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Abstract

This paper develops a general framework for models, static or dynamic, in which agents

simultaneously make both discrete and continuous choices. I show that such models are non-

parametrically identified. Based on the constructive identification arguments, I build a novel

two-step estimation method in the lineage of Hotz and Miller (1993) but extended to discrete

and continuous choice models. The method is especially attractive for complex dynamic models

because it significantly reduces the computational burden associated with their estimation. To

illustrate my new method, I estimate a dynamic model of female labor supply and consumption.
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1 Introduction

Many economic problems involve joint discrete and continuous choices. For example, a firm can

decide on a pricing scheme (per unit, flat rate) and the corresponding price level (Timmins, 2002).

It can decide what to produce and the corresponding sales price (Crawford et al., 2019). Firms also

decide whether to register their business and how many workers to hire (Ulyssea, 2018). Students

select their majors and decide how much effort to exert into their study (Ahn et al., 2019). Con-

sumers can decide what to buy and how much of it to consume (e.g. appliance choice and demand

for energy, Dubin and McFadden, 1984). In housing, buyers decide their house size and housing

tenure (Hanemann, 1984; Bajari et al., 2013). The buyer of a car selects a model and the mileage of

the car (Bento et al., 2009). Individuals decide whether to retire or not and how much they plan to

consume accordingly (Iskhakov et al., 2017). Similarly, labor force participation and consumption

are joint choices for potential workers (Altuǧ and Miller, 1998; Blundell et al., 2016).

In these cases, a rational agent makes both decisions simultaneously. Here ‘simultaneous’ means

that given the information she has, the agent jointly make both choices. As a result, the discrete

choice is endogenous with respect to the continuous choice and vice versa. To take a labor market

example, if she works, a woman consumes differently than if she does not work: she has two different

conditional consumption choices. And at the same time, her decision of whether to work or not is

dependent on these two conditional continuous choices. Unfortunately, the identification of models

with simultaneous choices is difficult (Matzkin, 2007). Indeed, there is a core observability problem

because we only observe the continuous choice made in the selected discrete alternative, and we

do not know the counterfactual choices the individual would have made in the other alternatives.

Ideally, we would like to recover counterfactual continuous choices using the choices of individuals

with similar characteristics but who chose another alternative. However, doing so is not possible

if individuals also differ on factors which are unobserved by the econometrician and affect both

continuous and the discrete choices. In this case, two identical individuals as measured by their

observed covariates might still differ on the unobserved dimension. There is a problem of selec-

tion on unobservables, which prevents the identification of counterfactual continuous choices. To

further pursue the example, if an econometrician observes that working individuals consume more

than unemployed individuals, she cannot identify whether this is because the consumption choice

conditional on working is truly higher or because individuals with an unobserved higher taste for

consumption select themselves more into working.
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This paper develops a general framework of simultaneous discrete-continuous choice models

suited for static or dynamic problems. I provide minimal necessary conditions under which non-

parametric identification of the model can be obtained, using an instrument for the unobserved

selection. Then, building upon the identification, I provide an estimation method for these models.

The method is attractive because it yields significant computational gains over the estimation of

dynamic models, in the lineage of Hotz and Miller (1993). I also show how to apply this method to

a dynamic discrete-continuous choice model of female labor force participation and consumption.

The first contribution of this paper is that I provide a constructive proof for the non-parametric

identification of a general class of structural models in which agents simultaneously make a discrete

and a continuous choices. To do so, I require an instrument that must be relevant for the selection

into the discrete choice and excluded from the conditional continuous choices. For example, the

previous discrete choice can be a good instrument in the presence of switching costs. Indeed, it im-

pacts the current discrete decision through the switching cost. Conditional on the current discrete

decision, it is excluded from the current continuous choice. In this way, observable differences in the

distribution of the choices with respect to the instrument can be attributed to unobserved differ-

ences in selection and not differences in continuous choices. I show that, paired with restrictions on

the effect of unobserved heterogeneity on the continuous choice (monotonicity, rank invariance), the

instrument allows us to achieve non-parametric identification of the optimal discrete and continuous

choices. Once the optimal choices are identified, it can be further shown that the rest of the model

is identified, for example, by exploiting first-order conditions (in the spirit of Blundell et al., 1997).

The second contribution of the paper is in terms of estimation. I build a two-step estimation

method, similar to Hotz and Miller (1993) but for discrete and continuous choices. In the first

step, one estimates the policies, which I name after Hotz-Miller’s CCPs: Conditional Continuous

Choices (CCCs), and Conditional Choice Probabilities (CCPs). This step is built on the identifi-

cation arguments. The policies are estimated directly from the data without solving the structural

model. To this end, I propose a novel method that estimates the entire monotone continuous choice

functions directly instead of proceeding pointwise. In the second step, one uses the estimated CCCs

and CCPs to estimate the structure of the model. For example, I exploit the fact that within my

general framework, the payoffs are related to optimal choices through the first-order conditions. My

estimation method is attractive because it yields sizeable computational gains. Typical dynamic

discrete or continuous choice models are difficult to estimate because they involve solving the theo-
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retical model (either by backward recursion or fixed point algorithms). Dynamic discrete-continuous

choices model are even more difficult to estimate because the mixed choices can introduce kinks and

non-concavities in the value function (Iskhakov et al., 2017). Given that I can recover the CCCs

and CCPs in the first stage, I can exploit them to estimate the rest of the model without having

to compute the value function or solve the model. It yields computational gains comparable to the

computational gains generated by Hotz and Miller (1993) in the dynamic discrete choice literature.

The gains are so important that they not only reduce the time required to estimate the models,

but also make it possible to estimate models that have thus far been deemed computationally in-

tractable. In this respect, my method may facilitate the use of simultaneous discrete-continuous

choice models.

Finally, I illustrate my method by building and estimating a dynamic life-cycle model of women’s

consumption and labor force participation, in the spirit of Blundell et al. (1997, 2016). This ap-

plication has been implemented under a parametric framework for practical reasons. First, doing

so avoids ‘curse of dimensionality’ concerns, and second, it makes my empirical findings compara-

ble to the existing literature. I add to existing models a more flexible distribution of unobserved

heterogeneity. Thanks to my method, I flexibly estimate the complete distribution of consumption

choices and working probabilities at any given set of observed covariates (assets, earnings, family

status, education, etc.). Hence, I can recover distributions such as that of the marginal propensity

to consume when earnings or benefits increase for any individual. I use these estimated policies

to estimate the parameters of the structural model. For example, I find a constant relative risk

aversion of 1.63, close to the value of 1.56 in Blundell et al. (1994) and the value of 1.53 in Alan et al.

(2009). All things considered, the method developed in this paper allows for more complete models

in terms of unobserved heterogeneity, with a faster estimation and I still find estimates consistent

with the existing literature. Therefore the method is very attractive in practice.

Related Literature:

There is a vast empirical literature that uses dynamic discrete choice models. For example, such

works study labor market transition and career choice (Keane and Wolpin, 1997), fertility choice

(Eckstein and Wolpin, 1989) and education choice (Arcidiacono, 2004). Starting from the bus

replacement problem of Rust (1987), developments have been made in the estimation and iden-

tification of these models. They include non-exhaustively: Hotz and Miller (1993); Hotz et al.
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(1994); Rust (1994); Magnac and Thesmar (2002); Aguirregabiria and Mira (2002, 2007); Kasahara

and Shimotsu (2009); Arcidiacono and Miller (2011); Hu and Shum (2012); Arcidiacono and Miller

(2019, 2020); Abbring and Daljord (2020). For a survey, see Aguirregabiria and Mira (2010) or

Arcidiacono and Ellickson (2011).

Similarly, the literature on dynamic continuous choice models is also voluminous, especially con-

cerning consumption/saving choices (Carroll, 2006) or investment choices (Hong and Shum, 2010).

There are also methods such as Bajari et al. (2007) that can be applied to either dynamic discrete

choice models or dynamic continuous choice models (but not both).

However, in many cases, economic problems involve several joint decisions, not only one discrete

choice or only one continuous choice. For example, labor force participation is very much related

to saving decisions. By focusing only on one of these two dimensions and ignoring the other en-

dogenous choice, one might be missing something important. Unfortunately, empirical applications

of the dynamic discrete-continuous choice framework are less popular, as there was no generally

identified setup prior to this work. For example, Blundell et al. (1997) provide identification of

such models once the optimal choices are identified but do not directly address the identification

of the choices. The existing literature employs several tricks to overcome the unobserved selec-

tion problem. The most common is to have implicit or explicit assumptions about the unobserved

selection process. For example, Dubin and McFadden (1984), Hanemann (1984) or Bento et al.

(2009) have specific assumptions about their error disturbances (independence, measurement er-

rors, known joint distribution), which generate a specific selection process. Blevins (2014) studies

the non-parametric identification of dynamic discrete-continuous choice models but assumes a very

specific timing in which the discrete choice takes place before the realization of the nonsepara-

ble shock and the continuous decision. Hence, unobserved selection is not allowed to depend on

nonseparable shock realization. Similarly, Iskhakov et al. (2017) break the simultaneity issue by

assuming that the discrete retirement choice is taken before and based on the expectations about

the continuous consumption choice. Murphy (2018) also imposes that the two choices are taken

sequentially. In his paper, parcel owners first decide whether to build or not, and only afterwards,

a nonseparable price shock is realized and they decide on their house size accordingly if they chose

to build in the first stage. The problem is that the sequentiality of the choices is a strong assump-

tion, and it might lead to biased results if the true decision process is in fact simultaneous. For

example, in Murphy (2018), it is likely that small price realization will increase both the house size
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and the probability of building a house. The imposed timing ignores this, as the discrete building

choice is only based on expectations about the price shock and corresponding house size choice.

Thus it might miss part of what is truly happening in the data. My general simultaneous choice

framework nests these different timing assumptions, which have testable implications within the

framework. Thus I can verify when the sequentiality assumption is reasonable. Another technique

is to discretize the continuous choice such that the model becomes a dynamic discrete choice model.

For example, De Groote and Verboven (2019) study the adoption of solar photovoltaic systems and

discretize the continuous level of adopted capacities. This is appealing, as it allows the application

of known techniques in the dynamic discrete choice literature. However, discretizing the continuous

choice is implicitly equivalent to making an assumption about the unobserved selection process via

the assumption on the distribution of the additive discrete error terms. I show in this paper that

by exploiting the continuous nature of the choice, the unobserved selection process can be identified

instead of being assumed. Therefore, one can focus on the true discrete-continuous choice problem

without discretizing the continuous choice. Another solution is to completely abstract from the

nonseparable shock, i.e., to assume that individuals with the same observed covariates will make

the same continuous choice. A more convincing alternative is to reduce the level of unobserved

heterogeneity, for example, by including only a finite number of unobserved types (Blundell et al.,

2016). My approach is more general, as I allow for a more flexible distribution of unobserved het-

erogeneity.

The closest literature for the identification of simultaneous discrete-continuous choice can be

found in static reduced-form identification analysis of non-parametric simultaneous equations (Matzkin,

2007, 2008; Imbens and Newey, 2009), nonseparable models (Chesher, 2003; Chernozhukov et al.,

2020), the discrete-continuous Roy model (Newey, 2007), treatment effects with endogenous selec-

tion into treatment (Heckman and Vytlacil, 2005; Chernozhukov and Hansen, 2005, 2006, 2008),

or in reduced-form identification analysis of dynamic treatment effects (Heckman and Navarro,

2007; Heckman et al., 2016). In this literature, the idea of using an instrument for non-parametric

identification of simultaneous equations is frequent (Newey and Powell, 2003). However, my main

contribution here is that I obtain identification under very weak and testable assumptions on the

instrument. I only need a condition that the instrument is relevant, except at most at a finite set of

points. This relevance yields a non-overlapping condition, similar to what Torgovitsky (2015) and

D’Haultfœuille and Février (2015) employ in a different context with continuous treatment. Using
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the additional assumption that the optimal choice is monotone with respect to the unobserved

nonseparable shock (as in quantile regression), the relevance is sufficient to recover identification.

Indeed, I show that there exists a unique monotone function identified by the system, while if I had

proceeded pointwise, uniqueness would have not held. By proceeding pointwise, other studies men-

tioned above need either stronger assumptions on the effect of the instrument (often regarding the

rank of a matrix of the probabilities of selecting into treatment with respect to the instrument) or

a different, less general setup for the selection mechanism (e.g., an additive process). To the best of

my knowledge, Vuong and Xu (2017) are the only other authors to exploit the power of monotonicity

in a similar fashion as I do for identification. However, they use it to relax strict monotonicity and

still maintain a strong rank condition on the effect of the instrument on the selection process, while

I am as general as possible with my mild condition of relevance. By developing a framework where

the optimal choices take the form of a triangular simultaneous system of equations, I establish a

connection and show how one can use the results from this literature on reduced-form identification

to identify more general dynamic structural models.

I also contribute to the literature on faster estimation methods that avoid the computation of

the value function (Rust, 1987; Hotz and Miller, 1993; Hotz et al., 1994; Carroll, 2006; Arcidiacono

and Miller, 2011; Iskhakov et al., 2017). I provide a faster alternative to indirect inference and the

most recent developments of endogenous grid methods (Iskhakov et al., 2017). A comparison of

different estimation methods can be found in section 6.

Finally, my application contributes to a large literature on labor market participation and con-

sumption, focusing on women. For example, see, Heckman and Macurdy (1980); Blundell et al.

(2016). Thanks to my method, I estimate the complete distribution of individual responses.

This paper is organized as follows. Section 2 describes a general simultaneous discrete-continuous

choice framework. Section 3 discusses identification. Section 4 shows how dynamic models are em-

bedded in the framework. Section 5 describes the estimation method built on the constructive

identification arguments. Section 6 compares my novel method with existing methods using Monte-

Carlo simulations. Section 7 estimates an empirical discrete-continuous choice model of women’s

labor supply and consumption. Section 8 concludes the paper.
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2 Framework

I consider the general problem with the following timing where the agent:

Starts
with state z

Shocks (ε, η) Simultaneously
picks (d, cd)

The individual simultaneously selects a discrete action d ∈ D = {0, 1} and accordingly makes

one continuous choice cd ∈ Cd ⊂ R to maximize his payoff. The simultaneous decision is made

given some state z ∈ Z observed by the researcher, as well as two random preference shocks

ε = (ε0, ε1) ∈ E ⊂ R2 and η ∈ H ⊂ R that are unobserved by the econometrician. ε only affects the

discrete choice d, while η impacts the continuous choice c and the discrete choice. Note that the

same η impacts the continuous choice decision in both discrete states (c0 and c1). In other words,

I have rank invariance (Heckman et al., 1997; Chernozhukov and Hansen, 2005), that is, η is not

discrete-choice specific.1 The payoffs of the agent are given by the function Vd(cd, z, η, ε). The agent

simultaneously selects d and cd to solve:

max
d,cd

Vd(cd, z, η, ε) (1)

I require additional assumptions for tractability and identification of the model.

Assumption 1 (Additive Separability) The shock ε enters the payoff additively such that ∀d ∈

{0, 1}:

Vd(cd, z, η, ε) = ṽd(cd, z, η) + εd.

The additive separability assumption is usual in the discrete choice model literature (Rust, 1987;

Arcidiacono and Miller, 2011). It applies to ε, while η can still enter the payoff in a nonseparable

manner. A consequence of Assumption 1 is that the optimal continuous policy functions will not
1In theory, the continuous choices could even represent different variables depending on the discrete option selected:

for example, if d represents the choice between working and studying, c might represent the amount of time worked
and the effort of the student respectively, hence the possibly different support. The main restriction is that even if
they represent two different choices, these two continuous choices are impacted by the same unobserved shock η.
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depend directly on ε. Indeed, cd are defined as the (interior) solutions to the maximization of the

conditional payoff. Here, because of the additivity, we have that

cd = argmax
c

(ṽd(c, z, η) + εd) ⇐⇒ cd = argmax
c

ṽd(c, z, η).

Assumption 2 (Instrument) State z contains two kinds of variables z = (x,w), where x ∈ X

represent general state variables and w is an instrument such that ∀d ∈ {0, 1}:

ṽd(cd, z, η) = ṽd(cd, x, w, η) = vd(cd, x, η) +md(x,w, η).

The support W of w contains two different values, as D = {0, 1}.2

w is an ‘instrument’ to recover the optimal continuous policies. On the one hand, with the

additive functional form of md(x,w, η), w is excluded from the optimal continuous policy choice.

Indeed,

cd = argmax
c

(vd(c, x, η) +md(x,w, η) + εd) = argmax
c

vd(c, x, η)

On the other hand, it might still be relevant and impact the discrete choice.

Assumption 3 (Monotonicity) The conditional payoff functions are twice continuously differ-

entiable such that ∀d ∈ {0, 1}
∂2vd(cd, x, η)

∂cd∂η
> 0.

