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ON COMPACTNESS PROPERTIES IN THE AFFINE SOBOLEV

INEQUALITY

IAN SCHINDLER AND CYRIL TINTAREV

Abstract. The paper studies compactness properties in the affine Sobolev in-
equality of Gaoyong Zhang et al [12, 6]. It gives profile decompositions for se-
quences with bounded affine Sobolev functional, and proves existence of mini-
mizers for model isoperimetric problems.

1. Introduction

The paper studies properties of the affine Sobolev inequality of Gaoyong Zhang
et al [12, 6]

(1.1) Jp(u)
def
= cN,p

(∫
S1

dSω

∥ω · ∇u∥Np

)−1/N

≥ S(N, p)∥u∥p∗ ,

where S−1 is a unit N-dimensional sphere, 1 ≤ p < N , p∗ = pN
N−p , and ∥·∥p denotes

the Lp(RN )-norm, cN,p
def
=

(
NωNωp−1

2ωn+p−2

) 1
p
(NωN )

1
N , S(N, p) is the best constant in

the sharp Sobolev inequality, and ωs
def
= π

s
2

Γ(1+ s
2
) is the area of a unit sphere in s

dimensions when s ∈ N.
In what follows we will use the following notations. Notation C refers to any

positive constant, and its value is not fixed. Let Ω be an open set in RN . The space
H1,p(Ω) is the space of all functions u ∈ Lp(Ω) with weak derivatives ∇u ∈ Lp(Ω),

endowed with the norm (∥u∥pp + ∥∇u∥pp)1/p. Its subspace defined as a closure of

C∞
0 (Ω) is denoted as H1,p

0 (Ω). The completion of C∞
0 (Ω) in the norm ∥∇u∥p is

denoted as Ḣ1,p(Ω). It is identified as a space of functions, by an embedding, if

N > p, or if Ω is bounded, and in the latter case it coincides with H1,p
0 (Ω). We

consider the functional Jp as defined on Ḣ1,p(RN ).
Affine Sobolev inequality is a refinement of the limiting Sobolev inequality ∥∇u∥p ≥

S(N, p)∥u∥p∗ in the sense that Jp is bounded by the gradient norm ∥∇·∥p (inequality
(7.1) in [6] that easily follows from the definition), but not vice versa. Functionals
∥∇ · ∥p and Jp coincide are invariant with respect to actions of translations, dila-
tions, and orthogonal rotations. Furthermore, they coincide on radially symmetric
functions (once the normalization constant cN,p is chosen as above). On the other
hand, unlike the gradient norm, the affine Sobolev functional is invariant with re-
spect to the action of the group SL(N), i.e. Jp(u ◦ T ) = Jp(u) whenever detT = 1.
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2 I.SCHINDLER AND C. TINTAREV

This easily follows from the following representation of the affine Sobolev functional
([6, p.20], easily derived by radial integration):

(1.2) Jp(u) = cN,p

(
1

(N − 1)!

∫
RN

e−∥ξ·∇u∥pdξ

)−1/N

.

Since supdetT=1 ∥u ◦ T∥Ḣ1,p = ∞ for any u ∈ C∞
0 (RN ) \ {0}, as it can be easily

tested on diagonal matrices, inequality ∥∇u∥p ≤ CJp(u) does not hold.

While Sobolev inequality defines a continuous embedding Ḣ1,p(RN ) ↪→ Lp∗(RN ),

where Ḣ1,p(RN ) is a completion of C∞
0 (RN ) with respect to the gradient norm

∥∇u∥p, the functional Jp is not a norm. Indeed, evaluating it on a sequence u+v◦Tk

where u and v ◦ Tk have disjoint supports, Tk ∈ SL(N) and |Tk| → ∞, one can
easily see from Lemma 4.3 below that it does not satisfy the triangle inequality.

Applications of the affine Sobolev inequality to information theory are discussed
in [6]. For N ≤ p, analogs of Moser-Trudinger and Morrey-Sobolev inequalities
involving the functional Jp have been studied in [3].

