

where I have chosen Île-de-France as the reference location. To make it comparable to that of

productivities—where all values are positive— I use the exponent of estimated amenities, exp(B̃j).

The map of amenities shows a similar pattern to the one of productivities: urban centers are more

attractive. However, locations that are close to the coast, especially in the Southeast, close to the fa-

mous touristic regions of the Côte d’Azur, also have high values of amenities. Also the dispersion of

productivities is almost twice that of amenities: the variance of the log of composite productivities

Ãj is 0.13, while that of composite amenities B̃j is 0.07.

1.6 Model Solution and Counterfactual Analysis

I solve for the model in a steady-state and a continuous-population limit. As mentioned before,

this renders the model deterministic and eases its solution. I choose a baseline year and solve for

the model as if the productivities in the steady state are the same as those on the baseline year. I

pick the year 2017 as the baseline.

With the solution of the model I first compute the birthplace premium: how much more

welfare—in consumption terms—each birthplace cohort has compared to the national average. I

then assess the importance of welfare differences due to birthplace in shaping overall welfare in-

equality. After, I compare the differences between the migration costs and the home bias. I show
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there is a direct correspondence between wage differentials of natives versus non-natives and the

compensating variation in consumption a non-native needs to have the same utility as a native. This

allows me to compare the steady-state of the model with the data. Finally, I compare my model to

a model without home bias. I explore the implications of ignoring home bias for the response of

real wages to a local productivity shock, and the costs associated with place-based policies.

Although solving this version of the model is computationally feasible, it is still challenging.

To solve for the model I need to find the solution of a large system of non-linear equations. For

example, there are 732 lifetime utilities to solve, one per each location/birthplace combination.

However, by taking the total labor supply at each location as given, there is a sequential strategy

to solve the rest of the variables very efficiently. I can show that part of the system are either

contractions or can be represented as eigensystems with an eigenvalue equal to one. Solving these

reduces to either iterating or finding the eigenvector associated with the unit eigenvalue. Both

of these methods are computationally efficient. I explain the details of the solution algorithm in

Appendix 1.B.

1.6.1 The Birthplace Premium and Decomposition of Welfare Inequality

I use the model in steady state to compute the differences in welfare across birthplace cohorts. This

allows me to determine which workers are better off on average by the mere fact of being born in

the right location.

Recall that the term Vi
b is equal to the expected utility of workers with birthplace b that live

in location i net of current efficiency units. To recover the lifetime utility I need to sum again the

current efficiency units and integrate across all the worker with birthplace b that live in i. Let the

lifetime utility of an individual ι born in b, living in i, that migrated from j, and that has (log)

efficiency θi be vj,i
b (θi

ι) = Vi
b + θi

ι/ (1− βρ).63 Then, the expected utility of workers living in i is

Ṽi
b = Vi

b −
λ

Li
b
∑

j

log
(

p
j,i
b

)
p

j,i
b L

j
b. (1.23)

The second term to the right corresponds to an average selection term for workers living in i born in

b. Appendix 1.A.7 contains the derivation of the expression above. Using these lifetime utilities per

birthplace/location, I can compute the birthplace cohort average utility Ṽb as well as the national

average Ṽ by

Ṽb = ∑
i

Li
b

Lb
Ṽi

b, and Ṽ = ∑
b

Lb

L
Ṽb.

Definition 2. The birthplace premium for birth cohort b, denoted εb, is defined as the average excess utility

a worker born in b has compared to the national average, measured in consumption terms.64

Ṽb +
1

1− β
log (1− εb) = Ṽ ⇔ εb = 1− exp

(
Ṽ − Ṽb

)1−β .

When the birthplace premium is positive for a particular birth cohort b, it means that the welfare

of that cohort is higher than the average French worker. Figure 8 shows the birthplace premium εb

63This expression comes from combining equations (1.1) and (1.3).
64Appendix 1.A.7 shows the detailed derivations to get the expression for the birthplace premium.

41



Figure 8 – Birthplace Premium. The map shows the different birthplace premia ζb for

the different birth cohorts. The birthplace premium is the excess welfare, in consumption

terms, that each birth cohort has on excess to the national average.

for the different cohorts. A location in the map represents a birth location and the color within a

location represents the birthplace premium of the cohort born in such location. In absence of the

home bias, these premia should all be equal to zero.

As is clear from the Figure, the inhabitants from the Île-de-France (Paris) region have a higher

welfare, in consumption terms, compared to the national average. This is almost 5% larger than

the national average real wage. In general, individuals born in locations that are overall attractive,

as those in the South, or close to large agglomerations seem to be better off. The big winners are

those born close to Toulouse in the South-West, or along the Côte d’Azur in the South-East, with a

birthplace premium a little more than 7%. Some birth cohorts are doing very poorly in comparison.

In the North-East, the cluster formed by Ardennes, Meuse, Meurthe-et-Moselle, Haute Marne,

and Moselle have birthplace premia ranging from minus 10 to 20 percent. Another small cluster,

towards the South-West in the Massif Central region, formed by the locations of Cantal and Lozère

have birthplace premia of minus 17 and 10 percent, respectively.

Almost all of the locations between the North-East and South-West clusters have negative birth-

place premia. This region is known in France as the Empty Diagonal, which according to Wikipedia

’is a band of low-density population that stretches from the French department of the Landes in

the southwest to the Meuse in the northeast.’65 Looking back to the estimated amenities and pro-

ductivities in Figures 7a and 7b, the locations in the Empty Diagonal are not attractive overall. The

correlation between the birthplace premium and log composite productivities Ãi and amenities B̃i

is 0.47 and 0.48, respectively. Thus, it is not surprising that the Empty Diagonal groups the big

losers in terms of birthplace premium.

In the South, overall amenities are higher than in the North, and the productive and large

population centers are more evenly distributed across space. Thus, even if someone born outside

an attractive location within the South, it is probable that she lives in a productive location close to

her birthplace, making her, on average better off. In addition, there are more options for relatively

close, productive locations, for a worker born in the South than in the North. For those born in
65❤tt♣s✿✴✴❡♥✳✇✐❦✐♣❡❞✐❛✳♦r❣✴✇✐❦✐✴❊♠♣t②❴❞✐❛❣♦♥❛❧
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(a) Workers Born in Toulouse (b) Workers Born in Haute-Marne

Figure 9 – Excess utility Across Residence Location, Different Birthplace. The left panel shows the excess

utility (compared to the national average) of the workers born in Toulouse that live in the different locations,

measured in consumption terms. The right panel does the same but for workers born in Haute-Marne.

the North, Île-de-France is the only option if they want to live in a close-by productive location,

while in the South and South East there is Lyon, Marseille and Toulouse that are relatively close to

one another.66 Therefore, the option value of being born in an unproductive region in the South is

larger than in the North.

That a location b in the map shows a large birthplace premium does not mean that the inhab-

itants of region b have higher utility. Instead it means that those who were born in b have higher

utility. Some of the workers might be living outside their birth location. However, those who are

born in an attractive location would only move if the migration opportunity gives them more utility

than in their birthplace. Thus, the average utility of a worker in any location is influenced by the

workers outside option, which is their home location.

The influence of birthplace on average utility of workers regardless of residence location is

illustrated in Figures 9a and 9b. The left panel shows the excess utility, measured in consumption

terms, of the workers born in Toulouse, a location with high birthplace premium living in all the

different locations. The right panel does the same but for workers born in Haute-Marne, which

has a low birthplace premium. For both cohorts, there is heterogeneity in average utility across

locations for workers with the same birthplace. However, the place of birth influences largely a

workers’ relative position with respect to the national average as the workers of Toulouse are better

off relatively than those born in Haute-Marne, regardless of their residence location. Moreover,

fixing residence location, the distribution of welfare across birth cohorts is very similar than the

one portrait by Figure 8. For example, the correlation of excess utility for Toulouse residents with

different birthplace, with the birthplace premium is 0.84; for the residents of Haute Marne the

correlation is 0.92.

Welfare Decomposition. I now explore the relative importance of between-birthplace versus across-

locations differences in shaping overall welfare inequality. I find that birthplace is a main driver
66There is also, Montpellier, Bordeaux and Nice for example.

43



of welfare inequality, and is almost as important as idiosyncratic differences and sorting across

locations.

The dispersion of welfare is var
(

vi,j
b (θi

ι)
)

, where the variance is taken over all workers, who are

indexed by ι. The overall dispersion can be decomposed as follows

var
(

vi,j
b (θi

ι)
)
= var

(
E

(
vi,j

b (θi
ι)
∣∣∣ j; b

))

︸ ︷︷ ︸
Between-birthplace/location

+∑
j

∑
b

L
j
b

L
× var

(
vi,j

b (θi
ι)
∣∣∣ j; b

)

︸ ︷︷ ︸
Within-birthplace/location

= var
(

Ṽ
j
b

)
+ ∑

j
∑
b

L
j
b

L
× var

(
vi,j

b (θi
ι)
∣∣∣ j; b

)
.

The first term is the variance across the average utility of workers born in b living in location j.

The second term corresponds to the weighted average of the variance within each birthplace cohort

and residence location. I further decompose each within-birthplace/location variance across the

different migration cohorts

var
(

vi,j
b (θi

ι)
∣∣∣ j; b

)
= var

(
E

(
vi,j

b (θi
ι)
∣∣∣ i→ j; b

))

︸ ︷︷ ︸
Between-migration cohort

+∑
j

∑
b

L
j
b

L
× var

(
vi,j

b (θi
ι)
∣∣∣ i→ j; b

)

︸ ︷︷ ︸
Within-migration cohort

Conditional on a residence location j and birthplace b the only heterogeneity in utility comes from

dispersion in the discounted (log) efficiency shocks θi
ι/(1− βρ). Conditional on a migration cohort

(i → j; b) the (log) efficiency θi/(1− βρ) is distributed Gumbel, with scale parameter λ and mean

−λ log
(

p
i,j
b

)
. Then,

var
(

vi,j
b (θi

ι)
∣∣∣ j; b

)
= var

(
λ log

(
p

i,j
b

) ∣∣∣ j; b
)

︸ ︷︷ ︸
Selection

+
π2

6
λ2

︸ ︷︷ ︸
Idiosyncratic

.

The first term to the right is the variance across origins i of expected efficiency conditional on

a birthplace b and residence j. It reflects the dispersion in average selection patterns for workers

with different origin locations. The second term comes from the fact that conditional on a migration

cohort, i.e. the conditioning on origin, destination and birthplace, the variance of efficiency wages is

equal to the variance of the different (discounted) efficiency shocks, which are distributed Gumbel

with scale parameter λ. The contribution of this term to total variance is fixed across different

scenarios. Therefore, it constitutes a lower bound on overall welfare inequality.

I can decompose furthermore the variance across average utility of a birthplace/location Ṽ
j
b as

var
(

Ṽi
b

)
= varb

(
Ṽb

)
+ ∑

b

Lb

L
× var

(
Ṽ

j
b

∣∣∣ b
)

.

The first term to the right is the between-birthplace dispersion of average utilities per birth cohort

Ṽb. This corresponds to the average differences between Figures 9a and 9b. The second term is the

within-birthplace dispersion of utilities, weighted by the size of the birth cohort. This corresponds

to the within heterogeneity across locations in Figures 9a and 9b.

Table 5 presents the results of the decomposition. I find for the baseline scenario that the

between-birthplace component explains 43.2% of the dispersion in average location/specific wel-

fare. The within-birthplace variation, that corresponds to differences across locations explains only
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Table 5 – Decomposition of Welfare Inequality

Between BP/Location (% Total Var) Within BP/Location (% Total Var)

Total Var (/Baseline) Between-BP Within-BP Selection Idiosyncratic Migration Rate (%)

(1) (2) (3) (4) (5) (6)

Baseline 1 43.5 3.5 17 36 1.2

No Mig. Costs 1.61 78 0 0 22 11.8

High Home Bias 1.7 79 0 0 21 11.6

No Home Bias ≈1 0 8 56 36 3.2

High Mig. Costs 0.96 0 10 52 38 1.9

No Both 0.36 0 0 0 100 12.4

Without Geography 0.46 6 4 11 79 0.3

No Mig. Costs ≈1 64 0 0 36 12.2

High Home Bias 0.81 55 0 0 45 11.6

No Home Bias 0.91 0 3 58 39 1.6

High Mig. Costs 0.76 0 3 50 47 0.9

No Both 0.36 0 0 0 100 12.9

Note: The table shows the decomposition of variance of individual welfare for different scenarios. The different indentation means that

some elements are changed in comparison to the immediate, less indented scenario. For example, the second row refers to the baseline

scenario with no migration costs. The third row refers to the baseline scenario, no migration costs and high home bias. "Without Geography"

means that all (composite) productivities and amenities are constant, trade costs are the same across locations and birthplace cohort sizes are

equalized. The first column represents the total variance as a fraction of the variance in the baseline scenario. The second and third columns

correspond to the percentage of total variance explained by the variance of average utility per birthplace/location Ṽ
j
b , while the fourth and

fifth columns correspond to the within component. The fourth column explains how selection within a migration cohort drives inequality.

The fifth column corresponds to idiosyncratic differences within each migration cohort.
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3.4% of the total inequality. The within-birthplace/location explains most of the variation with

53.4% where selection contributes with 17% and the idiosyncratic component—conditional on a

migration cohort—contributes with 36%.

The "Without Geography" row corresponds to a counterfactual scenario where I I shut down dif-

ferences in (composite) productivities and amenities, as well as making trade costs the same across

regions and equalizing the size of the birthplace cohorts.67 When locations are more, the overall

variance decreases by more than 50% and the fraction of total variance explained by the between-

birthplace component is reduced from 43 to just 6 percent. The remaining differences are explained

by the heterogeneity of the home bias of the different cohorts.68 The within-birthplace/location

selection term, which corresponds to column (4) is reduced from 17 to 11 percent. Homogeneous

locations together with migration costs give little reason for workers to move around, as reflected

by the migration rate, and therefore reducing the importance of selection.

Reducing migration costs but keeping the home bias increases the variance of welfare. As work-

ers move more, but with different patterns across birthplace cohorts, then the average selection

effects differences are magnified.69 When increasing the home bias, the mobility patterns differ

more, causing inequality to increase as well as the importance of the between-birthplace compo-

nent.70 Without home bias, the within-birthplace component explains only 8% of the total variance.

Most of the variance is explained by the within-birthplace/location selection component: with the

reduction in home bias, workers move more according to their comparative advantage, increasing

welfare inequality. Increasing the migration costs mitigates this selection channel and increases the

importance o heterogeneity across locations, as reflected by the increase from 8 to 10 percent in

column (3).

Finally, when removing both the home bias and the migration costs, overall variance is explained

entirely by the idiosyncratic shocks. In equilibrium, average welfare should be equal across all

birthplace/locations. Without impediments to move around, the location decision is not determined

by the origin location or birthplace of a worker. Then, workers would only choose where to live

according to their idiosyncratic productivity. And while they indeed select across locations, the

probability of going to any location is the same. Thus, the variance from the selection term is zero,

leaving only the idiosyncratic component to explain the overall dispersion in welfare.

The small percentage of total dispersion explained by the within-birthplace component in the

baseline scenario does not mean that heterogeneity of locations is unimportant in explaining welfare

inequality. On the contrary, heterogeneity of locations is reflected in the between-birthplace com-

ponent as illustrated by the "Without Geography" scenario, as it is the heterogeneity in locations—
67I allow for costly trade still. I take the average trade cost off the diagonal as a measure of cost between any two locations. For trade

within each location I take the average of within diagonal trade costs. For the construction of trade costs in the baseline see Appendix

1.D
68The heterogeneity across birthplace cohorts of home bias itself increases the variance. However, it also changes the population

composition across cities, even if they have the same fundamentals. This creates heterogeneity in real wages across locations which,

combined with differences in employment distribution across the birthplace cohorts, adds to the heterogeneity.
69Also, there is more concentration towards productive areas, and while the differences in utility coming from differences in place of

residence can be muted, the differences stemming from heterogeneous home bias can be magnified.
70To increase home bias in the third row, or migration costs in the fifth row, I take the off-diagonal value of the cost that enters the

migration decision, which is an exponential function, and divide it by two.
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along with the home bias—that determines the outside option of workers and influence their loca-

tion decisions.

Home bias amplifies the role of geography in the long run welfare dispersion by making workers

gravitate around their home location, preventing them from arbitraging away aggregate differences

across locations. In contrast, migration costs prevent the short-run adjustment of labor and do not

seem to matter much for the long run distribution of employment. Thus, geographic differences are

better arbitraged away and dispersion is driven by the within-location, across-origin component.

1.6.2 Comparison of migration costs and home bias

In the model sketched in Section 1.4, both migration costs and home bias enter as utility costs. It is

therefore tempting to compare their magnitudes for each location pair to determine their relative

importance. Doing so requires adjusting the estimated magnitudes for the fact that migration costs

are paid one time and home bias is a recurring cost.

I use a compensating variation argument to make both mobility costs comparable. First, for the

migration costs, I look at how much larger the wage of a migrating individual needs to be in order

to have the same utility as an individual that did not move. Similarly, I compute the compensating

variation in wages such that a non-native individual has the same utility as a native.

If I compare two workers from the same birth cohort, one migrating from i to j and the other

staying in j, then the wage of the migrating individual has to be larger for them to have the same

utility. As shown in Appendix 1.A.6, this extra wage compensation in percentage terms is equal to

ξ
i,j
t (τ) = exp

(
τi,j
)(1−βρ)

− 1.

The compensating variation, being a function of the migration cost is symmetrical. Because

of this symmetry and the extreme value (Gumbel) assumption on the efficiency shocks, there is

a simple correspondence with the data from observed wage differentials and the compensating

differentials for migrants in the model.

Proposition 5. For workers with same birthplace b, the compensating variation in wages a migrant needs

to have the same utility as a non-migrant is identified from the following difference-in-differences in wages

log(1 + ξ
i,j
t (τ)) =

1
2

(
E

(
log
(

wagei,j
t,b

))
−E

(
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(
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))
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(
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(
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−E

(
log
(

wagej,j
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)))
.

Proof. It follows from substituting the average utility (1.4) and the migration probability equation

(1.5) into the expected wage equation (1.17).

The Proposition follows the same logic as the identification of (scaled) migration costs when

observing bilateral labor flows coming in both directions as stated by Proposition 1. It tells us that

by comparing the wages of migrants versus those who stay in the same location we can back out

the compensation.

In a similar way as with migrants, the extra wage compensation, in percentage terms, that a

worker born in b who lives in location j needs in order to have the same utility as a native is

ξ
j
t,b(κ) = exp

(
κ

j
b − β(1− ρ)(1− βρ)Et

∞

∑
s=0

(βρ)s−1
(

log
(

Ω
j
t+s,b

)
− log

(
Ω

j
t+s,j

)))
− 1. (1.24)
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The second term in the right hand side of the expression above correspond to a difference in the

option values of living in location j between natives and non-natives. In the steady state, the

expression above would be

ξ
j
ss,b(κ) = exp

(
κ

j
b − β(1− ρ)

(
log
(

Ω
j
b

)
− log

(
Ω

j
j

)))
− 1.

In contrast to the compensation to migrants, the compensation to non-natives is not symmetric.

Because of the differences in option values changing the indices (b, j) would give different values.

Thus, there is no direct correspondence of a compensating differential for an ordered pair (b, j) in

the model and wage data. However, as Proposition 6 below shows, there is a correspondence for

the compensating differentials that belong to the unordered pair (b, j).

Proposition 6. For workers with same origin location i, the geometric average of the compensating differen-

tials of a non-native worker living in j and a non-native worker living in b is identified from the following

difference-in-differences of wages

1
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
 (1.25)

Proof. Same as in Proposition 5.

Proposition 6 tell us that the wages can reveal a measure of compensation to non-natives for ev-

ery pair of locations. The wages can give the average compensation for a non-native from Toulouse

living in Lyon and the compensation to a non-native from Lyon living in Toulouse. To make it

comparable to the previous compensating measures I say that the (geometric) average of the com-

pensating differential of non-native for an unordered pair of locations (j, b) is

ξ̃
j
t,b(κ) =

√
log(1 + ξ

j
t,b(κ)) log(1 + ξb

t,j(κ))− 1,

which is symmetrical. The right-hand side of (1.25) is then equal to log(1 + ξ̃
j
t,b(κ)).

Using the results of both Propositions, I compare the compensating differentials in the steady-

state of the model with those observed in the data. An attractive feature of both Propositions is that

they show there is a structural interpretation of the wage differentials without relying on any of the

estimated parameters. In the model I can compute ξ
j
t,b(κ) and ξb

t,j(κ) without taking the geometric

average. But to make it comparable with the compensations found in the data, I also compute the

average compensation ξ̃
j
t,b(κ) in the model.

In the model, I first compute the compensating differentials for every pair—either origin/destination

or birthplace/destination. To compute the average compensating differential for migrants, I take

a weighted average of each pair of compensating differentials, using the total migration flows be-

tween every pair as weights.71 Similarly, for the average compensating differential of non-natives,

I compute a weighted average using the birth cohort population in each location L
j
b as weights.

When computing the compensating differential of migrants I exclude from the computation those

71In more detail, I compute Li,j = ∑b L
i,j
b for weighting the migration compensating differential.
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flows that remain in the same location. Similarly, I exclude the fraction of workers who stay in their

birth location when computing the average compensating differential for non-natives.

In the data, using the results from Proposition 5, I first compute the compensating differentials

for every pair using the difference in average log wages. I can either used just the observed wages

or, similarly to when estimating the home bias, I can impute the model consistent average wage

for those combinations that are missing by using the estimated efficiency wages and migration

probabilities. Given that the compensating differentials for migrants (non-natives) are constant

across birth cohorts (origin-destination cohorts), for every year, I can get an estimate by taking the

following weighted average

ξ̂
i,j
t (τ) = ∑

b

(
exp(log

(
wagei,j

t,b

)
− log

(
wagej,j

t,b

)
)− 1

)
L

i,j
t,b

∑b′ L
i,j
t,b′

,

where log
(

wagei,j
t,b

)
is the sample average of log wages. I do the same for the compensating

differential of non-natives. As in the model, to compute the average compensating differential, I

compute a weighted average either using the total migration flow or the number of workers who

live outside their birthplace. When using the sample with imputed wages, the number of workers

correspond to the fitted values from the maximization of the likelihood function (1.18).72

The first column of Table 6 shows the results for the model. The average compensation that a

non-native needs in order to have the same utility as a native is 18%. using the geometric average—

which is comparable with the data— I found that is 12%. The average compensation for a migrant

to have the same utility as a non-migrant is larger and equal to 55%. Compared to what I found

using the data—that correspond to the second to fourth column in the table—, the compensating

differential for migrants is smaller in the model, but is larger for the compensation to non-natives.

By using the observed sample, the compensation for non-natives is 15%. However this is small

when compared to the compensation for migrants which is more than 100%. This is similar when

using the Observed + Imputed sample with observed and imputed wages. If I use only the imputed

wages—as shown in the fourth column—the steady state model value and the data are more alike.

This is expected as the migration costs were identified using information on the labor flows—which

are related to the migration probabilities, which are then used to impute the model consistent

wages. I conjecture that the estimated migration costs and the associated compensating differential

in the model would be larger if I were to use the information in wages to estimate the migration

costs. However, the compensations of non-natives are more alike in the model and the data when

using only observed wages.

Compensating differentials for migrants are similar in magnitude to those previously estimated

in the literature. For example, Kennan and Walker (2011) find that the average migration costs

would correspond to an annual increase in the wage of between 36 to 76 percent.73 Such migration

costs might look implausible a priori, but when interpreted as average wage differences between
72If a wage is imputed for a combination it means that the associated observed labor flow is zero. Thus, I can’t use them as weights

as it will not change the outcome from a weighted average using only observed wages. That is why I use fitted values for labor flows

instead, which are positive.
73In Kennan and Walker (2011), the estimated migration cost for the average mover is equal to 312, 146 dollars. Using a discount factor

of 0.96, this corresponds to an increase of 15, 500 dollars per year for forty years. Given an estimated average wage of individuals in the
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Table 6 – Compensating variation in wages

Model Data

Ordered pairs Geometric Average Observed Observed + Imputed Just Imputed

Non-Natives (%) 18.6 12 15 22 33

Migrants (%) 55.6 107 104 63

Note: The first row of table shows the average compensating variation in wages a non-native needs to have the same

utility as a native. For the model I consider two cases: when using ordered and when using the geometric average.

The second row shows the same but for a migrants to have the same utility as non-migrants. The first two columns

show the values in the steady state of the model. The third to fifth columns show the values using different versions

of the data. The third column, Observed, uses the direct observed wage differentials. The fourth column, Observed +

Imputed completes the missing average wages in the original sample by imputing wages according to expression (1.17).

The fifth column, Just Imputed only uses imputed wages.

migrants and non-migrants, these large costs should actually be expected. From Figure 3b, the

difference between average log wages of migrants and non-migrants is around 1, i.e. wages of

migrants are more than double that of non-migrants. Large migration costs are consistent with large

observed wage differences between migrants and non-migrant workers.

The average compensating differentials computed above depend on the equilibrium allocation.

First, they are weighted averages, thus they depend on how the labor flows—which are equilibrium

objects—are determined. Second, for the compensation of non-natives, the differences in option

values—also equilibrium objects—need to be taken into account. Thus, to make a comparison

between the migration costs and the home bias that is invariant to the equilibrium allocation, I take

a simple average of the ratio

exp(κ j
b)− 1

exp
(
τb,j
)(1−βρ) − 1

(1.26)

across every pair of locations where b 6= j. The numerator is the compensation for a non-native as

if the option values between natives and non-natives are equal. The denominator corresponds to

the migrant’s compensation, which is already invariant to the equilibrium.

I find that the average of the ratio (1.26) is 0.26. Therefore, for the average pair of locations, the

magnitude of the home bias is 26% that of migration costs, measured in compensating differentials.

Even though home bias has a smaller magnitude than migration costs, it has a large impact on

shaping the overall employment distribution. The reason is that home bias ties workers permanently

to their preferred location.

1.6.3 The Effect on Output of Removing Home Bias vs Migration Costs

The main difference between the effect of migration costs and home bias on output is that, while

both prevent workers from pursuing their comparative advantage, home bias affects the long run

50 percentile and with age 30 (42, 850 dollars), this corresponds to an annual increase in the wage of 36%. Using the estimated average

wage for individuals in the 50 percentile but of age 20 (20, 166 dollars), this would correspond to an increase of 76%. There are similar

estimates in the literature for changing sectors. For example, Artuç et al. (2010) estimate that the cost of changing sector is about ten

times the average wage, which corresponds to an annual increase of 49% for forty years.
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distribution of employment. The population size of a location is not only related to economic

fundamentals—like productivity and amenities—but also to the size of the different birth cohorts.

Moreover, home bias makes workers gravitate around their birthplace over time. In contrast, mi-

gration costs limit short run movements from the current location, so workers can do staggered

movement towards the most productive areas.

I solve the model by shutting down the effect of each of the mobility costs. By easing the

movement of workers, output can increase from two main factors. First, a selection effect: workers

are able to select themselves to locations where they are relatively more productive. Second, a

composition effect: if workers concentrate more in productive regions, then overall output increases.

I distinguish between the selection and composition effects as follows. Define total manufactur-

ing output, Y as the sum of all real outputs per location, Yi. Each of these local outputs can in turn

be defined as Yi = Ai
LLi, where Ai

L is the labor productivity in location i. Labor productivity Ai
L is

an endogenous object as it depends on the average efficiency units per location, which reflects how

workers select into locations. Thus, total output can be though as a function of the distribution of

labor productivities and workers

Y(AL, L) = ∑
i

Yi = ∑
i

Ai
LLi,

where AL and L are vectors containing, respectively, all the labor productivities and the number of

workers in each location. The sum of workers is normalized to 1, i.e., ∑i Li = 1. Thus, I can make

the following decomposition

Y(AL, L) = AL + ∑
i

(Li − L)(Ai
L − AL) = AL + c̃ov(AL, L).

The covariance term c̃ov(·) gives a measure of how concentrated is the population in the most

productive locations.74

In models where labor productivity is exogenous, changes in aggregate output are driven en-

tirely by the composition effect, i.e., by changes in the covariance term. However, as in my model

labor productivities are endogenous, I will do something slightly different. For a given variable X
in the baseline economy, define its value in the counterfactual as X ′. Then, the difference in total

output between a counterfactual scenario and the baseline economy is

Y(A′L, L′)−Y(AL, L) = Y(A′L, L′)−
(

AL + c̃ov(AL, L)
)

= Y(A′L, L′)−
(

AL + c̃ov(AL, L′)
)
+
(
c̃ov(AL, L′)− c̃ov(AL, L)

)

= Y(A′L, L′)−Y(AL, L′)︸ ︷︷ ︸
Change Selection

+
(
c̃ov(AL, L′)− c̃ov(AL, L)

)
︸ ︷︷ ︸

Change Composition

. (1.27)

The first term in equation (1.27) corresponds to the selection effect as it leaves the allocation of labor

across locations constant and changes the vector of labor productivities from AL to A′L. The second

74Olley and Pakes (1996) propose this decomposition and use the change in the covariance term to evaluate the reallocation effect

towards more productive plants following a deregulation reform in the telecommunication sector in the U.S.
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Table 7 – Effects of Home Bias and Migration Costs on Output

Remove ∆ Output (%) ∆ Selection (%∆Y) ∆ Composition (%∆Y)

Home Bias 11 88 12

Migration Costs 35 106 -6

Both 37 115 -15

Note: The table shows the differences in output between the baseline economy and differ-

ent counterfactuals, as well as its decomposition in selection and composition gains as a

percentage of the change in output. First row, corresponds to a counterfactual where the

home bias is removed. The second row corresponds to the case without migration costs.

The third row removes both the home bias and the migration costs.

term captures the composition effect: how much of the output change be explained by changes

in the labor allocation towards productive locations, while keeping productivities in each location

constant.

Table 7 shows the decomposition of the output gains in the selection and composition terms.

The left panel corresponds to the baseline model, estimated with home bias. The first row shows

that output increases by 11% in the counterfactual where I remove the home bias. Of those output

gains, the majority comes from selection with 88% and 12% from the composition effect. When I

remove only migration costs, as represented in the second row, output increases more, with a gain

of 35%. Moreover, the decomposition of the gains are very different from that where I remove the

home bias. All of the gains come from better selection as they account for 106% of the gains in

output. The third row of the table reports the output gains and its decomposition when removing

both migration costs and the home bias. In that case output increases by 37% with all of the gains

coming from selection. Therefore, the lion’s share in output gains of removing both mobility costs

comes from removing the migration costs.

What explains this difference in the source of output gains between removing either the home

bias ot the migration costs? First, when there is no home bias, but workers still face the migration

costs, workers can slowly reallocate towards more productive regions. Thus, in the new steady-

state, more workers would end up in more productive areas. In contrast, when I only remove

the migration costs, workers tend to gravitate around their birthplace, as changing locations do

not affect the underlying mobility costs. Sure, workers would have more profitable opportunities

close to their home location, which leads to a great increase in the selection component, but they

would remain close to their birthplace. Thus, the reallocation of labor towards the most productive

locations is limited.75

To sum up, removing the home bias or the migration costs has different long-run implications

for the allocation of labor. In both cases, the main output gains come from the selection effect:

by removing a mobility cost, workers can better pursue their comparative advantage. However,
75Additionally, because the birth cohort size is positively related to location attractiveness, then those born in attractive locations go to

neighboring locations, which are, on average, less productive. In turn, this leads to less concentration of population in large productive

areas as reflected by the negative covariance term.
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removing home bias can lead to large reallocation of labor towards more productive regions, but

the removal of migration costs allows people to sort better but mostly close to their home location.

1.6.4 How much do workers value living in their Home Location?

The model allows to compute how much consumption workers are willing to sacrifice in order to

live in their home location. Consider a worker with birthplace b living away from her home in

location i. Then, the difference in log efficiency units such that the worker is indifferent between

staying in her current location or going back to her home location b is

∆
i,b
b = ui − ub + (1− βρ)τi,b + β(1− ρ)

(
log(Ωi

b)− log(Ωb
b)
)
− κi

b,

where ui collects all the terms in the lifetime utility that depend only on location i and are inde-

pendent of birthplace. The expression shows that in order to be indifferent, the worker needs to be

compensated by the differences in aggregate utility and option values between the two locations,

as well as the cost of migrating. In addition, the worker is also willing to forego some log efficiency

units—to go back home, represented in the home bias term κi
b.

My objective is to compute how much of a pay cut workers are willing to accept to go back home,

controlling for non-birthplace specific factors. The first column of Table 8 shows the average page

cut a non-native needs to be indifferent about returning home when considering only the effect of

κ
j
b. This is equal to 3.8%. When considering the differences in option values, which corresponds to

the second column of the table, the pay cut decreases to 2.8%.

Even after imputing the adjustment for option values, there are non-birthplace specific factors

affecting the number. For example, if a location has low migration costs towards all the other

locations, which would be reflected in a high option value for all the birth cohorts. To control for

these common differences in option values across birth cohorts, I compute

−κi
b + β(1− ρ)

((
log(Ωi

b)− log(Ωi)
)
−
(

log(Ωb
b)− log(Ωb)

))
, (1.28)

where log(Ωi) is the across-birthplace average of option values for location i.76 The idea of adding

these average terms is that, without home bias, the birthplace specific option value Ωi
b is equal to

the average. In such case, the birthplace specific term in the expression above would be equal to

zero. The third column of the Table shows that, after the adjustment for average differences in

option values, the average pay cut non-natives are willing to take to go back home is 5.2%.

In similar lines, I can compute what is the pay raise a worker would need to be indifferent

between leaving her birthplace or staying. The results are in the second row of Table 8. For my

preferred specification, shown in the third column, the average wage gain that would have left

indifferent the worker leaving outside her birthplace is 10.9%.

Thus, I can conclude that the average French worker who lives away from her birthplace is

willing to accept a pay cut between 3 and 5 percent on her annual salary in order to get back home

or needs a pay raise of at least 5 to 10 percent to leave it.
76I take a weighted average given the population of the different birth cohorts in each location. For each average, I exclude the

corresponding migration cohort whose origin and destination is the same as their birthplace. That is, the average is log(Ωi) =

∑ ∑b 6=i log(Ωi
b)

Li
b

∑b′ 6=i Li
b′

.
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Table 8 – Wage cut/raise to return/leave home

Home Bias κ
j
b Home Bias + ∆ Opt. values Home Bias + ∆ Opt. values - Adjustment

Return (%) −3.8 −2.8 −5.2

Leave (%) 4.5 7.3 10.9

Note: The first row shows the pay cut that the average worker who lives outside her home location is willing to take in

order to go back to work at her home location. The first column refers to the pay cut when only the home bias terms

κ
j
b are considered. The second column, in addition to the home bias, considers the changes in option values between

the two locations. The third columns considers as well the differences in option values, but it makes an adjustment by

subtracting the average difference on option values, as specified in equation (1.28). The second row does the analogous

for the wage gain the average worker needs to remain indifferent between staying in her home and leaving.

1.6.5 Home Bias, Labor Mobility and the Pass Through of Productivity to Wages

In this section, I compare the general equilibrium outcomes of a more standard migration model

without home bias with my model. I show that a model without home bias overstates the migration

response to changes in the economy.

I first estimate the model without home bias. This means that I estimate the migration costs

without conditioning on birthplace and I follow the same estimation steps thereafter.77 Appendix

1.H shows a scatter plot comparing the migration costs of baseline versus the no-home-bias model.

In general, the estimates for migration costs without the home bias are larger than in the baseline

model. The estimated dispersion parameter is slightly smaller than in the baseline model, with a

value of 0.135 (s.e. 1.8e-4) compared to 0.145 (s.e. 2e-4). The estimated distribution of composite

amenities and productivities are very similar to the ones estimated for the baseline model. In

particular, the correlation between the two estimates of amenities is 0.95 and of productivities 0.99.

In a model without home bias, the elasticity of the labor flow going from location i to j to a

change in the efficiency wage in location j is

ǫ̃i,j =
1
λ

(
1− pi,j

)
,

where pi,j is the probability of going to j from i. In contrast, the same elasticity in my model is

ǫi,j =
1
λ

(
1−∑

b

L
i,j
b

Li,j p
i,j
b

)
,

where Li,j = ∑b L
i,j
b . Thus, the elasticity in the baseline model with home bias is a weighted average

of the birth specific elasticities ǫ
i,j
b = 1

λ

(
1− p

i,j
b

)
.

Figure 10a compares the different elasticities for the models with and without home bias in the

steady state. Each dot corresponds to the migration elasticity for a pair of locations i, j. In almost all

of the cases the elasticities are larger in the model without home bias. Thus, the predicted migration

response to a change in any particular location would be higher, under-stating the long-term effect

of a change in productivity on real wages.

In equilibrium, the pass-through of local productivity changes to real wages is counteracted by

an increase in the price of housing, whose strength is governed mainly by two factors. First, by
77I estimate the migration costs doing the same Poisson regression as in section 1.5.1 but the dependent variable is the total flow from

i to j, i.e. Li,j and the origin and destination fixed effects do not depend on birthplace.
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(a) Comparison Migration Elasticities (b) Pass-Through to Efficiency Wages

(c) Pass-Through to Average Wages

Figure 10 – Comparison Model with and w/out Home Bias. The solid line in all three plots represents the

45◦ line. The top-left figure compares the migration elasticities in both models, and each dot represents a pair

of locations i, j. The top-right panel compares the pass-through elasticity of productivity on real efficiency

wages and each dot represents a location. The bottom panel compares the effect of pass-thorugh on real

average wages.
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how easy workers can substitute between housing and non-housing goods. Because of the Cobb-

Douglas assumption, the elasticity of substitution between housing and non-housing is equal to

one. Thus, in contrast, to the classic Rosen (1979)-Roback (1982) framework the local productivity

gains are not fully appropriated by the land-owners as workers can substitute between housing and

non-housing goods.78 Second, the price of housing is affected by the mobility response of workers.

If more workers go to a location after a productivity shock, then the price of housing increases.

Figure 10b compares the pass-through elasticity of local real efficiency wages from a local pro-

ductivity shock for the models estimated with and without home-bias, where each dot represents

a location. As expected the, pass-through is larger in the model with home-bias. The ratio of the

average pass-through elasticity for the model with home bias over the same average for the model

without home bias is 1.5. Thus the pass-through elasticity is on average 50% larger in a model with

home bias, as the labor response is smaller.79 However, the value of pass-trough is small, with an

elasticity of 0.11. This is a consequence of the fixed housing supply. Although the housing supply

elasticity appears to be very low for France (see Fack (2006)), including an elastic housing supply

can be an interesting extension.

Figure 10c compares the pass-through elasticity of productivity shocks on average real wages.

In contrast to the efficiency wages, the pass-through can be negative as an increase in productivity

drives in less productive individuals lowering the average wage. However, in the model with home

bias the majority of the pass-throughs are positive, in contrast to the mode without home bias,

where almost all of the pass-throughs are negative. The average pass-through though, is negative

in both models. In the model with home bias, the elasticity is -0.08, and the model without home

bias the elasticity is -0.6.

A model without home bias overestimates the total migration response to changes in produc-

tivities across locations. Also, it would overstate the indirect effect on real wages to those locations

non-affected by the productivity shock. These are indirectly affected by: (i) the out-migration of

those locations towards the more productive region, and (ii) the decrease in the overall price of trad-

ables.80 Neglecting the home bias might lead to wrong conclusions when analyzing counterfactual

scenarios.

1.6.6 The Effect of Home Bias in Place-Based Policies

The previous section shows that home bias matters for the mobility response of workers and the

general equilibrium effects of productivity on real wages. Similarly, policy evaluations that neglect

the home bias effect might give very different answers compared to an evaluation where home bias

is taken into account.
78In the classic Rosen-Roback framework—at least the one presented in Moretti (2011)—workers are homogenous, housing is in fixed

supply and there are no migration costs. The indirect utility of workers in location i is equal to wi − Pi
H . This corresponds to a linear

utility function in non-housing consumption where workers have to consume one unit of housing. In equilibrium, workers are indifferent

between locations. Then, an increase in productivity in location i would increase the nominal wage wi but also would increase in a same

amount the price of housing Pi
H . Thus, the increase in productivity is fully capitalized by land owners.

79Appendix 1.H shows a plot comparing the employment response between the two models. The average employment elasticity to a

local productivity shock is 30% less in a model with home bias versus a model without it.
80For an estimate of the indirect effects of productivity shocks in other locations for the U.S. see Hornbeck and Moretti (2020)
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One of such policies are place-based policies: a subsidy to the inhabitants of a particular location

financed by general taxes. In absence of productivity or amenity spillovers, such policies can be

justified as a way to redistribute income across space. Because of the concavity in the flow utility of

consumption, the total effect on overall social welfare—which is the sum of the utilities across all

locations—might increase if redistribution reduces inequality. However, a common concern with

such place-based policies is that, while aiming at some spatial redistribution of income, it also

distorts the location decisions of workers of non-targeted locations. Thus, it can drive workers

away from productive locations to poor locations, resulting in efficiency losses. Thus, the increase

on social welfare that comes from redistribution might be trumped by the efficiency losses and a

revenue neutral placed-based policy might reduce social welfare.

Which effects dominates in determining social welfare—redistribution or efficiency—depends

ultimately in how strong is the migration response of workers. Therefore, a model without home

bias—which overstates the mobility response of workers—would overstate as well the costs of a

placed based policy.

I compare the effects on social welfare of a 10% place-based labor subsidy between the model

estimated with and without home bias.81 In the exercise, I subsidize each location, one-by-one,

in both models and compare the changes in social welfare. I find that the model without home

bias—where the efficiency costs are more prevalent—finds almost always a negative effect in social

welfare. In contrast, the model with home bias finds that in the majority of the cases, a placed

based policy increases social welfare.82

Figure 11a plots, for every time I subsidize a location, the relation between the change in social

welfare when there is a home bias and when there is not. I normalize each change in social welfare

by the total subsidies spend as a proportion of output. Each dot corresponds to a subsidized

location, with the x-axis measuring the percentage change in social welfare with home bias and the

y-axis doing the same but for the scenario without home bias. The solid diagonal line corresponds

to the 45 degree line. The Figure shows that for the majority of situations, social welfare is greater

in the case with home bias. This indicates that the costs of placed-based policies are overstated in a

model without home bias.

The Figure is also divided in four quadrants by a vertical and horizontal line at zero. This divide

the situations when a policy increases welfare for both models. In the model without home bias

only in 16% of the cases social welfare increases, while in the model with home bias this is 55%. The

South-East quadrant is interesting as it collects 45% of the cases. This quadrant corresponds to the

case where the policy increases welfare in the baseline scenario but the model without home bias

predicts a reduction. The North-West quadrant shows the locations that a model without home

bias predicts that social welfare increases if subsidizing those locations in contrast to the model

with home bias, which predicts a reduction in social welfare.
81The introduction of tax policies affects the environment of the economy in two important ways. First, by collecting taxes and

distributing subsidies from a centralized position, there would be locations that are net receivers of government transfers while other

locations are net payers of taxes. In contrast to the baseline economy without policies, in the new situation trade is necessarily unbal-

anced.
82I am not taking a stance on whether these policies are the best for redistributing income. The aim of this section is to rather evaluate

the costs.
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(a) Comparison Between Models
(b) (∆ Social Welfare)/(Subsidies/Output)

Figure 11 – Response to Place-Based Subsidies. The left panel compares the social welfare gains between the

baseline economy with home bias and a a model estimated without home bias, normalized by the subsidies

as a proportion of output. Each dot corresponds to a subsidized location. The right panel presents a map

shows the change in overall social welfare by subsidizing each location, normalized by the subsidies as a

proportion of output. Locations in red mean that when subsidizing such locations, overall social welfare

decreased.

The number of dots in both the North-West and South-East represent a measure of diagnosis of

the model without home bias: it either wrongly predicts that social welfare increases—the North-

West—or that social welfare is reduced–the South-East. In 52% of the cases, the diagnostic with a

model without home bias is wrong.

The map on Figure 11b shows in red the locations where social welfare is reduced whenever

they are subsidized in the model with home bias. It shows that subsidizing attractive and populous

regions decreases overall social welfare. Although the output of manufacturing can increase by

moving people to more productive regions, the regressive redistributive nature of subsidizing rich

locations dominates, thus reducing the social welfare. Appendix 1.H plots the map of locations

that reduce social welfare in a situation without home bias. As already implied by the South-West

quadrant of Figure 11a, there is little intersection on which location reduces welfare between the

baseline and counterfactual scenario.

The previous exercise shows that the negative effects of place based policies might not be that

strong. While in the comparison I do not compute the combination of place-based policies that

maximize social welfare, it can still be informative on the consequences of place-based policies in

general.

The limited migration responses to the different policies in the presence of home bias should

extend to more general settings. A proper analysis of how these preferences affect the design of

optimal spatial tax policies, as in Gaubert et al. (2020), can be important to not overestimate, either

the effects, or the costs, of implementing such policies.
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1.7 Conclusion

In this paper I study the aggregate consequences of workers having a preference to live close to

their home. To do so, I first show that the data support the presence of a home bias in workers

migration decisions. I find that the labor flows are biased towards workers’ birthplaces. I also find,

via a gravity regression, that distance from one’s birthplace is negatively related to the labor flow

to a particular location. Additionally, I find that workers accept a wage discount for living in their

home location.

After documenting the biased labor flows, I propose a framework to accommodate my empirical

findings. I build a quantitative dynamic migration model embedded with home bias, understood

as a cost from living away from one’s home. I use data on wages and labor flows, along with the

structure of the model, to identify and estimate the different parameters of the model. Among

those, I show how to separately identify the migration costs and the home bias. I find that in the

steady state of the model, the compensation a non-native needs in order to have the same welfare

as a native is between 10 to 30 percent the compensation a migrant needs to have the same welfare

as non-migrant.

Using the estimated model I solve for the steady state and compute the average welfare per

birthplace cohort. I find that workers born within the attractive areas of Paris, Nice, or Toulouse,

have 5 to 7 percent higher welfare, in consumption terms, than the average French worker.

The fact that the home bias effect is strong should affect how economists think about public

policy programs that encourage mobility across regions by alleviating the pecuniary cost of moving.

These types of policy can include subsidizing movers, making social security rights transferable

(like in the European Union), etc. Policy makers should be cautious with the expectations on such

programs, as the mere presence of ties to one’s home could mitigate their effects. Understanding

the precise nature of these preferences is important, in order to inform policy makers about the best

policies to boost mobility and help people from economically distressed areas. Also, the presence

of the home bias might help rationalize the existence of place-based policies.
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1.A Derivations

In this appendix I derive the main equations of the model. I start by deriving the lifetime expected utility and

the conditional migration probabilities. After that, I derive the expected wage per migration cohort. Then,

I derive the expressions for comparing both the migration and home bias in terms of consumption terms to

equalize the utility to a worker who did not move. Finally, I derive the welfare equations.

1.A.1 Lifetime Utility

A worker ι with birthplace b at location i with current efficiency of θi might change jobs with probability 1− ρ.