Assumption 3 implies that, conditional on (D = d,X = x), the conditional optimal policy

function c∗d(η, x) is C1 and strictly increases with respect to η.3 It ensures that there will be a

one-to-one mapping from η ∈ H to cd ∈ Cd for all d and x. This kind of monotonicity condition

has been widely used for identification (Chernozhukov and Hansen, 2005; Bajari et al., 2007; Hong

and Shum, 2010). In a sense, it means that I only identify monotone effects of the unobserved
2w being binary is a minimal condition for identification when d is binary. You can have discrete or even continuous

w, the identification proof follows the same line, the md objects to be identified are just slightly different.
3Note Assumption 3 is equivalent to ∂2ṽd(cd, x, w, η)/(∂cd∂η) > 0. Indeed, because of additivity in Assumption

2:
∂2ṽd(cd, x, w, η)

∂cd∂η
=
∂2vd(cd, x, η)

∂cd∂η
+

∂

∂η

(
∂md(x,w, η)

∂cd

)
︸ ︷︷ ︸

=0

.
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nonseparable source of heterogeneity (η, here). A very important implication of Assumption 3

is that this framework applies to problems where we observe continuous choices in each discrete

option. For example, it does not apply directly to the problem of an investor who decides whether

to invest (d = 1) or not (d = 0) and the corresponding investment conditional on investing (d = 1)

(Hong and Shum, 2010). Indeed, in this case, c∗0(h) = 0 for all h and it is not strictly increasing.

However, it would apply to a discrete choice of portfolio and corresponding conditional investment.

Similarly, it does not apply directly to the house construction problem of Murphy (2018), where

the agent only decides of his house size if he chooses to build one d = 1. However, this setup still

applies to a slightly modified version of the building problem where the discrete decision would be

to build (d = 1) or to buy (or rent) an existing house (d = 0), and cd would be the corresponding

house size/housing service.

Assumptions 1, 2 and 3 yield the following triangular structure for the optimal choices:{
Cd = c∗d(X, η)
D = d∗(c0, c1, X,W, η, ε)

=⇒
{
Cd = c∗d(X, η)
D = d∗(X,W, η, ε)

.

With this triangular structure, there is a link between my general structure and (reduced-form)

systems of simultaneous equations (Chesher, 2003; Matzkin, 2008; Imbens and Newey, 2009), as

well as with the related literature on heterogeneous/quantile treatment effects (Chernozhukov and

Hansen, 2005; Vuong and Xu, 2017). To identify the structure, one needs to first identify the

choices. To identify the system of choices, I need additional assumptions on the shocks.

Assumption 4 (Independent of w) Conditional on X = x, the pair of shocks (ε, η) is indepen-

dent and identically distributed and is independent of W .

Assumption 5 (Independent Shocks) Conditional on X = x, the discrete choice-specific and

the continuous choice-specific shocks are independent of one another: η ⊥ ε

Assumption 6 (Continuous choice shock distribution) Conditional on X = x, the continu-

ous choice-specific shock η has an atomless distribution.

Normalization 1 (Continuous shock) Conditional on X = x, η is distributed as U(0, 1).

Assumption 7 (Discrete choice shock distribution) Conditional on X = x, the discrete choice-

specific shock ε has continuous support and is independent and identically distributed with continuous

distribution Fε|X=x(ε) over the full support R.
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Assumption 8 (Regularity) ∀d ∈ {0, 1},

∀(x,w, η) : max
c

vd(c, x, w, η) <∞.

Assumption 4 is an independence assumption between the shocks and the instrument, conditional

on the other observables X. Assumption 5 assumes independence between the two shocks. Both of

these assumptions are not as restrictive as they may appear. Indeed, note that the additive term

md(x,w, η) can be interpreted in two different ways that we cannot identify separately. First, in

Assumption 2, I describe md as an additive part of the payoff ṽd. Second, it can also be interpreted

as part of a more general additive discrete shock term ε̃d where ε̃d could depend on w, x and η, i.e.,

ε̃d(x,w, η) = md(x,w, η) + εd. Therefore, in this sense, the independence assumptions 4 and 5 on εd

are still general: we could have a general ε̃d that is not independent of z = (x,w) or η. Then, εd is

the remaining part of the discrete shock that is independent of η and w.

The main restriction is the exclusion restriction that η ⊥ W |X. It is crucial for the identification

to have the same distribution of η, regardless of the value of w.

The atomless Assumption 6 is made to obtain smooth conditional distributions of continuous

choices. Here, I cannot identify the distribution of η separately from the rest of the problem.

Therefore, as is standard in the literature (Blundell et al., 1997; Matzkin, 2003), I normalize it

to a uniform distribution, which represents the quantiles of any atomless continuous distribution

(conditional on X), in Normalization 1.

Assumption 7 is a regularity condition on the distribution of the discrete choice-specific shock.

Along with Assumption 7, Assumption 8 is another regularity condition on the functional form that

ensures that 0 < Pr(d|η, z) < 1 for all d, η, z. Indeed:

Pr(D = 0|η, z) = Pr
(
ε0 − ε1 > (max

c
ṽ1(c, z, η))− (max

c
ṽ0(c, z, η)) | η, z

)
.

By Assumption 7, ε0 − ε1 has full support R, independent of η (Assumption 5). By Assumption

8, the payoff functions difference is bounded. Thus, 0 < Pr(D = 0|η, z) < 1 ∀η, z. Since Pr(D =

1|η, z) = 1− Pr(D = 0|η, z), we have that:

∀d, η, z 0 < Pr(d|η, z) < 1.

Similar to the distribution of η, the distribution of ε will not be identified in my setup. Thus,

I need to assume that this distribution is known. Therefore, in practice, I will later follow the
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literature on (static or dynamic) discrete choice models (McFadden, 1980; Rust, 1987; Hotz and

Miller, 1993; Matzkin, 1993; Magnac and Thesmar, 2002; Arcidiacono and Miller, 2011) and assume

(generalized) extreme-value distributions. This family of distributions is convenient as it yields

closed-form solutions linking the conditional value functions and the choice probabilities.4 However,

other distributions can be used (Chiong et al., 2016).

We need one last (testable) condition under which the framework is identified.

Assumption 9 (Instrument Relevance)

Assumption 9a For any x ∈ X , the additive terms of the payoff are such that there is, at most,

a finite set of K (with 0 ≤ K <∞) values h of η such that

m0(x,w = 0, h)−m1(x,w = 0, h) = m0(x,w = 1, h)−m1(x,w = 1, h).

Assumption 9b For any x ∈ X , there exist two different values of w, denoted w = 0 and w = 1,

for which the additive terms of the payoff are such that there is, at most, a finite set of K (with

0 ≤ K <∞) values h of η such that

Pr(D = 0|η = h, x,W = 1)− Pr(D = 0|η = h, x,W = 0) = 0.

Identification of the optimal policies requires that the instrument is sufficiently relevant. As

stated in Assumption 9: there must be at most a finite set of values of η at which the instrument is

not relevant for identification. In other words,m0(w = 0, x, h)−m1(w = 0, x, h) 6= m0(w = 1, x, h)−

m1(w = 1, x, h) or Pr(D = 0|η = h, x,W = 1) 6= Pr(D = 0|η = h, x,W = 0) except at most at a

finite set of values h. If this is the case, the instrument provides sufficient information to identify

the continuous policies. This condition is fairly intuitive and is considerably less restrictive than

full rank assumptions and other assumptions made for the identification of heterogeneous/quantile

treatment effects (Newey and Powell, 2003; Chernozhukov and Hansen, 2005, 2006, 2008). As

shown later in the identification proof, the idea is that by fully exploiting the monotonicity of the

conditional continuous choices, full rank conditions on the selection process with respect to the

instrument are more restrictive than necessary for their identification. A similar intuition about

the power of monotonicity can be found in Vuong and Xu (2017). Note that Condition 9b has
4Notice that generalized extreme-value distributions implicitely eliminates the possible dependence of the distri-

bution of ε on X. Dependence is allowed, but as the distribution is not identified anyway, one usually abstracts from
it in practice.
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testable implications for the observed reduced forms. It allows to test whether the structural model

is identified, I will discuss this in the next section.

Lemma 1 (Equivalence) Under Assumptions 2, 4 and 5, Assumptions 9a and 9b are equivalent.

Proof. By construction:

Pr(D = 0|η, x, w) = Pr
(
ε0 − ε1

> (max
c

v1(c, x, η))− (max
c

v0(c, x, η))

+ m1(x,w, η)−m0(x,w, η)
∣∣∣ η, x, w).

Since (max
c

v1(c, x, η))−(max
c

v0(c, x, η)) is independent of w (Assumption 2) and since εd ⊥ (w, η)|x

(Assumptions 4 and 5), we have that:

Pr(D = 0|η, x, w = 0) 6= Pr(D = 0|η, x, w = 1)

⇐⇒ m0(x,w = 0, η)−m1(x,w = 0, η) 6= m0(x,w = 1, η)−m1(x,w = 1, η).

Thus, Assumption 9a expressed in terms of structural forms is equivalent to Assumption 9b on the

optimal conditional choice probabilities.

Summary of the setup:

Under the assumptions above, I consider the general problem where an individual selects (d, cd) to

maximize his payoff:

max
d,cd

vd(cd, x, η) + md(x,w, η) + εd.

The general setup described here can apply not only to a wide range of static but also dynamic

discrete-continuous choice models. I provide one static example below, and I will describe how

it embeds dynamic models in section 4. The idea is that, in the dynamic case, vd represents the

current conditional value functions, embedding the expectations about the future, as in Hotz and

Miller (1993).

Example 1: Static demand for energy

In the spirit of Dubin and McFadden (1984), consider the demand for energy with discrete appliance
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choice. The agent simultaneously decides between two energy sources d = 0 or 1 and the corre-

sponding amount of energy she will consume (cd). x contains observable information about the cost

of each energy source and possibly the wealth or income of the agents. εd represents individual-

specific unobserved preferences for each energy type. η could represent some other unobserved

characteristics of the consumer impacting both her preference for the energy type and the amount

of energy she wants to consume. The higher η is, the higher cd for all d.

In practice, the greatest challenge is to find a good instrument w. Here, a good w could be

some variable about the accessibility of each energy alternative. For example, the previous alter-

native selected by the individual might be a good instrument. First, conditional on the present

alternative choice (d) and on current wealth (included in x), the past (w) should have no impact on

the current energy consumption level (cd). Thus, it would be an exogenous instrument. Moreover,

changing alternatives is costly in terms of time, so individuals who were previously using energy 0

are less likely to use energy 1 now than their counterparts who were already using it. In this case,

the agent incurs some disutility cost of switching from one alternative to the other and no cost if

he does not switch. In other words, for all x and h, for alternative 1, m1(x,w = 0, h) < 0 and

m1(x,w = 1, h) = 0, and for alternative 0 m0(x,w = 0, h) = 0 and m0(x,w = 1, h) < 0. In this

case, m0(x,w = 0, h)−m0(x,w = 1, h) > 0 and m1(x,w = 0, h)−m1(x,w = 1, h) < 0, so they are

different, and the instrument is relevant (Assumption 9).

Discussion of Simultaneity:

My general simultaneous choice framework nests the non-simultaneous timings where either the

discrete or continuous choice is taken before and based on expectations about the other choice (and

its shock realization). These two timings have testable implications for the optimal choices within

the simultaneous framework:

• If the discrete choice is taken first, before the realization of η and the continuous choice, then

the CCP Pr(D = d|η,X,W ) is independent of η. Indeed, η is not yet realized. The discrete

choice is only based on expectations about η and the corresponding c∗d(x, η).

• Conversely, if the continuous choice is made first, before the discrete choice and the realization

of ε, then the CCCs c∗d(x, η) are independent of d, i.e., c∗0(x, η) = c∗1(x, η) ∀η.

Since I identify the policy functions c∗d and Pr(D = 1|η,X,W ) in the simultaneous framework, I
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can test the timing of the model.

In the next section, I study the identification of the discrete-continuous choice model.

3 Identification

I observe data on the variables (D,Cd, X,W ). I only observe C0 if D = 0 and C1 if D = 1. For

all (x,w, η) in X ×W ×H, I study non-parametric identification of the following objects: the opti-

mal Conditional Continuous Choices (CCCs) c∗d(η, x), the optimal Conditional Choice Probabilities

(CCPs) Pr(d|η, w, x) for d = 0 and d = 1, and the indirect payoff functions (taken at the optimal

c) max
c

vd(c, x, η) and md(x,w, η). Without loss of generality, in this section, I focus on any given x

value and omit x from what follows. This is not an issue because x is exogenous in this problem, and

my assumptions about the distribution of the shocks are conditional on X = x. First, I characterize

the reduced forms and constraints imposed by the structure. Then, I discuss the identification of

the optimal policies (CCCs and CCPs) and of the payoffs.

3.1 Reduced forms and constraints

In the data, I observe (d, cd, w). w is exogenous in the model while cd and d are endogenous choices.

There is a fundamental observability problem, as I only observe one value of cd depending on the

discrete choice selected:

cd = c0(1− d) + c1d.

I do not observe both ‘potential outcomes’, only the selected one. Therefore, from the data, I recover

the distribution of c conditional on d and w. I denote it FCd|d,w(cd) = Pr(Cd ≤ cd|D = d,W = w). I

also recover the conditional probability of selecting d knowing w, denoted as pd|w = Pr(D = d|W =

w). In other words, the data provide us with the following reduced-form functions, which exhaust

all relevant information:

R = {{pd|w}(d,w)∈{0,1}×{0,1}, {FCd|d,w(cd)}∀cd∈Cd,(d,w)∈{0,1}×{0,1}}.

An important vocabulary remark is in order: in this paper, Pr(D = d|W = w) is part of the reduced

forms, while Pr(D = d|η = h,W = w) is what I call the conditional choice probabilities (CCPs) or

selection on unobservables (η) that I want to identify. This differs from the dynamic discrete choice
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literature, where Pr(D = d|W = w) are actually called CCPs (Hotz and Miller, 1993; Arcidiacono

and Miller, 2011). However, here, I have simultaneous choices and a nonseparable shock η, which

affects both choices. Thus, the true counterparts to the usual CCPs are Pr(D = d|η = h,W = w)

for all d and not Pr(D = d|W = w), hence the different terminology.

Now let us see the constraints implied by the structure on the reduced forms.

Lemma 2 Under Assumptions 3-8 of the structural model, the distribution FCd|d,w(cd): Cd → [0, 1]

is C1 and strictly increasing.

Proof. The distribution of η is C1 and strictly increasing (Assumption 6). As previously explained,

under Assumptions 5, 7 and 8, the probability of selecting d knowing η = h is different from zero

(or one) for all h and for both w (i.e., 0 < Pr(d|h,w) < 1). As a consequence, the distribution

function of η conditional on d and w is also C1 and strictly increasing. Now, note that, by the

monotonicity Assumption 3, the distribution functions of cd (conditional on w) are strictly monotone

transformations of the distribution of η|d. In other words:

Pr(η ≤ h |d, w)︸ ︷︷ ︸
=Fη|d,w(h)

= Pr(Cd ≤ c∗d(h) |d, w)︸ ︷︷ ︸
=FCd|d,w(c∗d(h))

∀d, w.

Therefore, since Fη|d,w(h) is C1 and strictly increasing (with respect to h), FCd|d,w(c∗d(h)) is also C1

and strictly increasing (with respect to h). Now, since c∗d(h) are C1 and strictly increase with re-

spect to h (Assumption 3), FCd|d,w(cd) are also C1 and strictly increase with respect to cd for all d.

Lemma 2 provides some regularity conditions on the distributions generated by the structural form.

The fact that FCd|d,w(cd) are C1 is helpful for the testable conditions of our model provided in what

follows.

Lemma 3 Under Assumption 9b in which K is defined, there is the same finite number K of values

of c0 and c1 such that

d
( ∆FCd (cd)︷ ︸︸ ︷
FCd|d,W=1(cd)pd|1 − FCd|d,W=0(cd)pd|0

)
dcd

= 0 ∀d.

Proof. Appendix A
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Under the relevance Assumption 9, there is only a finite number K of values h of η such that

the instrument has no effect Pr(d|η = h,w = 1) = Pr(d|η = h,w = 0). I will show that when

this happens, we have d(Pr(η ≤ h|d,W = 1) − Pr(η ≤ h|d,W = 0))/dh = 0. Now, by the

monotonicity of the optimal continuous choice, the observed conditional distributions of Cd|d are

transformations of the unobserved conditional distribution of η|d. Therefore, even if we do not

observe the conditional distribution of η|d, we know that if the instrument is sufficiently relevant

(Assumption 9), Lemma 3 will be fulfilled.

Lemma 3 yields observable and testable implications on the reduced forms. Indeed, the functions

∆Fcd(cd) are directly observable for all d, as is d∆Fcd(cd)/dcd (the derivative is well defined, cf

Lemma 2). It can be used to test the relevance Assumption 9 that is crucial for identification. The

idea is that if the function ∆Fcd(cd) is flat on a segment of values of cd, then there is a segment of

values of η such that the instrument is not relevant. In this case, the instrument has no differential

impact on the conditional choice probabilities, so it does not help to identify the optimal continuous

policy. If this is the case, the model is not point identified for this segment of η.

Lemmas 2 and 3 fully characterize the impact of my structure on the reduced forms. With

these reduced forms, one would like to identify the structural form, i.e., the values of the payoffs

vd(c
∗
d(h), h) (taken at the optimal continuous choice) and md(w, h).