The main objective of this paper is to generalize properties of the affine Sobolev
inequality, studied in [8] for the case p = 2, to all p > 1. In particular, we prove

that, similarly to the Sobolev embeddings, the set {u ∈ Ḣ1,p(Ω), Jp(u) ≤ 1} with
bounded Ω is compact in Lq(Ω), 1 ≤ q < p∗, and give profile decompositions for
sequences with bounded Jp when Ω is not necessarily bounded. In the case p = 2
many arguments in [8] resort to an identity

(1.3) J2(u) = inf
T∈SL(N)

∥∇u ◦ T∥2,

known only for p = 2. For general p only a weaker relation is known ([5, Theorem
1.2]):

(1.4) C ′ min
T∈SL(N)

∥∇(u ◦ T )∥p ≤ Jp(u) ≤ C min
T∈SL(N)

∥∇(u ◦ T )∥p, u ∈ Ḣ1,p(RN ).

(Note that the minimum in (1.4) is attained since the map T 7→ ∥∇(u ◦ T )∥p is
continuous on SL(N), and its closed sublevel sets are compact on SL(N), coercive
behavior of this map can be inferred from the values of the trace of T ∗T ).

Remark 1.1. Note that from (1.4) it easily follows that the Friedrichs inequality

∥∇u∥p ≥ C∥u∥p, u ∈ H1,p
0 (Ω) holds for an open set Ω ⊂ RN if and only if its affine

counterpart Jp(u) ≥ C∥u∥p, u ∈ H1,p
0 (Ω), holds true.

Since we do not know if one can identify Jp(u) as a scalar factor of minT∈SL(N) ∥∇(u◦
T )∥p when p ̸= 2, if one defines the affine p-Laplacian as the Fréchet derivative of
Jp, it may be different from the Fréchet derivative of infT∈SL(N) ∥∇(u ◦ T )∥p. Con-
sequently, treatment of variational problems involving Jp in this paper is different
from that in [8] when p = 2.

The affine Sobolev inequality (1.1) easily follows of course from the usual Sobolev
inequality and (1.4):

(1.5) ∥u∥p∗ ≤ C inf
T∈SL(N)

∥u ◦ T∥p∗ ≤ C inf
T∈SL(N)

∥∇(u ◦ T )∥p ≤ CJp(u).
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ON AFFINE SOBOLEV INEQUALITY 3

Note also that from the left hand side of (1.4) it follows that if Jp(u) = 0, u ∈
Ḣ1,p(Ω), and Ω ⊂ RN is a convex domain, then there is a family of parallel hyper-
planes, such that u is constant on their intersection with Ω.

In Section 2 we prove two Hardy-type inequalities involving the affine Sobolev
functional. In Section 3 we study compactness properties of Jp. In Section 4 we give
profile decompositions for sequences with a Jp-bound. Section 5 gives existence of
minimizers to some isoperimetric problems involving Jp. The Appendix contains, for

the convenience of the reader, profile decompositions for H1,p(RN ) and Ḣ1,p(RN ).

2. Inequalities of Hardy type for affine Sobolev functional

Theorem 2.1. Let 1 ≤ p < N . Then for any u ∈ Ḣ1,p(RN ),

(2.1) CH

∫
RN

|u(x)|p

|x|p
dx ≤ Jp(u)

p,

where CH =
(
N−p
p

)p
is the best constant in the Hardy inequality as well as in the

inequality above.

Proof. Let v⋆ denote a symmetric decreasing rearrangement of v. Fix u ∈ Ḣ1,p(RN ),
and let Tu ∈ SL(N) be a minimizer in ∥∇(u ◦ T )∥p. Applying Littlewood-Hardy
inequality at the first step, Hardy inequality at the second step, equality of Jp and
the p-th power of the gradient norm on the third step, and Polya-Szegö inequality
for Jp from [6], (see also [3, Theorem 2.1]) at the last step, we have

CH

∫
RN

|u(x)|p

|x|p
dx ≤ CH

∫
RN

|u⋆(x)|p

|x|p
dx ≤ ∥∇u⋆∥pp = Jp(u

⋆)p ≤ Jp(u)
p.