If it changes jobs, the worker observes a single offer per location. This translate into the worker observing a

vector of log efficiency shocks Θ for the next period if it has the opportunity of changing jobs. If the worker

does not change jobs it goes into the next period with the same efficiency unit. Without loss of generality,

assume that the worker migrated to location i in the current period t. Then, the lifetime utility of worker ι is

vi
t,b(θ

i
t−1,ι, Θt,ι) = Bi + log (Ct,ι)− κi

b + βρEt

(
vi

t+1,b(θ
i
t−1,ι, Θt+1,ι)

)
+ β(1− ρ)max

k

[
Et

(
vk

t+1,b(θ
k
t,ι, Θt+1,ι)

)
− τi,k

]
,

subject to the per period/state budget constraint

Pi
t Ct,ι = wi

t exp(θi
t−1,ι).

Using the budget constraint to substitute out consumption Ct,ι and iterating forward we get the following

expression

vi
t,b(θ

i
t−1,ι, Θt,ι) = Et




∞

∑
s=0

(βρ)s




Bi + log
(

wi
t+s

Pi
t+s

)
+ θt−1,ι − κi

b

+β(1− ρ)maxk

[
Et+s

(
vk

t+s+1,b(θ
k
t+s,ι, Θt+s+1,ι)

)
− τi,k

]





 .

Define as ṽi
t,b(Θt,ι) ≡ vi

t,b(θ
i
t−1,ι, Θt,ι)−

θi
t−1,ι

1−βρ as the lifetime utility of individual ι net of the present discounted

value of efficiency units. Note that by subtracting θi
t−1,ι/(1− βρ), the net lifetime utility ṽi

t,b(Θt,ι) is not longer

a function of the state θi
t−1,ι. We can rewrite above’s expression as

ṽi
t,b(Θt,ι) = Bi + log

(
wi

t

Pi
t

)
− κi

b + βρEt

(
ṽi

t+1,b(Θt+1,ι)
)
+ β(1− ρ)max

k

[
Et

(
ṽk

t+1,b(Θt+1,ι)
)
− τi,k +

θk
t,ι

1− βρ

]
,

There are two independent sources of uncertainty for individual ι: one concerns the idiosyncratic effi-

ciency shocks, summarized at each period t in the vector Θt,ι). The second source is aggregate uncertainty,

related to possible changes in local productivity levels, and, because of the discrete nature of the model, un-

certainty in the distribution of the aggregate labor supply even after conditioning on productivity levels. As

in the main text, I summarize all of the aggregate uncertainty in the vector Zt with a conditional distribution

F(Zt|Zt−1). I assume that the vector of idiosyncratic shocks Θt,ι) is independent of Zs, for all s = 1, 2, .., t.

Let Vi
t,b ≡ EΘt

(
ṽi

t,b(Θt,ι)
)

be the expected net lifetime utility conditional on the aggregate state Zt, i.e. just

taking the expectation over the log efficiency shock vector Θt. Also, I define V
i
t+1,b =

∫
Vi

b(Zt+1)dF(Zt+1|Zt)

is the expected lifetime utility of living in location i at period t + 1. Then, taking expectations over the vector

of efficiency units conditional on the aggregate state we obtain

Vi
t,b = Bi + log

(
wi

t

Pi
t

)
− κi

b + βρV
i
t+1,b + β(1− ρ)EΘt

(
max

k

[
V

k
t+1,b − τi,k +

θk
t,ι

1− βρ

])
.

I assume the idiosyncratic log efficiency shock θi is i.i.d over time and is distributed Gumbel (Type-I

Extreme Value) with zero mean and variance equal to π2δ2

6 . Then, θi/(1− βρ) is also distributed Gumbel
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with zero mean and variance π2λ2

6 , where λ ≡ δ/(1− βρ). So this means that by adding persistence to the

model and letting agents to keep their efficiency shocks it is as if workers have realizations of shocks from a

distribution with larger dispersion. Intuitively, what this is doing is that smaller differences on efficiency unit

shocks across locations are magnified by the possibility, with probability ρ of keeping that same efficiency

shock in the future. This make locations that a priori offer similar wages to be more differentiated in net

present value. Therefore, the total labor supply response to differences in wages across locations is dampened.

In order to solve for the option value EΘt

(
maxk

[
V

k
t+1,b − τi,k +

θk
t,ι

1−βρ

])
and obtain the migration prob-

abilities, first define the following distribution:

G
i,j
t,b(v) = Pr

(
V

j
t+1,b − τi,j +

θ
j
t,ι
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< v

)
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
−


v−V

j
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λ


− γ




 ,

where the second equality comes from the Gumbel distributional assumption on θ and γ is the Euler-

Mascheroni constant.

To ease notation, define u
i,j
t,b ≡ V

j
t+1,b − τi,j +

θ
j
t,ι

1−βρ . Fix u
i,j
t,b = v. Then we have
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λ
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i,−j
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Integrating G
i,−j
t,b (v) over all possible values of v we get
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u
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)

=
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Similarly, the probability of a worker of having at most utility v, conditional on having the possibility of

changing jobs, is equal to

Pr
(
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k

ui,k
t,b ≤ v

)
= exp
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− exp
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λ
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)
∑
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(
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Taking the expectation associated with above’s probability, we get

E
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)
=
∫ ∞

−∞
v

1
λ

exp
(
− v

λ
− γ

)
∑
k

exp

(
V

k
t+1,b − τi,k

λ

)
exp

(
− exp

(
− v

λ
− γ

)
∑
k

exp

(
V

k
t+1,b − τi,k

λ

))

=
∫ ∞

−∞
v

1
λ

exp
(
− v

λ
− γ + Λi

t,b

)
exp

(
− exp

(
− v

λ
− γ + Λi

t,b

))
,
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where

Λi
t,b ≡ log

(
∑
k

exp

(
V

k
t+1,b − τi,k

λ

))
.

Now, I change variables such that
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(
− v

λ
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)
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λ
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Substituting into the expression for expected lifetime utility we get the expression in the main text

Vi
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. (29)

1.A.2 Expected efficiency units per migration cohort

To obtain the expected value of the efficiency unit of a worker, conditional on a particular migration decision,

we first obtain the following probability function
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Note that the probability in the denominator is equal to the migration probability p
i,j
t,b. Then, above’s expres-

sion is equal to
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Then the distribution of efficiency units of workers who migrated from location i to j is distributed Fréchet

with shape parameter 1/δ and scale parameter exp(−δγ)
(

p
i,j
t,b

)−δ
. 83 Given this distribution, the expected

value is equal to:
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In a similar fashion, we can obtain the distribution of log efficiency units, conditional on a migration

decision
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Naturally, the log efficiency units conditional on a migration decision is now distributed Gumbel with scale

parameter δ and location parameter −δ(log(p
i,j
t,b + γ)).84 The expected value of the log efficiency unit, condi-

tional on a worker moving from location i to j is
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I use this result later for the identification strategy, as the expected log wage of an individual with birthplace

b that moved from location i to j is
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1.A.3 Static equilibrium under symmetric trade costs and balanced trade

In what follows I will derive the system of equations that will solve for the vector of efficiency wages deflated

by the price of tradables in each location given the labor supply distribution. As shown by Allen et al. (2020b),
83That the efficiency units is distributed Fréchet is expected as the underlying distribution of the log efficiency units was distributed

Gumbel.
84Just note that the name for scale and location parameters in the Gumbel distribution will correspond to the shape and scale parameter,

respectively, in the Fréchet distribution.
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all the results follow under quasi-symmetric trade shocks. In the application trade costs are symmetric, so I

don’t do it under quasi-symmetric costs to ease notation.

First, given the Cobb-Douglas assumption on the production technology of the tradable good, the share

of expenditure on each input is constant and equal to the output elasticity with respect to each input. This

means that the total expenditures on housing by the intermediate firms in a location i is proportional to the

wage bill

Pi
H Hi

P =
η

1− η
wi Ni.

Additionally, the unit price of an input bundle for the firm is

xi =

(
wi

1− η

)1−η
(

Pi
H

η

)η

.

Similarly, given the assumption on the utility of workers, the share of expenditures in housing as con-

sumption is constant. Summing the expenditures from workers and firms we have that total expenditures on

housing is equal to

Pi
H Hi =

η + α(1− η)

(1− η)
wi Ni.

We can conclude then that the price of housing is proportional to the ratio of total wage bill wi Ni and housing

supply Hi

Pi
H ∝

wi Ni

Hi
,

while for the unit price of an input bundle we have

xi ∝
(

wi
)1−η

(
wi Ni

Hi

)η

. (30)

Now passing to the trade part of the model. I assume that the housing owners in i, live in i and spend all

their income on tradable goods. Given all the Cobb-Douglas assumptions, the total expenditures of people

residing in location i is proportional to the total wage bill.

The share of total expenditure in market j on goods from market i is

π j,i =

(
Ai/xi

)ϕ (
ψj,i)−ϕ

∑k

(
Ak/xk

)ϕ (
ψj,k
)−ϕ .

We can also have the following expression for the price of tradables in location i

(
P

j
T

)−ϕ
= C−ϕ ∑

k

(
Ak/xk

)ϕ (
ψj,k
)−ϕ

,

where C is a constant. Substituting into above’s expression we have

π j,i =
(

Ai/xi
)ϕ (

ψj,i
)−ϕ (

P
j
T

)ϕ
C−ϕ.

Define Ãi = Ai
(

Hi
)η

as a composite of both productivity and housing supply on location i. What this

is saying is that, given the cost on efficiency units of labor wi, the marginal cost can be reduced by having

higher productivity Ai or a larger supply of housing. Also define ψ̃j,i =
(
ψj,i)−ϕ

. Substituting (30) into the

expression for π j,i we get

π j,i =
(

Ãi
)ϕ (

wi
(

Ni
)η)−ϕ

ψ̃j,i
(

P
j
T

)ϕ
C−ϕ.
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Using the goods market clearing condition we have that income in location Yi is equal to

Pi
TYi = ∑

j

(
Ãi
)ϕ (

wi
(
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)η)−ϕ
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(

P
j
T

)ϕ
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j
TY j.

On the other hand, total expenditures Ei are equal to
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Ãj
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)η)−ϕ

ψ̃i,j
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T

)ϕ
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Using the assumption that trade is balanced, i.e. Pi
TYi = Pi

TEi we have

∑
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Ãj
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Define the origin and destination fixed effects as follow

F i
O ≡

(
Ãi
)ϕ (
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(
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)η)−ϕ

F j
D ≡

(
P

j
T

)ϕ
P

j
TY j.

Then we can rewrite the balance trade condition as

∑
j

F j
OF i

Dψ̃i,j = ∑
j

F i
OF

j
Dψ̃j,i.

Under the assumption that trade costs are symmetric, i.e. ψ̃j,i = ψ̃i,j, Allen et al. (2020b), using the Perron-

Frobenius theorem, show that the previous expression implies that the destination and origin fixed effects

are equal up to a constant, meaning

F i
D ∝ F i

O ⇐⇒
(

Pi
T

)ϕ
Pi

TYi ∝
(

Ãi
)ϕ (

wi
(

Ni
)η)−ϕ

. (31)

Define the wage deflated by the price of tradables

Wi ≡ wi

Pi
T

. (32)

Substituting the expression for the deflated wage into (31) and rearranging, we get an expression of the wage

per efficiency unit as a function of the deflated wage, the labor supply and fundamentals, up to a constant

wi ∝

((
Wi
)−ϕ (

Ãi
)−ϕ (

Ni
)1+ηϕ

)−ϕ̃

, (33)

where ϕ̃ ≡ 1
1+2ϕ and I used the fact that Yi ∝ wi Ni.

Coming back to the good markets clearing condition, and using the fact that total income is proportional

to the wage bill, we get

wi Ni = ∑
j

(
Ãi
)ϕ (

wi
(

Ni
)η)−ϕ

ψ̃j,i
(

P
j
T

)ϕ
C−ϕwjN j.

Substituting for P
j
T using (32) and rearranging we get

(
wi
)1+ϕ (

Ni
)1+ϕη (

Ãi
)−ϕ

= C−ϕ ∑
j

ψ̃j,i
(

W j
)−ϕ (

wj
)1+ϕ

N j.

Substituting (33) into above’s expression and rearranging we obtain

(
Wi
)ϕ̃ϕ(1+ϕ) (

Ni
)(1+ηϕ)(1−ϕ̃(1+ϕ))

= ∑
j

ψ̃j,i
(

Ãi
)ϕ
(

Ãj

Ãi

)ϕϕ̃(1+ϕ) (
W j
)ϕ(ϕ̃(1+ϕ)−1) (

N j
)1−ϕ̃(1+ϕ)

,

where we have abstracted from the constant term C−ϕ, as we only care about the relative levels of the deflated

wages Wi.85 This is the expression in the main text.

85Alternatively, we can think we are solving for scaled wages W iC
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1.A.4 Lifetime utility as a function of wages deflated by price of tradables

Given the assumption on the utility function we have that the price of the final good in location i is

Pi =

(
η + α(1− η)

(1− η)α

wi Ni

Hi

)α
(

Pi
T

(1− α)

)1−α

.

Substituting into (29) we get

Vi
t,b = Bi + C̃ + α log

(
Hi
)
− α log

(
Ni

t

)
+ (1− α) log

(
wi

t

Pi
T,t

)
− κi

b + βρV
i
t+1,b + β(1− ρ)λ log

(
∑
k

exp
(

V
k
t+1,b − τi,k

)1/λ
)

where C̃ is a constant. Multiplying and dividing wi
t

Pi
T,t

by C−(1/ϕ) and defining B̃i ≡ Bi + C̃ + α log
(

Hi
)
+

1
ϕ log (C) we get the expression in the main text

Vi
t,b = B̃i − α log

(
Ni

t

)
+ (1− α) log

(
Wi

t

)
− κi

b + βρV
i
t+1,b + β(1− ρ)λ log

(
∑
k

exp
(

V
k
t+1,b − τi,k

)1/λ
)

.

(34)

1.A.5 Steady-state continuous-population economy

In the steady state, productivity levels stay constant. This, in addition to assuming a continuous population

mass for each birthplace cohort yields the model deterministic. In particular, we have Vi
t,b = V

i
t,b and the

share of workers migrating is equal to the probability. This implies as well that the total amount of efficiency

units in location i for workers of birthplace b is

N
j
b =

Γ(1− δ)

exp(γδ) ∑
i

(p
i,j
b )1−δLi

b.

Additionally, the la w of motion of labor is equal to

L
j
b = ρL

j
b + (1− ρ)∑

i

p
i,j
b Li

b ⇔ L
j
b = ∑

i

p
i,j
b Li

b.

Before setting the whole system of equations that describes the steady state equilibrium, let me define the

following variables and parameters in order to simplify notation

Ui
b = exp

(
Vi

b

)
, Ωi

b =

(
∑
k

exp
(

Vk
b − τi,k

)1/λ
)λ

, Bi = exp
(

B̃i
)1/δ

,

Ti,j = exp(τi,j)−1/λ, K
j
b = exp(κ j

b)
1/δ.
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Then, the model on the steady state with a continuous population is summarized by the following system of

equations

(
Wi
)ϕ̃ϕ(1+ϕ) (

Ni
)(1+ηϕ)(1−ϕ̃(1+ϕ))

= ∑
k

ψ̃k,i
(

Ãi
)ϕ
(

Ãk

Ãi

)ϕϕ̃(1+ϕ) (
Wk
)ϕ(ϕ̃(1+ϕ)−1) (

Nk
)1−ϕ̃(1+ϕ)

, (35)

(
Ui

b

)1/λ
= Bi

(
Wi
) 1−α

δ
(

Ni
)−α/δ

Ki
b

(
Ωi

b

) β(1−ρ)
δ , (36)

(
Ωi

b

)1/λ
= ∑

k

Ti,k
(

Uk
b

)1/λ
, (37)

Li
b

(
Ui

b

)−1/λ
= ∑

k

Ti,k
(

Ωk
b

)−1/λ
Lk

b, (38)

Ni
b

(
Ui

b

) δ−1
λ

= ∑
k

(
Ti,k
)1−δ (

Ωk
b

) δ−1
λ

Lk
b, (39)

Ni = ∑
b

Ni
b, (40)

Lb = ∑
k

Lk
b. (41)

Notice that I have not included the constant for average efficiency units Γ(1−δ)
exp(γδ)

as this will only affect the

level of the deflated wages Wi and this won’t affect neither the migration decisions, and therefore, the total

supply of efficiency units per location.

1.A.6 Comparison of migration and home bias

In this section I derive the compensating variation in consumption such that migration and home bias would

be canceled. This allows me to compare them.

First I derive the compensating variation in consumption a migrating worker needs to have to have the

same utility as an individual that stayed in the same location. Consider two individuals, indexed 1, 2, with

birthplace b. One just moved to location j from location i while the other remained in the same location. We

can then ask how much is the average difference in log efficiency units such that the migrating individual

gets the same expected utility as the one that stays.86 Formally, we need to find θ
j
1,t−1 − θ

j
2,t−1 such that

EΘt−1

(
vi

t,b(θ
i
t−1,1, Θt,1)− τi,j − vi

t,b(θ
i
t−1,2, Θt,2)

)
= 0.

This implies

1
1− βρ

(
θ

j
1,t−1 − θ

j
2,t−1

)
− τi,j = 0 ⇐⇒ θ

j
1,t−1 − θ

j
2,t−1 = (1− βρ)τi,j,

where all the location aggregate variables cancel each other and the difference in efficiency units are scaled

up by 1/(1− βρ) because there is the possibility for the worker of not changing jobs. Given the assumption

of log utility in each period, the migrating worker needs to consume ξ
i,j
τ = exp

(
τi,j)(1−βρ) − 1 percentage

more than the staying worker in order to have the same utility.

Looking at the home bias, I can do a similar exercise by comparing two staying individuals, where the

difference is that one is native to the location they are living, while the other was born somewhere else. There

is a caveat, though. While the two individuals live in the same location, when comparing the differences in

86Recall that at the time of the migration decision, workers don’t know the realization of efficiency units for the subsequent period
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utility, all location specific terms will cancel. However, the option value for residing in a particular location is

different for individuals with different birthplaces, so we need to adjust for that difference in option values.

Consider then, two individuals, again indexed 1, 2 with birthplace j and b, respectively. Both individuals

stayed in their current location b. Assume they have the same utility and that the economy is in the steady

state with a continuous population. Then, the difference on expected utilities is given by

EΘt−1

(
vb

t,j(θ
b
t−1,1, Θt,1)− vb

t,b(θ
b
t−1,2, Θt,2)

)
=

1
1− βρ

(
θb

t−1,1 − θb
t−1,2 − κb

j + β(1− ρ) log
(

Ωb
j −Ωb

b

))
= 0

⇔
(

θb
t−1,1 − θb

t−1,2

)
= κb

j − β(1− ρ) log
(

Ωb
j −Ωb

b

)
.

Similarly, the excess consumption, in percentage, that a non-native individual needs to have in order to

have the same utility as a native would be given by

ξb
κ,j = exp

(
κb

j − β(1− ρ) log
(

Ωb
j −Ωb

b

))
− 1.

I can also consider a lower bound of excess consumption by not adjusting the differences in option values,

i.e. ξ̃b
κ,j = exp

(
κb

j

)
− 1. It is a lower bound as the option value of the native is, in general, larger than the

non-native.87 The benefit of this approach is that I do not require to assume the economy is in steady state.

Additionally, I do not require to solve for the model in order to compute the lower bound as it is only a

function of the estimated home bias.

1.A.7 Welfare derivations and Birthplace Premium

In this section I derive the expressions to compare welfare along the different counterfactual scenarios. I will

assume only the steady state/continuous population case. This section follows closely Caliendo et al. (2019).

First, we can rewrite the expected lifetime utility net of current efficiency units Vi
b as

Vi
b = Bi + log

(
Ci
)
− κi

b + βVi
b + β(1− ρ)λ log

(
∑
k

exp
(

Vk
b −Vi

b − τi,k
)1/λ

)
,

where Ci is the real consumption that can be obtained with a unit of efficiency wage. Recall that the proba-

bility of choosing to stay within the same location, conditional on changing jobs, is equal to

pi,i
b =

exp
(
Vi

b

)1/λ

∑k exp
(
Vk

b − τi,k
)1/λ

,

and therefore

λ log

(
∑
k

exp
(

Vk
b −Vi

b − τi,k
)1/λ

)
= −λ log pi,i

b .

Substituting into the value function and rearranging, we get

Vi
b =

1
1− β

(
Bi + log

(
Ci
)
− κi

b − β(1− ρ)λ log pi,i
b

)
.

However, Vi
b is the average lifetime-utility net of current efficiency units. To get the actual average welfare

we need to take into account the heterogeneity in efficiency units. Recall that the migration decision is made

at the end of every period and efficiency shocks are independent across period. Thus, I abstract from the

vector of location specific efficiency shocks that govern the migration decision of the subsequent period.

87Exceptions might occur if for some combinations of locations the home bias is actually negative. This would mean that some natives

have utility from leaving their birthplace. This would be extremely rare in the data.
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In other words, I will look at the expected lifetime utility after a migration decision is made, but before the

realization of the next period shocks. With some abuse of notation we can rewrite the expected lifetime utility

of an individual with log efficiency θi that just decided to move from location j to i as

vi
b(θ

i) = Bi + log
(

wi

Pi

)
− κi

b + θi + βρvi
b(θ

i) + β(1− ρ)λ log

(
∑
k

exp
(

Vk
b − τi,k

)1/λ
)

= Vi
b +

θi

1− βρ
.

The previous expression adjusts the expected net lifetime utility Vi
b with two terms. The first one θi

1−βρ

corresponds to the net present value of log efficiency unit that a worker can get by moving to the current

location. the second term just adds the migration cost as I am looking at the utility at the moment of the

migration decision. The current workers who moved to location i from any other location constitute a fraction

(1− ρ) of the total workers with birthplace b that live in i. Now consider the workers who move to location i

from location j. Their average utility is given by

E

(
vi

b(θ
i)
∣∣∣ j→ i

)
= Vi

b −
δ

1− βρ
log p

j,i
b = Vi

b − λ log p
j,i
b .

So the average utility is larger the smaller the migration flow p
j,i
b as this would indicate only individuals with

high efficiency units moved to i.

From the fraction of workers ρ that could not moved, there is a fraction (1− ρ) that moved to i from j two

periods ago. So their expected utility is the same as above. We can do the same reasoning for the previous

periods. Aggregating all the workers who have moved from j to i in any period we have that their total utility

is

(1− ρ)
∞

∑
s=0

ρs
[
Vi

b − λ log p
j,i
b

]
p

j,i
b L

j
b =

(
Vi

b − λ log p
j,i
b

)
p

j,i
b L

j
b.

The average utility of workers with birthplace b that live in location i is

Ṽi
b =

1
Li

b
∑

j

(
Vi

b − λ log p
j,i
b

)
p

j,i
b L

j
b = Vi

b −
λ

Li
b

∑
j

log
(

p
j,i
b

)
p

j,i
b L

j
b.

So the average utility per birthplace cohort is

Ṽb = ∑
i

Li
b

Lb
Ṽi

b ,

and the average utility of the whole population is

Ṽ = ∑
b

Lb

L
Ṽb = ∑

b
∑

i

Li
b

L
Ṽi

b .

The birthplace premium, denoted ζb, is defined as the compensating variation in consumption such that

∑
i

[
1

1− β

(
Bi + log

(
Ci (1− εb)

)
− κi

b − β(1− ρ)λ log pi,i
b

) Li
b

Lb
− λ

Lb
∑

j

log
(

p
j,i
b

)
p

j,i
b L

j
b

]
= Ṽ

⇔ log (1− εb) = (1− β)
(
Ṽ − Ṽb

)
⇔ εb = 1− exp

(
Ṽ − Ṽb

)1−β .
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1.B Solution algorithm

In this section I explain with more detail the algorithm to solve the model. Before doing so, I will present the

following theorem, which is a special case of Theorem 1 in Allen et al. (2020a).

Theorem 1. Consider the following system of N × K system of equations

K

∏
h=1

(
xh

i

)βkh
=

K

∑
j=1

Kk
ij

[
H

∏
h=1

(
xh

j

)γkh

]

where {βkh, γkh} are known elasticities and
{

Kk
ij > 0

}
are positive kernels related to bilateral frictions. Let B ≡ [βkh]

and Γ ≡ [γkh] be the K × K matrices of the known elasticities. Define A ≡ ΓB−1 and the absolute value (element by

element) of A as Ap. If the spectral radius of Ap (i.e. the absolute value of the largest eigenvalue, denoted ρ̃(·)) is strictly

smaller than one, i.e. ρ̃ (Ap) < 1, there exists a unique strictly positive solution to the above’s system. Moreover, the

unique solution can be computed by a simple iterative procedure. If ρ̃ (Ap) = 1, then the solution is unique up to a

constant.

Theorem 1 gives us the conditions to apply a multidimensional contraction mapping to solve the model.

I use this result to solve efficiently parts of the model and for parts of the identification, as detailed in section

1.C.2. Note than in the case of K = 1 the result is just an application of a standard contraction mapping.

I will describe how the sequence of the algorithm goes. Lets first assume a vector of total efficiency units

per location {Ni,(0)}i∈I . Then, using Theorem 1, we can use the system of equations characterized by (35) to

solve for the vector of deflated wages {Wi}i∈I , conditional on a vector of efficiency units supply per location

{Ni}i∈I using an iterative method as88

∣∣∣∣
ϕ(ϕ̃(1 + ϕ)− 1)

ϕ̃ϕ(1 + ϕ)

∣∣∣∣ =
ϕ

1 + ϕ
< 1.

Substituting (36) into (37) we get

(
Ωi

b

)1/λ
= ∑

k

Ti,kBk
(

Wk
) 1−α

δ
(

Nk
)−α/δ

Kk
b

(
Ωk

b

) β(1−ρ)
δ .

Similarly, conditioning on wages and total efficiency units per location, we can use Theorem 1 to find the

vector of option values {Ωi
b}i∈I that solve the system above using an iterative method as

β < 1 and ρ ≤ 1 =⇒ 0 <
λβ(1− ρ)

δ
=

β(1− ρ)

1− βρ
< 1.

Now, given a vector of total efficiency units per location, deflated wages and option values, we can

characterize the overall welfare {Ui
b}i∈I . This in turn let us characterize all the migration probabilities (and

thus shares as there is a continuum of workers) p
i,j
b . Define the migration matrix for workers with birthplace b

as Pb, where (Pb)(i,j) = p
i,j
b . Note that Pb is a stochastic matrix (i.e. the sum of each row is equal to 1). Define

Lb as the vector of length I where the ith element is equal to Li
b. Then, the system of equations characterized

by 38 can be rewritten as

Lb = P′bLb. (42)

Note that system of equations (42) is an eigensystem and the vector Lb is equal, up to a constant, to the

eigenvector associated to the unit eigenvalue. As Pb is a stochastic matrix, then the largest eigenvalue of P′b
is equal to one. By the Perron-Frobenius theorem, this eigenvalue is unique and there is a unique positive

88Recall ϕ̃ = 1/(1 + 2ϕ).
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eigenvector that is associated to that eigenvalue. So to solve the previous system I find the eigenvector

associated to the largest eigenvalue, which is a very fast procedure.89 In order to pin down the level of

employment for each birthplace, I use equation (41).

Finally, given the vector of labor allocation and the migration probabilities p
i,j
b , I can compute the total

efficiency units per location {Ni,(1)}i∈I using equations (36), (39) and (40). The solution is found when

{Ni,(0)}i∈I = {Ni,(1)}i∈I .

The strategy to solve for the model is summarized in the algorithm below.

Algorithm 1 Model Solution

1: Initiate with a guess {Ni,(0)}i∈I .

2: Initiate {Wi,(0)}i∈I and dW > tolW .

3: while dW > tolW do

4: Get Wi,(1) with

Wi,(1) =







(
Ãi
)ϕ

(
Ni,(0)

)(1+ηϕ)




1−ϕ̃(1+ϕ)

∑
k

ψ̃k,i
(

Ãk
)ϕϕ̃(1+ϕ) (

Wk,(0)
)ϕ(ϕ̃(1+ϕ)−1) (

Nk,(0)
)1−ϕ̃(1+ϕ)




1/ϕ̃ϕ(1+ϕ)

5: dW =
∥∥∥{Wi,(0)}i∈I , {Wi,(1)}i∈I

∥∥∥
∞

.

6: Wi,(1) →Wi,(0).

7: end while

8: for b ∈ I do

9: Initiate {Ωi,(0)
b }i∈I and dΩ > tolΩ.

10: while dΩ > tolΩ do

11: Get Ω
i,(1)
b with

Ω
i,(1)
b =

(
∑
k

Ti,kBk
(

Wk,(1)
) 1−α

δ
(

Nk,(0)
)−α/δ

Kk
b

(
Ω

k,(0)
b

) β(1−ρ)
δ

)λ

.

12: dΩ =
∥∥∥{Ωi,(0)

b }i∈I , {Ωi,(1)
b }i∈I

∥∥∥
∞

.

13: Ω
i,(1)
b → Ω

i,(0)
b .

14: end while

15: Form matrix Pb with (Pb)(i,j) = p
i,j
b .

16: Find eigenvector vb associated with the unit eigenvalue of P′b
17: Get Li

b =
vb,(i)

∑k vb,(k)
Lb.

18: Get Ni
b = ∑k

(
pk,i

b

)1−δ
Lk

b.

19: end for

20: Get Ni,(1) = ∑b Ni
b for all i ∈ I .

21: Check if {Ni,(1)}i∈I ≃ {Ni,(0)}i∈I . If not, go back to step 1 and update {Ni,(0)}i∈I

89Borrowed this idea from Eckert (2019).
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1.C Identification details

In this section I discuss some of the details of the identification strategy. Some of the parameters I calibrate

them externally, so in this section I take them as given. In particular these are the parameters concerning the

static equilibrium part of the model plus the discount factor.

The observed migration share is the frequency estimator of the conditional migration probability. It is

an unbiased estimator, so I can exploit this fact plus the closed form expression of the conditional migrating

probabilities to form some moment conditions. These moment conditions would correspond to the first order

conditions of a Poisson regression, or Poisson PseudoMaximum Likelihood (PPML).

The conditional migration probability can be rewritten as an expression that depends on a destina-

tion/period/birthplace and origin/period/birthplace specific fixed effects as well as the migration cost.

In this Appendix I provide sufficient conditions for identification of these migration costs. In the main

text I give an intuitive explanation with an example. Here I give a more formal treatment on the matter.

I don’t enter into details about the identification of the migration elasticity as it is already treated in the

main text.

Using the closed form expression of the conditional migration probabilities to form the conditional like-

lihood function of observing the labor flows in the data. Taking the identified migration costs as given, I

can estimate the location/birthplace/period specific expected utilities by treating them as fixed effects of the

likelihood function. This allows me to obtain estimates of the conditional migration probabilities to be used

later on the identification of the home bias.

In this Appendix I also show the details to obtain expression (1.19) of Proposition 3 from the first order

conditions of the maximum likelihood problem. I prove that the solution for such system of equations is

unique. While this system of equations is ubiquitous in the migration and trade literature and the uniqueness

of the solution has been proved, at least from Ahlfeldt et al. (2015), I show the flexibility of Theorem 1 by

offering and alternative and shorter proof. The details on the computational algorithm to solve for the system

are left for Appendix 1.D.

I will abstract from the discussion of the persistence parameter and the distribution of fundamentals as

they are already explained in the main text. I give more details on the identification of the migration costs,

the migration elasticity and the home bias.

1.C.1 Migration Costs

Using labor flows ℓi,j
t,b or migration shares s

i,j
t,b does not matter for the identification arguments. Then, I present

the results of this section using the migration shares as there is less notation.

The following defines the graph for a particular year/birthplace

Definition 3. Let I denote the set of all locations. Then, the graph for year t and birthplace b is an ordered pair

Gt,b = (I , Et,b), where Et,b = {(i, j)|(i, j) ∈ I2 and s
i,j
t,b > 0}.

Note that in the above definition, I am allowing for the graph to have loops, meaning I allow for edges

to have the same destination as the origin. Also note that Gt,b is defined as a directed graph, which means

that each edge has an orientation. This is in contrast to undirected graphs where edges only show association

between nodes.

It is useful to have a formal definition of the location pairs who fulfill the conditions of Proposition 1.

Definition 4. For birthplace cohort b and period t, let data of labor flows from an unordered pair of locations (i, j) in

I2 fulfill the conditions of Proposition 1. Then I say that (i, j) is directly identified on Gt,b.
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Figure 12 – Different cases for weakly connectivity between T and L through P.

I can define a graph collecting all the directly identified pairs for each birthplace cohort and year

Definition 5. Denote all the set of directly identified pairs on Gt,b as E d
t,b. Then, the graph of directly identified pairs is

the sub-graph Gd
t,b ⊆ Gt,b, Gd

t,b = (I , E d
t,b).

In contrast to the graph Gt,b, the sub-graph of directly identified pairs Gd
t,b is an undirected graph, i.e., edges

have no orientation. Also it has no loops.

I can collect all the different directly identified pairs for every birthplace and year on a single graph.

Definition 6. The graph of directly identified pairs is defined as Gd =
⋃

t,b Gd
t,b.

This graph summarizes all the pair combinations where, for some birthplace/year, the data satisfies the

conditions of Proposition 1.

A path from i1 to iN on a graph is a sequence of nodes (i1, i2, ..., iN) where an edge connects every

subsequent pair of nodes (in, in+1) and all nodes are distinct. Two nodes are weakly connected in Gt,b if there

exists a path connecting i and j. Denote the set of all paths from i to j on graph Gt,b as P(i, j). Similarly, the

set of all the paths from i to j on the graph of directly identified pairs Gd is defined as Pd(i, j). Now I can

state the following result, which gives sufficient conditions for identification of the migration cost between

two pairs of locations that are not directly identified.

Proposition 7. The migration cost τi,j/λ < ∞ is identified if, for some graph Gt,b

1. s
i,j
t,b > 0 or s

j,i
t,b > 0, i.e. there is an edge connecting i and j in Gt,b.

2. i and j are weakly connected in Gt,b ∩ Gd, i.e. Pt,b(i, j) ∩ Pd(i, j) 6= ∅.

3. For some Pd
t,b ∈ {Pt,b(i, j) ∩ Pd(i, j)}, sk,k

t,b > 0 for all k in Pd
t,b.

Proof. I restrict the proof to the three location example as it is without loss of generality. The proof proceeds by

looking at all the possible cases of directed graphs for three locations that fulfill the proposition’s conditions.

Consider then three locations, which are T, P and L. Let T-P and P-L be directly identified. Fixing the flow

from T to L, there are four possible cases where T and L are weakly connected through P. There are all
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represented in Figures 12a to 12d. The reasoning when the flow is from L to T is symmetrical. I then check

how each of the four cases identifies the migration cost between T and L. I abstract from period and birthplace

subindices to keep notation simple.

(a) The first case is represented in Figure 12a. Then, pT,L

pT,T
pP,T

pP,L = exp(−τT,L/λ− τP,T/λ + τP,Lλ).

(b) The second case is represented in Figure 12b. Then, pT,L

pT,P
pP,P

pP,L = exp(−τT,L/λ + τP,T/λ + τP,Lλ).

(c) The third case is represented in Figure 12c. Then, pT,L

pT,T
pP,T

pP,P
pL,P

pL,L = exp(−τT,L/λ− τP,T/λ− τP,Lλ).

(d) The fourth case is represented in Figure 12d. Then, pT,L

pT,P
pL,P

pL,L = exp(−τT,L/λ + τP,T/λ− τP,Lλ).

As the migration costs from P to T and P to L are identified, then in each of the previous cases, the migration

cost from T to L is also identified. For the case where the flow is from L to T, is just the same four cases

above, just interchanging L for T and viceversa.

The argument for identification contained in Proposition 7 is recursive. Starting from the directly identi-

fied pairs, I can do one iteration with above’s argument and check which pairs are identified. I can then use

all the pairs that are identified and do another iteration to check with new pairs are identified and so on, and

so on.

Algorithm to find identified pairs

Whether a particular graph fulfills the conditions spelled out in Proposition 7 is conceptually simple, the

development of a recursive algorithm that uses the previously identified migration costs to show identification

of other pairs might be somehow trickier–although not very difficult.

Before jumping into the description of the algorithm, let me present some basic concepts on graph theory

and some notation. For any graph with N nodes, re-brand each node such that it corresponds to an integer

from 1 to N. An adjacency matrix of a graph, is a matrix where the entry (i, j) = 1 if there is an edge

connecting i to j. Undirected graphs have corresponding symmetric adjacency matrices. Normally, graphs

have no loops, so the diagonal entries on the adjacency matrix are zero. For my context, I allow the graphs

to have loops, so some diagonal entries would be equal to one. Also, denote as ” ∗ ” the element-wise

multiplication operator. Algorithm 2 presents the steps for finding recursively which pairs are identified

according to Proposition 7. It consists of two parts. First, it finds all the directly identified pairs. Then, it

proposes a recursive algorithm to find the identified pairs given the information of previously found pairs.
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Algorithm 2 Find pairs that fulfill Identification Conditions

1: Let At,b be the corresponding adjacency matrix of graph Gt,b.

2: Ad
t,b ← At,b, for all t, b.

3: for all t, b do

4: if
(
Ad

t,b

)
(i,i)

= 0 then

5:
(
Ad

t,b

)
(i,j)

= 0 for all j.

6:
(
Ad

t,b

)
(j,i)

= 0 for all j.

7: end if

8: end for

9: Bd
t,b ← Ad

t,b ∗
(
Ad

t,b

)′
, for all t, b.

10: M̃0 ← ∑t,b Bd
t,b.

11: M̃0 ← M̃0 > 0.

12: M0 ← M̃0. diff= 1

13: while diff 6= 0 do

14: for all t, b do

15: Awc
t,b ← Ad

t,b +
(
Ad

t,b

)′
.

16: Awc
t,b ← Awc

t,b > 0.

17: Aaux
t,b ← Awc

t,b ∗M0.

18: Form the path matrix of Aaux
t,b , denoted P aux

t,b , where entry (i, j) = 1 if there is a path between i and

j; equal to zero otherwise.

19: M1 ← P aux
t,b ∗ At,b + M0.

20: M1 ← M1 > 0.

21: M0 ← M1.

22: end for

23: M̃1 ← M0.

24: diff =
∥∥M̃1, M̃0

∥∥
∞

.

25: M̃0 ← M̃1.

26: end while
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1.C.2 Conditional migration probabilities

The first part of this section I give the proof for Proposition 3. From the maximization of the log-likelihood

1.18, the first order condition with respect to D j
t+1,b is

∑
i

ℓ
i,j
t,b

∑k exp(Dk
t+1,b − τi,k/λ)

exp(D j
t+1,b − τi,j/λ)




exp(D j
t+1,b − τi,j/λ)∑k exp(Dk

t+1,b − τi,k/λ)−
(

exp(D j
t+1,b − τi,j/λ)

)2

(
∑k exp(Dk

t+1,b − τi,k/λ)
)2




−∑
i

∑
h 6=j

ℓ
i,h
t,b

∑k exp(Dk
t+1,b − τi,k/λ)

exp(Dh
t+1,b − τi,h/λ)




exp(Dh
t+1,b − τi,h/λ) exp(D j

t+1,b − τi,j/λ)
(

∑k exp(Dk
t+1,b − τi,k/λ)

)2


 = 0,

⇐⇒ ∑
i

ℓ
i,j
t,b


1−

exp(D j
t+1,b − τi,j/λ)

∑k exp(Dk
t+1,b − τi,k/λ)


−∑

i
∑
h 6=j

ℓ
i,h
t,b

exp(D j
t+1,b − τi,j/λ)

∑k exp(Dk
t+1,b − τi,k/λ)

= 0

⇐⇒ ∑
i

ℓ
i,j
t,b = ∑

i

exp(D j
t+1,b − τi,j/λ)

∑k exp(Dk
t+1,b − τi,k/λ)

∑
h

ℓ
i,h
t,b ⇐⇒ L

j,dest
t,b = ∑

i

exp(D j
t+1,b − τi,j/λ)

∑k exp(Dk
t+1,b − τi,k/λ)

L
i,orig
t,b .

Note that the expression above depends on the fixed effects of a particular period and birthplace class.

Identification boils down to prove uniqueness of the system formed by the first order conditions of the fixed

effects of particular year and birth cohort. To do so, I introduce the following useful Lemma

Lemma 1. Consider a mapping of the form:

An = ∑
m∈N

ωnKm,n

∑n′∈N ωn′Km,n′
Bm ∀n ∈ N .

For any strictly positive vectors {An} {Bn}, where ∑n An = ∑n Bn and any strictly positive matrix K, where entries

(K)(m,n) = Km,n, there exists a unique (to scale), strictly positive vector {ωn}.

Proof. The proof for the Lemma is just a corollary of the proofs of Lemmas A.6 and A.7 in the appendix of

Ahlfeldt et al. (2015). However, to show the flexibility of Theorem 1, I propose an alternative, and I think

easier, proof. To see this, first rewrite above’s expression as

(ωn)
−1 = ∑

m∈N

Bm

An
Km,n (zm)

−1

zm = ∑
n′∈N

Km,n′ωn′ .

Using the same notation as in Theorem 1, notice then that A = ΓB−1 is

(
−1 0

0 −1

)
.

Then, the spectral radius of Ap is ρ̃(Ap) = 1. Thus, by Theorem 1, there exists a unique up to scale solution

to the system above.

The system of equations formed by the first order conditions falls into the class of systems where Lemma

1 applies. Thus, the fixed effects are identified up to a constant.

76



1.C.3 Prices of non-housing goods and Productivities/Housing

In order to get the prices of non-housing goods across locations, I need to solve for the source effects, defined

as Si =
(

Ai/xi
)ϕ

.

The system formed by equalizing total expenditures with total income takes the form of the equation in

Lemma 1. Therefore, given the efficiency wages, the observed wage bill, the trade elasticity ϕ, the trade costs

ψj,k and the output elasticity η, I can identify, up to a constant, the source effects.

The price index of the non-housing goods can then be written in terms of the source effects as

P
j
T = C−1

(
∑
k

Sk
(

ψj,k
)−ϕ

)−1/ϕ

,

where C is a constant. The fact that the price of non-housing goods can be expressed directly as a function of

the source effects is a consequence that the price (and the source effects) are directly a function of the price of

an input bundle. This means that we could extend the model adding an arbitrary number of flexible inputs,

like, say, capital, and the identified source effect would not change. However, the identified underlying

fundamentals would differ.

Having identified the source effects, I can use the identified efficiency wage plus the observed wage bill to

back out a composite of both productivity and housing supply in location i. Recall that the price of an input

bundle is

xi ∝
(

wi
)1−η

(
wi Ni

Hi

)η

.

Thus, the source effect is equal to

Si ∝
(

Ai
)ϕ
((

wi
)1−η

(
wi Ni

Hi

)η
)−ϕ

⇐⇒ Ãi ≡ Ai
(

Hi
)η

∝
(

Si
)1/ϕ (

wi
)1−η (

wi Ni
)η

,

so the measure of competitiveness Ãi is identified up to a constant.

1.D Estimation details

1.D.1 Wage dispersion parameter δ

The wage of a worker can be influenced by idiosyncratic factors that are constant across locations. To control

for these, I first run a regression, for each year, of the logarithm of wage on a quadratic polynomial on age and

a gender dummy, for the entire sample –switchers and non-switchers alike. From this regression, I collect the

residuals and keep only those of the workers who switch jobs across two subsequent years. I use the residual

for the job switchers as my dependent variable to estimate δ.

Table 11, contains the estimates for both the OLS and IV estimates.

1.D.2 Conditional migration probabilities

Estimating via maximum likelihood the destination fixed effects on (1.18) boils down to solving different

systems of equations for each birth cohort/period

L
j,dest
t,b = ∑

i

exp(D j
t+1,b − τi,j/λ)

∑k exp(Dk
t+1,b − τi,k/λ)

L
i,orig
t,b , for all i, j, h ∈ I . (43)
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Each of the systems correspond to 73 non-linear equations. While each of these non-linear systems are fairly

large, the main complication is that the total number of systems to solve is way larger. In total there are

14× 73 = 1022 systems to solve.

Although the separability of the problem is an advantage in computational terms, as it allows to easily

parallelize the algorithm, the number of systems is still too large for traditional algorithms to be a feasible

option. Trade economists have encountered this type of systems on gravity-type models, especially when

they want to invert the model: compute fundamentals such that the observed data matches the equilibrium

behavior of the model. Luckily, they have also developed tools for the quick and efficient solution of this

type of systems. In particular, Pérez-Cervantes (2014) develops a stable and fast algorithm that deals with

this type of systems. While each of the systems in my application is not very large, with only 73 unknowns,

his algorithm is also well suited for high-dimensional systems of equations.90

Before, jumping to the description of the algorithm, note that (43) implies that, as long as there is some-

one in the destination location the estimated fixed effect has to be strictly positive. This would mean that

the estimated conditional probability is also positive. To avoid problems with zeros in the estimated prob-

abilities in the next steps of the estimation procedure, I impute a value of one worker, which stayed in the

same location, for all those locations that did not have a worker of a particular birthplace in a given pe-

riod. The number of observations modified corresponds to a little more than the 1% of the total number of

locations/birthplace/periods.

Algorithm 3 describes the steps to solve for each system of equations for a particular birthplace b and

period t. I don’t include the time and birthplace subscripts to ease notation.

Algorithm 3 Pérez-Cervantes (2014) Solution Algorithm

1: Initiate with a guess {Di,(0)}i∈I . A good guess is Li,dest

∑j Lj,dest .

2: Pick adjustment parameter ηadj < 1.

3: Initiate dD > tolD.

4: while dD > tolD do

5: Form the matrix Π, with entries Π(i,j) =
exp(D j,(0)−τi,j/λ)

∑k exp(Dk,(0)−τi,k/λ)
.

6: Get

D(1) = D(0) + ηadj

[
Ldest −Π′Lorig

]
,

where D(iter) = [D1,(iter), ..., DI,(iter)]′, iter ∈ {0, 1}; Ldest = [L1,dest, ..., LI,dest]′ and Lorig =

[L1,orig, ..., LI,orig]′.

7: if mini D(1) < 0 then

8: Adjust ηadj ← c× ηadj, c < 1.

9: Go back to step 6.

10: end if

11: dD =
∥∥∥{Di,(0)}i∈I , {Di,(1)}i∈I

∥∥∥
∞

.

12: Di,(1) → Di,(0).

13: end while

90In his application, Pérez-Cervantes (2014) computes the source effects, as in (1.22), for a single system with more than 3,000 equations.
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1.D.3 Trade costs

Given the trade model sketched in the main text, the bilateral trade flow from i to j is

Xi,j =
(

xi
tψ

j,i/Ai
)−ϕ (

P
j
t

)ϕ
Γ

ϕ
E

j
t. (44)

In logarithms

log Xi,j = Oi
t +D j

t − ϕ log(ψj,i), (45)

where the first two terms are origin and destination fixed effects per period. Thus, it is a linear expression

that relates (log) bilateral trade with the trade costs. I can assume the iceberg costs are a function of some

observables. A popular choice is distance between i and j and a dummy for contiguity

ψj,i = β11 ({i, j} are neighbors) + β2 log(di,j).