The difficulty for the identification is that the shock η is unobserved and nonseparable. As a

consequence, there is an unobserved variable that affects every structural object we would like to

identify: the conditional payoffs vd(c∗d(h), h) and md(w, h), the optimal discrete choice d∗(h,w, ε),

the corresponding conditional choice probabilities (CCPs) Pr(d|h,w) = Eε[d∗(h,w, ε)|h,w] and the

optimal conditional continuous choices c∗d(h) (CCCs) for all d. Thus, I first need to back out the

value h of η. To do so, I will first identify the conditional continuous choices c∗d(h) from the reduced

forms R by exploiting monotonicity, Bayes’ law and the relevant instrument w. Then, I will use

monotonicity to identify η from the data by inverting the monotone c∗d(h): h = (c∗d)
−1(cd). Once I

identify the values h of the shock η, I can identify the conditional choice probabilities (CCPs) of

selecting alternative d knowing η = h,w: Pr(d|h,w). Then, I use these Pr(d|h,w) as in Hotz and

Miller (1993) to identify the difference in payoffs between the two alternatives. Finally, I discuss

identification of the payoffs under additional structural assumptions in the next section.
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3.2 Identification of Conditional Continuous Choices (CCCs)

Difficulty: observability problem

As in the literature on continuous choices (Matzkin, 2003; Bajari et al., 2007; Hong and Shum,

2010), I would like to exploit the monotonicity Assumption 3 to identify the optimal continuous

choices. For any value of w, by monotonicity, we have that

Pr(η ≤ h |d) = Pr(Cd ≤ c∗d(h) |d) ∀d
under Lemma 2⇐⇒ c∗d(h) = F−1

Cd|d(Pr(η ≤ h|d)) ∀d.

Thus, if we knew the distribution of η conditional on d, we could recover the optimal conditional

continuous choices c∗d(h) by using the monotonicity of the conditional distribution of Cd knowing d

to invert it. However, here we only know the unconditional distribution of η (by Assumption 6).5

The conditional distributions of η|d are unobserved. They depend on an unobserved selection mech-

anism: Pr(η ≤ h|d) = Pr(d|η ≤ h)Pr(η ≤ h)/Pr(d). Because of this selection with simultaneous

discrete and continuous choices, we cannot use usual inversion methods based on monotonicity for

identification.

Another way to see the problem would be the following. Knowing that η is uniform and inde-

pendent of observables (Assumptions 4 and 6), we have:

Pr(η ≤ h) =

unobserved︷ ︸︸ ︷
Pr(Cd ≤ c∗d(h)) ∀d

= Pr(Cd ≤ c∗d(h); (D = 0 ∪D = 1))

= Pr(C0 ≤ c∗0(h); D = 0)︸ ︷︷ ︸
observed

+Pr(C0 ≤ c∗0(h); D = 1)︸ ︷︷ ︸
unobserved

= Pr(C1 ≤ c∗1(h); D = 0)︸ ︷︷ ︸
unobserved

+Pr(C1 ≤ c∗1(h); D = 1)︸ ︷︷ ︸
observed

.

Imagine that we observed both c0 and c1 for every individual, independently of the discrete choice

d, i.e., if D = 0 or D = 1 is selected, we observe both c0 and c1. Then, we observe the unconditional

distribution of c∗d(h): Pr(Cd ≤ c∗d(h)). In this case, knowing that η is uniform, one could exploit

monotonicity to recover c∗d(h) by inverting its unconditional distribution: c∗d(h) = F−1
Cd

(Pr(η ≤ h)).

However, here again, we observe c0 if D = 0 and c1 if D = 1. Because of this selection, we cannot
5Note that instead of normalizing the unconditional distribution, we could normalize the functional form of one

of the conditional η|d distributions. η|D=0 ∼ U(0, 1) for example. However, the problem would be the same, as we
still would not know the distribution of the other conditional shock η|D=1.
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identify the optimal continuous choice policies.

Identification via the instrument:

Instead, to identify c∗d(h), I use the properties of the instrument (Assumption 2) to obtain structural

restrictions. Using Bayes’ law we have, ∀h ∈ [0, 1]:

h = Pr(η ≤ h)

= Pr(η ≤ h|w)

= Pr(η ≤ h | D = 0, w)Pr(D = 0|w) + Pr(η ≤ h | D = 1, w)Pr(D = 1|w)

= Pr(c ≤ c∗0(h) | D = 0, w)Pr(D = 0|w)

+ Pr(c ≤ c∗1(h) | D = 1, w)Pr(D = 1|w)

= FC0|D=0,w(c∗0(h))Pr(D = 0|w) + FC1|D=1,w(c∗1(h))Pr(D = 1|w)

= FC0|D=0,w(c∗0(h))p0|w + FC1|D=1,w(c∗1(h))p1|w,

where the first equality comes from the fact that η ∼ U [0, 1] by normalization. The second follows

because η ⊥ w by Assumption 4. The third equality comes from the law of total probability. The

fourth equality comes from the monotonicity of c∗d(h). The fifth and sixth equalities are just changes

in notation.

Thus:

h = FC0|D=0,w(c∗0(h))p0|w + FC1|D=1,w(c∗1(h))p1|w ∀h ∈ [0, 1] ∀w ∈ {0, 1}. (2)

Take equation 2 for both w, which yields the following system ∀h:

{
h = FC0|D=0,W=0(c∗0(h))p0|0 + FC1|D=1,W=0(c∗1(h))p1|0
h = FC0|D=0,W=1(c∗0(h))p0|1 + FC1|D=1,W=1(c∗1(h))p1|1

.

Thanks to the instrument, we have a system of two equations to identify two unknown increasing

functions. The role of the instrument and Assumption 2 is now clearer. The instrument being ex-

ogenous to cd is crucial here, otherwise, we would have two equations with four unknown functions:

c∗0(h,W = 0), c∗0(h,W = 1), c∗1(h,W = 0), c∗1(h,W = 1), which would not be identified. Similarly,

without a relevant instrument (i.e., if d ⊥ w), the distributions conditional on w would be the same

(i.e., p0|0 = p0|1 and FCd|d,W=0(c) = FCd|d,W=1(c)), so the two equations would in fact contain exactly

the same information.
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Identification problem: Let the reduced form be described as:

R = {{pd|w}(d,w)∈{0,1}×{0,1}, {FCd|d,w(cd)}∀cd∈Cd,(d,w)∈{0,1}×{0,1}}

The conditional continuous choice (CCCs) policy functions are identified if and only if there exists

a unique set of structural functions {cd(h)}∀h∈[0,1],d∈{0,1} strictly increasing with respect to h, which

satisfies equation (2), and is compatible with R.

Theorem 1 (Identification) For any reduced form drawn from the structural model, there exist

unique conditional continuous choice (CCC) functions cd(h) (for d = 0 and d = 1) mapping [0, 1]

into Cd, which are strictly increasing and solve the system of equations (2):

h = FC0|D=0,w(c0(h))p0|w + FC1|D=1,w(c1(h))p1|w ∀h ∈ [0, 1] ∀w ∈ {0, 1}.

As a consequence, the optimal CCCs, c∗d(h) for d = 0 and d = 1, are point identified from the

reduced form R as the unique increasing solutions to the identification problem.

Proof. The complete proof appears in Appendix B.

Sketch of the proof:

Existence of the solution is trivial: since the reduced forms are drawn from the structural model,

the true c∗d(h) will be the solution to our system of equations (2) by construction.

What is more difficult to prove is the uniqueness of the solution. First, we show that the mapping

between the conditional continuous choices, denoted c̃0(c1), is identified from the reduced forms.

Once we have it, using system (2), it is trivial to show that the continuous policies are also identified.

Combining the two equations in the system of equation (2), we have that:

FC0|D=0,W=0(c∗0(h))p0|0 + FC1|D=1,W=0(c∗1(h))p1|0 = FC0|D=0,W=1(c∗0(h))p0|1 + FC1|D=1,W=1(c∗1(h))p1|1

⇐⇒ FC0|D=0,W=1(c∗0(h))p0|1 − FC0|D=0,W=0(c∗0(h))p0|0 = −
(
FC1|D=1,W=1(c∗1(h))p1|1 − FC1|D=1,W=0(c∗1(h))p1|0

)
⇐⇒ ∆FC0(c∗0(h)) = −∆FC1(c∗1(h)),

where ∆FCd(c) are directly observed from the data, and are C1 as a sum of C1 functions (Lemma

2). However, the problem is that h is unobserved. Now, even without observing h, if two conditional

choices c̃0 and c̃1 correspond to the same unobserved h, we will have: ∆FC0(c̃0) = ∆FC1(c̃1). Thus,

for the true mapping c̃0(c1) between the two continuous conditional choices we will have

∀c1 ∆FC0(c̃0(c1)) = −∆FC1(c1). (3)
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The mapping is identified if and only if there exists a unique function c̃0(c1) solution to equation

(3). What are these ∆FCd(c) functions? They are observable C1 functions (Lemma 2). They are

related to the unknown conditional choice probabilities as follows (cf proof of Lemma 3):

∀h ∆FCd(c
∗
d(h)) =

∫ h

0

(
Pr(D = d|η = h̃,W = 1)− Pr(D = d|η = h̃,W = 0)

)
dh̃.

Moreover, since Pr(D = 1|η,W ) = 1− Pr(D = 0|η,W ), we have by construction that, ∀h:

∆FC0(c
∗
0(h)) =

∫ h

0

(
Pr(D = 0|η = h̃,W = 1)− Pr(D = 0|η = h̃,W = 0)

)
dh̃ = −∆FC1(c

∗
1(h)).

(4)

Which is what we had by rewriting system (2). However, it is very important: it means that ∆FC0(c)

and −∆FC1(c) are transformations (through unknown c∗d(h)) of the same underlying object, which

is based on the difference in conditional choice probabilities Pr(D = 0|η = h,W = 1) − Pr(D =

0|η = h,W = 0). Thus, by construction, ∆FC0(c) and −∆FC1(c) will go ‘through the same values,

in the same order’, just not at the same ‘speed’. The shape of ∆FCd is directly determined by

the difference in conditional choice probabilities, hence the reason why we make our identification

Assumption 9 on these probabilities directly.

Now, take the easier case where Pr(D = 0|η = h,W = 1) > Pr(D = 0|η = h,W = 0)

for all h.6 In other words, the identification Assumption 9 is satisfied with K = 0. Equation

(4) implies that ∆FC0(c0) and −∆FC1(c1) will be strictly increasing from Pr(D = 0|η = 0,W =

1) − Pr(D = 0|η = 0,W = 0) at the minimum values of c0 and c1 (corresponding to c∗0(0) and

c∗1(0)) to
∫ 1

0

(
Pr(D = 0|η = h̃,W = 1)−Pr(D = 0|η = h̃,W = 0)

)
dh̃ at the maximum values of c0

and c1 (corresponding to c∗0(1) and c∗1(1)). ∆FCd(cd) are thus C1 and strictly monotone: they are

invertible. In this case, the unique mapping between c0 and c1 is obtained by inverting equation

(3):

∀c1 c̃0(c1) = ∆F−1
C0

(
−∆FC1(c1)

)
.

The solution exists and is unique. Thus c̃0(c1) is identified in this case.

Now, we can show that the continuous policies are still identified even if ∆FCd(cd) are not

strictly monotone but only piecewise monotone. This is the general case covered by our identi-

fication Assumption 9: if there exists a finite set of K > 0 (and K < ∞) values of h at which
6Obviously, the same reasoning applies in the reverse case where Pr(D = 0|η = h,W = 1) < Pr(D = 0|η =

h,W = 0) for all h.
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Pr(D = 0|η = h,W = 1) = Pr(D = 0|η = h,W = 0), then by equation (4), we can show that

∆FCd(cd) are piecewise monotone. Piecewise monotonicity is not a problem for identification here.

We are not solving equation (3) point by point, in which case there could exist several solutions for

some values of c1. Instead, we are solving for the entire monotone policy functions c∗d(h) directly.

Therefore, even if pointwise there might exist several solutions, there exists a unique monotone

function on the whole support of c1 that solves equation (3). In practice, we first identify these

K points at which d∆FCd(cd)/dcd = 0 (Lemma 3). We know that these points are increasingly

matched together by construction. Then, we split the support of c0 and c1 accordingly. On the

subsegments, ∆FCd(cd) are strictly monotone and C1, thus invertible. Therefore, we can recover

the mapping piece by piece.

The only case in which identification does not hold is when ∆FCd are flat on some segment.

This corresponds to the case where our identification assumption 9 is violated, and the instrument

is not relevant to a set of nonnull masses. In this case, we only have partial identification of the

policy functions: they are point identified everywhere outside of the flat segment (on which there

is an infinite number of possible mappings between c1 and c0).

Once we identify the mapping c̃0(c1), we can recover the policies using any equation of the initial

system (2), as:

∀c1 h(c1) = FC0|D=0,W=0(c̃0(c1))p0|0 + FC1|D=1,W=0(c1)p1|0.

Thus we have a unique increasing solution (h(c1), c̃0(c1))∀c1 ∈ C1. Since everything is increasing,

we can simply change the arguments to obtain the unique solution (c∗0(h), c∗1(h)) ∀h ∈ [0, 1].

One of the main take-aways from this the proof is that, with this setup, by exploiting knowledge

about the monotonicity of the optimal continuous policies and directly solving for the complete

function, I identify the policies with assumptions that are considerably less restrictive than what

is usually imposed in related studies. For example, full rank assumptions on the effect of the

instrument on the selection in identification of IV quantile treatment effects (Newey and Powell,

2003; Chernozhukov and Hansen, 2005, 2006, 2008) are too strong in this framework. In fact, even

my subcase where K = 0 was already less restrictive than full rank, for example. There is one

notable exception of Vuong and Xu (2017), who are also solving for a complete function and not

pointwise. However, they choose to use this method to relax strict monotonicity (and still impose
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some constraint on the conditional choice probabilities), while I use it to be as agnostic as possible

about the conditional choice probabilities. My main identification requirement is to have a relevant

instrument (Assumption 9), which seems fairly natural. Moreover, it is testable by observations of

the ∆FCd(cd) functions: as long as they are not flat, the policies are identified.

3.3 Identification of Conditional Choice Probabilities (CCPs)

Now that the conditional continuous choices (CCCs) are identified, I can directly identify the

conditional choice probabilities (CCPs). Indeed, knowing the strictly monotone (and invertible)

(c∗0(h), c∗1(h))∀h, one can recover h from observing (d, cobsd ). If D = d,

h = (c∗d)
−1
(
cobsd
)
.

From there, it is as if η = h were observed. I observe (d, cd, w, h) from the data. Thus, I can directly

recover the conditional choice probabilities:

∀(d, w, h) ∈ {0, 1} × {0, 1} × [0, 1] : Pr(D = d|η = h,W = w).

Thus, the CCPs are identified once h is recovered from inverting the CCCs.

Inclusion of unobserved types in the model

The fact that η acts as an observed covariate once the CCCs are identified is crucial. Thanks to

this, one can apply standard methods from the dynamic discrete choice literature where η would be

among the observed covariates. This means that once η is identified, one could include unobserved

state variables/types in the framework as in Arcidiacono and Miller (2011). The non-parametric

identification is given by Kasahara and Shimotsu (2009) or Hu and Shum (2012).

3.4 Identification of the payoffs

Now that the optimal policy choices are identified, we can proceed to identify the structural model,

i.e., the payoff functions vd(c∗d(h), h) and md(w, h). First, I focus on the identification of the differ-

ences in payoff between the discrete alternatives.
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Identification of the differences in payoffs:

The conditional choice probabilities are identified in the data. We can use them with our structural

assumptions to identify difference in payoffs in the model. We know that the CCPs are related to

the structure of the model as follows:

Pr(D = 0|η = h,w) = Pr
(
ε0 − ε1 > (max

c
v1(c, h) +m1(w, h))− (max

c
v0(c, h) +m0(w, h))

∣∣∣ h,w)
= Pr

(
ε0 − ε1 > v∗1(h) +m1(w, h)−

(
v∗0(h) +m0(w, h)

) ∣∣∣ h,w),
where v∗d(h) ≡ vd(c

∗
d(h), h) = max

c
v1(c, h).

If the distribution of ε0− ε1 is known (and invertible), given that we know the CCPs, the difference

in payoffs will also be identified. As is standard in the discrete choice literature, identification

depends on the distribution of the difference in ε here.

For example, let us assume that ε follows a Gumbel/extreme-value type-I distribution(with lo-

cation 0 and scale 1), as is commonly used in the discrete choice literature (McFadden, 1980; Hotz

and Miller, 1993). In this case, we are in the logistic regression scenario and we have:

Pr(D = 0|η = h,w) =
1

1 + exp
(
v∗1(h) +m1(w, h)−

(
v∗0(h) +m0(w, h)

)) .
Thus we identify the difference in payoffs as:

v∗1(h) +m1(w, h)−
(
v∗0(h) +m0(w, h)

)
= log

(
1

Pr(D = 0|η = h,w)
− 1

)
.

Moreover, since v∗d(h) are independent of w by Assumption 2, we can also identify the difference in

the effect of the instrument :

m1(w = 1, h)−m0(w = 1, h)− (m1(w = 0, h)−m0(w = 0, h))

= log

(
1

Pr(D = 0|η = h,w = 1)
− 1

)
− log

(
1

Pr(D = 0|η = h,w = 0)
− 1

)
.