The constant CH is the largest possible since it is optimal for radial functions.
Indeed, in such a case, Jp = ∥∇ · ∥p ( see [6, Sction 7]) and so the above inequality
reverts to the standard one. □

In what follows Br(x) will denote an open Euclidean ball of radius r centered at
x ∈ RN . Let

(2.2) Ep(u)
def
= inf

T∈SL(N)
∥∇(u ◦ T )∥pp.

Theorem 2.2. There exists CN > 0 such that for any u ∈ Ḣ1,N (B1(0)),

(2.3)

(
N − 1

N

)N ∫
B1(0)

|u(x)|N

(|x| log 1
|x|)

N
dx ≤ EN (u) ≤ CNJN (u)N .

Proof. If we consider the unit ball B1(0) as the Poincaré ball model of the hyper-
bolic space HN , then ∥∇u∥N coincides with the invariant norm ∥du∥N of the Sobolev
space H1,N (HN ). Let v⋆ denote a symmetric decreasing rearrangement of a func-
tion v with respect to the Riemannian measure of HN , which in the Ponicaré ball

model has the form 2Ndx
(1−|x|2)N . Let u ∈ H1,N (HN ). Applying the Hardy-Littlewood

inequality for rearrangements for the hyperbolic space (see [2]) at the first step (not-

ing that
(

1−r2

r log 1
r

)N
is a decreasing function), Leray inequality for the N -Laplacian
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(see [1])

(2.4)

(
N − 1

N

)N ∫
B1(0)

|u(x)|N

(|x| log 1
|x|)

N
dx ≤ ∥∇u∥NN ,

at the second step, using the measure-preserving property of SL(N) at the third
step, Polya-Szegö inequality for hyperbolic space ([2]) at the fourth step, and (1.4)
at the last step, we have, for any T ∈ SL(N),(

N − 1

N

)N ∫
B1(0)

|u(x)|N

(|x| log 1
|x|)

N
dx ≤

(
N − 1

N

)N ∫
B1(0)

|u⋆(x)|N

(|x| log 1
|x|)

N
dx ≤

∥∇u⋆∥NN = ∥∇(u ◦ T )⋆∥NN ≤ ∥∇(u ◦ T )∥NN .

Taking the infimum over T ∈ SL(N) and using (1.4) we arrive at (2.3). □

3. Affine-null and affine-flask domains. Compactness in Lq.

In what follows |Ω| will denote the Lebesgue measure of a set. Recall the definition
of the lower limit for a sequence (Xk) of sets:

lim infXk
def
=

∪
n∈N

∩
k≥n

Xk.

The following definition can be used as a sufficient condition on Ω, for compactness
of the Sobolev embedding H1,p(Ω) ↪→ Lq(Ω), p < q < p∗ even when Ω has infinite
measure (see [11]).

Definition 3.1. A subset Ω of RN will be called a shifts-null set if for any sequence
(yk) ⊂ ZN , such that |yk| → ∞,

(3.1) | lim inf(Ω− yk)| = 0.

Definition 3.2. A subset Ω of RN will be called an affine-null set if for any se-
quences (Tk) ⊂ SL(N) and (yk) ⊂ ZN , such that |Tk|+ |yk| → ∞,

(3.2) | lim inf T−1
k (Ω− yk)| = 0.

Note that any bounded set is affine-null. An example of an unbounded affine null

set is {(x1, x̄) ∈ R×RN−1 : |x̄| < e−x2
1}. Not every null set relative to the group of

shifts alone (i.e. ∀(yk) ⊂ RN | lim inf(Ω− yk)| = 0) is affine-null. In particular, the
set {(x1, x̄) ∈ R×RN−1 : |x̄| < (1+ log 1 + |x1|)−1} is shifts-null but not affine-null.

