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ADAPTIVE ESTIMATION IN THE LINEAR RANDOM COEFFICIENTS
MODEL WHEN REGRESSORS HAVE LIMITED VARIATION

CHRISTOPHE GAILLAC®:(2 AND ERIC GAUTIER™

ABSTRACT. We consider a linear model where the coefficients - intercept and slopes - are
random and independent from regressors which support is a proper subset. When the slopes
do not have heavy tails, the joint density of the random coefficients is identified. Lower bounds
on the supremum risk for the estimation of the density are derived for this model and a related
white noise model. We present an estimator, its rates of convergence, and a data-driven rule
which delivers adaptive estimators. The corresponding R package is RandomCoefficients.

1. INTRODUCTION

For a random variable o and random vectors X and 3 of dimension p, the linear random
coefficients model is

(1) Y=a+8"X,
(2) (o, 87) and X are independent.

The researcher has at her disposal n observations (Y;, X, )7, of (Y, X ") but does not observe
the realizations (ai,ﬂj )i, of (a,ﬁT). «o subsumes the intercept and error term and the
vector of slope coefficients 3 is heterogeneous (i.e., varies across 7). For example, a researcher
interested in the effect of class size on pupils’ achievements might want to allow some pupils
to be more sensitive than others to a decrease in the size and to estimate the density of the
effect. (a, BT) correspond to multidimensional unobserved heterogeneity and X to observed
heterogeneity. Restricting unobserved heterogeneity to a scalar, as when only « is random,
can have undesirable implications such as monotonicity in the literature on policy evaluation
(see [24]). Parametric assumptions are often made by convenience and can drive the results
(see [29]). For this reason, this paper considers a nonparametric setup. Model (1) is also a
type of linear model with homegeneous slopes and heteroscedasticity, hence the averages of
the coefficients are easy to obtain. However, the law of coefficients, their quantiles, prediction
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intervals for Y for X = x as in [3], welfare measures, treatment and counterfactual effects,
which depend on the distribution of the coefficients can be of great interest.

Estimation of the density of random coefficients f, g when the support of X is R and X has
heavy enough tails has been studied in [4, 31]. These papers notice that the inverse problem is
related to a tomography problem (see, e.g., [11, 12]) involving the Radon transform. Assuming
the support of X is R? amounts to assuming that the law of angles has full support, moreover
a lower bound on the density of X is assumed so that the law of the angles is nondegener-
ate. When p = 1 this is implied by densities of X which follow a Cauchy distribution. The
corresponding tomography problem has a nonuniform and estimable density of angles and the
dimension can be larger than in tomography due to more than one regressor. More general
specifications of random coefficients model are important in econometrics (see, e.g., [25, 30]
and references therein) and there has been recent interest in nonparametric tests (see [10, 19]).

This paper considers the case where the support of X is a proper (i.e., strict) subset. This
is a much more useful and realistic framework for the random coefficients model. When p =1,
this is related to limited angle tomography (see, e.g., [20, 32]). There, one has measurements
over a subset of angles and the unknown density has support in the unit disk. This is too
restrictive for a density of random coefficients and implies that o has compact support, ruling
out usual parametric assumptions on error terms. Due to (2), the conditional characteristic
function of Y given X = x at ¢ is the Fourier transform of f, g at (t,tx™)T. Hence, the
family of conditional characteristic functions indexed by @ in the support of X gives access
to the Fourier transform of f, g on a double cone of axis (1,0,...,0) € RPF! and apex 0.
When o = 0, Sg is compact, and X C Sx is an arbitrary compact set of nonempty interior,
this is the problem of out-of-band extrapolation or super-resolution (see, e.g., [5] sections 11.4
and 11.5). Because we allow a to be nonzero, we generalize this approach. Estimation of
fa, is a statistical inverse problem for which the deterministic problem is the inversion of a
truncated Fourier transform (see, e.g., [2] and the references therein). The companion paper

[23] presents conditions on the law of (a, ﬁT)T and the support of X that imply nonparametric
identification. It considers weak conditions on a which could have infinite absolute moments
and the marginals of 3 could have heavy tails. In this paper, we obtain rates of convergence
when the marginals of 8 do not have heavy tails but can have noncompact support.

A related approach is extrapolation. It is used in [41] to perform deconvolution of compactly
supported densities while allowing the Fourier transform of the error density to vanish on a
set of positive measure. In this paper, the relevant operator is viewed as a composition of two
operators based on partial Fourier transforms. One involves a truncated Fourier transform and
we make use of properties of the singular value decomposition rather than extrapolation.

Similar to [26, 33], we study optimality in the minimax sense. We obtain lower bounds under
weak to strong integrability in the first argument for this and a white noise model. We present
an estimator involving: series based estimation of the partial Fourier transform of the density
with respect to the first variable, interpolation around zero, and inversion of the partial Fourier
transform. We give rates of convergence and use a Goldenshluger-Lepski type method to obtain
data-driven estimators. We consider estimation of fg in Appendix B.5. We present a numerical
method to compute the estimator which is implemented in the R package RandomCoefficients.
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2. NOTATIONS

N and Ny stand for the positive and nonnegative integers, ()4 for max(-,0), a A b (resp.
aV b) for the minimum (resp. maximum) between a and b, and 1 {-} for the indicator function.
Bold letters are used for vectors. For all » € R, r is the vector, which dimension will be
clear from the text, where each entry is r. The iterated logarithms are lng(t) = ¢ and, for
j > 1 and t large enough, In;(¢) = In(ln;_(¢)). |- |4 for ¢ € [1,00] stands for the £, norm
of a vector. For all B € C4, (f)men, functions with values in C, and m € N¢, denote by
B™ = TI¢, B, 18I™ = T1¢, 1Be)™, and fum = [1i_, fm,. For a differentiable function

f of real variables, f(™) denotes H;lzl ;T,fj f and supp(f) its support. C* (Rd) is the space
.
J

of infinitely differentiable functions. The inverse of a mapping f, when it exists, is denoted

by fI. We denote the interior of S C R? by § and its closure by S. When S is measurable
and p a function from S to [0,00], L?(u) is the space of complex-valued square integrable
functions equipped with (f, g) 2, = [s f(@)g(z)pu(x)de. This is denoted by L?(S) when
p=1. When Ws = 1{S} + co 1{8}, we have L* (Ws) = {f € L? (R?) : supp(f) C S} and
(9 r2owg) = [s f(®)g(x)de. Denote by D the set of densities, by II : L*(R%) — L%*(R%)
such that IIf(x) = f(—x), and by ® the product of functions (e.g., W®4(b) = H;lzl W(b;))
or measures. The Fourier transform of f € L' (RY) is F[f] (z) = [ga e @ £(b)db and F [f]
is also the Fourier transform in L2 (Rd). For all ¢ > 0, denote the Paley-Wiener space by
PW(c) := {f € L*(R) : supp (F [f]) € [~¢, ]}, by P. the projector from L*(R) to PW(c)
(P[f] = FL[1{[~c, |} F [£]]), and, for all ¢ # 0, by

3 Fo: L2(W®) = L12([-1,1]%)  and C.: L*(RY) — L*(RY)
f = Flfl(e) Fo = ldif(e).

Abusing notations, we sometimes use F.[f] for the function in L?(R). Ext[f] assigns the value

0 outside [—1,1]% and Fig [f] (¢, -) is the partial Fourier transform of f with respect to the first

variable. For a random vector X, Px is its law, fx its density, fx|r the truncated density

of X given X € X, Sx its support, and fy|x—, the conditional density. For a sequence of

random variables (Xno’n)( Xnon = Op(1) means that, for all € > 0, there exists M such
u

no,n)ENg’
that P(| Xyn| > M) < € for all (ng,n) € N2 such that & holds. In the absence of constraint,

we drop the notation U. With a single index the O,(1) notation requires a bound holding for
all value of the index (the usual notation if the random variables are bounded in probability).

3. PRELIMINARIES

Assumption 1. (H1.1) fx and f, g exist;

(H1.2) fap € L? (w® W®P), where w > 1 and W is even, nondecreasing on [0, 0), such that
W(0) > 0 and limy, o0 W (2) = 00, Ygeny My /% = oo with My = ([ *W=1(b)db)"/?;
(H1.3) There exists 9 > 0 and X = [—zg,20]’ € Sx and we have at our disposal i.i.d

(Y;, X)), and an estimator fX|X based on G, = (X))__,, 41 independent of (Y;, X ;)i ;
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(H1.4) & is aset of densities on A" such that, for cx,Cx € (0,00), forall f € &, [|f|| oo (x) < Ox
and |1/ f|l o2y < ex, and, for (v(no, €))neen € (0, )N which tends to 0, we have

1 ~ 2
v(no, &) f;l;pee fopc - fX|XHLOO(X) =0,(1).

We maintain this assumption for all results presenting upper bounds. When w =1, E [ak],
for £ € N, might not exist. Due to Theorem 3.14 in [18], if there exist R > 0, (a;)jen, €
(0, 00)N0 and (p;)jen, € (—00, 1]N0 equal to 0 for j large enough, such that

z’ |z]

W(z) > exp (H?’;o logpj(aj|x])> 1{|z| > R} (e.g., W(z) = exp (cmlog(aﬂ:v]))ﬂﬂﬂ > R}) )

Hl/(2m

for all z € R, then Y, -1/ ||z 2®™/W(z
distributions can have an infinite moment generatmg function hence be heavy-tailed and their
Fourier transforms belong to a quasi-analytic class but not be analytic. Now on, we use W|_g g
or cosh(-/R) for W. This rules out heavy tails and nonanalytic Fourier transforms. When
W = W|_g,g), integrability in b amounts to Sg C [—R, RJP, but other W allow for non compact
Sg. Though with a different scalar product, we have L? (cosh(b-)) = L? (e*l') and (see Theorem
IX.13 in [15]), for a > 0, {f € L*(R): Vb<a, f € L? (ebH)} is the set of square-integrable
functions which Fourier transform have an analytic continuation on {z € C: |Im(z)| < a/2}.
In particular the Laplace transform is finite near 0. Equivalently, if f is a density, it does
not have heavy-tails. The condition X = [—xzg, zo|’ C Sx in (H1.4) is not restrictive because
we can write (1) as Y = a + Bz + ﬂT(X —x), take € RP and xg such that X C Sx_g,
and there is a one-to-one mapping between f,_ 8Ta and f, 8. We assume (H1.4) because the

= oo which implies (H1.2). Marginal

estimator involves estimators of fx|yx in denominators. Alternative solutions exist when p =1
(see, e.g., [30]) only. Assuming the availability of an estimator of fx |y using the preliminary
sample Gy, is common in the deconvolution literature (see, e.g., [L5]). By using estimators of
Ix|x for a well chosen & rather than of fx, the assumption that HfX|XHL°°(X) < Cx and

Hl/fX\XHLoo < ¢x in (H1.4) becomes very mild. This is feasible because of (2).

3.1. Inverse problem in Hilbert spaces. Estimation of f, g is a statistical ill-posed inverse
problem. The operator depends on w and W. Now on, the functions w and W are those of
(H1.2). We have, for all t € R and w € [-1,1]?, Kf, g(t,u) = F [fy‘X:zOu] (t) \tx0|p/2, where

K: L(w@ W) — LA(R x [~1,1]7)

(4) f = (t,u) = F[f] (t, tzou) [tzoP? .

Proposition 1. L? (w ® W®P) is continuously embedded into L?(RP*1). Moreover, K is injec-
tive and continuous, and not compact if w = 1.

The case w = 1 corresponds to mild integrability assumptions in the first variable when
the SVD of K does not exist. This makes it difficult to prove rates of convergence even for
estimators which do not rely explicitly on the SVD such as the Tikhonov and Landweber
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method (Gerchberg algorithm in out-of-band extrapolation, see, e.g., [5]). Rather than work
with K directly, we use that K is the composition of operators which are easier to analyze

(5) for t € R, KLF|(t%) = Fiao [Fist [f] (£,)] () [tzo”’? in LA([~1,1)7).

For all f € L? (w® W®P), W either W|_g g or cosh(-/R), and t € R, Fix [f] (t,-) belongs to
L2(W®P) and, for ¢ # 0, F, : L*(W®P) — L?([-1,1]P) admits a SVD, where both orthonor-
mal systems are complete. This is a tensor product of the SVD when p = 1 that we denote

by <U¥c,¢nm{c,gm ) , where (U,V,‘l/c
cording to multiplicity, (gonqu’c) and ( WC) are orthonormal systems of, respectively,
meENy meNg

L?*(W) and L?([—1,1]). This holds for the following reason. Because F, = FC,1 = |c| !C.F,
F. = FI, Ff = W HIF.Ext, and W is even, we obtain F = H(W‘l}"cé'wt) and

FF: = T (WLFExt) = @n/lc))F! (Coor (WICFERt)) = 20F! (Comr (W) Féxt).
The operator QY = (|c| /(27))F.F: is a compact positive definite self-adjoint operator (see

C
[44] and [49] for the two choices of W). Its eigenvalues in decreasing order repeated according

to multiplicity are denoted by ( WC) and a basis of eigenfunctions by ( WC) o The
m&Ng

€ (0,00)M0 is in decreasing order repeated ac-

meNy >m€No

meENy

other elements of the SVD are o = 1/2mpm/ |c| and o = Frgm® /om®.

Proposition 2. For all ¢ # 0, (¢TVX’C> . is a basis of L2(W).
meNg

) Wi_11), . .
The singular vectors (gm[ b C) N are the Prolate Spheroidal Wave Functions (hereafter
meNg

PSWF, see, e.g., [44]). They can be extended as entire functions in L?(R) and form a complete
orthogonal system of PW (c) for which we use the same notation. They are useful to carry
interpolation and extrapolation (see, e.g., [10]) with Hilbertian techniques. In this paper, for
all t # 0, Fist [fa,8] (t,-) plays the role of the Fourier transform in the definition of PW (c).
The weight cosh(-/R) allows for larger classes than PW (c) and noncompact Sg. This is useful
even if Sg is compact when the researcher does not know a superset containing Sg. The useful
results on the corresponding SVD and a numerical algorithm to compute it are given in [22].

3.2. Sets of smooth and integrable functions. Define, for all (¢(t))i>0 and (wp,
increasing, ¢(0) =wp =1, 1, M >0, ¢ € {1,00}, t € R, m € Nj, k € Ny, and ¢(t) := txy,

)meNo

H w (1, M) [ Z /¢2 1t)67 1 )dt\/ Z Wi?:”eq,kHQL?(R) <2ml?, || fll2ewery < M

keNg keNg
and HZJ%U(Z) when we replace || f||2(wewery < M by || fllr2(wewery < 00, where
1/2

Ok (t) = Yo @)

meNg: |m| =k

(6)  bm(t) = <7'"15t [F1(E, ), so%’c(t)>Lz<W®p> ’
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The first inequality in the definition of Hi%" (I, M) defines the notion of smoothness for func-

tions in L2 (1 ® W®p) analyzed in this paper. It involves a maximum of two terms, thus two
inequalities: the first corresponds to smoothness in the first variable and the second to smooth-
ness in the other variables. The additional inequality imposes integrability in the first variable.
The asymmetry in the treatment of the first and remaining variables is due to the fact that, in
the statistical problem, only the random slopes are multiplied by regressors which have limited
variation and we make integrability assumptions in the first variable which are as mild as possi-
ble. The use of the Fourier transform to express smoothness in the first variable is classical. For
the remaining variables, we choose a framework that allows for both functions with compact

and noncompact support and work with the bases (gomc(t)) . for t # 0. For functions with
0

meN
compact support, it is possible to use Fourier series and we make a comparison in Section B.4.
The use of different bases for different values of ¢ is motivated by (5). Though the spaces are
chosen for mathematical convenience, we analyze all types of smoothness. The smoothness be-
ing unknown anyway, we provide an adaptive estimator. We analyze two values of ¢ and show
that the choice of the £; norm matters for the rates of convergence for supersmooth functions.

Remark 1. The next model is related to (1) under Assumption 1 when fx is known:

(7) dz(t) = K[f] (t,-)dt +

o
—dG(t), teR
Aol teR
where f plays the role of f, g, 0 > 0 is known, and (G(%)):cr is a complex two-sided cylindrical
Gaussian process on L?([—1,1]?). This means, for ® Hilbert-Schmidt from L?([—1,1]P) to a

separable Hilbert space H, (PG(t))icr is a Gaussian process in H of covariance ®®* (see [17]).
Taking ®G(t) = 3, enp @ [gmc(ﬂ Bum(t), where B (t) = B () + iB2 (1), (BX (£))ser and

(Bfn(t)) 1R are independent two-sided Brownian motions, the system of independent equations

t
W,c(s) g
8 Zm(t) == b ds + —=Bm(t), teR,
0 w(®) 1= [ A (s)ds + B
Wie(t) D . . Wie(s) -
where, Z,(t) == <Z(t),gm >L2([ _ and m € N, is equivalent to (7). Because oy " is
—1.1p
small when |m|, is large or s is small (see Lemma B.4), the estimator of Section 4.1 truncates
large values of |m/|, and does not rely on small values of |s| but uses interpolation.

Remark 2. [32] considers a Gaussian sequence model corresponding to (7), K is the Radon
transform, p = 1, G is a two-sided cylindrical Wiener process, and L? (w ® W) is a weighted
L? space of functions with support in the unit disk of R? for which C has a SVD with a known
rate of decay of the singular values.

3.3. Interpolation. Define, for all a,e > 0, the operator

Wi_1,1),a€ 3 ey
(9) Toelf] = m%() (1 fT;K[—l,l]v“) : <f7 Ci/e [97‘/:[—1,1],, ] >L2(R\(_€7€)) Cy/e [gTVr‘L/[ 1,1) }

on L%(R) with domain PW (a). For all f € L?(R), Z,[f] is a distribution.



7

Proposition 3. For all a,e > 0, we have Z, . (L*(R)) C L*([—¢,€]) and, for all g € PW (a),
Toclg] = g in L2(R) and, for C(a, ¢) = 4ac/ (71' (1 — p/mr “) ) and all f,h € L2(R),

(10) IS = ZaePll7a(—cq) < 200+ Clas ) | = Pal Ml 72 +20(@ ) I1F = hll ey e

If f € PW(a), Z,.[f] only relies on fI{R \ (—¢,€)} and Z,[f] = f on R\ (—¢,¢€), so (9)
provides an analytic formula to carry interpolation on [—e, €] of functions in PW (a). Else, (10)
provides an upper bound on the error made by approximating f by Z, . [h] on [—¢, €] when h
approximates f outside [—¢,€]. We use interpolation When the variance of an initial estimator

]?O of f is large due to its values near 0 but H f— AO‘ is small and work with

L2(R\(—¢))
Ve R, f(t) = PO = e} + T 1] (O1{]t] < e},

in which case, (10) yields
2
14+2C(a,¢€) Hf ‘

-l P

When supp (F[f]) is compact, a is taken such that supp (F[f]) C [—a, a]. Else, a goes to infinity
so the second term in (11) goes to 0. € is taken such that ae is constant because, due to (3.87)
n [44], limge—yo0 C(a, €) = 0o and (10) and (11) become useless. Then C(a,€) is constant and

we set C' =2 (1+ C(a,¢)). When ae = 1, we get py " 2 0.3019 and C ~ 7.2279.

2
R +2(1+ C(a,€)) Hf Pal HLQ(R)

3.4. Risk. The risk of an estimator fa 3 is the mean integrated squared error (MISE)
no (favﬁ’fa7ﬁ> - E |: gn0:| °

~ 2
fcx,ﬁ - fa,ﬁ L2(RPH1)

fap — foz,ﬁ’

L2(1@W®P)

When W = W|_p s and supp (faﬂ) CRx[-R,RP,itis E U

gno] , else,

(12) [ fop = fa,ﬂ‘ gno] < WL ) R (faﬁvfa,,@)-

We consider a risk conditional on G,,, for simplicity of the treatment of the random regressors
with unknown law. We adopt the minimax approach and consider the supremum risk. The
lower bounds involve a function r (for rate) and take the form

faﬁ fa,ﬁ‘

L2(Rp+1)

(13) Jv>0: lim, , inf sup [
fop fapEHL G (HND

- ] > vr(n).

When we replace fo g by f, f; B by fA‘, and consider model (8), we refer to (13’); when we
also replace H? dm(l) by HE ¢w(l) N Sy, we refer to (13”), where Sy is the set of functions in
’Hg}%‘f (1) such that ¢ — Fig [f] (¢,-) is not arbitrarily concentrated close to 0: for all m € Nf,
sup{|z|, = € supp (bm)} > U.
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4. ESTIMATION

The sets of densities in the supremum risk and of estimators in this section depend on
q € {1,00}. The rates of convergence depend on ¢ via kg := 1+ (p — 1)1{g = oo}.
4.1. Estimator considered. For all ¢ € {1,00}, 0 < e <1< T and N : R — Ny such that
N(t) = N(e) for t € [—¢,€¢] and N(t) = N(T) for |t| > T, a regularized inverse is obtained by:
(S.1) for all ¢ # 0, obtain a preliminary approximation of Fi(t,-) := Fis [fa,8] (¢,-)

cm(t " -
PNy gl <7y S S i ) = (F [y pee ] (0 92 ) La((erpy

iml, <N(t) 7™

(S.2) for all t € [—e, €], FPN (8, ) i= FENTO(8 Y{|t] > €} 4T [qu’N’T’O(*, -)} O{|t] < €},

Ve N, T,e
(8:3) SR C1y02) 1= Fh [FPNT (0, 2)] ().
To deal with the statistical problem, we carry (S.1)-(S.3) replacing ¢, by the estimator
n ity;

(14) em(t) = 12*3*9%“0 (32)1ix ey,

-1 wofx\x( i) 0
where fg(lX(Xj) = J?X|X(Xj) V \/d(ng) and d(np) is a trimming factor converging to zero

. L . SN0 75¢,NT 24,N,T 24,N,T
with ng. This yields the estimators F{" 0 FEF55¢ and z’ﬁ’ ‘. We use ( g’ﬁ’ ’e) as a
k] k2 +

]?g’g’T’e (see [25, 48]). We use
ne = n A (0(no)/v(ng,E)) for the sample size required for an ideal estimator where fx|y is
known to achieve the rate of the plug-in estimator. The upper bounds below take the form

1 ¢
sup (quT fa”@) = 0p(1).
r(n )faﬁeﬂqw(l M)ND, fx|x€E

final estimator of f, g which always has a smaller risk than

(15)

When we use instead the restriction f, g € HY ¢w(l) N D, we refer to (157).