Notice that running the regression of bilateral trade on a dummy of contiguity and (log) distance does not

identify separately ϕ from β1 and β2. However, to get an estimate of the trade costs across locations is not

important.

Combes, Lafourcade, and Mayer (2005), use data on commodity flows across départements and exactly this

specification to estimate trade costs. See in particular the first column of Table 3 in their paper. They use

great circle distance, which for the scale of France is almost identical to geodesic distance that I use in other

parts of the paper. The only issue is how to compute distance within the departements. This is obtained by

approximating each region as a disk upon all production is concentrated at the center and consumers are

proportionally distributed throughout a given proportion of the total land-area of the region. They choose

the proportion to be equal to 1/16, which they claim is a reasonable approximation of the concentration of

population in France. All in all, the internal distance formula is given by di,i = 1/6
√

Area/π = 0.094
√

Area,

where the Area of each departement is measured in squared kilometers.,

They estimate an elasticity with respect to distance −ϕβ2 of -1.76 and the dummy of contiguity −ϕβ1

equal to 0.98.

While they are measuring trade flows across departements, here I am using a more aggregated location

definition. To make the trade costs comparable at the location level I am using, I first obtain all the trade costs

at the departement level and then take the population weighted average for each location. I use the year 2002

as it is the closest to their sample.

1.E Details on sample selection

In the data I have information for every job that a worker had. This means that if a worker had more than

one job per year, there are more than one observations recorded for that single worker.

For every year, there is a variable that indicates if the job is the "main job" of the year or poste principale in

French. Thus, from the dataset DADS Postes I select those jobs that:

1. Have a positive before tax wage, calculated from variable sbrut.

2. The job is the main job of the worker, indicated by the variable pps.

3. There are no missing values on current location of residence (depr), previous location of residence

(depr_1) or birth departement (dep_naiss).
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4. Neither selection of departement is outside of continental France. This means that neither the current

and previous residence or individuals born outside continental France are considered. So I filter out all

the observations where any of the three departement codes is higher than 95.

5. After 2010, domestic workers were included in the sample. I remove them from that year onward

(industry code ape_4 970) to keep the different data comparable across years.

With these data, every year I run a regression of log wages on a quadratic polynomial in age and a gender

dummy, whose variable is sexe. For future users of the dataset, is important to note that the variable is not

encoded as a dummy as those individuals identified as women have a value equal to 2, and those identified

as men a value equal to 1. I then store the residuals from such regressions and use them for the estimation of

the model.

1.E.1 Identification of job switchers

The dataset also includes information on the job the worker had in the previous year. This includes date of

termination and status as "main job" for the previous year. If a worker relation is not "terminated" then the

dataset reports the value equivalent to the maximum number of working days.91 Also the worker who enters

the year with the same job (main job or not) as in the previous year would have the start date of current job

equal to the minimum. I can use this information to identify those workers who changed "main jobs" across

two years.

For a worker with a main job on a given year three options are possible

1. The job is the same main job as in the previous year.

2. The job started after January 1st.

3. The job started before January 1st but in the previous year.

For example, consider a worker who had a job from February to November of 2003. This job would be the

"main job" for that worker in year 2003. Then the same worker starts a job in December 2003. When looking

at this worker in the year 2004, we observe that the job he had on the previous year, which will correspond

to the job she started in December 2003, was not the main job. So we can conclude that the worker changed

"main jobs" from one year to the next.

If the worker started their current main job after January 1st of the current year, then we conclude she

changed jobs. A job is linked to a location, therefore all the people that changed locations are classified as

switchers as well.

Then, to identify those people that do not change "main jobs" across years they have to fulfill four condi-

tions

1. Date of termination of main job in previous period is equal to the maximum.

2. The start date of current main job is equal to the minimum.

3. The previous year job is classified as that year’s main job.

4. The worker stayed in the same location.

91The data stores dat in terms of number of days working from January 1st. The maximum number is set to be 360.
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If the worker fulfills above’s conditions, then it is classified as it she did not switch jobs.

There is a small risk of classifying incorrectly some of the workers. These would be the cases where

workers indeed finished their previous job in the last date of the previous year and started their next job

immediately after. Also notice that with this classification, some of the observations that are identified as job

switchers could just be workers re-entering the labor force and who were not working in the previous year.

This is would be the case if the tax authority has information in the departement of residence of the previous

year. This is not a problem in the eyes of the model, as these workers can be thought of newcomers that

have an opportunity to move after observing shocks for the different locations. They will affect very little

the estimation of the persistence parameter ρ that tries to capture the strength of keeping one job rather than

changes in the extensive margin of the total labor force.

1.F Birthplace as Proxy for Home

I use the birthplace as a proxy for the home location of individuals. This home location can be understood

as a location where the workers grew up, made childhood friends etcetera. For those that moved at a very

young age, the birthplace will be a wrong proxy for home.

Of course, there is no variable where individuals report which location they perceive as their home loca-

tion so we have to rely on proxies. Another proxy for home could be the location where workers first appear

in the sample, or the workers first job location. Unfortunately, the main data set is not a panel that would

allow me to get the location of workers’ first job. However, I can rely on a subsample of the data, the Panel

DADS which is 1/12th of the original DADS data that I use in the main analysis.

Using the panel data, I can get the location of the first job of each worker in this subsample. I find that

66% of the workers first appear to work in their birthplace. So for those workers the proxy location for home

would be the same.

Now, for workers that have a first location different than birthplace, it is not a priori obvious which one

should be the proxy for home, as workers entering late into the job market won’t necessary feel attached to

that location if they just moved there. Thus, I look at those workers whose first job location is different than

their birthplace and they got their first job when they were 18 years old or less. The idea is that those workers

likely grew up in their first job locations, so by considering the birthplace as their home location I would be

classifying wrongly their home location. The fraction of workers with age less or equal than 18 when having

their first job that is not in their birthplace is only 21%.

To understand to what extent birthplace is a good proxy for home location, I compare where workers live

given that they moved from their first job location. I focus, as I mentioned, on workers that had different first

job location than birthplace at age 18 or younger.

Table 9 shows, of those workers whose first job location is different than their birthplace and moved

from their first location job, the percentage that lives back in their first location job and in their birthplace at

different ages. The first row shows that only 16% lives back in their first job location before turning 20. While

this fraction is large, considering that there are 73 alternatives, it is still small compared with the fraction that

works in their birthplace. Although the small fraction living back in their home location might just reflect the

fact that workers only just moved out from the first job location to being with. What is surprising is that a

large fraction goes to their birth location. Looking at older age groups, the percentage of workers that return

to their first job location increases, although the fraction of birthplace is also large. All together what the table

shows is that for some workers, the first job location is probably the best proxy for home location. However,

even for some workers where a priori the first job location looks like the natural candidate to be the home
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Table 9 – Location of workers: First job 6= Birthplace at Age ≤ 18

% of workers living in

Age First job location Birthplace

< 20 16 45

20− 25 31 35

26− 30 28 28

31− 35 26 25

36 25 22

Note: The data comes from the Panel DADS which is a 1/12th subsample

of the DADS data used in the main analysis. I consider workers whose

first job location was different than their birthplace when they were 18 or

younger and that moved from their first job location. Each row corresponds

to the percentage of workers that live either back again in their first job

location or in their birthplace at different ages.

location, the birthplace is still attracting a large fraction. Thus, birthplace looks as good as a proxy as first

job location for workers with different first job location than bithplace at age 18 or younger. Combined with

the fact that a large fraction of workers, regardless of age, have their first job in their birthplace, males the

birthplace a good proxy for home location, at least qhen considering the alternative proxies.

1.G Alternative Identification Strategy

In this section, I spell an alternative identification strategy for both the migration and home bias, as well as

the dispersion parameter. The main difference with the identification strategy from the text is that I take

a reverse approach. First, I use the average wages to identify the compensation workers need in order to

migrate. These are related to the migration costs. Then I use these compensations along with the observed

labor flows to identify the migration elasticity.92

I exploit the closed form expression of the conditional migrating probabilities to form the conditional

likelihood function of observing the labor flows in the data. I estimate the migration elasticity via maximum

likelihood using the previously identified migration costs. In order to control for the unobserved expected

lifetime utility in the expression, I include birthplace/destination/time fixed effects in the maximum likeli-

hood. Identification follows as the maximization of such likelihood is equivalent to estimate it via Poisson

Pseudo Maximum Likelihood (PPML), i.e. a Poisson regression with the labor flows as dependent variables,

as shown by Guimaraes, Figueirdo, and Woodward (2003). It is well known that the solution of the necessary

first order conditions of the maximization problem of PPML is unique. The idea of using the PPML to esti-

mate the original parameters from the multinomial likelihood function in the context of spatial models was

introduced recently Dingel and Tintelnot (2020).

The main drawback from this strategy is that using previously estimated migration costs to identify the

migration elasticity might introduce a bias. And in the case of the maximum likelihood, this bias is not easy

to solve. In contrast, the identification of the migration elasticity in the main text corresponds to a linear

92This strategy is more closely related to that of Donaldson (2018) where he first use price differences to identify the trade costs.

Second, he uses the variation on those trade costs and observed trade flows to identify the trade elasticity.
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regression. The attenuation bias from using a regressor with measurement error is easy to solve, theoretically

and computationally, with an instrument.

Estimating the migration elasticity via maximum likelihood allows me to use the observed zero migration

flows in the data. On top of that, with the same estimation I can consistently estimate the underlying

probabilities.93 Then, I can use the probability estimates to identify the home bias. Using these estimates, I

identify the home bias just as in the main text.

1.G.1 Migration costs

With a little abuse of notation, recall that the expected log wage of an individual with birthplace b that moved

from location i to j is

E

(
log
(

wagei,j
t,b

))
= log(wj

t)− δ log(p
i,j
t−1,b).

Taking the difference with respect to the expected wage of an individual that stayed in the same location we

get

E

(
log
(

wagei,j
t,b

)
− log

(
wagei,i

t,b

))
= log(wj

t)− log(wi
t)− δ

(
log(p

i,j
t−1,b)− log(pi,i

t−1,b)
)

= log(wj
t)− log(wi

t)− δ
(

V
j
t,b −V

i
t,b

)
+ (1− βρ)τi,j,

where I have used the assumption that τi,i = 0. The expression above is intuitive. The differences between

the average log wages of people that moved away from i to location j and the people that stayed in location

i reflects overall differences in wage differences that are independent of mobility patterns, plus a component

that reflects the compensation migrating individuals need to have to justify such a decision.

Assuming that migration costs are symmetric, i.e. τi,j = τ j,i, I can use the reverse migration flow to

control for overall differences on wages in the two locations that are independent to the migration costs. This

means, using the difference on average wages of workers who went from j to i with workers who stayed in j.

Formally

E

[(
log
(

wagei,j
t,b

)
− log

(
wagei,i

t,b

))
−
(

log
(

wagej,j
t,b

)
− log

(
wagej,i

t,b

))]
= 2(1− βρ)τi,j.

Therefore, the expression above identifies non-parametrically the migration costs. The only dropback is the

data requirements. We need simultaneously people from a particular birthplace doing a migrating pattern

plus the reverse. That is why I assume that (1− βρ)τi,j is a linear function of distance.

1.G.2 Wage dispersion parameter

Recall the expression for the probability of a worker with birthplace b of moving from location i to j for a

worker with birthplace b, conditional on changing jobs

p
i,j
t,b =

exp
(

V
j
t+1,b − τi,j

)1/λ

∑k exp
(

V
k
t+1,b − τi,k

)1/λ
.

I can then form the following conditional log-likelihood function

logL
(

δ, {D j
t+1,b}

)
= ∑

t
∑
b

∑
i,j

ℓ
i,j
t,b log p

i,j
t,b = ∑

t
∑
b

∑
i,j

ℓ
i,j
t,b log




exp
(
D j

t+1,b − (1− βρ)τi,j/δ
)

∑k exp
(
Dk

t+1,b − (1− βρ)τi,k/δ
)


 ,

93Even with the inclusion of fixed effects, consistency follows as the number of fixed effects to be estimated grows at a rate of I2 =

location × birthplace, while the number of observations grow at rate I3 = origin × destination × birthplace.
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where D j
t+1,b ≡ V

j
t+1,b/λ are destination/birthplace/period specific fixed effects; and ℓ

i,j
t,b is the number of

workers who move from i to j with birthplace b at period t, conditional on changing jobs.

By using the identified scaled up migration costs (1− βρ)τi,j and controlling for the destination/period/birthplace

fixed effects I can identify the migration elasticity δ.

The conditional log-likelihood is a highly non-linear object and the identification and consistency esti-

mation of δ might be concerned. However, I can show, just as Guimaraes et al. (2003), that the conditional

likelihood and a Poisson regression extended with origin fixed effects would imply solving for the same opti-

mization problem. Identification follows because a Poisson regression has a unique solution, if such solution

exists.94

To see the equivalence between the likelihood and the Poisson regression, consider ℓi,j
t,b to be independently

distributed with

E

(
ℓ

i,j
t,b

)
= µ̃

i,j
t,b = exp

(
Oi

t+1,b +D
j
t+1,b − (1− βρ)

τi,j

δ

)
.

The log-likelihood would then be written as

logLP = ∑
t

∑
b

∑
i,j

(
−µ̃

i,j
t,b + ℓ

i,j
t,b log µ̃

i,j
t,b − log ℓ

i,j
t,b!
)

= ∑
t

∑
b

∑
i,j

(
− exp

(
Oi

t+1,b +D
j
t+1,b − (1− βρ)

τi,j

δ

)
+ ℓ

i,j
t,b

(
Oi

t+1,b +D
j
t+1,b − (1− βρ)

τi,j

δ

)
− log ℓ

i,j
t,b!
)

.

Taking the first order conditions with respect to Oi
t+1,b we obtain

∂ logLP

∂Oi
t+1,b

= ∑
j

(
ℓ

i,j
t,b − exp

(
Oi

t+1,b +D
j
t+1,b − (1− βρ)

τi,j

δ

))
= 0

and therefore

exp
(
Oi

t+1,b

)
=

ℓi
t,b

∑j exp
(
D j

t+1,b − (1− βρ) τi,j

δ

) ,

where ℓi
t,b = ∑j ℓ

i,j
t,b. Concentrating out the origin fixed effects Oi

t+1,b we get

logLPc = ∑
t

∑
b

∑
i,j

ℓ
i,j
t,b log p

i,j
t,b + ∑

t
∑
b

∑
i,j

ℓ
i,j
t,b log ℓ

i
t,b −∑

t
∑
b

∑
i

ℓ
i
t,b

= ∑
t

∑
b

∑
i,j

ℓ
i,j
t,b log p

i,j
t,b + CLP

,

where CLP
is a constant that does not depend on the parameters. Therefore, the concentrated log-likelihood

of the Poisson regression is equal, up to a constant to the original likelihood. Hence, the maximization

problem will yield the exactly same estimate. There are currently very efficient packages that allow for a fast

estimation of a Poisson regression with a large number of fixed effects.95

Consistency of the estimators follows from results on consistency on non-linear panels with two way

fixed effects, as explained by Weidner and Zylkin (2020). Moreover, the fixed effects are also consistently

estimated. Heuristically, the reason for this is that, while increasing the sample size by increasing the number

of locations increases the number of origin and destination fixed effects to be estimated at a rate I2 (location

94In principle the inly risk of identification here would be that the solution does not exists. This can happen if all the observations with

zero observations, i.e. ℓi,j
t,b = 0 are collinear. For example, if for a certain year there are zero workers from a particular birthplace/origin

in a destination. This entails less than 1 % of the combinations in my sample. In order to avoid such problems I would just assume there

is one worker who just stayed within the same destination when I have zero workers.
95I use the package fixest for R.
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× birthplace), the sample size grows at rate N3. This also means that we could consistently estimate the

migration elasticity using a single birthplace cohort. Additionally, this also means that I can obtain consistent

estimates of the underlying distribution of migration probabilities {p
i,j
t,b}, which I can then use to identify the

home bias.

1.H Additional Figures and Tables

Table 10 – Gravity regression using départements

(log) Labor flows, log L
i,j
t,b (log) Migration shares, log

(
L

i,j
t,b/ ∑k Li,k

t,b

)

PPML PPML

(1) (2) (3) (4) (5) (6)

Geodesic (km) Driving (km) Driving (hours) Geodesic (km) Driving (km) Driving (hours)

1(j 6= b) 2.318∗∗∗ 2.921∗∗∗ −2.625∗∗∗ -0.127∗∗∗ -0.124∗∗∗ −0.145∗∗∗

(0.154) (0.179) (0.031) (0.003) (0.218) (0.059)

1(j 6= b) log(db,j) −1.289∗∗∗ −1.323∗∗∗ −1.687∗∗∗ −0.004∗∗∗ −0.005∗∗∗ −0.005∗∗∗

(0.030) (0.033) (0.029) (0.000) (0.000) (0.000)

1(j 6= n) −2.554∗∗∗ −2.052∗∗∗ −7.452∗∗∗ -1.871∗∗∗ -1.353∗∗∗ −7.050∗∗∗

(0.124) (0.137) (0.029) (0.128) (0.139) (0.03)

1(j 6= i) log(di,j) −1.299∗∗∗ −1.320∗∗∗ −1.837∗∗∗ −1.349∗∗∗ −1.368∗∗∗ −1.773∗∗∗

(0.025) (0.026) (0.029) (0.024) (0.025) (0.026)

Adj. Pseudo R2 0.963 0.964 0.963 0.798 0.798 0.798

Observations 12,458,760 12,458,760 12,458,760 12,458,760 12,458,760 12,458,760

Note: This table stores the results of two models, both estimated using Poisson Pseudo Maximum Likelihood (PPML). The first model uses

the labor flows of workers with birthplace b that moved from location i to location j, L
i,j
b,t as a dependent variable. The second model uses the

migration shares L
i,j
t,b/ ∑k Li,k

t,b. For each model I use three different distance measures: geodesic distance in hundreds of kilometers, driving

distance in hundreds of kilometers, and driving time between locations in hours. I get driving distances and hours from Google Maps.

Standard errors are in parenthesis. Significance levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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(a) Selection Non-Natives (b) Selection Migrants

Figure 13 – Selection via wages after controlling for age and gender. I first run a regression in each year

of the logarithm of the wage on a quadratic polynomial of age and a gender dummy for all the workforce

and collect the residuals. The left panel compares the average residual (log) wages of non-native workers vs

native workers. Wages from both groups are normalized by the average residual (log) wage of all the sample.

The plot distinguishes two cases: when using the sample consisting of all workers and using the sample of

workers who switched jobs. The plot in the right panel is analogous to the plot in the right, but compares

residual (log) wages of migrants vs non-migrants.

Table 11 – Estimates scale parameter δ

Dependent variable: residual log waget

OLS IV

(1) (2)

δ 0.126∗∗∗ 0.145∗∗∗

(0.0002) (0.0002)

Origin/Dest./Year FE X X

Adj. R2 0.056 0.056

Observations 26,237,598 26,237,598

Note: The table shows the results of two linear regressions estimated us-

ing Ordinary Least Squares (OLS) and Instrumental Variables (IV). I first

run a regression in each year of the logarithm of the wage on a quadratic

polynomial of age and a gender dummy for all the workforce and collect

the residuals. The dependent variable is the residual of an individual who

switch jobs across years. Standard errors in parenthesis. ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01

86



Table 12 – First stage regression τi,j/λ

Dependent variable: log τi,j/λ

OLS

(1)

1(j 6= i) log(di,j) 0.965∗∗∗

(0.0057)

Origin/Dest./Year FE X

Adj. R2 0.901

R2-Within 0.862

Observations 26,237,598

Note: The table shows the results of the first stage re-

gression when instrumenting (scaled) migration costs

τi,j/λ. Standard errors in parenthesis. ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01

Figure 14 – Comparison Migration Costs. The plot compares the migration costs estimated

in a model with home bias and a model without.

Figure 15 – Local Employment Response to a Productivity Shock. The plot compares the

local employment elasticities to a productivity shock for a model estimated with home bias

and a model without.
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Figure 16 – Response to Place Based Policies, no Home Bias. The map shows the change

in overall social welfare by subsidizing each location, normalized by the subsidies as a

proportion of output, in an economy without home bias. Locations in red mean that when

subsidizing such locations, overall social welfare decreased.
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Chapter 2

The Aggregate Effects of Labor Market

Concentration

Miren Azkarate-Askasua and Miguel Zerecero1

Abstract

What are the efficiency and welfare effects of employer and union labor market power? We use data of French

manufacturing firms to first document a negative relationship between employment concentration and wages

and labor shares. At the micro-level, we identify a negative effect of employment concentration on wages

thanks to mass layoff shocks to competitors. Second, we develop a multi-sector bargaining model in general

equilibrium that incorporates employer and union labor market power. The model features structural labor

wedges that are heterogeneous across firms and potentially generate misallocation of resources. We propose

an estimation strategy that separately identifies the structural parameters determining both sources of labor

market power. We show that observing wage and employment data is enough to compute counterfactuals.

Third, we evaluate the efficiency and welfare losses from labor market distortions. Eliminating employer and

union labor market power increases output by 1.6 percent and the labor share by 21 percentage points trans-

lating into significant welfare gains for workers. Workers’ geographic mobility is key to realize the output

gains from competition.

JEL Codes: J2, J42, D24

Keywords: Labor markets, Wage setting, Misallocation
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2.1 Introduction

There is growing evidence, especially for the United States, linking lower wages to labor mar-

ket concentration.2 Indeed, if this concentration reflects monopsony power in the labor market,

standard theory predicts that establishments mark down wages by paying workers less than their

marginal revenue product of labor. On the other hand, if labor market institutions enable workers

to organize and have a say over the wage setting process, bargaining can mitigate, or even reverse,

the effect of establishments’ market power on wages.

In this paper we quantify the efficiency and welfare losses from labor market power in the French

manufacturing sector. The French case stands out over other developed countries, especially with

respect to the U.S., for having regulations that significantly empower workers over employers.3 We

therefore provide a framework that incorporates both, employer and union labor market power.

Our main result is that, holding the total labor supply constant, removing employer and workers’

labor market power increases French manufacturing output by 1.6 percent. Even if productivity and

output gains are relatively small, distributional effects are important as the labor share increases by

21 percentage points and the average wage rises by 45 percent. This wage increase translates into

median expected welfare gains of 42 percent for workers.

We proceed in three steps. First, we establish empirically that, within a same firm, establish-

ments with higher local employment shares pay lower wages for same occupations. We identify this

effect by using a competitors national mass layoff shock as an external source of variation to an

establishment’s local employment share. Second, in line with the previous empirical result and the

French labor institutional setting, we build and estimate a model where labor market power arises

from: (i) employers that face upward sloping inverse labor supplies, and (ii) workers that bargain

over the wages. Third, we use the model to quantify the efficiency and welfare consequences of

employers and workers’ labor market power.

We start by documenting the link between concentration and wages/labor shares. We use data

on French manufacturing firms from 1994 to 2007. Employer labor market power is related to the

notion of local labor markets. We define those as a combination of commuting zone, industry,

and occupation, and measure concentration at the local labor market level using the Herfindahl-

Hirschman Index.4 We find that concentrated industries have on average lower labor shares. Pass-

ing from the first to the third quartile of local labor market concentration, the labor share is reduced

by 1 percentage point.

At the establishment-occupation level, our proxy for the strength of labor market power is the

employment share within the local labor market. To explore a link between concentration and labor

payments, we need to overcome the potential endogeneity of the employment share and the wages.

Therefore, we instrument employment shares with negative employment shocks or mass layoffs to

competitors. Identification comes from residual within firm-occupation-year variation across local
2See for example Berger et al. (2019), Jarosch et al. (2019), Benmelech et al. (2018) among others.
3The French labor market is characterized by having low unionization rates but high coverage of collective agreements. This is due

to the institutional setting of the labor market that empowers union representation depending on the firm size. Section 2.3.4 provides

more detail on the French institutional setting.
4The Herfindahl-Hirschman Index is defined as the sum of the squares of employment shares.
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labor markets. Depending on the specification, the estimated elasticity ranges from −0.17 to −0.04.

That is, a 1 percentage point increase of employment share lowers the establishment wage by up to

0.17 percent.5

After presenting the reduced form evidence, we build a general equilibrium model that incorpo-

rates two elements: employer and union labor market power. First, we borrow from the trade and

urban economics literature (e.g. Eaton and Kortum, 2002; Ahlfeldt et al., 2015) and assume work-

ers have stochastic preferences to work at different workplaces. Heterogeneity of workers’ tastes

implies individual establishment-occupations face an upward sloping inverse labor supply curve

which potentially gives rise to employer labor market power. In the absence of bargaining, as there

is a discrete set of establishment-occupations per local labor market, employers act strategically

and compete for workers in an oligopsonistic fashion. Wages are therefore paid with a mark-

down which is a function of the perceived labor supply elasticity. Similarly to Atkeson and Burstein

(2008), this elasticity in turn depends on the employment share within the local labor market. The

framework without bargaining is similar to Berger et al. (2019) under Bertrand competition. The

second important element of the model is collective wage bargaining. We assume wages are set at

the establishment-occupation level between establishments and unions acting symmetrically. Both

sides internalize how rents are generated and bargain with zero as outside option.

This wage-setting process leads to a distortion that is reflected in a wedge between the equilib-

rium negotiated wage and the marginal revenue product of labor. This wedge summarizes both

sides of market power as it is a combination of both, a markdown due to the oligopsony power, and

a markup due to wage bargaining. The smaller this wedge is, the larger the market power of em-

ployers relative to workers and vice-versa. Heterogeneity of the labor wedge across establishments

distorts relative wages and potentially generates misallocation of resources that decrease aggregate

output. Heterogeneity comes from two sources: (i) the dependence of the markdown on industry

specific labor supply elasticities and employment shares; and (ii) the across industry differences in

the markup due to diversity of bargaining powers. Our model nests as special cases both, a full

bargaining setting or a model with oligopsonistic competition only.

Our framework features a large number of different prices, the establishment-occupation wages

plus the product prices. We show how to solve the general equilibrium of the model in two steps.

We solve first for wages in each local labor market normalizing aggregate prices. Second, we

show how to build industry level fundamentals and solve for aggregate prices. This two-step

procedure eases the solution because the model can be rewritten at the industry level.6 We provide

an analytical characterization of the equilibrium at the industry level and along the way prove

the existence and uniqueness of the equilibrium. This allows us to use the model to back out

fundamentals that rationalize the observed data and perform counterfactuals on actual data without

worrying about multiple equilibria.

After the model set-up, we discuss how to identify and estimate the model parameters. We have
5This corresponds to a reduction of roughly 1000 euros (at 2015 prices) per year if we pass from the first to the third quartile of the

employment share distribution.
6The intuition behind this is that after solving for wages for given industry and economy-wide constants, we can fully characterize the

allocation of labor and capital within each industry. This fact, combined with the information about the establishment-level fundamentals,

allows us to aggregate the model at the industry level with corresponding industry-level fundamentals.
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two types of parameters: the ones related to the labor supply and bargaining, and the ones related

to technology. Regarding the labor supply, we assume that workers face a sequential decision: in

a first stage, they observe their preferences for different local labor markets and choose the one

that maximizes their expected utility; in a second stage, they observe their preferences to work for

different employers and choose the establishment. Therefore, these labor supplies depend on two

key parameters that jointly determine the magnitude of employers’ labor market power: a within

local labor market elasticity and an across local labor market elasticity. They govern, respectively,

the intensity of how workers respond to changes in establishment wages within a local labor market,

and how workers react to changes in average utilities (which are in turn a function of establishment

wages) across local labor markets.

The main challenge is to separately identify the union bargaining powers from the within and

across local market labor supply elasticities. We propose a strategy to estimate the labor supply

elasticities that is independent from the underlying wage setting process. Therefore, our identi-

fication strategy is readily applicable to set-ups with or without bargaining. In the first step, we

estimate the across local labor market elasticity and the inverse labor demand elasticity adapting

the identification through heteroskedasticity of Rigobon (2003). We use the insight that the across

local labor market elasticity is the only relevant elasticity for the establishments that are alone

in their local labor markets. We call these establishments full monopsonists. Their local labor

market equilibrium boils down to a standard system representing the labor supply and demand

equations. Ordinary least squares estimates present the traditional problem of other price-quantity

systems as the estimated elasticities are biased towards zero. Rather than instrumenting to get ex-

ogenous variation in the labor supply and demand, we identify the elasticities using a restriction

on the variance-covariance of structural shocks across occupations and their heteroskedasticity.7

The identifying assumption is that the covariances between the labor demand and supply shifters,

productivities and amenities respectively, are the same across occupations but not the variances.

In a second step we estimate the within local labor market labor supply elasticities by directly

estimating the labor supply for each establishment. We instrument for the wages by using revenue

productivities as labor demand shifters and estimate by conditioning on within local labor market

variation. This requires the inverse labor demand elasticity estimated in the first step. Finally, we

calibrate the industry specific technology parameters (capital and labor elasticities) and bargaining

powers to match the industry capital and labor shares.

Once the parameters are identified, we back out model primitives to perform counterfactuals.

Ideally, we would like to have the distribution of fundamentals, productivities and amenities, at

the establishment-occupation level that rationalizes the observed data on wages and employment.

Using establishment wages, we back out amenities to match employment shares. However, given

that we do not observe physical output, we can only identify the revenue productivity, which is a
7To see the notion behind Identification through Heteroskedasticity, consider the following system: y = αx + u and x = βy + v, with

var(ǫ) ≡ σǫ and cov(u, v) = 0. The system is under-identified as the variance-covariance matrix of (x, y) yields three moments (σx , σy

and cov(x, y)) while we have to solve for four unknowns: (α, β, σu, σv). Now suppose we can split the data into two sub-samples with

the same parameters (α, β) but different variances. Now the two sub-samples give us 3+3=6 data moments with only six unknowns:

the two parameters (α, β) and the four variances of structural errors. This system is identified under the additional assumption that the

variances σu, σv are different across sub-samples.
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function of two objects: the physical productivity and the price of the good. These unobserved

prices are equilibrium objects and the inability to identify the non-parametric distribution of pro-

ductivities separately from these prices has prevented most studies (e.g. Hsieh and Klenow, 2009)

from conducting full blown general equilibrium counterfactuals.

We show that the general equilibrium counterfactual can be computed using only revenue pro-

ductivities. We do that by writing the model in terms of relative changes with respect to the current

equilibrium. This approach, borrowed from the trade literature, allows us to solve for changes of

equilibrium variables relative to a baseline scenario.8 We are able to do that because changes in

revenue productivities are completely driven by changes in prices and not the individual physical

productivity part which is assumed fixed in the counterfactuals.

We quantify the efficiency losses of employers and workers’ labor market power by removing

those distortions in a counterfactual economy while keeping workers’ preferences fixed. This is a

counterfactual scenario where employers are competitive and workers have no bargaining power

leading to wages that are equal to the marginal revenue product of labor. We find that output

increases by 1.6 percent while the labor share rises by 21 percentage points. This increased labor

share goes together with wage gains that in turn translate into 42 percent median expected welfare

gains for workers. Removing the heterogeneity of wedges improves the allocation of labor by

increasing the employment of more productive establishments. The counterfactual gains in the

labor share suggest that employer labor market power is stronger than the one of the unions.

This is a consequence of the estimated low labor supply elasticities that are in the range but a bit

lower than the estimates of Berger et al. (2019) for the U.S. Interestingly, we find that removing

the bargaining process would marginally reduce output compare to the baseline. Thus, given the

presence of employers labor market power, unions seem to have no negative efficiency effects. They

do, however, have a large redistributional effect as the labor share without unions is reduced by

almost 10 percentage points.

Additionally, we find that geographic mobility is the key margin of adjustment to achieve the

baseline counterfactual productivity gains, rather than within local labor market or within industry

mobility. The intuition behind this is that there are a handful of concentrated and productive

firms in the rural areas and removing labor market power increases their wage and employment

more relative to the urban areas. We find that labor market distortions account for 13 percentage

points – about a third – of the urban/rural wage gap. Consequently, in the counterfactual with no

distortions, the total employment decreases in urban areas relative to the baseline, which changes

the geographical composition of manufacturing employment in France.

Finally, we incorporate two extensions to the model. First, we introduce an endogenous labor

force participation decision by assuming that workers may voluntarily stay out of the labor force.

Output gains in this case are slightly higher than in the baseline because wage gains increase the

labor force participation. Second, we allow for agglomeration forces within the local labor market

that also improve the output gains from the baseline counterfactual.
8Costinot and Rodríguez-Clare (2014) refer to this method as "exact hat algebra". They use this approach to compute welfare effects

of trade liberalizations using easily accessible macroeconomic data.
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Literature. This paper speaks to several strands of the literature. First, and most closely related,

is the literature on employer labor market power. Several empirical papers have documented the

importance of labor market concentration on wages, employment and vacancies (Azar et al., 2017;

Benmelech et al., 2018; Azar et al., 2018; Schubert et al., 2020; Dodini et al., 2020; Marinescu et al.,

2020). The concentration critically relates to the definition of a local labor market which most of the

papers consider as rigid entities based on combinations of location-industry or location-geography

identifiers. There have been some advances in considering the endogeneity of local labor markets

either based on labor flows (Nimczik, 2017), on commuting (Manning and Petrongolo, 2017), on

skill composition (Macaluso, 2017; Dodini et al., 2020) or broadly on workers’ outside options

(Schubert et al., 2020) inferred from labor flows. Contrary to Schubert et al. (2020) and Dodini et al.

(2020) who study the effects of market concentration incorporating outside options to the notion

of local labor markets, we take a more traditional approach and define them based on location-

industry-occupation identifiers.

The cited empirical papers focus on aggregate measures of concentration as the Herfindahl-

Hirschman Index. Our contribution to this empirical literature is to focus on establishment level

concentration and use exogenous variations to show the existence of employer labor market power

in France. We argue that firms having mass layoffs constitute a quasi-natural variation on the

employment shares of the non-affected establishments. This allows us to identify the effect of the

employment share at the local labor market, our proxy of the strength of employer labor market

power, on wages. Recently and independently to our work, Dodini et al. (2020) use involuntary

displacements such as mass layoffs and plant closures in an event study of individual labor market

outcomes. They compare differential labor market outcomes of displaced workers depending on

the concentration in their geographical area. The main difference is that in our reduced form we use

competitors’ mass layoff shocks as exogenous variation to the structure of the local labor markets

and measure the differential wages of establishments within a firm in affected and non-affected

local labor markets.

Dodini et al. (2020) study how outside options shape labor market concentration but there is

mixed recent evidence on the effects of outside options on wages. Jäger et al. (2020) find that

wages do not respond to the outside option of unemployment in Austria while recently Caldwell

and Danieli (2018) and Caldwell and Harmon (2019) find employment outside options do influence

wages, and Hafner (2020) finds wage and employment effects on French local labor markets opening

to cross border commuting. We view our work as complement to these empirical papers as our

structural model neatly incorporates the effect of outside options within the local labor market into

wages while allowing for labor market power from unions.

This paper also contributes to structural work on employer labor market power. We depart

from the traditional monopsony power framework (e.g. Manning, 2011; Card et al., 2018; Lamadon

et al., 2018) by having heterogeneous markdowns arising from market structure and by extending

it to allow for wage bargaining. The paper is complementary to Jarosch et al. (2019) in the sense

that they consider employer labor market power in a search framework. We contribute to those

papers by incorporating unions. Marinescu et al. (2020) find negative effects of local labor market

concentration on wages for new hires in France that are mitigated in more unionized industries
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like Benmelech et al. (2018) for the U.S. These findings are in line with our structural model and we

find that allowing for collective bargaining is key to match certain empirical regularities.

In contemporaneous and independent work, Berger et al. (2019) build a structural model with

oligopsonistic competition in local labor markets. We share the objective of measuring the efficiency

effects of labor market distortions and reach similar quantitative conclusions, but our contribution

differs from theirs in several dimensions: (i) our framework nests theirs as an special case without

bargaining; (ii) we incorporate occupations and use them for the identification of the structural

parameters; (iii) we allow for differences in structural parameters across industries. In particular,

within local labor market elasticities and bargaining powers are diverse across industries. Im-

portantly, this adds heterogeneity to the labor wedges and employment misallocation; (iv) on the

empirical evidence, they instrument with tax changes across states in the U.S. whereas we use labor

shocks to competitors; (v) we show that counterfactuals can be computed without the need to back

out underlying productivities and we perform the counterfactuals using actual establishment data.

This paper is related to the literature on Nash bargaining. We take the axiomatic approach

(Osborne and Rubinstein, 1990) rather than the sequential or strategic approach (Binmore et al.,

1986; Stole and Zwiebel, 1996; Brügemann et al., 2018) with offers and counter-offers. In our frame-

work, collective bargaining happens at the establishment-occupation level and the employer cannot

discriminate against different workers. Therefore, collective bargaining applies universally even if

only a subset of workers is unionized. Regarding the union bargaining power, our estimates relate

to the estimates for manufacturing from Cahuc et al. (2006) in a framework with on the job search.

The paper relates to the literature on imperfect competition in general. Our approach is similar

to Edmond et al. (2018) and Morlacco (2018) in trying to quantify the effect of heterogeneous market

power on aggregate output. They study, output and intermediate input market powers respectively

while we focus on the effects of labor market power. Recently Hershbein et al. (2020) and Wong

(2019) disentangle between output and labor market power using, respectively, a production func-

tion approach for the U.S. and France. They both find the presence of employer labor market power

even when controlling for production function heterogeneity and output market power. Karabar-

bounis and Neiman (2013) documented the falling trend of the labor share and Barkai (2016) and

Gutiérrez and Philippon (2016) the rising trend of the profit share for different countries. Output

market power has been pointed out as an explanation for the decline of labor payments out of GDP

(e.g. De Loecker et al., 2020; De Loecker and Eeckhout, 2018). Contrary to the evidence on output

market power, other studies suggest that employer labor market power is not the driver behind the

decreasing trends of the U.S. labor share (e.g. Lipsius, 2018; Berger et al., 2019) with the exception

of Hershbein et al. (2020). The focus of this paper is therefore not on labor share trends but on the

effects of employer and union labor market power in a given cross section of firms, markets and

industries.

Our model builds on the trade (Eaton and Kortum, 2002) and urban economics (Redding, 2016;

Ahlfeldt et al., 2015) literature. The establishment perceived elasticity has the same functional form

as the perceived demand elasticities in Atkeson and Burstein (2008) under Bertrand competition.

Diversity of perceived elasticities is the main source of heterogeneity of the labor wedge and is at

the origin of resource misallocation as emphasized by Hsieh and Klenow (2009) and Restuccia and
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Rogerson (2008).

Finally, the paper contributes to micro-estimates of firm labor supply elasticities. Staiger et al.

(2010), Falch (2010) and Berger et al. (2019) use quasi-experimental variation on the wages to es-

timate the firm labor supply elasticities that go from 0.1 (Staiger et al., 2010) to 5.4 (Berger et al.,

2019). Both our within and across local labor market labor supply elasticities lie in that range. Dube

et al. (2018) estimate a labor supply elasticity to firm level wage policies that are between 3 and 4

which are close to our within local labor market supply elasticities and the average elasticities in

the meta-analysis of Sokolova and Sorensen (2018). On the contrary, the median estimate in the

meta-analysis and the estimates in Webber (2015) are near 1 and therefore close to our across local

labor market supply elasticity.

The rest of the paper is organized as follows. Section 2.2 introduces the data. Section 2.3 shows

the stylized facts and our empirical strategy. Section 2.4 introduces the model. Section 2.5 discusses

details about identification and estimation of the model. Section 2.6 discusses the results from

counterfactual exercises. Section 2.7 presents extensions of the model and Section 2.8 concludes.

2.2 Data

We use two main data sources. Our first and primary source of data are firm-level fiscal records

consisting of balance sheet information including wage bill, capital stock, number of employees

and value added. This dataset is known as FICUS and it includes all French firms except for the

smallest firms declaring at the micro-BIC regime and some agricultural firms. We also use DADS

Postes, an employer-employee dataset with the universe of salaried employees. It provides firm and

establishment identifiers (SIREN and SIRET respectively). We recover the location, occupation clas-

sification, wages and employment. This data set is necessary to know how employment and wages

are distributed across different establishment-occupations of a given firm. The sample covers pri-

vate manufacturing firms in France from 1994 to 2007. A break in the industry classification series

prevents us from extending the time span of the sample.9 Additionally we use data relating the city

codes to commuting zones and Consumer Price Index data to deflate nominal variables.10 We de-

fine four broad categories of occupations: top management, supervisor, clerical and operational.11

We define a local labor market as the intersection between commuting zone, 3-digit industry and

occupation. On average throughout the sample there are 57,900 local labor markets per year.12

Our sample consists of approximately 4 million establishment-occupation-year observations that

belong to around 1.25 million firms. Details about sample selection are in Appendix 2.F.3.
9Before 1994 the wage data was imputed and after 2007 the industry classification (APE) is not consistent with previous versions. On

the contrary, the classification change between the 1993 and 2003 codes are consistent at the 3-digit level.
10The sources are ❤tt♣s✿✴✴✇✇✇✳✐♥s❡❡✳❢r✴❢r✴✐♥❢♦r♠❛t✐♦♥✴✷✶✶✹✺✾✻ and ❤tt♣s✿✴✴✇✇✇✳✐♥s❡❡✳❢r✴❢r✴st❛t✐st✐q✉❡s✴s❡r✐❡✴

✵✵✶✻✹✸✶✺✹ respectively.
11The classification is very similar to the one in Caliendo et al. (2015). We group together their first two categories (firm owners

receiving a wage and top management positions) into top management because the distinction between the two was not stable in 2002.
12We use interchangeably 3-digit industry or sub-industry throughout the text.
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Table 13 – Establishment-Occupation Summary Statistics

Mean Pctl(25) Median Pctl(75) St. Dev.

All Sample

Liot 11.1 1.1 2.3 6.2 59.5

wiotLiot 367.2 31.6 71.8 196.6 2,379.5

wiot 34.0 20.9 27.4 39.5 117.1

sio|m 0.20 0.01 0.05 0.24 0.30

(a) Monolocation

Liot 7.4 1.0 2.1 5.1 29.7

wiotLiot 216.7 29.7 64.5 159.6 925.2

wiot 32.8 20.3 26.6 38.5 35.5

sio|m 0.18 0.01 0.04 0.19 0.29

(b) Multilocation

Liot 26.6 1.3 4.1 15.1 120.3

wiotLiot 1,004.7 45.7 139.3 533.0 5,052.4

wiot 39.0 23.6 30.7 43.7 257.7

sio|m 0.29 0.02 0.11 0.48 0.35

Notes: The top panel shows summary statistics for the whole sample. Panels (a) and

(b) present respectively summary statistics of monolocation and multilocation firm-

occupations. Number of observations for All Sample is 4,151,892. For the Monolo-

cation sample is 3,359,236; and for the Multilocation sample is 792,656. Liot is full

time equivalent employment at the establishment-occupation io, wiotLiot is the wage

bill, wiot is establishment-occupation wage or wage per FTE, sio|m is the employment

share out of the local labor market. All the nominal variables are in thousands of

constant 2015 euros.

2.2.1 Summary Statistics

Table 13 presents the final sample establishment-occupation level summary statistics. The median

occupation at a given establishment has 2 employees and pays 27,439 euros per worker. Certain

firms have the same occupation in different locations, which we denote as multilocation occupa-

tions. The micro evidence in the next Section focuses on multilocation firm-occupations.13 Panels

(a) and (b) of Table 13 have the summary statistics of occupations belonging to monolocation and

multilocation firms. Occupations in firms with establishments at multiple locations have larger

average number of employees of 27 versus 7 average employees for firms with establishments at a

single location. In both groups, the distribution of employment is concentrated in few large em-

ployers, as both medians are smaller than the means. Firms with multilocation occupations pay

wages per capita that are 15% higher than the monolocation ones.

Manufacturing firms belong to 97 3-digit industries or sub-industries that are present in 364

different commuting zones. We denote the 3-digit industries as h and the commuting zones as n.

Table 14 contains summary statistics of sub-industries for the year 2007, which is the year we use
13The multilocation definition is occupation specific. A firm can have both monolocation and multilocation occupations.
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Table 14 – Sub-industry Summary Statistics.

Variable Mean Pctl(25) Median Pctl(75) St. Dev.

Nh 2,840 493 1,261 2,639 4,530.5

Lh 30,466 7,559 15,070 50,036 33,899.3

wh 34.6 29.6 33.0 37.531 6.9

LSh 0.52 0.48 0.53 0.58 0.10

KSh 0.26 0.17 0.23 0.32 0.13

Notes: There are 97 3-digit industries, or sub-industries, in the sample. Nh is the

number of establishments per 3-digit industry h, Lh is total employment of h, wh is

the average establishment wage of h, LSh is the labor share and KSh is the capital

share. We get the capital shares following Barkai (2016). All the nominal variables

are in thousands of constant 2015 euros.

for our counterfactuals. The average 3-digit industry labor share is 52% and the share of capital is

26%.14 Taking those averages, the profit share would be around 22%. We see that variation across

sub-industries in size and labor productivity is important but more limited in average wage per

establishment wh. Number of establishments Nh and total employment Lh are about 5 times higher

passing from the first to the third quartile (from percentile 25 to 75), average wage increases by

27%.

We define a local labor market based on location, industry and occupation combinations. The

choice is guided by the observed transition rates in the data where, conditional on changing one

of the dimensions, occupational transitions are the most common followed by changes in industry.

Table 29 in Appendix 2.F.1 shows the transition rates along the location, industry and occupation

dimensions. Following those transition rates, the local labor market, denoted by m, is a combination

of commuting zone n, 3-digit industry h and occupation o. We take the standard approach of

defining local labor markets as rigid entities and abstract from flexible labor markets as in Nimczik

(2017) for Austria, or how easy is to change to similar occupations, as considered by Macaluso

(2017) and Schubert et al. (2020) using rich mobility data coming from resumes in the U.S.

Table 15 presents summary statistics for local markets in 2007. The median local market is

small and has only 2 establishments and 10 employees. This is a consequence of the handful

of manufacturing firms that are present in the countryside demanding certain occupations. One

example of a local labor market are the blue collar workers working in the food industry in Lourdes,

close to the Pyrenees. The median local labor market is concentrated with a Herfindahl-Hirschman

Index (HHI henceforth) of 0.68.15 The HHI is very similar (0.69) if we consider wage bill shares sw
io|m

instead of employment shares sio|m. High median local labor market concentrations do not imply

that most of the workers are in highly concentrated environments but rather that there are few local

labor markets with low concentration levels and high employment. Further summary statistics on

establishment and firm level are in Appendix 2.F.1.
14We follow Barkai (2016) to compute the capital share.
15The Herfindahl of local labor market m ranges from the inverse of the number of competitors (1/Nm) if all the establishments have

the same shares to 1. A local labor market can have a HHI of almost one if one establishment has virtually all the employment.
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Table 15 – Local Labor Market Summary Statistics. Baseline Year

Variable Mean Pctl(25) Median Pctl(75) St. Dev.