The differences in payoffs are also non-parametrically identified for other distributions of ε. Ap-

plications often use generalized-extreme value distributions as they yield easily tractable closed-form

solutions (Arcidiacono and Miller, 2011), but other distributions are possible.

Identification of the payoffs:

To non-parametrically identify the payoffs directly using the CCPs and CCCs, one needs to add
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some structure to the problem. In other words, we need additional behavioural conditions to know

how the agents behave. For example, by considering the framework applied to dynamic problems, I

can use the identification power of the first-order conditions/Euler equation to non-parametrically

directly identify the payoffs using the identified CCPs and CCCs. This is what I do in the next

section by extending the framework to a dynamic setup.

4 Extension to Dynamic models

The general framework that I developed embeds dynamic models: vdt must simply be understood

as current conditional value functions, embedding expectations about the future. Here, I show

how general (non-stationary) dynamic models of agents enter the setup and are non-parametrically

identified (in the spirit of Blundell et al., 1997). The model is very general and nests many life-cycle

empirical applications of interest (e.g., Blundell et al., 2016; Iskhakov et al., 2017).

4.1 Dynamic Life-Cycle Framework of Labor and Consumption

In this section, I describe how a general dynamic model of labor and consumption choices enters

the general framework described in section 2.

Each period t until T , the timing of the problem is as follows:

t

t t+ t++ t+1

Starts
with states
zt = (xt, wt)

Shocks (εt, ηt) Simultaneously
picks (dt, cdt)

...

Current period utility:

The current period conditional utility for action (d, cd) at time t is given by:

Udt(cdt, xt, wt, ηt, εt). (5)

In this example, ct is consumption, and cdt are conditional consumptions, with ct = c0t(1−dt)+c1tdt.

dt is the work decision (Blundell et al., 1997, 2016). xt represents all the covariates. These include

25



covariates impacting current utility such as age, education and other demographics. For notational

convenience, xt also include variables such as asset or income that do not necessarily directly impact

preferences but still have an impact on consumption choice (and labor choice), notably through their

transitions. wt is again the instrumental variable that must fulfil some conditions I describe below.

I impose some conditions on current utility which are necessary (not sufficient) for the dynamic

setup described here to fit into the structure described in section 2.

Assumption D1 (Additive Separability) The shock εt enters the payoff additively such that:

Udt(cdt, xt, wt, ηt, εt) = ũdt(cdt, xt, wt, ηt) + εdt.

Assumption D2 (Instrument) wt ∈ W = {0, 1} is an instrumental variable such that

ũdt(cdt, xt, wt, ηt) = udt(cdt, xt, ηt) +mdt(xt, wt, ηt).

Assumption D3 (Monotonicity) The conditional current utility functions are twice continu-

ously differentiable such that

∂2udt(cdt, xt, ηt)

∂cdt∂ηt
> 0 ∀dt, cdt, xt, ηt

Transitions:

In a dynamic context, the individual chooses (dt, cdt) to maximize not only her current utility but

also to maximize her expected discounted sum of future payoffs. She discounts the future period

utilities at a rate β. In this context, the agent form rational expectations about the transition proba-

bilities. These transitions from (xt, wt, εt, ηt) and the current choices (ct, dt) to (xt+1, wt+1, εt+1, ηt+1)

matter for the choices. In particular, how the current choices impact these transitions is especially

important for the optimal choice decision. The impacts of the choices on the transitions are often

expressed through a budget constraint like

at+1 = (1 + rt)at − ct + ytdt.

For now I stay more general and simply assume the existence of general transitions of states and

errors which depend on the choices:

ft(xt+1, wt+1, εt+1, ηt+1|ct, dt, xt, wt, εt, ηt).

I need to make additional assumptions on these transitions for the setup to be identified (and to

enter the general framework).
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Assumption 10 (Conditional Independence) For all xt ∈ X , wt ∈ W, εt ∈ E, ηt ∈ H, we

have:

ft(xt+1, wt+1, εt+1, ηt+1|ct, dt, xt, wt, εt, ηt) = ft(xt+1, wt+1|ct, dt, xt, wt) fε(εt+1) fη(ηt+1).

Assumption 11 (Instrument Transition Exclusion) For all xt ∈ X , wt ∈ W, the current

instrument is excluded from the transitions, i.e.,

ft(xt+1, wt+1|ct, dt, wt, xt) = ft(xt+1, wt+1|ct, dt, xt).

Solution:

Knowing these transition probabilities, the individual chooses (dt, cdt) to sequentially maximize her

expected discounted sum of payoffs. Let us define Vt(zt) = Vt(xt, wt) as the (ex ante) value function

of this discounted sum of future payoffs at the beginning of t, just before the shocks (εt, ηt) are

revealed and conditional on behaving according to the optimal decision rule:

Vt(zt) ≡ E
[ T∑
τ=t

βτ−tmax
d,cdτ

[ udτ (cdτ , xτ , ητ ) +md(xτ , wτ , ητ ) + εdτ ]
]
.

Given the state variable zt and choice (d, cdt) in period t, the expected value function in period t+1

is

Ezt+1 [Vt+1(zt+1)|zt, ct, dt] =

∫
zt+1

Vt+1(zt+1)ft(zt+1|zt, ct, dt)dzt+1.

By the conditional independence Assumption 10 and instrument exclusion from the transition (As-

sumption 11), we can remove wt from the conditioning variables, which yields:

Ezt+1 [Vt+1(zt+1)|zt, ct, dt] = Ezt+1 [Vt+1(zt+1)|xt, ct, dt] =

∫
zt+1

Vt+1(zt+1)ft(zt+1|xt, ct, dt)dzt+1.

The ex ante value function can be written recursively:

Vt(zt) = Eε,η
[
max
dt,cdt

[
udt(cdt, xt, ηt) +mdt(xt, wt, ηt) + εdt + βEzt+1 [Vt+1(zt+1)|xt, cdt, dt]

] ]
.

Thus, in each period, after observing (εt, ηt), the individual chooses dt and cdt to maximize her

expected payoff:

max
dt,cdt

udt(cdt, xt, ηt) + βEzt+1 [Vt+1(zt+1)|xt, cdt, dt] +mdt(xt, wt, ηt) + εdt.

27



Denote the conditional value functions vdt as:

vdt(cdt, xt, ηt) ≡ udt(cdt, xt, ηt) + βEzt+1 [Vt+1(zt+1)|xt,cdt,dt ]. (6)

So that we return to our general setup. Indeed, the dynamic model can be interpreted as a static

model, where in every period the agent selects dt and cdt to solve:

max
dt,cdt

vdt(cdt, xt, ηt) +mdt(xt, wt, ηt) + εdt.

Lemma 4 (Dynamic Framework) Under Assumptions D1, D2, D3, 10 and 11, Assumptions

1, 2 and 3 are satisfied for the conditional value functions defined in equation (6) in the dynamic

setup.

The other Assumptions 4, 5, 6, 7, 8 and 9 as well as Normalization 1 are imposed contemporane-

ously (with index t) and unconditionally on Xt (for simplicity).

If Assumption D1 holds for the current utility function, Assumption 1 will hold for the con-

ditional value functions by construction in equation (6). Assumptions D2 and D3 on the current

utility do not translate directly into Assumptions 2 and 3 for the conditional value function. One

needs additional assumptions about the transitions, i.e., Assumptions 10 and 11.

Conditional independence assumptions are standard for the identification and empirical tractabil-

ity of dynamic discrete choice models (Rust, 1987; Blevins, 2014). Here, Assumption 10 implies

that the transitions of the state variables are independent of the shocks (εt, ηt). Similarly, the shock

transitions are independent of the variables here. There is no time dependence on the shocks, which

are thus iid every period. Note that one can include some unobserved heterogeneous types cor-

related over time in the covariates following Arcidiacono and Miller (2011). This allows for some

unobserved auto-correlation in the unobservables and attenuates the strength of the conditional

independence.

Crucially, here, in addition to the standard conditional independence 10, Assumption 11 also im-

plies that conditional on (dt, ct, xt), the transitions are independent of the current instrument value

wt. In particular, the instrument is excluded from its own transition to future values, conditional
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on (dt, ct, xt), i.e.,

wt+1 ⊥ wt | ct, dt, xt ∀ct, dt, xt

or equivalently fw(wt+1|ct, dt, xt, wt) = fw(wt+1|ct, dt, xt).

It implies that instruments that are time independent wt = w for all t cannot be included. As-

sumption D2 combined with Assumption 11 will satisfy Assumption 2 on the conditional value as

stated in Lemma 4 and as shown in the computation above. However, if the exclusion of the instru-

ment from the transition (Assumption 11) does not hold, then wt affects the expected future value

function Ezt+1 [Vt+1(zt+1|xt, wt, cdt, dt] and enters the conditional value functions vdt in equation (6),

which are rewritten as vdt(cdt, xt, wt, ηt) for all d in this case. In this case, it is obvious that the

original exclusion of the instrument from vd in Assumption 2 is violated. Thus, the dynamic setup

does fit into the general framework of section 2 without Assumption 11.

Similarly, Assumption D3 is just a necessary condition for Assumption 3 to hold. I also require

the expectations about the future to be independent of current (ηt, εt). In this case, the monotonic-

ity Assumption 3 in the general framework is also satisfied. Indeed, if the future is independent of

the current ηt (Assumption 10), then we can write:

∂vdt(cdt, xt, ηt)

∂cdt∂ηt
=
∂udt(cdt, xt, ηt)

∂cdt∂ηt
+
∂Ezt+1 [Vt+1(zt+1)|xt, cdt, dt]

∂cdt∂ηt︸ ︷︷ ︸
=0

.

Therefore, if the conditional independence and monotonicity of the current utility function hold

(Assumptions 10 and D3), then the monotonicity of the conditional value functions vdt (Assump-

tion 3) also holds.

Instrument example:

The question that remains is, what could be a good instrument satisfying this restrictive conditional

independence and exclusion from the transition in practice? In general, a good instrument would

be to allow for switching cost and to use wt = dt−1 in this setup. Indeed, in this case, the exclusion

assumption 11 is easily satisfied for the instrument: wt+1 is dt. Therefore, conditional on the cur-

rent dt choice, wt+1 is directly known. wt = dt−1 does not provide any additional information, so it

can be dropped from the conditioning variables in the transition. Moreover, it is unlikely that wt

provides any information about the other future covariates xt+1 after conditioning on the current

dt. Similarly, conditional on xt, which could include for example, the experience of the individual,
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it is unlikely that dt−1 has an impact on udt. The exclusion restriction D2 is satisfied. Finally, we

just need the instrument to be relevant (Assumption 9). This would be the case if one had some

utility switching cost from entering or exiting the workforce for example.7 In this case, we would

have: m0t(xt, wt = 0, ηt) −m1t(xt, wt = 0, ηt) 6= m0t(xt, wt = 1, ηt) −m1t(xt, wt = 1, ηt). And the

instrument would be relevant.

Relaxing time independence of η:

One can loosen Assumption 10 and allow for first-order time dependence in ηt in this setup. In

other words, I can have fη(ηt|ηt−1). In fact, as I identify ηt separately for all t, I can identify

these transitions, which are particularly interesting in some applications (e.g., if η represents some

unobserved ability or productivity). The only problem is that it is more difficult to find a good

instrument in practice in this case. Indeed, in the presence of auto-correlation in ηt, wt = dt−1 is no

longer a good instrument, as it violates its independence from ηt in the initial period (Assumption

4). Indeed, in the initial period of the data, η−1 is not observed and is correlated with η0. However,

in this case, d−1 was a choice taken based on η−1 and thus correlated with η−1. Therefore, in the first

period, w0 = d−1 is correlated with η−1 and thus with η0. The instrument w0 is not independent

of η0, which violates Assumption 4. If we were able to condition on ηt−1, we could identify ηt:

conditional on ηt−1, wt = dt−1 ⊥ ηt. However, there is no way to recover η−1 which is outside the

sample. Thus, I cannot allow for transition in ηt with wt = dt−1 as an instrument. Therefore,

the best way to account for unobserved auto-correlation with wt = dt−1 as an instrument would

be to include unobserved types à la Arcidiacono and Miller (2011) in the model and still impose

conditional independence with an iid ηt.

If there exists another instrument satisfying Assumptions 4, D2 and 11, then one can allow for

auto-correlated ηt. In fact, even if such an instrument is available only in one period t0 (e.g., a

unique unexpected event), then one can still allow for auto-correlation in ηt. Indeed, one can use

the instrument in the period to identify the ηt0 . For all the following periods, wt = dt−1 can be used

as a proper instrument if I include ηt−1 in the covariates list.
7Alternatively, one could have some auto-correlation in dt. Recall thatmdt() can be interpreted as some observable

part of the εt shocks. Thus, the relevance assumption with wt = dt−1 could also be interpreted as the existence of
auto-correlation in a general ε̃t term, with

ε̃dt = mdt(xt, wt, ηt) + εdt.

Thus, the assumption about no correlation in εt is less restrictive than it seems.
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4.2 Identification of the dynamic model

First, I show how the CCCs and CCPs are identified in this dynamic model. Then, I show how the

payoffs are also non-parametrically identified under additional assumptions.

4.2.1 Optimal choices: CCCs and CCPs

Under Lemma 4, the dynamic framework described in Section 4 fits into the general framework de-

scribed in Section 2. Therefore the CCCs and CCPs are identified period by period following exactly

the same proof I developed in the previous section. In other words, from data on (Dt, Ct, Xt,Wt, t),

I recover reduced forms

R =
{
{Pr(Dt = d|Xt = x,Wt = w, t)}(d,w,x,t)∈D×W×Xt×{0,...,T},

{FCd|Dt=d,Xt=x,Wt=w,t(cd)}∀cd∈Cdt, (d,w,x,t)∈D×W×Xt×{0,...,T}

}
.

From these reduced forms, following Section 3, I identify the CCCs and CCPs

c∗dt(x, η = h) and Pr(d|η = h, x, w, t) ∀d ∈ {0, 1}, w ∈ {0, 1}, h ∈ [0, 1], x ∈ Xt, t ∈ {0, ..., T}.

Special case: identification of the choices with terminal/absorbing actions

Imagine dt = 1 is a terminal action or an absorbing state. For example dt = 1 if the individual

retires, dt = 0 if she stays active. Assuming that an individual cannot go back to the working

life, the retirement choice is absorbing (Iskhakov et al., 2017). In this case, assuming all the other

modeling assumptions still hold, identification is more direct and simpler. I still use wt = dt−1

as the instrument, so the Assumption 11 on the transitions is still verified. Now, conditional on

wt = 1, an individual only has the choice to stay retired, i.e., dt = 1. Thus, focus on previously

retired individuals (Wt = 1), we have:

h = Pr(ηt ≤ h|Xt,Wt = 1, t)

= Pr(ηt ≤ h|Dt = 1, Xt,Wt = 1, t)

= Pr(c ≤ c∗1t(h,Xt)|Dt = 1, Xt,Wt = 1, t)

= FC1|Dt=1,Xt,Wt=1,t(c
∗
1t(h,Xt)) ∀Xt ∈ Xt, h ∈ [0, 1].

Since FC1|Dt=1,Xt,Wt=1,t(c) are invertible (Lemma 2), we recover the continuous choices conditional

on being retired as:

c∗1t(h,Xt) = F−1
C1|Dt=1,Xt,Wt=1,t(h) ∀Xt ∈ Xt, h ∈ [0, 1].
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It remains to identify the other conditional continuous policy, and to do that one simply needs to

take the equation (2) at Wt = 0, i.e., for individuals who did not select the absorbing state yet. It

yields

h = FC0|Dt=0,Xt,Wt=0,t(c
∗
0t(h,Xt))Pr(Dt = 0|Xt,Wt = 0, t)

+ FC1|Dt=1,Xt,Wt=0,t(c
∗
1t(h,Xt))Pr(Dt = 1|Xt,Wt = 0, t)

⇐⇒ FC0|Dt=0,Xt,Wt=0,t(c
∗
0t(h,Xt)) =

h− FC1|Dt=1,Xt,Wt=0,t(c
∗
1t(h,Xt))Pr(Dt = 1|Xt,Wt = 0, t)

Pr(Dt = 0|Xt,Wt = 0, t)

⇐⇒ c∗0t(h,Xt) = F−1
C0|Dt=0,Xt,Wt=0,t

(
h− FC1|Dt=1,Xt,Wt=0,t(c

∗
1t(h,Xt))Pr(Dt = 1|Xt,Wt = 0, t)

Pr(Dt = 0|Xt,Wt = 0, t)

)
.

Since everything on the right hand side of the equation is known (as I identified c∗1t previously),

the other conditional policies c∗0t(h,Xt) are also identified ∀Xt ∈ Xt, h ∈ [0, 1]. Once the CCCs are

identified, we proceed as usual to identify the CCPs.

4.2.2 Transitions

The transitions f(xt+1|ct, dt, xt) are identified directly from the data by observing the conditional

transitions of the variables between consecutive periods t and t+1. The transition of the instrument

is known by construction if wt+1 = dt. In other cases, it can also be recovered from the data (and

one can test if it is indeed independent from wt).

As standard in the dynamic model literature, I assume agents are rational so that the observed

transitions are the same as the one expected by the agents. This way, the transitions recovered from

the data can be used to build agents expectations at each time t, and help recover the primitives.