4.2. Logarithmic rates when w is a power. The first result below involves, for all ,u > 0

and R,z > 0, the inverse @, of x € (0,00) — xIn(1V (7e(2x + 1)/(2Rzot))) + uln(2z + 1)

which is such that, for all z,u € (0,00), t € (0,00) — Q4 (x) is increasing.

Theorem 1. Let ¢ € {1,00}, ¢ = 1V ||*, (wk)ken, = (K7 )keny, w =1V ||, I, M,s,R >0, 0 >

1/2, N(t) = [N(t)] for e < [t| < T, and a = 1/e. (15) holds with r(n.) = (In (n.) /In; (ne)) %

in the following cases

(T1.1) W = Wi_gp), Sg € [-R, RPP, T = n/ PP ¢ — (In(n,) /Ing (n.)) ™, and N(t) =
Qlt),(20+p)/4 (In(ne) /(8kq)),

(T12) W = COSh('/R), T — né/(Q(P-i-l-i-kq—]l{q:OO}))’ €= ln(ne)f2a7 and

N(#) = nne) 1{Jtl > o7 | 1{1t < o }

— T
2 \204p—ke+ wquJ’;}gsﬁll}) 20 + p — ky + 2k, In(7e2 /(4Raq [t]))
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Theorem 2. Let g € {1,00}, ¢ = 1V||*, (wi)ken, = (k7 )keng, w = 1V|-|,and 0 < I, s, R < o0.

(T2.1) Let W = W|_g g), 0 > 2+ kq/2, assume that fx is known, Sx = &', and || fx || o (x) <
00, (13) holds with (n) = (In(n)/ Ing(n)) 2.

(T2.2) Inmodel (8) with W = cosh(-/R) and ¢ > 1/2, (13’) holds with (n) = (In (n/In(n))) .

Theorem 2 shows the rate in (T1.1) is optimal when fx is known and Sx = &'. It is the same
rate as in [411] for deconvolution with a known characteristic function of the noise on a bounded
interval when the density of the signal has compact support, though for different smoothness.
The rate in (T1.2) is for when Sg can be noncompact but [ [ fa g(a, b)?*w(a)W®P(b)dadb < occ.
Similarly, the discussion after Theorem 2 in [411] considers densities with non compact support
but with a pointwise bound outside [—1,1]. By (12) and (T2.2), we obtain a lower bound on

RV (foéﬁ, fa, 5) for densities with unbounded support. The rates in Theorem 1 are independent

no

of p as common for severely ill-posed problems (see [14, 22]).

4.3. Polynomial and nearly parametric rates when w is exponential. Here Q¢ is the
inverse of the increasing function x € (0,00) — zln(1V (7e(x + 1)/(2Rxzot))) + uz In(z + 1).

Theorem 3. Let ¢ € {1,00} and s, k,v,l, M,R,a >0, r,p> 1.
(T3.1) When W = Wi_g g}, Sg € [-R,R]?, ¢(-) = 1V |-]°, (Wr)ken, = (eﬁ(kln(Hk’))r)k iy
€No

k > kg, N(t) = |[N(t)] for e < |t| < T, N(t) = Qe r/k,(In (1e) /(2ky)), and T' =

TeeN(EOMWNEO+HD)/s /(9 Rxy), we have

(T3.1.1) for r = p = 1, w = I HOVID" "~ > 1/(4k,), s > K/(2k,), ea = Te/(2Rxy),
and € = Telna(n)/(21n(n)Rxg), (15) holds with r(n.) = ng "/ (7 2ka) In(n,)2r+2pt2

(T3.1.2) forr =1, w = W_a4), Sa C [~a,a], s > k/ky, and € = Te/(2Rxo), (15°) holds

with r(n.) = ng ™/ (F k) In(n, )25 +2r+2,

(T3.2) When W = W[—R,R]a Sg - [—R, R]p, for r > 1, (Wk:)k:ENo == (en(kln(1+k))r>kEN07 w =
VD" > p gy > g, #(-) = e’I'l, a =1/e, v > 0 large enough (to satisfy (B.69)),

N(t) = {N] fore <|t|<T,e="Te/ (2R330 (1 —i—W)), T = exp (QNIH (1 +N)),

1/r
N = Qoo,l ( ! (hl ne Zd ln (H_l /r= Z)) )

where k/(k+1) < 1/r < (k+1)/(k+2), do = 4/(2k)"/" and (d;)¥_, are such that

AR K (=G4 1)
d; = G Z i > ;dpl_l...dpj_l,
j=1 p1+-+pj=t

andgp(-):exp(Zfzodiln(-)(iﬂ)/r_i)/1n(-)4p/r, (15) holds with r(ne) = (¢ (ne) ne) .

(T3.3) When W = cosh(-/R), ¢(-) = 1V||*, (Wr)ren, = (€"F)keng, £ > kq(m(s/(p+1)+1)/4—1)
and Rz > nk/(2(p+ 1)), w = Wi_aa], Sa C [~a,a], € = 7/(4Rxo), N(t) = | N(t)| for
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e <|t| <T, N(t) =In(n.) /(2 + wky/ (2R |t])), and T = "N (/5 /(Ray), (15) holds

with T(ne) = ne_ﬂ/(fﬁ_kq) ln(ne)2p+2—P1{q:oo},

In (T3.3), we relax the assumption that Sg is compact maintained in (T3.1). The results of
Theorem 3 are related to those for “2exp-severely ill-posed problems” (see [13] and [47] which
obtains the same polynomial rates up to logarithmic factor as in (T3.1.2) when 1/v(ng,&) > n
and p =1). When 1/v(ng, &) > n, the rate in (T3.1.2) matches the lower bound in model (8).

Theorem 4. Let ¢ € {1,00} and consider model (8) with ¢(-) = 1V |-°, =1V,
s,/,1, R > 0. (13”) holds with 7(n) = n="/(#*k) when either

(T4.1) W = Wi_g g}, U > 4/(eRxo), and (wp)ken, = (erkin(+k))
(T4.2) W = cosh(-/R), U > 2/(eRxo), and (wg)ren, = (")

keNp’
keNpy”

4.4. Data-driven estimator. We use a variant of the Goldenshluger-Lepski method (see
[28]) proposed by [39]. Let €,¢p > 0, Kmax = [(olog(n)/log(2)], Tmax := 2Kmax T, =
{2k: kzl,...,KmaX}, and, for N € N§, T'€ Ny, t # 0, and ¢ € {1, 00},

~ 2
mow= (5 (EOY s) |

N<N'<NW._ (1) Nemlens \Om

max,q

Jr
. 2
o (t
By (T,N) = max / <‘cng?)\> I N@)dt)
T'eTn T'2T \ Jr<|t|<T iml|,<N() ™ *
_ 521+ 2((2log(m) V 3)ex ([tlz0\" w4
SN o8 o v, (N, two);
(N.1) when W = cosh(-/R),
% (N +p—1)P~ 12p+1€R|t| (N + p)
. t > Ig=1
oV (N, ) T 2R|t| || 4}2} {g=1}
4€R|t| p 7I'p N—l- 1 —
+< " > o ( e U A
2

()" e (240 (577 N> = )

Mot = {W - J {l1> 5} {21&1111 (171(27})(4R|t|))J {1 < 7+

(N.2) when W = W|_g ) and W is the inverse of x € [0,00) > ze®,

_ -1 _ e 2Nkq
T e e T

N q(t) = BE‘: n) <1vw <R7|et|ljg_€ )>>_1J.
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N and T are defined, using ¢; > 211/208 (c1 > 1 to handle the estimation of fx|x), as

(16) VteR\ (—e,e), N(t)€ argmin (By(t,N)+c13(t,N)),
0SNSNW,. (1)
(17) T € argmin (BZ (T, 1\7) + / 5 (t, N(t)) dt) .
TeTn e<|t|I<T

Let us present the heuristic when J?)aq xr = Ixx (hence we simply write R"). Denote by
NV N':t— N(t)V N'(t). The Plancherel identity, (11), and Lemma B.1 yield

2 ] 2 M?
dt +
L2 (We)

TR Ry o) < [ B ||BT ) - Fualhasl ) ol

By (A.24), the first term on the right-hand side can be written as

f el
R\ (—¢,¢)

(18)

2 2

K&
L2(Wer)

[(FT0 — Fiag o)) (80)

L2(Wep)

/ 2
< sup ‘(F‘LNVN 0 _ F%N’T*’) ¢, ‘ LY N[ < T )dt.
L. (sup | ( FVTO) (1) oy + SN < T)
Proposition 2 yields
~ / ~ 2
Bi(t,N) = _ max (H(FE’NVN O FNTO) ) —E(t,N’)) ,
NSN/SNI‘I/]V;x,q(t) L2(W®p) —+

which, by concentration of measure, on an event of probability close to 1, is close to

19 E H F‘q,NVN’,T,O_F\q,N,T,O t,-’
(a9) | max q@( [(1 T (1)

max,

’ ] _x (t,N’)> .
L2(Wer) N

By E []/c\m(t)IQ — \cm(t)\Q] =E [\Em(t) - cm(t)ﬂ (see Lemma A.2) we can rewrite the expec-

tation so that the term in parentheses in (19) becomes

: Elem(t) = cm(t)P

L2(Wep) + Z

Witxo
N<|m|,<NVN’ O

H <F1q,NvN',T,0 _ qu,N,T,0> (t, ')‘ -y (t, N’)

2
( : ,NVN',T,0 N, T,0
and, by (A.23)-(A.24), is less than H (qu v - F{ ) (t, )’ Laven)

to minimizing an estimator of the integrand in (18). Similarly, (17) amounts to minimizing an
estimator of (18). Indeed, on an event of probability close to 1, Ba(7T, N) is close to

(20)  max / E [H (ﬁfﬁN’TVT”O - ﬁva’Tﬁo) (t, -)‘
TeT,,T'>T T<|t|<T!

. Hence (16) amounts

2

L2(Wer)

] - E(t,N(t))dt) ,

+
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the term in parentheses in (20) is equal to

N.TVT' 0 N,T,0 2 E [|Em(t) B Cm(t)ﬂ
(qu’ VIO pa N ) (t, -)’ + — X(t, N(t))dt
T<|t<T’ L2(Wer) Witao ) 2
<ltI< |m\q§N (o’m’ )
7 2

and, by (A.23)-(A.24), is less than fR\(_€ 0 (qu’N’TVT 0 _ qu’N’T’O) (, )‘ o
The upper bounds take the form

1 €
ey s sup RI (5T fug) = 0, (1),

fa,ﬁeHZ;?V’[;u(laM)ﬂpv fX\XGS v(no,S)/é(nO)Sn—(2+<), ne>e

and we refer to (21’) when we use instead the restriction f, g € %q’d)w(l) ND.

Theorem 5. Take 0 <[, M,s,R,a < oo, H€E N, g€ {1,00},(>1/12, ¢(-) =1V ||°.

(T5.1) When (wg)ken, = (K7)ken,, 0 > p/2, for all oy such that o9 > 0, s > 1, w(-) =1V |,
and € = (Ing (n) /In (n)) 27, (21) holds with r(n) = (In (n) /Ing (n)) "> when either
(T511)W W[ R,R] SﬁC[ RR]IJ and(o—l/(ﬁp)

(T5.1.2) W = cosh(-/R), e = (Ing (n)) 2%, and ¢y = 1/(10p).

(T5.2) When W = W[fR,Rb Sﬁ C [ R, R] (Wk)keNo = ( nkln(1+k))k€N07 w = W[,g&}, Sa
[—a,a], € = Te/(2Rxy), K > kg, s > 3p, and (o = 1/(6p), (21°) holds with r(n)
n—t/ (tkq) ln(n)25+2p+3_

(T53) When W = COSh('/R)a (wk)kENo = (eﬁk)kENoa K > kq(ﬂ’(s/(p + 1) + 1)/4 - 1)) Rzo >
mr/(2(p + 1)), w = Wi_ga), Sa € [~a,a], € = 7/(4Rx0), s > 5pr/(k + k), and

= 1/(10p), (21°) holds with r(n) = n~"/(v+ka) In(n)2p+3-plHg=cc},

The results in Theorem 5 are for v(ng,£)/d(ng) < n~ ) with ¢ > 1/12, in which case

ne = n. Theorem 2 and (T5.1) (a) show that fz:g,T,e is adaptive. The rate in (T5.2) matches,
up to a logarithmic factor, the lower bound in Theorem 4 (1) for model (8). For the other
cases, the risk is different for the lower bounds and the upper bounds in Theorem 5, but using
(12) we obtain the same rate up to logarithmic factors for the risk involving the We1ght w.

1N

5. SIMULATIONS

Let p=1, ¢ = o0, and (o, B)" = & D + &(1 — D) with P(D = 1) = P(D = 0) = 0.5. The
law of X is a truncated normal based on a normal of mean 0 and variance 2.5 and truncated
to X with xp = 1.5. The laws of &; and & are either: (Case 1) truncated normals based on

normals with means py = ( 3 > and pg = ( g ), same covariance < % ; ), and truncated

o [~6,6]PT! or (Case 2) not truncated. Table 1 compares E [

NT
OO E—fa//j‘

L2([-7.5,7.5]2 )]

and the risk of the oracle min E fC>Q N Te _ fa 5’
TeTn,NENy 1 TN L2([-7.5,7.5)2)

Monte-Carlo use 1000 simulations. Figure 1 (resp. Figure 2) displays summaries of the law

] for cases 1 and 2. The
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0.04 0.03
0.025
0.02 0.02

0.015

E[fapl oo

0.00s

(b) Mean of estimates

0.03
0.025

0.03 0.02 0.02

qo7,s(fa,ﬁ)° 0z ‘Iz,s(fa,[s) 001

0.01

(c) 97.5% quantile of estimates (d) 2.5% quantile of estimates

FIGURE 1. Case 1, W = W|_7575

W = W(_7.5,.5), Case 1 W = cosh (-/7.5), Case 2
n =300 n =500 n=1000 n =300 n =500 n=1000
MISE (data-driven) 0.092 0.086 0.083 0.089 0.087 0.085
MISE (oracle) 0.091 0.086 0.082 0.088 0.087 0.085

TABLE 1. Risk

of the estimator for W = W_7 575 (resp. W = cosh(-/7.5)) in Case 1 (resp. Case 2) and
n = 1000. fX| xex is obtained with the same data. The estimator requires the SVD of F..
By Proposition B.1, we have gnvf(‘/R)’C = grv,i/’Rc for all m € Ng. When W = W_y y), the first
coefficients of the decomposition on the Legendre polynomials are obtained by solving for the

eigenvectors of two tridiagonal symmetric Toeplitz matrices (see Section 2.6 in [44]). When

W = cosh, we refer to Section 7 in [22]. We use F; (gnVY’RC) = UTWRC@NVK’RC and that gonvq,V’Rc has

norm 1 to get the rest of the SVD. The Fourier inverse is obtained by fast Fourier transform.

APPENDIX - PROOFS

R and J denote the real and imaginary parts. We denote, for all m € Ny, by ¢, the function

g and puf, = imazlv[_l’l]’c. Because ¢, = F.(Ext[ys,])/ps, in L2([~1,1]), ¥, can be

extended as an entire function which we denote with the same notation. Using the injectivity

W11
m

of F. (see the proof of Proposition 1), we have @K[fl’”’c =i "Ext[Ys,]. We make use of

In(t)* /ay\a
(A.1) ?211? m —(%) , a,b>0.
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0.03
0.025

0.02

Elfap] ©-025

0.04

0.02

q07,5(fa,ﬁ)

(c) 97.5% quantile of estimates (d) 2.5% quantile of estimates

FIGURE 2. Case 2, W = cosh (-/7.5)

All expectations are conditional on G, when fx|y is unknown and we rely on Gy, to estimate
it. We remove the conditioning in the notations for simplicity.

A.1. Proofs of Proposition 1, 2 and 3.

Proof of Proposition 1. The first assertion comes from the fact that W is nondecreasing on
[0,00) and W (0) > 0. For the rest, we use that, for every h € L2(W®P), if we do not restrict
the argument in the definition of F.[h] to [—1,1]P, F.[h] can be defined as a function in L?(RP).
In what follows, for simplicity, we use F.[h] for both the function in L?*([—1,1]?) and in L?(RP).
Let us now show that, for all ¢ # 0, F, defined in (3) is injective. Take h € L? (W®P) C L?(RP)
such that F.[h] = 0 in L? ([~1,1]P). When W ! vanishes at one point, h is compactly sup-
ported, thus, by the Paley-Wiener theorem its Fourier transform can be extended as an entire
function which restriction to R? belongs to L? (RP). Because the Fourier transform vanishes
on a subset with nonempty interior, then F[h] = 0 on R?, thus 2 = 0 in L? (R?). Now, con-
sider the case where W~!(z) > 0 for all x € R. F.[h] belongs to C°°(RP) by the Lebesgue

dominated convergence theorem because, for all (k,u) € Nj x RP, [0, ‘c'khbkeiCbT“h(b)‘ db <
1Al 2 weny TTj—y M, and, for all (k,u) € NgxRP, | F[h]®) (w)| < ¥ ||h]| paqyren [T)—1 M-
Theorem B.1 in [18] and the fact that, by the Cauchy-Schwarz inequality, for all j € {1,...,p},

k € Nj, My, < My, 1My, yield that F.[h] is zero on RP. Thus, F[h] and h are zero a.e.

We now show that K is injective. Take f € L? (w ® W®P) such that K[f] = 0. By the Plancherel
identity and the fact that w > 1, we have

/ | Fist [f] (¢, b)]> WEP(b)dtdb < 2 / £ (a,b)|* w(a)WEP(b)dadb < oo
Rp+1

Rp+1
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thus, there exists 21 C R of Lebesgue measure 1, such that, for all ¢t € Qq, b — Fig [f] (t,b) €
L? (W®P). Hence, by the above, for all t € Q; and ¢ € R, u — F.[Fist [f] (t,-)] (u) is con-
tinuous. Also, because |[K[f][| 2grx[_1,1p) = 0, there exists Q3 C R of Lebesgue measure 1,
such that, for all ¢ € Q, [K[f](Z, )|l 21,1y = 0. As a result, using (5), we have , for all
(t,u) € Q1NQ x [—1,1]P, K[f](t,u) = 0. Using again (5) and the injectivity of F, for all ¢ # 0,
we obtain that for all ¢ € (23 N Q) \ {0}, Fist [f] (£, ) = 0 in L? (W®P), thus Fig [f] (x,) = 0
in L2 (1@ W®) and f =0 in L? (1 ® W®P), hence in L? (w @ W®P).

We show that K is continuous at 0. Let f € L? (w ® W®P). By the change of variables, the
Plancherel identity, and the lower bounds on the weights, we have

2 p
KW s < [ 1P Coldtdo < (570 ) W Bsguarwen:

Let w = 1. We exhibit a bounded sequence (fi)cy, in L*(1 @ W®P) for which there does
not exist a convergent subsequence of (K[fi])ren,- Take wvo such that supp(vo) C [1,2],
|voll 22y = 1 and, for all k € Np and (a, b)T e RPHL w(-) = 27%/209(27%.) and fi(a,b) =
FL (- )gpgvxo (b)] (a). (fk)gen, s bounded by the Plancherel identity and

2 1
Wtf”ﬂ(b)( W (b)dtdb < .

1
2 2
T % = — v (t ©
ka” *(ewer) 27 /R k() /Rp o

Using K [fi] (-, %) = U(I)/Vmo ()go O (%) [zo-|”/* and ¢ € (0,00) — py° is nondecreasing (by
Lemma 1 in [22] which holds for all W which satisfy (H1.2)), and

nmm—mmﬁmwﬂ}>MWW%yAMmemnw>%%nW%>o

for all j € No, [[vj[|2r) = 1, we obtain, for all (j,k) € N3, j < k, so K is not compact. O
Proof of Proposition 2. This holds by Theorem 15.16 in [37] and the injectivity of F.. O
Proof of Proposition 3. Take f € L?(R) and start by showing that Z, [f] € L*([—e,¢]).

[—1,1] A€

4 . . Wi—1,1], .
The terms 1 — pm, in the denominator of (9) are nonzero because (pm[ b aE) .
meNg

< 1 (see (3.49) in [44]). Using that (g%-l,uw(./e) /\ﬁ)

is a basis of L%([—e,¢€]), that (pK[—Luge

nonincreasin, d WERES
g and p, .
me&Np

) is nonincreasing, and the Cauchy-Schwarz in-
meENp

equality for the first display, using that > . p%_l’”’ge = 2ae/m (see (3.55) in [44]) and

Wi
H L / P (see (3) in [8]) for the second inequality, we obtain

ot 2)

2
Wi_1,1).a

Z me[ 1,1],@ ‘<f’ o (§)>L2(R\[—ee

meNg (1 — Pm ) €

2

L2([—e.e])
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2
w0 =R B B = T

Let us now show the second statement. Take € > 0 and g € PW(a). Let (am)men be the

. Wi_11).a
sequence of coefficients of g(e-) € PW (ae) on the complete orthogonal system <9m[ 1,1] ae) .
me&Ng

Wi_1,1p.a . . Wi_11).a
Because (gm[ b ae)meNO is a basis of L?([—1,1]), we have Y meNo W gm Y = g(e)1{]-| >
W €
L2 en, ozmgm[ BIPENL]. < 1), We identify the coefficients by taking the Hermitian product

_1,1],Q€

in L?(R) with gm

2 2 2
(A.3) If = Zac [h]HLQ([—e,eD <2 (Hf = Pal 2 ey + [ Zaie [Pa[f] =] HL2([_E,E})) :
Replacing f by P, [f] — h in (A.2) yields

and obtain Z, [g] = ¢ in L?*(R) and, for all f,h € L%(R),

Cla;¢)
(A.4) | Zae [Palf] =] HiQ([fﬁ,E]) < = hf| 2@y eq) -

Using (A.3) and (A.4) for the first display, Py [f] — h = (Pa[f] — f) + (f — h) and the Jensen
inequality for the second display, we obtain

| f = Zae [0 HL2[ ) <2Hf Pal H; ) T Clae ) [|Palf _hHiQ(R\[—eel)
<2(1+4C(a,€)) || f — Pal HL2 +2C(a,6) || f - h||L2(]R\[ ey U

A.2. Lower bounds. We denote by P;,, the law of the data implied by fjn and use

inf supE [Hf f‘ > inf max [Hf Fin L2 RP+1):|

f fen LQ(RP‘H)] 7 fin€H, jE{1,2}

and the next lemma (see Theorem 2.2, (2.5), and (2.9) in [18]).