Nm 4.76 1 2 4 14.4

Lm 51.0 2.8 9.4 34.9 196.2

wm 36.6 24.3 30.2 42.5 36.1

ŵm 36.2 24.1 30.0 42.2 25.6

HHI(sio|m) 0.67 0.38 0.68 1.00 0.32

HHI(sw
io|m) 0.68 0.39 0.70 1.00 0.32

Notes: There are 57,940 local labor markets in the year 2007. Nm is the number of

competitors in the local labor market m, Lm is total employment in m, wm is the mean

wiot of the establishment-occupations in m, ŵm is the weighted average wage at m

with weights equal to employment shares, HHI(sio|m) and HHI(sw
io|m) are respectively

the Herfindahls with employment and wage shares. All the nominal variables are in

thousands of constant 2015 euros.

2.3 Empirical Evidence

This section provides suggestive evidence of employer labor market power in France and presents

the French institutional setting. We start by documenting some stylized facts on labor market

concentration and the labor share at the industry level. Those are complemented with establishment

level estimates that explore the link between wages and concentration. We later present evidence

on the institutional framework of French labor market and the importance of wage bargaining.

2.3.1 Labor Market Concentration and the Labor Share

We start by establishing the relationship between aggregate concentration measures and the labor

share. A standard measure of concentration is the Herfindahl Hirschman Index (HHI). From our

definition of local labor market m, the HHI of market m at time t, HHImt, is the sum of the squared

employment shares of the plants present in m at a given year. Labor share at the 3-digit industry

level, LSht, is the ratio of the wage bill over value added at time t. Due to data restrictions of observ-

ing value added only at the firm level, we cannot compute labor shares at the local labor market

level. We therefore build a sub-industry concentration index HHIht by taking the employment

weighted mean of HHImt across different local labor markets.16

We run the following linear regression:

log(LSh,t) = δb,t + β log(HHIh,t) + εh,t. (2.1)

Table 16 presents the results. In general, the results indicate that more concentrated sub-
16The HHI index at market m and year t is: HHImt = ∑i∈Im

s2
io|m where shares at the market are accounted as shares of full time

equivalent employees and Im is the set of all firms in the sub-market m. The sub-industry concentration index HHIht is:

HHIht =
1
|Mh| ∑

m∈Mh

HHImt
Lmt

Lht
,

where |Mh| is the number of local labor markets that belong to h, Lm is the local labor market employment and Lh is the 3-digit industry

employment.
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Table 16 – Concentration and Labor Share

Dependent variable: log(LSh,t)

(1) (2) (3)

log(HHIh,t) −0.064∗∗∗ −0.054∗∗∗ −0.056∗∗∗

(0.013) (0.013) (0.014)

Industry FE N Y N

Industry-year FE N N Y

Observations 1357 1357 1357

R2 0.017 0.290 0.343

Adjusted R2 0.017 0.280 0.170

Notes: This table presents estimates of equation (2.1). Column (1) presents the es-

timate without any fixed effect. column (2) shows the exercise with industry fixed

effects and column (3) has industry-year fixed effects. The dependent variable is the

logarithm of 3-digit industry h labor share log(LSh,t) at time t. log(HHIh,t) is the

logarithm of the employment weighted average of the local labor market Herfindahl

Index. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

industries have a lower labor share. Industry fixed effects capture differences across industries

in the usage of capital. The focus of the paper being the cross sectional allocation of resources we

also take industry-year fixed effects to only use cross sectional variation. Column (3) shows that the

negative relation between employment concentration and the labor share is robust to controlling

for industry and industry-year fixed effects.

This regression gives a sense of the importance of the labor wedge heterogeneity to generate out-

put and labor share losses. At face value, the estimate with industry fixed effects (column (2)) imply

a reduction of 1 percentage point of the labor share when passing from the first to the third quartile

of concentration (quartiles of HHI(sio|m) in Table 15). Estimates in column (3) with industry-year

fixed effects are very similar. The low estimated effects imply that wages, and therefore the labor

share, are not very responsive to differentiated levels of concentration. Nevertheless, one cannot

interpret that they rule out employer labor market power because in a setting where all the firms

acted as pure monopsonists facing an equal labor supply elasticity, wages (and the labor share)

would be insensitive to concentration as all establishments would have the same markdown.

The small estimated coefficient is most likely a result of two effects: the averaging across dif-

ferent local labor markets and level effects. The regression does not take into account the effect of

concentration on the average level of the labor share as this is absorbed by the fixed effects.

2.3.2 Labor Market Concentration and Wages

This section explores the relationship between employer labor market power and wages at the

establishment level. The challenge is finding a source of exogenous variation in our proxy of local

labor market power, the employment share sio|m, that will allow to estimate the effect of employer
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market power on wages or labor shares. Given our restriction of not observing value added at the

plant level, we focus on wages. In what follows, we focus on multi-location occupations where the

effects are estimated using residual variation across local labor markets within a firm-occupation-

year.17

The baseline specification is:

log(wio,t) = β sio|m,t + ψJ(i),o,t + δN(i),t + εio,t , (2.2)

where log(wio,t) is the log average wage at plant i of firm j and occupation o at sub-market m in year

t, sio|m,t is the employment share of the plant out of the market m, ψJ(i),o,t is a firm-occupation-year

fixed effect, δN(i),t is a commuting zone-year fixed effect and εio,t is an error term. Our parameter

of interest is β.

The specification controls for industry labor demand shocks with firm-occupation-year fixed

effects ψJ(i),o,t. These include, for example, trade shocks either to manufacturing as a whole or for

a particular industry. Shocks to occupation labor demand at the aggregate or firm level are also

captured by the fixed effects ψJ(i),o,t. Lastly, the commuting zone times year fixed effects δN(i),t

control for permanent differences across locations and also for potential geographical spillovers of

mass layoff shocks as stressed by Gathmann et al. (2017).

Establishment i’s and occupation o’s employment share, sio|m,t, is very likely to be endogenous to

the wages themselves. On the one hand, everything else equal, higher wages attract more workers

and therefore increase the employment share. On the other hand, if there is labor market power

on the employer side, we expect two establishments with the same fundamentals to pay differently

depending on their local labor market power. That is, everything else equal, we expect the plant

with higher employment share to pay relatively less than the one at a more competitive local labor

market. Given these endogeneity issues, we propose two different instruments for the employment

share. First, we instrument for the employment share by using lagged measures of concentration

and second, we use a quasi experimental variation of the employment shares coming from mass

layoff shocks to competitors.

Lagged Concentration Measures

We start by instrumenting the employment share by lagged concentration measures. More specifi-

cally, we instrument the employment share sio|m,t by the lagged inverse of the number of competitors

at the local labor market 1/Nm,t−1. Lagged concentration measures exclude potential endogeneity

of the market structure to current period shocks. The correlation between employment shares and

lagged concentration measures is 0.77.

Table 17 shows the results. The first two columns recover estimates of the specification (2.2)

with commuting zone (CZ) fixed effects and the last two columns with commuting zone-year fixed

effects. Columns (1) and (3) present the Ordinary Least Squares (OLS) estimates. This econometric

model reflects both labor demand and supply therefore a direct OLS estimation of (2.2) is problem-

atic and expected to be biased towards zero. We indeed find that both OLS estimates are very close
17Recall that a multi-location occupation of a firm is an occupation that is present in several establishments across the geography.
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Table 17 – Wage Regression. Multi-location firms

Dependent variable: log(wio,t)

OLS IV OLS IV

sio|m,t 0.010∗∗∗ −0.030∗∗∗ 0.007∗∗∗ −0.030∗∗∗

(0.001) (0.002) (0.001) (0.002)

Firm-Occ-Year FE Y Y Y Y

CZ FE Y Y N N

CZ-Year FE N N Y Y

Observations 792,656 733,576 792,656 733,576

R2 0.833 0.861 0.853 0.862

Adjusted R2 0.763 0.802 0.790 0.802

Notes: Columns (1) and (2) present estimates with commuting zone (CZ) fixed effects for the

ordinary least squares (OLS) and instrumental variable (IV) exercises. The instruments in this

table are lagged concentration measures
1

Nm,t−1
. Columns (3) and (4) present the analogous

with commuting zone-year fixed effects. The dependent variable log(wio,t) is the logarithm of

establishment-occupation wage at time t. sio|m,t is the establishment-occupation employment

share at time t. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

to zero and positive. Columns (2) and (4) present the results once we instrument for the employ-

ment share. Both specifications (with CZ and CZ-year fixed effects) give the same point estimates.

These estimates imply that an increase of one percentage point (p.p. henceforth) of the local labor

market share is associated with a decrease of 0.03% of the plant wage. This implies that the same

establishment passing from the first to the third quartile of the employment share distribution re-

duce 0.68% the wages. This elasticity translates into a reduction of roughly 190 euros of the median

yearly establishment-occupation wage.

Labor Shock to Competitors

We propose a second reduced form estimation to provide further evidence on the link between

labor market concentration and wages. We now instrument the employment shares by using quasi-

experimental variation coming from mass layoffs to competitors. The instrument is built by the

presence of a firm having a national mass layoff in the same local labor market as non affected estab-

lishments. We expect that a national level shock to a competitor is exogenous to the residual within

firm-occupation variation across local labor markets that identifies the effect. The main specifica-

tion is an instrumental variable regression where we compare establishment-occupations of firms

that had exogenous increases in concentration due to the competitors’ shock against establishment-

occupations that were not exposed to the competitors’ shock. Here we provide some detail of the

construction of the instruments that is complemented in Appendix 2.G.

We first need to identify the firms suffering a mass layoff. We classify a firm-occupation as

having a mass layoff if the establishment-occupation employment at t is less than a threshold κ% of
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Figure 17 – Impact of Employment Share on Wages

Notes: This figure presents the point estimates and 95% confidence bands of the OLS and IV exercises on the y-axis. The x-axis presents different thresholds

κ that define a mass layoff shock. The instrument is the presence of a mass layoff shock firm in the local labor market. We focus on non-affected competitors

(not suffering a mass layoff shock). The specification is as (2.2) with commuting zone fixed effects. Results with commuting zone-year fixed effects are in

Section 2.3.3.

the employment last year for all the firm establishments. Ideally we would like to identify firms that

went bankrupt (κ = 0). Unfortunately, we cannot externally identify if a firm disappears because

it went bankrupt or changes firm identifiers keeping the number of competitors at the local market

constant. Our instrument is a proxy to capture the impact of a firm’s large employment shock into

the competitors.18 We restrict the sample to non affected firm-occupations with establishments in

local labor markets with and without a competitor suffering a mass layoff.

The choice of κ leads to a trade-off as a lower threshold leads to considering stronger negative

shocks and the generated instrument will be cleaner, but it reduces the number of events considered.

This creates a bias-variance trade-off in the selection of the threshold. Lacking a clear candidate for

κ, we try different cut-off values.19

Results with commuting zone fixed effects are in Figure 17. OLS estimates of β from (2.2) are

in blue slightly above zero and IV estimates are in red.20 Both are plotted with 95% confidence

intervals.21 The employment share being endogenous, the OLS estimates are biased towards zero

and are in line with the column (3) of Table 17. The Figure shows clearly the trade-off in the

selection of the cutoff κ. The lower the threshold, the stronger the impact but higher the variance of

the estimated effect. We estimate an elasticity of 0.17 with κ = 20% (a loss of 80% of employment).

A one p.p. increase in the employment share causes a 0.17% decrease of the establishment wage.

This translates into a wage loss of roughly 1000 euros when passing from the first to the third

quartile of employment shares.22 For the more standard threshold of κ = 70% (reduction of 30%
18See Appendix 2.G for a graphical illustration of the identification.
19A standard value in the literature is κ =70% (e.g. Hellerstein et al., 2019; Dodini et al., 2020). That is a 30% loss of employment.
20We are restricting to firm-occupations classified as not having a mass layoff. The regression sample therefore changes depending on

κ which is why the OLS estimates change slightly with κ.
21Details of the point estimates and confidence bands are in Appendix 2.G.
22This computation is done taking the employment share differences between the percentile 75 and 25 from Table 13 for the median
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employment) the elasticity is almost divided by 4 to 0.06 which implies a twice as big reduction

as with lagged concentration measures in Table 17. As we increase the threshold the estimated

coefficient converges to the OLS estimate and the variance is reduced.

2.3.3 Robustness Checks

We perform several robustness checks by changing the instrument, the fixed effects and the defini-

tion of local labor market. Results are qualitatively unchanged.

Instrument. Panel (a) of Figure 25 in Appendix 2.G.2 shows a robustness check where the new

instrument is not binary anymore and takes into account the original employment share of the mass

layoff establishments. Panel (b) of the same Figure shows the results from the specification with

commuting zone times year fixed effects. Results are qualitatively unchanged from the baseline in

both cases.

Local Labor Market. Figure 26 in Appendix 2.G.2 does the same exercise as in the main empirical

strategy but changing the definition of local labor market. Local labor markets are here defined

with 2-digit industries instead of 3-digit industries as in the baseline specification.23

The empirical evidence up to now focused on establishing the presence of employer labor market

power of French manufacturing firms. We found that more concentrated industries have lower labor

shares and firms pay lower wages in local labor markets where they have relatively higher labor

market power. The last part of the empirical evidence aims to motivate the importance of unions

in France.

2.3.4 Unions

The institutional framework of the French labor market is characterized by legal requirements that

give unions an important role even in medium sized firms. French labor market is known to be one

where unions are relevant players, despite the fact that trade union affiliation in France is among

the lowest of all the OECD countries.24 According to administrative data, the unionization rate in

France was 9% in 2014 which is slightly below to the one in the U.S. (10.7%) and well below the

ones in Germany (17.7%) or Norway (49.7%).25

Low affiliation rates do not translate into low collective bargaining coverage for the French case.

Collective bargaining agreements extend almost automatically to all the workers, unionized or not.

That is, if an agreement is reached in a particular sector, all the workers within the sector are

covered. Table 18 presents the unionization and collective bargaining coverage rates for several

countries. This institutional framework implies that coverage of collective agreements was in 2014

as high as 98.5% in France despite the low union affiliation rates.26 This is in stark contrast to the

wage. The analogous computation with the average wage gives a wage reduction of roughly 1300 euros.
23That is, a local labor market is defined as a combination between commuting zone, 2-digit industry and occupation.
24Article in The Economist ’Why French unions are so strong’ The Economist.
25Source OECD data https://stats.oecd.org/Index.aspx?DataSetCode=TUD. Unionization rate is also denoted as union density.
26The source of collective bargaining agreements is the OECD as for unionization rates.
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Table 18 – Union Density and Collective Bargaining Coverage

Country Union Density Coverage Country Union Density Coverage

Western Europe Southern Europe

Austria 27.7 98.0 Italy 36.4 80.0

France 9.0 98.5 Spain 16.8 80.2

Germany 17.7 57.8 Americas

Netherlands 18.1 85.9 Canada 29.3 30.4

Switzerland 16.1 49.2 Chile 15.3 19.3

Northern Europe United States 10.7 12.3

Finland 67.6 89.3 Asia & Oceania

Ireland 26.3 33.5 Australia 15.1 59.9

Norway 49.7 67.0 Japan 17.5 16.9

United Kingdom 25.0 27.5 Korea 10.0 11.9

Turkey 6.9 6.6

Notes: Year 2014. All the variables are in percents. Union Density is the unionization rate which is unionized workers

relative to total employment. Coverage is the collective agreement coverage; the ratio of employees covered by collective

agreements divided by all wage earners with the right to bargain. The data comes from the OECD and the sources are

administrative data except for Australia, Ireland and United States which are based on survey data. The regions are

defined according to the United Nations M49 area codes.

U.S. collective bargaining agreements that only apply to union members and therefore coverage is

very similar to the unionization rate.

Collective bargaining can happen at different levels. Firms and unions can negotiate at some

aggregate level (e.g. industry, occupation, region) and also at economic units such as the group,

firm or plant.27 When wage bargaining happens at the firm level it affects all the workers. Most

firms that explicitly bargaining over the wages do so at the firm level (rather than at the plant or

occupation level). 92% of mono-establishment firms with a specific collective bargaining agreement

in 2010, negotiated it at the firm level. Only 9% of the multi-establishment firms with specific

agreements negotiated exclusively at the establishment level.28

Legal requirements regarding union representation depend on firm or plant size. The first re-

quirements start when the establishment reaches 10 employees and there is an important tightening

of duties when reaching the threshold of 50 employees.29 As a consequence, firm level wage bar-

gaining is common even at relatively small establishments. 52% (51%) of establishments with at

least 20 employees bargained over the wages in 2010 (in 2004) (See Table 1 of Naouas and Romans,

2014).30

Theoretically, workers organize into unions to extract rents from the firm through bargaining.

Bargaining can happen at different levels in France and here we want to inform the modeling

decisions in the next section by quantifying bargaining differences depending on industries or

occupations. We build a proxy of rents at the firm level and then compare how the correlation of

wages with rents is differentiated depending on the industries and occupations. In particular we
27Several collective agreements can coexist at a given establishment.
28Source DARES.
29The Appendix of Caliendo et al. (2015) provide a comprehensive summary of size related legal requirements in France.
30The prevalence of wage bargaining was 44% for establishments with 11 employees or more.
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compute rents at the firm level yJ(i),t by computing value added minus capital expenditures per

worker. The reduced form model is the following:

ln wio,t = γk ln yJ(i),t + εio,t,

where γk is the elasticity of wages with respect to rents and k denotes either 2-digit industry b or

occupation o, yJ(i),t is the proxy of rents at the firm level and εio,t is the error term.

Results in Appendix 2.H.1 find that the elasticities at the industry level range from 0.14 for

Metallurgy to 0.4 for Food. On the contrary, when running the same regressions per occupation the

elasticities range from 0.27 for Supervisor to 0.38 for Top management. Given the higher dispersion

of the elasticities at the industry level, we will assume differentiated bargaining powers depending

on the industry later on in the model.

The prevalence of wage bargaining in the French labor market suggests it is an important ele-

ment to incorporate into the structural model. Having established the existence of employer labor

market power and the importance of unions, next section lays out a model in line with the stylized

facts and the French labor market institutions.

2.4 Model

The economy consists of discrete sets of establishments I = {1, ..., I}, locations N = {1, ..., N} and

industries B = {1, ..., B}. Each establishment can have several occupations o ∈ O = {1, ..., O}.
Each establishment i is located in a specific location n and belongs to sub-industry h in a particular

industry b. We define a local labor market m as the combination between location n, 3-digit industry

h and occupation o, i.e. m = n× h× o.

We denote the set of establishments that are in local labor market as Im with cardinality Nm.

We define the set of all local labor markets m as M and the set of all sub-markets in industry b

(in sub-industry h) as Mb (Mh). The distribution of establishments across local labor markets is

determined exogenously. Every establishment can only belong to one location and one sub-sector

but can have several occupations and therefore belong to different local labor markets. We define

the set of sub-markets that have at least one establishment of sector b as Nb.

The economy is populated by an exogenous measure L of workers who are homogeneous in abil-

ity but heterogeneous in tastes for different workplaces. They decide their workplace (establishment-

occupation) in two steps without any restriction on mobility. First, workers choose in which local

labor market m they would like to be employed, and second, they choose in which establishment i

of that sub-market they will work. Workers do not save so they do not own any capital.

Capital and output markets are competitive. Establishments are owned by absent entrepreneurs

who rent the capital and collect the profits. We assume the economy is a small open economy

and capital is specific for each industry. Thus, the industry specific rental rates of capital Rb are

exogenous.31

31As it is a small open economy, it is not important whether the entrepreneurs own capital or not.
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Firms and workers bargain over the wages at the establishment-occupation io level. The equilib-

rium bargained wage is the solution to a reduced form Nash bargaining problem. We assume that

establishments and unions are symmetric. Both have zero threat points and internalize how the

marginal cost changes when moving along the labor supply curve. Null outside options for work-

ers are not common in the literature but the assumption is in line with new evidence of insensitivity

of wages to the value of nonemployment (Jäger et al., 2020).32

Having a discrete set of establishments per local labor market means that when bargaining, both

parties internalize the effect of their wages on the labor supply of their most immediate competitors.

This reflects the idea that competition for labor is mostly local. Geography in our model is only

important to define local labor markets.

In the following we first set up the production side of the economy and workers’ labor supply

decisions. Second we present equilibrium wages in the oligopsonistic competition case (in the

absence of bargaining) and finally we incorporate bargaining to the model.

Production

The final good Y is produced by a representative firm with an aggregate Cobb-Douglas production

function using as inputs a composite good Yb for each industry b:

Y = ∏
b∈B

Y
θb
b , (2.3)

where θb is the elasticity of the intermediate good produced by firms in sector b and ∑b θb = 1. Profit

maximization implies that the representative firm spends a fixed proportion θb on the industry

composite Yb:

PbYb = θbPY. (2.4)

The final good price, which we choose as the numeraire, is equal to:

P = 1 = ∏
b∈B

(
Pb

θb

)θb

.

Firms produce in a perfectly competitive goods market. Pb is the price of the homogeneous good

produced by every firm in sector b, Yb is their production and P is the price of the final good. Yb is

the aggregate of output of all the firms in that sector:

Yb = ∑
i∈Ib

yi, (2.5)

where Ib is the set of establishments that belong to industry b. The establishment production func-

tion yi is an aggregate of occupation productions. Establishment i produces using occupation o

specific inputs, labor Lio and capital Kio, with a decreasing returns to scale technology. Output elas-

ticity with respect to labor βb and capital αb are industry specific and establishment-occupations

are heterogeneous in their total factor productivity. We assume that occupations are perfect sub-

stitutes and their output is aggregated linearly. That is, total establishment output yi is the sum of
32We show in Appendix 2.A.4 that the same equilibrium wages arise with a different bargaining protocol where employer labor market

power is incorporated through workers’ outside options.
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occupation specific outputs yio. Decreasing returns to scale in the occupation output yio generate

an incentive to produce using several occupations.

Establishment i’s output, yi, is defined as:

yi =
O

∑
o=1

yio =
O

∑
o=1

ÃioK
αb
io L

βb
io . (2.6)

The choice of this particular production function is motivated by tractability and empirical reasons.

The linearity of the aggregation within establishments allows for the separability of different local

labor markets.33 The second reason is data motivated. The absence of a particular occupation in

an establishment can be rationalized by having null productivity in that particular occupation. An

alternative specification where labor is a Cobb-Douglas composite of occupations is at odds with

the pervasive prevalence of missing at least one occupation category. The median establishments

lacks at least one occupation. Lacking a particular occupation, those establishments would not be

able to produce if labor is a Cobb-Douglas composite of occupations, unless we were to assume

establishment-specific output elasticities. Appendix 2.I lays out the model and proofs with a Cobb-

Douglas production function.

The separability of local labor markets also requires restricting the inverse elasticity of labor

demand to be equal across different industries. We assume that output elasticities with respect to

capital αb and labor βb are such that: βb
1−αb

= 1− δ, where δ ∈ [0, 1] is a constant across sectors. This

specification nests constant returns to scale when δ = 0. As long as 0 < δ < 1 the establishment

faces decreasing returns to scale within occupations. This assumption together with the linearity of

the production function give us separability of the local labor markets. This is further discussed in

Section 2.4.4.

Substituting optimal demand for capital, the establishment-occupation production is:

yio = F
αb(1+εbδ)
b AioL1−δ

io , Aio ≡ Ã
1

1−αb
io

(
αb

Rb

) αb
1−αb

, (2.7)

Aio is a transformed productivity of io that incorporates elements coming from the optimal demand

of capital and Fb is a transformed industry b price.34 Details of these derivations are in Appendix

2.A. From now on we work with the production function after substituting out the capital.

Labor Supply

We now present worker preferences that give rise to upward sloping establishment-occupation

specific inverse labor supplies. A worker k derives utility by consuming the final good ck and by

the product of two idiosyncratic utility shocks: one establishment-occupation specific preference

shifter zkio and another one common for all establishments in local labor market m, ukm. The utility

of a worker k working for establishment i at occupation o in local labor market m is:

Ukio = ckzkioukm. (2.8)

33The solution and characterization of the model are in Section 2.4.4.

34Fb = P
1

χb
b , χb = (1− αb)(1 + εbδ) is the transformed industry price.
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Following Eaton and Kortum (2002) in the trade literature and Redding (2016) and Ahlfeldt et al.

(2015) in urban economics literature we assume that the idiosyncratic utility shocks are drawn from

two independent Fréchet distributions:

P(z) = e−Tioz−εb , Tio > 0, εb > 1 (2.9)

P(u) = e−u−η
, η > 1, (2.10)

where the parameter Tio determines the average utility derived from working in establishment i

and occupation o. In contrast, we normalize these parameter to one for the sub-market specific

shock u. The shape parameters εb and η control the dispersion of the idiosyncratic utility. They

are inversely related to the variance of the taste shocks. We name the parameters εb and η as the

within and across labor market elasticities of labor supply. If both have high values workers have

similar tastes for different local labor markets and establishment-occupations. This in turn implies

that their labor supply is more elastic and will react more to changes in wages.

The labor supply elasticities in this framework are different from the Frisch elasticity studied

by public economists. Our baseline model features a constant level of aggregate employment and

workers do not decide the amount of hours to work but rather the workplace to which they want to

supply their labor. The Frisch elasticity of labor supply is zero in our baseline environment but yet

workers do not supply their labor inelastically to any establishment.

We assume that establishments cannot discriminate workers based on their taste shocks. This

implies that establishment i for occupation o pays the same wage wio to all its employees, leaving

the marginal worker indifferent between working in io or moving. Small wage reductions induce

the movement of the marginal worker but infra-marginal workers stay.35

The only source of worker income are wages, therefore the indirect utility of worker k is:

Ukio = wiozkioukm, (2.11)

where the last two elements are the taste shocks. A worker chooses where to work in two steps:

first, they choose their local labor market after observing local labor market shocks ukm. After

picking a local labor market, the worker then observes the establishment idiosyncratic shocks and

chooses the establishment that maximizes expected utility. Following the usual derivations as in

Eaton and Kortum (2002), the probability of a worker choosing establishment i and occupation o

is a product of two terms: the employment share of the establishment-occupation within the local

labor market sio|m and the employment share of the local labor market itself sm. We develop the

derivations in Appendix 2.A. The probability Πio = sio|m × sm writes as:

Πio =
Tiow

εb
io

∑j∈Im
Tjow

εb
jo

× Φ
η/εb
m Γ

η
b

∑m′∈MΦ
η/εb′
m′ Γ

η
b′

, (2.12)

where Φm = ∑j∈Im
Tjw

εb
jo is a local labor market aggregate, and the economy wide constant Φ is

Φ = ∑m∈MΦ
η/εb
m Γ

η
b . Γb is just an industry-specific constant. In equilibrium, the first fraction is

equal to sio|m and the second term in (2.12) is sm.

35One can view these taste shocks as mobility costs in a static model that could be present when changing jobs across the geography,

industry and occupations.
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Integrating over the continuous measure of workers L, the labor supply Lio for establishment

and occupation o is:

Lio(wio) =
Tiow

εb
io

Φm

Φ
η/εb
m Γ

η
b

Φ
L = ΠioL. (2.13)

The inverse of this labor supply is upward sloping as long as the within and across local labor

market elasticities are finite. In the limit where both tend to infinity, workers are indifferent across

workplaces and the inverse labor supply becomes flat.

2.4.1 Absence of Bargaining

To ease the exposition of our baseline model, in this section we characterize equilibrium wages in

the absence of bargaining. Given the labor supply curves with finite elasticities, establishments post

wages taking into account the (inverse) labor supply curves (2.13) they face. This monopsony power

translates into a markdown between the wages and the marginal revenue products of labor. When

the establishments solve their wage posting problem, they look at probability Πio and take into

account the effect of wages on the establishment-occupation term Tiow
εb
io and also on the local labor

market aggregate Φm. However, they take as given economy wide aggregates (Φ and L).36 The finite

set of establishments per local labor market generates strategic interaction among the competitors.

The strategic interaction within a local labor market induces oligopsonistic competition that features

a heterogeneous markdown.

The first order condition for the establishment-occupation wage io under oligopsonistic compe-

tition is:

wMP
io =

eio

eio + 1
βb AioL−δ

io P
1

1−αb
b , (2.14)

where eio = εb (1− sio|m) + η sio|m is the perceived labor supply elasticity. This expression is sim-

ilar to Card et al. (2018) with the difference that we have variable perceived elasticities that arise

from the strategic interaction between establishments. The fraction eio
eio+1 in equation (2.14) is the

markdown and it is defined as:

µ(sio|m) =
εb (1− sio|m) + η sio|m

εb (1− sio|m) + η sio|m + 1
. (2.15)

In the absence of bargaining, the wedge between the marginal revenue product of labor and the

wages boils down to a markdown (2.15).37 We denote this object in short notation as µio.

As long as workers have less elastic labor supplies across local labor markets than across es-

tablishments within a given local labor market (i.e. as long as η < εb), the markdown (2.15) is a

decreasing function of the employment share sio|m. Once an establishment is big with respect to the

nearby competitors, it internalizes that it is facing a more inelastic labor supply of workers willing

to stay and applies a markdown further away from 1. In the limit where εb and η tend to infin-

ity, establishments face an infinitely elastic labor supply and the labor market would be perfectly

competitive with a markdown µ(sio|m) = 1.

36Similar to Atkeson and Burstein (2008), this type of behavior could be rationalized either by assuming a myopic behavior of the

establishment or by having a continuous of local labor markets.
37Appendix 2.A derives this expression.
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Heterogeneous markdowns distort relative wages across establishment-occupations and there-

fore the labor allocations. By distorting the labor allocation across the production units, the hetero-

geneous markdown generates misallocation of resources and potentially reduces aggregate output

even at the case where total employment is fixed. We formalize the source of misallocation in

Section 2.4.4.38

When the markdown is constant and total labor supply fixed, labor market power does not have

efficiency consequences as it only affects the division of output into the labor share and the profit

share. This is not longer true if we were to allow an endogenous leisure or labor force participation

decision. Counterfactually increasing wages would increase total labor supply L and therefore total

output.39

2.4.2 Bargaining

We now introduce the bargaining between employers and unions.40 We assume that bargaining

happens at the establishment-occupation level and involves only wages rather than indirect utilities

because workers do not know each others’ taste shocks. Given the perfect substitutability of occu-

pations in the production function, bargaining at the occupation level is equivalent to a situation

where bargaining happens at the establishment level but there are different wage agreements per

occupation.

We assume that workers and establishments are symmetric in the bargaining protocol: first, both

parties enter the bargaining with a null outside option and, second, internalize how they generate

rents as they move along the labor supple curve. The former implies that if bargaining were to

fail, workers could not earn any income and establishments could not produce. The zero outside

option for the workers is in line with recent evidence of lack of response of wages to changes in

unemployment benefits (Jäger et al., 2020). The second assumption, where unions also internalize

how the marginal cost changes when introducing an additional worker, is behind the idea that

unions will be bargaining to extract part of the generated rents.

The bargained equilibrium wage is the solution to a reduced form Nash bargaining where the

union’s bargaining power is ϕb and the one of the establishment is 1− ϕb. Appendix 2.A.4 gives

more detail on the bargaining set up and discusses other situations that lead to the same negotiated

equilibrium wages.

The equilibrium bargained wage is:

wio =

[
(1− ϕb) µio + ϕb

1
1− δ

]

︸ ︷︷ ︸
Wedge λ(µio ,ϕb)

× βb AioL−δ
io P

1
1−αb

b︸ ︷︷ ︸
MRPL

. (2.16)

The wedge between equilibrium wages and the marginal revenue product of labor, λ(µio, ϕb) ≡ (1−
ϕb)µio + ϕb

1
1−δ , is a combination of two parts. First, the markdown µio that would be present under

38Appendix 2.H provides an illustration of the distributional and efficiency consequences.
39The constant µ = η

η+1 drives down the wages. If labor supply is endogenous, workers’ decision between consumption c and leisure

l would be distorted. Denote by w the wage under monopsonistic competition and by w̃ the wage under competitive labor market.

Worker’s maximization under endogenous labor supply leads the marginal rate of substitution to be equal to the wage rate. w < w̃ and

therefore MRSc,l ≡ Ul
Uc

= w < w̃. Meaning that workers would supply less labor than in the perfectly competitive case.
40We use interchangeably workers or unions.
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oligopsonistic competition in the absence of bargaining, and second, the markup 1
1−δ coming from

the bargaining process. The markup is a consequence of the ability of the union to extract quasi-

rents coming from the decreasing returns to scale when δ > 0 we have that 1
1−δ > 1. Bargained

wages will be above or below the marginal revenue product depending on the union’s bargaining

power ϕb and the relative strength of markdowns and markups. This comes from the fact that the

term inside brackets is a convex combination between µio < 1 and 1
1−δ > 1.

If the within local labor market elasticity εb < η, then the labor supply elasticity eio is decreasing

in the local labor market employment share. Hence, even if unions bargain over the wages, one

would observe a negative relationship between employment shares sio|m and wages wio as long as

they don’t extract all the quasi-rents i.e. as long as ϕb < 1. A desirable feature of the model is that it

nests the oligopsonistic competition only and bargaining only models as special cases. The former

is equivalent to the limit where the union’s bargaining power is zero ϕb = 0. Equilibrium wages

would be equal to a markdown times the marginal revenue product of labor wMP = µio ×MRPL.

A bargaining model without employer labor market power is encompassed when we take the

alternative bargaining from Appendix 2.A.4 and worker’s outside option is the competitive wage.

The wedge in that case is equal to: 1− ϕb + ϕb
1

1−δ = 1 + ϕb
δ

1−δ . The bargained wages incorporate

a markup over the marginal product and become wB = (1 + ϕb
δ

1−δ )×MRPL.

2.4.3 Equilibrium

For given industry rental rates of capital {Rb}B
b=1, the general equilibrium of this economy is a set

of wages {wio}IO
io=1, output prices {Pb}B

b=1, a measure of labor supplies to every establishment and

occupation {Lio}IO
io=1, capital {Kio}IO

io=1 and output {yio}IO
io=1, industry {Yb}B

b=1 and economy wide

output Y, such that equations (2.3)-(2.13) and (2.16) are satisfied ∀ io ∈ Im, m ∈ M and b ∈ B.

2.4.4 Characterization of the Equilibrium

Solving the model amounts to finding establishment wages, industry prices and allocations. In

order to simplify the solution, we restrict the labor demand elasticity to be the same across in-

dustries. That is, we assume βb
1−αb

= 1 − δ, where δ ∈ [0, 1]. This restriction together with the

assumption on the production function implies the separability of the different local labor markets

which allows us to split the solution in two. First, we take a partial equilibrium approach and solve

for establishment-occupation components normalizing aggregates above the local labor market and

show existence and uniqueness of the system of normalized wages. Second, we show that the

model can be rewritten at the industry b level with the solution to these normalized wages and

deep parameters. This last aggregate model is in turn enough to solve for industry prices.

Substituting the inverse labor supply (2.13) into (2.16) and simplifying we obtain:

wio =


βbλ(µio, ϕb)

Aio(
TioΓ

η
b

)δ




1
1+εbδ

Φ
(1−η/εb)νb
m

(
Φ

L

)νb

Fb, (2.17)

where νb ≡ δ
1+εbδ is an auxiliary parameter to ease notation.
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To gain intuition on the allocation distortions from the heterogeneous wedges we focus on two

establishments in the same local labor market. From (2.17), their relative wages are:

wio

wjo
=

(
λ(µio, ϕb)

λ(µjo, ϕb)

) 1
1+εbδ

(
Aio

Ajo

Tδ
jo

Tδ
io

) 1
1+εbδ

. (2.18)

The ratio of heterogeneous labor wedges λ(µio ,ϕb)
λ(µjo ,ϕb)

distorts the relative wages of the establishments

at the same local labor market and consequently the inverse labor supply (2.13). It is important

to note that even in the absence of the labor wedge, in equilibrium, establishments pay different

wages. This is a consequence of the workers’ idiosyncratic taste shocks. In the limit where workers

are infinitely elastic across establishments within the local labor market εb → ∞, wages would

be equalized. The same logic applies for differences across local labor markets and the respective

elasticity η.

The first order condition (2.17) can be separated in two terms. First, a sub-market m constant

(Φ(1−η/εb)νb
m

(
Φ
L

)νb
Fb); and second, an establishment-occupation specific component. We denote

this second term as:

w̃io =


βbλ(µio, ϕb)

Aio(
TioΓ

η
b

)δ




1
1+εbδ

, (2.19)

The real wage wio is therefore wio = w̃ioΦ
(1−η/εb)νb
m

(
Φ
L

)νb
Fb.

We can now establish existence and uniqueness of the system of equations (2.17) in partial

equilibrium:

Proposition 8. For given parameters {αb, βb, ϕb s.t. 0 ≤ αb, βb, ϕb < 1, ∀ b ∈ B} and 1 < η <

εb ∀ b ∈ B, 0 ≤ δ ≤ 1, transformed price Fb, constants {Φm}, Φ, total labor supply L and non-negative

vectors of productivities {Aio}io∈m and amenities {Tio}io∈m, there exists a unique vector of wages {wio}io∈Im

for every local labor market m that solves the system formed by (2.17).

Proof. See Appendix.

Proposition 8 tells us that if we take the aggregate terms as constants, then the solution for the

system (2.17) exists and is unique. Employment shares sio|m are not affected if all local labor market

wages are scaled up or down. This is a result of the wedges λ(µio, ϕb) being homogeneous of

degree zero with respect to local labor market constants. The system (2.19) has a unique solution

as we can use Proposition 8 with Φm = Φ = L = Fb = 1.

We now turn to the second step of the equilibrium characterization. Given the solutions to

the establishment-occupation components we build industry level labor supplies and productivity

measures. We can then write the model at the industry b level.

Aggregating the individual labor supplies (2.13), the industry labor supply is Lb = Φb(wb)
Φ

L,

where Φb(wb) = ∑m∈Mb
Φm(wm)η/εb . wb and wm are, respectively, vectors of wages for industry

b and local labor market m. Then, Phib is just a function aggregating wages at the industry b level.

At this stage we do not know the wages for industry b wb, but rather the normalized wages w̃b (see
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Proposition 8). However, the following holds Φb(wb) = Φb(w̃b)F
ψbη
b

(
Φ
L

)1−δ
. Thus, the industry b

labor supply Lb is

Lb(F) =
Φb(wb)Γ

η
b

Φ(wb)
L =

F
ψbη
b Φ̃bΓ

η
b

∑b′∈B F
ψbη
b′ Φ̃b′Γ

η
b′

L, ψb =
1 + εbδ

1 + ηδ
. (2.20)

where Φ̃b = Φb(w̃b) and F = {Fb}b∈B is a vector of transformed prices. So given the solution for all

the normalized wages, the industry labor supplies Lb are just a function of the transformed prices

F.

Starting from the establishment-occupation output (2.7) we aggregate up to industry output:

Yb = F
αb(1+εbδ)
b AbL1−δ

b , Ab = ∑
io∈Ib

Aios1−δ
io|ms1−δ

m|b , (2.21)

where Ab is an employment weighted productivity and Fb is the transformed industry price. Solv-

ing the model now amounts to solving the system of intermediate good demand (2.4) to find

industry prices. Using the final good production function (2.3) and the intermediate good demand

(2.4), we obtain

F
1+εbδ
b AbLb(F)

1−δ = θb ∏
b′∈B

(
F

αb′ (1+εb′ δ)
b′ Ab′Lb′(F)

1−δ
)θb′

. (2.22)

Steps to get to this expression are in Appendix 2.A.5. Having the solution for normalized wages we

can leave the industry labor supply Lb and total output Y as a function of the transformed prices

F = {Fb}b∈B .

Collecting all these expressions for the different industries forms a system of B equations with

B unknowns.41 By solving for the vector of transformed prices F we can back out the rest of the

variables in the model. Note that the system of equations is unchanged irrespective of the aggregate

level of employment L because the final good production function being constant returns to scale

and industry employment Lb is linear on aggregate labor supply.42

Given the solution for normalized wages, we can think of industry productivity Ab and the

aggregator for normalized wages Φ̃b as additional parameters at the industry level. The following

proposition characterizes the solution for this system as a function of these parameters.

Proposition 9. For any set of parameters {βb, θb s.t. 0 ≤ βb, θb < 1, ∀ b ∈ B}, 0 ≤ δ ≤ 1, {ψb ≡
1+εbδ
1+ηδ }b∈B , non-negative vectors {Ab}b∈B and {Φ̃b}b∈B , there exists a unique vector of transformed prices

F such that solves the system formed by (2.22) and it’s characterized by:

Fb = XbC
1

ψb(1+η) , (2.23)

Xb =

(
θb

Ab(Φ̃bΓ
η
b )

(1−δ)

) 1
ψb(1+η)

, C =

(
∏

b′∈B

(
θb′X

−χb′
b′

)θb′
) 1+η

∑b′∈B θ
b′ (1−α

b′ )(1+ηδ)

for all b ∈ B.

Proof. See Appendix.
41Recall that B is the number of different 2-digit industries.
42This will be useful in the extension with endogenous labor force participation in Section 2.7.
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Proposition 9 provides an analytical solution for the transformed industry prices. Given the

aggregations of the establishment-occupation components up to the industry level, the solution of

the prices is unique and is characterized in closed form.

Proposition 8 showed the existence and uniqueness of the establishment-occupation compo-

nents. A useful characteristic of those components is that they are homogeneous of degree zero

with respect to local labor market aggregates. We therefore have that the normalized wages (or

establishment-occupation components) are independent of industry prices. By taking together

Propositions 8 and 9 we can therefore conclude that there exists a unique solution to the model

for any set of valid parameters and vectors of productivities and amenities.

2.5 Identification and Estimation

In this section, we describe the identification strategy, the estimation procedure and present the

results. We have two types of parameters: (i) related to the labor supply and bargaining, and (ii)

related to technology. The labor supply and bargaining parameters are the within and across local

labor market elasticities ({εb}B
b=1 and η respectively) and the workers’ bargaining powers ({ϕb}B

b=1).

The technology parameters are: the inverse elasticity of the labor demand (δ), the industry output

elasticities ({αb}B
b=1, {βb}B

b=1) and the elasticities of intermediate goods in the final good production

function ({θb}B
b=1, {βb}B

b=1). Given our restriction δ, we only need to estimate either the capital

elasticities {αb}B
b=1 or the labor ones {βb}B

b=1.

We lay out a recursive identification strategy in three steps. First, we identify the across local

labor market labor supply elasticity η and the inverse elasticity of labor demand δ by exploiting

differences in the variance-covariance matrix of structural shocks across occupations. Second, we

estimate the within local labor market labor supply elasticities {εb}B
b=1 by estimating the labor

supply equation while instrumenting for the wages. Finally, we calibrate the output elasticities of

capital {αb}B
b=1 to match industry capital shares. Then, we calibrate the union bargaining powers

{ϕb}B
b=1 to match the industry labor shares, and we calibrate yearly industry elasticities with respect

to intermediate good in the final good production function to match 2-digit industry output in the

data.

We start the identification of global parameters by taking advantage of the presence of establishment-

occupations with sio|m = 1 in the data. We name those establishment-occupations that are alone in

a particular local labor market as full monopsonists. We restrict the sample to full monopsonists

for the first estimation step. Being alone in their local labor markets, the only firm specific labor

supply elasticity in play is the across local labor market one η. Identification of the within local la-

bor market elasticities εb requires to focus on the establishment-occupations competing with others

in their local labor markets.

Full monopsonists being the only players in the local labor market, the markdown part of the

labor wedge is constant and equal to µ(s = 1) = η
η+1 . Their labor demand is:

wio =

[
(1− ϕb)

η

η + 1
+ ϕb

1
1− δ

]
βbP

1
1−αb

b AioL−δ
io , (2.24)
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and the labor supply they face is:

Lio =
T

η/εb
io w

η
ioΓ

η
b

Φ
L. (2.25)

Similar labor supply and demand systems can be formed for each occupation. This system suffers

from standard identification issues when we have simultaneous equations as independent identifi-

cation requires different instruments shifting only one of them.

Lacking such instruments, we follow the identification through heteroskedasticity approach of Rigobon

(2003) to identify the across local labor market labor supply elasticity η and the inverse elasticity of

labor demand δ. Our identification strategy is based on restrictions on the variance-covariance ma-

trix of structural shocks. First, we assume that the variances of the shifters differ across occupations,

i.e., we assume heteroskedasticity. To gain intuition of how identification through heteroskedastic-

ity works, consider a simple demand and supply system. Now assume we start increasing the

variance of the supply shifter relative to the variance of the demand. Then, the new observed scat-

ter describing price-quantity pairs will be more tilted towards the demand. This variation allows

to identify the parameters. In our preferred specification, we group the occupations into two cat-

egories, white collar (top management and clerical) and blue collar (supervisor and operational),

and assume that the covariance between the demand and supply shifters (productivity and amenity

respectively) are constant within each of the two categories. This assumption reflects the idea that

amenities such as working hours, repetitiveness of the tasks or more general working environments

are similarly related to productivity within our two categories.

Taking logarithms and demeaning by substracting the industry b average per year, the system

formed by (2.24) and (2.25) for occupation o is:



ln(Liot)

ln(wiot)


 =

1
1 + ηδ




1 −η

δ 1







η

εb
ln(Tiot)

ln(Aiot)




We estimate the variance covariance matrix of the left-hand side, employment and wages per occu-

pation, from the data. The restriction we impose is that the covariance between the labor demand

shifter (the productivity) and the labor supply shifter (the amenity) is constant across occupations

within the same category. Equalizing the covariances for each category we obtain a system of two

equations that do not depend on the within local labor market labor supply elasticity εb anymore

and depends only on η and δ. More details about this identification argument are in Appendix 2.D.

The second step is devoted to the estimation of the within local labor market labor supply

elasticities εb. Those are estimated exploiting the labor supply equation of non full monopsonists.

The labor supply they face (2.13) in logs is:

ln(Liot) = εb ln(wiot) + fmt + ln(Tiot),

where fmt is a local labor market times year constant. At this point of the estimation the amenities

Tio are unobserved. The usual exclusion restrictions when running this regression requires that the

conditional expectation of the error term (here, the amenity) is equal to zero. Everything else equal,

higher amenity establishments pay lower wages violating the exclusion restriction. We therefore
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instrument for the wages using a proxy Â of firm productivity.

Ât =
PbtYjt

∑J(i),t L1−δ
iot

,

where Yjt is value added at the firm j in year t and J(i), t denotes the set of establishments belonging

to firm j. The first estimation step did not require independence of the structural shocks. In order

to minimize the potential of endogeneity bias coming from the correlation between amenities and

productivities, we use a lagged instrument instead of the contemporaneous one.