4.2.3 Payoff function

Once the CCCs, CCPs and transitions are identified, I can build upon existing literature to identiy

the payoffs (Hotz and Miller, 1993; Blundell et al., 1997; Magnac and Thesmar, 2002; Escanciano

et al., 2015). I need to introduce some additional structure to the dynamic model for non-parametric

identification: I introduce additional structure on the covariates transition and current utility func-

tion.

Budget Constraint: let us introduce additional structure on the transitions via a budget con-
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straint :

at+1 = (1 + rt)at − ct + ytdt, (7)

where at is the individual asset holdings, yt is her income and rt is the interest rate. The asset plays

a different role than the other covariates. Indeed, its transition to at+1 is directly impacted by the

choice ct through the budget constraint (7). Denote more generally all the covariates xt = (x̃t, at)

to emphasize the role of the asset.8

Assumption 12 (Asset exclusion) The asset is excluded from the current period utility, i.e.,

udt(cdt, xt, ηt) = udt(cdt, x̃t, at, ηt) = udt(cdt, x̃t, ηt).

Or equivalently, the exclusion Assumption 12 can be stated as:

∂udt(cdt, x̃t, at, ηt)

∂at
= 0.

Assumption 13 (General Covariates Transitions) For all x̃t ∈ X̃ ,∀dt ∈ D,∀ct ∈ C, ct does

not impact the x̃t and wt transitions, i.e.,

ft(x̃t+1, wt+1|ct, dt, x̃t) = ft(x̃t+1, wt+1|dt, x̃t).

I also need some additional structure on the current period utility:

Assumption 14 (Stationary utility) The current period utility is independent from time

udt(cdt, x̃t, ηt) = ud(cdt, x̃t, ηt) ∀t.

Assumption 15 (Monotonicity of c on the current utility) The current period utility is mono-

tone increasing with respect to c

∂udt(cdt, x̃t, ηt)

∂c
> 0 ∀dt, cdt, x̃t, ηt.

Marginal utilities identification:
8Note that yt and rt are included in x̃t. Even though, in most applications they will also be excluded from the

current period utility. For notational simplicity and generality, I let them into the general x̃t term which enters in
the current utility and represents all the covariates other than asset, i.e., all the covariates whose transitions are not
impacted by ct (Assumption 13).

33



Lemma 5 (Escanciano et al. (2015)) Following Escanciano et al. (2015), under Assumptions

D1-D3 and 4-15, the conditional marginal utilities at optimal continuous choices

∂

∂cdt
ud(cdt, x̃t, ηt)|cdt=c∗dt(ηt,xt)

are identified up to a scale by the Euler Equation for all d, xt, ηt.

Proof.

Let us define

u′∗d (xt, ηt) =
∂

∂cdt
ud(cdt, x̃t, ηt)|cdt=c∗dt(ηt,xt),

i.e., the conditional marginal utilities at the optimal CCCs. Notice that these functions depend

on xt = (x̃t, at). In other words, the optimal conditional marginal utilities depend on the asset,

through the optimal CCCs. Then, the Euler equations for all d can be rewritten as:

u′∗d (xt, ηt) = β(1 + rt)Et
[
u′∗dt+1

(xt+1, ηt+1)
∣∣∣xt, cdt = c∗dt(ηt, xt), dt = d

]
. (8)

We have a system of two equations with two unknown functions u′∗0 and u′∗1 . Hence the importance of

Assumption 14, otherwise we would have a different unknown function on each side of the equation.

Now, under Assumption D3 and 15, I have

∂u′∗d (xt, ηt)/∂ηt > 0 ∀d, xt, ηt.

In this case, Escanciano et al. (2015) show that these functions are non-parametrically globally

point identified by the system (8).

Conditional values:

Once the marginal utilities are identified through Lemma 5, I follow Blundell et al. (1997) to identify

the conditional values.

Lemma 6 (Blundell et al. (1997)) Under Assumptions D1-D3 and 4-15, the conditional value

functions at optimal choices vdt(c∗dt(xt, ηt), xt, ηt) are identified up to an unknown constant of inte-

gration K independent from the asset for all d, xt, ηt. i.e.,

vdt(c
∗
dt(ηt, xt), xt, ηt) = Gdt(x̃t, at, ηt) +Kdt(x̃t, ηt),

where G and K are defined in the proof.
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Proof. Recall that xt = (x̃t, at). We have the first order conditions, holding at optimal CCCs:

∀d : ∀at
∂

∂at
vdt(cdt, x̃t, at, ηt) = (1 + rt)

∂

∂cdt
ud(cdt, x̃t, ηt) |cdt=c∗dt(ηt,x̃t,at). (9)

Denote v∗d is the conditional value taken at the optimal continuous choice, and similarly define u′∗d
as before. We can rewrite the FOC as:

∀d : ∀at
∂

∂at
v∗dt(x̃t, at, ηt) = (1 + rt) u

′∗
d (x̃t, at, ηt). (10)

Crucially, following Assumption 12, the asset is excluded from the current period utilities and

marginal utilities. The identification strategy relies on this exclusion. Indeed, from this FOC (9)

at the optimal CCCs, I can integrate with respect to the continuous asset and obtain

∀d : ∀at v∗dt(x̃t, at, ηt) =

∫ at

0

(1 + rt) u
′∗
d (x̃t, at, ηt) da,

where the lower bound 0 is taken arbitrarily. Since u′∗d are identified, we can identify the optimal

conditional value functions non-parametrically as:

v∗dt(x̃t, at, ηt) ≡ Gdt(x̃t, at, ηt) +Kdt(x̃t, ηt).

Where the only remaining unknowns are Kdt(x̃t, ηt) which are unknown constant of integration,

independent from at, and which depends on the arbitrary lower bound of integration.

Additive term mdt(xt, wt, ηt):

It remains to identify the additive terms. I identify the differences in total conditional values by

relating them to the CCPs using an Hotz and Miller (1993)’s inversion, as in section 3.4. In other

words,

∆v∗t (x̃t, at, ηt) + ∆mt(xt, wt, ηt) = v∗1t(x̃t, at, ηt)− v∗0t(x̃t, at, ηt) +m1t(xt, wt, ηt)−m0(xt, wt, ηt)

= G1t(x̃t, at, ηt)−G0t(x̃t, at, ηt) +K1t(x̃t, ηt)−K0t(x̃t, ηt) +m1t(xt, wt, ηt)−m0(xt, wt, ηt)

are identified through the CCPs Pr(d|ηt, xt, wt, t) for all d, xt, ηt, wt, t. Note that I cannot identify

Kdt separately from mdt. A natural normalization is to impose

Kdt(x̃t, ηt) = 0 ∀d, x̃t, ηt, t

Such that the only remaining additive terms aremdt. Under this normalization, given that v∗dt(x̃t, at, ηt) =

Gdt(x̃t, at, ηt) have been previously identified, it means that ∆mt(xt, wt, ηt) are identified for all
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d, xt, ηt, wt, t. Obviously, since these are identified through the discrete choice probabilities, one can

only non-parametrically identify the differences in md, not their separate values at each d.

About the role of each assumptions:

Assumption 12 excludes the asset from the utility. Having an excluded asset is essential to

recover the conditional values once the marginal current utilities are identified.

Assumption 13 implies that the only covariate whose transition is impacted by the choice ct is

the asset, through the budget constraint (7). This assumption is made to pin down a simpler Euler

equation than with general transitions with several variables impacted by ct.

To identify the marginal utility non-parametrically from the Euler Equation, one needs to im-

pose some structure on the effect of time in the utility function. I impose that the current period

utility is time independent through Assumption 14. Note that, in general, even if the current period

utility is time independent, the conditional value functions are still time-dependent, because of a

finite horizon, or because of time-dependent transitions. Also note that this assumption is only

necessary for non-parametric identification. In parametric models, I can identify time-dependent

utilities.

Assumption 15 is a slightly stronger monotonicity condition than the ones I imposed before. In

most empirical applications it will be satisfied though.

5 Estimation

I build a two-step estimation process in the spirit of Hotz and Miller (1993); Arcidiacono and Miller

(2011) in the discrete choice literature. In the first step, I estimate the conditional continuous choices

(CCCs) and the conditional choice probabilities (CCPs) based on reduced forms directly estimated

from the data. This step is data-driven and is independent from the model specification. In a

second step, I use the estimated optimal policies to estimate the structural parameters. Therefore,

my estimation method is an analogous to that of Hotz and Miller (1993) and Hotz et al. (1994)

but extended to discrete-continuous choices. Its main desirable feature concerns computational

gains. By estimating the optimal choices only once, the computational burden of the estimation is

significantly reduced. Indeed, one does not need to solve for the value function or the likelihood

for each new set of selected parameters. This allows us to estimate models that were previously

36



computationally intractable. It does so at minimal efficiency costs (compared to simulated method

of moments, for example). I expose the estimation method in this section, and I compare my

estimator’s performance with several alternatives in terms of speed and efficiency in the next section

6.

5.1 1st stage: conditional choices

Reduced forms:

I observe data about (Dt, Ct, Xt,Wt, t). Where ct = (1 − dt)c0t + dtc1t. From the data, I estimate

the reduced forms:

R =
{
{Pr(Dt = d|Xt = x,Wt = w, t)}(d,w,x,t)∈D×W×Xt×{0,...,T},

{FCd|Dt=d,Xt=x,Wt=w,t(cd)}∀cd∈Cdt, (d,w,x,t)∈D×W×Xt×{0,...,T}

}
.

This initial estimation of the reduced forms is crucial, as all the subsequent estimates are de-

rived from it. The reduced forms probabilities Pr(Dt = d|Xt = x,Wt = w, t) can be estimated

non-parametrically by kernel or by Sieve logistic or probit regressions. Recall that these probabili-

ties are not the CCPs, as the CCPs are also conditional on ηt.

The continuous choice conditional distributions can also be estimated with non-parametric ker-

nel methods (e.g. Hayfield and Racine, 2008). Another alternative is to first estimate the quantile

functions via non-crossing conditional quantile estimation (Muggeo, 2018; Lipsitz et al., 2017, for

example), and then invert them to recover the conditional distributions.

In the dynamic setup, the reduced forms also include the transition probabilities from t to t+ 1:

ft(xt+1, wt+1|ct, dt, xt) is estimated as usual. Let us distinguish again the asset from other covariates:

xt = (x̃t, at). Under Assumption 13, ft(x̃t+1, wt+1|dt, x̃t) can be estimated using auto-regressive pro-

cesses for the general covariates x̃t. In the special case where wt = dt−1, then the transition of the

instrument is given by construction. The asset plays a particular role and its transition is given by

the budget constraint (7): at+1 = (1 + rt)at − ct + ytdt.

Conditional Continuous Choices (CCCs):

I estimate the CCCs based on the identification proof. The idea is that we want to solve for the

monotone functions cdt(h, x), which solves the empirical counterpart of system (2):

h = F̂C0t|Dt=0,xt,wt(c0t(h, xt)) ̂Pr(Dt = 0|wt, xt) + F̂C1t|Dt=0,xt,wt(c1t(h, xt)) ̂Pr(Dt = 1|wt, xt) ∀wt, h, xt, t,
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where I replaced the reduced forms by their empirical counterparts. In practice, solving for two

functions c0 and c1 is not convenient. To simplify, I build upon the identification proof and I first

estimate the monotone mapping ĉ0t(c1t, xt) between the two consumptions. Then I will estimate

ĥ(c1). Consider the empirical counterpart to equation (3):

∆̂FC0t|xt(c0t(c1t, xt)) = −∆̂FC1t|xt(c1t) ∀c1t

Thus, for any given xt, I estimate the conditional consumption mapping ĉ0t(c1t, xt) by solving for

the whole monotone mapping functions c0t(c1t, xt) minimizing

argmin
c0t(c1t,xt)

∫
C1

(
∆̂FC0t|xt(c0t(c1t, xt)) + ∆̂FC1t|xt(c1t)

)2

weight(c1t) dc1t.

It gives a weighted minimum distance estimator to solve for the whole function, instead of proceeding

pointwise c1 by c1.9 On a practical note, I resort to constrained optimization to solve for the function:

select a grid of c1, and search for the corresponding c0 by imposing the monotonicity constraint

that if ca1 < cb1, then c0(ca1) < c0(cb1) for every point in the grid. I repeat this estimation procedure

separately for several values of xt.

Once ĉ0t(c1t, xt) is estimated for all xt, I can estimate ĥt(c1, xt) using any equation of system (2)

(with wt = 0 or wt = 1) as:10

ĥt(c1t, xt) = F̂C0t|Dt=0,wt,xt(ĉ0t(c1t, xt)) ̂Pr(Dt = 0|wt, xt) + F̂C1t|Dt=0,wt,xt(c1t) ̂Pr(Dt = 1|wt, xt).

Once I have estimated the monotone functions (ĥt(c1t, xt), ĉ0t(c1t, xt)) for all c1t ∈ C1 and for all xt,

I easily recover the CCCs:

{ĉ0t(h, xt), ĉ1t(h, xt)} ∀(h, xt) ∈ [0, 1]×X
9For the weight(c1t), I put uniform weights on the quantile of c1t. More precisely, I do not solve for the optimal

consumption mapping, but for the optimal quantile mapping between the two consumptions. I look for the quantile
of γ0 of c0 which corresponds to a given quantile of c1 denoted γ1. Thus, following the notation in the Appendix B
for the identification proof, the objective can in fact be written as:

argmin
γ0t(γ1t,xt)

∫ 1

0

(
∆̂F 0|xt

(γ0t(γ1t, xt)) + ∆̂F 1|xt
(γ1t)

)2
weight(γ1t) dγ1t.

In this case, weight(γ1t) = 1 for all γ1t. And the support of the integral is simply [0, 1] since the quantiles are uniform.
10In practice, the two equations might not yield exactly the same results because of the noise in the estimation

of the reduced forms. Therefore, I will estimate two different h with each equation (with w = 0 and w = 1) and
obtain my final estimate by weighting the two estimates by the number of observations when (Xt = xt,Wt = 0) and
(Xt = xt,Wt = 1).
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by flipping the arguments (because everything is monotone).

Conditional Choice Probabilities (CCPs):

Once the monotone CCCs are estimated, I estimate ht from observed (ct, dt, xt) in the data, by

inverting the CCCs.

If dt = d : ĥt = ĉ−1
dt (cobst , xt).

Then, you can use ĥt as if it was observed (like a generated covariate), and estimate the Conditional

Choice Probabilities

P̂ r(Dt = d|ηt = h,Xt = xt,Wt = wt).

Again, similarly to the reduced forms probabilities, this estimation can be done non-parametrically

with kernel or by Sieve logistic or probit regressions.

Alternative methods:

One could resort to estimation methods proposed in the IV-quantile treatment effect literature and

based on Chernozhukov and Hansen (2006, 2008), or that based on Vuong and Xu (2017), described

in Feng et al. (2020). With respect to these methods, the advantage of the method developed here is

that it is entirely based on the constructive identification proof and does not impose any additional

assumptions. The estimation is more flexible, and does not require full rank or other assumptions

on the conditional choice probabilities (as in the practical estimation paper of Feng et al. (2020))

to hold, for example.

Alternatively, the CCCs and CCPs coud be jointly estimated by Sieve, directly from the data,

without estimating reduced forms beforehand. Indeed, for any CCC guess (which has to be mono-

tone in η), one can recover the corresponding η from observing cd in the data. Joint with a CCP

guess, one can derive the likelihood of any data point. Therefore, the CCCs and CCPs can be

estimated directly by Sieve maximum likelihood.

5.2 2nd stage: structural model

I provide an estimation method for parametric models here. I do so for practical reasons since

this avoids the curse of dimensionality and because it fits most applications. Assume the model is
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parametrized by θ ∈ Θ. As I did not address the identification of β (Magnac and Thesmar, 2002),

I do not estimate it either, so it does not enter θ. The parameters θ can be divided into two parts

θ = (θ0, θ1): where θ0 enters the marginal utility and θ1 does not. In the setup, u is parametrized by

θ0, and denoted ud(cdt, x̃t, ηt, θ0). The additive term mdt(xt, wt, ηt, θ1) is parametrized by θ1. More

precisely, θ1 impacts the difference ∆mt(xt, wt, ηt, θ1) of m1t(xt, wt, ηt) −m0t(xt, wt, ηt), since only

the difference is identified by the discrete choices.

I want to estimate θ. To do so, I use the CCCs, the CCPs and the transition estimated in the

first stage. My estimation method is based on the minimization of two different objectives identi-

fying different parameters: one based on the Euler equation and the other based on the conditional

choice probabilities.

Euler objective:

Recall the notation for the marginal utilities at the optimal CCCs:

u′∗d (x̃t, at, ηt, θ0) =
∂

∂cdt
ud(cdt, x̃t, ηt, θ0)|cdt=c∗dt(ηt,x̃t,at).

Thus, we have the Euler equation:

u′∗d (x̃t, at, ηt, θ0) = β(1 + rt)Et
[
u′∗dt+1

(x̃t+1, at+1, ηt+1, θ0)
∣∣∣xt, cdt = c∗dt(ηt, xt), dt = d

]
def⇐⇒ q1(t, dt, ηt, xt, θ0) = q2(t, dt, ηt, xt, θ0),

where xt = (x̃t, at).