Lemma A.1. If there exists £ < /2 such that
(i) Vj € {1,2}, fin€H,
(ii) [[f1,n — f2,n”%2(Rp+1) > 4h7 > 0,
(iii) X2(P2n,P1,n) < &% or K(Pon,P1n) < &2,
then we have

inf max [Hf fin

f fj,n6H7 jE{l 2}

L2(Rp+! } > e V (2 B 5\[2) '

Proof of (T2.1). For j = 1,2, f;, is a possible f, g, (lﬂn) W the sequence of its coefficients
meN,

(see (6)), and P;;, have marginal fx|y. Steps 1-3 show (i)-(iii) in Lemma A.1 are satisfied with

1 1{|bl,, < R}

A5 n = d n = + nH 5 ,b = )
(AB)  fin = foand fo, = fo+wmHnN, fola,b) T<1+(a/7)2) (2R)P
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p/
(A.6)  V(a,b) € R, Hy(a,b) := FL, [(C("D) 2)\(')1#50(') (b> (a)1{|b], < R},

27 N \ R

1
1—16(|t| — 3U/4)* /U2

(A.7) YU/2 < |t| < U, A(t) :=exp (1 - > , else \(t) :=0,

— T —
N(1) = <N, H1(U)T> ,N(00) := N € N, Hy(U) = [H(Re(U))],

or H defined in Section B.1.2, R > 0, n large enough, N (odd), v,, 7, and U chosen in Step 4.
Step 1.1. We prove that fi, and fa, are nonnegative when N > H;(U) and -, satisfies

YU Uzxg p/2 1 kQ/2: 1
(4.8) B +p/2>(27r> <N+2> =)= Grpr Ly (1)

2T
A9 2 < -1,
(4.9) = 20/2~, U Cg(Ruo, p, U) Nka/2+2

IN

where Z,(U) = (Hy(U) + 1/2)<P*1)/2+(1 — (H(U) + 1/2)@*1)/2) 1{q = oo} and Cs(Rzo, p, U)
is defined in Lemma B.10. Let N > H;(U) and (a,b) € R x [-R, R]P. We show that (A.8) and
(A.9) yield fo(a,b) > |vnHn(a,b)| which ensures that fs,(-) is nonnegative. By the discussion
before Lemma B.6, N > Rc(U) and, by the third assertion in Lemma B.7, we obtain

n p/2 1\ Fe/2
i H(a,b) <5 (52) (N+2> =) [ 1 Moy
R

2 \27
YU Uzo p/2 1 kq/ZH
§7r(1 +/2) ( o > N + 3 =4(U) (because H/\HLOO(R) < 1),

This and (A.8) yield the result when |a| < 1. Because ¢ — @ZJZ%C ((qt)) (b/R) is analytic (see [21] page

320), t — (c(|t])/(2m))P/? )\(t)w%c((;)) (b/R) € C*(R) and its derivatives are square integrable

because their support is compact. By integration by parts, we obtain, when a # 0,

Hy(a,b)] < — /U g; <<R;(f>)p/2x(t)w%c((3 <g> 1{[p],, < R}>

7ra2RP/2 U/2
The result when |a| > 1 is obtained by Lemma B.10, which yields

dt.

UGs(Bzo,p,U) \ 1y j2+2

2ma? RP/2
and (A.9), which yields, for all |a| > 1, 4, UCs(Rwg, p, U)N*/242/(24%) < 1/ (2P/%7(1 + (a/7)?)).
fi,n = fo has integral 1 and so has f5, by Fubini’s theorem and that 1§ is odd when N is odd.
Step 1.2. We prove fi,, fo, € 7—[30‘1;;([) Clearly fi, and fs,, because, by the conclusion of

Step 1.1, for all (a,b) € RPTY f5,.(a,b)? < 4f1 ,(a,b)?, belong to L? (w ® Wﬁ% R}). Let us

(A.10) Y(a,b) € RPTL |Hy(a,b)| <
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show that f2,, hence fi, which is fa, when -, = 0, satisfy the first condition in HZU‘?,[‘,” (1) if

F2s+1) 1 5 (Ra\? (1vU*)UrH! )
A1l 2| ———F + — < 7l
( ) ( (27)2s+1 +27'+%L< 2w p+1 =7

2U (1{q = 271{q = 1}) v2N?** P
(A12) Ciz(Rao,0,p) | 2U (g = oo} +p* Mg = 1}) 95 URao\" _ _»
Tk2o p+1 2
q

Let m € Nj and ¢l (t) := <2_p/2’wﬁ"C(t)>L2([fl,1}1’)‘ By Proposition B.1 (iii), change of vari-

ables, for all t € R, Fig [fo(-,%)] (t) = e T 1{|x| < R}/(2R)P/?, we have

_ (i) /2
(A13) B0 =i mh (e—”'cz(wmn{m:zv(q)} (R ('t')>p A(t)).

27
Because <w,§f(t)) w is an orthonormal basis, we have
meNy
(A.14) VE£O, Y b2,(t)|* < 2< —2rlil 4 <RC2(W)> )\(t)2>.
meN)

The first part of the first condition in Hq’¢’w(l) holds by (A.11) and because, by (A.14),

00 2s U
Z/ (1V %) |br, (¢ \dt<4</ Ht dt + <R””0> / (1\/t2s)t7’>\2(7§)dt>.
2 U/2

meNp

The second part of the first condition holds by (A.12) and because, by (A.13) and Lemma B.11,
for all 7 > (3e7+P/2-Y4Rx(/8) v (1/2) and N > Hy(U),

DR NUAGIRE

meNp
P 20
<o [ S pmi ) are ok (5 ) [N [ eonrar
2m a Jr
meNf
< o [ Cr2(Rao,0,p) | 2U (1{g = oo} +p*1{g = 1}) 12 N**
- Tk2o (p+1) (27 /(URx))* ’
Step 2. (ii) holds with 4h2 =42 (Rxo/(27)) fU/2 tPA(t)2dt /7 because
Rx
Al n — fanll? :%O/PQ.
(A1) Fin — Fonlaguorsy = 2 (%) [

Step 3. By (ii) page 97 in [48], we have x2(P2.,P1,) = (1 + x2 (P2,P1))" — 1 so

x2(P2,P1) 1
XQ(]PQ’n’]PLn) = TL/ (1 + u)"_ du < nxe9 (PQ,Pl) exp ((Tl, — 1)X2 (PQ,]P’l)) .
0
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Thus, if x2 (P2,P1) < 1/n, we have x2(P2pn,P1n) < enxa (P2,P1). Moreover, we have

2
xa (P2, Py) < /S / Pxix(@) (R wle) = i i)

dxdy.
f51/‘X(y|iL')

Because, under fy, a and B are independent for the first equation and using fle () =

Jro—1 fléﬁl’l ZJ 1 wJ) H?;i féjmj (w;)dw for the second, we have, for all (y,x) € R x Sx,

Pixie) = [ Fh= o) fhr, ) do

_ o 1/ J] ko Mlun] < el B}, QRPZ 1 '
7TT(2R)p/2 re |(y — S0 yuy) /741w ui<leliR (Jy —ul/7)? 4+ 1

This yields, using Sx = [—xq, )P

mrC x 2
(BB < T / | / < 2=, By #1) (Rixia) - fix (ko) dady
0,Zo [P
2

(2m 2R vyl /[ . wo]p/ (!@ [fom = fuul (8, )] + <(:vopR) ;) |\F [fon — fin] (¢, t2)] )dmdt
< WX%%/[ 1 1]p/ (\@ [HN] (t, txoz)|* + ( zopR)? 72) (t, tzoz)| )d:cdt.
) =1

| /\

A

(2R)P/2

By lemmas B.4 and B.12, we have, for all U such that 4/(eRc(U land N > H,(U),

AN
(A.16) x2 (P2, P) < C1s(H, U, xo, R, T)fygNQ exp <—2Nk‘q In (eRc(U))) 5

(2m)?(zoRe(U))PCxe® (Ci7(H,U) + URP((wopR)? + 72/2)/H1(U)?)
97 (2R)P/2(exp (2(p — D) H1(U) In (4H1(U)/(eRe(V)))) Mg = 1} + I{g = oo})
As a result, (iii) is satisfied if
(A.17) C18(H, U, xg, R, T)ey2 N% exp (—2qu In (%)) n < &2
Step 4. We chose the parameters as follows. Let U := 4/(Rxoe), 7 > 1 such that

T > l M +1 Mt 2012(R:L’0,0'7 p) \/ 3R$0€U+p/2_1/4 1
=\ 72 922s 7Tl2k‘g‘7 S 2’

Clg(H, U,%O,R,T) =

where Q1 and Qo are such that NU/(N + 1/2)"“4/2 < Q1 and NU/]V”"W/2 < @2 (possible
because 0 > 2 + kq/2), N := [N], where N := 3(In(n)/Inz(n))/(4kq), vn = Cr/N°, Cr :=
M1 N/ My N~/ Ms, and

[ 1 (Ua:o> /2 Q1(1~|—p/2 /\ 2Q2
VTt (yn22eru \\2n Zq(U)RP? T\ Cs(Rao,p,U) )




20 GAILLAC AND GAUTIER

Mo e 2 (p+ 1)U 2 \? 1 /\ 1
2 4 U Rz, 1vU2 I\ 1{g = oo} +p>1{g=1} )’

Mj := €/ (Cig(H,U, xo, R, 7)e). Hence, (A.8)-(A.9) and (A.11)-(A.12) hold. This yields, for
all N > Hi(c(U)) (satisfied for n large enough),

2CEnN _
ny2N? exp (—2k,N1n (N)) < Ciiz exp (—2kgN In(N))
N
ﬁ 3 In(n) In(4kgIng(n)/3) %o —1)In 31n(n)
f Iny(n) 4kqIng(n)
hence li_>m ny2 exp (—2k,N In (N)) N? = 0. Thus, (A.17) holds for n large enough.
For this choice of v, we have h2 = N_QUCF (Rxzo/(27)) fU/2 tPA(t)2dt/ (47). O

Proof of (T2.2). Equip L*(R) x L*(R) with (g, h)72(z). 2(m) = (91, 1) LQ(R)+<g2,h2>QLQ(R). It

is a separable Hilbert space. Denote by P77, the law of <9% (Zﬁn( )) ,J <Z,Jn(t))> n in L?(R) x
: €

L?(R) and by P;, the law on the space £ (L*(R) x L*(R)) of square summable sequences with

values in L2(R) x L2(R) of (Z,jn(t)) e (9% (Z,jn(t)) 3 (Z%(t))) 1oy defined
meNf, meNg,

using fjn, hence <bzn(t)>meNp R’ for j = 1,2. Take fi, = 0 and fa, like (A.5) replacing
0’

N(1) by N(1) := (N,0N)T € NJ, where N is odd and N and ~, are chosen in Step 4.
Using (A.13), this yields, for all m € N, b2,(t) = v,1{m = N(q)} (Rc(\t])/27r)p/2 A(t). By
independence, we have, for j = 1,2, P;, = ®meN” IP’ v and

N(q) N
dP
20 (y) | dPy 9 (y).

K PQ,n;PI,n :/ In —
( ) L2(R)x L2(R) deJ éq)

Step 1. Using (A.10), foy € L2 (w ® cosh (-/R)®?) and, like (A.11)-(A.12), fon € HEG (D) if

<URxo>” (2 , (LVU) U\ ,2U (1{g = oo} +p*"1{q = 1}) ’y%N?G) o
T
2 n <

A.1R
( ) p+1 p+1

Step 2. It is the same as for (T2.1).

W Wic(s) 2 5 (5 Vels)p2 T
Step 3. Let £ < v/2. Denote by G’ﬁ(q) DS (9{ (Uﬁ(q) bfﬁ(q)(s)> ,J (0'1\7((1) bﬁ(q)(5)>> . We

start by proving, for all y € L?(R) x L*(R) and IP’fn(Q) a.s.,

arp, Vi [ LV row [
PN (y) = exp <y, —L [G (q)} >1p{‘7<® —5 75 [qu)} ¥ |
17TL ,n ,n



21
where (, >Pﬁ(q) is the scalar product on prmq), which is the image of
1,n 1,n

LX(R) x LA(R) — L*(R) x L2(R)

L: o ( [ hi(s)ds >
h —» — | ’
Vn < Jo ha(s)ds
with the norm of the image structure (i.e., Hf||2ﬁ<q) = ||h1 |3+ |h2ll3, where £ = L[h]), defined,
]Pl,n

letting f; = ([, by, (s)ds, [ th(s)ds)T, hj € L*(R) x L*(R), j € {1,2} (the functions h; are
unique a.e. because they are the derivatives of f; in the sense of distributions), as
n

<f1,f2>§§<q) =3 (<h11,h21>%2(R) + <h12’h22>%2(R))

N(q)
1’

n  a.e. other

and using (2.12) page 41 in [17] when one function belongs to Hpﬁm and for P
1,n

function in L?(R) x L?(R). Indeed, the reproducing kernel Hilbert space Hpﬁ(q) of ]P’féQ) on

1,n
L%(R) x L?(R) is the image of Q'/2? with the scalar product of the image structure and where
Q is its covariance operator. Using Corollary B.3 in [17], that Q@ = £L£* and, by the Cameron-
Martin formula (Proposition 2.26 in [17]), we obtain

2 VLW o [ W2 o]
<ZN<q>’ _— [GN@} >P§<q>] 252 /R“’N(q) bN<q>(5)’ ds.
N

2 BX
72 N w = N(q) w
< N o L [GN(q)} >P;I\7'7§q) Pi&g) + << szNv(q) L [GN(Q)] N ’
’ ] 1,n

and the second term in the right-hand side is a limit in quadratic mean of mean zero Gaussian
random variables, hence has mean zero (see the arguments page 41 in [17]), we have

_n Wie(t) ;2 2
(A.19) K(Pyp, Py, = QUQ/R‘UN@ b (t)‘ dt.

K(]P)va Pl,n) =E

Because

Lefoy,)

o N(q)

N(q)

2
By Proposition B.1 (ii) and <UEJ§2;C) (c/(2m))F = p%s(};’)c for all ¢ # 0, we obtain

2 P 2
_2nRP cosh,Re(t)\ 2 [ Re((t]) 9., TankP cosh,Re(t) /112
K (Pon i) =125 /R (o)™ (Z0E2 ) aqey2ae = 22 [ om0t

Using Theorem 3 in [22], we have, for all U/2 < |t| < U and 2/(RxzoU) > 1,

cosh, Re(t) < 2RzoUe P 9k N1 2
PR —(m—(RxoU/z)?) exp | =2k Vlog | 5

Thus (iii) is satisfied if

2Rz Ue P U~2n 2 5
A2 n —2k,Nlog [ —— ) ) < €.
(4.20) (w(l—(RxoU/Q)Q)) g2 P\ RN log | o ) f <€




22 GAILLAC AND GAUTIER

Step 4. Let N = [N, where N := In(n/In(n))/2ke, v := Cr41/N°, U := 2/(Rxge), and

2, <(p+1) (2m)P ml? [ 1 /\ 1 ]) /\ (2(05)2 <7r(1 —6_2)>p>

o1 2U(URxo)P |1V U/ VN1{qg=o00}+p?°1{q =1} U 2R2xoUe
hence (A.18) is satisfied and f1, and fa, belong to H“I,”I}qs(l). Moreover, (B.74) is satisfied as
v2inexp (—2k,N) < C’lg’q’ln exp(—In(n) + Ina(n) — 20 lng(n) + 20 In3(n)) < CE g1 (using o >1/2).
For such 7, we have h2 = C’lg%1 In(n/In(n))% (Rzo/ (27 fU/2 tPA(t)2dt/ (47). O

The proof of Theorem 4 is similar to (T2.1) so it is postponed to Section B.2.

A.3. Upper bounds. We use the notations
2

. 1 (s g™ (X /z0) X, € X
Zng = sup |1 fé(i ; Vm € NG, G(t) = — (X5/70) I{ }
Paxee || x| ) "= 70/x12(X;)

Lemma A.2. For allm € N2, we have E [, ()] = ¢m(t) and E [|Em(t) - cm(t)ﬂ < ex/(nab).
Proof. The first assertion comes from
ity

~ 1 € Wtz X . ..
E[cm(t)] = —E [fXMf(X)gm 0 (IEO> KX e X}] (the observations are i.i.d.)

1 _— —
=& [ B [T (2 ) a2
IEO Y i)
Similarly, the second assertion follows from
1 eitY AT X
E|om(t) - em(®)’] € —5F ‘ ‘”'30()
’ m (1) m( )‘ nmgp fX|X(X)gm o
2 —_— 2
(o [
m:o fX\X T nTy Ji-11p
Proofs of theorems 1, 3. Let K; := H]l{H > e} (ﬁlq’N’T’O — Fist [fa,@]) (-,*)‘

Ko 1= [ 141 < & (Zue [FEVT0) = Fra fu]) (o)

L2(1@W®r)’

2

Xeé’(]

O

2

L2(1@W®r)’

and fo5 € HEG (1, M). The

N,Te <(K1+K2)/(27T).

2
o L2(1@Wer)

Consider K. For a.e. b, a — f,g(a,b) € L%(R) and for those b we have Fig [fa ] (,b) €
L?(R). Using (10) for the first display and Lemma B.1 for the second, we obtain

Ko S/Rp 2(1+ C(a, ) || Fist [fa,8] (-, B) = Pa [Fist [fap] (x, )] HL2 WP (b)db

+ /Rp 2C(a,€)

Plancherel and Chasles identities yield H fq’

14 2 & (BN = Fialfug]) (0], WEr(B)ab

L2(R)
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An(1+ C(a,€))

LD [ a0y W B+ 2C (0 K
(A.21) <1+ C(a, 6))4@0(]\5)2 +2C(a,€)Kq,
hence
(A.22) K+ Ky < (142C(a,€)) Ky + (14 C(a, e))4;r(J‘j)2,

Then, by the Jensen inequality, we have K; < 42;1 HRjHiz(l@W@p) , where
Ry(t,b) i= Ue < [t} (FENT0 = FENTO) (4b), Ry(t,b) = Ie < [t} (FPNT0 — FNT0) (1,p),
Ry(t,b) = e < i} (FNT0 - posiT0) (15), Ry(t,b) = Te < [t} (F9T0 — Fig [fo g]) (£.B),

FENTY s defined like F&NT0 replacing ém () by Gm(t) (c.f. Lemma A.2), fg’g’T’e is defined

like J}Z,g,T,e replacing ﬁlq’N’T’O by ﬁlq’N’T’O.
Term R;. Using Proposition 2 for the first display, Lemma A.2 for the second, and Lemma
B.2 for the third, we have

dt

E [[Em(t) — em(t)[?
(A.23) E[HRIH%m@W@p)} /]l{e< t| < T} |m§<‘7v() [ <a%’”°)2 }

1"
(%) / We<t|<T} > —paod

im|, <N () Pm

(A.24) 5(2;’)‘%/1&11{6 < [t < TY[EP vV (N(2), to)dt.

Term Rj. Denoting by Af(x) := (1/}’%)( - 1/fX‘X) () and

2 1
(A.25) GtWe) = sup o,
( N ) ml, <N () P
we have
,N,T, 2
I Ballzzomwen) // e < |t < TH B0, 6) - B (1, b)[ WEr(b)dtab
2
Wt:l?o n itYs — <
b j X .
/ / Wta:( ) > S AKX gm0 <]> I{X; € X} W=P(b)dtdb
<|t|I<T JRP ml, <N o 0 = nx o
|tao|? ( q’%t 0) noity; —— v~

e Wtz )K]
E E A X)Ngm ™| — |JI{ X, e X} dt

Im[, <N(t) [7=1

: /s<t|<T (2m)P
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2
|tm0’p( ?\}I(/It/mo>

_ N

B /<t|<T HSO @,

(2m)P 121,00

where S (-,t) = D mene: im, <Ngn”»ft"’” Ap(t), Am(t) = (1/n) 35, Z]m’t, and, for all j =
Lo, 27 = (€05 [ A p(X )gm ™ (X /20)1{X ; € X},

We have E [HS{)V(-,t Hi? ([-1,1)p )] =E [HSN : HL2 (I- 11];,)} +E [Hsév("t)ui%[—l,l]ﬂ}’ where
S 1) = S, <) I E A (O], S (1) 1= St <y 9™ (Ara(t) — E [Ara (1)),

2

HS{V(Vt)HiQ([_Ll}p) = Z QTVKMO <~F [fY|X=xo~] (t) ({;(X (.%'0) 1) 797V7[:tx0>

Iml, <N(t) Tx1x (=102 (—11p)
Ix X
<I||F [fY|X:x0~] (t) (/3 )
fXIX 2([-1,1]»
(A26) < Zno Hf[fa 13] t txo )HL2 ([-1,1]7) < Z <|t|x ) H-Flst [fa,ﬁ] (t7 )H%Q(RP) )

and, by independence of Z]m’t forj=1,...,n,

E[ISY Ol ] = S E[Am®) —EAm®]F]

jml, <N ()
1 m,t m,t 2
-t sl
ml <N "
2
N(t) + 1Pex Z,
(A.27) g / ygmo(w) dm§< (t) + LCX 0.
|<N mco fX|X 0 na

where 3, v 1= (N+P)n{q =1} + (N +1)P1{g = 0o} < (N + 1)
Collecting (A.26) and (A.27) with L2(t) := (2m)? || Fist [fa8] (£, )HLg(Rp), we obtain

2 Zn 2 ex (N(8) + DP [P (g witae) 2
(A28)  E[IRal200mwen) < o |y (PO - (a5tt)” an

Term R3. By Lemma B.3 and Proposition 2 for the first inequality and f, g € HZ}%(Z, M)
for the second, we obtain

(A2) WRallgowen < [ 3 3 Pl di< /

k>N(t) |m|, =k N(t) E>N(t)

onl?
Z 9 ) < sup
tcR W (t)
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Term R,. We obtain, by Proposition 2,

2 &*(It]) 4o 2l
(830 Mellaamwen < 20 /M RS 2, gy 0 = Gy

Thus, we have

sup R}%( 74,N,Te fa,ﬁ)
fanseng’,d;/’[;d(LM)mDv fX\XES
2 ex |t w 2 ex(L+N@O)P PN (~qWitao)2
<C N(t),t o | L7(t) + (q”o) dt
T Je<p<r 7T(27T)”< n (N(0), tro) + Zng () + n “N@)

(A.31)

1 1 M?
+C | 4% [ sup + + .
( (tER w]2\/(t) ¢(T)2 ) w(Q) )

The remaining of the proof is in Section B.2 particularising (A.31) to the different smoothness.