In the final step we calibrate the capital elasticities, the union bargaining powers, we non-

parametrically recover amenities and productivities, and we calibrate the elasticities of the final

good production function. We start the final step by calibrating the capital elasticities to target the

average industry capital shares. We follow Barkai (2016) to construct the industry interest rates or

required rates {Rbt}B
b=1 per year to build yearly capital shares.43 From the first order condition for

capital, the industry b capital share of output is:44

RbtKbt

PbtYbt
= αb.

We calibrate αb such that Et

[
RbtKbt
PbtYbt

|b
]
= αb. Given our restriction of constant inverse labor demand

elasticity δ, we back out the output elasticities with respect to labor by using βb
1−αb

= 1− δ.

The union bargaining powers are pinned down by industry labor shares. In the model, labor

share of any establishment i and occupation o at period t is:

LSio =
wioLio

Pbyio
= βbλ(µio, ϕb), (2.26)

where the only parameter left is ϕb in the wedge function λ(µio, ϕb) = (1− ϕb)
εb(1−sio|m)+ηsio|m

εb(1−sio|m)+ηsio|m+1 +

ϕb
1

1− δ
. Writing the analogous at the industry level, the union bargaining power ϕb is pinned

down by the average industry labor share.45 When constructing the theoretical labor share, we

assume that given the estimated parameters, we later perfectly match the observed wages of es-

tablishments and labor allocations. We do not target the unobserved establishment-occupation

value added and therefore neither the 3-digit industry value added measures.46 Amenities and

revenue productivities are non parametrically identified to match wages and labor allocations in

equilibrium.

We recover non-parametrically establishment-occupation TFPRs (revenue TFPs) using the wage

first order conditions. We observe employment and nominal wages at the establishment-occupation

level from the data. Equation (2.16) in nominal terms is:

Ptwiot = βbλ(µiot, ϕb) PtF
1+εbδ
bt AiotL

−δ
iot , (2.27)

where Ptwiot and Liot are observed and βbλ(µiot, ϕb) depends on the estimated parameters and

observed employment shares. Equation (2.27) makes clear that given the observed nominal wages
43Details are in Appendix 2.F.4.
44This is derived in Appendix 2.A.
45The model aggregation of the labor share is in Appendix 2.A.5 and the industry markdown is characterized in equation (41).
46We could in principle also do the reverse if the occupation specific value added were observed in the data.
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Table 19 – Main Estimates

Param. Name Estimate Identification

η Across labor market elast. 0.42 Heteroskedasticity

δ 1 - Returns to scale 0.04 Heteroskedasticity

{εb} Within labor market elast. 1.2 - 4 Labor supply

{βb} Output elast. labor 0.57 - 0.85 Capital share and δ

{ϕb} Union bargaining 0.06 - 0.7 Industry LS

and employment, one can only back out transformed TFPRs, Ziot = PtF
1+εbδ
bt Aiot, that are a function

of the establishment-occupation physical productivity Aiot and prices PtF
1+εbδ
bt .47 Details of how we

back out amenities Tiot to ensure that we match employment are in Appendix 2.D.3.

We calibrate the elasticities of the final good production function {θb}b/inB for every year of the

sample such that the industry expenditure shares are equal to the shares of industry value added

in the data. Table 27 in Appendix 2.E has the calibrated elasticities and interest rates for 2007,

our baseline year for the counterfactuals. The next Section presents the estimation results and the

goodness of the fit.

2.5.1 Estimation Results

Table 19 shows the estimation results of the main parameters. The most important parameters of

the estimation are arguably the labor supply elasticities and the union bargaining powers.

The estimated across local labor market elasticity is η̂ = 0.42 and the industry specific local labor

market labor supply elasticities ε̂b range from 1.22 to 4.05.48 The across local labor market elasticity

being lower than the within ones (η̂ < ε̂b ∀b), workers are more elastic within than across local

labor markets. This implies that the markdown µio is decreasing in the employment share and

therefore more relevant (further away from 1) for establishments having higher employment shares

out of the local labor market. Consequently, the structural labor wedge λ(µio, ϕb) of our calibrated

model is decreasing in employment shares sio|m. This feature is in line with the empirical evidence

from Section 2.3.

Our estimates for the labor supply elasticities are within the ball park of the recent estimates

from Berger et al. (2019) for the US. Their analogous estimate of the across local labor market

elasticity η is 0.66 (compared to our estimate of 0.42) and their estimated within local labor market

elasticity is 5.38. The across local labor market estimates are very similar. On the contrary, all of

our industry specific within local labor market elasticities lie below their estimate. This might be a

consequence of the low mobility that characterizes the French labor market.49

47Revenue Total Factor Productivities are defined as PtPbt Aiot. With some abuse of notation, we name the transformed revenue total

factor productivities PF
1+εbδ
bt Aiot as TFPRs. Given that one cannot observe industry prices Pbt, backing out productivities Aiot from the

data would require carry out some normalizations to get rid of industry prices and be able to compute counterfactuals.
48Table 26 in Appendix 2.E provides all of the industry estimates.
49See Jolivet et al. (2006) for a comparison of French mobility against the U.S.
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The estimates of union bargaining power range from 0.06 for Chemical to 0.73 for Telecommunica-

tions. According to our estimates, there is an important heterogeneity of bargaining power across

industries. Lacking direct estimates of bargaining power within manufacturing we validate our

estimates by doing two comparisons. First, French labor law imposes more restrictive legal duties

regarding union representation for larger establishments. We compute the correlation between the

bargaining power estimates ϕ̂b and average establishment size (in terms of employment) per indus-

try. We find a positive correlation of 0.33 between average establishment employment per industry

and union’s bargaining power ϕb. Second, Cahuc et al. (2006) provide manufacturing bargaining

power estimates for France in a framework of search and matching with on the job search. Our

estimated bargaining power for manufacturing as a whole is 0.37.50 This is close to the estimate of

Cahuc et al. (2006) for top management workers of 0.35.

The estimate of the inverse labor demand elasticity, δ, is δ̂ = 0.04. This parameter is also related

to the average returns to scale of the production function which are about 0.97. The combination of

δ and the estimated capital elasticities per industry {αb}b∈B allow us to recover the values for the

output elasticities with respect to labor, {βb}b∈B , as βb = (1− αb)(1− δ). These elasticities go from

0.56 for Transport to the 0.85 for Shoe and leather production.

2.5.2 Estimation Fit

Using the point estimates we first check the fit on non-targeted labor shares at the sub-industry

level and total value added. We then replicate the empirical exercises of Section 2.3 with model

generated variables and compare them with the results obtained with actual data.

Not-targeted Moments

Figure 18 depicts the fit of the model and non-targeted data. In panel (a) we have 3-digit industry

labor shares per year. On the horizontal axis we have the model generated moments while on the

vertical axis we observed the corresponding moment in the data. If the fit was perfect, each dot

would be on the 45 degree line. Each color represents a 2-digit industry. We see that most of the

dots are aligned around the 45 degree line.

Panel (b) of Figure 18 shows the model matches the evolution of aggregate value added. This in

fact might not be surprising as there is a very strong relationship between establishment’s produc-

tion and wage bill in the model and in the data. Since the model exactly matches the establishment’s

wages and labor allocations, it also has a good fit of the value added.

Going Back to the Empirical Evidence

We further validate the model by replicating the empirical evidence of Section 2.3 linking micro-

level concentration to wages and industry concentration to the industry labor shares. We first

simulate the model to explore the quantitative relation between employment shares and wages at
50This is an employment weighted average of the industry estimates. The simple average of industry bargaining powers is 0.41.
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Figure 18 – Model Fit Non Targeted Moments

(a) Sub-industry Labor Share
(b) Aggregate Value Added. Model in dashed

blue, data in red.

the establishment level. We then compare how well the model matches the regression coefficients

linking aggregate measures of employment concentration and the labor shares.

In the micro-level empirical evidence from Section 2.3 we measure the effects of concentration

on wages by using shocks to local competitors to capture an exogenous change in the relative

position within a local labor market of an establishment. Thus, our aim in the simulation and

empirical exercise presented below is to induce such exogenous changes to the local labor market

of establishments. Using the identified amenities, Tio, and TFPRs, Zio, for the year 2007 as baseline,

we simulate proportional changes in establishment-occupations’ productivities and solve again for

the equilibrium wages within each local labor market. Then, we explore the link of employment

shares to log wages according to the following linear model:

log(wio) = fb + βsio|m + uio,

where log(wio) is the logarithm of simulated normalized wages, fb is an industry fixed effect, sio|m is

the equilibrium employment share of establishment-occupation io in the local labor market m, and

uio is an error term. As we are only solving for the equilibrium wages within each local labor mar-

ket, we are implicitly normalizing local labor market, industry and economy wide constants that

would be incorporated after solving for the general equilibrium of the model.51 We include of the

industry fixed effect fb because we use revenue productivities as a fundamental in the simulation.52

To replicate the exogenous change in the local labor market structure, we instrument the employ-

ment share with the weighted average of the productivity proportion changes of each establishment-

occupation’s competitors, where the weights are the employment shares in the baseline scenario.
51We consider normalized counterfactual wages similar to the baseline ones in equation (2.19), but with revenue productivities Zio

instead of productivities Aio .
52Recall that revenue productivities are a function of both an industry level price and the productivity at the baseline equilibrium. The

fixed effect would capture such industry prices.
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More clearly, the instrument for the employment share of io in local labor market m is:

∑
(io)′∈{m\io}

Z′(io)′
Z(io)′

L(io)′

∑(io)′′∈{m\io} L(io)′′
,

where Z′(io)′ is the simulated revenue productivity for establishment-occupation (io)′, and L(io)′ is

its employment in the baseline, i.e. before the simulation.

The estimated coefficient is −0.203 with a standard error of 0.035. The point estimate is a

little below to the one presented on Figure 17 but well within the confidence intervals. We take

this as evidence that the model is able to replicate the intensity of the link between employment

concentration and wages at the establishment occupation level.53

We now turn to the model validation using the aggregate empirical evidence of Section 2.3.

Here we generate model consistent value added and labor shares taking the market structure and

fundamentals (amenities and productivities) from the data. Table 20 presents in the first 2 columns

the empirical evidence of Table 16 with fixed effects (columns (2) and (3)) and the rest are devoted

to compare two alternative models. Model results present the same regressions as the ones for the

data for two competing models: one with oligopsonistic competition only LSM,MP
h,t (columns (3)

and (4)) and our model with collective wage bargaining LSM
h,t (columns (5) and (6)). The negative

relationship between labor share and concentration in the model with oligopsonistic competition is

about 8 times higher than in the data. Comparing now the last two columns that correspond to our

model, the negative relationship is still too strong but it is half of the model without bargaining. On

the contrary, models with bargaining only and with employer labor market power without strategic

interactions would not match the data as the effect of concentration on the labor shares would be

null. These results support the mechanism of our structural model where union bargaining power

and employer labor market power are relevant.

2.6 Counterfactuals

In this section we evaluate efficiency and welfare effects of the labor wedges coming from labor

market power. We start by showing that counterfactuals can be computed observing establish-

ment Revenue Total Factor Productivities (TFPRs) instead of the underlying productivities, which

are unobserved. Second, we perform our main counterfactual where we completely eliminate the

structural labor wedges and compute output and welfare gains under free mobility of workers. That

is, we characterize the competitive equilibrium allocation where wages are equal to the marginal

revenue product. We also consider other counterfactual situations where labor wedges remain and

are equal to the bargaining only or oligopsonistic competition only cases. These aim to disentan-

gle the relative distortions coming from each side of labor market power. We perform the main

counterfactuals for 2007, the last year of our sample.
53The first stage of the instrumental variable is highly significant (p-value<0.001) and the point estimate is negative. This is an expected

result, as for a larger average productivity of the competitors the employment share should diminish. The OLS estimate is 0.851 with

standard error 0.005. This is expected as all the variation comes from productivity changes, so the only thing shifting, leaving market

structure constant, is the establishments demand. Thus the supply elasticity would be identified.
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Table 20 – Concentration and Labor Share: Data vs. Model

Data: log(LSD
h,t) Oligopsony: log(LSM,MP

h,t ) Model: log(LSM
h,t)

(1) (2) (3) (4) (5) (6)

log(HHIh,t) −0.054∗∗∗ −0.056∗∗∗ −0.388∗∗∗ −0.416∗∗∗ −0.175∗∗∗ −0.161∗∗∗

(0.013) (0.013) (0.009) (0.003) (0.007) (0.005)

Ind FE Y N Y N Y N

Ind-Year FE N Y N Y N Y

Obs. 1357 1357 1357 1357 1357 1357

R2 0.29 0.343 0.901 0.903 0.946 0.909

Adj. R2 0.280 0.172 0.899 0.878 0.945 0.936

Notes: The dependent variable of the first two columns are the logarithm of 3-digit industry labor share at year t, log(LSD
h,t).

These present the results from Table 16 with fixed effects. Next two columns present the model generated log labor shares

log(LSM,MP
h,t ) when the model does not incorporate wage bargaining. This is a framework where the labor wedge λ boils

down to λ(µio , 0) = µio . Last two columns present the analogous regressions with our framework where bargaining is

incorporated log(LSM
h,t). Throughout the different frameworks column (1) presents estimates with industry fixed effects and

column (2) results with industry-year fixed effects. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Our baseline counterfactuals assume free mobility of labor. We perform three additional coun-

terfactuals modifying the free mobility assumption to evaluate if output gains can be attained when

mobility is restricted. First, in the most restrictive case, we allow movements only within local labor

markets. This is equivalent to assuming infinite mobility costs across location-industry-occupations.

Second, we fix employment at the 2-digit and occupation level and let labor move across locations

and 3-digit industries. Third, we fix employment at the 2-digit industry level. Compared to the

previous case, in this last counterfactual, labor is mobile across occupations.

We finally use the model to study the incidence of labor market power on the pass-through of

productivity to wages, the urban-rural wage gap and the de-industrialization process over time.

2.6.1 Counterfactuals using Revenue Productivities

This section shows that is possible to compute the counterfactuals in general equilibrium by using

Revenue Total Factor Productivities (TFPRs), which are a function of prices determined in general

equilibrium, rather than the underlying physical productivities. A priori, the issue is that coun-

terfactually changing the labor wedge changes equilibrium prices and therefore the ’fundamental’

TFPRs.

The literature on misallocation has used the TFPRs, together with a modeling assumption on

the industry price, to compute the normalized within industry productivity distribution. This has

prevented to perform general equilibrium counterfactuals that also take into account productivity

differences across industries.54 We show that we can: (i) carry out counterfactuals in general
54For example, Hsieh and Klenow (2009) conduct a counterfactual where they remove distortions at the firm level and compute the

productivity gains at the industry level. The productivity gains are a result of factors of production reallocating to more productive firms
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equilibrium by writing the model in relative terms from a baseline scenario; and (ii) compute

the movement of production factors across industries.

Our approach is to write counterfactual industry prices relative to the baseline and to fix the

transformed revenue productivities.55 Using the definition of the transformed revenue productivi-

ties Zio, the equation (2.27) for nominal wage is:

Pwio = βbλ(µio, ϕb)ZioL−δ
io .

We denote with a prime the variables in the counterfactual (e.g. F′b) and with a hat the relative

variables (e.g. F̂b =
F′b
Fb

). Writing the model as deviations from a baseline scenario has been dubbed

’exact-hat-algebra’ by Costinot and Rodríguez-Clare (2014). We can then rewrite the revenue pro-

ductivity of a counterfactual as:

Z
′
io = P

′
(F′b)

1+εbδ Aio = P̂F̂
1+εbδ
b Zio.

The counterfactual revenue productivity is a function of the relative (transformed) price F̂b and the

observed revenue productivity Zio. Denoting by λ′io the counterfactual wedge, the counterfactual

real wages are:

w′io = βbλ′ioZ′ioL′io
−δ 1

P′

= βbλ′ioZio

F̂
1+εbδ
b

P
L′io
−δ, (2.28)

where in the last step we used the definition of the transformed TFPRs. In the counterfactuals Zio

is taken as a fixed fundamental and we have to solve for industry prices relative to the baseline F̂b.

The system (2.17) in the counterfactual writes as:

w′io =

(
βbλ′io

Zio

(TioΓ
η
b )

δ

) 1
1+εbδ F̂b

P
1

1+εbδ

Φ′m
(1−η/εb)νb

(
Φ′

L′

)νb

, (2.29)

where the establishment-occupation component in the counterfactual ωio is: ωio =

(
βbλ′io

Zio

(TioΓ
η
b )

δ

) 1
1+εbδ

.

Finally, the counterfactual establishment-occupation components are enough to compute the em-

ployment shares at the local labor market level, s′
io|mo

, and at the industry level, s′
m|b. Following the

same steps as in the baseline, the industry level system of equations is analogous to (2.22) but with

relative variables and solving for relative industry prices we can compute the industry employment

L′b.56 Propositions 8 and 9 apply and therefore the solution for the relative counterfactuals exists

and is unique.

within each industry. This allows them to compute a partial equilibrium effect on total factor productivity, i.e. keeping the production

factors constant across industries. A general equilibrium effect on total factor productivity takes into account, not only the reallocation

of inputs within, but also across industries. They cannot do this as they can only identify relative productivity differences within each

industry while normalizing average differences across industries. For more details, see equation (19) and the discussion below in their

paper.
55Solving the counterfactuals in levels as stated in Section 2.4 would require to back out the productivities. It would be possible to do

so by making some additional normalizations per industry. For example, one could assume that the minimum physical productivity (or

Total Factor Productivity, TFP) is constant across industries and get rid of industry relative prices by normalizing the minimum TFP per

industry.
56Appendix 2.A provides the steps for the computation of the relative counterfactuals.
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2.6.2 Main Counterfactuals

We consider four different counterfactual situations to evaluate the efficiency and welfare effects of

labor market power in general, and of each of the sides of labor market power in particular. First,

the main counterfactual characterizes the competitive equilibrium where labor wedges disappear

and establishments and workers acts as price takers leading to the equalization of the wages and

the marginal revenue products. Second, we present the counterfactual characterizing the limit case

of our framework where there is only bargaining. Third, we have the limit case where employer

labor market power is the only one present, and finally, a situation where unions collect all the

profits.

Table 21 shows results of different counterfactuals under the free mobility assumption. The

first column present labor shares in the baseline or the counterfactuals and the rest of the columns

recover the percentage gains of the counterfactuals with respect to the baseline. Output gains are

in column 2 of Table 21. Eliminating labor wedges coming from employer and union labor market

power increases aggregate output by 1.62%. Setting wages equal to the marginal revenue product

induces efficiency gains that translate into output gains.

The second counterfactual without employer labor market power but keeping the one of unions

almost attains the output gains from eliminating both distortions. This counterfactual is a situ-

ation where none of the sides would internalize movements along the labor supply but bargain

over the wages. The labor wedges become λ(1, ϕb) = 1 + ϕb
δ

1−δ . It is important to note that the

assumed institutional framework for the unions with heterogeneity only across industries makes

labor wedges almost constant. This reduced heterogeneity of labor wedges (only different across

industries) almost eliminates the allocative distortions and is behind the result of almost attaining

the output gains of the main counterfactual.

Comparing now to the third counterfactual with employer labor market power, we see that out-

put is reduced by 0.21% with respect to the baseline. Union bargaining power therefore attenuates

the labor market distortions in our calibrated model. This reduction does not incorporate extensive

margin responses of total employment as it is fixed. The mechanism behind the reduction in output

is that labor wedges would be slightly more heterogeneous than in the baseline and distortions are

amplified. Finally, output gains when there is full bargaining and workers extract all the profit

rents are the same as in the main counterfactual as wedges would be constant.

In respect of the distributional effects or the split of output into the labor and profit shares, the

aggregate labor share in the model can be constructed from industry level labor wedges Λb. Those

Λb are sufficient statistics to compute the aggregate labor share which is a value added weighted

sum of industry labor shares. Using the demand of the final good producer (2.4), the aggregate

labor share is:57

LS = ∑
b∈B

βbΛbθb.

Aggregate labor share is equal in all the variations of the main counterfactual without labor wedges

that we present later. This comes from Λb being equal to one for all industries b.
57The derivation of the theoretical labor share is in Appendix 2.A.5.
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Table 21 – Counterfactuals: Efficiency and Distribution

Gains (%)

LS (%) ∆Y ∆ Wage ∆ Welfare (L)

Baseline 50.62 - - -

Counterfactuals

No wedges λ(µ, ϕb) = 1 72.26 1.62 45.06 42.07

Bargain λ(1, ϕb) = 1 + ϕb
δ

1−δ 73.38 1.60 47.27 44.34

Oliposonistic λ(µ, 0) = µio 40.94 -0.21 -19.29 -20.53

Full bargain λ(µ, 1) = 1 + δ
1−δ 75.47 1.62 51.51 48.38

Notes: First column presents the aggregate labor share (in percent) for the baseline and the different coun-

terfactuals. The last three columns changes with respect to the baseline in percentages. ∆Y is the change

of aggregate output, ∆ Wage is the change in aggregate wage. Aggregate wage is an employment weighted

average of establishment-occupation wages. ∆ Welfare (L) is the change of the median expected welfare of the

workers. The main counterfactual is the one without wedges λ = 1. The second counterfactual Bargain is the

standad bargaining framework where the workers’ outside options are the competitive wages and they don’t

internalize movements along the labor supply. Oligopsonistic is the counterfactual where the wedge is equal

to the equilibrium markdown under oligopsonistic competition and Full bargain is the counterfactual where

ϕb = 1 workers earn all the profits. Counterfactuals are performed in 2007.

Column (1) of Table 21 presents the aggregate labor shares of the different counterfactuals. We

find that completely removing structural labor wedges increases the labor share by 21 percentage

points, passing from 50.62% in the baseline to 72.26% in the counterfactual. Aggregate labor share

increases slightly more in the counterfactuals where employer labor market power disappears (up

to 75% where there is full bargain) and is reduced by 9 p.p. in the counterfactual with oligopsonistic

competition.

Labor share changes imply changes in aggregate wages and worker welfare. Column (3) presents

the relative change of wages with respect to the baseline. Wages go up by 45% in the price taking

case and are reduced by 19% in the oligopsonistic case when the wedges become λ(µ, 0) = µio.

Increases in the aggregate wage do not imply that wage inequality is reduced. Figure 29 in Ap-

pendix 2.H shows that the demeaned wage distributions are very similar on the baseline and the

price taking counterfactuals (in Panel (a) and (b) respectively). This Figure highlights that even in

the absence of labor wedges, wages across establishments are not equalized. This result is due to

the idiosyncratic preferences of workers for different establishments.

Aggregate wage changes translate into welfare differences. We study the median expected wel-

fare for workers. This median expected utility is:58

Median(Uiok) ∝ Φ
1
η .

Column (4) of Table 21 present counterfactual gains of the median worker utility. The median ex-

pected worker utility is 42% greater in the scenario without labor wedges compared to the baseline.
58As the across local labor market elasticity η being smaller than 1, the expected value of the Fréchet distribution is not defined. We

therefore can only compute the median and the mode of the worker welfare.
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Unsurprisingly, welfare gains are greater than output gains as the workers not only benefit from

the productivity boost but also from the redistribution of pure rents that the owners were taking.

We perform three additional counterfactuals to locate the output gains in an environment with

mobility costs. They differ in restrictions imposed on mobility where we allow mobility to happen

only within industry, industry-occupation and local labor market. Table 22 compares the free

mobility case with the restricted mobility cases. Comparing the output gains in column (1) across

the different scenarios, we find that the key margin of adjustment is geographical mobility. Fixing

employment at the industry-occupation level accounts for 82% of the gains of the free mobility

case. Restricting workers to stay in their particular local labor market output gains are 0.49% which

constitute only 30% of the gains under free mobility.

Table 22 – Counterfactuals: Limited Mobility

Contribution (%)

∆Y (%) ∆ Prod (%) Sh. GE Sh. Prod Sh. Labor

Free mobility 1.62 1.33 9 83 8

Mobility within

Industry 1.32 1.33 -1 101 0

Industry-occ 1.33 1.35 -2 102 0

Local market 0.49 0.49 -2 102 0

Notes: All the table presents results in percentages. First column presents the ∆Y is the change of aggregate

output with respect to the baseline, ∆ Prod is the change in aggregate productivity from decomposition

(2.30). Last three columns present the contribution of each of the elements of the decomposition (2.30) to

output gains. Free Mobility presents the main counterfactual without wedges and under free mobility of

labor. Industry is the counterfactual where mobility is restricted to be only within industry, Industry-occ fixes

employment at the industry-occupation and allows for mobility across locations, and Local market allows for

mobility only across establishments within local labor markets. Counterfactuals are performed in 2007.

These results underscore the importance of free mobility of labor across locations as the main

driver for output gains. Figure 19 shows the percentage change of manufacturing employment

in the free mobility case. Each block is the aggregation of local labor markets to the commuting

zone. The main conclusion from the counterfactual analysis is that, in the absence of labor wedges,

manufacturing employment in big cities as Paris, Lyon, Marseille or Toulouse would be reduced.

The counterfactual reveals that there are a handful rural productive establishments in concentrated

local labor markets. In the baseline these have lower wage markdowns and lower employment.

Moving to the counterfactual, those are the ones with the biggest relative wage and employment

gains.59

Turning now to the source of the output gains, we can use the aggregate production function

and the relative industry output from Appendix 2.A (equation (43)), and decompose the logarithm
59Another potential reason is the differential in the amenities. The reduction of manufacturing labor in the big cities could be magnified

if they have in general worse amenities.
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Figure 19 – Employment Change (%) with Counterfactual

Notes: The map presents employment changes with respect to the baseline economy in percentages. Each block constitutes a commuting zone. Local labor

markets are aggregated up to the commuting zone. Counterfactuals are performed in 2007.

of the relative final output into three terms:

ln Ŷ = ∑
b∈B

θb ln F̂
αb(1+εbδ)
b

︸ ︷︷ ︸
∆ GE

+ ∑
b∈B

θb ln Ẑb

︸ ︷︷ ︸
∆ Productivity

+ ∑
b∈B

θb ln L̂1−δ
b

︸ ︷︷ ︸
∆ Labor

. (2.30)

The first term on the right hand side corresponds to the capital effects or general equilibrium

effects of capital flowing to different sectors as a response to changes in relative prices. The second

term, arguably the most important, represents total productivity gains. This term suffers the most

from labor market concentration as big productive firms are shrinking their relative participation,

therefore reducing overall productivity. The third term corresponds to how labor is allocated across

sectors.

Columns (3) to (5) of Table 22 show the decomposition of relative changes of output.60 The

main source of output gains come from productivity. Industry productivity is an employment

weighted sum of establishment-occupation productivities (that are unchanged). The original source

of productivity and output gains is therefore the reallocation of workers towards productive firms.

Column (2) shows the productivity gains in the different mobility cases. Those are similar as

long as labor is mobile at the industry level. General equilibrium effects determine the reallocation

of employment across industries and total output gains but mobility restrictions below the industry

level prevent the reallocation towards productive establishments and reduce the productivity gains.

Figure 20 shows geographical differences of productivity gains in the free mobility case. The

Figure is similar to Figure 19 in the sense that most significant gains of the counterfactual produc-

tivity happen outside urban areas. As a result, the largest gains relative to the baseline in wages

and employment are in commuting zones without big cities.

60Note that ∆Y = Ŷ − 1 ≈ ln Ŷ. The decomposition is with respect to ln Ŷ. The share of the gains that come from productivity (Sh.

Prod) is simply ∑b∈B θb ln Ẑb
ln Y . Each row from columns 3 to 5 sums up to 1.
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Figure 20 – Productivity Change (%) with Counterfactual

Notes: The map presents productivity changes with respect to the baseline economy in percentages. Each block constitutes a commuting zone. Local

labor markets are aggregated up to the commuting zone. Commuting zone productivity is an employment weighted average of individual productivities.

Following the discussion in Section 2.6.1, keeping fixed the baseline revenue productivities, any change in the counterfactual comes from changes in

productivities. Counterfactuals are performed in 2007.

2.6.3 Pass Through

The efficiency losses are the consequence of distortions in the pass through of productivity to

wages. The structural wage equation (2.29) relates our recovered measure of productivity Zio to

equilibrium wages. Taking logs, equilibrium wage in the baseline economy is:

log wiot =
1

1 + εbδ
(log Ziot − δ log Tiot + log λ(µiot, ϕb)) + fmt, (2.31)

where fmt is a local labor market times year constant. We use this equation to study the incidence of

labor market power on the pass through of the transformed revenue productivity Z. The elasticity

of wages with respect to Z is:

ǫW
Z =

∂ log wio

∂ log Zio
=

1
1 + εbδ︸ ︷︷ ︸

Pass Through No Wedge

+
1

1 + εbδ
ǫλ

s︸︷︷︸
< 0

ǫs
Z︸︷︷︸

> 0

,

where ǫλ
s and ǫs

Z denote respectively the elasticity of the wedge λio with respect to the employment

share s and the elasticity of the employment share s with respect to the transformed TFPR Z. The

equation above emphasizes the origin of potential distortions coming from labor market power.

When the wedge λ is constant, the last term becomes zero because ǫλ
s = 0. In that case, the pass

through of productivity to wages is the same as in the price taking case and the labor allocations

are not distorted.

We estimate the following:

log wiot = fmot + βZ
b log Ziot + βT

b log Tiot + uiot

Table 33 in Appendix 2.J presents the estimates of the productivity pass through in the baseline βZ
b

and the one in the absence of labor wedges. The average dampening due to labor market power is
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Figure 21 – De-industrialization differences

Notes: The x-axis shows the percentage differences of commuting zone employment shares out of manufacturing over time in the data (∆D = SD
07 − SD

94).

The y-axis presents the analogous for the counterfactual without wedges (∆M = SPT
07 − SPT

94 ). The initial year is 1994 and the final one is 2007.

equal to 0.05. This means that when Z increases by 1%, 0.05% of that increase is not translated to

wages due to labor market frictions.

2.6.4 Mobility and Wage Gap

Figure 19 suggests an important movement from cities to rural areas in the counterfactual. This

section explores the impact of employer and union labor market power on the urban-rural mobility

over time and the urban-rural wage gap.

Mobility over time

We compare the urban-rural mobility process observed in the data to the one from yearly coun-

terfactuals without labor market power. In the data, the de-industrialization or the reduction of

manufacturing employment occurred primarily in cities leading to the gain in relative importance

of rural areas within manufacturing. Figure 21 compares the relative employment shares observed

in the data to the one in a counterfactual without labor wedges for each commuting zone.

First, we performed the main counterfactual where there are no labor wedges because establish-

ments and unions act as price takers (PT) for the initial year 1994. Then we compute the commuting

zone employment share out of total manufacturing for the initial and final years (1994 and 2007 re-

spectively) and for the different scenarios. To compare the mobility over time, we compute the

differences over time of the commuting zone employment shares in the data (∆D = SD
07 − SD

94) and

in the counterfactual (∆M = SPT
07 − SPT

94 ). Figure 21 presents this comparison. The x axis shows ∆D

and the y axis shows ∆M. The size of the dots are the initial population of the commuting zone.

The counterfactual urban-rural mobility is very similar to the process observed in the data which

is mostly guided by exogenous productivity and firm location decisions and not by labor market

distortions.

The line generated by the largest population commuting zones in Figure 21 is slightly flatter than
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Table 23 – Wage Gap

Rural Wage Urban Wage Gap (%)

Baseline 33.321 45.210 36

Counterfactual 49.486 60.675 23

Note: Wages in thousands of constant 2015 euros. We classify as Urban the 10 biggest

commuting zones: Paris, Marseille, Lyon, Toulouse, Nantes, and the Paris surround-

ing, Boulogne-Billancourt, Creteil, Montreuil, Saint-Denis and Argenteuil. The rest

are considered as Rural. Wages are employment weighted averages per category for

the baseline and counterfactual for the year 2007.

the 45 degree line. Cities would loose their relative importance a bit slower in the counterfactual.

A potential reason is the closure of manufacturing firms in the largest cities that became more

concentrated over time leading to distortions that are closer to the ones present in rural areas.

Wage Gap

Table 23 presents wage levels and the urban/rural wage gap.61 Both, urban and rural areas, experi-

ence important wage gains in the counterfactual. Gains being bigger outside cities the wage gap is

reduced from 36% to 23% in the counterfactual. This reveals that labor market distortions account

for more than a third of the urban/rural wage gap.

2.7 Extensions

We made important assumptions in the main counterfactual: workers were perfectly mobile, total

labor supply was fixed and there were no agglomeration externalities. In this section, we propose

extensions to relax the last two assumptions. First, we allow for an endogenous labor participation

decision. Second, we introduce agglomeration forces in the local labor markets.

2.7.1 Endogenous Participation

We briefly present the extension with endogenous labor force participation decisions. We assume

workers can decide between working and staying at home. In the latter case, they earn wages

related to home production. In the model, staying at home is an endogenous choice that happens

when the indirect utility of being out of the labor force is higher than the one being employed.

We lack detailed data on the geographical distribution of out of the labor force status as labor

force surveys provide only information at the region level. Basing our counterfactuals in those

surveys would require the extreme assumption of constant rates of labor participation for entire

regions. Instead, while acknowledging is not a perfect assumption, we use commuting zone level

unemployment rates as out-of-the labor-force rates.
61We consider urban the 10 biggest commuting zones: Paris, Marseille, Lyon, Toulouse, Nantes, and the Paris surrounding, Boulogne-

Billancourt, Creteil, Montreuil, Saint-Denis and Argenteuil. Rural are the rest of the commuting zones.
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Table 24 – Counterfactual: Endogenous Participation

Contribution (%)

∆Y (%) ∆ Prod (%) ∆ L (%) Sh. GE Sh. Prod Sh. Labor

Fixed L 1.62 1.33 0.00 9 83 8

Endogenous Part.

No wedges λ(µ, ϕb) = 1 1.98 1.18 1.00 11 60 29

Bargain λ(1, ϕb) = 1 + ϕb
δ

1−δ 2.04 1.18 1.04 10 58 32

Oligopsonistic λ(µ, 0) = µ(s) -1.29 -0.59 -0.75 2 46 53

Full bargain λ(µ, 1) = 1 + δ
1−δ 2.09 1.18 1.12 10 57 33

Notes: All the table presents results in percentages. First column ∆Y is the change of aggregate output with respect to the baseline, ∆ Prod is the

change in aggregate productivity from decomposition (2.30) and ∆L is the counterfactual change in total employment. Last three columns present

the contribution of each of the elements of the decomposition (2.30) to output gains. Fixed L is the main counterfactual without wedges, under

free mobility of labor and fixed total labor supply. The main counterfactual is the one without wedges λ = 1. All the other counterfactuals in this

table allow for endogenous labor force participation. No wedges is the analogous to the main counterfactual without wedges. Bargain is the standad

bargaining framework where the workers’ outside options are the competitive wages and they don’t internalize movements along the labor supply.

Oligopsonistic is the counterfactual where the wedge is equal to the equilibrium markdown under oligopsonistic competition and Full bargain is the

counterfactual where ϕb = 1 workers earn all the profits.

Defining out-of-the-labor-force, from now on OTLF, as a new 3-digit industry at every location,

2-digit industry and occupation combination, we have that the probability of being OTLF in a

particular commuting zone n and 2-digit industry b is:

Luo =
(Tuow

εb
uo)

η/εb Γ
η
b

Φ
L, Φ = Φe + Φu,

where Φe = ∑m∈Im
Φ

η/εb
m Γ

η
b is the part of Φ that comes from the employed and Φu = ∑uo∈Um

(Tuow
εb
uo)

η/εb Γ
η
b

is the part from the unemployed (Um is the set of all OTLF local labor markets). L is the total labor

supply of both, the employed and the OTLF workers. The proportion of OTLF workers in each

local market identifies the home production amenity times the wage Tuow
εb
uo.62 This wage is fixed in

the counterfactuals while the real wages of firms change depending on the counterfactual wedges.

Table 24 shows the results of the counterfactuals with endogenous labor force participation.

The counterfactual output gain is 1.98%. Introducing the endogenous labor participation margin

induces higher output gains than in the baseline (Fixed L). In contrast to the output gain decom-

position in Table 22, around 30% of the gains come from the increased total employment. Labor

force increases 1% in the main counterfactual without wedges. This extensive margin of adjustment

in the total labor supply amplifies original differences in output gains across counterfactuals. In

particular, output losses from oligopsonistic competition are as high as 1.29% because total labor

force participation is reduced by -0.75%. Despite featuring high wage gains, the increase in total

employment is minor in the counterfactual because we assume that workers have idiosyncratic

shocks to stay OTLF.
62Details on the theoretical model with endogenous participation are in Appendix 2.B.
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Table 25 – Counterfactuals: Agglomeration

Contribution (%)

∆Y (%) ∆ Prod (%) Sh. GE Sh. Prod Sh. Labor

No Agglomeration 1.62 1.33 9 83 8

Agglomeration

γ = 0.05 1.73 1.40 8 82 10

γ = 0.1 1.84 1.48 7 81 12

γ = 0.15 1.96 1.57 6 81 13

γ = 0.2 2.08 1.66 5 80 15

γ = 0.25 2.22 1.75 3 80 17

Notes: All the table presents results in percentages. First column ∆Y is the change of aggregate output

with respect to the baseline, ∆ Prod is the change in aggregate productivity from decomposition (2.30). Last

three columns present the contribution of each of the elements of the decomposition (2.30) to output gains.

No Agglomeration is the main counterfactual without wedges, under free mobility of labor, fixed total labor

supply and no agglomeration forces. All the other counterfactuals in this table allow for agglomeration within

the local labor market. Similarly to the main counterfactual, workers are freely mobile and total employment

is fixed. We present different counterfactuals depending on the agglomeration elasticity γ.

2.7.2 Agglomeration

In this section we present an extension of the model that includes agglomeration forces at the

local labor market level. To keep the model tractable, we assume that the productivity is: Âio =

ÃioL
γ(1−αb)
m . The agglomeration effect is a local labor market externality with elasticity γ(1− αb).

The wage first order condition is:

Pwio = βbλ(µio, ϕb)ZioL−δ
io L

γ
m. (2.32)

Similarly to the baseline counterfactual, we back out the transformed TFPRs Zio to perfectly match

observed establishment-occupation wages wio under the assumption of agglomeration externali-

ties. In the case where employment for a given local labor market is high, the productivity of the

establishments in that market m is lower than for the main counterfactual.63

Table 25 summarizes the counterfactual results for different values of γ. All the counterfactuals

in Table 25 also assume price taking and free mobility but introduce agglomeration forces in local la-

bor markets. As γ becomes higher, the more important are the agglomeration forces and the higher

are the efficiency gains. The reason behind this result is that increasing γ the local labor market

employment Lm becomes more important in (2.32). Consequently, productivity differences across

local labor markets with different employment are amplified. The movements towards small local

labor markets are therefore bigger than in the main counterfactual (No Agglomeration). Output

gains are monotonic in the importance of agglomeration externalities.
63Following the steps described in Appendix 2.B.2, we can solve for the counterfactuals solving first the normalized wages and then

for industry prices.
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2.8 Conclusion

This paper measures efficiency and welfare losses generated by employer and union labor market

power for French manufacturing establishments. We present stylized facts at the aggregate level

that show higher employment concentration relates to lower labor shares for French manufacturing

firms. We further document the relevance of heterogeneous labor market power at the establish-

ment level. Our empirical strategy identifies a negative relationship between local labor market

employment share and wages. This reduced form evidence suggests employer labor market power

is relevant and heterogeneous across markets and firms. We also present reduced form evidence

on the heterogeneity of union bargaining power across industries within manufacturing.

We lay out a quantitative general equilibrium model that links structural labor wedges to em-

ployment shares and union bargaining power. Our framework nests the cases with bargaining only

and oligopsonistic competition only as special cases. We show existence and uniqueness of the

equilibrium and provide its analytical characterization. We separately identify parameters leading

to employer and union labor market power by implementing a recursive estimation strategy. We

first estimate global parameters by imposing restrictions on structural shocks, second we identify

the industry specific labor supply elasticities using the structural equation of the labor supply and

then we calibrate the rest of parameters to match industry moments.

We evaluate the efficiency and welfare costs of employer and union labor market power. We

find that removing structural labor wedges increases output by 1.62%. Gains are amplified up to

1.98% when we allow for an endogenous labor force participation margin. The main mechanism

behind the output gains is the reallocation of resources towards more productive establishments.

Removing labor market distortions also leads to significant labor share and wage gains. These

results imply that the employer labor market power is more important than the one of unions on

the labor wedge for manufacturing in France.

The counterfactual suggests that there is missing employment in French rural areas due to em-

ployer labor market power. Eliminating these distortions would not only increase wages but also

the efficiency of manufacturing. The potential insights for policy are clear. Our calibrated model

suggests that unions counteract employer labor market power but promoting unions would not

completely overcome the distributional and efficiency effects. On the contrary, the allocation with-

out labor market distortions can be implemented by hiring subsidies that would eliminate the effect

of the labor wedge. Those subsidies could be financed either by taxes on profits or on wage earn-

ings. Unfortunately, the implementation of this policy would be very cumbersome as it would

require taking into account the structure of the labor market and the fundamentals of establish-

ments. Alternatively, the efficiency gains could be partially achieved by attracting employment to

remote locations. Place based policies aimed to improve the amenities of rural areas would possibly

trigger the employment gains necessary to fulfill the output gains from removing employer labor

market power.
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2.A Derivations

In this section we provide the derivations of the model that are not presented in the main text. First, we show

how to obtain the establishment (inverse) labor supplies by solving the workers establishment choice problem.

Later, we show how we obtain the markdown function from the establishments optimality conditions. We

then show how to get a close form solution for the prices given the solution for the normalized wages.

2.A.1 Establishment-Occupation Labor Supply

To simplify the notation, we get rid of the occupation subscript o in this subsection. The indirect utility of a

worker k that is employed in establishment i in sub-market m is:

ukim = wiz
1
i|mz2

m,

where z1
i|m and z2

m are independent utility shocks. They are both distributed Frèchet with shape and scale

parameters εb and Ti for z1
i|m, and η and 1 for z2

m.

Workers first see the realizations of the shocks z2
m for all local labor markets. After choosing to which

labor market to go, the workers then observe the establishment specific shocks. Therefore, there is a two

stage decision: first, the worker choose the local labor market that maximizes her expected utility, and later

will choose the establishment that maximizes her utility conditional on the chosen sub-market.

The goal is to compute the unconditional probability of a worker going to establishment i in sub-market

m. This probability is equal to:

Πi = P

(
wiz

1
i|m ≥ max

i′ 6=i
wi′z

1
i′ |m

)
P

(
Em(max

i
wiz

1
i|m)z

2
m ≥ max

m′ 6=m
Em′(max

i
wiz

1
i|m′)z

2
m′

)

We first solve for the left term. Let’s define the following distribution function:

Gi(v) = P
(

wiz
1
i|m < v

)
= P

(
z1

i|m < v/wi

)
= e−Tiw

εb
i v−εb .

To ease notation, define conditional utility vi = wiz
1
i|m for all i, i′. We need to solve for P

(
vi ≥ maxi′ 6=i vi′

)
.

Fix vi = v. Then we have:

P

(
v ≥ max

i′ 6=i
vi′

)
=
⋂

i′ 6=i

P
(
vj < v

)
= ∏

i′ 6=i

Gi′(v) = e−Φ−i
m v−εb = G−i

m (v),

where Φ−i
m = ∑i′ 6=i Ti′w

εb
i′ . Similarly, the probability of having at most conditional utility v is equal to

Gm(v) = P

(
v ≥ max

i′
vi′

)
= e−Φmv−εb ,

where Φm = ∑i′ Ti′w
εb
i′ . Integrating G−i

m (v) over all possible values of v we then get:

P

(
vi ≥ max

i′ 6=i
vi′

)
=
∫ ∞

0
e−Φ−i

m v−εb dGi(v)

=
∫ ∞

0
εbTiw

εb
i vεb−1e−Φmv−εb dv

=
Tiw

εb
i

Φm

∫ ∞

0
εbΦmvεb−1e−Φmv−εb dv

=
Tiw

εb
i

Φm

∫ ∞

0
dGm(v) =

Tiw
εb
i

Φm
.

Now we need to find P
(

Em(maxi wiz
1
i|m)z

2
m ≥ maxm′ 6=m Em′(maxi wiz

1
i|m′)z

2
m′

)
. So first, the expected

utility of working in sub-market m is:

Em(max
i

wiz
1
i|m) =

∫ ∞

0
vidGm(v) =

∫ ∞

0
εbΦmv−εb e−Φmv−εb dv.
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We define this new variable:

x = Φmv−εb dx = −εbΦmv−(εb+1)dv.

Now we can change variable in the previous integral and obtain:

∫ ∞

0
x−1/εb Φ

1/εb
m e−xdx = Γ

(
εb − 1

εb

)
Φ

1/εb
m ,

where Γ()̇ is just the Gamma function. Defining Γb ≡ Γ
(

εb−1
εb

)
, we can then rewrite:

P

(
Em(max

i
wiz

1
i|m)z

2
m ≥ max

m′ 6=m
Em′(max

i
wiz

1
i|m′)z

2
m′

)
= P

(
Φ

1/εb
m Γbz2

m ≥ max
m′ 6=m

Φ
1/εb′
m′ Γb′z

2
m′

)
.

Following the similar arguments as above, this probability is equal to:

P

(
Φ

1/εb
m Γbz2

m ≥ max
m′ 6=m

Φ
1/εb
m′ Γb′z

2
m′

)
=

Φ
η/εb
m Γ

η
b

Φ
,

where Φ = ∑b′∈B ∑m′∈Mb′
Φ

η/εb′
m′ Γ

η
b′ .

Finally, combining the two probabilities we obtain the same expression in the main text:

Πi =
Tiw

εb
i

Φm

Φ
η/εb
m Γ

η
b

Φ
.

By integrating Πi over the whole measure of workers L, we can obtain the labor supply for each estab-

lishment:

Li =
Tiw

εb
i

Φm

Φ
η/εb
m Γ

η
b

Φ
L.

Workers’ welfare. An obvious way to measure workers welfare would be to compute the average utility for

workers. However this is not possible as the shape parameter η is smaller than 1. This implies that the mean

for the Frechét distributed utilities is not defined. Instead, we compute the median utility agents expect to

receive in each local labor market. This is equal to:

Median
[

max
m

Em(max
i

wiz
1
i|m)z

2
m

]
∝ Φ

1
η .

2.A.2 Establishment Decision

In the absence of bargaining, the profit maximization problem of establishment i is:

max
wiot ,Kiot

Pbt

O

∑
o=1

ÃiotK
αb
iotL

βb
iot −

O

∑
o=1

wiotLiot(wiot)− Rbt

O

∑
o=1

Kiot,

where Liot(wiot) is the labor supply (2.13) where they take Φ and L as given but internalize their effect on Φio

and Φm. Pbt and Rbt are respectively the industry price and required rate.64 Getting rid of the time index t,

the first order conditions of this problem are:

wio = βb
eio

eio + 1
Pb ÃioK

αb
io L

βb−1
io ,

Rb = αbPb ÃioK
αb−1
io L

βb
io . (33)

eio = εb (1− sio|m) + η sio|m is the perceived elasticity of supply for establishment i in occupation o.