Definition 3.3. An open subset Ω of RN will be called affine-flask set if for any
(Tk) ⊂ SL(N) and (yk) ⊂ ZN , such that |yk|+ |Tk| → ∞, there exist a y ∈ ZN and
a T ∈ SL(N) such that

(3.3)
∣∣lim inf T−1

k (Ω− yk) \ (TΩ+ y)
∣∣ = 0.
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ON AFFINE SOBOLEV INEQUALITY 5

In other words, lim inf T−1
k (Ω − yk) is contained in the image of Ω modulo an

affine transformation and up to a set of zero measure. Obviously an affine-null set
as well as RN are affine flask sets. The union of unit balls

∪
n∈NB1(n

4e0), |e0| = 1,
is an affine flask set. If one connects consecutive balls by circular cylinders of
corresponding radius e−n that have Re0 as their common axis, one gets a connected
affine flask set. On the other hand a cylindrical domain with a smooth boundary is
an affine flask set only if it is RN . Indeed, let Ω = R× ω and let Tk be a diagonal
matrix with diagonal entries k1−N , k, . . . , k. Then lim inf TkΩ = RN .

Theorem 3.4. F Let Ω ⊂ RN be an affine-null domain [for example, a bounded

domain]. Then the set B = {u ∈ H1,p
0 (Ω); Jp(u) ≤ 1} is relatively compact in

Lq(Ω), 1 < p < q < p∗. If |Ω| < ∞, this is true also for q ∈ [1, p].

Note that the set B is not bounded in H1,p
0 (Ω).

Proof. Let (uk) ⊂ B and consider it as a sequence in H1,p(RN ). Let Tk ∈ SL(N)
correspond to the minima in (1.4). Let vk = uk◦Tk. Then (vk) is a bounded sequence

in H1,p
0 (Ω), which we will consider as a sequence in H1,p(RN ). If |Tk| → ∞ then by

(3.2), vk(· − yk) ⇀ 0 in H1,p(RN ) for any sequence (yk) ⊂ RN (for details see the
argument in the proof in [11, Lemma 4.1]), which implies (e.g. by Proposition 6.2)
that vk → 0 in Lq, p < q < p∗, and thus uk → 0 in Lq. Otherwise, there is a
renamed subsequence of (Tk) convergent to some T ∈ SL(N). Passing again to a
renamed weakly convergent subsequence we may assume that vk ⇀ v in H1,p(RN ),

and thus uk ⇀ v ◦T−1 in H1,p
0 (Ω). On the other hand, from (3.2) we can infer that

for any sequence (yk) ⊂ RN , (vk − v)(· − yk) ⇀ 0 in H1,p(RN ) and thus, setting

u
def
= v ◦ T−1, ∥uk − u∥q ≤ ∥vk − v∥q + ∥u ◦ T − u ◦ Tk∥q → 0. □

4. Profile decompositions

In this section we outline concentration behavior of sequences with bounded val-
ues of Jp (note that they are not necessarily bounded in the Sobolev norm). From
now on we assume that p > 1.

Theorem 4.1. Let (uk) ⊂ Ḣ1,p(RN ), 1 < p < N , satisfy Jp(uk) ≤ C with some

C > 0. There exist (Tk) ⊂ SL(N), w(n) ∈ Ḣ1,p(RN ), (y
(n)
k )k∈N ⊂ RN , (j

(n)
k )k∈N ⊂

Z with n ∈ N, and disjoint sets N0,N+∞,N−∞ ⊂ N, N0 ∪ N+∞ ∪ N−∞ = N, such
that, for a renumbered subsequence of (uk),

2
−N−p

p
j
(n)
k uk(Tk(2

−j
(n)
k ·+y

(n)
k )) ⇀ w(n), n ∈ N,(4.1)

|j(n)k − j
(m)
k |+ |2j

(n)
k (y

(n)
k − y

(m)
k )| → ∞ for n ̸= m,(4.2) ∑

n∈N
∥∇w(n)∥pp ≤ C lim inf Jp(uk)

p,(4.3)

uk −

[∑
n∈N

2
N−p

p
j
(n)
k w(n)(2j

(n)
k (· − y

(n)
k ))

]
◦ T−1

k → 0 in Lp∗ ,(4.4)

and the series in the square brackets above converges in Ḣ1,p(RN ) unconditionally
in n and uniformly with respect to k.
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Moreover, 1 ∈ N0, y
(1)
k = 0; j

(n)
k = 0 whenever n ∈ N0; j

(n)
k → −∞ (resp.

j
(n)
k → +∞) whenever n ∈ N−∞ (resp. n ∈ N+∞); and y

(n)
k = 0 whenever |2j

(n)
k y

(n)
k |

is bounded.