A.4. Data-driven choice of the parameters. Denote by N, the set of functions N € NBR
such that, for all t € R\ (—¢,¢€), N(t) € {0,...,N¥ _(t)}. For all t € R and N € N, let

max,q

Roq(N,t) :=E [H (ﬁf’N’T’O — Fist [fa,ﬁ]) (t, )‘ ;(W@T,J :

The upper bounds that we derive depend on the parameters of the class Hq’¢’ (I, M). For all
€ [-T,T)\ [~¢, ¢ and N € Ny, by convexity of z — x2, we have

(A.32) Roq(N;t) SE[E(E, N)] + 3 (E[Si(t, N)] + E[Sa(t, N)] + E[S3(¢, N))) ,

A (t) = Cm(t) — Em(t), Am(t) = Cm(t) — cm(t),

9 2
=(t,N) = 3 "V;(m) . Si(t,N) = > ‘W :

meNg: |m| >N om meNg: [m| <N Om

Am(t) — E[Am@®)] 2

SNy Y [SeOE R

meNg: |m| <N Im

2 A t ?
Syt N) = / FpNTO1b) = BN b)| Wb =Y 2
RP meNG: |m|, <N Im

Lemma A.3. Let g € {1,00}, for all t € [T, T]\ (—¢,¢) with 0 < € < 1 < T < Tax = 2Kmax,
N(t) chosen from (16), and N € {0,...,N¥__(t)}, the following inequalities hold

max,q

(A.33) E [sl (t,ﬁ(t))} < g | Fast [far8] () 72z [t20PE [qu (ﬁ(t),mo)} ,
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(A.34) E {SQ (t,]\Af(t))} < Zng <7525U7To|>p CXVy4 (NTHLVE);Q( ), If:L‘O)7
(A.35) E Kss(t’N) _ m> J _ 48ex Itg;;()sz)?(lN, tl‘o)%’n(t)’

where p, := (2In(n)) V 3, Ky := a8\/2cx /42, Hy (t) is defined in Proposition B.2, and
294c% K2 (t Ki\/pnnt 1\?
o (t) := af exp (—p—n) + 2dex Ka(t) exp <_1pnn> , Kn(t) == Hy(t) (NW (t) + > .

6 (2mzp)Pn K, (t) mand 2
Proof. Let t € [-T,T]\ (—€,€) and N € {0,..., N (1)}
Proof of (A.33). Let m € N5, we have, like in (A.26),
2
[x|x x
E@m®F =| [ F [rixa] (0 | 2% 0w) - 1) g5 (w)du
—1,1]r %l
2
fx|x
< F [fY\Xza:(y] (t) J/c\5|<$0> -1 < Zno 27T) Hflst [fa,,@] (tv ')H%ﬂ(Rp) .

Xl L2([=1,17)

(A.33) now follows because, by Lemma B.2,
p

(A.36) ) L ol win 0.

(o)™ (2m

meNg: [m| <N

Proof of (A.34). Using (A.36) and (A.27) for the second display, we have

efsn(n50)] < ¥ E[|Am<t>—1mm<tm2]<CXZnO|t|pV (VW 0):0)

max,q
Witzo ) 2 - (2m)Pn
I, <N ,q () Om
meNf

Proof of (A.35). We have

(A.37) Ss(t, N) = /R p

~ 2
FENTO by — FeNTO(y, b)| WEP(b)db = sup |V (u

uel
where
~ 1<
vh(u) = (BP0, ) — RPN, -),u(-)>L2(W®p) = Z} (fu (Y5, X5) — E [£u(Y, X5)])
]:
itk —— /. Witzo b)
x, - ::/ _°c Witzo <> Mﬂ b)W P (b)db,
(ISR NP e Tl € k- UL

and U is a countable dense class of functions of {u: [ull 2qwery = 1}. We now check the

conditions of the Talagrand inequality given in Lemma B.16.
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Condition (B.79). For all u € U, Proposition B.2, the Cauchy-Schwarz inequality, and setting
M(t,N) := Ko () |t/ ex (vl (N, t20)) "/ /(2m20)P/? yield

1/2
HftH 3 / Z Hp‘thxo /0) ‘ Witzo )‘2W®p(b)db |
ullLoo(Rx ) = Wiz Pm Ull2(wer
e RY < (27)P P (om0 e
Lee(X)
1/2
Hy (1) (NW. () + 1/2)7 ¢/
o g e (1 N
(2mxo)P men Pm
Condition (B.80). Using (A.24) and ¢y = 1/6, we have
£y =¢,N,T,0 N,T,0 2 2
B sup vh | < B sup [FET 0~ FVE Tl

E(N, t) X |t$0’p
T 8(2+co)(1+2py)  n(2m)P

;/V(N,tiﬁo) = H2.

Condition (B.81). We have, using the Cauchy-Schwarz inequality and that <<pmm°> - is
meNy

an orthonormal basis of L? (W®P) for the second display and Lemma B.2 for the third display

Var (R(fL(Y;. X;))) V Var (3(fL(Y;. X)) < / 1) frx(n@ldyde
|t$0| tho 2
S ex |Z<N o pthzo /[171]1) ‘g )| dx

Ccx |t$0’p

(27[_) (N t:lj'o)

The result follows because, by Lemma B.16 with n = p,, and A(p,,) > 1,
48V (N two)CX ‘t’p

(¢, N
B | (sup ol - 5 ) To (). n
uel 2(2 + ) + (2m)Pn
Denote by
~ 2
L A (®)
B (N) =FE | sup / —
T'eTy, Je<|t|<T" ZA oo 2 + Co
Im|, <N(t)
Lemma A.4. Let || fogllr2aewery < M, M,e >0, g € {1,00}. For all T € ’7;1, we have

R (257 o) <05 (1 D) 1012 (705 - sl )

on)
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CM2 _(2 S
+ — + Clgﬂ(n, anTmaxa Nr‘r/}gx,q) + HCO)/ E |:E (t’ N(t)):| dt7
<|t<T

w(a) T

where Chg := 2(2 + CO)QC/TF, co = 1/6,

TL(n, Zug, Tonases Vo o) i= Zng / U (£)dt -+ T (1, T N
<|t\<dex

15 (n7 Tmax» Nrmx,q) = (NW ( ) txo)@07n(t)dt,

max,q

96(1 + 2co)ex Kmax [ Tm
27T pn max q

)= <2+ clo> ol (nyqwffff’;i)(?’”“) + 172 o) (5 Mzagen) B (N (*)’*‘TO))] |

Proof. Let T' € 7,. Consider the term F\lq’N’T’O — Fist [faB] = Z?.:l RjT7 where RT =

ﬁlq,N,T,O B ﬁlq,N,T\/T,07 RY = ﬁlq,N,T\/T,O B ﬁlq,N,T,O’ and RY = ﬁlq,N,T,O ~ Fiut[fap). Using
Proposition 3 and Lemma B.1 for the first inequality and using that for all ¢ > 0 and a,b € R,
ab < a?/(2cy) + b?cy/2 for the second display, we have

6 | 2 CM?
Ry ( oy’ ,fa,ﬁ) = 7E [Hﬂ{’ = (FqNTO ~ St [fo"ﬁD ¢ )‘ L2<1®W®p)] w(a)
o2 cM®
< (2:;00) ]Z;E [|’R?||%2(1®W®p)} @

C(1+2/co)
+ =Rl 2 & B 9 epewen)

Denote by Yo(T, N) Y(t, N(t))dt. Because

f<|t|<T

B> <T, ]V) = max / H (ﬁlq’N’T\/T/’O — ﬁ{l’N’T’O) (t, )‘
T'e€Tn \ Je<[t|

we have
T’ 2
max/ HRI (¢, )‘
T'€Tn Jelt|

2
E B[ 2 qgwen) <E aven
Y (t,N(t)) dt
/eSItIST ( ())

E [Bz (f 1\7)] +E [22 (T, Kf)]
B[ | ayen] <E s /e§|t| <HR§’(t, | — Ut < T')% (t,ﬁ(t))>+dt]

+E [22 (TN)} <E [32 (T, ]\%} iIE [22 (T Kfﬂ .

2

peawen ~ (t, N(t)) dt) ,

+

—1{jf < T% (t,ﬁ(t))>+dt]

+E

and




29

Thus, using the definition of T we have

B {101 @ ||

L2(1®W®p)]
<2 (B[ (15)] o (R R)]) + (15 ) BI04 2 Ao

Consider E [Bz (T ﬁ)} and let 7' € T,. Using K; = FONIVI0 _ paNIVI0 g,

FONTO _ paNTO g fy .= peNIVI0 _ paNTO g (T, z\7) is smaller than

2
2 ~
/<| 2+co§)HK 1L2W®p)+(1+co) 1Ks(t, ) Faquem — 101 < 7Y (N0 | .
e<|t j=1

+
Using that qu,oo,oo,o = Fist [fa,3], we have, for all t € R\ (—6 €),
2 . / Cm( q,NTO 2
K (8, ) |2agpeny = UT < | <TVT} Y || < H(F — Fist [fa,g})( )’LQ(W@,)
0<|ml,<N ™
hence
-~ ~ A AT 2 ~
By (T,N) < s 2(2 H FaN.T0 _ paN.T'0 t,-‘ — 1t < TS (1, N@)) ) dt
S )_ng%/&'t((m)(l ) ) gy~ M TS (1R 0) )
2
1+ — R dt.
+< +CO> /e§|t [R5 ( HLz(W®p)
Finally, we have
7 2
B {1012 4/ )
2 =g, N, T/ 0 NT0 2 ' E<t’]\7(t)>
< 4(2 E H(Fq”’—Fq”’>t, ‘ S < T — L
<aerars| s [ (| (5 PV 00 gy = M < TV 5

+2(24+ ¢9)E {22 (T, JV)] + <1 + 020> (5 +2¢9)E {Hﬂ{\ | > e} RE(:, HL2 1®W®P)}

By the Young inequality in the second display and Lemma A.3 for the third, we have

E | sup / [ S N : —1{jt] < T’}iE (- 5w) dt
T'eTy Je<|t] ! ! Lz wer) N 2(2 + o)
+
et —em(@l\? = (6N0)
=E | sup Z Wizo ——— | dt
T'€Ty Je<|t|<T" om’ 2(2+ ¢p)

jml, <N () .
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< (14 2¢)B (N) + (2 + c10> E [ng% /E<t|<T/ S (N(t),t) + S, (N(t),t) dt]

< (1+2c)B (ﬁ) + Zny / U, (t)dt.
e<[t|<Tmax

We now focus on the first term of the last inequality. Using (A.35) for the third display,

~ 2 —~
R A (t) X (t,N(t)
sexx [ [y (Bd) o)),

TET TR \Iml, <N \ ™ N
~ 2
Am(t)‘ S (¢, N)
<>/ s sl x (B0 zem) i,
TreT, e§|t\§T’O<N<Nqu() il N0 oWt 2(2+ o) N
T 96cx tPv)’ (N, tao)
<>/ = G Vo)t
T'eTy 0SNSNY, (1)
96cx Kmax [T
- maxq (NI‘IV};.X q( ) t.’L'())\I/(],n(t)dt. U

27r Pn

Lemma A.5. For W[—R,R] and cosh(-/R), ¢ € {1,00}, and all T € T, and N € N,,, we have

/e§t|ST Roq <N(t)’ t) A+ Coy /e§|tST g [E (T’ N(t))} at

< 4(2 + 00)21_[(”7 Znov Tnax; Nmaxﬂ) + Cco,l / (RO,q (N(t)7 t) =+ C’Coclﬂz [Z(ta N(t))]) dt,
e<|t|<T

Ceo :==2(24¢0)/((5+2c0)(1 +2/cp)), and Cgy 1 := (5+ 2¢0) (1 +2/cp).

The proof of Lemma A.5 is similar to the one of Lemma A.4, hence postponed to Section B.2.

Proof of Theorem 5. Take £, 7 > 0, and ¢ := 1/6. Let (n,ng) € N2 such that v(ng, £)/d(ng) <
n~(t9. By Lemma B.14, there exists M ¢, such that, for all ng € N, P(E (Gp,,E)) > 1 —1n,
where E (Gp,, &) = {Zn, < M1 g ,v(n0,E)/6(no)}. We work on this event.

Proof of (T5.1). Let W = Wi_gr, ¢ =1, T € Ty, and N € N,,. The other cases can be
treated similarly. Use Cy 2 := CCy¢ 1/(2m) and C¢, 3 := C(2 + ¢p)/m. Using Lemma A.4 and

(A.22) for the first display and C, = C¢, 3/Cq,,2 for the second yield

RW ( q7NT€7fa ﬁ) < Cp2E {H]l{l | > e} (FqNTO — Fist [faﬁ]) (% )’ ;(@W@p)}

CM?

Cc E Z t,ﬁt dt C H ,Zn ,TmaX,Nmax N
+ Clps /<|t<T (= (t.5()] dt + CroTi(n, 2, D o
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CM?

w(a)

< Cep2 ( / Y (N(t).t) + CoE [3 (6N )| dt) + C1oTI(n, Zng, T Nasq) +

2mCey 2
<Cua [ (TR0, (V). 0+ 22 ) BLD( N D)) o

2
w(a)
By Lemma (B.15), v(ng, £)/6(ng) < n~ 2+ the definition of X, and (B.41)-(B.43), we obtain

cM? 2rC2 , 1 412

17,7 q,N T € 25.E,m co,2 2

R 41

o ( B 7fa"6> w(a) + n * C ( igﬁ N(t)?%e + (1 \/T)23>

+ (C19 +4(2 + ¢0)*Cry 2) TN, Zngs Trnaxs Nimax,g) + (by Lemma A.5).

21 C? ~ M g ,v(ng, E)
A.38 - a2 A (t,N t nw"o) dt,
( ) C e<|t|<T 2,4 ( ) 5(710)

N 120(1 + 2p,)C(2 + co)er | 20P Lex N(t)P [P
A N =A N) (1
2,q(t> 5 T, Z) 3,q(t7 ) ( + 71-00072 (27T)p(p — 1)‘71

" ZA37q(t,N) <L(t)2 n CcxX (N(t)n—l— l)p |t|P> |

P

e(¢—¢o

and Ag,(t,N) is given in (B.42). Let T* := 2¥" where k* := |In(n)/(In(2)6s(p + 1))| hence
ng/ @0 j3 < e < pl/OFHD) and N¥() == [N'(2)], where N'(£) := Qi (2-p1y/4 (In(nc) /8)
and (20+p+1)/4 replaces (20+p)/4 in the definition of N in (T1.1). We have N*(t) < NV (t)

max,q
for all t € R\ (—¢,¢€), thus N* € NV,,. We also have ne/ G D) <= 0 for all s > 1, thus
T* € T,. We have

1 \*P!
025,5,17 = (019 + 4(2 + 60)2060,2) (CQZSW (p )> (1 V l2) + 024>

w RY (AT )
faﬁGHZ}?SV’[(/U(Z’M)ﬂD7 Ix|x€€
M? 2mC? ~ M
C - + 025,8,77 + 0,2 A (t,N*(t),TL, 1,€7nv(n035)> dt
(In(n)/ Ing(n))*7° n C  Je<pp<r 6(no)
27rC’ 1 412
+ 412 sup ) .
c ( ek N T IV T

Adapting the constants in the proof of (T1.1) to account for the new value of T', we obtain

In(n) \*’
qNTe > < M
<f fa,ﬁ (1112(”)) > 13,€,m>
1 1\, 60(p+1)\*’ , M?>
Macoi=2Coa\ g Noryy )\ (T0 ) )+ Mhen
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120(1 + 2p,)C(2 4+ co)er 8 Tocx pP 9 cx p p
Mo =1 ° AMye, (2724 — X <7 1) .
e ( " TCe 2 7 (27)P(p+ 1)! +aMLEn + m™H(p+1) \e +

The other smoothness classes are treated in Section B.2.
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SUPPLEMENTAL APPENDIX
APPENDIX B.1. HARMONIC ANALYSIS
B.1.1. Preliminaries. Py, is the Legendre polynomial of degree m with || Py, || p2(—1 1)) = 1.

Lemma B.1. For all f € L2 (R), w even, nondecreasing on [0, 0), and w(0), R > 0, we have
2

[PRIF 1] = F 1l 2@ < @r/wR)IE 0

Proof. The result uses the Plancherel identity and

[Pa 7151 = F 11l}2q0) = 2 [ Mlal > BYIF (@) da <

27 9
(R)/Ru(a)\ w(a)da. O

w
Proposition B.1. For all weighting function W, ¢ € R, R > 0, and m € Ny, we have
(i) gm ¢ = g in L2([-1,1)),
(ii) om /€ = oW Ee /R
(iii) o /B = SWBe (I RY VR ace.

Proof. (i) follows from QWU _ oY and (ii) from o C/Rse QWpTVX('/R)’C/M =
21w/ |c| (by the argument yielding (i)). Now, using (i) in the first display and (ii)
in the last display, we have, for a.e. t € R,

t . JR)e] [T «
ottt (1) = Fi [t /0] (§)  (where T 22(-1.2] > 2207)

=7 [g e (1) (where Fp i LA(1=1,1]) — LA(W(/R))

= o Do IR (t) = ol BV Rl (),
hence (iii) when we divide by o' which is nonzero. O
Proposition B.2. For all m € Nj, R > 0, W = Wi_rg or W = cosh(-/R), t # 0, we

have Hgmmo < Hw(t) H§:1 m; +1/2, where Hyw,_, . (t) = HE (1 + (|t|x0)?)",

L ([~1,1]p)
Ho =2(141/V/3), Heosn(./ry(t) = HY (1 V ([t|zo)*)P, Hy > 0.

Proof. When W = W|_p g, this is (66) in [9] else this is Corollary 1 in [22]. O
Lemma B.2. For all ¢ € {1,00}, t #0, R > 0, N € Ny, in cases (N.1) and (N.2) of Section
4.4, we have ZmeNg: i, <N 1/pit < ygV(N, t).

Proof. Let R > 0. We use repeatedly, for all z > 0 and N € Ny,

exp (N +1/2)z) _ exp((N+1/2)x)
(B.1) kg;\[e){p (k) < 2sinh (z/2) = x

(because sinh(|z|) > |z|),

exp (Nx)

(B.2) S 1 epl—a)
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the cardinal of {m € N§ : |m|, =k} is (k;f D, and (k+p—1)!/k! < (k+p—1)P"1, and for

all m € Ny p%?Sh it pfﬁSh('/R)’t and p,v,ll/[*1 R pz[ REPE
Start by case (N.1). Let [t| > n/4 and ¢ = 1. By (8) in [22] (there is difference of normalisations

for Q; by a factor 1/(27)), we have, for all m € Ny,

1 1
(B.3) peoht >~ exp (—W) .

The result is obtained from the above with (B.1) and

=Dy eXp< ’n;||1t|+p)>

|m|, <N P k<N |m|,=k
(B.4) <2p+1(N +p—1)PLet| (N +p)
) w(p—1)! 2 |t]

Let |t| < 7/4 and ¢ = 1. By Theorem 1 in [22], we have, for all m € Ny,

2?2 7e?
) cosh,t> 21
(B.5) oo _(m> exp( 2 (47

Let ¢ = 1. The result is obtained from the above with (B.2) and

S (D5 X eefon(E) )

|m/|, <N k<N |m|,
2 (N +p—1)pt 7 1
(B.6) §<6—W)p( 1) exp<21n( ¢ )N) 5
2 (p—1)! 4lt| 1 — (7/(14¢2))
The results for ¢ = oo are obtained using (B.4) and (B.6) with p =1 and
1 P
(B7> Z cosh,t < H Z cosh,t
meNE: |m| <N Pm j=1 \m;=0 Pm;
Consider case (N.2). Let t # 0. Because 7e/m > 1 and by Lemma B.5, we have, for all m € Ny,
Wiyt _ 1 2 |¢] am
B.8 ot s 22 A .
(B.8) pm =2 \7e(m+1) A

When ¢ = 1, the result follows from the following sequence of inequalities

Y ey Y Hexp<zm] (Vi)

|m|, <N Pm E<N |m|,=k j=1
2°(N +p—1)P"1(N+1 Te(N + 1
< (N +p PN+ )exp<2N1n<e( + )\/1>>
(p—1)! 21|
When ¢ = oo, we obtain the result using the above with p =1 and (B.7).