64The construction details of the rental rate of capital or the required rate are in Appendix 2.F.4.
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We can use the first order conditions of capital to substitute it into the establishment’s production function

and obtain an expression that depends only in labor:

yio =

(
αb

Rb

) αb
1−αb

Ã
1

1−αb
io L

βb
1−αb
io P

αb
1−αb

b . (34)

In order to gain tractability in the solution of the model we restrict the output elasticity with respect

to capital such that 1 − βb
1−αb

= δ, where δ ∈ [0, 1] is a constant across sectors. This specification would

nest a constant returns to scale technology when δ = 0. As long as 0 < δ < 1 the establishment faces

decreasing returns to scale within occupations. Define a transformed productivity Aio ≡ Ã
1

1−αb
io

(
αb
Rb

) αb
1−αb .

The establishment-occupation production is:

yio = P

αb
1−αb

b AioL1−δ
io . (35)

2.A.3 Markdown function

We derive the markdown function from the establishments optimality condition with respect to wages. The

establishment post a wage and choose capital quantity in order to maximize profits subject to their individual

labor supply. Establishments only take into account the effect on their local labor market. As explained in the

main text, this can happen because of a myopic behavior from the establishments or if there is a continuum

of local labor markets. The establishment problem is:

max
wio ,Kio

Pb

O

∑
o=1

ÃioK
αb
io L

βb
io −

O

∑
o=1

wioLio(wio)− Rb

O

∑
o=1

Kio,

The first order condition with respect to labor is:

Pb
∂F

∂Lio

∂Lio

∂wio
= Lio(wio) + wio

∂Lio

∂wio,

where the derivative of the labor supply Lio with respect to the establishment-occupation wage wio is:

∂Lio

∂wio
=

LΓ
η
b

Φ

([
εbTiow

εb−1
io Φm − Tiow

εb
io εbTiow

εb−1
io

Φ2
m

]
Φ

η/εb
m + η

Tiow
εb
io

Φm
Φ

η/εb−1
m Tiow

εb−1
io

)

=
εbTiow

εb−1
io

Φm

Φ
η/εb
m Γ

η
b

Φ
L− εbTiow

εb−1
io Φ

η/εb
m Γ

η
b

ΦmΦ
L

Tiow
εb
io

Φm
+ η

Tiow
εb
io

Φm

Tiow
εb−1
io

Φm

Φ
η/εb
m Γ

η
b

Φ
L

= εb
Lio

wio
− εb

Lio

wio

Lio

Lm
+ η

Lio

wio

Lio

Lm

=
Lio

wio

(
εb(1− sio|m) + ηsio|m

)
.

Substituting this last derivative into the first order condition we get:

Lio+Lio

(
εb(1− sio|m) + ηsio|m

)
= Pb

∂F

∂Lio

Lio

wio

(
εb(1− sio|m) + ηsio|m

)

⇒ wio =
εb(1− sio|m) + ηsio|m

εb(1− sio|m) + ηsio|m + 1
Pb

∂F

∂Lio

wio = µ(sio|m)Pb
∂F

∂Lio
.
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2.A.4 Bargaining Details

We provide derivations under the baseline bargaining protocol where employers and unions have zero outside

options and internalize movements along the labor supply curve. An alternative bargaining protocol leading

to the same equilibrium condition for the wages is at the end.

Each establishment has different occupation profit functions (1− αb)PbF(Lio)−wu
ioLio, where the optimal

capital decision has been taken. We assume that workers and establishments are symmetric both having null

threat points and internalizing the generation of rents as they move along the labor supply curve.

During the bargaining establishments and unions choose wages to maximize:

max
wu

io

[wu
ioLio(w

u
io)]

ϕb [(1− αb)PbF(Lio(w
u
io))− wu

ioLio(w
u
io)]

1−ϕb ,

where we made explicit the fact that both parties internalize how labor supply is a function of equilib-

rium wages. ϕb is the union’s bargaining power, wu
io the wage bargained with the unions at establishment-

occupation io, Lio the number of workers employed at establishment-occupation io in equilibrium, (1 −
αb)F(Lio) is the output of the establishment-occupation after substituting for the optimal decision of capital.

The first order conditions of the above maximization problem are:

ϕb
(1− αb)PbF(Lio)− wu

ioLio

wu
ioLio

[
Lio + wu

io

∂Lio

∂wu
io

]
+ (1− ϕb)

[
(1− αb)Pb

∂F(Lio)

∂Lio
− Lio − wu

io

∂Lio

∂wu
io

]
= 0.

Using the definition of the perceived labor supply elasticity eio =
∂Lio

∂wio

wio

Lio
and rearranging the first order

condition:

wu = ϕb(1− αb)Pb
F(Lio)

Lio
+ (1− ϕb)(1− αb)Pb

∂F(Lio)

∂Lio

eio

eio + 1
,

where µ(sio) ≡
eio

eio + 1
is the markdown that establishments would set under oligopsonistic competition.

In the case of a Cobb-Douglas production function, the marginal revenue product of labor is proportional

to the labor productivity, i.e. (1− αb)p
∂F(Lio)

∂Lio
= βb

pF(Lio)
Lio

, where βb is the elasticity of output with respect to

labor. By the definition of δ, βb/(1− αb) = (1− δ), the bargained wage becomes:

wu = (1− αb)Pb
∂F(Lio)

∂Lio︸ ︷︷ ︸
MRPLio

[
(1− ϕb)

eio

eio + 1
+ ϕb

1
1− δ

]
,

where we recovered the expression from the main text.

The alternative bargaining assumption leading to the same equilibrium wages is that employers and

unions bargain over the wages without internalizing movements along the labor supply and workers’ outside

options are the oligopsonistic competition wages wM
io under the allocation with the given equilibrium wages.

This alternative protocol is quite ad-hoc as the employer labor market power is embedded in the workers

outside options. The bargaining problem would be:

max
wu

io

[
wu

ioLio − wM
io

]ϕb
[(1− αb)PbF(Lio)− wu

ioLio]
1−ϕb .

2.A.5 Aggregate Model

Given the equilibrium definition, the model contains a very large number of variables that could make it

unfeasible to be solved numerically. This is because each firm in every location and industry sets its own

wage. So if in every sector location pair there would be H sub-industries, and each sub-industry would have

I firms, there would be N × B× H × I wages to be solved in the model plus B + 1 equations for the prices
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and final output. In comparison, quantitative spatial economic models that assume implicitly that all firms

in the same location have the same amenity would only need to solve for N different wages. In this section

we show how the fact that firms only take into account the effect of their wage decision on the local labor

market helps to tackle this problem by separating it in two main parts. First, we show that we can solve

for each sub-market wages by normalizing the sectoral prices and an economy wide constant. Later, we use

this normalized wages to construct aggregate expressions that are just functions of sectoral prices and some

economy wide constants. Finally, we provide a closed form solution of these prices and the final output

conditional on having the solution for the normalized wages.

Following this path allows us to solve the model in a feasible way. Instead of solving a system of (N ×
B× H× I) + (B + 1) equations, we can solve N× B× H smaller and simpler systems of I equations each and

later a system of B + 1 equations.

Starting from the expression of wages (2.17),

wio = w̃ioΦ
(1−η/εb)νb
m

(
Φ

L

)νb

Fb,

we can use the definition of Φm = ∑io∈Im
Tiow

εb
io to find,

Φm = Φ̃
ψb
m F

εbψb
b

(
Φ

L

)ψbνbεb

, Φ̃m = ∑
i∈Imo

Tiow̃
εb
io , ψb ≡

1 + εbδ

1 + ηδ
≥ 1, (36)

Plugging the expression of Φm into the one above, and noticing that ψbνb = δ/(1 + ηδ) we can rewrite the

equilibrium wage as,

wio = w̃ioΦ̃

ψb−1
εb

m F
ψb
b

(
Φ

L

) δ
1+ηδ

. (37)

The establishment-occupation labor supply Lio can be written as Lio = sio|msm|bLb. Given the solution of

normalized wages per sub-market w̃io, we can actually compute the employment share out of the local labor

market sio|m:

sio|m =
Tiow

εb
io

Φm
=

Tiow̃
εb
io

Φ̃m

, Φ̃m = ∑
i∈Im

Tiow̃
εb
io .

We can also compute the employment share of the local labor market out of the industry sm|b. Using the

definition of Φb = ∑m∈Mb
Φ

η/εb
m and (36),

sm|b =
Φ

η/εb
m

Φb
=

Φ̃
ψbη/εb
m

Φ̃b

, Φ̃b = ∑
m∈Mb

Φ̃
ψbη/εb
m .

whereMb is the set of all local labor markets that belong to industry b. This just formalizes the notion that,

as long as we know the relative wages within an industry, we can compute the measure of workers that go

to each establishment conditioning on industry employment.

Turning now to output, we can compute output at the industry level by aggregating establishment-

occupation ones according to (2.5):

Yb = F
αb(1+εbδ)
b AbL1−δ

b , Ab = ∑
m∈Mb

∑
io∈I

Aios1−δ
io|ms1−δ

m|b , (38)

where we obtained an expression that represents the productivity at the industry level Ab. As it is evident

from the definition, Ab is an employment weighted industry productivity. The covariance between those

two is key in order to determine industry productivity. As long as market power distorts the employment

distribution making more productive firms to constraint their size, the covariance between productivity and
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employment is lower than in the case with competitive labor markets. This decreases total industry produc-

tivity Ab.

Using (36), industry labor supply can be written as function of normalized (tilde) variables and trans-

formed prices:

Lb =
ΦbΓ

η
b

∑b′∈B Φb′Γ
η
b′

L =
F

ψbη
b Φ̃bΓ

η
b

Φ̃
L, Φ̃ = ∑

b′∈B
F

ψbη
b′ Φ̃b′Γ

η
b′ . (39)

This is where the simplifying assumption on the labor demand elasticity δ ≡ 1− βb
1−αb

being constant across

industries buys us tractability. We can factor out the economy wide constant from (36) and leave everything

on terms of normalized wages and transformed prices.

In order to find equilibrium allocations, we need to solve for the transformed prices F = {Fb}Bb=1. Using

the intermediate input demand from the final good producer (2.4) and the above expression for industry

labor supply Lb we get:

F
ψb(1+η)
b Ab

(
Φ̃bΓ

η
b

)1−δ
= θb ∏

b′∈B

(
Ab′
(

Φ̃b′Γ
η
b′

)1−δ
)θb′

∏
b′∈B

(
F

αb′ (1+εbδ)+ψbη(1−δ)

b′

)θb′
,

where we used 1 + εbδ + ψbη(1− δ) = ψb(1 + η). Solving for Fb we get (2.23) from the main text.

Aggregate Labor Share

Here we present the steps to compute aggregate labor share, capital to labor expenditures and profit to labor

expenditure shares.

Aggregating (2.16) to the industry level,

wbLb = βbΛbPbYb, (40)

where, wb = ∑io∈Ib
wiosio|msm|b is the labor weighted average of individual and Ib is the set of establishment-

occupations that belong to industry b. The industry wedge Λb = ∑io∈Ib
λio

PbYio
PbYb

is just the value added

weighted average of individual wedges. Using (34) and (2.21), the industry markdown Λb yields the following

expression:

Λb =
∑io∈Ib

λio Aios1−δ
io|ms1−δ

m|b
Ab

. (41)

Industry and aggregate labor shares are:

LSb = βbΛb, LS =
∑b∈B wbLb

∑b∈B PbYb
. (42)

Substituting (40) and realizing that industry b expenditure share is equal to θb,

LS = ∑
b∈B

βbΛbθb.

For given parameters, knowing the industry wedge Λb is enough to compute the aggregate labor share.

2.A.6 Hat Algebra

From the main text, we get that the counterfactual wage w′io from (2.29) can be written as: w′io = ωio
F̂b

P
1

1+εbδ

Φ′m
(1−η/εb)νb

(
Φ′
L′

)

where we denote by ωio the establishment-occupation component of the counterfactual wage. This variable

ωio contains the counterfactual equilibrium wedge λ′io.

139



Summing Tio(w
′
io)

εb and factoring out the industry or economy wide constants we find the following

relation,

Φ′m = Φ̃′
ψb

m

F̂
ψbεb
b

P
ψbεb

1+εbδ

(
Φ′

L′

)ψbνbεb

, Φ̃′m = ∑
io∈Im

Tioω
εb
io .

Using the definition of Φ′b = ∑m∈Mb
Φ′m

η/εb Γ
η
b , we have that Φ′b and Φ′ are:

Φ′b = Φ̃′b
F̂

ψbη
b

P
ψbη

1+εbδ

(
Φ′

L′

)ψbνbη

, Φ̃′b = ∑
m∈Mb

(Φ̃′m)
ψbη/εb

Φ′ = (Φ̃′)1+ηδP−η L′−ηδ, Φ̃′ = ∑
b′∈B

Φ̃′b F̂
ψb′η
b′ Γ

η
b′ .

Industry employment in the counterfactual is equal to:

L′b =
F̂

ψbη
b Φ̃′bΓ

η
b

∑b′∈B F̂
ψbη
b′ Φ̃′b′Γ

η
b′

L′.

Establishment-occupation output in the counterfactual is:

y′io = (F′b)
αb(1+εbδ)Aio(L′io)

1−δ

= PP
1

1−αb
b Aio

(F′b)
αb(1+εbδ)

PP
1

1−αb
b

(L′io)
1−δ

=
F̂

αb(1+εbδ)
b

PPb
Zio(L′io)

1−δ.

The analogue expression for the baseline is: yio = 1
PPb

ZioL1−δ
io . Aggregating up to industry b level, the

counterfactual industry output Y′b is ,

Y′b =
F̂

αb(1+εbδ)
b

PPb
Zb(s

′)(L′b)
1−δ, Zb(s

′) ≡ ∑
io∈Ib

Zio(s
′
io|m)

1−δ(s′mo|b)
1−δ.

The analogue expression for the baseline is: Yb = 1
PPb

Zb(s)L1−δ
b with Zb(s) analogue to the one defined

for the counterfactual but with baseline employment shares, Zb(s) ≡ ∑io∈Ib
Zios1−δ

io|ms1−δ
m|b . Taking the ratio,

counterfactual industry output relative to the baseline, Ŷb is:

Ŷb = F̂
αb(1+εbδ)
b Ẑb L̂1−δ

b , (43)

where Ẑb = Zb(s
′)

Zb(s)
. Using L′b and equation (2.4) we get,

F̂
ψb(1+η)
b Ẑb

(
Φ̃′bΓ

η
b

Lb

)1−δ

= ∏
b′∈B

(
F̂

αb(1+εbδ)+(1−δ)ψbη
b′

)θb′
∏

b′∈B
Ẑ

θb′
b′ ∏

b′∈B

(
Φ̃′b′Γ

η
b′

Lb′

)(1−δ)θb′

. (44)

By taking the ratio, the elasticities θb and the economy wide constants cancel out on both side. Rewriting, we

get an expression very similar to (2.23) in Proposition 9 with hat variables:

F̂b = X̂bĈ
1

ψb(1+η) , (45)

X̂b =




L1−δ
b

Ẑb

(
Φ̃′bΓ

η
b

)1−δ




1
ψb(1+η)

, Ĉ =

(
∏

b′∈B

(
X̂
−χb′
b′

)θb′
) 1+η

∑b′∈B θ
b′ (1−α

b′ )(1+ηδ)

.
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Fixed Labor

In the case where employment is fixed at the industry level b, the counterfactual wage (2.29) becomes:

w′io =

(
βbλio

Zio

Tδ
io

) 1
1+εbδ F̂b

P
1

1+εbδ

(Φ′m)
(1−η/εb)νb

(
Φ′b
L′b

)νb

.

Fixing lower levels than b would only change the last element. Keeping total employment at the local labor

market fixed, the last term would become:
(

Φ′m
L′m

)νb
. The constant Γb does not appear in this case as workers

can’t move across industries and the functional Γb is the same for all the local labor markets within an

industry. Also, fixing lower levels than b clearly implies that L′b is known and equal to the baseline labor in

the industry Lb.

The counterfactuals where employment at b or lower level employment is fixed will give rise to a condition

similar to (44). Given that L′b is known, we have that:

F̂
1+εbδ
b Ẑb = ∏

b′∈B

(
F̂

αb(1+εbδ)
b′ Ẑb′

)θb′
.

Propositions 8 and 9 therefore also apply in the relative counterfactuals with fixed labor at the industry level

b (or at a lower level).

2.B Extensions

2.B.1 Endogenous Participation

We showed in the proof of Proposition 9 that the solution of transformed prices F is homogeneous of degree

zero with respect to total employment level which we denote here as Le. We have that,

Lio(wio) =
Tiow

εb
io

Φm

Φ
η/εb
m Γ

η
b

Φ
L =

Tiow
εb
io

Φm

Φ
η/εb
m Γ

η
b

Φe
Le.

We have that Le = Φe
Φ

L with Φe = ∑m∈Im
Φ

η/εb
m Γ

η
b is the part of Φ that comes from the employed and

Φu = ∑uo∈Um
(Tuow

εb
Ro)

η/εb Γ
η
b is the part from the out of the labor force as in the main text.

The model aggregation steps are the same as in 2.A with the exception that Lb now is Lb,e.

Note that the markdown is the same as the TFP of the out-of-the-labor-force workers and is set to 0. From

(36),

Φb,e =

(
Φ

L

)ψbνbη

∑
m∈Mb

Φ̃
ψbη/εb
m F

ψbη
b Γ

η
b =

(
Φ

L

)ψbνbη

Φ̃b,eF
ψbη
b (46)

Φ̃b,e = ∑
m∈Mb

Φ̃
ψbη/εb
m ,

and,

Φe =

(
Φ

L

)ψbνbη

∑
b∈B

Φ̃b,eF
ψbη
b Γ

η
b =

(
Φ

L

)ψbνbη

Φ̃e (47)

Φ̃e = ∑
b∈B

Φ̃b,eF
ψbη
b Γ

η
b .

Therefore,

Lb,e =
Φb,e

Φe
L =

Φ̃b,e

Φ̃e

L,
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where L is total labor supply (employed and out-of-the-labor-force) and we can solve for the prices without

knowing total employment level Le. In order to get that, we need to solve for Φe in equation (47),

Φ

1+ηδ
ηδ

e L = (Φe + Φu)Φ̃
1+ηδ

ηδ
e .

The solution is obviously unique as the left hand side is convex and the right hand side linear. With the

solution for Φe one can construct all the aggregates back.

2.B.2 Agglomeration

Plugging the labor supply into (2.32), the wage in the baseline economy is,

wio =

(
βbλ(µio, ϕb)

Zio

(TioΓ
η
b )

δ

) 1
1+εbδ

Φ
νb− η

εb
ν̃b

m P
− 1

1+εbδ

(
Φ

L

)ν̃b

, νb =
δ

1 + εbδ
, ν̃b =

δ− γ

1 + εbδ
.

The baseline wage can be written as: wio = w̃ioΦ
νb− η

εb
ν̃b

m P
− 1

1+εbδ

(
Φ
L

)ν̃b
. Analogously, the counterfactual wage

is: wio = ωio F̂bΦ
νb− η

εb
ν̃b

m P
− 1

1+εbδ

(
Φ
L

)ν̃b
. Aggregating to generate Φm,

Φm = Φ̃
ψ̃b
m P
− ψ̃bεb

1+εbδ

(
Φ

L

)ψ̃b ν̃bεb

, ψ̃b ≡
1 + εbδ

1 + η(δ− γ)
. (48)

The counterfactual Φ′m is analogously Φ′m = (Φ̃′m)ψ̃b P
− ψ̃bεb

1+εbδ F̂
ψ̃bεb
b

(
Φ′
L

)ψ̃b ν̃bεb
.

In order to be able to find a solution to the model, we need that ψ̃b < ∞. This is equivalent to requiring

γ 6= 1
η + δ. The parameter γ governs the strength of agglomeration forces within a local labor market, and

δ and 1
η are related with dispersion forces. Those come from the decreasing returns to scale (δ) and from

the variance of taste shocks ( 1
η ). When the latter is high, the mass of workers having extreme taste shocks is

higher. This implies that agglomeration forces will impact less as workers would be more inelastic to changes

in wages. The standard condition for uniqueness of the equilibrium with agglomeration would be that is

sufficiently weak (γ ≤ 1
η + δ). In our context we do not find such inequality condition.

The counterfactual industry labor supply is:

L′b =
F̂

ψ̃bη
b Φ̃′bΓ

η
b

∑b∈B F̂
ψ̃bη
b′ Φ̃′b′Γ

η
b′

.

Turning to production, the establishment-occupation output y′io and local labor market output Ym in the

counterfactual and the baseline are respectively:

y′io =
Zio F̂

αb(1+εbδ)
b

PbP
L′io

1−δ
L′m

γ

Y′m =
Zm(s′)F̂

αb(1+εbδ)
b

PbP
L′m

1−δ+γ, Zm(s
′) = ∑

i∈Im

Zios′io|m
1−δ.

The expressions for the baseline are analogous but setting F̂b = 1. The counterfactual output of industry b,

Y′b, when there are agglomeration forces is:

Y′b =
Zb(s

′)F̂
αb(1+εbδ)
b

PbP
L′b

1−δ+γ, Zb(s
′) = ∑

m∈Mb

Zms′mo|b
1−δ+γ,
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where γ changed the returns to scale of the industry production function and the aggregation of productivi-

ties Zb(s
′). The intermediate good demand in the counterfactual relative to the baseline is:

F̂
1+εbδ
b Ẑb

(
L′b(F̂)

Lb

)1−δ+γ

= ∏
b′∈B

F̂
αb′ (1+εbδ)

b′ Ẑb′

(
L′b′(F̂)

Lb′

)1−δ+γ

⇔ F̂
ψ̂b(1+η)
b Ẑb

(
Φ̃′bΓ

η
b

Lb

)1−δ+γ

= ∏
b′∈B

F̂
αb′ (1+εbδ)+ψ̃bη(1−δ+γ)

b′ Ẑb′

(
Φ̃′b′Γ

η
b′

Lb′

)1−δ+γ

.

Uniqueness of the solution to this system of equations is guaranteed by ∑b∈B αbθb < 1. This condition

being the same as for Proposition 9, uniqueness of the equilibrium with agglomeration forces only needs the

additional requirement of γ 6= 1
η + δ.

2.C Proofs

Proof of Proposition 8.

Existence. We follow closely the proof by Kucheryavyy (2012). Define the right hand side of (2.17) as:

fio(w) = [λ(µio(w), ϕb)]
1

1+εbδ cio, fio(w) = [λ(µ(s(w)))]
1

1+εbδ cio,

where w denotes the vector formed by {wio}, we simplified the notation of the wedge λ(µio, ϕb) from the main

text getting rid of the second argument and cio =

(
βb

Aio

(TioΓ
η
b )

δ

) 1
1+εbδ

Φ
(1−η/εb)νb
m

(
Φ
L

)νb
Fb is an establishment-

occupation specific parameter. This means we take Φm and Φ as constants and not as functions of wio.

Under the assumption 0 < η < εb, the function µ(s) = εb(1−s)+ηs
εb(1−s)+ηs+1 is decreasing in s, the employment

share out of the local labor market. We therefore also have that the wedge λ(µ(s)) = (1− ϕb)µ(s) + ϕb
1

1−δ

is also decreasing in s. The employment share has bounds 0 ≤ s ≤ 1, which implies (1− ϕb)
η

η+1 + ϕb
1

1−δ ≤
λ(µ(s)) ≤ (1− ϕb)

εb
εb+1 + ϕb

1
1−δ . Also, 1 + εbδ > 0. Therefore we have that fio(w) is bounded:

(
(1− ϕb)

η

η + 1
+ ϕb

1
1− δ

) 1
1+εbδ

cio ≤ fi(w) ≤
(
(1− ϕb)

εb

εb + 1
+ ϕb

1
1− δ

) 1
1+εbδ

cio.

If the number of participants in sub-market m is Nm, we can define the compact set S where fio(w) maps into

itself as:

S =

[(
(1− ϕb)

η

η + 1
+ ϕb

1
1− δ

) 1
1+εbδ

c1,
(
(1− ϕb)

εb

εb + 1
+ ϕb

1
1− δ

) 1
1+εbδ

c1

]
× ...

×
[(

(1− ϕb)
η

η + 1
+ ϕb

1
1− δ

) 1
1+εbδ

cNm ,
(
(1− ϕb)

εb

εb + 1
+ ϕb

1
1− δ

) 1
1+εbδ

cNm

]
.

The function fio(w) is continuous in wages on S. We can therefore apply Brouwer’s fixed point theorem

and claim that at least one solution exists for the system of equations formed by (2.19).

Uniqueness. First we introduce the following Theorem and Corollary that we will use later to establish

uniqueness in our proofs. These are transcribed from Allen et al. (2016) as they are not present any more in

the current version of the paper Allen et al. (2020a):

Theorem 2. Consider g : Rn
++ ×Rm

++ for some n ∈ {1, ..., N} and m ∈ {1, ..., M} such that:

(i) homogeneity of any degree: g(tx, ty) = tkg(x, y), t ∈ R++ and k ∈ R,

(ii) gross-substitution property:
∂gi
∂xj

> 0 for all i 6= j,
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(iii) monotonicity with respect to the joint variable:
∂gi
∂yk
≥ 0, for all i, k.

Then, for any given y0 ∈ RM
++ there exists at most one solution satisfying g(x, y0) = 0.

Proof. We proceed by contradiction. Suppose there are two different up-to-scale, solutions, x1, x2, such

that f (x1) = f (x2) = 0 i.e. g(x1, y0) = g(x2, y0) = 0. Without loss of generality, suppose there exists

some t > 1 such that tx1
j ≥ x2

j for all j ∈ {1, ..., n} and the equality holds for at least one j = j̄. Then the

inequality must strictly hold since x1 and x2 are different up-to-scale. Condition (iii) ∂gi
∂yk
≥ 0, for all i, k implies

g(tx1, y0) ≤ g(tx1, ty0) = 0 where g(tx1, ty0) = 0 is from condition (i) (and also g(tx2, ty0) = 0 because x1

and x2 are solutions). However, condition (ii) implies gj(tx
1, y0) > gj(x2, y0) = 0, thus a contradiction.

Corollary 1. Assume (i) f (x) satisfies gross-substitution and (ii) f (x) can be decomposed as f (x) = ∑
ν f

j=1 gj(x)−
∑

νg

k=1 hk(x) where gj(x), hk(x) are non-negative vector functions and, respectively, homogeneous of degree αj and βk,

ᾱ = max αj ≤ min βk.

1. Then there is at most one up-to-scale solution of f (x) = 0.

2. In particular, if for some j, k αj 6= βk, then there is at most one solution.

Proof. Define m(x, y) as a vector function where mi(x, y) = ∑
ν f

j=1 yᾱ−αj g
j
i(x) − ∑

νg

k=1 yᾱ−βk hk
i (x). Obviously,

m(x, y) is of homogenous degree ᾱ and ∂mi
∂y ≥ 0. Also we have f (x) = m(x, y0) where y0 = 1, thus the above

theorem applies.

Furthermore, if fi(x) is not homogeneous of some degree because αj 6= βk, there is at most one solution.

Suppose not, tx1 and x1 are the solutions, then fi(x1) > t−min(βk) fi(tx
1) = 0, also a contradiction.

In order to prove uniqueness we use Theorem 1 and Corollary 1 stated above.

Define the function g : Rn
++ → Rn for some n ∈ {1, ..., N} as:

gio(w) = fio(w)− wio, ∀i ∈ {1, .., N}.

We want to prove that the solution satisfying g(w) = 0 is unique. In order to do so, we first need to show

that g(w) satisfies the gross substitution property ( ∂gio
∂wjo

> 0 for any j 6= i).

Taking the partial derivative of gio with respect to wjo for any j 6= i:

∂gio

∂wjo
=

∂ fio(w)

∂λ(µ(s(w))
×

∂λ(µ(sio|m))
∂µ(sio|m)

×
∂µ(sio|m)

∂sio|m
×

∂sio|m
∂wjo

,

where ∂ fio(w)
∂λ(µ(s(w))

= 1
1+εbδ

fio(w)
λ(µ(s(w))

> 0. We have that
∂λ(µ(sio|m))

∂µ(sio|m)
> 0 and we previously established that, under

the assumption that 0 < η < εb,
∂µ(sio|m)

∂sio|m
< 0. The share of an establishment i with occupation o in sub-market

m is defined as:

sio|m =
Tiow

εb
io

∑j∈Im
Tjow

εb
jo

.

Clearly,
∂sio|m
∂wjo

< 0 for any i 6= j. Therefore ∂gio
∂wjo

> 0 for any i 6= j and g satisfies the gross-substitution property.

The remaining condition to use Corollary 1 is simply that fio(w) is homogeneous of a degree smaller than

1.65 Clearly, fio(w) is homogeneous of degree 0 as a consequence that the markdown function itself µ(sio|m)

is homogeneous of degree 0. Therefore, the function g satisfies the conditions of Corollary 1 and we can

conclude that there exists at most one solution satisfying g(w) = 0.

65The degree of homogeneity of hio(w) = wio is 1.
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Proof of Proposition 9.

Developing equation (2.22) we get

F
1+εbδ
b Ab

(
F

ψbη
b Φ̃bΓ

η
b

Φ̃
L

)1−δ

= θb ∏
b′∈B

(
F

αb′ (1+εbδ)

b′

)θb′
∏

b′∈B
A

θb′
b′ ∏

b′∈B

(
F

ψbη
b′ Φ̃b′Γ

η
b′

Φ̃
L

)(1−δ)θb′

⇔ F
ψb(1+η)
b Ab

(
Φ̃bΓ

η
b

)1−δ
= θb ∏

b′∈B

(
Ab′
(

Φ̃b′Γ
η
b′

)1−δ
)θb′

∏
b′∈B

(
F

αb′ (1+εb′ δ)+ψb′η(1−δ)

b′

)θb′
.

Define fb = log(Fb) and f as a B× 1 vector whose element b′ is fb′ . Then, taking logs and rearranging the

previous expression we obtain:

fb = Cb + d′f,

where

Cb =
1

ψb(1 + η)

[
log(θb)− log(Ab)− (1− δ) log(Φ̃bΓ

η
b ) + ∑

b′∈B
θb′
(

log(Ab′) + (1− δ) log(Φ̃b′Γ
η
b′)
)]

and d is a B× 1 vector whose b′ element db′ is:

db′ =
1

ψb′(1 + η)
(αb′(1 + εb′δ) + ψb′η(1− δ)) θb′

=
θb′

1 + η
(αb′(1 + ηδ) + η(1− δ)) .

Define the vector C = [C1, ..., Cb, ..., CB] that contains the constant terms and the matrix D = [d, ..., d] which

repeats the d vector B times. We can stack all the terms for all b ∈ B from the previous expression and obtain

the following system of equations:

f = C + D′f. (49)

A solution to the system (49) exists if the matrix I−D′ is invertible. This matrix has an eigenvalue of zero

if and only if the sum of the elements of the vector d is equal to 1. Additionally, this sum is equal to 1 if and

only if ∑b αbθb = 1 as:

∑
b

db = 1 ⇔ ∑
b

(αb(1 + ηδ) + η(1− δ)) θb = 1 + η

⇔∑
b

αbθb(1 + ηδ) = 1 + η − η(1− δ) ⇔∑
b

αbθb =
1 + η − η(1− δ)

1 + ηδ
⇔∑

b

αbθb = 1.

Therefore we can conclude that whenever ∑b αbθb 6= 1 the transformed prices F have a unique solution. This

is always the case as long as 0 ≤ βb, θb < 1 ∀b ∈ B and 0 ≤ δ ≤ 1.

In order to obtain the closed form solution, rewrite (2.22) as:

Fb =


 θb

Ab

(
Φ̃bΓ

η
b

)(1−δ)




1
ψb(1+η)

C
1

ψb(1+η) = XbC
1

ψb(1+η) ,

where C is a constant that is equal to:

C = ∏
b′∈B

(
Ab′
(

Φ̃b′Γ
η
b′

)1−δ
)θb′

∏
b′∈B

(
F

αb′ (1+εb′ δ)+ψb′η(1−δ)

b′

)θb′
.

To solve for the constant, we use the ideal price index equation substituting the relative prices Pb for the

transformed prices Fb:

1 = ∏
b∈B

(
F

χb
b

θb

)θb

.

Substituting Fb into the price index and solving for C we recover the expression showed in Proposition 9.
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2.D Identification Details

2.D.1 Identification of η and δ

In order to identify the across markets labor supply elasticity η and the labor demand elasticity δ we exploit

the fact that in local labor markets where there is only one establishment, the wedge λ(µ, φb) is constant

within industries b. We denominate this type of establishments as full monopsonists. Additionally, the effect of

wages on the labor supply of full monopsonists is only affected by the parameter η as the within market labor

supply elasticity εb is irrelevant in local labor markets with only one establishment. Taking the logarithm for

the labor supply full monopsonists face (2.13) we get:

ln(Lio,s=1) = η ln(wio) +
η

εb
ln(Tio) + ln(Γη

b L/Φ).

As mentioned before, full monopsonists apply a constant markdown equal to µ(s = 1) = η
η+1 that in turn

will imply a constant wedge λ(µ, φb) within industry b. Their (inverse) labor demand (2.16) in logs is:

ln(wio,s=1) = ln(βb) + ln(
η

η + 1
) + ln(Aio)− δ ln(Lio) +

1
1− αb

ln(Pb).

In order to get rid of industry and economy wide constants, we demean ln(Lio,s=1) and ln(wio,s=1) by re-

moving the industry b averages per year. Denoting with ln(X) the demeaned variables, we rewrite the labor

supply and (inverse) demand equations as:

ln(Lio) = η ln(wio) +
η

εb
ln(Tio),

ln(wio) = −δ ln(Lio) + ln(Aio). (50)

The above system is just a traditional demand and supply setting. As it is well known, the above system

is under-identified. It is the classic textbook example of when a regression model suffers from simultane-

ity bias. The reason for this under-identification is the following: while the variance-covariance matrix of(
ln(Lio), ln(wio)

)
gives us three objects from the data, the system above has five unknowns, which are the

elasticities, η and δ, plus the three components of the variance-covariance matrix of the structural errors
η
εb

ln(Tio) and ln(Aio). Therefore, in absence of valid instruments that would exogenously vary either the

supply or demand equations in (50) we can not identify the elasticities.66

In order to identify the elasticities using the labor supply and demand equations in (50), we impose re-

strictions on the variance-covariance matrix of the structural errors while exploiting the differences in the

variance-covariance matrix of the employment and wages across occupations. This way of achieving identifi-

cation is known in the literature as identification through heteroskedasticity (see Rigobon (2003)). We classify our

four occupations into two broader categories S ∈ {1, 2}. Our identification assumption is that the covariance

between the transformed productivity ln(Aio) and amenities η
εb

ln(Tio), that we denote σTA is constant within

each category S. The fact that the elasticities are the same across occupational groups, in addition to the

assumption of common covariance of the structural errors within broad categories, are the reason we can

achieve identification. The reason is simple: while the four occupational categories give us 3× 4 = 12 bits of

information, the unknowns to be identified are 2, δ and η, plus 2, the broad category covariances, plus 8, the

variances of the transformed productivities and amenities for each of the four occupational categories.67

66Also note that even if we would have available some valid instruments, we would only be able to identify δ and η but not εb.
67Of course we could have a more stringent identification assumption that would leave us with an overidentified system, for example,

that all covariances are equal to zero. As an additional exercise we also estimated the parameters following a different identification

strategy: we assume that the covariances of the structural errors were the same among all the occupational groups. This gives us a

system with one overidentification restriction. The point estimates using this assumption and the one we mentioned above are pretty

similar.

146



We can rewrite the system (50) in the following way:

η

εb
ln(Tio) = ln(Lio)− η ln(wio),

ln(Aio) = δ ln(Lio) + ln(wio). (51)

Denote the covariance matrix of the structural errors for occupation o in category S (meaning the left hand side

of system (51)) by ΨoS. Denote the covariance matrix between employment and wages of the full monospon-

ists by V̂oS. The covariance of system (51) writes as:

ΨoS = DV̂oSDT , D =




1 −η

δ 1


 ,

where T denotes the transpose. Formally, our identifying assumption is that σAT,oS = σAT,o′S for occupations

that belong to the same category S. Taking differences within category,

∆S ≡ ΨoS −Ψo′S = D[V̂oS − V̂o′S]D
T , ∀S ∈ {1, 2}

where the differences of covariances in the left hand (element ∆S,[1,2]) is equal to zero. This gives us a just

identified system (two equations with two unknowns) to find the parameters η and δ. More details are

provided in Appendix 2.D.

The system (51) in matrix form is ΩoS = DV̂oSDT .. Defining an auxiliary parameter δ̃ = −δ, the system

writes as:


(

η

εb
)2σ2

T,oS
η
εb

σTA,S

η
εb

σTA,S σ2
A,oS


 =




1 −η

−δ̃ 1







σ2
L,oS σLW,oS

σLW,oS σ2
W,oS







1 −δ̃

−η 1




This system only allows us to identify η and δ. Denote by ΩS ≡ V̂oS− V̂o′S the difference between the variance

covariance matrix within category S and by ΩS,[1,2] = ω12,S the element on first row and second column. The

system of differences is:

∆S = DΩSDT , ∀S ∈ {1, 2}

With the identification assumption of equal covariance within category, we have that:

∆S,[1,2] = 0 = −ηω22,S + (1 + ηδ̃)ω12,S − δ̂ω11,S.

Solving for η,

η =
ω12,S − δ̃ω11,S

ω22,S − δ̃ω12,S
, ∀S ∈ {1, 2}

Equalizing the above across both occupation categories we get a quadratic equation in δ̂ that solves:

δ̃2[ω11,1ω12,2 −ω11,2ω12,1]− δ̃[ω11,1ω22,2 −ω11,2ω22,1] + ω12,1ω22,2 −ω12,2ω22,1 = 0. (52)

This is the same system as the simple case without covariance between the fundamental shocks in Rigobon

(2003). Different to him, ΩS is not directly the estimated variance-covariance matrix of each of the 4 occupa-

tions but rather the matrix of differences within category or state S. As mentioned by Rigobon (2003) there

are two solutions to the previous equation. One can show that if δ̃∗ and η∗ are a solution then the other

solution is equal to δ̃ = 1/η∗ and η = 1/δ̃∗. This means that the solutions are actually the two possible ways

the original structural system (50) can be written. In order to identify which of the two possible solutions we

147



are identifying, we have that by assumption η is positive while δ̃ is negative. Therefore as long as the two

possible solutions for δ̃ have different signs, we just need to pick the negative one.

Given the identification strategy, in order to estimate the elasticities δ and η we just need to obtain the em-

ployment and wages covariance matrices directly from the data on establishments that are full monopsonists

and solve for (52).

2.D.2 Identification of ϕb

In order to identify the industry workers bargaining power, we need to construct the model counterparts of

the industry labor share at every period t:

LSM
bt (ϕb) =

βb ∑io∈Ib
wiotLiot

∑io∈Ib
wiotLiot/λ(µio, ϕb)

,

Ib being the set of all establishment-occupations that belong to 2-digit industry b. We target the average

across time industry labor share. That is, we pick φb such that:

Et

[
LSM

bt (ϕb)− LSD
bt

]
= 0. (53)

Given that the wedge λ(µio, ϕb) is increasing in ϕb, then LSM
bt (ϕb) is increasing in ϕb as well. Therefore, if a

solution exists for (53) with ϕb ∈ [0, 1] this has to be unique.68

2.D.3 Amenities

In order to preform some counterfactuals we still need to compute other policy invariant parameters, or

fundamentals, from the data. In particular we need to recover establishment-occupation amenities and TFPRs,

while ensuring that in equilibrium the wages and labor allocations are the same as in the data.

Using the establishments labor supply (2.13), we can back out amenities, up to a constant:

Tio =
sio|m
w

εb
io

Φm.

The sub-market level Φm is a function of the amenities of all plants in m. We proceed by normalizing one

particular local labor market. Note that the allocation of resources is independent from this normalization.

We denote the local labor market that we normalize as 1. The relative employment share of market m with

respect to the normalized one is: Lm
L1

= Φ
η/εb
m

Φ
η/ε

b′
m

Γb
Γ1

. The local labor market aggregate is then:

Φm =

(
Lm

L1

Γ1

Γb
Φ

η
ε
b′

1

) εb
η

Substituting into the above we have that:

Tio ∝
sio|m
w

εb
io

(
Lm

Γb

)εb/η

.

2.E Additional Estimation Results

Table 27 has the calibrated final good production function elasticities of the intermediate the {θb}Bb=1 and the

required rate {Rb}Bb=1 for the year 2007.

68It can be the case that the solution does not exist. For example, given values of βb, εb and η, even with ϕb = 1 the labor share

generated by the model is too small to the one in the data. This does not happen with our data.
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Table 26 – Industry Estimates

Industry Code Industry Name β̂b ε̂b ϕ̂b

15 Food 0.74 1.69 0.22

17 Textile 0.74 1.49 0.51

18 Clothing 0.84 1.41 0.31

19 Leather 0.85 2.09 0.26

20 Wood 0.77 1.51 0.42

21 Paper 0.61 3.06 0.55

22 Printing 0.84 1.52 0.18

24 Chemical 0.67 3.25 0.06

25 Plastic 0.73 2.51 0.35

26 Other Minerals 0.65 1.62 0.43

27 Metallurgy 0.61 3.77 0.59

28 Metals 0.81 1.22 0.38

29 Machines and Equipments 0.79 2.18 0.32

30 Office Machinery 0.81 3.33 0.20

31 Electrical Equipment 0.65 3.02 0.67

32 Telecommunications 0.62 3.54 0.73

33 Optical Equipment 0.75 1.91 0.45

34 Transport 0.57 4.05 0.69

35 Other Transport 0.72 3.49 0.44

36 Furniture 0.81 1.57 0.43

Notes: All the estimated parameters are 2-digit industry specific. β̂b are the estimated output

elasticities with respect of labor, ε̂b are the within local labor market elasticities and ϕ̂b are

union bargaining powers.

2.F Data Details

We provide additional summary statistics and details about sample selection and variable construction.

2.F.1 Additional Summary Statistics

Table 30 – CZ Summary Statistics. Baseline Year

Variable Obs. Mean Pctl(25) Median Pctl(75) St. Dev.

Nn 356 773.798 266.8 461 861.2 1,168.407

Ln 356 8,300.567 2,567.403 5,244.300 10,086.210 11,322.000

Ln 356 11.389 8.148 10.878 13.547 6.043

wn 356 34.399 32.707 34.161 35.593 3.242

Note: Nn is the number of establishments at the CZ, Ln is full time equivalent employment at CZ, Ln is the average Liot

of establishment-occupations at n, wn is the mean wiot of the establishment-occupations at n in thousands of constant 2015

euros.
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Table 27 – Calibrated {θb} and {Rb}

Industry Code Industry Name θb Rb

15 Food 0.13 0.11

17 Textile 0.02 0.14

18 Clothing 0.01 0.14

19 Leather 0.01 0.14

20 Wood 0.02 0.13

21 Paper 0.02 0.13

22 Printing 0.06 0.13

24 Chemical 0.14 0.16

25 Plastic 0.06 0.15

26 Other Minerals 0.05 0.15

27 Metallurgy 0.03 0.14

28 Metals 0.10 0.14

29 Machines and Equipments 0.09 0.17

30 Office Machinery 0.00 0.17

31 Electrical Equipment 0.04 0.23

32 Telecommunications 0.04 0.23

33 Optical Equipment 0.04 0.23

34 Transport 0.04 0.19

35 Other Transport 0.06 0.19

36 Furniture 0.03 0.14

Notes: All the calibrated parameters are 2-digit industry specific for the year 2007. θb are

the intermediate good elasticities in the final good production function and Rb are the capital

rental rates for 2007. We construct the rental rates following Barkai (2016).

2.F.2 Sample Selection

Ficus. This data source comes from tax records therefore we observe yearly firm information. We exclude

the source tables belonging to public firms.69 Before 2000 we take table sources in euros and from 2001

onward we use data from consolidated economic units.70 After excluding firms without firm identifier the

raw data sample contains about 29 million firms from which about 2.8 million are manufacturing firms.71

Manufacturing sector (sector code equal to D) constitutes on average 10% of the observations, 19.2% of value

added and 27.2% of employment.

Postes. DADS Postes covers all the employment spells of a salaried employee per year. If a worker has several

spells in a year we would have multiple observations. The main benefit of this employer-employee data

source is that we can know the establishment and employment location of the workers. We exclude workers

69We only use the Financial units (FIN) and Other units (TAB) tables and exclude Public administration (APU).
70The profiling of big groups consolidates legal units into economic units. In 2001 the Peugeot-Citroën PSA was treated, Renault in

2003 and the group Accor in 2005. This implies the definition of new economic entities and would therefore lead to the creation of new

firm identifiers. Given the potential impact of big establishments in local labor markets we opted to maintain them.
71We consider a missing firm identifier (SIREN) also if the identifier equals to zero for all the 9 digits.

150



Table 28 – Estimated Within Elasticities for Different Lags

Industry Code Industry Name 1 Lag ε̂b 2 Lags ε̂b

15 Food 1.69 1.99

17 Textile 1.49 1.83

18 Clothing 1.41 1.69

19 Leather 2.09 2.50

20 Wood 1.51 1.77

21 Paper 3.06 3.39

22 Printing 1.52 1.79

24 Chemical 3.25 3.56

25 Plastic 2.51 3.04

26 Other Minerals 1.62 1.77

27 Metallurgy 3.77 4.35

28 Metals 1.22 1.48

29 Machines and Equipments 2.18 2.63

30 Office Machinery 3.33 3.72

31 Electrical Equipment 3.02 3.61

32 Telecommunications 3.54 4.08

33 Optical Equipment 1.91 2.36

34 Transport 4.05 4.56

35 Other Transport 3.49 4.05

36 Furniture 1.57 1.90

Notes: All the estimated parameters are 2-digit industry specific. 1 Lag ε̂b are the estimated

within local labor market elasticities when we instrument for the wages with one lag and 1

Lag ε̂b present the analogous when we instrument with two lags.

in establishments with fictitious identifiers (SIREN starting by F) and in public firms. For every establishment

identifier (SIRET) we sum the wage bill and the full time equivalent number of employees.

Merged Data. After merging both data sources we finish with data with yearly establishment observations.

After the filters and merging the sample consists of 1.3 million firms and 1.6 million establishment observa-

tions. In the process of filtering and merging about half of the original firms are lost. Wages and value added

are deflated using the Consumer Price Index.72

Labor and wage data coming from the balance sheets (at the firm level) and the one from employee

records needs to be consolidated. In order to be consistent with balance sheet information we assign labor

and employment coming from FICUS to the establishments according to their respective shares. We proceed

in several steps. First, we filter out observations with no wage or employment information from Postes

from firms present at different commuting zones. Second, we do some additional cleaning by getting rid of

observations with no labor, capital and wage bill information coming from FICUS and also observations with

non existing or missing commuting zone. Third, we aggregate employee data to the firm times commuting

72Nominal variables are expressed in constant 2015 euros.
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Table 29 – Transition Probabilities

Occup. Ch. CZ Ch. Ind. Ch. Trans. Prob. FTE Trans. Prob.