The CCCs and the CCPs have been estimated in the first stage for all dt, xt, ηt, t. I also estimated

the transitions. Thus, I can estimate θ0 as:

min
θ0

Qeuler(θ0) =
∑
i

(q1(t, dt, ηt, xt, θ0)− q2(t, dt, ηt, xt, θ0))2 .

In other words, θ̂0 minimizes the differences between the two sides of the Euler equation for every

observation i in the sample.11 Now, q1 is directly given as a function of θ0 and of the observed
11In practice, it is better to rewrite the objective such that it is scale invariant and comparable for all the values of

θ0. For example, if ceteris paribus a specific parameter value in θ0 scales down everything in q1 and q2, the errors will
be small at this parameter value, regardless of whether or not this parameter is far from the truth. To avoid that,
one need that, for any set of parameters θ0, the Euler Equation errors are on a similar scale. Log-linearization can
be used to achieve this, for example. In the next section the parametric model is such that I can isolate consumption
on the left-hand side of the Euler Equation. In this case, the left-hand side of the equation is based on consumption
data and is independent of the parameters. Thus I can compare the results between parameters on the same basis.
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characteristics and choices. q2, on the other hand, contains an expectation and can be computed in

several ways.

The first way is to use individuals present for two consecutive periods and to estimate the

expectation of future utility using all individuals with the same current states xt, cdt, dt. Since c

is continuous and x contains continuous covariates, this can be done parametrically or via non-

parametric kernel mean regression. This method is the simplest, but it requires many observations.

It is close to the idea of Euler-GMM estimation, as pioneered by Hansen and Singleton (1982). The

problem is that when the marginal utilities are highly nonlinear, the expectation is poorly estimated

and this type of GMM estimation does not work well and needs to be refined Alan et al. (2009).

Hence, I prefer to use an alternative approach based on forward simulations, in the spirit of

(Hotz et al., 1994). The idea is to use the CCCs, the CCPs and the transition to estimate the

expectation term via one-period-ahead simulation. This method is slightly longer but less affected

by the nonlinearity problem. It requires to estimate the transitions consistently.

Probability objective:

Now, the Euler equation does not provide any information about the parameters impacting the

differences of the additive term, θ1. To estimate these parameters, I use the relation between the

choice probabilities and the conditional value function (Hotz and Miller, 1993). In particular, if ε

is extreme value type I, we have:

Pr(D = 0|ηt,xt, wt, θ) =

1

1 + exp (v∗1t(xt, ηt, θ) +m1t(xt, wt, ηt, θ1)− (v∗0t(xt, ηt, θ) +m0(xt, wt, ηt, θ1)))
(11)

Knowing θ, one can estimate the conditional optimal values v∗dt(xt, ηt, θ) by forward simulation of

the life-cycle, for example (Hotz et al., 1994). Note that the value functions are parametrized

by θ and not only θ1. Thus, a way to estimate the parameters is to minimize the differences

between the estimated CCPs and the theoretical probabilities (equation (11)) with respect to θ for

all observations:

min
θ

Qproba(θ) =
∑
i

(
Pr(D = 0|ηt, xt, wt, θ)− ̂Pr(D = 0|ηt, xt, wt)

)2

.

Global objective:

There are two consistent ways to estimate θ. The faster one is to perform the estimation in two
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separate steps: (i) estimate θ0 from the Euler equation and (ii) estimate the remaining θ1 from the

probability objective (taking θ̂0 as given). This yields a consistent estimation of θ.

However, the probability objective also depends on (part of) θ0 which is identified by the Euler

equation. An efficient way to account for this information is to perform the estimation in one step

and find the parameters θ that minimize a weighted sum of both objectives:

θ̂ = argmin
θ

weighteulerQeuler(θ0) + weightprobaQproba(θ),

where the optimal weights are to be determined. At the optimal weights, the one step method is

consistent and more efficient than the two-step estimation.

6 Estimator Performance

I test my estimator’s performance with Monte Carlo simulations of the estimation of a parametric

toy model of simultaneous labor and consumption choices. This model is a simplified version of the

application performed in the next section. I provide additional robustness checks in Appendix C.

6.1 Toy model

The agent chooses to work (dt) and consume/save (ct) from t = 1 to t = T . Then she retires for

one period in t = T + 1. She dies in t = T + 2.

Working life:

In each period the agent obtains utility:

udt(ct, xt, ηt) +mdt(xt, wt, ηt) + εdt =

{
c1−σ
t /(1− σ) η̃0

t (ηt, γ0, s0) + ε0t if dt = 0
c1−σ
t /(1− σ) η̃1

t (ηt, γ1, s1) + α + ω(1− wt) + ε1t if dt = 1

subject to the budget constraint:

at+1 = (1 + r)at + dtyt − ct + (1− dt)bt.

t is the age of the agent. ct is the individual consumption. dt is the labor choice, equal to 1 if she

works. wt is the instrument, equal to the past labor choice dt−1. at is the asset holdings. bt rep-

resents benefits earned by unemployed people. yt represents the earnings. yt take only two values,

yL and yH , for low and high income. In this way, the asset is the only continuous covariate, and I
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can reduce the state space with only two values in the support of y. I observe the income for every

individual, even when she does not work. The interest rate r is fixed and equal to 0.05. εt = (ε0t, ε1t)

are additive idiosyncratic shocks impacting preferences for work. They are extreme-value type I.

η̃d are nonseparable taste shocks to utility. η̃d(η, γd, sd) is the ηth quantile of a lognormal(γd, sd)

distribution. In other words, η̃d ∼ LN (γd, sd), so that η̃d are labor-dependent monotone trans-

formations of the uniform η. Having η as quantiles of some specific distribution is a convenient

way of modelling unobserved taste shocks in this type of setup. Thus, (γ0, γ1, s0, s1) capture the

different effects of unobserved taste shocks on the utility depending on working choice. I normalize

γ0 = 0, s0 = 0.25 to interpret the parameters of working individuals with respect to this reference.

The other parameters are more conventional: σ is the risk aversion or intertemporal elasticity

of substitution, α is the utility cost of work, and ω is the cost of searching for a job when one

was previously unemployed (wt = 0). Thus, θ = (

≡θ0︷ ︸︸ ︷
σ, γ0, γ1, s1,

≡θ1︷︸︸︷
α, ω), where θ1 only impacts the

probability of working and not the consumption choices, and θ0 impacts both.

Transitions:

The asset transition is given by the budget constraint.

In the income transitions, I model gains from working experience: Pr(yt+1 = yH |dt = 1, yt) >

Pr(yt+1 = yH |dt = 0, yt) ∀yt. Income is also persistent, so if one had a high income in t, one is more

likely to obtain a high income in t+ 1: Pr(yt+1 = yH |dt, yt = yH) > Pr(yt+1 = yH |dt, yt = yL) ∀dt.

It yields the following transition matrix:

Pr(y1 = yH |d0, y0) = Π(d0, y0) =

(
π0L π0H

π1L π1H

)
where π1L > π0L, π1H > π0H , π1H > π1L, and π0H > π0L.

These four parameters are estimated directly from the data by estimating Pr(yt = yH |yt−1, dt−1)

with a bin operator, i.e., by computing the number of observations with y = yH over the total of

observations with each specific yt−1, dt−1 combination.

The shocks are iid and uncorrelated over time ηt+1 ⊥ ηt and εt+1 ⊥ εt.

The agent discounts the future with discount factor β. I set it to 0.98 and do not estimate it.

Retirement:

At period T + 1 the woman retires. She only consumes and can no longer work. She obtains

the same period utility as when she was unemployed, without the additive ε shock. She obtains
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a pension(yT ), which is a proportion set to 50% of her last income yT . She lives for only one

period in retirement and knows that she will die at t = T + 2.12 There is no bequest motive. As a

consequence, she will consume everything, i.e., aT+2 = 0. Thus, the last period consumption has a

closed-form solution:

c∗T+1 = (1 + r)aT+1 + pension(yT ).

6.2 Comparison

I run Monte Carlo simulations of this toy model and estimate the parameters θ = (σ, γ0, γ1, s1, α, ω)

using my method. I compare my results with indirect inference Simulated Method of Moments

(SMM) where the model is solved using Endogenous Grid Method (Iskhakov et al., 2017).

Results: (Table 1)

Table 1 shows the estimation results for a model with T = 2 periods.13

In terms of speed, my two-step method (DCC for Discrete-Continuous Choices) yields sizeable

computational gains, even with respect to the state-of-the-art indirect inference method with en-

dogenous grid (Carroll, 2006; Iskhakov et al., 2017). The idea is simple: I have a fixed computational

cost of estimating the CCCs and CCPs in the first stage. However, thereafter, when solving for the

optimal θ, I do not need to solve the model again, as I already have the optimal choices. I only need

to perform some quick computations of the marginal utilities. Concerning the forward simulation,

it is also a fixed cost, as the simulated path depends on first-stage CCCs, CCPs and transitions but

not on θ. Thus, I only simulate forward once, and I retain the same path (as it is recommended to

have the same basis for every set of parameters and to avoid adding some simulation noise to the

estimation) for the computation of the expectations and conditional value functions for each tested

set of parameters. The other methods, on the other hand, do not have my first-stage fixed cost,

but they require considerably more computations in the second stage. If the model is very simple

and the second stage is estimated quickly, these methods can perform quicker than mine in theory.

However, as is well known, life-cycle models require a long time to solve, and the computational

burden increases almost exponentially with the complexity of the model (more covariates, more
12This is a simplification; one could easily allow for a known length of retirement and solve the dynamic consumption

problem of the retiree accordingly (as I do in the application). However, this does not deliver any particular insights
in terms of estimator comparison, so I have agents live for only one period of retirement for simplicity.

13Coded in R, without parallelization here. Time results obtained from an Intel(R) Core(TM) i7-9750H CPU.
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Table 1: T = 2 periods

Method
Truth DCC SMM

N 10,000 10,000

σ 1.60 1.6253 1.5924
(0.0410) (0.0156)

γ1 0.00 0.0070 -0.0052
(0.0238) (0.0055)

s1 0.40 0.4078 0.4001
(0.0228) (0.0071)

α -0.50 -0.4727 -0.5023
(0.0498) (0.0348)

ω -1.00 -0.9982 -0.9972
(0.0581) (0.0523)

Average Time taken:
1st stage: CCPs and CCCs 118s 9s
2nd stage: Structural parameters 170s 14328s
Overall 288s 14337s

Other initializations: Number of Monte-Carlo = 1, 000
Pr(w1 = 1) = 0.70. y1 = yH with probability 0.50. a1 ∼ U(0, 30). r = 0.05.

parameters, more periods). It can take several minutes to solve for one tested set of parameters,

and finding the optimal parameters may require hundreds or even thousands of tests. Even here,

in this very simple example with two periods, solving the model and estimating the moments for

one set of parameters takes about 25 seconds with EGM. While with my method, computing the

objective for one set of parameter takes less than a second. The more complex the model, the more

this gap widens, as solving the model becomes even longer relatively speaking, while the fixed cost of

computing the first stage policy only takes slighly longer. As a consequence, my two-stage method

yields significant computational gains by reducing the burden of the second stage. Interestingly,

the more complex the model is, the more computation gains from my estimation method relative
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to others. Obviously, having more complex models increases my computation time, but not in the

same exponential manner as for the alternative methods.

In terms of statistical performances, my two-step method (DCC) estimates the parameters con-

sistently and with small standard errors. As also shown in the simpler case of Appendix C where

T = 1, Simulated Method of Moments (SMM) is consistent and more efficient for most param-

eters (if one uses a lot of moments). Both methods build upon the same initial estimation of

the reduced forms conditional consumption distribution FCd|Dt,Xt,Wt,t(c) and probability of working

Pr(Dt = 1|Xt,Wt, t). The moments are selected in these two objects.14 And my first stage estima-

tion of the CCCs is also built on these objects. Therefore, it is not surprising that both methods

yield close results. I lose some efficiency due to the two-step nature of my method, similar to the

efficiency loss of CCPs estimators. In theory, MLE is more efficient than both (see the T = 1

case in Appendix C), but it quickly becomes intractable to compute empirical likelihood with more

periods.

Another advantage of my method is that if the model is misspecified, I still recover correct op-

timal choice estimates because the first stage is independent of the model assumptions (except for

the choice of covariates to include). This is not the case for the alternative methods. Also, as I do

not solve numerically for the optimal choices, I do not need to smooth potential kinks introduced

by joint discrete-continuous choices, contrary to indirect inference with endogenous grid method

(Iskhakov et al., 2017).

Overall, I have a method that is statistically consistent, with small standard errors, and con-

siderably faster, by several orders of magnitude, than alternative state-of-the-art indirect inference

with endogenous grid method. SMM built upon moments drawn from the reduced forms is also

consistent and more efficient but the computational burden is too heavy for complex life-cycle mod-

els.

7 Application: women’s labor and consumption

I illustrate the method developed in this paper with a parametric dynamic model of simultane-

ous employment and consumption choices for women over their life cycle. I choose a parametric
14If we do not pick moments in the reduced forms, i.e., moments conditioned by w, then the model is not identified

and the SMM estimation will not be consistent.
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application for practical reasons: to avoid the curse of dimensionality and to be able to compare

my parameter estimates with the literature. This model especially matters for understanding how

different benefit schedules affect the careers of women, particularly mothers, who are known to be

the most responsive to incentives (Blundell and Macurdy, 1999; Blundell et al., 2016). It allows us

to understand the mechanism underlying individual choices and thus to carry out counterfactual

policy analysis in the long run.

My method is of particular interest for two main reasons here. First, life-cycle models such as

that presented here are extremely computationally intensive to estimate, to the extent that one

often needs to restrict the complexity of the model for the estimation to be tractable. By first

estimating the optimal choices (CCCs and CCPs) and only then the structural parameters in a sec-

ond step, I do not need to solve the model, and I am able to drastically reduce the computational

cost, in the spirit of Hotz and Miller (1993), Hotz et al. (1994) and Arcidiacono and Miller (2011).

Faster computation means that one can include more features in existing models, for example, more

heterogeneity, observed or unobserved, and still be able to estimate them in a reasonable time. The

complete estimation of this complex model only takes me a few hours here, while it could take weeks

or months with alternative methods.

In addition to the speed increase, I also include more unobserved heterogeneity in the model with

the η term. Thus, by construction, I estimate the distribution of consumption choices and working

probabilities at any given set of observed covariates, and not only the average choices. This yields

new insights in this literature.

7.1 Model

Overview:

The parametric model enters the general dynamic framework described in section 4.1. It is a more

realistic version of the toy model described previously, with the same key features. I model the

annual consumption and labor supply choices of women from t = 26 to t = 60 years of age. Each

period, women determine their household consumption ct, and whether they work dt.15 At the age

60, they retire and live for 15 more years on their accumulated savings and their pension, which

depends on their last income. Throughout their life, women may bear children. Fertility occurs
15I focus on the extensive margin, not on the number of hours worked. Individuals are assumed to either work full

time or be unemployed. This might be restrictive, particularly for single mothers, who are known to resort more to
part-time jobs.
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randomly following the trend observed in the data, and is not explicitly modelled as a choice. Cou-

ples do not divorce, and new couples are not formed in the model. This is for simplicity to avoid

dividing the assets or modelling individual husbands’ assets. Women’s productivities (and thus

wages) evolve over their careers. Labor supply choice plays a key role in this evolution, as work-

ing experience increases expected future wages, while productivity can depreciate for unemployed

women. Similarly, asset holdings evolves over the life cycle following a budget constraint that de-

pends on previous asset holdings, consumption, women’s productivities and labor choices (they are

paid only if they work), their potential husband’s annual income and the tax schedule to which they

are subject. The benefit/tax schedule is simplified and estimated based on observed data. It differs

depending on the individual’s family situation, wealth and labor choice. Finally, women are subject

to unobserved preference shocks η and ε. η is their unobserved taste shock for consumption, and ε

represents their unobserved preference for work. With η, I can estimate heterogeneous consumption

choices for individuals who are identical as measured by their covariates.

I now describe the model in greater detail.

Working life:

t

t t+ t++ t+ 1

Starts
with states
zt = (xt, wt)

Shocks (εt, ηt) Simultaneously
picks (dt, cdt)

Draw
zt+1|zt, ct, dt

...

From age t0 = 26 to age T = 60, a woman is in her working life. She makes her decision (dt,

ct) to maximize her expected lifetime utility given her characteristics. These characteristics include

her age (t), her income (yt), her assets (at) and some demographics x̃t: her number of children

(nchildt), whether she is in a couple (couplet), and if so, her partner’s annual income (ypt ) and labor

force participation dpt . All these covariates are included in xt = (at, yt, x̃t).16 Her decision to work is

also influenced by whether she worked before wt = dt−1, for which we observe w0 = d−1. wt matters

because of the utility cost of switching from being unemployed to employed. She also makes her

decision based on two idiosyncratic shocks ηt and εt, unobserved by the econometrician. To satisfy
16A small detail: yt is now excluded from x̃t, at minimal risk of confusion. It is because yt does not enter the

current period utility directly.
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the distributional Assumptions 4-7, we have ηt ∼ U(0, 1) iid over time, and εt is i.i.d. extreme-value

type I.