Lemma B.3. Let f,g € HZ;W(Z, M). For all m € Nf, ¢ # 0, we have ¢, (t) = o0, (1),
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Proof. Let m € Nj and t # 0. We have ¢y, (t) = f[im}p Jre eiteod uF [fu3) (£, B)gin ™ (w)dudb,
hence, when W = cosh(-/R),

cm(t) = | Fise[fa,p] (£,0) ((W@p)_1 (b)/

i . efz't:pobTugTVZ’tho (u) du) WEP(b)db
P — p

= a0 / Fist [fa8] (£, 0)om ™ (b) WEP (b) db = 01" by (1),
RP

while, when W = W|_g g, because Sg C [~ R, RJ?,

Wi_ ,tx Wi_ ,tx
em(t) = /RP 1{Jblo, < R} Fist [fa] (£)F, gm0 0)ab = o= b(t). O

B.1.2. Properties of the PSWF and eigenvalues.
Lemma B.4. For all ¢ # 0 and m € Ny, we have |uS,| < v2me?/? (e|c| /(4(m +1/2)))™ /3.

Proof. By (69) in [46], 6.1.18 in [1], (7) in [27], (1.3) in [42], and sup,sq(z+1)Y2(z+1/2)% /(z+
3/2)**t! < 2/3, we obtain, for all ¢ # 0 and m € Ny,
VT [e]™ (ml)?
(2m)IT(m + 3/2)
< 7 le|™ '(m+1)
= 4mT (m+3/2) T (m +1/2)
m|e[™
= 4mT(m 4+ 3/2)
_ Vred(ele|)™ (m + 1)1/2 _ omed/? < elc| )m
4my/2(m 4 3/2)m+1 3 4m+1/2)) -
Lemma B.5. For all ¢ # 0 and m € Ny, we have

2m
Wi-11),¢ >1 1 < %_1 2c 1 M _
pm —2< =T T remry " '

Proof. When m > 2|c| /m — 1, the result follows from the fact that, by Proposition 5.1 in

[6] and the Turan-Nazarov inequality (see [43] page 240), pnm;[fl’”’c > (2¢/ (Te(m +1)))*™ /2.

For all m < 2|¢|/m — 1, the result follows from Remark 5.2 in [6] and that, for all m € N,
¢ € (0,00) — pf, is nondecreasing (by the arguments in the proof of Lemma 1 in [22]). O

o | <

(m + 1)1/2

In the next proofs, we use II(c) := 3c?exp (2¢2/V/3) /16, H(c) = /2II(c) V 2, r(c) =
(1+4¢%/3%/2) (1 +2¢233/2),if N > H(c) then N > c because, forall¢ > 2, N > C\/3 exp(8/v/3)/16 >

candelse N > H(c) > 2 > ¢, and f(z) := |z|/(1-22), g(z) := |z| /(1—2)?, h(z) = |z|/(1—|z|),
cr:=4/3,cg =4, cp =2,

(B.9) Vo e [=1/2,1/2], f(z) <cqlal, g(z) < cqlzf, h(z) < cplal;
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(B.10) 2 > 2k4+1=N(N—1).
k=N[2], 0<k<N

N/Q 14p—|—1 and else2z /2= 14p—|—3.

(B.10) is obtained because for all N even the sumis 2 7
Lemma B.6. For all ¢ # 0 and m > 2, we have |uS,/uS,_,| < TI(c)/m?.

Proof. Let ¢ > 0 and m € Ny (for ¢ < 0, we use uf, = pi). By Theorem 8.1 in [44], we have

Vi i G L o (20@h0) -1 m
il = (2m)!F(m+3/2)eF . Fu(e) _/0 ( ot N t> dt.

Moreover, by (65) in [9], for all £ > 0,

+1—92<wwnf< e Y
BEERRCNTESTEY B R TR TP

which yields, if m > 2,

wmwf—wadwfs(vm+“+w¢%+l) ( -2+ k- hfw)

42t 1 A2
o _2+\/§+3<m+1/2 m—3/2> 2+\/§
Using sup, > 3 (x—1)/ ((a:Z —1/4)(x = 1/2)(z — 3/2)) <3 and (B.11), for all m > 2,
p | _ ¢ m(m — 1)
| T 16 P = 1/A)m = 172)(m = 372) P Fn(©) = Fn-z(c))

3¢ o[ (1) = (W, (1) 2 3¢ 2c
S16m2eXp</0< ) < e ep(\/g)' =

Lemma B.7. For all ¢ # 0 and k € N, we have (wz(l))g < (k+1/2)(1 —1—202/33/2)2 and
2

||¢kHLOO( —1)) < (k+1/2)(1+ 402/33/2) . For all ¢ # 0 and k > ¢, we have ||¢g||%m([7171]) <

k+ 1/2. We also have ||1j}§||200([7171]) < 2|c|/m.

Proof. The first assertion follows from (65) in [9]. For the second, we use (66) in [9] in the first
display, 22.14.7 and 22.2.10 in [1], hence || Pg||pec(j=1,1)) < /K + 1/2, in the second inequality,
c? 3/2
illee =117y < N1 Prllpoe (=117 + 1+
[0kl oo (= 1,17) < 1Pkl oo 1-1,17) CESY) ( Jii i
<viziafie ¢ |4 Y32 <\/k+1/2<1+402)
- V3(k +1/2) VE+1/2) )~ 33/2

The third uses (3.4) and (3.125) in [44]. We obtain the last by the proof of Proposition 1 in
[35] which yields ngH%w([_l g < 2/(ug)? and Lemma B.5. For all ¢ < 0, we use ¢,,¢ = ¢¢,. O
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Lemma B.8. For all ¢ # 0 and N > H(c), we have

Ny < 2¢cy (C1(c) 4+ Ca(c)) C3(c)II(c) JN
9¢ Npeo(-11)) ~ @ |
_ 2H(c)+9 o 2|¢] r(c) o 1
Cl(c) = m, CQ(C) = WH(C)(H(C) — 1) + 1 Cg(C) =4 /1+ QH(C)'
Proof. Take ¢ #0, N > H(c), and w € [—1,1]. Theorem 7.11 in [44] yields
8 (& C C C
(B.12) gé\f (w) = 2¢‘JZ’(1) %2%(1)%(1”).

2
k=N[2], kAN (1) = (1)
Using uf/ps € R if k = N[2] and Lemma B.7, we obtain

oS, IN +2
‘ dc (w)‘ = TC(L]E?N’C)’

C(f,N,c) := f( >2|C|]1{N_0

Lemma B.6 yields, if k = N[2],

0<%<:Nf<ﬂzv> <k+;>+1;vf<5§/> (k+;>

k=N|[2] k=N|[2]

. o) " 1

My ¢ .
B.1 < < < —if k> N.
(B.13) ’ug = <N+2> e

Using (B.10), (B.9), (B.13), and Y, . k27" = 2 in the third display, the result follows from

k—N
2l r(e)N(N —1)\ II(c) kE+1/2 2I1(c)
C(f,N,C)SCf (( T + 4 > N2 + Z Q(kN)/2<N+2 ) )

k=N[2], k>N

2| r(c) 2 1\ 1
< ¢sI0(c) (WH(C>(H(C)1)+ L P ivrae > <l+N+ >2Z/Q>

1=0[2], 1>2

< ]\(7)< if K < N and

‘ K
Py —2

MN

(B.14) < efII(c) <02(c) + (Nizp <N + Z)) < ¢/T1(e) (Ch(e) + Ca(c). 0

Lemma B.9. For all ¢ # 0 and N > H(c), we have
2,/,C I

‘ Oy < (C)Cf?’(c) (04(C)N5/2 + C5(¢)N3? + Cs(c)V'N + 07(0)) ,

Lee([-1,1])

Oc?
Cq 246
Ci(c) = ¢g (C2(c) = Ci(c)), Cr(c) == (H(c) +2)1/2 (85 * H(c)—|—2> ’

C5(c) = 8 (cs (Cr(e) + Ca(e)) C3(¢))* 11(e) + (cq + 4eg) Ca(e) + (8eg — ¢) Cu(e) + 2¢,
Co(c) := 8cpep(Ci(c) + Ca(e))?I(e) + (Ci(c) + Ca(c)) (c*cq + 4eyp) + 19¢,.
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Proof. For all ¢ < 0, puf, = E and 9, = 95, hence we only consider ¢ > 0. Using
c € (0,00) = 9§ () is analytic (see [21] page 320) and (7.99) in [44], we have by differentiating

1

(B.15) pivita) = [ g o
0 1 )
(B.16) S ;”;V() /_ ety (0.
82 1 )
(B.17) i Gt w) = = [ (etpeerig o
(B.18)

82 ous, O 82 c 1 82 e
(s 5085 s s T8 Y o= [ (Gt i - s

Multiplying (B.18) by ¥ (x), integrating, and using (B.15)-(B.17), we obtain, for all k£ # N,

ous o 1 82 c
225 [ O yuaran v, [ O @i

c ! 821[)]\[ c Nﬁ ! a¢16\7 8¢£ :“i ! 2.c ang

Recombining and using that, for all k # N, uf. # u% (see (3.45) in [44]), we obtain

1 82 c
[ R @i

_ 1 pp 10U, OUf uk 5 8% ous, (L ows . .
ol — <2c/1x dc W)y (Wdw TN (@) G @)dr = 275 /1 Be (x)wk(x>dx>‘

This yields, for all k # N[2], using (B.12), (7.69)-(7.70), and Theorem 7.11 in [14], _11 8215\’ (x)5(z)dx =

0, while, for all K = N[2] and k # N, using (7.69)-(7.70), Theorem 7.11, (7.99) and the eigen-
values (x4 )nen, of the differential operator in (1.1) in [44],

1 82¢va 9 MC 1 8¢ awc
[ dr = 2 k N k
B R S e Sk
W) <mz<xz —XN) K (2 | H (2051 1)>>
o 2 c c\2 c\2 c\2 c _ ,C .
¢ (5 = ng) (#5%)" = (1) Hy = H

¢ . 2
Differentiating (7.114) in [44] in ¢ yields _11 —8;;@ () (x)de = — f_ll (818@’ (a;)) dx. Also, by
(B.13), for all k = N[2],

(z)dr + En g,

[1]

)

C
<11fk‘<NandelseM<2.

B.19 —_—
(B.19) |y — | sy —ug| ~
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We obtain, using Lemma B.7 and N > ¢ for the first term,

62 c o _ .
‘ QZZ;N <\ N+35 / ( ¢N > dx + Z =N k] 1Ykl Loe (=1,1))
oo ([=1,1]) k=N[2], kAN
9 1 8’900 8’¢C .
(B.20) v 3 [ G @ Wl o
k=N(2, krn CIHN T HEl 1/-1

For the first term on the right-hand side of (B.20), using Lemma B.8, we obtain

\/7/ (81/11\7 > dz < 8(cs (C1(c) + Ca(c)) Cs(c))? Cal(c) <Hic)>2 N3/2

For the second term in (B.20), using that for all k = N[2|, u§/pf € R and (B.13) we obtain

c c 2 — 1] | ps
Emﬂﬁwwuy%ﬂ”<ﬂ%ﬂﬁ—xm+2< Pk 4”“)f@@>,
N~ Hg

where pp = pi/pj, when & < N and pp = puf/ps when & > N. Using N > ¢, (B.19),
X% — X5 < IN=k[(k+ N +1) + ¢ (see (13) in [3]), (B.9), and [2¢5(1)% — 1| < 2N (by
Lemma B.7) for the first inequality, (N — k)(k+ N +1) < N(N + 1) forall 0 < &k < N,
(B.13), and (B.10) for the second, (k — N)(k+ N +1) = k(k +1) — N?> — N for the third, the
computations in (B.14), 332 k?27% = 6 and > 32, k*27% = 26, and Euclidean division for the
fourth, yield

AN +2I{N =0 S
>, Ew 77])<cg\/—+{ H}]«Y<N(N+1)+c+ (N+1)>
K=NI2), k£N || 7 ¢ c
4N 2 1 c 4
+@ Z <k+)7‘(c) ‘LJCV ((N—k)(k+N+1)+c + (N+1)>
2¢ B 9 I &
k=N[2], 0<k<N
AN + 2 1 ¢ 4
+Cg\/227+ ) (’H)‘Mk <|N—k|(k+N+1)+c2+cf(2N+1)>
¢ k=N[2], k>N N Cqg
coVAN + 2 4c 2le|  r(e)N(N —1)\ II(c)
< gV - 2, *C¢f
< 503 <N(N—|—1)+c + . (N+1)>< . v N
-N
cgVAN +2 k+1/2 2T1(c) des
e > 2k—N)2 | N +2 (k— )(k+N+1)+c+Cg(2N+ 1)
k=N[2], k>N

< CQVTH(C) <N(N +1)+ A+ cgf (N + 1)> (WH(C)ZL’ICJC) —1) - r(40)>

cgVAN + 2 2TI(c) I+N+1/2 [,
T e Nty 2 21/2

TN+ 1) —N—N2>

C
1=0[2], 1>2 9
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coVIN T2 2I0(c) 1 1
" 2c? (N +2)2 10§l>2 Z+N+2 (Z+N)(Z+N+1)21/2

< CQ@H@ Ca(c) (N(N+ 1)+ + LN+ 1)) +Ci(0) <c2 + LN+ —N—Nz)
2c Cg Cyg
85 246
+2N+19+N+2 + (N 1272
< 09132(0) Cs(c) NB/2 (Ca(c) — C1(c)) + N3/2 <<1 + 4;;) Cy(c) + <8CCgf — 1> Ci(c)+ 2)

dey 85 246
+VN <(Cl(c) + Ca(c)) (02 + Cg) + 19> + o) 1217 + 0 +2)3/2].

For the third term in (B.20), using (B.12), the triangle inequality, and (7.74) in [44] for the
first inequality and using |u,| / |uS, + pf| < 1 for the second, we obtain

‘/ 81/)N Wk( ) x‘ < Aer ] [ve)] 3 e i 195, (DI L]

]

m#N, m=N][2] (1) — (/ﬁv)Z‘ |G, + s |

. 4195 (1) |¢/‘§(1)’c(f, N,¢),

el

hence, using (B.14) for the first inequality and (B.9) and (B.14) replacing ¢y by c, for the third,
9| 1€ 1 o e
Z c‘ﬂk’ _ / . g}N( ) awk(x)dx
k=N12], k;éNc"uN - 1 ¢ v

< 4ep VAN T 2O () + Oa(e) M 3 C'“i‘c‘w I e

2 _
¢ k=N[2], k£N WN k

1k Lo ((=1,1))

1(c)

< depVAN +2(Ch(c) + @(@)%C(h N,c)

< 4ene VAN F AU + oL < 8nes N Cr(E) + Cale) G-V, O

Lemma B.10. For all N > H(Rc(U)), t € R, and U > 0, H1(U) := [H(Rc(U))], ¢ from
(A.7), N(1) := (N, H;(U)) € N?, N(c0) := N € NP, we have

82 ([ Re(t)\"/? o) (b

or? (( o ) qﬁ(W%&? <R>>
20\ P/?

Uk 0) Cs(c(U))? ((Hl(U))(p’l)/Q]l{q =1} +1{g= oo}> Ro(Ro, p,U),

sup

< {U/2 < |t| < U}Cs(Rao, p, U)N* /272,
be[-R,R]P

C8<R$07p7 U) = <

™
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Ro(Rxo,p,U) = <p|pU—2 2 + Cg(U)%p + C10(U)) Hl(lU)Q + (? + 209(U)) ZEIFI(JI)JQ)
e )
Cy(U) :== sup ‘¢’(t)}, Cyo(U) :== sup ‘¢’/(t)|,
te|U/2,U] te(U/2,U]
 (Rao)*I(Re(U)) C5(Re(U)) | Co(Re(U)) | Cr(Re(U))
Cu(V) = EE 2 (cutreton + STER - SR+ SR )

I(Re(U))
Re(U)

Proof. Let ¢ = 1. By supp(¢) C [-U,-U/2] U [U/2,U] and symmetry, we only consider
t € [U/2,U] and b € [-R, R]P. For such (¢,b) and ¢ > 0 we have

aa; <<R2c7(rt) >p/2 e < % ))

< (Bo) o (P2t 2 1) + o0

ClG(U) = QCfRI'() (Cl(RC(U)) + CQ(RC(U))) Cg(RC(U))

R(t,b) :=

Ret) (b
YN <R>‘

4¢2
O b 2¢c b
+ R (Fo(0) +206/(1)]) | —50 2 (R) + (Rao) o(1) | —5 75" (R> ,
e=Re(t) c=Re(t)

J]=

MR (b) = . (b Wi % (bi\ . b
e ()= () 5 () Moo (5) + 55 () Mo (5),
#J

l
2,/,c c
0 wﬁ(q) 2 ZQXP: ale(U) ﬁ 8¢N b1 f[d) b[
Oc? R : Oc R) Oc mU)\ p
=2 =2
p P c P
o (b1 9y (b5 OV )
#3u () =5 () 5 (%) 11 vt (5)
k:2]]§3 i

%S, (b & . L b\ Y5 o b
() o (3 S5 (8) 2 () o (3),

J=
l#]

using that, by the discussion before Lemma B.6, N > Rc(U), the third assertion of Lemma B.7,
and Lemma B.9, we obtain R(t,b) < (URzo/m)"? Cs5(c(U))PN/2(H,(U))P~Y/2Ry(Raxo, p, U).
The case ¢ = oo is obtained by replacing H;(U) by N above. O
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Lemma B.11. For all R,z9 >0, 0 > kg/2+ 2, g € {1,00}, 7 > (3eHP/27V/4 Rz /8) Vv (1/2),
we have

o - 2 Ch2(Rzo, 0, p)
/e 27t Z |m|§ (erm ()™ | dt < (Tkgg,
R mENg q

Cra(R ). 2ot pt) (8 L me2?V3 T +p+1/2)
121X, 0,p) 1= 20 +p 3 97 (20 + p — 1/2)20+p+1/2"

Proof. When ¢ = 1, we use /m|; < plm|_. Let ¢ = 00, R,z9 > 0, 0 > kg/2+2, 7 >
(36"+p/2*1/4R:U0/8)\/(1/2). Because Py = 1{|-|. < 1}/27/2 for allm € Ny, |(Py, ¥, ) L2 (- 11)’ <

(Pos ¥ p2(j=1,1 )’ < |ué,| /v/2 (see Proposition 3 in [3]), we obtain, for

1, and, for all m > ||,
all t # 0,

|m|2a

gES

2

Re(t) ’2

B21) > imZ(chm) < Y mEMRe() =13+ Y

meNg Im| o <Re(|t]) Im| > Re([t])

Using (B.21), Lemma B.4 and Z|m\w=k 1 < p(k+1)P~! for the first inequality, m-+1 < 2m when

m > 1 for the second, and 2m + 1 < 3m, (Rc(t) + 1)?°TP < (2Rc(t))?° P when m, Re(t) > 1,
and (see (1.3) in [412])

* ortom g, L(@2m+1) —2m 2mln(2m+1) V2T + L 2m+1
e t*"dt = ———2 <e
0

(27-)2m+1 — (27-)2m+1
for the third, we have

/e—W > imfZ (cf;(t))z dt
R

P
meN,

00 2m
R I R e T U R i e e = M

m< Re(t) m>Re(t) 4m
Re(t)+1 3 2m
< /OO 2pp€27't/ e(t) u2a+p71du]l{Rc(t) > 1}dt + me p2p Z m20+p*1 <€R‘/EO> /OO efZTtt2mdt
B 0 1 - 9 m>1 4dm 0
< 22(”+p)17/ (Re(t))27+Pe~2"dt + Tedp2P\/3 Z i 20+p—1/2 2mIn(3Rzo/(87))
20 +p /(Ro) 97T !
20=1p T'(20 + p + 1)(Rao)?7 P N nedp2Py/3 Z m2otp=1/2
~20+p T20+p+1 9r e(20+p—1/2)m
m>1
2-1pI (20 +p+1) (8\7 TP e p2p\f o y20+p—1/2 C12(Rzo,0,p)
< = + dt < O
(20 +p)T 3 t(20+p—1/2) Tk2o
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Lemma B.12. For all N > H(Rc(U)), R,U > 0, q € {1,00}, N(1) = (N, H;(U)) € N,
N(co) =N € NP, H and H; are defined in Lemma B.8, and Hy is defined in (A.6), we have

(B.22) I = /[ . / |0, F [Hy] (t,txow)|2da:dt§017(U)N2p%:((5)
(B.23) I, ::/[ . /\]—“ Hy] (t, troz)|? dzedt < RPU ic((?
_25p2 2(Re(U))2\"  UCy(U)?  5pCy(U)1n(2) 2(Re(U))%\?
C15(U) T8U (1 33/2 ) Hy(U)? 2H(U) (1 33/2 ) ’
o 2pUC16(U)?
C17(U) := RP <015(U) + H1E§])>

Proof. Let N > H(Rc(U)). I, is bounded using that, for all (¢,x) € R x [-1,1]?,
t))
77

)

) e () e < ]
Alt)

)p/2 ) FRe(t) [1#56 (t)} (z)

N(q)

|
c(|t]
2

FlHy] (¢ tz0e) = (€
-

— 1/2
— pp/2;IN(9)h | Re(t),) Re(t) Re(t) _ ;m 27 Re(t)
(B.24) i A(t) pN(q)l/}N(q) () (because [Ty i <Rc(|t|)> Pm
which yields
2
Rc(t) Re(t)
(q) Re(t) Re(t) Re(t) ¢N(q) (=)
() + N (1) p= i N ———— | dtde.
//[11 O+ X PR | YR ® T\ PR x

Using (7.114) in [44], cross-products terms of the last inequality are zero hence we obtain

2
C(t) Rc
(q) L2 Rc ( \/ N
Rp_/A dt+/}R (N(@®) p +2)\ ()N (t \,/ N dt
2

Ve @)
NG > Relt)
(B25) + /R /[1,1]10( D) de | A0t

Then, using (7.100) in [44] for the second equality yields, for all |t| > e,

Rc(t) Re(t)
d _woR dp§ _ VPN (ch(t)(l))2
dt 2 pRC( ) dC c:Rc(t) |t| N ’
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hence, using the first and the last assertions of Lemma B.7, for all U/2 < |¢t| < U,
(B.26)

Re(t) Re(t)
d N41/2 2
gf <! /|t? PN <1 + 2(122(/(2])) ) 1N > 0} 41/ pe® <2x°R> 1N = 0}.