0 0 0 91.39 91.01

0 0 1 2.37 2.36

0 1 0 0.02 0.02

1 0 0 6.03 6.40

1 0 1 0.20 0.21

1 1 0 0.00 0.00

1 1 1 0.00 0.00

Note: The transition rates are computed over the whole sample period 1994-2007. Occup. Ch. is an

indicator function of occupational change, CZ. Ch. is an indicator function of commuting zone change,

Ind. Ch. is an indicator function of 3-digit industry change, Trans. Prob. FTE are the unconditional

transition probabilities based on full time equivalent units and Trans. Prob. are the unconditional

transition probabilities based on counts of working spells independently of duration and part-time

status.

zone level.73 Then we compute the labor and wage shares of these entities out of the firm’s aggregates. What

we call establishment through out the text is the entity aggregated at the commuting zone level. Finally, we

split firm data from the balance sheet according to those shares. This procedure leaves the firms in a unique

commuting zone with their balance sheet data but allows to split wage bill and employment data coming

from the balance sheet for multi-location firms. Establishment wage is simply the average wage. That is,

wage bill over total full time equivalent employees.

We further exclude Tobacco (2-digits industry code 16), Refineries & Nuclear industry (code 23) and

Recycling (code 37). We finally get rid of the outliers reducing the sample 1.5% and finish with 4,156,754

establishment-occupation-year observations that belong to 1.25 million firms.74

2.F.3 Variable Construction

Ficus:

• Value added: value added net of taxes (VACBF). We restrict to firms with strictly positive value added.75

• Capital: tangible and intangible capital without counting depreciation. It is the sum of the variables

IMMOCOR and IMMOINC.

• Employment: full time equivalent employment at the firm (EFFSALM).

• Wage bill: gross total wage bills. Is the sum of wages (SALTRAI) and firm taxed (CHARSOC).76

73Data from 1994 and 1995 do not have commuting zone information. We therefore impute it using correspondence tables between

city code and commuting zone. A city code has 5 digits coming from the department and city. Some commuting zone codes beyond

the 2 missing years were modified or cleaned. City codes (commune codes) of Paris, Marseille and Lyon were divided into different

arrondissements. We assign them codes 75056, 13055 and 69123 respectively. Then we proceed to the cleaning of commuting zones by

assigning to the non existing codes the one corresponding to the city where the establishment is located. We get rid of non matched or

missing commuting zone codes. We aggregate the data coming from Postes at the commuting zone level after this cleaning.
74We get rid of wage per capita outliers by truncating the sample at the 0.5% below and 99.5%.
75We follow the advise of the French statistical instiute (INSEEE) in using net value added to perform comparisons across industries.
76For firms declaring at the BIC-BRN regime (TYPIMPO= 1) we only take SALTRAI .
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• Industry: industry classification comes from APE. The sub-industries h are 3 digit industries and indus-

tries b are at two digits.

Postes:

• Occupation: original occupation categories come from the two digit occupations (CS2). We group

occupations with first digits 2 and 3 into a unique occupation group.77 This regrouping is done to

avoid substantial changes in occupation groups between 1994 and 2007. Observations with missing

occupation information are excluded.

• Employment: full time equivalent at the establishment-occupation level (etp).

• Wage: is the gross wage (per year) of individual worker (sbrut). If the spell is less than a year is the

gross wage corresponding to the spell.

• Commuting zone: depending on the year, the commuting zone classification is taken from the variable

zemp or zempt. Commuting zone information is missing for the years 1994 and 1995 and is imputed

using the city codes.78

2.F.4 Construction of Required Rates

In order to construct the required rates for the different sectors we follow the methodology proposed by

Barkai (2016) using the Capital Input Data from the EU KLEMS database, December 2016 revision. In this

dataset one can find, for a given industry, different depreciation rates and price indices for different types of

capital. The types of capital that are present in the manufacturing sector are: Computing Equipment, Com-

munications Equipment, Computer Software and Databases, Transport Equipment, Buildings and structures

(non-residential), and Research and Development. We construct a required rate for each of the industries at

the 2 digit level defined in the NAF classification. However, unlike the NAF classification, that we have up

to 20 different industries, there are only 11 industries classified within manufacturing within the EU KLEMS

database. Any industry classification in EU KLEMS is just an aggregation of the 2 digit industry classification

in NAF. Therefore there are industries within the NAF classification that will have the same required rate of

return on capital.

For a type of capital s and sector b, we define the the required rate of return Rsb as:

Rsb =
(

iD −E [πsb] + δsb

)
,

where iD is a the cost fo debt borrowing in financial markets, and πsb and δsb are, respectively, the inflation

and depreciation rates of capital type s in sector b.

Then we define the total expenditures on capital type s in sector b as:

Esb = RsbPK
sbKsb,

where PK
sbKsb is the nominal value of capital stock of type s. Summing over all types of capital within a sector

we can obtain the total expenditures of capital of such sector:

Eb = ∑
sb

RsbPK
sbKsb.

77Occupations with first digit 1 and 7 are excluded. They constituted less than 0.05% of the matched sample.
78City codes are the concatenation of department (DEP) and city (COM).
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Multiplying and dividing by the total nominal value of capital stock we obtain the following decomposition:

∑
s

RsbPK
sbKsb = ∑

s

PK
sbKsb

∑s′ PK
s′bKs′b

Rsb

︸ ︷︷ ︸
Rb

∑
s

PK
sbKsb

︸ ︷︷ ︸
PKbKb

,

where the first term Rb is the interest rate that we use in the model.

2.G Empirical Evidence

Example of an economy with four local labor markets and four firms identified by color. Each firm is multi-

location with plants at different local labor markets. The blue firm is affected by a mass layoff at the national

level (in all the local markets where it is present). Natural experiment on sio|m for non-blue establishments.

Figure 22 – Local Labor Markets with and without shock
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The treated establishments are the ones in local markets 1 and 2.

Figure 23 – Treated Establishments
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The first order condition for wages is:

Pb
∂F

∂Lio
= Lio(wio)

∂wio

∂Lio
+ wio,
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where the right hand side is the marginal cost ( ∂wio Lio
∂Lio

) when internalizing movements along the labor supply

curve. Noting that ∂wio
∂Lio

Lio
wio

= 1
eio

is the inverse of the labor supply elasticity eio, the first order condition can

be written as:

Pb
∂F

∂Lio
= wio

(
1 +

1
eio

)
.

When labor supply is infinitely elastic, the MRPL is equal to the wage. When eio < ∞ the wage will be below

the MRPL. Panel (a) of Figure 24 shows equilibrium wages and employment when the firm acts as a price

taker (PT) and when it exerts labor market power (MP).

When firms have labor market power and do not act strategically, their perceived elasticity is constant,

eio = e. The last term above is therefore constant implying that conditional on a labor supply level, wages are

independent to employment shares. When the perceived elasticity is a decreasing function of the employment

share, shocks that increase employment share will move the marginal cost (MC) curve to the left. Panel (b)

of Figure 24 gives an intuition of our instrument.

Figure 24 – Instrument
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(a) Equilibrium wage. Price taking (PT) and oligop-

sonistic competition (MP)
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(b) Instrument

2.G.1 Definition of Mass Layoff

Denote by ML the set of firms with a national mass layoff. That is, firms with all the establishments suffering

a mass layoff. We instrument the employment share of the establishments of firms not suffering the national

mass layoff j /∈ ML by the exogenous event of a firm present at the local labor market having a negative

shock. We restrict the analysis to non-shocked firms present in different commuting zones with at least

one establishment in a sub-market where a competitor has suffered a mass layoff and another plant whose

competitors do not belong to firms in ML.

Local labor markets where a mass-layoff has occurred will take a value of Dm,t equal to 1.79 The first stage

is:

sio|m,t = ψJ(i),o,t + δN(i) + γ Dm,t + ǫio,t

79A firm j at occupation o is hit by a negative shock if ✶{Lio,t/Lio,t−1 < κ ∀i where J(i), t = j} = 1. A local labor market is identified

as shocked Dm,t = 1 if at least one establishment at the local market belongs to a firm in ML.
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where as before, ψJ(i),o,t is a firm-occupation-year fixed effect and δN(i) is a commuting zone fixed effect.

Using the fitted values we consider the following model for the second stage:

log(wio,t) = ψJ(i),o,t + δN(i) + α ŝio|m,t + uio,t (54)

Before generating the instrument, we need to identify the firms suffering from a mass layoff. Defining

a cut-off value κ, we identify a firm-occupation j ∈ LO if establishment-occupation employment at t is less

than κ% employment last year. The best instrument would be identifying firms that went bankrupt (κ = 0).

Given that we cannot externally identify if a firm disappears because it went bankrupt or change identifiers

keeping the number of competitors at the local market constant. There is a trade-off when choosing κ. On

the one hand, a lower threshold leads to considering stronger negative shocks and the generated instrument

would be cleaner. On the other hand, we would classify less firms as having a negative shock reducing the

number of events considered. This creates a bias-variance trade-off on the election of the threshold. Lacking

a clear candidate for κ, we try with different cut-off values.80

2.G.2 Robustness Checks

Figure 25 shows robustness checks of the reduced form exercise. The former considers a different instrument

for the employment shares and the latter is taking commuting zone-year fixed effects. The results in the main

text are with commuting zone fixed effects.

Figure 25 – Robustness

(a) Instrument: Intensive Share (b) CZ-year fixed effects

Notes: This figures present the point estimates and 95% confidence bands of the OLS and IV exercises on the y-axis. The x-axis presents different thresholds

κ that define a mass layoff shock. In both cases we focus on non-affected competitors (not suffering a mass layoff shock). The instrument in Panel (a) is the

presence of a mass layoff shock firm in the local labor market interacted with the employment share of the affected firm. Panel (b) presents the results with

commuting zone-year fixed effects.

Instead of considering local labor markets with industries at the 3-digit level h as in the baseline, they are

defined at the 2-digit level b.

80A standard value in the literature is κ =70%. That is a 30% lost of employment.
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Figure 26 – Robustness. Local Labor Market at 2-digit Industry

Notes: This figure presents the point estimates and 95% confidence bands of the OLS and IV exercises on the y-axis. The x-axis presents different thresholds

κ that define a mass layoff shock. We focus on non-affected competitors (not suffering a mass layoff shock). The instrument is the presence of a mass

layoff shock firm in the local labor market. The definition of local labor market is a combination of commuting zone, 2-digit industry and occupation. The

difference with respect to Figure 24 is that the local labor market is at 2-digit rather than 3-digit industry.

2.H Distributional and Efficiency Consequences

Here we illustrate the distributional and efficiency effects when the labor wedge λ is below one. Figure 27

illustrates the effect of labor market power on the distribution of value added into profits and wage payments.

For simplicity, we illustrate with the case of a production function using only labor with a decreasing returns

to scale technology. On the left panel, we have the case of perfect competition in the labor market where

wages are equal to the marginal revenue product of labor and the firm earns quasi-rents generated from

having decreasing returns. On the right panel, we illustrate the case with labor market power where employer

monopsony power dominates. Wages are below the marginal revenue product because the wedge λ is below

one. This generates additional profits for the firm, reducing wage bill payments and therefore the labor share.

Figure 27 – Distributional Consequences
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Figure 28 shows the efficiency consequences due to the misallocation of resources. The left panel shows

two firms with the same labor wedge. For simplicity we assume that all firms and local labor markets have the

same amenities so workers being indifferent, all establishments will have the same wage in equilibrium. With

homogeneous wedges, the marginal revenue products are equalized across establishments. In particular, if
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firm B is more productive we have in equilibrium LB > LA. On the right panel we show an example with

heterogeneous wedges. Firm B being more productive is more likely to have a higher employment share at

the local labor market and therefore a more important markdown. That is, µB < µA and therefore λB < λA.

Wages being equalized for all the establishments MRPLB > MRPLA. We illustrate the extreme case where

the distortion generated by labor market power flips the employment size of both firms and we have LA > LB.

Shifting employment from A to B, from low to high marginal revenue product firms, there could be efficiency

gains.

Figure 28 – Efficiency Consequences
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(b) Heterogeneous Wedges
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The next Figure shows the wage inequality in the baseline scenario and in the counterfactual without

labor wedges when workers and firms act as price takers. Wages are demeaned.

Figure 29 – Wage Distribution

(a) Baseline Demeaned Wage Distribution (b) Counterfactual (PT) Demeaned Wage Distribution

2.H.1 Union

Tables 31 and 32 present respectively the rent sharing elasticities for industries and occupations.
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Table 31 – Rent Sharing: Industry

Industry Code Industry Name Rent Sharing SE Rent Sharing

15 Food 0.40 0.00

17 Textile 0.22 0.00

18 Clothing 0.31 0.00

19 Leather 0.31 0.00

20 Wood 0.32 0.00

21 Paper 0.22 0.00

22 Printing 0.34 0.00

24 Chemical 0.17 0.00

25 Plastic 0.23 0.00

26 Other Minerals 0.25 0.00

27 Metallurgy 0.14 0.00

28 Metals 0.37 0.00

29 Machines and Equipments 0.30 0.00

30 Office Machinery 0.33 0.01

31 Electrical Equipment 0.25 0.00

32 Telecommunications 0.23 0.00

33 Optical Equipment 0.32 0.00

34 Transport 0.22 0.00

35 Other Transport 0.31 0.00

36 Furniture 0.37 0.00

Table 32 – Rent Sharing: Occupation

Occupation Rent Sharing SE Rent Sharing

Top management 0.38 0.00

Supervisor 0.27 0.00

Clerical 0.29 0.00

Blue collar 0.30 0.00

2.I Alternative Production Function

In this section we denote the local labor market as in the main text. m denotes the combinations between

commuting zone, 3-digit industry and occupations. That is: m = n× h× o. We denote as a location l the

combinations of commuting zones and 3-digit industries l = n× h.

Suppose that establishment i produces using some generic capital Ki and a labor composite Hi of different
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occupations:

yi = ÃiK
αb
i H

βb
i = ÃiK

αb
i

(
∏
o∈O

L
γo

io

)βb

, ∑
o

γo = 1, αb + βb ≤ 1. (55)

The first order conditions are:

wio = βbγoλ(µio ϕb)Pb
yi

Lio

Rb = αb ÃiK
αb−1
i H

βb
i

Substituting the first order condition for capital into the production function, the wage first order condition

becomes,

wio = βbγoλ(µio ϕb)Ai H
1−δ
i L−1

io P
1

1−αb
b

where we plugged the labor supply and used the definition of δ = 1− βb
1−αb

from the main text and Ai =

Ã
1

1−αb
i

(
αb
Rb

) αb
1−αb as in the main text. Using those and solving for Lio we can write the labor composite Hi as

function of wages:

Hδ
i = P

1
1−αb

b ∏
o∈O

βbγoλ(µio, ϕb)w
−1
io

Substituting the wage first order condition with the labor supply (2.13) into this,

H
1+εbδ
i = P

εb
1−αb

b ∏
o∈O

(
βbγoλ(µio, ϕb)Ai(TioΓ

η
b )

1/εb

)εbγo

∏
o∈O

(
Φ

1−η/εb
m

Φ

L

)−γo

= P

εb
1−αb

b (βbΥAi)
εb TiΓ ∏

o∈O
λ(µio, ϕb)

εbγo ∏
o∈O

(
Φ

1−η/εb
m

Φ

L

)−γo

,

where Υ ≡ ∏o∈O γo, Γ ≡ ∏o∈O Γ
η
b and Ti ≡ ∏o∈O Tio. Plugging back into the wage equation and rearranging,

wio =


λ(µio, ϕb)

γo

TioΓ
η
b

(βb Ai)
1+εb
1+εbδ (Υ(TiΓ)

1/εb)
εb(1−δ)
1+εbδ

(
∏

o′∈O
λ(µio′ , ϕb)

εbγ′o

) 1−δ
1+εbδ

(
∏

o′∈O
Φ

(η/εb−1)γ′o
m′

) 1−δ
1+εbδ

Φ
1−η/εb
m




1
1+εb

(56)
(

Φ

L

) 1
1+εb

P
1/χ
b ,

with χb = (1− αb)(1 + εbδ). Define the following:

cio ≡
γo

TioΓ
η
b

(βb Ai)
1+εb
1+εbδ (Υ(TiΓ)

1/εb)
εb(1−δ)
1+εbδ ,

Cl ≡ ∏
o′∈O

(
Φ

(η/εb−1)γo

m′

) δ
1+εbδ

(
Φ

L

) 1
1+εb

,

Fb ≡ P
1/χ
b ,

where Cl is a location constant. Rearranging we have that:

wio =


λ(µio, ϕb)cio

(
∏

o′∈O
λ(µio′ , ϕb)

εbγ′o

) 1−δ
1+εbδ

Φ
1−η/εb
m

∏o′∈O Φ
(1−η/εb)γ

′
o

m′




1
1+εb

Cl Fb. (57)

The last system is equivalent to the one in (56) and has the benefit to being able to write the wages: wio =

w̃ioCmFb, where we want w̃io to be homogeneous of degree zero with respect constants to m level. Note that
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the last term inside the brackets is homogeneous of degree zero with respect to location l constants shared

by all the occupations of a establishments. Then, defining Φ̃m = ∑i∈Im
Tiow

εb
io , the establishment-occupation

or normalized wage is:

w̃io ≡

λ(µio, ϕb)cio

(
∏

o′∈O
λ(µio′ , ϕb)

εbγ′o

) 1−δ
1+εbδ

Φ̃
1−η/εb
m

∏o′∈O Φ̃
(1−η/εb)γ

′
o

m′




1
1+εb

. (58)

w̃io is homogeneous of degree zero with respect to location l constants shared by all occupations. This

property, allows to solve for the normalized wages of every location l (combinations of commuting zone n

and sub-industry h combinations) independently and then recover the aggregate constants. Aggregating (58)

and solving for Φ̃m,

Φ̃m =




∑i∈Im

(
λ(µio, ϕb)cioT

1+εb
εb

io ∏o′∈O λ(µio′ , ϕb)
εbγ′o

) 1−δ
1+εbδ

∏o′∈O Φ̃
(1−η/εb)γ

′
o

m′




εb
1+η

.

Taking first all to the power (1− η/εb)γo and taking the product,

Ll ≡ ∏
o′∈O

Φ̃
(1−η/εb)γ

′
o

m′ = ∏
o′∈O


∑

i∈Im

(
λ(µio, ϕb)cioT

1+εb
εb

io ∏
o′∈O

λ(µio′ , ϕb)
εbγ′o

) 1−δ
1+εbδ




γo′
εb−η

1+εb−η

,

which recovers all the constants inside w̃m.

In order to prove the existence and uniqueness of the solution of the system (58), define ŵio as:

ŵio =


λ(µio, ϕb)

(
∏

o′∈O
λ(µio′ , ϕb)

εbγ′o

) 1−δ
1+εbδ




1
1+εb

c
1

1+εb
io

wio = ŵio

[
Φ̃

1−η/εb
m

Ll

] 1
1+εb

Cl Fb = ŵiozl = w̃ioCl Fb. (59)

We can show that the system formed by (59) has a solution and is unique.

Proposition 10. For given parameters 0 ≤ αb, βb < 1, 1 < η < εb, 0 ≤ δ ≤ 1, transformed price Fb, constants

Cl , Φ̃m, Ll and non-negative vectors of productivities {Ai}i∈m and amenities {Tio}io∈m, there exists a unique vector

of wages {wio}io∈Im
for every location l (combination of commuting zone n and sub-industry h) that solves the system

formed by (59).

Sketch of the proof. For existence, first note that λ(µio, ϕb) ∈
[
(1− ϕb)

η
1+η + ϕb

1
1−δ , (1− ϕb)

εb
1+εb

+ ϕb
1

1−δ

]
, ∀i, o.

Define a vector w with wage of all the occupation-establishments at location l, w ≡ {w11, w12, ..., w1O, ..., wI1, wI2, ..., wIO}.
Taking for now the elements of zl as constants. The system to solve is: fio(w) = ŵiozl . We have that

w ∈ C ≡
[(

(1− ϕb)
η

1 + η
+ ϕb

1
1− δ

) 1
1+ηδ

c
1

1+εb
11 zl1,

(
(1− ϕb)

εb

1 + εb
+ ϕb

1
1− δ

) 1
1+ηδ

c
1

1+εb
11 zl1

]

× ...×
[(

(1− ϕb)
η

1 + η
+ ϕb

1
1− δ

) 1
1+ηδ

c
1

1+εb
IO zlO,

(
(1− ϕb)

εb

1 + εb
+ ϕb

1
1− δ

) 1
1+ηδ

c
1

1+εb
IO zlO

]
.

The system fio is continuous on wages and maps into itself on C. The last set being a compact set we can

apply Brower’s fixed point theorem.
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For uniqueness, once the product of the wedges is substituted, ŵio is:

ŵio =

[
λ(µio, ϕb)cio ∏

o′∈O
(wio′c

− 1
1+εb

io )γ′oεb(1−δ)

] 1
1+εb

Define the function gio(w) = fio(w)− wio. Gross substitution is fulfilled if ∂gio(w)
∂wjo

> 0, ∀j 6= i with j ∈ Il and
∂gio(w)

∂wio′
, ∀o′. Gross substitution resumes to taking the partial derivatives of ŵio which are positive by similar

reasoning as in the main proof. Finally, ŵio is homogeneous of degree εb
1+εb

(1− δ) < 1. Therefore the solution

to the system (59) exists and is unique.

Finally, the model can be aggregated up to the industry level following similar steps as in the baseline.

Steps to write the industry model are in Appendix 2.A.5 of the paper.

2.J Pass Through

Table 33 – Pass Through of Z

Industry Code Industry Name ǫW
Z PT β̂Z

b Diff SE β̂Z
b

15 Food 0.933 0.890 0.043 0.000

17 Textile 0.940 0.916 0.024 0.000

18 Clothing 0.943 0.925 0.018 0.000

19 Leather 0.918 0.842 0.076 0.000

20 Wood 0.939 0.888 0.052 0.000

21 Paper 0.885 0.835 0.050 0.000

22 Printing 0.939 0.914 0.025 0.000

24 Chemical 0.879 0.720 0.159 0.000

25 Plastic 0.904 0.856 0.048 0.000

26 Other Minerals 0.935 0.887 0.048 0.000

27 Metallurgy 0.862 0.777 0.085 0.001

28 Metals 0.951 0.932 0.019 0.000

29 Machines and Equipments 0.915 0.861 0.054 0.000

30 Office Machinery 0.876 0.760 0.116 0.001

31 Electrical Equipment 0.886 0.848 0.039 0.000

32 Telecommunications 0.869 0.840 0.029 0.000

33 Optical Equipment 0.925 0.894 0.031 0.000

34 Transport 0.853 0.802 0.051 0.000

35 Other Transport 0.871 0.788 0.083 0.000

36 Furniture 0.938 0.909 0.029 0.000

Notes: This table presents the estimation results of equation (2.31) in column (4) β̂Z
b and its comparison to the pass through

without the labor wedges in column (3) ǫW
Z PT. Diff in column (5) shows the difference between the pass thorough without

the wedges and the estimated one and SE β̂Z
b in column (6) presents the standard error of the estimated parameters β̂Z

b .
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Chapter 3

Correcting Small Sample Bias in Linear

Models with Many Covariates

Miren Azkarate-Askasua and Miguel Zerecero1

Abstract

Estimations of quadratic forms in the parameters of linear models exhibit small-sample bias.

The direct computation for a bias correction is not feasible when the number of covariates is large.

We propose a bootstrap method for correcting this bias that accommodates different assumptions

on the structure of the error term including general heteroscedasticity and serial correlation. Our

approach is suited to correct variance decompositions and the bias of multiple quadratic forms

of the same linear model without increasing the computational cost. We show with Monte Carlo

simulations that our bootstrap procedure is effective in correcting the bias and we compare this

to other methods in the literature. Using administrative data for France, we apply our method by

carrying out a variance decomposition of a linear model of log wages with person and firm fixed

effects. We find that the person and firm effects are less important in explaining the variance of log

wages after correcting for the bias and depending on the specification that the correlation becomes

positive after the correction.

JEL Codes: C13, C23, C55, J30, J31

Keywords: Variance components, many regressors, fixed effects, bias correction.
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3.1 Introduction

With the increased availability of large panel data sets, researchers have been interested in un-

derstanding to what extent unobserved heterogeneity can explain the variation of an outcome of

interest. Usually, econometricians include fixed effects in a standard linear model to control for this

unobserved heterogeneity and then perform a variance decomposition. These methods have been

used in the context of education to study the importance of classroom effects (e.g. Chetty et al.

(2011)) and extensively in the labor market context where log-additive models of wages are used

to study the determinants of labor income (e.g. Abowd et al. (1999); Card et al. (2013); Iranzo et al.

(2008); Lopes de Melo (2018)).

The elements of a variance decomposition of a linear model are quadratic objects in the param-

eters. As long as the parameters are estimated with noise, these quadratic objects are subject to

small-sample bias. This bias can be substantial and can even change the sign of estimated covari-

ances and correlations. Moreover, this bias does not fade away by increasing the sample size when

using panel data, as the number of parameters to estimate, i.e. the number of fixed effects, grows

with the sample size.

Focusing on the context of labor economics, researchers have used employer-employee matched

datasets to study the sorting patterns of workers into firms. Various papers have estimated a linear

model of log wages with person and firm fixed effects, following the seminal work of Abowd,

Kramarz, and Margolis (1999) (AKM henceforth). These studies compute the correlation between

the person and firm fixed effects to determine the degree of sorting in the labor market. Most

studies have found zero or negative correlations, casting doubt on whether there is sorting in the

labor market. However, as first noted by Abowd et al. (2004) this correlation is likely to suffer from

small-sample bias, dubbed limited mobility bias in their paper. Andrews et al. (2008) derive formulae

for correcting the bias when the errors are homoscedastic. Gaure (2014) provides formulae for more

general variance structures. Unfortunately, the direct implementation of these corrections in high

dimensional models is infeasible. The reason is that the corrections entail computing the inverse of

an impractically large matrix.2 This has prevented the direct application of the correction formulae.

In this paper we propose a bootstrap method to correct for small-sample bias in quadratic forms

in the estimated parameters of linear models with a large number of covariates. The main appli-

cation of the method is the correction of variance decompositions of multi-way fixed effects. The

method is very similar to MacKinnon and Smith Jr (1998) when the bias is flat or independent of

the initial estimates, but is more efficient than one that follows their approach directly. Compared

to other methods in the literature, our estimator also has the benefit of being fast and easy to im-

plement while allowing for a flexible error structure. Using Monte Carlo simulations we show that

our method successfully corrects the bias of quadratic forms in the parameters in cases where the

error term is heteroscedastic and when there is serial correlation or clustering of the errors. Our

procedure consists of a wild bootstrap under the assumption of diagonal covariance matrix, and a
2By large matrix we mean a matrix with dimension in the order of hundreds of thousands or millions. Instead of computing the

inverse directly, researchers usually rewrite the object of interest as a system of linear equations that can be solved by preconditioned

conjugate gradient methods. A particular example of such systems are the normal equations in OLS regressions.
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wild block bootstrap (Cameron et al., 2008) for those that are non-diagonal that is valid for unre-

stricted dependence of the error terms within group and heteroscedasticity. The method is flexible

in the definition of the group and therefore allows for example clustering of the errors depending

on the geographical area or serial correlation within the worker-firm match.

We apply our method to French administrative data and perform a variance decomposition of

an estimated AKM type model. Consistent with the Andrews et al. (2008) formulation, we find

that sample variances of person and firm effects are reduced and their covariance increased after

the correction. The estimated correlation at the connected set passes from -0.10 to -4.1e-04 under

the assumption of serial correlation of the error terms within the match.3 Abowd et al. (2004),

also using French data but a different sample, found a correlation of -0.28. Compared to estimates

from other countries, the correlation obtained with French data has been more negative and farther

from zero than the ones found in these other studies. We believe the reason behind this is that

the French data is a representative sub-sample of around 8% of the whole universe of workers. As

identification of the fixed effects comes from workers moving across firms, the particular sampling

procedure used to generate the French panel tends to deliver a sample with few workers moving

across jobs, resulting in noisier estimates of the fixed effects. Indeed, in Table 1 of Lopes de Melo

(2018) the correlation in the French data is the most negative and the ratio of workers to firms the

smallest of all studies, suggesting that this dataset can exhibit substantial noise in the estimates

making it harder to correct for the bias.

Our approach is similar to the ones proposed by Gaure (2014) and by Kline et al. (2020). All

methods rely on iterative procedures to compute an estimate of the bias correction term. In general,

the bias appears as the trace of a matrix, but when the number of covariates of the linear model is

large, the explicit computation of this trace is not practical. Gaure exploits the fact that the trace can

be represented as the expectation of a more manageable quadratic form in a random vector, which

is estimated as a sample mean.4 He sketches the procedure to correct for the bias when the error

terms are heteroscedastic but to the best of our knowledge does not implement it in his R package

lfe.5

Kline et al. (2020) (KSS henceforth) follow a similar approach to Gaure (2014) in estimating the

small sample bias of second order moments. They compute the trace term leading to the bias and

estimate the covariance matrix based on leave-one-out estimates. For the applications with many

covariates where the direct computation is unfeasible, they propose an approximation algorithm

to estimate the bias. Similarly to us, they show their estimator is unbiased and consistent. Our

approach differs in the way we estimate the trace term and also on the estimate of the covariance

matrix we use. The main benefit of our method is to be faster and more flexible. Monte Carlo
3In a more restricted sample fulfilling the requirements to apply the method of Borovičková and Shimer (2017), the estimated

correlation passes from -0.06 to 0.08 after the correction.
4In particular, the way Gaure estimates the trace is known as the Hutchinson method. Denote a random vector x ∈ Rn, where each

individual entry is independently distributed Rademacher (entries can take values of 1 or -1 with probability 1/2). Then, for a square

matrix A ∈ Rn×n we have that tr(A) = E(x′Ax). The Hutchinson estimator of the trace of matrix A is 1
M ∑

M
i=1 x′i Axi , where xi is the i-th

draw of the random vector x. See Hutchinson (1989) and Avron and Toledo (2011).
5One can download the lfe package at: ❤tt♣s✿✴✴❝r❛♥✳r✲♣r♦❥❡❝t✳♦r❣✴✇❡❜✴♣❛❝❦❛❣❡s✴❧❢❡✴✐♥❞❡①✳❤t♠❧. The function applying the

correction is bccorr.
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simulations show that our correction is between 30% to 60% faster than KSS, has similar accuracy

and is suited to perform a full variance decomposition while their method focuses on the two main

fixed effects. Nevertheless, KSS go one step further and propose how we can perform inference in

situations when the rank of the quadratic form depends on the sample size (e.g. when we have

two-way fixed effects).

The computational cost in Gaure and KSS comes from estimating a bias correction for each inter-

ested quadratic form, as it requires solving a large system of linear equations in each iteration that

are particular to each quadratic form. In contrast, we re-estimate the model with bootstrapped data

and show that a sample mean of the bootstrapped moment estimates is an unbiased and consistent

estimator of the almost feasible bias correction term. In our method, the computational cost comes

from estimating the linear model in each bootstrap but does not increase depending on the number

of moments to correct. Regardless of the number of moments to correct, we need to solve one sys-

tem of linear equations per bootstrap, while with the Gaure and KSS methods one needs to solve as

many systems of equations per iteration as needed corrections.6 They implement corrections of the

second order moments of the two leading fixed effects while we can directly perform a full variance

decomposition, which is therefore suited for corrections on multi-way fixed effect regressions.

Following the work of MacKinnon and Smith Jr (1998) bootstrap methods have been used to

correct for variance estimates in linear models with fixed effects (e.g. Kane and Staiger, 2008; Best

et al., 2017). Our contribution with respect to those is to propose a more efficient bootstrap method

with a special focus on two-way fixed effects and to compare it to other methods in the literature.

Borovičková and Shimer (2017) (henceforth BS) provide an alternative method to compute the

correlation of firm types and workers, which has the advantage of not requiring estimates of all

the worker and firm fixed effects and directly computing the correlation. We perform two exercises

to compare our method with theirs. First, we simulate labor market data that fulfills the key

identifying assumptions of the AKM linear model and of BS. We find that both methods correct

the bias but ours outperforms theirs in terms of accuracy of the estimation of each of the elements

of the correlation, but is naturally more time consuming. Second, we apply their method to the

French data. In order to do so, we need to deviate in two aspects from the original dataset used

in our main application: first, we need to restrict the sample to workers that have at least two jobs

and firms that have at least two workers; second, we need to take averages of every match between

firm and workers.7 The first restriction implies that the sample used for BS is about half of the

original sample of private firms.8 Suggestive of the potential sample selection issues is that the

plug-in estimate of the correlation between worker and firm fixed effects is -0.10 under the original

data whereas is -0.06 under the connected set generated from BS data. Both approaches now yield

different estimates. They estimate a correlation between worker and firm types of 0.56 while we

estimate correlations of 0.09 or 0.16 depending on the specification. We estimate our corrections of
6For example, consider the linear model yt = X1t β1 + X2t β2 + εt where one is interested in doing a variance decomposition for each

period t. This would yield three quadratic objects to correct (Var(X1 β̂1), Var(X2 β̂2), Cov(X1 β̂1, X2 β̂2)) per period.
7More precisely this would mean that if we observe one worker employed for a certain firms for several years, we would take the

average wage of that worker in that firm as one observation.
8The original data of private firms has 5.8 million observations while after filtering of two job and worker restrictions the sample has

only 2.5 million observations.
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the variance components at the connected set originated from the BS data restrictions.

Labor economists have been aware of the small-sample bias problem with quadratic forms in

the parameters and the difficulty in estimating a correction at least since Andrews et al. (2008).

There have been several attempts to correct this bias when performing variance decompositions

of estimated linear models. Some methods are based on leaving out part of the data, such as the

panel jacknife estimator by Dhaene and Jochmans (2015) or the leave one out estimator by KSS

already mentioned. Another method relies on reducing the dimensionality of the parameters to be

estimated, thereby reducing the noise in the estimates and the small-sample bias in any quadratic

form, like in Bonhomme et al. (2019). Recently Jochmans and Weidner (2019) characterize the

dependence between the bias of nonlinear functionals on the parameters and the network structure

of the data allowing for more than second order moments. Exploring these dependencies is out of

the scope of this paper.

3.2 The Bias

For clarity of exposition we layout the source of the bias characterized by Andrews et al. (2008).

Consider the following linear model:9

Y = Xβ + u, (3.1)

where Y is a n× 1 vector representing the endogenous variable, X is a matrix of covariates of size

n× k, and β is a vector of parameters. The error term u satisfies mean independence E(u|X) = 0.

The OLS estimate of β is,

β̂ = β + Qu,

where Q = (X′X)−1
X′. We are interested in estimating the following quadratic form ϕ = β′Aβ for

some non-random matrix A of dimensions k× k. From the expression for β̂ we can decompose the

the plug-in estimator ϕ̂PI = β̂′Aβ̂ as,

ϕ̂PI = β′Aβ + u′Q′AQu + 2u′Q′Aβ. (3.2)

Using the general formula for the expectation of quadratic forms and the exclusion restriction

E(u|X) = 0 we obtain,10

E (ϕ̂PI |X) = β′Aβ + trace
(
Q′AQV(u|X)

)
= ϕ + δ, (3.3)

where the bias δ ≡ trace (Q′AQV(u|X)) comes from the fact that β̂ is estimated with noise. This

bias is larger in cases where the sample size is small relative to the number of parameters to

estimate. In the two-way fixed effects AKM model, the number of observations per worker/firm

are usually small relative to the amount of fixed effects. Moreover, the observations identifying the

firm fixed effects are the ones of firm movers which tend to be small in samples with low mobility.

The almost feasible bias correction term δ̂ is defined as,

δ̂ ≡ trace
(

Q′AQV̂(u|X)
)

, (3.4)

9We somewhat follow the notation in Kline et al. (2020) for the interested reader to compare the papers.
10Given a random vector x and a symmetric matrix B we have that E(x′Bx) = E(x′)BE(x) + trace(BV(x)).
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where V̂(u|X) is an estimator of the conditional variance of the error term V(u|X). The almost fea-

sible bias correction δ̂ is an unbiased estimate of the bias term δ if and only if V̂(u|X) is an unbiased

estimator of V(u|X).11 Therefore we need an unbiased estimate of the conditional variance to be

able to compute the almost feasible bias correction δ̂.12 We can define then the following unbiased

estimate of ϕ as:13

ϕ̂ = β̂′Aβ̂− δ̂.

Unfortunately, when the number of covariates is very large, computing the almost feasible bias

correction δ̂ directly is computationally infeasible. This is because, in order to compute the trace, we

need to calculate first the matrix Q, which is itself a function of the inverse of a very large matrix.14

In the next section we propose a methodology to apply a computationally feasible correction. But

first, we describe how the components of a variance decomposition of a linear model are indeed

quadratic forms in the parameters.

3.2.1 Components of a variance decomposition as quadratic objects

When performing a variance decomposition of a linear model, one can think of each element as a

particular form of β̂′Aβ̂ with the appropriate choice of A. To see this, we can rewrite (3.1) as

Y = X1β1 + X2β2 + u,

where X1 and X2 are matrices of covariates of size n× k1 and n× k2, k = k1 + k2 with X = [X1 X2]

and β′ = [β′1 β′2].

We are interested in the sample variances (v̂ar(X1β1), v̂ar(X2β2)) and covariance (ĉov(X1β1, X2β2)),

denoted, respectively, as σ2
1 , σ2

2 and σ12.15 Define 1 as a vector of ones with appropriate length. Then,

denote the demeaning operator as M1 = I− P1 = I− 1
n 11′. We can then write the sample variances

and covariances in matrix notation as

σ2
j = β′Ajβ, for j = {1, 2} and

σ12 = β′A12β,

where the symmetric matrices A1, A2 and A12 are equal to

A1 =
1

n− 1

(
X′1M1X1 0

0 0

)
, A2 =

1
n− 1

(
0 0

0 X′2M1X2

)
, A12 =

1
2(n− 1)

(
0 X′1M1X2

X′2M1X1 0

)
.

11Proof: by the linearity of the trace and expectation operators we have that: E(δ̂|X) = E

(
trace

(
Q′AQV̂(u|X)

)
|X
)

=

trace
(

Q′AQE

(
V̂(u|X)|X

))
= trace (Q′AQV(u|X)) = δ.

12For example, if we assume that the error term u is homocedastic, i.e. E(u2|X) = σ2
uI, then we can use the variance estimator

σ̂2
u = n

n−k ∑ û2
i and construct the almost feasible bias correction as δ̂ = σ̂2

u × trace
(

A(X′X)−1
)

.
13Notice that we say "unbiased" and not "bias-corrected". The reason for this is that as long as E(δ̂|X) = δ, then it follows that

E(ϕ̂|X) = ϕ.
14The dimension of this matrix is related to the number of covariates that are estimated in the linear model. In a typical AKM type

model the data will comprise of hundreds of thousands of workers and tens of thousands of firms, each representing a covariate in the

model.
15The sample variance for a vector x = {x1, x2, ..., xn} is v̂ar(x) = 1

n−1 ∑
N
i=1 (xi − x)2, where x is the sample mean. Similarly, the sample

covariance for vectors x and y is ĉov(x, y) = 1
n−1 ∑

N
i=1 (xi − x) (yi − y).
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The plug-in estimators of σ2
1 , σ2

2 and σ12, obtained by substituting β with the OLS estimate β̂, are

just particular examples of ϕ̂PI . Therefore, these estimates will also be biased.

3.3 Bootstrap Correction

The bootstrap correction estimates the almost feasible bias correction (3.4) by replicating the bias

structure of the plug-in estimates (3.2). In this section we present the bootstrap correction and

discuss different implementations depending on the choice of the covariance matrix estimate.

Suppose that we have the residuals of our original regression û = Y−Xβ̂. Using these residuals

we can construct an estimate of the covariance matrix, V̂(u|X), which we discuss in Section 3.3.1.

We generate a new dependent variable for the bootstrap Y∗ as:

Y∗ = v∗,

where v∗ is a vector containing the bootstrapped residuals. This is equivalent to performing a

traditional bootstrap as in MacKinnon and Smith Jr (1998), while setting β̂ = 0. The construction of

v∗ will depend ultimately in the assumption that we are making about the error term. In particular,

we need that the variance of the bootstrapped errors V(v∗|X) to be equal to V̂(u|X). The following

proposition states the main result of the paper and all the proofs are left to Appendix 3.A:

Proposition 11. Suppose the regression model (3.1) is correctly specified. Let n∗ denote the number of

bootstraps. Define β∗j as the OLS estimate of regressing v∗j over X for the j-th bootstrap iteration. If the

conditional variance-covariance matrix of the bootstrapped residuals V(v∗j |X) is equal to V̂(u|X), then

δ̂b = Ev∗
(

β∗′j Aβ∗j |X, u
)

is an unbiased and consistent estimator of the almost feasible bias correction δ̂.

The proposition tells us that instead of computing directly the almost feasible bias correction

term δ̂, which can be infeasible, we can estimate it using a sample average of estimated quadratic

forms.

The intuition behind our bias estimator is that in every bootstrap iteration we are replicating

the source of the bias, which is the noise embedded in the estimated parameters. MacKinnon

and Smith Jr (1998) propose a similar bootstrap to correct for flat biases like the one we want to

eliminate.16 MacKinnon and Smith Jr (1998) propose building the bootstrapped dependent variable

by using the original estimate of β, Y∗ = Xβ̂ + v∗. In our application we would next compute the

quadratic objects β∗′j,MS Aβ∗j,MS and their correction would be: δ̂b,MS = Ev∗
(

β∗′j,MS Aβ∗j,MS|X, u
)
−

β̂′Aβ̂. They already note that one can estimate a flat bias correction by using any β to generate

Y∗. In particular, the one we use β̂ = 0. Nevertheless, analogously to equation (3.2) we have that

in bootstrap j: β∗′j,MS Aβ∗j,MS = β̂′Aβ̂ + (v∗j )
′Q′AQv∗j + 2v∗′j Q′Aβ̂. When the covariance matrix of

the errors is diagonal, it can be shown that the covariance of the last two terms conditional on X

and u is equal to 0. Thus we have that the conditional variance of their estimator in the bootstrap
16A flat bias is one that does not depend on the levels of the original estimates. In our notation, the bias is flat because the trace term

in (3.3) is independent of β̂.
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is: V(δ̂b,MS|X, u) =
1

n∗
V((v∗)′Q′AQv∗|X, u) +

4
n∗

V(v∗′Q′Aβ̂|X, u) where we used the fact that

β̂ is not a random variable once we condition on X and u to eliminate the first term, and the

independence of the bootstrap errors v∗ across j to enter the variance into the sum. We therefore

have that the conditional variance of their estimator:

V(δ̂b,MS|X, u) = V(δ̂b|X, u) +
4

n∗
V(v∗′Q′Aβ̂|X, u),

is higher than ours, attributable to the presence of the last term similarly to equation (3.2). Both

methods are unbiased and consistent but ours is more efficient as we show in Section 3.3.2.

The computational burden of our method comes from estimating β∗j for each bootstrap. The

advantage of our method is twofold. First, we can correct several moments simultaneously, without

increasing the computational time. If we are interested in doing a variance decomposition exercise

for each year using a linear model, we need a correction for the variances of each group of covariates

and the covariance term for every year but estimate the effects only once. Second, to estimate β∗j in

every iteration one just needs to solve for a least squares regression. There are extremely efficient

procedures to compute these regressions, especially in cases where the high dimensionality of the

covariates is the result of a large number of fixed effects. This is the case in most applications.

The key for the bootstrap correction to work is that V(v∗|X) is equal to the sample variance-

covariance matrix V̂(u|X), so the bootstrap correction δ̂b is an unbiased and consistent estimator of

the almost feasible bias correction term δ̂. Therefore, the bootstrap procedure has to be consistent

with the underlying assumption on the structure of the error term.

The small sample properties of the bootstrap estimate δ̂b would depend ultimately on the choice

of estimate for the covariance matrix V(u|X). In particular, for the bias we have the following

corollary of Proposition 11:

Corollary 2. Conditioning on X, if V̂(u|X) is an unbiased estimator of V(u|X), then the bootstrap correc-

tion δ̂b is an unbiased estimator of the bias δ.

Given that the estimate of the covariance matrix is non-linear, in general, we would have a

bias. In the next section we discuss the properties for some particular cases of popular choices for

estimators of the covariance matrix and how to implement the correction.

3.3.1 Choice of covariance matrix estimate

We divide the discussion in this section into two parts. First, one when the researcher assumes

that the covariance matrix is diagonal. This includes the cases where the error is homoscedastic

or iid and cases with general heteroscedasticity. Second, we discuss estimators of non-diagonal

covariance matrix, in particular, when we have clustering or serial correlation.

Diagonal covariance matrix

If a researcher assumes that the underlying covariance matrix V(u|X) is diagonal, with non-zero

ith diagonal element equal to ψi, Proposition 11 suggests an algorithm to make simultaneous M
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corrections.17 Let ψ̂i be the estimate of the variance for the ith observation error term. Algorithm 4

in Appendix 3.C takes as inputs X, {ψ̂i}N
i=1 and the different matrices {Am}M

m=1 associated with the

different M quadratic forms that want to be computed. The output is a vector of bias corrections

{δ̂b,m}M
m=1 whose elements correspond to each quadratic form m.18

The White (1980) estimator is biased:19

E(û2
i |X) = ψi − 2ψihii + h′iV(u|X)hi,

where hi and hii are, respectively, the ith column and ith diagonal element of the projection matrix

H = X (X′X)−1
X′. The latter term, hii is sometimes known as the leverage of observation i, because,

as explained by Angrist and Pischke (2008), it tell us how much pull a particular observation exerts

over the regression line. MacKinnon and White (1985) explore different variance estimates, includ-

ing the original proposed by White HC0, and compare their performance using simulations. The

different estimators considered include:

HC0 = û2
i , HC1 =

n

n− k
û2

i and HC2 =
û2

i

1− hii
.

In the homoscedastic case we can use the well known unbiased estimate HC1ψ̂ = n/(n −
k)∑

n
i=1 û2

i .20 Alternativelly, under the homoscedastic case we could replace steps (3) and (4) of

Algorithm 4 by a residual bootstrap. That is, we can obtain the vector v∗ by resampling with re-

placement from the estimated residuals and adjusting by the corresponding degrees of freedom.21

In the general hereoscedasticity case, MacKinnon and White (1985) acknowledge the existence

of a bias in all three but denote HC2 as an almost unbiased estimate of the variance. These het-

eroscedasticity robust are inconsistent when the model has many covariates (Cattaneo et al., 2018)

as is usually the case with multi-way fixed effects. Recently, Kline et al. (2020) and Jochmans (2018)

have proposed the following unbiased estimator of the ith conditional variance:

HCU =
Yiûi

1− hii
.