Proof. Let Tk ∈ SL(N) be those that realize the minimum in the left hand side of
(1.4). Let vk = uk ◦ Tk and apply Theorem 6.1 from Appendix. To conclude the
proof of Theorem 4.1 it remains to note that (6.4) gives (4.4) by composing the left
and the right hand side with T−1

k on the right, and that the right hand side of (6.3)
yields the right hand side of (4.3) by (1.4). □

An analogous decomposition for sequences with bounded Jp
p+∥·∥pp can be derived

in a completely analogous way from Proposition 6.2 in Appendix:

Proposition 4.2. Let (uk) ⊂ H1,p(RN ), 1 < p < N , be a sequence such that

Jp(uk)
p+∥uk∥pp ≤ C with some C > 0. There exist w(n) ∈ H1,p(RN ), (Tk) ⊂ SL(N),

and (y
(n)
k )k∈N ⊂ ZN , y

(1)
k = 0, n ∈ N, such that, on a renumbered subsequence,

uk(Tk(·+ y
(n)
k )) ⇀ w(n),(4.5)

|y(n)k − y
(m)
k | → ∞ for n ̸= m,(4.6) ∑

n∈N
∥w(n)∥p

H1,p ≤ C lim inf Jp(uk)
p + ∥uk∥pp,(4.7)

uk −

[∑
n∈N

w(n)(· − y
(n)
k )

]
◦ T−1

k → 0 in Lq(RN ), q ∈ (p, p∗),(4.8)

and the series in the square brackets above converges in H1,p(RN ) unconditionally
in n and uniformly with respect to k.

Lemma 4.3. If α > 1, then the map

(4.9) Φα(u)
def
=

(∫
S1

dSω

u(ω)α

)−1/α

,

positively homogeneous of degree 1, is concave on the set of positive continuous
functions on S1, or, equivalently, satisfies Φα(u1 + u2) ≥ Φα(u1) + Φα(u2).

Proof. We infer concavity from calculation of the second derivative. Let v be a
continuous function on S1. Then

Φ′
α(u)[v] =

(∫
S1

dSω

u(ω)α

)− 1
α
−1 ∫

S1

v(ω)dSω

u(ω)α+1
,

and

Φ′′
α(u)[v, v] =

(− 1

α
− 1)(−α)

(∫
S1

dSω

u(ω)α

)− 1
α
−2(∫

S1

v(ω)dSω

u(ω)α+1

)2

−

(α+ 1)

∫
S1

v(ω)2dSω

u(ω)α+2

(∫
S1

dSω

u(ω)α

)− 1
α
−1

.



ON AFFINE SOBOLEV INEQUALITY 7

Applying the Cauchy inequality to the integral
∫
S1

v(ω)dSω

u(ω)α+1 understood as the scalar

product of functions 1 and v
u in L2(S1;

dSω
u(ω)α ), we get that Φ′′

α(u)[v, v] ≤ 0. □

Proposition 4.4. Assume conditions of Theorem 4.1 and let w(n), n ∈ N be as in
the theorem. Then

(4.10)
∑
n∈N

Jp(w
(n))p ≤ lim inf Jp(uk)

p

and

(4.11) ∥uk∥p
∗

p∗ →
∑
n∈N

∥w(n)∥p
∗

p∗ .

Proof. Note that for any ω ∈ S1,

(4.12)
∑
n∈N

∥ω · ∇w(n)∥pp ≤ lim inf ∥ω · ∇uk∥pp

(for details see, for example, the argument in [9] for the inequality
∑

n∈N ∥∇w(n)∥pp ≤
lim inf ∥∇uk∥pp). This together with Lemma 4.3 for α = N/p gives relation (4.10).
Relation (4.11) is an iteration of the classical Brezis-Lieb lemma based on isometry
of the scaling transformations (see e.g [4]). □
Remark 4.5. Note that under conditions of Proposition 4.2, iteration of the Brezis-
Lieb lemma (cf. [4]) gives

(4.13) ∥uk∥qq →
∑
n∈N

∥w(n)∥qq for any q ∈ (p, p∗).