When ¢ =1 and using N > H1(U) > 2 and (N + 1/2) < 5N/4 for allN > 2, we have

d Re(t) —2 / Re(t) -1 Re(t)
pN(Q) o ( B 1) Re(t) b Re(t) d le(U) + c(t) P d pH1(U)
—aq PH\(U) VPN ar Py dt
2 Re(t)
<1 33/2 > PR

Because N > H1 U), (B.27) holds for ¢ = co. Hence, using (B.26) and that for all m € N,
1]

,C

(B.27) <

ux‘ﬁ

€ (0,00) pm is nondecreasmg (using an adaptation of Lemma 1 in [22]), we have
Re(t
v d prﬁ((q; 2 Rc V
2/ AP ————| +(N@®)"p + 2N ()] VN,
-—- i \/

25p2N? (U dt 2(Re(U)2\* , . BpNCy(U) 2Re(U))2\? [V dt\ reo
< [ Il Sk S AN (S Il S S A i
< < S /U/Q ol ERey: +UCy(U)* + 5 = /U/2 | PR

< 2 Re(U)
< GV 0g)

Then, using (7.114) in [44] for the first inequality and N > H;(U) and Lemma B.8 for the
second inequality, we have, for all U/2 < |t| < U,

2

Re(t)
/ 3¢N(5) (2) i
[~1,1]7 ot
81#;{ ) (2)
_ 2 _ 1
= (Rxo) ((p 1) /[1’1] ( de | _

2 2
dz + / (WN (2) ) dz
Re(t) [—1,1] dc c=Rc(t)
< 2pC16(U)*N  (using N > Hi(U)).

Because N > H;(U), the same holds for ¢ = co. This and (B.25), yield (B.22) for all N >
H(U). v
By (B.24) and the fact that ¢ € (0,00) — pm' " is nondecreasing, (B.23) follows from

I, = pNt Re(t) </ PA(E)2dt ). O
2 /R/[_ll RPp N0 ‘1,[) z‘ dtdz < RR A(t) dtpN(q)
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Lemma B.13. Assume that v(ng, &) < n~ 3+ with ¢ > 0. For the weights W of Section 4.4
and g € {1,000}, there exists C;VO’q independent of n such that, for all € < |¢| < Tipax,

It 2o \” W, (W =W_gprtIn(n) MW =cosh(-/R)}
( o vy (Nmax.q> t20) v(n9, €) <Cop¥ In(n)P~ nl-&-[C—pCO] + ni+C—2pCo '

Proof. Let € < [t| < Tax < n%°. Let ¢ =1 and W = W_r,g- Using N Wi-rA) '(t) < In(n)/2,

max 1

((7e/(2t| Rzo)) N (¢t ))2pN"‘a" 10 < <mn, (B.29), and the definition of v, _R’R], we have

max,1
tlx 2ot \? 2P LN (0P (Te(NY. () +1) 2Npta ()
<’2’7r0> 0 ‘ ’) 1 ( 1 \/ 1)

27 ( —1). 2|t|$0

(B.28) < CopERRTE In(n)Pn < Chl ™ In(n)Pnl %,

max

(Nmax 1( ) thO) < <

using C;[O/FR’R] := 2pP~1(20/2)P/(p — 1)!, hence the result.
Let ¢ =1 and W = cosh(-/R). Using the definition of NeoshC/R) (t), we have

max,1

2p , PP p—1 |¢|P 2
Vfosh(-/R) (Nmaxl( ). tao) < (2 eRP In(n)P~ |¢| Lo (%) p) n.

P

hence, using CSSSh('/R) = (zo/(2m))P (pp*122peRp/7Tp +2 (e7r/2)2p) and In(n)P~1nPo > 1,

<|t|1}0) (NW ( ) t$0) < CCOSh( /R)l ( )p 1T2p n < CCOSh( /R) ln( )P 1n1+217§0'

o max,q max

Similar computations yield the results when g = oo. ]
APPENDIX B.2. COMPLEMENTS ON THE PROOFS OF THE MAIN RESULTS
Lemma B.14. If fX|X satisfies (H1.4) then Z,,, = O, (v(no,€)/d(no)).
Proof. For all ng sufficiently large so that \/WCX <1, we have, for all z € X,
‘(J?}Sq;g - fX|X) (1‘)‘ < ‘(fxpc - fX\X) (33)‘ 1 {fxw(i’?) > 5(”0)}
+ MW— fX|X(x)‘ ]l{fxw( ) — fxx(@) < V6o(no) — fxx(a }
< ‘(fxpc - fX\X) (z)

~ 2
hence 0(ng)Zn, < SUDjy ve€ HfX|X - fX‘XHLoo(X)' We conclude by (H1.4). O

We complete the proofs of theorems 1 and 3, considering (A.31) in all smoothness cases. We
use 6 := Te/(2Rx), take £, n > 0, and work on E (Gy,, ) defined in the proof of Theorem 5

In the next proofs we use that for all k,1 >0, N > 1, and for f, 3 € HZ}’%J(Z, M)),

(B.29) (N+0D* < ((I+ 1N, / ) L2(8)dt < (27)P U2 (L2(¢) defined above (A.28)).
<|t|<T
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Proof of (T1.2). Let ¢ = 1 and 6y = 7/(4Rxo). By (B.3) and (B.5), we obtain the upper
2
bound on (&}V‘g)mo) (see (A.25) and (A.28)),
- 2 2 7e? m(N(t) + p)
Lo} ® o (ET) % 2In ( ——— | N(t) | 1{|t| < 2 2P
(@) < ()" e (21 (gra ) VO) 1401 <00} +2exp (TP ) (14> o).
Use, for all z >0, N € N, and ¢t # 0, if |[t| > 09

dex (N +p— VPP eRay m(N +p)
B. Aq(t, N =
(B.30) 1(¢, N, n, z) T+ (p — 1)! 2 |t| Rxo
22 (1o, ex(N+1)PJP (N +p)
s (20 + S Yo (5552
and, if [t| < 6,
cX(N +p— 1)p—1 |t|p 2¢2Pp—1 7e2
A (t,N = 2 Tmem ) Y
1(t, N, n, 2) n(p—1)! 8P P " 4Rxolt|
ex (N 4+ DP [ 27! e’
+z< (t) + - gp P\ SRt

We have, using A; to collect the bounds on E [’RIH%2 } and E |:”R2”%2 } in (A.31),
1QWOPp 1QW®p
(B.31)

N 412 412
Ryy( o N Te )g(] / A1 (t, N(t),n, Zy,)dt + su + + M?e | .
o \fag i fap c<l<T 1(t, N () o) telg N2 T (1vT)

Step 1. We check that f€<|t‘<T A1(t,N(t),n, Zny)N(t)?9dt < Ma g 1, where

dexpP™t (T (e2m)P 1V Oy 2meRxg (e’ m)P\ ;T
M. = 2027 ) T Ve N
2,E,m,1 - 1) & prl + g + T M1En 8]p \/

7P
m(e2m)P\ ;1\ 4M1 g cx <p )p
—_ 7 - — 0l T = 2
+( 8p \/ﬂ'P m(p+1) 6+ ’
m :=exp (2(p+1)) + 1, and 7] := (7e2/(4Rx0))? (80 /€)*” + 1, from which we deduce
(B.32)

7 Mg+ 412 412
sup Roo ( gig’T’eafa@ SO sup =T s M)
FapEHL G2 (LM)ND <[t|<T (t) ( )

fX‘XEE
Step 1.1. Let |t| > 6p. We have, using (B.29) with &k =p — 1,

dexnep? teRxo\ [tPH N ()2 tr—1 w(N(t) + p)
mPtl(p—1)In e 2 |t| Rxo

Ay (t, N(t),n, Zn,)N(t)* < (
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e

. <2M17g,nv(n0,5)ne> 12 t)N(t)Q" exp <7r(N (t) +p)>

AR 2|t| Rxo

(B.33)

n7rp+1 2 ’t’ R.f()

e

Using that, when N(¢t) > 1, N(t)+p < N(t)(p+2) and (B.29) with k = 20 +p — 1 for the first
display, using for the second display that, for all ¢ > 0, In(¢) < ¢ — 1, and using that n, > 1 and
the definition of N in the last inequality, we obtain, for all [t| > €V 6y,
N 20+p—1 N
et (N )
Ne 2|t| Rxo

N <20X(N(t) + l)le’g,nnev(n0,5)> t|P N (t)%° <7T(N(t) +p)

)

= T 20+p—1 o T o
< ]1{]\](721} exp <2(|f| ;;3) + 1N () >n1}2 exp ((20 +p—1)In(N(¥)) + 2%;2]\%0)
< ]W)e_l}eXp@(erl)) + ]I{N(t)e>1}exp <<20 +p—1+ m> N(t)> < 71?2

For the remaining terms we use

N(t)* m(N(t) +p) N(t)27tr~1 m(N(t) + p)
eXp< 21| Ro )S e eXp( 21| Ro )

which holds when N(¢) =0 and N(¢) > 1.
Then, using that ne/n <1, ne.v(no,£)/d(no) < 1, we obtain

(B.34)
/ Ai(t,N(t),n, Zn,)N(t)*dt
6\/90|t‘§T
< 7'18Cpr_leR$0Tp+2 / 27‘1M1’g,,7L2(t) n Tdex My g, |t‘p (L+N(t))P
Tt p = Dip+2)ne? Jeveosp<r aptipl/? n
Step 1.2. Let |t| < 6p. We have, using (B.29) with k =p —1
Ai(t,N(t),n, Zn,)N(t)*

2 —1 etp 2p pNt20+p+1 2
< exprne tI” e N(t) exp(21n< re >N(t)>

e

dt.

n(p —1)!8°P7 Ne 4Rxo|t|
2M ¢ yu(no, E)neL?(t)(e2m)P N(t)27 7e?
sC 21 - t
+ o ne P\ GRaolt] ®)
2cx My g ynev(ng, ) (N (t) + 1P ([t] e*m)P N (t)* 7e?
< 2ln | ——— | N(t
+ 8Pmn ne P \T\ dRaolt] ()

Using (B.29) when N(¢) > 1 with k =20 +p—1 and for all £ > 0, In(t) < ¢ — 1 for the first
display, and n. > 1 and the definition of N for the second, we have, for all € < |t| < eV 6,

N(t)20’+p—1 762
_— 2lIn| — | N
Ne R 4Rxolt| ®)
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HNO=0) (7N AN (o (1Y) )

I{N(t) = 1}(7e*)?1In(n)* 1{N 1 ]

For the remaining terms, we use

N(t)QU 762 N(t)20+p—1 762
— |N) | < —F07—— 2In | ——— | N(¢
ne P (2ln (4Rxo|t| W)= =02 21 GRggpy ) VO

which holds when N(t) =0 and N(¢) > 1. Using n./n < 1, n.v(ng,€)/d(np) < 1, we get

47! —1/,2 erltp 27! 2 P LQt
/ Av(t, N (), 1, Zng)N (£)2dt < / miexp” (e ™) — + (e Mieal”(t) 4y
e<|t|<eVOy e<t<eVly (p — 1)!8p’l’Le 8P
(B.35)

Mﬂﬂawﬂéﬂ{/ PO NDP
e<t<eVly

1/2
ne/ 8P n

Step 1.3. Conclusion. We have

[ HELENOP, T ) 42

n (p+ n (because N(t) +1 < N(t) +2 < In(n.) + 2)

TP+l
(B.36) < P (% + 2)p (because n > n. and by (A.1)),

hence, by (B.34) and (B.35), we obtain

/ Ax(t, N(£),n, Zny)N ()t
e<[t|I<T

dexpP! (r{(e%)f’ 1V 6, 2TleRx0Tp+2>

T (p— Dl 8 (p+ 1)né/2 L

2M /(.2 \p /(2. \P AM Tp+1
4 2LEn <Tl(€ m) \/Tl> / L2(t)dt + <Tl(e ) \/ Tl) f/f’"cx (23 + 2)p.
i 8 ™) Jep<r 8 ™) nS(p+ 1w N

Then, using (B.29), ¢ > 1, and that 772 = nim, we have the result of Step 1 hence (B.32).
Step 2. Let ne > n1, where ny := exp ((2Rwo/e*7*7)1/27) v e°. Using supjyee V()27 =
N(€)729 < N(e)727 and (B.32), we obtain

(B.37)

=~ C 412N ()% —, 9o
sup RnWO ( g:g7T’€,fa,ﬁ) S = <M2,g,n,1 + 4% + 1\/;)25 + MZGN(C)Q > .
fa,ﬁeH;{;f";;“(z,M)mD, Ix|x€E N{(e) ( )
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Because, € = 1/In(n.)?’, we have 20 4+ p — 1 + In (7e?/(4Rxzo€)) > 1 which yields

In(n)

20
220 +p—1+1n (ln(ne)2‘7762/(4Rz0)))> =1

eN(€)?? = (In(n.))~% <
We also obtain, for all ne > n,

< In(ne) >—2“
2(20 +p—1) + 4o lna(ne) + 2In(7e?/(4Rxo))

() (o om (EE)))

Thus, using, the definition of N(e), TP2 = ni/Q, and ne. > nq, we have

N(e)?® 1 In(ng)* o 2)\ 22
(1v(:)r)2s Sz%ns(/(piz) S( . >> (by (A.1))

Finally, by (B.37), we obtain

N(E)—QU —

se

In(n, 2 F
n2(ne) ) p LemttE UMD, et

where

7e? 2 2 o (o(p+2) 2 2
Mgy =C {1V (2(40+p—1+n Mgy +42 + 42 (Z2T20) 0 4 a2 )
b Ry B 4Rx0 b Se

Let ¢ = co. Similarly, using that

2 2 7e? 7
~o00,W,txg < em <P <
(‘“N ) —(g) exp \ 201 { g ) NV ) IS Tas

(N + 1) T
9 exp (LT g
* eXp( 2Rz [f] > T )

we obtain (B.38) in the case ¢ = oo with

Te2 20 2po 20
Msgnoo =C(1V(2(40+1+pln Mg poo + 417 +412 =) +M?|.
4Rxg se

Proof of (T1.1). Let g =1. Let t # 0, 2 > 0, and N € N. Using (B.8), we have

~ 2 Te(N +1)\*"
pUE) <o (1 )
(B.39) (&) < ( V Srm i )

and, using (A.28), we have
(B.40)

2 Zno/ 5 cx (N +1)P[¢P 7e(N + 1)\
< 1\/ ————= dt.
E [HR2HL2(1®W®1>):| S Jocpyer L(t)” + ” \/ 2 Ral]
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We collect the upper bounds on E [HR1HL2(1®W®,,)] and E |:HR2HL2(1®W®I))1| and use

-1
(BA41)  Agy(t,N,n,z2) ::2A3’q(t’N) (pp ex NP [t + <L(t)2 + cx(N+1)P |t|p>) ’

7P 2r=1(p—1)n n
2 Te(N +1)\*V
B.42 Asg(t,N):==(1\/ ") .
(B.42) aalt ) =2 (1Y T )

By Lemma B.2, (A.31), and (B.29) with £k = p — 1 we have, for all N € Ny,
(B.43)

~ 412 412
7N7T’
R}fg (fg,ﬁ Eafa,ﬁ) <C (/E<t|<T Ag 4(t,N(t),n, Zy,)dt + sup 55 T B + M2e> .

ter N (1) (1vT
Step 1. We check, for all n, > e°, fe<\t|<T Ao g(t,N(t),n, Zny)N(t)27dt < Myg ,, where
ATy cexpP Migncx (p P 2 2
Magp1 = EaX (B1)") w2 a0
4Em.1 7P (Rxo)P <2P1(p +1)! p+1 e + + T2 Em
and 79 := 1+ (80 /e)* (1 V (7e/(2Rx0))?), from which we deduce
2

(T fas) < N(#) 72 (Myey + 40%) + o+ M| .

(B.44) Ry ( ap fap)=C (32& ()77 (Mg +41%) + vy e

Using that n./n < 1, n.v(ng, £)/d(ng) < 1, and N(t) < 2N(t) we obtain, for all ¢ > 0,

Te(N(t) + 1)\ 2V® ip
(V)

< UN(t) =1} (1\/ RZGY

+1{N(t) > 1} exp (4 (N(t) In (1 \

76(2;\];(2: 1)) L2 4“’ In (2N (t) + 1)))

< I{N(t) =1} (1 \/ R7€>2”3;/2 (111;7:‘;24(7) +I{N(t) > 1}n}/? (by definition of N(t)),

Zo
< mnl/? (by (A.1)).
This yields, for all ¢ # 0,

2 T expPL[t]P ex(N(t) + 1)P|tP
20 2 X 9
AQ,!](t7 N(t)v n, Zno)N(t) < b+l né/z <2p_1(p — 1)[ + Ml,gﬂ] L(t) + n .

Then, using n./n < 1, nev(ne, £)/5(no) < 1, and (B.36) we obtain

/ As(t,N(t),n, Zn, )N (t)*7dt
e<[t|<T
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1/2
e

279 <4cprTp+1 N 2Mi g, dex My g, TP (p 1>P>

L(t)dt +
2°(p +1)! @ /e<t|<T ( (p+1m

Using (B.29) and TP*! = ne’? we obtain the result of Step 1 hence (B.44).
Step 2. Using supycje7] N(t)727 = N(e)729 < N(e)72° and (B.44), we obtain

- gptlp

412N (€)?%°

RW (AQ7N7T7€7 ) < CN —20 M. 4l2
s sup no \/a,B faB) < (€) 4.6m+ + (1VT)2s

q,$,w
aBENT T (1,M)ND
Ix|x€€

We first prove that

(B.45) N(e)™ < <;< LA > n(nc) )‘2"7

m1 V1) ng(ne)

+ M26N(6)20> .

734 1= 4ok, (1 + (ln ((76/(2R1)0))1/20) \Y% 1)) >0, and 744 1= T2 4(1 +1In(1 + 724)). Because
e = (In(ne) /Ing (ne)) =27,

— 7e(2N(e) + 1) 20 +p
N(e)In ( >R + 1 In

(2N(e) +1)

<N(e)In ( 5 PT;OJ + (2(’;”0 +N(e)) In (2N (e) +1)

e 1/20 L {Ne g N N
<2 ((ZJN(E) In ((2;1:0) 11112((ne))>> \/ (1 + 2 Z‘p) (2N(e) +1)In (2N (e) + 1))

which yields N (e) > N A Ny where N and N are defined using the equations

20+ p ~ ~ In(ne) ~ 7e \'* In(n,)
2(1 2N+1)In(2N+1) = =40N;1 .
<+ 1 >< +1)In (28 +1) sk, T\ \2Rwe ) g (ne)
Using 7o := 4ky(4 + 20 + p), W the W-Lambert function (satisfying e"V*IW(z) = 2 for all
z > 0), and that W(z) < In(z+1) for all x > 0 (see Theorem 2.3 in [34]), we have, for n. > e,
In(ne) S In(ne) S In(n,)
oW (M) ~ maln(n(ne) +721) T 21 (14 In(1+ 72,1)) Ina(ne)

T2,1

(B.46) 2N +1>

Moreover, we have
In(n.) 1 < In(n.)