In practice, estimating ψ̂i with HCU some observations have a negative estimated variance and that

prevents us from taking the square root in step (4) of the Algorithm 4.22 However, even though HCU

is unbiased, it might not minimize the mean squared error compared to other variance estimates.

For example HCU has a larger variance than the related estimator HC2. Let Ŷi = h′iY be the fitted

value for observation i. Then,

HCU =
Yiûi

1− hii
=

(
Ŷi + ûi

)
ûi

1− hii
=

Ŷiûi

1− hii
+ HC2.

17 M can be equal to 3 if we are interested only in the correlation between two variables but can be higher if the model has other

covariates and we want to do a variance decomposition.
18One does not necessarily need to compute Am and feed to the algorithm. If the matrix A is, for example, an operator to obtain a

sample variance or covariance, one could just compute such sample variance or covariance within the algorithm.
19A textbook exposition of these issues can be found in Chapter 8 of Angrist and Pischke (2008).
20The origine of the bias is again a trace term that under homoscedasticity is equal to n− k. For a textbook explanation see Proposition

1.2. in Hayashi (2000).
21The bootstrap errors will be equal to v∗ =

√
n/(n− k) û∗ where û∗ is the vector of resampled residuals.

22Negative estimates of individual variances are also prevalent in KSS.
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The expectation of the first term is zero but HCU has a higher variance than HC2. Ŷiûi is a random

variable with positive covariance with û2
i and increases the variance of HC2. We could alternatively

define a mixed estimator, HCM, that takes values of HCU whenever they are positive and use HC2

when the estimator HCU is negative. In other terms,

HCM =

{
HCU if HCU ≥ 0

HC2 otherwise.

The use of HC2 or HCM requires the computation of the leverage hii for each observation. Moreover

we need them to be smaller than 1 for every observation. In the following we describe how we

ensure that the leverages are below the unity by computing the leave-one-out connected set, how

we estimate them and finally propose a diagnosis and an adjustment for our leverage estimates.

Leave-one-out connected set. Two-way fixed effect models are only estimated at the connected set.

In typical applications on the labor market or teacher evaluations, firm (school) fixed effects are

only identified within the connected set that is generated by moving workers (teachers). Movers

therefore determine the connected set of firms (schools) whose fixed effect can be identified. The

need to have hii < 1 for all i requires that no single observation is necessary to estimate a particular

fixed effect. That is, eliminating any observation the set of fixed effects in the connected set needs

to remain the same. We achieve this by first pruning the data to get the leave-one-out connected set

without critical movers identifying a given firm fixed effect and eliminating unique observations.

The pruning is analogous to Kline et al. (2020) and we leave the details for the Appendix.

Estimation of leverage. The direct computation of the leverage, by using the diagonal of the

projection matrix H, is computationally infeasible when the number of covariates is large.23

We propose a way to estimate the leverage of each observation that is similar to our bias estima-

tor. We simulate repeatedly random variables and use the fitted values of the projection into X to

estimate the leverage. The procedure starts by generating the endogenous variable ω where each

entry is i.i.d. with (conditional) mean equal to zero and (conditional) variance equal to 1. Projecting

it into X, we have:

E

(
ŷ2

i |X
)
= xi

(
X′X

)−1
X′E

(
ωω′|X

)
X
(
X′X

)−1
x′i = xi

(
X′X

)−1
x′i = hii,

where x′i is the ith row of matrix of covariates X. Let nh the number of simulations for the vector

ω used to estimate the leverages ĥii. Similarly to Proposition 11, we simulate different vectors of

the dependent variable ω, compute the fitted values for each simulation j and then take a sample

mean across all the simulations j = {1, ..., nh} of ω.24 Estimating the leverage this way entails two

different sets of bootstrap, one for the leverage and the second one for the estimation of the bias

correction.25

Alternatively, an exact computation of the leverage is possible by using the definition of fitted

values Ŷ = HY and a regression intensive procedure. We have that the leverage of observation i is

23 H ≡ X (X′X)−1
X′ is a function of the inverse of a very large matrix X.

24This is exactly the way Kline et al. (2020) estimate the leverage in their paper. However, they directly solve for the normal equations

of the regression using the preconditioned conjugate gradient method.
25One is usually interested in estimating corrections for at least three moments that involve solving two systems of linear equations

(See Gaure, 2014; Kline et al., 2020).
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equal to:

hii =
∂ŷi

∂yi
.

The following remark shows how to compute these leverages.

Remark 1. Let Ỹ(i) be a vector of length n where every entry is equal to zero, except the ith entry that is

equal to one. The leverage of observation i is equal to the fitted value ŷi of a linear regression of Ỹ(i) on X.

The argument is as follows. hii being a linear function of yi, the partial derivative ∂ŷi
∂yi

is just a

slope. Consider an initial scenario where all entries of the dependent variable Y are equal to zero.

In that case all of the fitted values are equal to zero. Then, change the ith entry of Y to 1 and the

rest are zero. We can compute a new vector of fitted values Ŷ′. Thus the leverage, that is a partial

derivative of a linear function is equal to ∂ŷi
∂yi

=
ŷ′i−0
y′i−0 =

ŷ′i
1 = ŷ′i.

Recovering the estimates of a linear regression is very efficient nowadays and in principle we

could compute the leverages one by one in what would involve n regressions. When the data set

is large, this is clearly not plausible and we leave the exact computation for the problematic ones

identified in the following diagnostic.

Diagnostic and adjustment. We detect problematic leverage estimations by checking that they are

under unity and above an observation specific lower bound. Let X̃ = X1, meaning X̃ is a vector

of length n where each entry is the sum of the row elements of matrix X. The diagonal entries of

H̃ = X̃
(
X̃′X̃

)−1
X̃′, which are equal to h̃ii = x̃2

i / ∑
n
i=1 x̃2

i . We diagnose our leverage estimates by

comparing them to h̃ii. Those that are underestimated or are above 1 can thus be directly computed

using the result of Remark 1.

We can then use these estimated leverages to construct variance estimates HC2 and HCM by

substituting 1
1−hii

with 1
1−ĥii

(
1− 1

(1−ĥii)2

v̂ar(ŷ2
i )

nh

)
, where the last term corrects for a non-linear bias

with v̂ar(ĥii) being a sample variance of the different estimates of the squared fitted values.

Algorithm 7 in Appendix 3.C takes as inputs the covariates X and gives output a combination

of actual and estimated leverages, as well as the variance v̂ar(ĥii) for the non-linearity adjustment.

Clustered errors and serial correlation

When the error terms are clustered or present serial correlation within group, the covariance matrix

is no longer diagonal. We restrict our attention to dependence of the errors only within a given

group. The variance covariance matrix is block diagonal as there are non zero elements around

the diagonal corresponding to the dependence of the errors within the group g.26 One particular

example is when the group is a worker-firm match and errors are autocorrelated within match.

When the errors present dependence within the group we adapt the bootstrap from Algorithm 4 to

a wild block bootstrap as proposed by Cameron et al. (2008). This consists of a wild bootstrap that

takes into account the group or cluster dependence of the data. Differently to the sieve bootstrap
26Assume that the the errors have a first order autocorrelation within group g and the true innovations are i.i.d. and therefore

homoscedastic. We consider that the error term u of worker i at group g at time t in (3.1) is:

ui,g,t = ρui,g,t−1 + εi,g,t, εi,g,t i.i.d.
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(e.g. Davidson and MacKinnon, 2006) it has the benefit of accommodating any structure of the

dependence within group and also heteroscedasticity of the true innovations.

Following Roodman et al. (2019) we estimate the variance of observation i, ψ̂i, with a variant of

HC1 from the previous section that takes into account the number of groups G: ψ̂i =
G

G−1
n

n−k û2
i .27

Algorithm 5 in the Appendix describes the procedure for our bias estimator that keeps the depen-

dence structure through a wild block bootstrap. It takes as inputs X, {ψ̂i}N
i=1 and the different

matrices {Am}M
m=1.

3.3.2 Simple example

Monte Carlo simulations illustrate the effectiveness of our bias correction method. The model

design is the same as in (3.1) with homoscedastic errors and sample size n = 500. The number of

covariates is k1 = k2 = 200. We keep this number relatively low to compute the direct correction. We

have 10,000 simulations in total. In each simulation, conditioning on X, we draw new error terms to

form the dependent variable. We estimate β̂ and compute the almost feasible bias correction terms.

After the estimation, we perform n∗ = 100 bootstraps and use them to compute the estimation of

the bootstrap correction terms.28

Figures 30 and 31 compare the distributions of the bias of the variance and covariance of the

naive plug-in (i.e. non-corrected) estimates (σ̂2
1,PI and σ̂12,PI) and the bootstrap corrected estimates

(σ̂2
1,b and σ̂12,b). The Figure shows that the distribution of the bias (i.e. the difference between the

bootstrap corrected and the true moment) of the bootstrap corrected moment is centered at zero.

Table 34 presents the mean and variance of the differences of our bootstrap method δ̂b and the

bootstrap following MacKinnon and Smith Jr (1998) δ̂b,MS with respect to the direct correction δ̂.29

The mean differences of our method are very small as well as the variances, meaning that the

estimated bootstrap correction is performing well in comparison to the direct correction in almost

all simulations. The alternative bootstrap correction δ̂b,MS in Columns 3 and 4 performs worse in

terms of mean differences and also variances.
We denote the variance of the innovation ε as σ2

ε . Ordering the data by group, suppose the first group has three observations and the

second one two, V(u|X) is:

V(u|X) =
σ2

ε

1− ρ2




1 ρ ρ2 0 · · · 0

ρ 1 ρ
...

. . .
...

ρ2 ρ 1 0 · · · 0

0 · · · 0 1 ρ 0 · · · 0

ρ 1 0
. . .

...
. . .

...
. . . 0

0 0 1




.

The covariance matrix under clustering of the errors is similar but with al non-zero elements out of the diagonal equal to ρ.
27Introducing covariance estimation refinements proposed by Bell and McCaffrey (2002) and further developed in Imbens and Kolesar

(2016) are left for future research. They extend the HC2 corrections to the cases where the covariance matrix is not diagonal by correcting

by the leverage of the group.
28We use the covariance estimator HC1 and therefore skip the part of computing that involves the leave-one-out connected set.
29AS previously stated, they propose to generate the bootstrap dependent variable as Y∗ = Xβ̂ + v∗. Their correction is: δ̂b,MS =

1
n∗ ∑

n∗
j=1

(
β∗′j,MS Aβ∗j,MS

)
− β̂′Aβ̂, where the last term is the plug-in estimate.
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Table 34 also shows the Mean Squared Error (MSE) between the different estimated moments

and the true ones. The MSE of naive plug-in estimators is larger than the one obtained with

the directly corrected and bootstrap corrected moments. As our estimator is a random variable,

the MSE of the directly corrected moments are always smaller than the ones with the estimated

bootstrap correction, although very close. As expected, our bootstrap has lower MSE than the

alternative directly following MacKinnon and Smith Jr (1998).

3.3.3 Choosing the number of bootstraps

In the previous simple example we arbitrarily chose the number of bootstraps. In practice, given

the computational burden of the procedure, we might want to discipline the choice of the number

of bootstraps. Our estimator δ̂b is a sample mean estimate of the almost feasible bias correction

term δ̂. Using results from probability theory we can exploit the information given by Chebyshev’s

inequality.

In Proposition 11 we show that Ev∗
(

δ̂b,j|X, u
)
= δ̂b. Now assume that V(δ̂b,j|X, u) = η2 < ∞.

As δ̂b is a sample mean over a sequence of {δ̂b,j}n∗
j=1, we have that Ev∗(δ̂b|X, u) = δ̂ (as shown in

Proposition 11) and V(δ̂b|X, u) = 1
n∗ η2.30 Then, by Chebyshev’s inequality we have

P

(∣∣∣δ̂b − δ̂
∣∣∣ ≥ k

η√
n∗

∣∣∣∣ X, u

)
≤ 1

k2 .

Next one can choose the number of bootstraps n∗ such that the distance between the bootstrap

estimate δ̂b and the almost feasible bias correction term δ̂ is greater or equal than λ standard

deviations with probability smaller than α. So, for arbitrary α > 0 and λ > 0 we have

1
k2 = α,

k√
n∗

= λ.

Solving for n∗ we get n∗ = 1
αλ2 . So if, for example, we set α = 0.05 and λ = 1/2 we get that the

number of bootstraps such that the distance between the bootstrap estimate and the almost feasible

correction term is greater than half a standard deviation is an event with a probability smaller than

5 per cent is n∗ = 1
0.05×(1/2)2 = 20× 4 = 80. One could be more conservative and set λ = 0.1. In

that case, we would obtain n∗ = 20× 1000 = 2000 bootstraps.

Admittedly, the number of bootstraps suggested by inequality for any α and λ can be quite

conservative. But this just reflects the generality of the result. Indeed, this criteria would work

regardless the distribution of v∗, therefore regardless the choice of bootstrap.

3.4 Comparison of Methods

In this section we first compare our method to Gaure (2014), Kline et al. (2020) and Borovičková and

Shimer (2017).31 The closest methods to ours are the ones by Gaure (2014) and Kline et al. (2020). All

three aim to compute the trace term in equation (3.3). Yet, Borovičková and Shimer (2017) propose

30We have that V(δ̂b|X, u) =
1

n∗2
V(∑n∗

j δ̂b,j|X, u) =
1

n∗2
∑

n∗
j V(δ̂b,j|X, u) =

1
n∗

η2 where we used the independence of different δ̂b,j

conditional on X and u.
31The codes to implement our method are here.
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a method to compute the correlation of theoretically different worker and firm types. Second, we

present the results of Monte Carlo simulations of labor markets to compare the methods under

different assumptions on the error terms.

The differences between Gaure, KSS and our method are on the scope of error structures al-

lowed, the covariance matrix estimation and the flexibility of application. All three methods are in

principle suited to perform corrections with homoscedastic and heteroscedastic errors. Neverthe-

less, Gaure implemented his bias correction method on the R package lfe only under the assumption

of homoscedastic errors. Moreover, KSS and ourselves provide corrections under serial correlation

or clustering of the errors. Second, our method is the only one implementing corrections on the

full variance decomposition correcting several second order moments at a time. Adding additional

moments to correct (e.g. the variance of occupation fixed effects and their covariance with firm and

worker types) does not increase the computational burden of the correction and our approach is

therefore suited for multi-way fixed effect models or full variance decompositions in two-way fixed

effect models. KSS and Gaure on the contrary need to compute new sets of normal equations per

additional correction and only implement corrections of the two leading fixed effects. Our method

is also more flexible than Gaure and KSS in the type of corrections by allowing for yearly correc-

tions and different types of dependencies on the error structures. Finally, the methods differ on

the covariance matrix estimator they use. Gaure uses HC0 directly estimating the variance from

the residuals. As explained in Section 3.3.1, KSS estimate the covariance matrix by HCU and our

baseline application is with HC2 even if we explore other covariance matrix estimates.

An important application of two-way fixed effect models are the AKM type log wage regressions

with worker and firm fixed effects. We closely follow Card et al. (2013) to implement the estimation

of the following regression model for the log of the wage of worker i at time t:

wit = θi + ψJ(i,t) + qitγ + εit, (3.5)

where the function J(i, t) gives the identity of the unique firm that employs worker i at time t, θi

is a worker fixed effect, ψJ(i,t) is the premium for all employees at firm J(i, t), qit are time varying

observables (age and education interacted with year effects), and εit is the error term.

Equation (3.5) can be estimated by OLS where the person/firm fixed effect estimators have the

same structure as the one in Section 3.2. Thus the second order moments exhibit a similar bias and

the implementation of the correction is analogous.

In the following we give some detail of an alternative method to compute the correlation be-

tween the types of matched workers and firms by Borovičková and Shimer (2017). Their method

completely bypasses the need to estimate a linear model and therefore avoids using noisy estimates,

which are the source of the bias, to compute the correlation.

As explained by BS, the worker and firm types that they define are different to the types defined

in the AKM model. In BS, a worker’s type, denoted λi, is defined to be the expected log wage of the

worker, while a firm’s type, denoted µJ(i,t), is defined to be the expected log wage that it pays. In

contrast, in the AKM model, a worker and firm types (θi, ψJ(i,t)) are defined as such that a change

in type will change the expected log wage while holding fixed the partner’s type.32

32We refer to an old version of the Borovičková and Shimer from 2017 where they provide a way to translate the variances and
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BS show that their correlation and the AKM correlation, ρ, will be the same if the joint distribu-

tion of θ and ψ is elliptical (e.g. a bivariate normal) and (σλ − ρσµ)(σµ − ρσλ) > 0, where σλ and σµ

are, respectively, the standard deviations of worker and firm types. With these assumptions, there

is also a direct correspondance between the standard deviation of AKM types and BS types:33

σθ =
σλ − ρσµ

1− ρ2 , σψ =
σµ − ρσλ

1− ρ2 .

The key identifying assumption in the BS method is that for each worker and firm they have two

or more observations of the actual wage (received or paid) which are independent and identically

distributed conditional on the types. In AKM, the identifying assumption is a standard exclusion

restriction, i.e. that the error term is mean zero conditional on the types (and other covariates) with

the underlying assumption of exogenous mobility.

3.4.1 Labor market simulations

We compare the correction methods by simulating many labor markets under different assumptions

on the error terms. We evaluate the methods in terms of computation time and mean squared errors.

We also explore differences between the covariance estimation methods described in Section 3.3.1.

We compare all the methods under conditional homoscedasticity of the errors. Results are in

Table 35. All the methods improve the initial bias of the plug-in estimate. The least accurate method

is BS reducing by 69% the MSE of the naive estimates whereas the other three methods reduce it by

98%.34 The objective of BS is to provide an estimate of the correlation and they base their estimation

in different worker and firm types (λ and µ respectively). Table 35 presents their estimates of the

AKM types. Under the assumption of linearity of conditional expectations, the correlation of their

types ρλ,µ is a good estimator of the correlation of the AKM types ρθ,ψ. Their original types are, on

the contrary, not suited to perform a variance decomposition. We find that the MSE taking their

types are orders of magnitude greater.35 Gaure, KSS and our method are very similar in terms of

MSE, Gaure being slightly more accurate than the other two.36 Figure 33 shows the distribution

of the bias of the firm variances for the naive estimate (σ2
ψ,PI − σ2

ψ) and the different correction

methods. We see that our method is very similar to KSS and both are the ones with lowest biases.

Even if the bias of Gaure is higher, his method has lower variance and outperforms KSS and ours

in terms of MSE. Regarding the computation time, BS is the fastest one with computation time of

less than a second. Our method is the one performing fastest among the three closest competitors

(Gaure, KSS and our method) as it has the lowest computing time.37

covariances of their worker and firm types to the ones in AKM. In the latest version, they slightly changed their estimator and no longer

provide this link.
33See Proposition 1 in Borovičková and Shimer (2017).
34We wrote the code for BS following Borovičková and Shimer (2017) and converting the data to the match level.
35The scaled MSE (MSE ×102) of σ2

λ, σ2
µ and σλ,µ are respectively 57.4, 81.9 and 4.00.

36Gaure is corrected using the bccor with 300 maximum samples and tolerance of 1e-2. We run Version 2.15 of the KSS code eliminating

observations (instead of matches) for the leave-one-out estimation and with epsilon parameter of 0.05. This translates into number of

simulations p equal to 289. This guided our choice of 300 simulations to estimate the leverages and the bias corrections. We run our

corrections in Matlab with tolerance of 1e-5.
37KSS and our method do not incorporate the simplifications that come from having homoscedastic errors. In particular, under

homoscedasticity of the errors HC1 is an unbiased estimate of the variance and one could skip the pruning of the data.
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Table 36 presents the comparison of our method to KSS under conditional heteroscedasticity

for different degrees of mobility. Both methods are similar in accuracy and reduce by roughly

85% the MSE of the plug-in estimate in the low mobility case.38 Our method is slightly more

accurate for both mobility cases, it also outperforms KSS in terms of time. Figure 34 shows the

distribution of the bias of the plug-in estimate, KSS and our method. Both corrections have similar

distributions but the bootstrap method has smaller variance for reasons shown in Section 3.3.1.

Table 37 compares the different covariance matrix estimators applicable with our method. All the

estimators have similar MSE but HC2 outperforms the rest.

Tables 38 and 39 present results from a simulation with a non diagonal covariance matrix. In

particular we assume that there is serial correlation of the wages within a given match and we allow

the true innovation to be homoscedastic and heteroscedastic. We compare the plug-in estimate to

our bootstrap with the wild block bootstrap method from Algorithm 5 Boot, Boot Av Match where

observations are averaged to the match, and the KSS correction methods where the observations are

also averaged to the match KSS Av Match. The best performing correction method is Boot Av Match

both in terms of time and MSE under homoscedasticity (Table 38) and heteroscedasticity (Table 39).

Our method using a wild block bootstrap Boot also improves the MSE of the plug-in estimates but

has higher MSE than Boot Av Match because of a higher bias of the person fixed effects component.

KSS Av Match improve the MSE of the naive estimates but perform worse than our method with

and without taking match averages and under homoscedasticity and heteroscedasticity.

3.5 Application

In the application we use a panel data from the French statistical agency (INSEE) from 2002 to

2014.39 Our dependent variable is (log) gross daily wage of full time employees with ages between

20 and 60 working at private firms.

The goal is to use our bootstrap method to do a bias corrected variance decomposition of log

wages. In order to do so we have to pick the number of bootstraps. To guide our choice of number

of bootstraps, we perform some simulations with a fixed set of covariates with low mobility and

simulate a thousand samples by simulating the error. With each dataset we perform corrections

from one to 300 bootstraps as in the Monte Carlo simulations of Section 3.4. Figure 32 shows

the mean squared error between the true covariance between person and firm fixed effects and the

corrected one for different number of bootstraps.40 The figure shows that with the first 25 bootstraps

the MSE reduces significantly and around 150 it flattens. This suggests that few bootstraps are

enough to gain accuracy.41

38Table 1 in Kline et al. (2020) shows that their connected set is similar to our low mobility scenario with 2.7 movers per firm and

average firm size of 12.
39In particular we use Panel tous salariés-EDP that consists of a random subsample of workers with firm identifiers and socio-

demographic variables. The sample consists of workers born in October on certain days. The sample size was increased in 2002 so

we took this as the starting year.
40For all the samples we take the corrections obtained with different bootstraps and take the mean squared error against the true

moment.
41Throughout the application corrections we run corrections with 300 simulation to estimate the leverage and 1000 bootstraps to
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Table 40 shows the variance decomposition of log wages as well as the correlation between firm

and worker fixed effects using the naive moments and the corrected ones under the assumption of

serial correlation within match. The variance of the person and firm effects are both reduced and

they explain a lower share of the total variance after the correction. The correlation becomes closer

to zero and it approaches values that have been found in other countries with a larger number

of movers per firm, which should attenuate the bias, as reported by Table 1 of Lopes de Melo

(2018). Naturally, the variance and covariance of the person and firm effects are the moments that

change the most after the correction. The reason is that the underlying estimates of the person

and fixed effects are very noisy. In contrast, when the underlying estimates of a particular moment

are estimated with precision, as it is in the case of the parameters γ̂ associated with the common

covariates q, the change between the naive and corrected moments is negligible.

To fully exploit the benefit of our bootstrap correction method we also perform a yearly variance

decomposition. In Figure 36 we compare the year-to-year evolution of the different explained shares

using the naive estimated moments and the corrected ones. The main takeaway from this figure

is that the correction changes the levels but not the slopes of explained shares. This leads to a

change in the relative importance of each component. In particular, the corrected variance of the

residuals is relatively more important than the corrected variance of the firm effect in almost every

year, while both are similar when considering uncorrected variances. A very interesting trend is

the decline in explanatory power of the individual fixed effects for recent years. It might be just

a feature of the French data and explanations for this phenomenon are outside the scope of this

paper.

3.5.1 Comparison of Methods

We compare our method to BS using the French data. Adapting to their method, instead of using

annual wage data, we first average all the wage data to the worker-firm match level. We do this

to ensure that annual wage observations are independent conditional on type, which might not

be the case especially for workers who do not switch firms. In order to accommodate for the

extra covariates in the BS method, we first run a linear regression of log wage versus qit (age and

education interacted by year effects) and take the residual. We use this residual-wage to average at

the worker-firm match and use this as the dependent variable to compute the moments, both for

the BS and our bootstrap method. We estimate the bootstrap corrected moments at the connected

set or leave-one-out-corrected set of the BS final sample.

Table 41 compares the estimated moments using the BS method and the bootstrap correction

method on the French data. Both columns report the moments using the AKM defined worker

and firm types. In contrast to the Monte Carlo simulations that satisfied the assumptions for both

methods, estimates differ by a large amount when using French labor market data. The bootstrap

corrected estimated correlation is 0.16 (0.09) under HC2 (HC1) covariance matrix estimation, well

below the estimated one using BS method, 0.55.42 Looking at each of the components of the corre-

estimate the corrections of second order moments.
42The BS estimates are obtained by using the formulas of Section 5.2. in Borovičková and Shimer (2017).
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lation, both variances are larger and the covariance is smaller when using the bootstrap corrected

method instead of BS method.

There are different reasons why BS estimates might differ from ours. To begin with, the types

defined by BS are fundamentally different from the ones defined in the AKM model. They are

related only when the assumptions stated at the beginning of this section are satisfied. It might be

that the two correlations are not comparable because, even if the log-linear AKM model is correctly

specified, these assumptions are violated, in particular, if the joint distribution of AKM types is

not elliptical. Second, it might be that the identification assumption of at least one of the methods

fail. It’s hard to think of examples where an identifying assumption for a particular method holds

while failing for the other. It is easier to think of examples where both identification assumptions

are violated. For example, whenever there is selection of workers via the error term, some matches

will be formed whenever this idiosyncratic component is high. This endogenous mobility would

violate both the AKM and BS identification assumptions.

Results in Table 41 under our method also differ from the ones previously reported in Table 40.

Table 42 presents some summary statistics of the original data differentiated by being in the final

BS data or not.43 The Table shows that the requirements to use the Borovičková and Shimer (2017)

method are quite demanding as only 43% of the original observations are included in their final

sample. Furthermore, Table 42 shows that their data requirements lead to a sample with similar

average wage but almost 5 years younger on average and slightly more educated. The applied

user might be worried by sample selection when using the BS method to estimate worker and firm

correlation as Lentz et al. (2018) document that most of the worker-firm sorting happens early in

the career which would lead to higher correlations for younger workers.

3.6 Conclusion

In this paper, we propose a computationally feasible bootstrap method to correct for the small-

sample bias found in all quadratic forms in the parameters of linear models with a very large

number of covariates. We show using Monte Carlo simulations that the method is effective at re-

ducing the bias. The application to French labor market data shows that the correction increases

the correlation between firm and worker fixed effects. Depending on the sample and on the speci-

fication, our bias correction method changes the sign of that correlation and in all cases it changes

the relative importance of the different components in explaining the variance of log wages.

The only requirements to implement our correction is to have a bootstrap procedure that is con-

sistent with the assumption on the variance-covariance matrix of the error term and to estimate the

model several times. The correction can thus be applied easily to any study running an AKM type

regression or multi-way fixed effects regressions. The method is faster than Kline et al. (2020) and

similarly accurate. Besides the speed, the other biggest advantage of our approach is its flexibility

because it allows for yearly corrections or an increase in the number of moments to correct without

increasing the computational costs.
43The original data constitutes of almost 5.9 observations that translate into a connected set of 5.1 million observations as in Table 40.

180



Comparisons to other models through Monte Carlo simulations show that, in terms of accu-

racy, our method is comparable in accuracy to Gaure (2014) and Kline et al. (2020). Our method

is broader than the implementation of Gaure (2014) given that he only offers corrections under

homoscedasticity of the errors. Compared to Kline et al. (2020) our approach is faster, is more

flexible in the type of corrections it can perform and can incorporate the correction of additional

moments at no cost. The comparison to Borovičková and Shimer (2017) using Monte Carlo experi-

ments showed that both are similar but our method is more accurate than theirs in simulated data

that fulfill the assumptions of both approaches. However, when applied to French administrative

data, the methods yield different estimates for the correlation and all its components. This suggests

that the assumptions of one or both methods do not hold in the French labor market data. Further

exploration would be required to disentangle the origin of this discrepancy.
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3.A Proofs

Proposition 11.

Proof. First, note that for any bootstrap estimate of the quadratic form β∗′j Aβ∗j we have that

β∗′j Aβ∗j = (v∗j )
′Q′AQv∗j .

Under the bootstrap, the only source of randomness is v∗j . Taking expectations under the bootstrap of

β∗′i Aβ∗j , conditionally on X and u, we get

Ev∗
(

β∗′j Aβ∗j
∣∣∣X, u

)
= trace

(
Q′AQV(v∗j |X)

)
.

By assumption V(v∗j |X) = V̂(u|x), then Ev∗
(

β∗′j Aβ∗j
∣∣∣ X, u

)
= δ̂.

Unbiased. Taking expectations over the approximation of δ̂b, 1
n∗ ∑

n∗
j=1

(
β∗′j Aβ∗j

)
, conditionally on X and u we

obtain

Ev∗(δ̂b|X, u) =
1

n∗
n∗

∑
j=1

Ev∗
(

β∗′j Aβ∗j
∣∣∣ X, u

)
=

1
n∗

n∗

∑
j=1

δ̂ = δ̂.

Consistent. From the approximation of δ̂b, 1
n∗ ∑

n∗
j=1

(
β∗′j Aβ∗j

)
, we have that

1
n∗

n∗

∑
j=1

(
β∗′j Aβ∗j

)
p−→ Ev∗

(
β∗′i Aβ∗i

∣∣ X, u
)
= δ̂.

Corollary 2

Proof. Using the Law of Iterated Expectations we get

E(δ̂b|X) = Eu

(
Ev∗(δ̂b|X, u)

∣∣∣ X
)
= Eu(δ̂|X) = δ.

3.B Construction of Simulated Labor Market

We construct several simulated labor markets depending on the number of movers per firm and, the corre-

lation between the worker and firm fixed effects. Here, we briefly describe the construction of the simulated

labor markets.44

We start by determining the size of the labor market. We have 5000 unique workers and 400 unique firms

at the beginning of the sample. This gives an average firm size of 12 workers which is similar to the average

firm size in the data of Kline et al. (2020).45 Their connected set with 2.7 movers per firm is similar to our

low mobility simulations with 3 movers per firm. The sample runs for 7 years but we allow that workers

randomly drop from the sample with a minimum of 2 observations per worker. This leads to a total sample

size of roughly 22000 observations.

Worker and firm fixed effects are random draws from normal distributions. We assume that there is

sorting depending on the permanent types, which leads to non negative correlations between worker and

44We thank Simen Gaure for sharing with us a piece of code that we used as a base for the simulations.
45See Table 1 in Kline et al. (2020) where each worker is observed twice.
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firm fixed effects while fulfilling exogenous mobility. That is, a low type worker is more likely to match

with a low type firm if we assume positive sorting but sorting does not depend on match specific shocks.

Matches are formed either at the beginning of the sample or afterwards for the movers. Errors are i.i.d.

and normally distributed in the baseline simulation with homoscedastic errors. Heteroscedastic errors are

also normally distributed with an observation (worker-year) specific variance that is randomly drawn from a

uniform distribution. Finally, serially correlated errors are simulated from a first order autoregressive process

with persistence of 0.7 and homoscedastic innovations. The simulated log wage is like equation (3.5) without

other covariates.

3.C Algorithms

Here we detail the implementation algorithms of our method. Algorithm 4 and 5 describe respectively the

estimation of the bias correction for diagonal and non diagonal covariance matrices. Algorithm 6 describes

how to prune the data to ensure that the maximum leverage is below 1 and Algorithm 7 details how to

estimate the leverage.

Algorithm 4 Estimate {δ̂b,m}M
m=1 when the covariance matrix is diagonal

1: for j = 1, ..., n∗ do

2: Simulate a vector r∗ of length n of mutually independent Rademacher entries.

3: Generate a vector of residuals v∗ of length n whose ith entry is equal to
√

ψ̂i × r∗i .

4: Compute β∗ as the estimate of a regression of v∗ on X.

5: Compute δ̂
(j)
aux,m = (β∗)′ Amβ∗ for all m ∈ {1, ..., M}.

6: end for

7: Compute δ̂b,m =
∑

n∗
j=1 δ̂

(j)
aux,m

n∗
for all m ∈ {1, ..., M}.

Algorithm 5 Estimate {δ̂b,m}M
m=1 when covariance matrix is non diagonal

1: Let G = {1, ..., G} be the set of groups g each with length ng.

2: for j = 1, ..., n∗ do

3: Simulate a vector r∗g of length G of mutually independent Rademacher entries. All the observations

withing the group will have the same Rademacher entry.

4: Generate a vector of residuals v∗ of length n whose ith entry belonging to group g is equal to
√

ψ̂i× r∗g.

5: Compute β∗ as the estimate of a regression of v∗ on X.

6: Compute δ̂
(j)
aux,m = (β∗)′ Amβ∗ for all m ∈ {1, ..., M}.

7: end for

8: Compute δ̂b,m =
∑

n∗
j=1 δ̂

(j)
aux,m

n∗
for all m ∈ {1, ..., M}.
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Algorithm 6 Leave-one-out connected set

1: Let Λ be the connected set.

2: a = 1.

3: while a > 0 do

4: Compute the articulation points a.

5: Eliminate articulation points a.

6: Compute the new connected set Λ1.

7: end while

Algorithm 7 Estimate leverages, diagnose and compute underestimated ones

1: z
(0)
1 = 0 and z

(0)
2 = 0, where z

(0)
1 and z

(0)
2 are vectors of length n.

2: for j = 1, ..., n∗ do

3: Simulate a vector ω∗ of length n of mutually independent Rademacher entries.

4: Compute fitted values ω̂∗ from a regression of ω∗ on X.

5: Compute z
(j)
1 = z

(j−1)
1 + (ω̂∗)2 and z

(j)
2 = z

(j−1)
2 + (ω̂∗)4.

6: end for

7: Compute ĥii = z
(n∗)
1,i /n∗ for all i ∈ {1, ..., n}.

8: Compute v̂ar(ĥii) =
n∗

n∗−1

(
z
(n∗)
2,i
n∗ − ĥ2

ii

)
.

9: Compute X̃ = X1 and then the lower bounds h̃ii = x̃2
i / ∑

n
i=1 x2

S,i for all i ∈ {1, ..., n}.
10: for i = 1, ..., n do

11: if ĥii < h̃ii then

12: Generate Ỹ(i) ∈ Rn, where Ỹ(i)j 6=i = 0, Ỹ(i)i = 1.

13: Compute the fitted values ̂̃Y(i) of a regression of Ỹ(i) on X.

14: Compute actual leverage hii =
̂̃Y(i)i.

15: end if

16: end for

3.D Tables and Figures

Table 34 – Results of simple Monte Carlo simulations

δ̂− δ̂b δ̂− δ̂b,MS Mean Squared Error True

Mean Variance Mean Variance Naive Ideal Boot Boot MS Moment

v̂ar(X1β1) 0.33×10−3 0.00156 -0.79×10−3 0.07945 45.53 22.94 22.94 23.04 243.19

v̂ar(X2β2) 0.36×10−3 0.00156 -4.25×10−3 0.15211 67.59 44.75 44.76 44.98 458.83

ĉov (X1β1, X2β2) -0.33×10−3 0.00138 0.93×10−3 0.04417 22.54 12.50 12.51 12.57 -9.09

Notes: The first two columns represent, respectively, the mean and the variance of the difference between the almost feasible correction and the bootstrap correction.

Columns 3 and 4 are analogous to the bootstrap following MacKinnon and Smith Jr (1998). Columns 5 to 9 compute the MSE between the estimated moments and the

true ones and Column 10 presents the true moments in the simulation.

184



Table 35 – Monte Carlo simulations. Homoscedastic errors.

Mean Squared Error (MSE×102)

Time σ̂2
θ σ̂2

ψ σ̂θ,ψ Average

Plug-in 6.43813 0.28682 0.11545 2.28013

BS 0.3 1.95426 0.11898 0.02482 0.69935

Gaure 1.2 0.04790 0.10116 0.01338 0.05415

Boot 1.1 0.04792 0.10328 0.01369 0.05496

KSS 2.7 0.04842 0.10288 0.01382 0.05504

Notes: Plug-in is the naive plug-in estimator, BS refers to Borovičková and Shimer (2017),

Gaure refers to the method Gaure (2014) implemented through the R package lfe, Boot

is our method with HC2 covariance matrix estimator, and KSS is the Kline et al. (2020)

method. The results of Borovičková and Shimer correspond to the AKM worker and firm

types present in the cited version of the paper. The average firm has 10 movers and 12

employees. Time is the computing time in seconds. True moments are computed at the

largest connected set. σ̂2
θ , σ̂2

ψ and σ̂θ,ψ present respectively the mean squared errors (MSE)

of the corrected estimates of the variance of the worker fixed effects, variance of the firm

fixed effects and the covariance between worker and firm effects. All the MSE are multi-

plied by 100. Average is the average MSE (also scaled).

Table 36 – Monte Carlo simulations. Heteroscedastic errors.

Mean Squared Error (MSE×102)

Mov/firm Model Time σ̂2
θ σ̂2

ψ σ̂θ,ψ Average

Low Mobility

3 Plug-in 19.53008 1.12075 7.41524 9.35536

3 Boot 1.4 0.17457 3.38480 0.38844 1.31594

3 KSS 2.0 0.20498 3.46213 0.41224 1.35979

Mid Mobility

5 Plug-in 10.44445 0.41531 1.90528 4.25501

5 Boot 1.3 0.09246 1.00829 0.13824 0.41299

5 KSS 2.3 0.09735 1.01536 0.13689 0.41653

Notes: Plug-in is the naive plug-in estimator, Boot refers to our method with HC2 covariance matrix estimator, and

KSS is the Kline et al. (2020) method. True moments are computed at the largest connected set. Mov/firm is the

number of movers per firm and the average firm has 12 employees. Time is the computing time in seconds. σ̂2
θ ,

σ̂2
ψ and σ̂θ,ψ present respectively the mean squared errors of the corrected estimates of the variance of the worker

fixed effects, variance of the firm fixed effects and the covariance between worker and firm effects. All the MSE are

multiplied by 100. Average is the average MSE (also scaled).
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Table 37 – Comparison of variance estimations.

Mean Squared Error (MSE×102)

Model σ̂2
θ σ̂2

ψ σ̂θ,ψ Average

Plug-in 19.896 5.997 5.034 10.309

Boot HC0 2.236 1.245 0.792 1.424

Boot HC1 0.428 0.716 0.291 0.478

Boot HC2 0.173 0.622 0.171 0.322

Notes: Plug-in is the naive plug-in estimator, Boot refers to our method.

True moments are computed at the largest connected set. Model is the

model and type of variance estimator. σ̂2
θ , σ̂2

ψ and σ̂θ,ψ present respec-

tively the mean squared errors of the estimates of the variance of the

worker fixed effects, variance of the firm fixed effects and the covariance

between worker and firm effects. All the MSE are multiplied by 100. Av-

erage is the average MSE (also scaled). Simulated data exhibits low mo-

bility like in the top panel of Table 36 and all the estimations are done at

the leave-one-out.

Table 38 – Monte Carlo simulations. Serial correlation with homoscedasticity.

Mean Squared Error (MSE×102)

Time σ̂2
θ σ̂2

ψ σ̂θ,ψ Average

Plug-in 91.43846 1.52054 0.52576 31.16158

Boot 0.5 9.14621 0.23902 0.04491 3.14338

Boot Av Match 0.3 5.58738 0.38655 0.23283 2.06892

KSS Av Match 2.3 18.62253 0.36095 0.04201 6.34183

Notes: Plug-in is the naive plug-in estimator, Boot Av Match refers to our method with HC1 covariance

estimator where the observations are averaged to the match and wages are transformed to average

match wage. Boot refers to our method with a wild block bootstrap where each match defines a block.

In both, Boot and Boot Av Match we skip the pruning of the data. KSS Av Match is the Kline et al. (2020)

method where the observations are averaged to the match. The average firm has 10 movers and 12 em-

ployees. Time is the computing time in seconds. True moments are computed at the largest connected

set. σ̂2
θ , σ̂2

ψ and σ̂θ,ψ present respectively the mean squared errors (MSE) multiplied by 100 of the cor-

rected estimates of the variance of the worker fixed effects, variance of the firm fixed effects and the

covariance between worker and firm effects. Average is the average MSE.
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Table 39 – Monte Carlo simulations. Serial correlation with heteroscedasticity.

Mean Squared Error (MSE×102)

Time σ̂2
θ σ̂2

ψ σ̂θ,ψ Average

Plug-in 91.03966 1.53866 0.53512 31.03782

Boot 0.5 9.04595 0.28665 0.04516 3.12592

Boot Av Match 0.3 5.46460 0.43006 0.22812 2.04093

KSS Av Match 2.3 18.45137 0.39646 0.04425 6.29736

Notes: Plug-in is the naive plug-in estimator, Boot Av Match refers to our method with HC1 covariance

estimator where the observations are averaged to the match and wages are transformed to average

match wage. Boot refers to our method with a wild block bootstrap where each match defines a block.

In both, Boot and Boot Av Match we skip the pruning of the data. KSS Av Match is the Kline et al. (2020)

method where the observations are averaged to the match. The average firm has 10 movers and 12 em-

ployees. Time is the computing time in seconds. True moments are computed at the largest connected

set. σ̂2
θ , σ̂2

ψ and σ̂θ,ψ present respectively the mean squared errors (MSE) multiplied by 100 of the cor-

rected estimates of the variance of the worker fixed effects, variance of the firm fixed effects and the

covariance between worker and firm effects. Average is the average MSE.

Table 40 – Application. Plug-in vs corrected decomposition.

Plugin Boot Serial

Component Exp. Sh. Component Exp. Sh.

Var(y) 0.216 1.00 0.216 1.00

Var(θ̂i) 0.163 0.75 0.135 0.62

Var(ψ̂j) 0.049 0.23 0.032 0.15

Var(qγ̂) 0.008 0.03 0.007 0.03

2Cov(θ̂i, ψ̂j) -0.033 -0.15 -0.006 -0.03

2Cov(θ̂i, qγ̂) -0.000 -0.00 -0.000 -0.00

2Cov(ψ̂j, qγ̂) -0.000 -0.00 -0.000 -0.00

Var(ǫ̂) 0.030 0.14 0.049 0.23

Corr(θ̂i, ψ̂j) -0.100 - -0.000 -

Obs. 5108399 5108399 5108399 5108399

Notes: Plug-in refers to the uncorrected estimates of each of the variance components and Boot

Serial refers to the estimates after our bootstrapped correction using a wild block bootstrap.

Var(y) is the variance of log wages, Var(θ̂i) the variance of worker fixed effects (naive σ̂2
θ or

corrected σ̃2
θ ), Var(ψ̂j) is the variance of firm fixed effects, Var(qγ̂) is the variance of other co-

variates and Var(ǫ̂) is the variance of the error term. The other terms of the decomposition

are twice the covariances between the fixed effects and the covariates (2Cov(θ̂i , ψ̂j), 2Cov(θ̂i , qγ̂)

and 2Cov(ψ̂j , qγ̂)). Finally, Corr(θ̂i , ψ̂j) is the estimated correlation between worker and firm

fixed effects and Obs. is the number of observations.
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Table 41 – Application. Comparison of the Methods.

BS Plugin Boot HC1 Boot HC2

σ̂2
θ 0.061 0.095 0.066 0.063

σ̂2
ψ 0.005 0.038 0.024 0.019

σ̂θ,ψ 0.010 -0.004 0.003 0.005

ρ̂θ,ψ 0.558 -0.064 0.087 0.156

Obs. 945356 942235 942235 931925

Notes: The results of BS correspond to the AKM worker and firm types of

Borovičková and Shimer. Plugin are the plug-in estimates at the connected set

originated from BS data, Boot HC1 are the results of our method under diagonal

covariance matrix estimator HC1 at the connected set originated in the BS data,

Boot HC2 are the results of our method under diagonal covariance matrix estima-

tor HC2 at the leave-one-out connected set in the BS data. σ̂2
θ and σ̂2

ψ are respec-

tively the estimates of the variance of worker and firm fixed effects. σ̂ψ,θ is the

covariance, ρ̂ψ,θ the correlation between worker and firm fixed effects and Obs. is

the number of observations.

Table 42 – Application. Summary Statistics.

BS Data Obs. Mean Wage Mean Age Mean Education

No 3311804 4.39 41.43 4.56

Yes 2541773 4.37 36.94 4.95

Notes: BS Data is an indicator if the observation belongs to the final sample of Borovičková and Shimer

(2017), Obs. is the number of observations before taking match level averages in the original data and

before computing the connected set, Mean Wage is the average log daily wage, Mean Age is the aver-

age age in years and Mean Education is the average education where education is a discrete variable

between 1 (no education) and 8 (university degree).
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Figure 30 – Density of σ̂2
1,PI − σ2

1 and σ̂2
1,b − σ2

1

Notes: This figure presents the distributions of the differences between the true

variance σ2
1 and both, the naive plug-in estimated variance σ̂2

1,PI and the bias cor-

rected estimated variance σ̂2
1,b . The distribution of the difference between the true

moment and the bias corrected estimated covariance is centered at zero.

Figure 31 – Density of σ̂12,PI − σ12 and σ̂12,b − σ12

Notes: This figure presents the distributions of the differences between the true

covariance σ12 and both, the naive plug-in estimated covariance σ̂12,PI and the bias

corrected estimated covariance σ̂12,b . The distribution of the difference between the

true moment and the bias corrected estimated covariance is centered at zero.
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Figure 32 – MSE of corrected σ̂(θ, ψ) by number of bootstraps.

Notes: This figure presents the mean squared error (MSE) of the covariance be-

tween worker-firm fixed effects σ̂(θ, ψ) across 1000 homoscedastic error simula-

tions. The bootstrap correction assumes a diagonal covariance matrix and we use

the HC1 covariance matrix estimator.

Figure 33 – Model Comparison: Homoscedastic Errors.

Notes: This figure presents the distributions of the bias of σ̂2
ψ for the naive plug-in

estimate and the corrected moments for the different methods. Simulated errors

are homoscedastic and labor mobility is high.
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Figure 34 – Model Comparison: Heteroscedastic Errors.

(a) Bias of σ̂2
θ (b) Bias of σ̂2

ψ

(c) Bias of σ̂θ,ψ

Notes: These figures present the distributions of the bias for the naive plug-in

estimate and the bias of corrected moments for KSS and our method. Simulated

errors are heteroscedastic and labor mobility is low.
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Figure 35 – Model Comparison: Serial Correlation with heteroscedasticity.

Notes: This figure presents the distributions of the bias of σ̂2
ψ for the naive plug-in

estimate and the corrected moments for the different methods. Simulated errors

have serial correlation, true innovations are heteroscedastic and labor mobility is

high.

Figure 36 – Application. Evolution of the explained shares.

Notes: This figure presents the year-to-year evolution of the explained shares of the total log wage

variance of the plugin and corrected estimates of the person and firm fixed effects, their covariance

and the variances of other covariates and the residual.
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