5. Some variational problems

Theorem 5.1. Let Ω ⊂ RN be an affine-null domain [for example, a bounded
domain] with a piecewise-C1-boundary. Then the minimum in the problem

(5.1) κp,q = inf
u∈H1,p

0 (Ω),∥u∥q=1
Jp(u), p < q < p∗,

is attained. If |Ω| < ∞, this is also true whenever q ∈ [1, p].

Proof. Let (uk) ⊂ H1,p
0 (Ω) be a minimizing sequence. Consider it as a sequence

in H1,p(RN ). Let Tk ∈ SL(N) correspond to the minima in (1.4). Repeating the
argument in the proof of Theorem 3.4, we may assume, for a suitable renamed
subsequence, that either |Tk| → ∞ and then uk → 0 in Lq, or Tk → T ∈ SL(N),

and (uk) converges weakly inH1,p
0 (Ω) as well as in Lq(Ω) to some u. The former case

is ruled out, since by assumption ∥uk∥q = 1. In the latter case, lower semicontinuity
of the norm implies that ∥∇u∥p ≤ κp,q. Then by (1.4) Jp(u) ≤ κp,q, and thus u is
necessarily a minimizer. □
Theorem 5.2. Let q ∈ (p, p∗) and let Ω ⊂ RN be an open affine flask set with a
piecewise-C1 boundary [for example, Ω = RN ]. Then the minimum in the problem

(5.2) κ = inf
u∈H1,p

0 (Ω):∥u∥q=1
Jp(u)

p + ∥u∥pp

is attained.
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Proof. Let (uk) ⊂ H1,p
0 (Ω) be a minimizing sequence. Consider it as a sequence in

H1,p(RN ). Let (Tk) ⊂ SL(N) and let w(n), n ∈ N, be as in Theorem 4.2, so we have
∥∇(uk ◦ Tk)∥p ≤ CJp(uk ◦ Tk) ≤ C. From the iterated Brezis-Lieb Lemma we have

(5.3) 1 = ∥uk∥qq =
∑
n

∥w(n)∥qq.

Let tn = ∥w(n)∥qq.
By (4.10) and iterated Brezis-Lieb lemma,

κ = lim Jp(uk(Tk · −y + y
(n)
k ))p + ∥uk(Tk · −y + y

(n)
k )∥pp

≥
∑
n∈N

Jp(w
(n))p + ∥w(n)∥pp.(5.4)

Since Ω is an affine-flask set, (3.3) and (4.5) imply that with some T (n) ∈ SL(N)
and some yn ∈ RN one has

uk(Tk((T
(n))−1 · −yn) + y

(n)
k ) ⇀ w(n)((T (n))−1(· − yn)) ∈ H1,p

0 (Ω).

From (5.4) we have

(5.5) κ ≥
∑
n∈N

κtp/qn ,

which, since by (5.3)
∑

n ∥w(n)∥qq = 1, can hold only if tn = 0 for n ̸= m and tm = 1

with some m ∈ N. Consequently w(m)((T (m))−1(· − ym)) is a minimizer. □

Theorem 5.3. Let q ∈ (p, p∗) and let V ∈ L∞(RN ) satisfy lim|x|→∞ V (x) = 1 and
V (x) < 1. Then the minimum in the problem

(5.6) κ′ = inf
u∈H1,p(RN ),∥u∥q=1

Jp(u)
p +

∫
RN

V (x)|u(x)|pdx

is attained.

Proof. Let (uk) ⊂ C∞
0 (RN ) be a minimizing sequence. Let (Tk) ⊂ SL(N) and let

w(n), n ∈ N, be as in Proposition 4.2. From the iterated Brezis-Lieb Lemma we
have

(5.7) 1 = ∥uk∥qq =
∑
n

∥w(n)∥qq.