Mz Ing (e) 4o, (1 + (m ((n/(zmo))l/?“ /1ns (ne)> v 1) /1ng (ne)) 7302 (ne)

Thus, we have

(1+N(e))‘2"§< In(ne) )/\ In(ne) )>‘2‘f_

T471 lnz (ne 7'371 ln2 (ne
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Then, using N(e) < N(e), hence 2727(1V N(€)) ™27 < (1+ W(e))_%

(B.45). For n. > 1, by (A.1), we have
20 20 20
Ne) <ln(ne) < <20(p + 1)>

(LvT)2s = s/le+l) = se

, and N(e) > 1, we obtain

Moreover, there exists 75 1 > 0 such that for all n. large enough we have eN (€)?7 < 1/(4k1751)%°

Indeed, using

NI (76 (2N(e)+1)> N 2a—|—pl (2N(e) +1) > N(e) In <7eN(e)>’

2Ra}06 4 R:Coé

we have, similarly to (B.46) and using that, for all z > e, W(x) > In(z) — Ina(x) (see Corollary
2.4 in [34]), for all n, such that n. > exp(2ek;(In(ne)/Ing(ne)) =27 /0) V ¢

N(e) < In(ne) < In(n,) 1 '
~ AkiW (In(ne)8/(2k1€)) — 4k Ina(ne) (1 +1n(0/(2k1€))/ Ina(ne) — Ina(In(ne)8/(2k1€)/ Ina(ne))

Thus, we obtain

( In(n.) >20 wp ’RW ( q,NTG’ 1. ﬂ)

Ins(n w
2(ne) faBEHL G (LMD, fxx€E

1 1 —20 20_ 20 M2
B.47 <C — 412 [ 1 = M S —
(B.47) <2m A 273’1> ( ( + <Se> ) + Magn + (4k17571)20>

2
which yields the result. Similar computations yield the result when g = co using ( ol tho)

2 (1\/ 7e(N +1)/(2Rxo [t]))*PY. O
Proof of (T3.1.1). Let ¢ = 1. Using (A.31), (B.41), and (B.42), we obtain

<fq JN.T,e fa,ﬁ)

IA

(B.48)

. 412 M?
< C / A t, N(t M, Zn dt + 4l2 S 6—2H(N(t) In(14+N(t))) + + .
( <|t|<T 2al Q o) te]g (1vT)*  w(a)

By (B.41), ne/n < 1, nev(ng, £))/d(ng) < 1, and, for all ¢ # 0,

. \/ Te(1+ N(1)\2V® (25N (1) In(14+N (1))
2R.1‘0 ’t|

< exp <2N(t) In <1 \/ WW) + 26N (t)In (1+ N(t))> < n, (by definition of N(t)),

QRIL'O |t|
we have
26N (t) In(1+N(t)) —1y4|p P
AQ q(t N(t ,n no)e . S 2 — ( szpp ’t’ ' + Ml,g,'r] <L(t)2 + cx ’t‘ >> .
(L+N®)P((A+ N(T)O) V [t)hr+2 = w0V [t \ 2m)p(p—1)! ~ 7P n
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Then, using T'> 6 > ¢,

row ro (p+2)
T dt< dt < d L2()dt < (2x)PT12
/e (0 v t)p+2 —/e @vor2® = eprn /€<|t|<T (t)dt < (2m)"™ 1

we obtain

25N (t) In(14+N(t))
(B.49) / Baq(t, N(1), 1, Z”O)f St < Ms g,
et (L+N()P ((1+N(T))0) Vv [t])
_ A exp’p+2) p2, x(P+2)
Msgn =G amp(pr o T HMen (Z0H g,y )

By (B.48) and (B.49), we obtain

RZ{(/)( q,NTe’faﬁ>
(B.50)

- 2
1+ N®)? (((1+DN(T))0) v [t))"" ) 412 M?
=¢ (Itsel[lc‘I?T] RN+ N (D)) Mg +45) + 05+ @) |-

)

We now show that
(L+N@))P ((N(T)+1)0) Vv ’t’)p+2 3 e2502(1 v (In(n) /(2k))) 25 +20+2

(B.51) B 102+ N (0 (1T N (D) = 402rN(©) In(N(0)+1)
then
(B.52)
NB(N0) 5 5150 () 7 gy (2002010 L0+ 280) D) e ) )
In(In(ne)/ Ing(ne))
hence, by (B.50) and (B.51),
K/ (k+2kq)
Te W ( 7q,N,T,e
Ny e sup R, s Ja,
In(n,)2r+2p+2 fa,geﬂfd’d";;“(l,M)ﬂD 0 ( ,6)
Ix|x€E

o262 ) 26N (€) In(1+N (e)) 472 M?
(B.53) <C <(2’f)2”+2p+2 (4l + Mﬁ’fﬂm) + In(ne)2r+20+2 <(1 v T)2s + 62'yaln(1+a)> ’

Proof of (B.51). Let t # 0, because N(t) — 1 < N(t) < N(t), we obtain, for all n, € N,
exp (26N (t) In(1 + N(t))) S XP (26N (t)In(1 + N(t)) — 26 In(1 + N(t)))
(1+ N(#)P - (1+ N(#)?
exp (26N (t)In (1 + N(¢))) — 1
> (11 N (@) exp <—2/~€N(t) In <1 + N(t)))
X (26N(t)In (1 + N(1)))
B et (1+ N(t))2tr

(because In(1+ z) < x)
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L oxXp (26N(t)In (1 + N(1)))
= SUDsc (e 7] 62”(1 + N(t))2n+p.

Denoting by g(t) = (((1+ N(1))6) v \t\)p+2 e~ 26(N(O) (14N (1) we have

— 2
(1+N@)P ((1L+N(T)) ) v [¢)"" Bnpr o T
su < | sup e®(1+ N(@)"™ | sup g(t
deler] e2(N (@) In(1+N (1)) tefeT] ( ) |t\e[e,Tlg( )
(B.54) = ( sup (1 + N(t))%“’) g(e),
tele, T

because we show below that [|g| e (e 71y = 9(€). Indeed, for all z > 0, differentiating Q;&(Qm(m)) =
x with respect to t yields

OQtu OQtu OQtu
it (Quula)) + 2 () 2P ) = 0

Hence, for all ¢ # 0 such that |t| < (1 + N(t))6, we obtain

_ N(t)
[t (14 5/kg)N(8)/(1+ N () + In((1 + N(¢))20/ [t]))

while, for all |t| > (1 + N(t)), N’(t) = 0. Thus, we have, for all |¢t| < (1+ N(T)) 6,

gt = —QHN,(t) <ln(N(t) +1)+ Nivt)(tll) (14 N(T)) 9)2 ¢~ 2N In(N(B)+1)

(B.55) N'(t)

> 0,

which yields that g is decreasing on |¢t| < (1 + N(T))6, and increasing on [t| > (1 4+ N(T))6,
N(-) being independent of [t|. This yields, because g is positive,

(B.56) lgll e ey = 9(8) V 9 (T).
Moreover, we have

7e (N(e) +1)

(B.57)  k¢N(e)ln < S Rge ) + KkN(e)In (N(e) +1) > (kg + k) N(e) In (N(e) + 1)
which yields that N(e) < Ny, where Nyln(Ny +1) = In(n.)/(2k,(k; + ). Then, using

T > (1+ N(T)) 6 (by (B.62)) and the definition of N(T'), we have

In (ne)
2

(B.58) KN(T)In (N(T) +1) =

and, with (B.57) and the definition of N (e),

In (ne)
2

(B.59) > (kg + k) N(e)In (N(e) +1)
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hence, by (B.58)-(B.59) and because s > r/k,

1 N(T)In(N(T)+1) 1 ky+k
(B-60) ST Nou@mO+) - st ow o
Thus, we have
(B.61) g(T) = exp (—2KZN(E> In(N(e) + 1) [—i + ]\]7\7(33 122%2;:::?])

hence [|g|[ ;o e, 77) = 9(€)-

Now, by definition of N, for all t € [¢,T], N(t) < In(n.)/(2k), hence
. ln(n ) 2k+p
sup (14 N(t))*+P < (1 > ,

tE[QT]( Q) V=,

by (B.54) this yields (B.51).
Proof of (B.52). Considering the cases In(n.)/In2(ne) < 1+ N(e) and In(ne)/Iny(n.) >
1+ N(e), we have

7e(N(e) + 1)

kyN (€) In < S Rane > + kN (e)In (N(e) + 1)
In (ne)

Ing (1)

< | (K + 2kg)N(e)In < )) \/ ((k + 2kq) N(e)In (N(e) + 1))

which yields N (e) > Ng A M, where ]\73 and Ny are defined using the equations

(B.62) (K + 2kg) N3 In <11an((”,;))> _ 1n(2ne)’ (K + 2kg) N4 In (M + 1) _ 1n(2ne)'

This yields (B.52) hence (B.53). Using ae = 7e/(2Rxg), the definitions of € and N(¢) for the
first display, and v > 1/(4kq) for the second display, there exists Mg ¢, such that

exp (—2valn (14 a) + 26N (e) In (1 + N(e)))

~Te Te In(n,) 1 In(ne) Ing(n,)
< - | < — — 27| In(ne) + 2y————F"F— ) < M, .
=P < Rxge " <2Rxoe> + 2ky ) T P 2k, 7 ) nne) +2y Ing(ne) = 6Em

Denoting by Mz g, = C (412 + 270%(2k)~@5+2+2) (42 4 My ¢ ) + M*Me g ),

ng/ (k+2)

w [ 71,N,Te
¢ fa,8€H G (LM)ND, fx|x€E

Similar computations are used to handle the case ¢ = co.
Proof of (T3.1.2). Let ¢ = 1. Proceeding like in the proof of (T3.1.11) to obtain (B.50) and



B-24 GAILLAC AND GAUTIER

using that w = W4, we have,

sup REVO ( q,NTe’ faﬂ)
fopEHLSE (1LM)ND, fx|x€E
(B.63)
T 2
1+ N@®)P ((NT)+1)0) Vv [¢)"" ) A2
2(14 C(a,€)) <€<S|‘;ET e26(N(8) In(1+N(t))) (M67&n7q + 4l ) + W

Then, using (B.56-B.61), that N(T)In(1 + N(T)) = In(ne)/(2k), that
— — In(ne)  N(e)In(f/e)
N(eln(1+N = —
@+ NO) = 5 ™ v
0/e =1, and that s > r/kq, we obtain [|g| e 77y = 9(€). Thus, we have (B.51). Then, for
q=1,00, Mg q:=2(1+C(a,1/0)) (42 + 2:0%(2k)~@+2+2) (Mg ¢ ,, o + 41%)), by definition
of N(e), and using that (B.63) we have, for all n,,

ng»/ (k+1)

w Z71,N,Te
W—”HPH sup Ry (f s fa ﬁ) < Mgg -
e faB€HLG (DND, fx|x€E

Proceeding similarly for the case ¢ = oo yields

ol 4D)

e N, T

U sup Ry fOO Sfap) < Mggp oo

ln(n )2K+2p+2 00, N Un
€ faygeHw’W (M)ﬂD, fx‘;(es

Proof of (T3.2). Let ¢ = 1 and 7, := 1./ In(ne)?/". We follow the arguments in [38]. Using
(B.48) and @, 1= supycpepyexp (2N In (1V ((1+ N)8/t))) (1 Vv (Rwot))?, we have

.42 M?
Rl (Fi5™ fap) <€ (/ Bt Noms Zng)dt + 412NN 4 20+ )
<|t|<T

o(T)  w(a)
b, 4%, 412
<C <ﬁe ®,,, e2e(NIn(1+N))" evT
+<I>ne Ag 4(t, N,n, Zpy)ne dt M2
Ne Je<p<r (1V (Rao [t]))2e2V In((1+N)6/t]) e2v(aln(1+a))?

Now, we study ®,, . Because g; : t € (0,00) = exp (2N In(1\/ (1+ N)8/t)) (1 V (Rxot))?
is nonincreasing on [e, (1 + N)§] and increasing on [(1+ N)6,00), we have 911l oo ey =
g1(e) V g1 (T). Using N < N+1and 14+ N <2(1+ N) for the first display and that 6/ [¢| <
f/e =(1+ N) and In(1 +¢) <t for t > 0 for the second display, we have, for all ¢ # 0,

exp <2N1n (1VW>> < exp <2N1n <1VW>> (1\/9(1';]\7))2
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— 2N -3
< AN In (N +1 —— | (1+N) .
< exp (1Nl (V4 1)) xp (77 ) (14 )
Thus, using 26/e = (1+ N), N < (111(716)/(2/{))1/'“7 and T? = exp (4N In (N + 1)), we have

(B.64) P, <exp(4NIn (N +1))2e (1 \/ W) (1V (Rxg))2.

Now, we show that there exists D such that
N +1)0 ~
(B.65) exp (2N In ((H>> exp (2k(N In(N +1))") > Dne.
€

Define d; by the equations Dy = D1 = --- = Dy, = 0, where Dy = —dg + 4/(2&)1/’",

A1)k KS1r (Ur—j+1)
(B.66) V1 <i<k+1, D_—d+(2n>1/r > i > dpya1 oy
=1 prpy=i

and djy1 = 0. We use u,, = Zf_od- In (n, )(iH)/T_(Hl) and, for all ¢ # 0,
g (ne,d,r,t) :=In(n,) Zd In (n Hl)/T*i.

Using f/e = N + 1, that N > N, and using the definition of N, we obtain
(N+1)6

exp (2/{(Nln(N +1))"+2NIn <
€

>> > exp (26(NIn(N +1))" +4NIn (N + 1))
> h(ne,d,r),

where

4
h(ne,d,r) := exp <g (ne,d,r) + o d (ne, d7r)1/7">

(2x)
k
= e exp (— > diln (ne)" Y/ ) exp (@,jm (In (ne)) /" (1 = v(no, £, n>>) ,

=0

1 1r...(1/r—k
v(ng,&E,n) = ;Une‘f‘"'-‘r(—l)k / (k:_/l)‘ )Uﬁjl—FO(uﬁ:—l).

Thus, denoting by 74 := (k + 1)r — (k + 2), we have

k+1
(B,67) h(ne, d, 7“) = N €Xp (1 + Z D;In (ne)(i+1)r—i +o ((ln (ne))m))
=1

which yields (B.65) with D depending only on (Dz)k'H thus on r, k, and p. We also have

Ag o(t, N(t),n, Zng)Ne
(1 vV |t|)p+2e2N1n(1\/((N+1)9/|t|))
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2 ex2pP P M cx (N(t) + 1)P [t
S (x| My (o ex (N DPEPYY
m(1V [t])P+2 \ (2m)P(p — 1)! P n

Hence, we obtain

/‘ A2,q(tv N<t)7 n7 Z’"«O)ne dt S M9757777q7
€

<|t|<T (1v ‘t’)p+2€2N1n(1\/((N+1)9/|t|))

4 1 ex2pP~! P\P 5 5
M — 1 2P\ (1 7) W2 N o 12
sens =g (14 1) (G + e (142) ox ) + 2,

Thus, we obtain

W [ Fa,N,Te
Ry (FE5T fan)

CetNIn(1+N) 1 AP A% In(ne) =%/ 7,
<— |2 (1 ——F ) | =+ M +M?*) + — <.
= e In(ne)3P/T < \/ (2/{)310/7“) ( D 9£.m1 > e’Texp (4N In(1+ N))
Then, using the definition of N for the first equality, the definition of h(n.,d,r), and (B.67)
for the inequality yield that there exists Mg ¢, such that

_ < 4
=neexp | —

Wg (ne» d,r, t)l/r>

Ne
exp (4N In(1+ N))

Mg, Mio.g pne
(B.68) 2 Tninoypir &P (9 (nesdyr, ) = T ST exp (- B(ne))
where £(n.) = S2F  diIn (ne)HY/7=% Then, because
n 26(N1n(1+ N))"
e (@m0 Ny
exp (4N In(1 4+ N)) Dn(ne)r/"

< NP (==(nc) (by definition of N),

Dln(ne)p/"

there exists D depending only on (d;)¥_; such that exp (X(ne)) > exp (D ln(ne)l/’”), Sup,,>, Ina(n)—

(2

Dn(n)Y/" =r (In (r/D) — 1), we obtain, for all v such that

(B.69) In(v) > r <ln <;> - 1> ~1n (D),

Te 1 < MeeXp (=X (ne)) 1
T exp (4N In(1 + N)) In(n)3®/m = D exp (vT) In(ne)4/r
Ne exp (—X(ne)) 1

Dexp (Vﬁ exp (2(ne)
- Ne exp (—X(ne)
~ Dexp (Vﬁ exp (ﬁln(ne)l/rn

)) Inlne) /"
)
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< exp (—¥(ne)) <L
Dln(ne)%/m — D

Using (B.68), p > r, v > k, and the aforementioned choice of a, we have, for all n, > 1,

nRW( FENTe ) 2

e™ng \ Ja,B y Ja,B C A
S 2e (1 12+ M M

In(ne)%/m exp (X(ne)) ~ Mioen ( e( \/ (2ﬂ)3p/r> (47 + Mg g 1 + M?) + = ) ,

hence the result. Similar computations yield the result when ¢ = oo
Proof of (T3.3). Denote by 6, := 7/(4Rxzp). We start from equation (B.31), where, using
that w = W4, we have, for all N € Ny,

(B.70) RV ( frie faﬁ)

412
< 2(1 + C(Q, 6)) / Aq(t,N(t),n,Zno)dt+412 sup 6_2’$N(t) + s | -
<|t|<T teR (1vT)

Let ¢ = 1. By (B.33), for all |¢| # 0,

1 m(N(t) + p) exp (mp/(2Rxge)) T —
— —————=+2xN(t) | < 2( ——— N(t
neeXp( St Ray 2N ) = e P\ 2| TRy T VO

< exp (2mp) (by definition of N(t) and e = 7/4Rx) ,

and using that N(t) <In(n.)/(2x) and (B.30), we obtain, for |t| > e,

Ai(t, N(t),n, Zpg )e* N _deRagexpP™  2Mig, L2(t) 2 ex Mgy
o ((Tn(ne)/ (@) VI = 7 (p— D v i

Thus, using (B.71) and f5<‘t|<T L2(t)dt < (27)PT12, we obtain

(B.71)

Ay (t, N (1), 1, Zyy)e>N
(B.72) / << (In(ne)/(2m) V [t)207D

16k%2eRxocxpP !
L 27|'p 0CX
M= ( w(p — 1)

dt < My g,

P22 M, 5, + QPH(%)ZP”CXMLM)
,CHT °

Pt 1

Then, we have
R,VLVO ( q,NTe’ faB)

_ In(ne) 2pt1) 412
26N (t e 2Kk72
2(1+4 C(a,¢€)) ( sup (6 ® <%Vt) (4*F 12 + My e) + ave )

tele,T)
The next step consists in showing that, denoting by g : ¢ 6*2”N(t)(ln(ne)/(2/<c) vV [t])2P )]
we have ||g|[ o0 (e ) = e=25N() (In(n,) /(2)) 2PV Indeed, using that, for all |t| > ¢, N'(t) =
01kqIn(ne)(x|t| + kqel)*2/2 where 61 = w/(4Rx(), we have, for all t € R,

/0 = o (2 1 fjo > 2y SRR
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Using that ¢ € [0,00) + at/(bt + c)? for all a,b, c > 0 is decreasing when ¢ > ¢/b and increasing
on (0,¢/b) when t > In(n.)/(2k), we have (1) if In(n.)/(2k) > 601 /K, then, because (p + 1) >

2k01, ¢'(t) > ‘72| ((p—i— 1) — %) g(t) > 0, else (2) if In(n.)/(2k) < 61/k, then, because

p+1>k61/4, ¢(t) > il (2(p +1) — “91) g(t) > 0 hence ¢’ is positive when ¢ > In(n.)/(2k).
Thus, g is positive, decreasing on [¢,In(n.)/(2x)] and increasing on [In(n.)/(2k),00). This

yields
_ [ ,—2kN(e) In(ne) 2r) —26N(T)p2(p+1)
9l Lo ey = | € e
© 2K

Using that 725 = 25N(©) /(Rz)?%, we have

e—znﬁ(T)TQ(pH) _ 1 —ZHW(E)6—2/6N(T)+2(p+1)nN(e)/s—i—Q,‘iN(E)
(Rxg)2(p+1)

and using N(t) —1 < N(t) < N(t), N(T) = In(n.)/(2(k+ ky01/T)), N(€) = In(ne)/(2(k + kq)),
e=061,and K/kqg > (1+s/(p+1)) /4 —1 for the last inequality, we have

—26N(T) +2(p + 1)kN(€)/s + 26N (€) < 2k — 26N(T) + 2(p + 1)k N (€) /s + 2N (e)

< 2k + rln(ne) <p+ = 1)

- K+ kg s
<2I€+/ﬁ;ln(ne) p+1 1 klky+1 < 9%
- K+ kq s k/ky+m/4
This yields gl ) = €2 (n(n)/(20) 2.
Using N(t) — 1 < N(t) < N(t), this yields
k/(k+1)
Ne W N, T,e
L sup Ruo (a7 " fap) < Mizgy,
In(n,)2@+1) a8 €MLY (OND, fx|x€E ( )

where Migg, = 2(1 + C(a, €))e?*(2k) 2P+ (4(e** +1)I> + My1,6,). Similar computations
yield the result when ¢ = co. g

Proof of (T4.1). Step 1. Unlike in the proof of Theorem 2, we do not have to ensure that
fin and fa,, are densities but only that fi, and f2, belong to H¥ dw( 1) N Sy. Using (A.10),

we have fo, € L? (w QW RR]) Clearly, f1, and fa, belong to Sy. Like for (A.11)-(A.12),

we obtain

< 7l?.

(B.73)

RxoU pU ) 2(1\/U23) '72 26N In(N)
27 " op+1 p+1
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Step 2. It is the same as for Theorem 2.
Step 3. Let ¢ < /2. Using (A.19) then Proposition B.1 (ii) we have

2 p
Tnn Lt Wier e\ 2 ((Re([t]) 2
K(PZW]P)LN) = 952 /R(O-N(q) > 7 /\(t) dt.

Using Lemma B.4, we have, for all U/2 < |t| < U such that 4/(eRc(U)) > 1,

Wiy 1), Re(t)\ 2 - 2me3\? o N1 AN
(UN(Q) ) — L9 P FglN'In eRe(U)) )’

Rzoe\?  UPt AN
K(Py,, Py ,) < 2%k, NIn [ —— ).
(Pans Prn) ( 9 ) <p+1>a”””eXp< g “(eRe(U)))

hence

As a result, (iii) is satisfied if

R%zge3\?" Urtt 4N 9
B.74 9%k, NIn [ — ) ) < ¢
(B.74) < 9 ><p+1>aﬂ"”“p< o “<eRc<U>>>—g

Step 4. We take N = [N, where NIn(N) = In(n)/(2(k + kq)), 7 := Cr2 exp(—£N In(N)),
U :=4/(Rxpe), and

+ 1) (2m)P 12 1 9 \?

c2. .— (p 1 2( 92

.2 < U(URzo)p |1V U A A9 7

which guarantee that (B.73) is satisfied and f;, and f2, belong to H“‘;[}¢(l). Moreover, (B.74)
is also satisfied because

v2nexp (—2k,N1n (N)) < C%Qn exp(—2(k + k)N In(N)) < 012‘,2-

For this choice of 7, we have h2 = CZ yn="/(+ka) (Rag/(2m))” [, tF A(t)2dt/ (47).
Proof of (T4.2). Step 1. By (A.10), fo,, € L? (w ® cosh (-/R)®?) and f1,, and fa,, belong
to HEG (1) if

p 1V UZS 2 2kN
(B.75) (Uf%) U [2 5( )\ 2e < l2.

p+1 p+1

Step 2. This is the same as for Theorem 2.
Step 3. Let £ < V2. We can check that like for (T2.2), (iii) is satisfied if (A.20) holds.
Step 4. Wetake N = [N], where N = In(n)/(2(k+kq)), 7 := Crzexp(—&N), U := 2/(Rxge),

Cra = <2UZ)U;}U())P [2 (T(ZS) A (2”)”2)}) A (2(UU§)2 <W§%12;OZ_: )>p>

which guarantees (B.75). (A.20) is satisfied because y2nexp (—2k,N) < 0121,371 exp(—2(k +
kq)N) < Cf 5 and, for such v, h = C%gn*“/(’”kq) (Rxzo/(2m))P fl?/2 1t|P A(t)2dt/ (47). O
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Proof of Lemma A.5. Let t € [-T.T]\ (—e¢,¢), N € {0,.. maxq( )} and T € T,. Use
(Fq’m”” FoT0) () = Sy Ryt ), where Rat, ) := (F{” VOTO _ FpNONTO) 1),

(Fq, (HVN,T0 ﬁ{zanTi)) (t,), and Rs(t,-) := (ﬁvavT:O_ Ff’OO’T’()) (t,-) (for all
\t\ € [e, T], [fap] (t,-) = FET0(1..)). Using the Young inequality for products yields

Roq (N(t).t) < 2+ o) S IR () aren | + (1 + 20) E [I1Rs(t, ) Fqwen)| -
j=1

B B t,N _ , (/\ WtIo) -3 t,N/ , >
ccmse By(0N) = xSy v (0] €N)) o

14 Ce/(2(2+ ¢p)) = 211/208 with ¢ := 1/6, and by definition of N (see (16)), we have

Roa (¥(0)1) + Cal [ (150

<2(2+ ) <E [Bl ( ) [ (t,ﬁ(t))D + (1 + ;) E [HRg(t, ~)\@2(W®p)} +C,E [z (t,z\?(t))]
<22+ @) B (B V) + B 900 M) + (142 ) B [IRate ) Eagren]

Consider E [B;(t, N)]. We obtain

2 2
Bi(t,N) < b B (2+ co) ZHK Miaqpen + <1+ >||K3( e — SN |
+

max,q

where K (t,) = (BP0 - FENNITO) (1), (1) 1= (BP0 < BRNTO) (1), and
Ks(t,-) := (quﬁNVN’»T’O - Ff’N’T’O) (t,-). Using F2T0(t, ) = Fig [fas) (t,-), we have

2 cm (1) N, T,0 2
”K3(ta ')HLQ(W®P) = Z 7V7[7}m0 = H (Fq — Flst [fo‘ﬁ]) ( )‘ L2(Wep)’
N<[ml, <(NvN?) | Tm
/7 ~ / 2
Bi(t,N 2(2 H (F‘LN IO _ paN ’T’O) - ‘ —5(t, N’
(& N) < O<Nlr<n]%¥)ixq(t)< (24 o) ! ! (t) L2(W®p) ( ) +

2

L2(W®p)

+(1+ >H<F‘JNT0—]:1st[fa,ﬁ])< )’

Finally, we have

Rog (ﬁ(t),t) +C,E [z (t,ﬁ(t))}

g o (|77 )

<42+ ¢)’E
ogN/gN,g‘gx,q t

2 . El(ta N,)
L2wer)  2(2+co) /)
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+2(2+ co)esEe [3 (N (1)) | + Cop B [H (PN~ Fra [faal) ()] ;(W@:)] .