Each period, the agent obtains utility:

u(ct, dt, wt, xt, ηt, εt) =

{
(ct/nt)

1−σ /(1− σ) η̃0
t (ηt, couplet, nchildt) + ε0t if dt = 0

(ct/nt)
1−σ /(1− σ) η̃1

t (ηt, couplet, nchildt) + α + ω(1− wt) + ε1t if dt = 1

≡


u0(ct, x̃t, ηt) + ε0t
u1(ct, x̃t, ηt) + α + ω(1− wt)︸ ︷︷ ︸

=m1(wt)

+ ε1t .

where ct is the total household consumption over the period, nt is an equivalence scale, which de-

pends on the number of consumption units in the household, i.e., nt(couplet, nchildt), with nt(0, 0) =

1, nt(1, 0) = 1.6, nt(0, 1 or more) = 1.4, nt(1, 1 or more) = 2 (Blundell et al., 2016). Thus, ct/nt rep-

resents individual consumption. σ is the elasticity of intertemporal substitution/risk aversion param-

eter. The effect of the unobserved shock ηt varies depending on the work choice (dt) and family situ-

ation (couplet, nchildt). η̃dt are transformations of ηt, where η̃dt ∼ LN (γd+γcdcouplet+γ
n
dnchildt, sd).

η̃dt are the ηth quantiles of these distributions. This is a convenient way to include covariates in this

setup. Since ηt ∼ U(0, 1), the transformation to η̃dt allows for a wide range of effects of ηt. Note that

with this functional form, the monotonicity Assumption D3 is satisfied. The parameters (γd, sd)

represent the baseline effect of unobserved heterogeneity depending on working behaviour, for single

women without children. The parameters (γnd , γ
c
d) determine the effect of the family situation. I

set γ0 to 0 and s0 to 0.5 so that the other coefficients are interpreted with respect to this baseline.

The agents incur a utility cost α from working. wt is the instrument that corresponds to the past

labor choice, wt = dt−1. The agents incur a an utility cost ω from searching for a job (if they were

previously unemployed). Thus, mdt(wt, xt, ηt) = αdt + ω(1 − wt)dt, and it is independent of xt, ηt

and t in this application (which is stronger than necessary for the identification). By the additivity

of the instrument wt, Assumption D2 is satisfied. Similarly, additive separability of εt (Assumption

D1) is satisfied. Note that I have time independent current utility. However in the parametric

framework I can identify time-varying utility (Assumption 14 is only necessary for non-parametric

identification). Thus one could include and estimate time fixed effects for example.

Transition:
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The woman makes her choice of dt, ct subject to the household budget constraint :

at+1 = (1 + r)at − ct + dtyt + coupletd
p
ty
p
t + T (dt, xt).

This budget constraint describes the asset transition over time. r is the real interest rate. If the

woman works dt = 1, she obtains a wage yt. If she has a husband (couplet = 1) who works (dpt = 1),

the household also obtains his total income (= 0 if he does not work). T (dt, xt) is the benefit-tax

schedule. It is a function of the covariates and labor choice. I estimate it directly from the data.

Earnings yt and husband’s earnings ypt evolve over time according to an auto-regressive process:

yt+1 = (ρyyt + ρddt + ρaget)× educt + ut

ypt+1 = ρpyy
p
t + ρpdd

p
t + vt,

where ut, vt may be correlated. Working (dt = 1) allows individuals to change their expected earn-

ings and potentially increase them. Unemployment will decrease productivity if ρy < 1, i.e., human

capital depreciates. Therefore, working is important not only for current consumption and savings

but also for its impact on human capital accumulation. All these coefficients vary with the education

level (≤secondary, high school or university) of the woman, educt. I do not include the education

of the partner to avoid having too many variables in the model, since I focus on the woman. The

earning process is estimated directly from the data on observed transitions.

Auto-regressive processes are also estimated for fertility (having a new-born child) and for the

husband’s work decisions. These depend on past xt only. dt and ct do not enter the transitions

here.

Finally, by construction, the next value of the instrument wt+1 = dt and the other covariates

than dt are irrelevant for its transition. Since conditional on current (dt, ct, xt), wt does not enter

the transition of the other variables, the conditional independence Assumption 10 is satisfied.

Retirement:

At age T , the woman retires, and can no longer decide to work. She obtains the same utility as

when she did not work, with dt = 0, without the additive ε shock.17 She lives for another 15

years on her accumulated assets and receives a pension that is a proportion of her last income
17Instead, I can normalize the utility of retired women with parameters γr and sr. In which case, I could estimate

the γ0 and s0 of unemployed women with respect to the retirees baseline. However, my estimation would then be
driven by the data comparison of the Euler equation at the retirement age, which represents only a small subset of
my panel. Therefore, I prefer to set the utility of retirees equal to the utility of unemployed individuals.
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yT . I include no bequest motive in the model. One can easily solve the consumption problem of

retirees, which depend on their last income and assets, to obtain the expected retirement utility :

R(xT ) = R(aT , yT , y
p
T , coupleT , nchildT ).

Life-cycle problem:

The working life decision problem is the one that interests us. Given the development above, at

any age t during her working life, the woman decision problem can be written as:

Vt(zt) ≡ E
[ T∑
τ=t

βτ−tmax
d,cdτ

[ ud(cdτ , x̃τ , ητ ) +md(x̃τ , wτ , ητ ) + εdτ ] + βT−tR(xT )
]
,

where the future is discounted at a rate β.

For notational simplicity, denote VT+1(zT+1) = R(xT ), a special form of the value function for

the retirement period. We have already verified that the identification assumptions hold. Therefore,

following computations performed in section 4.1, we return to the general setup, where the woman

selects dt and ct at each age t to solve:

max
dt,cdt

vd(cdt, xt, ηt) +md(x̃t, wt, ηt) + εdt, (12)

where the conditional value function is given by:

vdt(cdt, xt, ηt) ≡ ud(cdt, x̃t, ηt) + βEzt+1 [Vt+1(zt+1)|xt,cdt,dt ].

The agent internalizes the effect of her choice on her future, discounting it at a rate β. Note that

even here where the current utility has a known parametric form, the conditional value’s form is

generally more complex, with no closed form solution. It depends on complex transitions and expec-

tations about the future. Therefore, the advantage of my method, i.e., that I am able to estimate

both the optimal policies (CCCs and CCPs) and the parameters of interest without numerically

solving for the conditional value, also applies to parametric dynamic models, hence the sizeable

computational gains.

7.2 Data

To estimate the model, I use EU-SILC French survey data. It is a survey conducted every year and

follows households from 2004 to 2015. The data contain information about the labor market status
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(income, job tenure), asset holdings (financial and housing), tax paid and benefits received, and

personal characteristics of the individuals (family situation, education, etc.). Data are available for

all the individuals within the household, which is why I also have detailed information about the

partner.

Consumption is not directly available in the data, I reconstruct it for households present over

two consecutive years based assets evolution and savings.

I set that a woman works (d = 1) if she worked more than 6 months during the year.

Income is only reported for employed women and husbands. I estimate y and yp based on the

income information of workers using the standard Heckman correction (Heckman, 1979) before-

hand. For simplicity, I assume that income is observed for everyone using these estimations when

I estimate the model.18 I estimate this on the subsample of full-time working individuals so that I

obtain a productivity yt representing full-time equivalent productivity. In this estimation, I include

covariates other than those used in the model, including education, experience, some parent back-

ground information, and zone and year fixed effects.

After cleaning the data for outliers and missing values, I end up with an unbalanced panel of

7, 391 women between 26 and 60 years of age, yielding a total of 21, 945 observations over 11 years.

I fix the real interest rate r at the average of the period (= 0.05), as given by the IMF French data.

Descriptive statistics:

Table 2 describes the sample of data I use; 76% of women work, with a strong auto-correlation in

employment: if a woman worked before (wt = dt−1 = 1), Pr(Dt = 1|wt = 1) is very high = 0.96,

while if she did not, Pr(Dt = 1|wt = 0) = 0.14 is low. This suggests that w should be a relevant

instrument for d. On average, households consume 36k5 euros per year. Observed consumption

conditional on working (c1t|dt = 1) is higher than consumption conditional on being unemployed

(c0t|dt = 0). However, we do not yet know how much of this is due to the selection: it is pos-

sible that women with high ηt select more into employment, boosting the average consumption

conditional on working. Regarding the covariates, there is considerable variance in asset holdings.

Most women (75%) are in couples, with a median number of 2 children. Their partner is generally

working (93%), far more frequently than the women. The partner’s income is also larger than
18Obviously, given that the probability of working is a key part of the model, ideally one would prefer to build

our own Heckman correction within the model here, with some kind of nested iteration with the CCP, CCC and
productivity estimation, in the spirit of Aguirregabiria and Mira (2002) for example. Another good way to deal with
it would be to include unobserved types, as in Arcidiacono and Miller (2011), and have wage depend on these types.
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Table 2: EU-SILC unbalanced panel, 2004− 2015, 7391 women

Statistic N Mean St. Dev. Min Median Max

Choices:
Annual household c (k euros) 21,945 36.58 20.99 3.88 32.54 211.54
c|d = 0 5,330 30.04 19.32 4.02 25.58 204.48
c|d = 1 16,615 38.67 21.07 3.88 34.78 211.54

d 21,945 0.76 0.43 0 1 1
w 21,945 0.76 0.43 0 1 1
d|w = 0 5,354 0.14 0.35 0 0 1
d|w = 1 16,591 0.96 0.20 0 1 1

Covariates:
Age 21,945 42.37 9.39 26 42 60
Annual Income y (Heckman) 21,945 19.74 5.29 8.10 19.07 43.32
Asset 21,945 108.29 118.55 −32 69.0 528
Nb of children 21,945 1.71 1.09 0 2 4
Couple 21,945 0.75 0.43 0 1 1
Working partner|Couple 16,442 0.93 0.25 0 1 1
Partner’s income yp |Couple 16,442 26.41 13.21 4.02 23.20 147.54

Completed Education 21,945
≤ Secondary 5,240 0.24
High School 9,999 0.46
University 6,706 0.30

Other:
Receives Benefits 21,945 0.66 0.47 0 1 1
Benefits|Benefits > 0 14,478 5.16 4.46 0.002 3.60 23.07

c, y, yp, asset and benefits expressed in real terms (base 2010) and in thousands of euros.

the woman’s annual income. Finally, approximately 66% of the households received some kind of

benefit. These benefits include not only unemployment benefits, but also family benefits, for ex-

ample. This is why there are more people receiving benefits than the number of unemployed people.
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7.3 1st stage: Optimal Choices Estimation

7.3.1 Estimation

I follow the procedure described in section 5. First, I estimate the reduced-form probabilities and

conditional distributions. The probabilities are estimated with a sieve logistic regression. The

conditional distributions are estimated via non-parametric kernel methods (R package np, Hayfield

and Racine, 2008).

Then, I estimate the CCCs cdt(ht, xt) for all ht, xt accordingly. Once I have the CCCs, I estimate

ĥt from the observed (ct, dt, xt). I then recover the CCPs P̂ r(Dt = d|ηt = h,Xt = x,Wt = wt) using

a sieve logistic regression.

I also estimate the transitions toXt+1|Xt, Dt, Ct according to the description provided previously.

7.3.2 Results

Figure 1: CCCs and CCPs estimates
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euros, no assets, in a couple, no children, with a partner earning 22k euros.

Optimal Choices:

Figure 1 shows the optimal choice estimates for the median 26 year-old woman. Potential con-

sumption when working is always greater than alternative consumption when unemployed, with an

average difference of approximately 3, 930 euros of consumption per year. By construction, these

functions are monotone with respect to the taste shock h.

The conditional choice probabilities are more complicated. First, note that the probability of
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Figure 2: Life-cycle simulations
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And an alternative woman with the same characteristics but 2 children.

working is always greater and close to 1 for individuals who were employed previously. If the me-

dian woman was previously unemployed, however, her probability of working today is less than

50%. The relation between the employment decision and the taste shock is complex. By working,

the woman will obtain an income that she will be able to consume. However, at the same time,

she will have less leisure time. There is a trade-off between a substitution and wealth effect. If she

was previously employed (wt = 1), the higher her taste shock (ηt) was, the less likely the median

woman was to work. The substitution effect dominates. Note that even is she is less likely to work,

in any case, the higher ηt is, the more she consumes. If she was previously unemployed, the case is
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more complicated. Up to approximately the median taste shock, the wealth effect dominates, and

she will choose to work more to consume more. After this threshold, it decreases, and the more she

wants to consume, the less she will work.

Life-cycle simulation:

Figure 2 shows the average results over 1, 000 life-cycle simulation for the median 26 year-old woman

and for an alternative woman with the same characteristics but two children. First, consumption,

income and asset all increase throughout the life cycle. Her partner’s income also increases in a

similar fashion. Once they enter the labor force, women are increasingly likely to work until retire-

ment. By having two children, the alternative woman is less likely to work initially, and this persists

throughout her life cycle. As a consequence, she on average has an income disadvantage, while her

husband seems to suffer no particular penalty. However, with two children she will initially obtain

more benefits and be able to accumulate slightly more assets. The households with two children

consume only slightly more, which suggests that they obtain considerably lower utility from their

individual consumption.

7.4 2nd stage: Structural model Estimation

7.4.1 Estimation

Now, I want to estimate the set of structural parameters: θ = (σ, γc0, s
c
0, γ

n
0 , s

n
0 , γ

c
1, s

c
1, γ

n
1 , s

n
1︸ ︷︷ ︸

≡ θ0

, α, ω︸︷︷︸
≡ θ1

).

Following section 4.2.3, denote the marginal utilities at optimal CCCs as:

u′∗d (x̃t, at, ηt) =
∂

∂cdt
ud(cdt, x̃t, ηt)|cdt=c∗dt(ηt,x̃t,at).

Thus I have the Euler equation for all d:

u′∗d (x̃t, at, ηt, θ0) = β(1 + rt)Et
[
u′∗dt+1

(x̃t+1, at+1, ηt+1, θ0)
∣∣∣xt, cdt, dt].

Here, the functional form of ∂ud(cd, x̃, η)/∂cd is known and depends on the parameter θ0. Thus, θ0

are estimated in a first step by minimizing the differences between the two sides of the equation. For

the left-hand side of the equation, I use every observation in the data, including the estimated η̂ as

if it was observed and the corresponding observed cdt. For the right-hand side, one can either take

the empirical expectation about the future, or simulate it using the estimated CCCs, the CCPs and
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the transitions. Given the small number of observations I have, I prefer to use the former solution

in this application.

The other parameters α and ω (in γ1) additively enter the utility, so they are not in the Euler

equation. They are identified via the CCPs. To recover α and ω, I choose to simulate complete

life cycles for each set of parameters θ using the reduced forms. In this way, I obtain estimates

of the conditional value functions vd(), and using extreme-value type-1 form of ε, I can recover

the theoretical Pr(Dt = 1|ηt, Xt,Wt) and compare them to the CCPs. The optimal parameters

θ minimize these differences. I run the two-stage estimates, so I estimate θ̂1 by minimizing the

difference in probabilities with respect to θ1 with θ0 fixed to the θ̂0 estimated in the first stage.

7.4.2 Results

Table 3: Structural parameter estimates

Parameter estimates

Parameter Estimate

Discount factor β 0.98
(fixed)

Constant Relative Risk Aversion σ 1.63

Effect of η by family...
... when unemployed:
LN (γc0couple+ γn0nchild, s0) γ0 0

(fixed)
γc0 -1.80
γn0 -0.31
s0 0.50

(fixed)
... when employed: γ1 -1.04
LN (γ1 + γc1couple+ γn1nchild, s1) γc1 −0.65

γn1 −0.10
s1 0.54

Additive terms:
Utility cost of working α −0.04
Utility cost of search ω −2.14

Structural Parameters: (Table 3)
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I find a coefficient for risk aversion (and the elasticity of intertemporal substitution) similar to the

literature: 1.63 versus 1.56 in Blundell et al. (1994), or 1.53 in Alan et al. (2009). It suggests my

method yields consistent estimations, with more complex model and faster computation.

As expected, the utility cost of searching for a job when previously unemployed is high. In

comparison, the utility cost of working is almost null. For the effect of the taste for consumption,

note first that the smaller the coefficient is, the higher the utility since 1 − σ < 0. Thus, note

that, for a given consumption level, single working women without children have higher utility (on

average) than if they were unemployed (γ1 = −1.04 < γ0 = 0). When they are in couples without

children, their utility is similar (−1.04 − 0.65 versus −1.80). Additional children yield more disu-

tility for employed women (−0.10 > −0.31). The variances are similar (s1 = 0.54 close to the fixed

s0 = 0.50). e

One could use this estimated model to perform counterfactual analysis and study the effect of

different labor market reforms on women’s consumption and career choice, such as, the effect of

increasing the age of retirement or changing the benefits given to single mothers.

8 Conclusion

This paper develops a general class of discrete-continuous choice models and provides a list of

conditions to achieve non-parametric identification. The identification proof is original as it solves

for a unique monotone function instead of proceeding pointwise, which allows identification under

weaker relevance conditions than in the existing literature.