Let tn = ∥w(n)∥qq.
Let us represent Jp(uk ◦ Tk)

p +
∫
V (x)|uk(x)|pdx as Jp(uk ◦ Tk)

p + ∥uk ◦ Tk∥pp +∫
(V (x)−1)|uk(Tkx)|pdx and note that the last term is weakly continuous inH1,p(RN ).
Assume first that |Tk| → ∞. Then by (4.10) we have

κ′ = lim Jp(uk(Tk · −y + y
(n)
k ))p + ∥uk∥pp

≥
∑
n∈N

Jp(w
(n))p + ∥w(n)∥pp

≥
∑
n∈N

κtp/qn ≥ κ,(5.8)
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where κ is as in (5.2). Here the last but one inequality follows by (5.2) since w
∥w∥q

is a unit vector in Lq, while the last inequality follows since
∑

n tn = 1 and p < q.
Evaluation of the left hand side of (5.6) at the minimizer of (5.2) gives, how-

ever, that κ′ < κ, which is a contradiction. Consequently, on a suitable renamed
subsequence, we have Tk → T ∈ SL(N). In this case uk ⇀ w(1) ◦ T−1 and (4.10)
gives

κ′ = lim Jp(uk ◦ Tk)
p + ∥uk∥pp +

∫
(V (x)− 1)|w(1) ◦ T−1|pdx

≥ κ′t
p/q
1 +

∞∑
n=2

κtp/qn ,(5.9)

which is false unless tn = 0 for n > 1 and t1 = 1. Consequently w(1) ◦ T−1 is a
minimizer. □

6. Appendix

The following theorem is a trivial refinement of [9, Theorem 2] (Sergio Solimini).

Theorem 6.1. Let (vk) ⊂ Ḣ1,p(RN ), N > p > 1, be a bounded sequence. There

exist w(n) ∈ Ḣ1,p(RN ), (y
(n)
k )k∈N ⊂ RN , (j

(n)
k )k∈N ⊂ Z with n ∈ N, and disjoint sets

N0,N+∞,N−∞ ⊂ N, N0∪N+∞∪N−∞ = N, such that, for a renumbered subsequence
of (vk),

2
−N−p

p
j
(n)
k vk(2

−j
(n)
k ·+y

(n)
k ) ⇀ w(n), n ∈ N,(6.1)

|j(n)k − j
(m)
k |+ |2j

(n)
k (y

(n)
k − y

(m)
k )| → ∞ for n ̸= m,(6.2) ∑

n∈N
∥∇w(n)∥pp ≤ lim sup ∥∇vk∥pp,(6.3)

vk −
∑
n∈N

2
N−p

p
j
(n)
k w(n)(2j

(n)
k (· − y

(n)
k )) → 0 in Lp∗(RN ),(6.4)

and the series above converges in Ḣ1,2(RN ) unconditionally and uniformly with
respect to k.

Moreover, 1 ∈ N0, y
(1)
k = 0; j

(n)
k = 0 whenever n ∈ N0; j

(n)
k → −∞ (resp.

j
(n)
k → +∞) whenever n ∈ N−∞ (resp. n ∈ N+∞); and y

(n)
k = 0 whenever |2j

(n)
k y

(n)
k |

is bounded.

Note that the unconditional convergence of the series is not stated in the original
version of the theorem, but can be easily inferred from the proof. This omission
has been remedied in the Banach space version of [10, Theorem 2.6]. This remark
applies also to the easy corollary below.

Proposition 6.2. Let (uk) ⊂ H1,2(RN ) be a bounded sequence. There exist w(n) ∈
H, (y

(n)
k )k∈N ⊂ ZN , y

(1)
k = 0, with n ∈ N, such that, on a renumbered subsequence,

uk(·+ y
(n)
k ) ⇀ w(n),(6.5)

|y(n)k − y
(m)
k | → ∞ for n ̸= m,(6.6)
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n∈N

∥w(n)∥p
H1,p ≤ lim sup ∥uk∥pH1,p ,(6.7)

uk −
∑
n∈N

w(n)(· − y
(n)
k ) → 0 in Lq(RN ), q ∈ (p, p∗),(6.8)

and the series in (6.8) converges in H1,q(RN ) unconditionally in n and uniformly
in k.
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