Using Lemma A.3 for the third display, we obtain

2 X(t, N')

E 7 7
rrwer)  2(2 4 co)

mox |
0<N'<SNW.__(#)

max,q

' 7NI7T70 ,N/,T,O
(BT — ppN 10 (1,

~ 2
<E A 3 [Cm(t) — em(@)[\" X, N')
B LS SO Wl om0 2(2 + o)
= +
A\
m(t ‘ S(t, N’
<(1+ 2¢)E max Z i _Z®N)
0NN g @ | = | om™ 2(2 + co)
7= +
1
2+ — |E S1(N',t) + So(N',t
+( +00> [oszv/rsnﬁﬁx,q(w( LV 1) 5 )>]
(14 2¢0)48NY  (D)ex |t vV (NW (1), txo)
< — @nyPn 14— TR Vo, (t) + Zng Un(t).

This yields the result because

/eSItIST Ko <N(t)’ t) At Ce /egtIST ’ {E (t’ N(t))] dt

(14 2¢0)48NY (t)ex |[tP vV (NWV (1), txo)
< 4(2+4c 2/ maxd g 2 maxg Vo () + Zn U, (8) | dt
(24 co) et ( @r)n 0n(t) o Un(t)
2a.N(),T0 NE
o [ (B]](7 Fie agl) ()] | + CocaB IS0 N O . O

Lemma B.15. Let f, g € Hg%)(l,M), [,M,e >0, q € {l1,00}. On the event E (Gp,,E), we
have that there exists Cay g, such that f6<|t|<me Cor,e5(t)dt < nfo(1 vV 12)02275777, where

1 cx
Chr,e.9(%) 1= My g, Ci? <2 + Co) (mp + 2m)P | Fist [fa8] (%, ‘)|i2(Rp)>
0

(B.76) z / w0t < Cen (= D/ = @) AV )
el <Tae B n
(B.77) 11 (11, Tmas Nonaeq) < O

nA/3’
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where Ky, := ((p + 1+ W =Wi_gpgt)/(eo) )T’JrlJF]I{VV:W[—R,R]}7

V2K (mkg)P(e(1 — 6plp))P+3/2
- Hg(4RfI?o)p(l + x%)ﬁ (2p + 3)p+3/2

2
Con i 96(1 + 2co) Rrocx (oCao(W, q)zh - 294c% €'/ [ (4R \V1 Ho(1+23)\ 7 Ky,
(2m)Pmkglog(2) (2m)P v ky, ’
.- w QNHVIVEX ()
Proof of (B.76). By definition of Nyax,q, we have, for all t # 0,(7eN},. ,(t)/(2[t| Rxo)) <

n. By Lemma B.13, we have

ZngUn(t) < Myg <2+;> cx [(yt:co!> WO (), txo)v(no,é')]

nah 27 d(nop)

p ~
+ Mg (2 + 010> (27r)p ”./Tlst [fa,ﬁ] (t, ')Hi2(RP) E [(@) l/gv (N(t),tl’o) ’U(no,g):|

< Coren(t) In(n)?
YRR, :

Then, using Timax < 1%, [jy<r | Fist [fa8] (£ )72 py d < 271%, and (A1) yield the result.
Proof of (B.77). Let € < |t| < Thax. Using Nmax,q(t) < ((2[t] Rzo/m)V1)In(n)/kq, Tmax < nso,

2 p
Vi: e <[t < T Kn(t) <7, ((2EZ0\/1) Holl £20)
- — ’ max T k’q s

we obtain
Kl Pnn > Kl(ﬂ'kq)p 210g( )
Kn(t) = HP(4Rxo)P(1 + 22)P In(n)P Tk
2K Py, (1—6Cop)/2
(B.78) V2 (mhq )P > Cysn(n)?,  (by (A.1)).

~ HE(4Rxo)P(1 + z3)P In(n)p—1/2 ~
By (A.24) and (B.28), we have
IT1 (1, Tiax; Nmax,q)
< (14 2¢0)8cx Kmax

Nt () 1P " (N (1) tzo)dt - sup o u(t)

- Ky (2m)Pn e<|t|<Tmax mend e e<|t|<Tmax
16(1+260)Rx06x4010g(n)2/ +1 W w
t|P N, txg)dt sup W, (t
K, (2m)Prkylog(2)n <t<TmaX| | ( maxq( ), tao) e<|t|<Tmax ()
16(1 + 2¢o) R oWa _
< ( + CO) rocx Co 20 log(n)p+1+1{W_W[—RvR]}n(p+2)<0 sup \Ifo,n(t)

— Ki(@m)Pmkglog(2) < t]<Timax
96(1 + 2¢o) Rzocx CoCap ™ <log(n)p+1+1{W:W[—RyR]}) n? Wo ()
n

(2m)P7kg log(2) no n2-e3 S‘j?}mx
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where 2 — (p+3){o > 4/3 and, because TS, < n, (B.78), and sup,, ¢ (6*023 1“(")2n2) = ¢l/Cos,
which yields (B.77). O

We complete the proof of Theorem 5 considering (A.38) in all smoothness cases.

Proof of (T5.2). Let ¢ = 1, (n,ng) € N? such that v(ng,E)/d(ng) < n~ T N € N, and
T € T,. Start from (A.38), where, because w = W4, the term M?/w(ag) is zero and, using
(B.48) this yields

sup Ry <A§:N’T’€7 fa,ﬁ)
fanseng’,d;/’[;d(LM)mDv fX\XeS
Cas.e.n 27?030 2 412 ~ M g ,v(ng, E) 472
< I8 : Aoy 6, N(t)yn, ——2 -2 | dt + ————- | .
=7 T U asveomev oy /egltg 2q { &N (0,0, —=50 5 TR

Denote by T the closest element in 7, to the choice of 7" in (T3.2) and N* the choice N in
(T3.2). This yields N*(t) < NY () hence N* € N,, and that T* < né/(%) < Topax = nl/(6P)

max,q

because s > 3p, hence T* € T,,. Thus, we obtain

X 7]/\}7f7
sup R%( e E’faﬁ>
fa g €MLY (LMD, fx|x€E
Cas.en 27T0c20 2 412 ~ M g yv(no, )
< 1™ ) * &y )
>~ n + C ilellg e2n(N*(t) In(N*(£)+1) e<lt|<T* AZ,Q t, N (t)7 n, 5(71,07) dt
87rC§072l2

* C(1vT*)2s’
This yields the result, using (B.63) with (1V N(t))Pp,, replacing (1 V N(¢))P.
Proof of (T5.3). The proof is similar to that of (T5.2), using that with 7 the closest element
in 7;, to the choice of T in (T3.3) and N* the choice N in (T3.3), T* < nf/ @tk <
n/(%) hecause s > 5pr/(k + ky), where (o < 1/(10p), N* € Noay, and replace Caz by
V2K (mkg)(e(1 = 10p¢o) )P +2/2
26 ‘= .
HB(4Rxo)P (1V 22) (2p + 3)P /2

APPENDIX B.3. TALAGRAND INEQUALITY FOR COMPLEX FUNCTIONS
Lemma B.16 is the Talagrand inequality (see Lemma 7.1 in [16]) for complex functions.

Lemma B.16. Let n € N, n > 0, X;,..., X, be independent random variables and v, (u) :=
Yoy (u(X;) — Efu(X;)]) /n, for all w in a countable class U of complex measurable functions.
If there exist M7y, H,v > 0 such that

(B.79) SUP [|ul poo (rey < M1,
uel

(B.50) B |sup ()] < 1
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(B.81) sup -— Zmax Var (R(u(X;))), Var (J(u(X5)))) < wv,
uel
then, with Ko :=1/6 and A(n) := (v/1+n—1) A1, we have
H?  V2K3A(n)y/nnH

8 [ v —Kan 49M? — = 7
E | sup [vn(u)]? — 4(1 + 2 Hz) < — | Ze v o4+ 1 7 M,
[(ue5| P st < | v

Proof. We use

E (sup v (u))? — 4(1 + 27])H2> ] <E <sup R(vp(1))? + sup I(v,(u))? — 4(1 + 27])H2> ]
ueld + ueU ueU +
<E (sup R(vp(u)? —2(1 + 217)H2> +E <sup T(vn(u))? —2(1 + 277)H2>
ueU + ueU +
and apply Lemma 7.1 in [16] to both terms. O

APPENDIX B.4. RELATION TO SOBOLEV ELLIPSOIDS.

Define, for ¢ = 1,00 and F[f](-, k) := (2R)P/? Jp e f[fR RJp etk b/R f(a,b)dadb,

H®%3(]) = { / S O IFIA-E)P R 1V 82) dt < 27#}.

kezp

Lemma B.17. For all 0,6,I, M,R > 0, 0/ = 0 +1/2+6, (¢,q) € {1,00}?, ¢ = (1 V |])?,
where s > o' + p/2, and (wWi)pen, = (F7)pen,, there exists A > 0 (see (B.87)) such that

/78,0'/ q7¢7w
HO7 () CHIGE (\/Zz>.

Proof. In this proof, (-,-) and ||-|| denote the Euclidian scalar product and norm in L?([—R, RJ?).
Take f € H?*9 (). The Plancherel identity for the second equation yields

/Z (O (1V £2)* dt = /H}] £ (L v £2)* dt
meNj
/ S IFIA- K (v E2) dt < 2nl®.
R

keZr

Thus, f satisfies the first inequality in the definition of H[{Z%[U_R,R] (\/Zl) Let us now check

(B.82) / > mf2 [bm (1) dt < 2w AL

meNp
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To show (B.82) when ¢ = oo, we show that there exists A’ such that

172
(B.83) VNGN/ S ()2t < AL

| | >N N2a.l )
m

which yields (B.82) using A := A’ (kso/kq)** (1 4 1/(26)) because

|3 imiz o) ae = [ > '"}lmubm(tnzdt

meNp meNsm

1
(B.84) <2rA'l? (1 + 25) (by integral test for convergence).

We obtain the case ¢ = 1 using |[m|; < p|m|_. (B.83) holds when N = 1 so we show it when

N > 2. Denote, for all N € N and ¢ # 0, by PN the projector in L? (VV[[XU?L2 R]) onto the vector
i

space spanned by (d’ﬁn (-/R) /(2R)p/2)‘m|m<N, Because H]—"lst [f] (t,-) — C(t)]:lst [f] (£, )
Zlm\sz |bm(t)]2, (B.83) becomes

H 27rA’l2

(B.85) /R | P 1) — Py Frsc s <

[~R,R]
spanned by (¢m (-/R))pmeze = (e”mT'/R/(QR)p/Z) _ Let N := |7N| for some 7 > 0 and
me
t #0. ¢ := Fist [f] (¢,-) is such that

We now prove (B.85). Denote by VN the projector in L? (W®p ) onto the vector space
(-/

o= 2ol <2 i - %0 = 2%y (0= %) [+ o - Po™o
<2{lo-&%e[" + 7o - e[|

_ — 2
Kgr := (2R)? Hé’N - chzft)é' N ng satisfies, using the Cauchy-Schwarz inequality in the fourth
display,

ke X (et (5) Vo (Z)

kezZr: |k|loo<N
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S S 0wl e ) ()

meNE: |m| >N keZr: |k|w<N

S o) T (nl) e G ()

kezZr: |k|loo<N meNp: |m| >N

- ¥ > () en (§)> (o (E) T (E»

meNy: |m| >N |keZp: |k|ow<N

> ( S Jeoall) (K6 ()

meND: |m| >N \keZr: |k|oo<N kcZr: |kloo<N

(keZ \k|oo<N )>2> (m€N€§w>Nkezp§w<N‘<¢k( ) wm(R»Q)
@v) 0
> [ (5) 0 (5)]

meNg: |m| >N kezr: |k| <N

2

Denote, for all (n,m) € N, by g = <¢g§t>,pn>L2([ L) and by J; the Bessel function of the
first kind and order k > —1. We have, using (74) in [T] for the third equality,

1/2 [lm/M]-1 .
B ()t S s

>|m/M |

|m/M |1

Lnp= 3 ﬁgn<emx7pn>“]m,k;: > BIN2 kN n+ 1/20, 0 o (k).

n=0 n>|m/M]
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Using, for all k£ € Ny, |<e”kx,Pn>} < /2, Proposition 3 in [8] and 2 (t) > c(|t|) for the
second inequality, we obtain, for all m > M V (ec(|t]|)) and M :=8/5,

Lm/M]-1

|Imk’ < \/> Z |ﬂm

i) (20 ‘ 5/(2r) ||
<\ bt ( () ) dwgln(g e i) )

Thus, for all m > M V (e?c(]t]))), using Lemma B.4 and (3.4) page 34 in [44] which yields

In <2\/ /c It]) > > In(2) + 2 for the first inequality, and decomposing the exponent as
m =m/M + (1 — 1/M)m for the third, we obtain

< [ (2;2(”m(”zi,;F““QYM ()’
Rt ) e ool
et e (- (- ) ()

<aMap( ( )mm(%ﬁw>>’

M = /5e3/9Ve2 + 1(M + 1)/ ((In(2) + 2)4M~1(2M +1)). Using, for all @ > —1/2 and
z € R, |Jo(x)] < |2|*/(2°T(a+ 1)) (see 9.1.20 in [1]) and |B7*| < 1 for the first display, and
m > M and n! > (n/e)" v/2mn for the third, we obtain, for all k € N,

1 [(km\"
’Jm,k| < Z E <2>

n>|m/M |

- 1 kj Lm/MJe k;i < m@M/me —ﬁl QmHM/m . km
| m/M]!\ 2 A2 ) = Vormer TP\ ke RACWA

)

(I

where 0y, := 1 — M/m. We have, taking N =|7N]|,

Vi: N =MV (Pe(t), Iyy(t) <Q@RP (L) V ),
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where I1(t) == > pczm. (ko<W 2om>N mPah exp (—2p (1 — 1/M)m1n (m/(ec(|t])))) and J; =

> ke (ko< LomsN M [T0—y (mOrr)m/ (21 Me?) exp (—2mln (2mb )y, / (kjmeM)) /M) exp (k;7)).
Then, denoting by vas := In (2/(tmeM)) /M and using that N—1 < 7N and that sup,~; m*Pe 7M™ =
e((2p — 1)/ (pyare))? for the second display, taking 7 = 2/(we2M) for the last display, and

v =M — 7w > 3/4, we obtain, denoting by oy == (20M/m/ (77M’y]2\464))p / (pym),

m29M/m 2m 2m — P
hs ) 2 (mmeXp(‘Mln(NmM»eXp(N”))

keZpr: |k|oo<N mENo: m2N

Ori/m exp (TNT)N? [ 2 2 oo
< _
< ¥ (M) () [ evemmnan
KEZP: |k|so <N

< Z ay,yexp (—pyN) < (27N + 1)P apr yexp (—pyN).
kezZr: |k|loo<N

Denoting by ras(t) := —2 (1 — 1/M)In (ec (|t|) /N) and using sup,,,>1 mPe PEM M — (151, (t)e) P
for the second display, we obtain, for all N > M V (e?c(|t])),

L(t) < (2N + 1Pah, Y mpexp(—2p(1—A14>m1“<ec]<v|t|>>)

meNg: m>N

(2N + Dayr\" [ (27N + Day \? exp (—prp(t)N)
S( war(t)e ) A eXp(‘p“M“)m)de< war(B)e ) (D)

Iyy(t) < (2R(2TN +1))F (on7 ge N/ <<%;Z)e>p pﬁ;(t) e—pm\4(t)N>>
< NP (2R(21 +1))? <aM,J \/ << O‘Z)()p ! (t)>> e PONRME)N

PRM

(B.86)
P (an /(1= 1/ME) N\ _pirncai—
) M;}Vﬁe%o)lm(t) < NP (2R(27 4+ 1))° <aM, 7\ < M2p(1 T )) o—P(ACA-1/M)N

Denote by 7 := (27 + 1) (aar,s V ((1 = 1/M)e/an)F /(2p(1 — 1/M)))) and 7 := py A (2(1 —
1/M)). Using, for all |t| > N/(€*x0), Iy 5(t) < B Yperp. oo < |9k C)lIL2(1,10) < RPN+
1)? and f € H'59 (1), s > o' 4+ p/2 for the first display and (A.1) for the second, we have

/R Hflst [f1(t.) = PRy Frae [£] (2, )
2

N/(eon) )
sup Iyt / S | P ] 0 )t

S -
CR)P 4. jn/(e2z0) N N (e2a0) Pt

2(27 + 1)PNPRP ! o
’ 2 (LV (NV/(e*20))?)* /t|>—zv/<ezxo> ,gzj | Fase [£] (8, k) (1 v £) dt

2
dt

~—
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2
+2/H}'15t —ENFL LS ](t,-)H dt
s 4(21 + 1)PRP7l? NP 4mlPr2’
< 47 NP~ PN ]2 .
S T T IV (V/(@x0) ) | RPN
This yields (B.85) hence (B.83) and (B.82) with

(B.87)
koo \ 27 1 p+ 207\ P+ (2T + 1)PRP / 72
A=9(2= 14 — = LT T T (e2p0)20 TP O
(%) () ( (7)o

APPENDIX B.5. ESTIMATION OF THE MARGINAL fg

For all (w),,cy, increasing, wo = 1, I, M >0, g € {1,00}, consider

HEGW 1 M) = 0 f [ fll2ewery < M, > w0kl 72 < 2707
keNy

For the sake of brevity, we consider one of multiple sets of assumptions on the estimand and
the estimator fq’N’E = D |, <N(e) Em (€ ) om0 g€ Tt does not involve integration or inter-

polation and is based on fg = Fig [fa,8] (0,-). An alternative is to rely on [ fq’g’T’e(a, Jda.

Proposition B.3. Take g € {1,00}, W = W|_g g, #(:) =1V |- 2 (W) ke, = (k:QU)keNO, w =

1V |3+(51 0>2 R, 61,5>0,0<1,M < 00, € =(In(ne)/Inz(ne))~7, ne = nA(0(ng)/v(ng, &)),
N=|N|,and N = ln(ne)/(4k (1 +o) lng(ne)) we have

;@v)} (12(&)))20 =)

Proof. We assume fx/y is known. The general case can be handled like in the proof of (T1.1).
Denote by f§ := Fist [fa,8] (¢,) and define fﬁ’e’N like fﬁ’e’N with ¢, (t) (see above Lemma

A.2) instead of ¢, (t). Use H FENe g ‘ 22:1 ||RjH%2(RP), where Ry = fg — quG,

sup E [Hfg’N’e—fB‘

foEMLSE (1LM)ND, fx|x€E

L2(RP) —
Ry gN€ fg, and Rz := f§ — fg. Let ¢ = 1. The case ¢ = oo can be treated similarly.
By (A 24) and (N 4+ p — 1)? < (pN)P~!, we have
B Te(N +1)
2
(B88) E |:HR1HL2(RP):| SENP exp <2N In <2Rx06 \/ 1>> s

where B := cx2pP~1/[(27)P(p — 1)!]. We clearly have ”32”;@“1) < 2ml? Jwn,

T — /
[~ R,R]P

(B.89) <é /
R,R]P

db

/‘e““—l‘faga b)da

/ la] fup(a, b)da

db<e2M2 <1+ 1>
01
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The result follows from (B.45) and, by (B.88) and (B.89),
2 ] 3 (BNP (76(N-i-1)1+2" \/1)2N

<
L2Re)| — N29\ n 2Rxg

+ 1?4+ M? (1+1>>. O
01

sup E [Hfﬁ,N,e _ fﬁ‘
fﬁerU’%‘)(LM)ﬂDy fx|x€E
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