Given the identification, I provide a new estimation procedure yielding sizeable computational

gains with respect to the existing alternatives for the estimation of dynamic models. The gains are

so large that they should facilitate the use of complex dynamic discrete-continuous models in the

future and offer greater latitude to researchers to test for several model specifications. This will

allow us to find new results in several fields where my methodology can be applied: labor, housing,

education, industrial organization, etc.

On a final note, part of the method described here applies more broadly to discrete-continuous

dynamic processes, choices or not. This yields additional interesting dynamic applications.
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A Proof: Lemma 3

I prove Lemma 3.

Proof. First, let us relate Pr(d|η = h,W = 1)−Pr(d|η = h,W = 0) to the distributions/quantiles.

Recall that using Bayes and η ⊥ w, we have ∀w:

h = Pr(η ≤ h)

= Pr(η ≤ h|w)

= Pr(η ≤ h | D = 0, w)Pr(D = 0|w) + Pr(η ≤ h | D = 1, w)Pr(D = 1|w)

= Fη|D=0,w(h)p0|w + Fη|D=1,w(h)p1|w. (13)

Then, combining (13) at w = 1 and w = 0, we obtain ∀h:

Fη|D=0,W=1(h)p0|1 − Fη|D=0,W=0(h)p0|0 = −
(
Fη|D=1,W=1(h)p1|1 − Fη|D=1,W=0(h)p1|0

)
def⇐⇒ ∆Fη0(h) = ∆Fη1(h). (14)

Moreover, notice that we can rewrite Fηd|w(h):

Fη|d,w(h) = Pr(η ≤ h|d, w)

= Pr(η ≤ h, d|w)/Pr(d|w)

= Pr(d|η ≤ h,w)Pr(η ≤ h|w)/Pr(d|w). (15)

Let us focus on the choice D = 0 (by symmetry it will be the same for D = 1) and rewrite (14) by

plugging (15) into it:

∆Fη0(h) =
[
Pr(D = 0|η ≤ h,W = 1)Pr(η ≤ h|W = 1)/((((((((((

Pr(D = 0|W = 1)
]
((((((((((
Pr(D = 0|W = 1)

−
[
Pr(D = 0|η ≤ h,W = 0)Pr(η ≤ h|W = 0)/((((((((((

Pr(D = 0|W = 0)
]
((((((((((
Pr(D = 0|W = 0).

Moreover, since W ⊥ η: Pr(η ≤ h|W = 1) = Pr(η ≤ h|W = 0) = Pr(η ≤ h) = h, we have:

∆Fη0(h) =
[
Pr(D = 0|η ≤ h,W = 1)− Pr(D = 0|η ≤ h,W = 0)

]
h. (16)

Now, note that if η ∼ U(0, 1):

Pr(D = 0|η ≤ h0, w) =

∫ h0

0

Pr(D = 0|η = h,w)/F (h0)dh =

∫ h0

0

Pr(D = 0|η = h,w)/h0dh. (17)
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Thus, we can rewrite (16) ∀h0 as:

∆Fη0(h0) =
[ ∫ h0

0

Pr(D = 0|η = h,W = 1)/h0dh−
∫ h0

0

Pr(D = 0|η = h,W = 0)/h0dh
]
h0

=

∫ h0

0

(
Pr(D = 0|η = h,W = 1)− Pr(D = 0|η = h,W = 0)

)
dh. (18)

Which leads to:

Pr(D = 0|η = h,W = 1)− Pr(D = 0|η = h,W = 0) =
d∆Fη0(h)

dh
.

Moreover, if cd(h) is a strictly monotone solution to our problem, we have Fη|d,w(h) = FCd|d,w(cd(h)),

and thus ∀h:

∆Fη0(h) = Fη|D=0,1(h)p0|1 − Fη|D=0,0(h)p0|0

= FC0|D=0,W=1(c0(h))p0|1 − FC0|D=0,W=0(c0(h))p0|0

def
= ∆FC0(c0(h)).

Thus:

Pr(D = 0|η = h,W = 1)− Pr(D = 0|η = h,W = 0) =
d∆Fη0(h)

dh

=
d∆FC0(c0(h))

dh

=
d∆FC0(c0)

dc0

dc0(h)

dh︸ ︷︷ ︸
>0

.

So, under assumption 9b, there is a finite set of K points h ∈ [0, 1] such that Pr(D = 0|η =

h,W = 1)− Pr(D = 0|η = h,W = 0) = 0. Then there is a finite set of K points c0(hk) such that

d∆FC0(c0(h))/dh = 0. And since c′0(h) > 0 because of the monotonicity of the quantiles, it implies

that there is a finite set of K points such that d∆FC0(c0)/dc0 = 0.

We can follow exactly the same reasoning for D = 1. We obtain that, if there is a finite set

of K points h ∈ [0, 1] such that Pr(D = 1|η = h,W = 1) − Pr(D = 1|η = h,W = 0) = 0, then

there is a finite set of K points c1(hk) such that d∆FC1(c1(h))/dh = 0. Since c′1(h) > 0 because

of the monotonicity of the quantiles, it implies that there is a finite set of K points such that

d∆FC1(c1)/dc1 = 0.
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B Proof of Identification Theorem 1

I develop the complete proof of Theorem 1 about the identification of the continuous choice policies.

Proof. For a given increasing solution cd(h), let us first introduce the notation:

pd|w ≡ Pr(D = d|W = w)

γd(h) ≡ FCd|D=d,W=0(cd(h))

Ψd1(γd(h)) ≡ FCd|D=d,W=1(cd(h)) = FCd|D=d,W=1(F−1
Cd|D=d,W=0(︸ ︷︷ ︸

≡Ψd1()

FCd|D=d,W=0(cd(h))︸ ︷︷ ︸
≡γd(h)

).

Recall from Lemma 2 that FCd|d,w(c): Cd → [0, 1] is C1 and strictly increasing function of c. Now,

under assumption 3, a solution cd(h) is also a strictly increasing and C1 function of h. Thus γd(h)

are C1 and strictly increasing functions of h, from γd(0) = 0 to γd(1) = 1. The mappings Ψd1(γd)

give us the mapping from the quantiles of cd with instrument value W = 0 to their counterpart

with instrument value W = 1. Similarly, given Lemma 2, we have that Ψd1 are also C1 and strictly

increasing functions of γd from Ψd1(0) = 0 to Ψd1(1) = 1. These mappings are directly reconstructed

from the data since the data identifies FCd|d,w ∀d, w. So, from data on (cd, d, w) we now recover:

∀(d, w) pd|w and ∀d Ψd1(γd) .

Under this reparametrization, the system described in equation (2) rewrites, ∀h, with increasing

γd(h): {
h = γ0(h)p0|0 + γ1(h)p1|0
h = Ψ01(γ0(h))p0|1 + Ψ11(γ1(h))p1|1

. (19)

The conditional distribution functions FCd|d,w=0 are known, strictly increasing and invertible (Lemma

2). So if there is a unique solution {γd(h)}d∈{0,1} to system (19), there is a unique solution

{cd(h)}d∈{0,1} to the original system (2). Thus, we first show uniqueness of {γd(h)}d∈{0,1} to system

(19), and then we will come back to {cd(h)}d∈{0,1}.

Lemma 7 (Identification) (in the reparametrized problem)

Under assumption 9, there exists a unique strictly increasing γd(h) solution to system (19) starting

from (γ0(0), γ1(0)) = (0, 0) to (γ0(1), γ1(1)) = (1, 1).
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Proof of Lemma 7.

We prove that there exists a unique increasing solution to system (19).

Existence: existence is straightforward. Indeed, we are only focusing on images of the structural

model. So by construction, with the true optimal policies, γ∗d(h) = FCd|D=d,W=0(c∗d(h)) are solutions

to the system.

Uniqueness : we need to show this is the unique strictly increasing solution to this problem. To

do this, we procede in two-steps. First we show that there is a unique increasing mapping between

the two conditional quantiles, denoted γ∗1(γ0), which solves the system. Then this mapping yields a

unique increasing solutions γ∗d(h). The idea is that, in the end, we want to identify which conditional

quantiles γ0 and γ1 corresponds to a given h. But to do that, we will first recover the conditional

quantile mapping, i.e., which γ1 corresponds to a given quantile γ0 in choice 0. And then we recover

to which h they both corresponds.

Step 1: Let us recover the conditional quantile mapping : γ̃1(γ0), i.e., which γ1 corresponds to a

given γ0, without knowing to which h they correspond. We want to show that there exist a unique

conditional quantile mapping solution to our problem under assumption 9. First, note that γ0(h)

and γ1(h) are C1 and strictly increasing functions of h. Thus, a higher γ0 corresponds to a higher

h and thus to a higher γ1. As a consequence, the mapping γ̃1(γ0) will also be C1 and strictly

increasing function of γ0 starting from γ̃1(0) = 0 (since γ1(0) = γ0(0) = 0) to γ̃1(1) = 1 (since

γ1(1) = γ0(1) = 1). As a consequence, we need to show that there exists a unique increasing

mapping γ̃1(γ0) : [0, 1] → [0, 1], with γ̃1(0) = 0 and γ̃1(1) = 1, solution to our system of equations

(19).

We can get restrictions on our mapping using our structural system (19). Subtract the first line

from the second line in the system of equations (19).

Ψ01(γ0(h))p0|1 − γ0(h)p0|0 = −
(

Ψ11(γ1(h))p1|1 − γ1(h)p1|0
)

def⇐⇒ ∆F0(γ0(h)) = ∆F1(γ1(h)) ∀h (20)

Notice that the functions ∆F0 and ∆F1 are directly observed from the data as both Ψd1 and pd|w are

known ∀d, w. We also know they are C1 functions of γd as the sum of C1 functions (since Ψd1(γd)
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are C1).

Now, even if we do not observe h, if γ1 and γ0 correspond to the same unobserved h, we have:

∆F0(γ0) = ∆F1(γ1) by equation (20). As a consequence, a conditional quantile mapping γ̃1(γ0)

solution to the system (19) must solve the equation:

∆F0(γ0) = ∆F1(γ̃1(γ0)) ∀γ0 ∈ [0, 1] (21)

Now we show that there exists a unique increasing mapping γ̃1(γ0) : [0, 1]→ [0, 1], with γ̃1(0) = 0

and γ̃1(1) = 1, solution to this equation (21) under assumption 9b.

First, let us see the implications of Lemma 3 in our reparametrized problem.

Lemma 3 bis: There is the same finite number K of values of γ0 and γ1 such that

d∆Fd(γd)

dγd
= 0 ∀d

Proof. This is just a consequence of Lemma 3. First, notice that using our reparametrization:

∆Fd(γd(h)) = Ψd1(γd(h))pd|1 − γd(h)pd|0

= FCd|D=d,W=1(cd(h))pd|1 − FCd|D=d,W=0(cd(h))pd|0

= ∆FCd(cd(h))

So:

d∆FCd(cd(h))

dh
=
d∆Fd(γd(h))

dh

⇐⇒ d∆FCd(cd)

dcd

dcd(h)

dh
=
d∆Fd(γd)

dγd

dγd(h)

dh

Now, dcd(h)/dh > 0 and dγd(h)/dh > 0 by strict monotonicity of the solution. So, if d∆FCd(cd)/dcd =

0 then d∆Fd(γd)/dγd = 0. As a consequence, Lemma 3 implies Lemma 3 bis in our reparametrized

problem.

Case K = 0: in the particular case where K = 0, there exists no point such that d∆Fd(γd)
dγd

= 0 ∀d.

∆Fd are C1 with no points at which the derivative is zero, so they are monotone and invertible. As

a consequence, we can easily recover the unique quantile mapping by inverting ∆F1 in system (21).

We have:

γ̃1(γ0) = (∆F1)−1(∆F0(γ0)) ∀γ0 ∈ [0, 1]
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General case K > 0: There is a finite number K < ∞ of γ0 and γ1 such that d∆Fd(γd)/dγd = 0.

Let us denote γ1
0 < γ2

0 < ... < γK0 the ordered K γ0 such that d∆F0(γ0)/dγ0 = 0. And similarly,

denote γk1 from k = 1, ..., K the ordered K γ1 such that d∆F1(γ1)/dγ1 = 0.

First, we want to show that if the mapping γ̃1(γ0) solves the system, then γ1(γk0 ) = γk1 . Let us

take the derivative version of the system (21):

d∆F0(γ0)

dγ0

=
d∆F1(γ̃1(γ0))

dγ0

=
d∆F1(γ1)

dγ1

dγ̃1(γ0)

dγ0

∀γ0

Since the mapping γ̃1(γ0) must be increasing, we have: dγ̃1(γ0)/dγ0 > 0. As a consequence, if a

mapping γ̃1(γ0) is a solution, then when γ0 is such that d∆F0(γ0)/dγ0 = 0, the mapped γ1 must

also have a null derivative, i.e., d∆F1(γ̃1(γ0))/dγ1 = 0. So, in a solution, the K points such that

d∆F0(γ0)/dγ0 = 0 are mapped to the K points such that d∆F1(γ1)/dγ1 = 0.

Moreover, since we are looking for an increasing solution mapping γ̃1(γ0)), we necessarily have that

these K points are sorted, i.e.:

γ̃1(γk0 ) = γk1 ∀k ∈ {1, ..., K}

If this was not the case, the γ̃1(γ0) would not be increasing. Thus we have a unique solution for the

K γk0 points.

Now, we show that γ̃1(γ0) is also uniquely defined at other points than the γk0 . We use that the

function ∆Fd are piecewise monotone and invertible (because C1 with finite number of points with

null derivatives) between the points of null derivative. It is similar to the K = 0 case, except that

here we can only use piecewise monotonicity and partition the set accordingly.

Formally we procede as follows:

• Split the compact set [0, 1] of γ0 into K + 1 sub-intervals Γk0:

Γ1
0 = [0, γ1

0 ], Γ2
0 = [γ1

0 , γ
2
0 ], ... , ΓK+1

0 = [γK0 , 1] such that [0, 1] = ∪
k∈{1,...,K+1}

Γk0

We denote Sk0 the image of those subsets by ∆F0. We have ∆F0 : Γk0 → Sk0 .

• Do the same with the set of γ1: split the compact set [0, 1] of γ0 into K + 1 sub-intervals Γk1:

Γ1
1 = [0, γ1

1 ], Γ2
1 = [γ1

1 , γ
2
1 ], ... , ΓK+1

1 = [γK1 , 1] such that [0, 1] = ∪
k∈{1,...,K+1}

Γk1.

We denote Sk1 the image of those subsets by ∆F1. We have ∆F1 : Γk1 → Sk1 .

• Since ∆Fd are C1, in between the points of null derivative, ∆Fd are strictly monotone and

invertible. It implies that Skd are compact sets, as image of compact sets by strictly monotone
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functions. Moreover, Ψd1(0) = 0 for all d. Thus, ∆Fd(0) = 0 for all d. We also have Ψd1(1) = 1

for all d. Thus, ∆F0(1) = p0|1−p0|0 = (1−p1|1)−(1−p1|0) = −(p1|1−p1|0) = ∆F1(1). Moreover,

since we showed that a solution must have γ̃1(γk0 ) = γk1 , and given that we know a solution

exists, then theK points must satisfy our original equation (21). Which means that ∆F0(γk0 ) =

∆F1(γk1 ) ∀k. It implies that Sk0 = Sk1 and we denote them Sk for all k ∈ {1, ..., K + 1}. We

have: S0 = [0,∆F0(γ1
0)], S1 = [∆F0(γ1

0),∆F0(γ2
0)], ..., SK+1 = [∆F0(γK0 ),∆F0(1)]. Notice

that we could have defined the image sets based on ∆F1 instead of ∆F0, as ∆F0(γk0 ) = ∆F1(γk1 )

∀k.

Now, we are looking for an increasing mapping solution to the system. By monotonicity, we

know that for a solution γ1 : Γk0 → Γk1 since the upper bounds (γkd ) of these sets are image of

each other. On each subintervals Γkd, the corresponding function ∆Fd is strictly monotone and

C1 ∀d. And we have that ∆F0 : Γk0 → Sk and ∆F1 : Γk1 → Sk. So we can invert it segment by

segment and get for any given k:

γ̃1(γ0) = (∆F1)−1(∆F0(γ0)) ∀γ0 ∈ Γk0

This uniquely define the solution γ̃1(γ0) on Γk0.

• We repeat this ∀k ∈ {1, ..., K + 1} to obtain a unique mapping γ̃1(γ0) covering the whole set

of γ0, i.e., ∪
k∈{1,...,K+1}

Γk0 = [0, 1].

So, we have a unique mapping γ̃1(γ0) solution to equation (21).

Step 2: From this unique mapping between the conditional quantiles, we would like to recover the

unique quantile functions γd(h). To recover the functions γd(h), we just need to use any equations

of our original system (19) (the first one, for example) to obtain the h(γ0) corresponding to a given

(γ0, γ̃1(γ0)) as

h(γ0) = γ0p0|0 + γ̃1(γ0)p1|0

So we have a unique increasing solution (γ̃1(γ0), h(γ0)) ∀γ0 ∈ [0, 1]. By changing the arguments it

means that there exists a unique increasing solution (γ0(h), γ1(h)) to the system (19), starting from

(γ0(0), γ1(0)) = (0, 0) to (γ0(1), γ1(1)) = (1, 1). We denote this unique solution γ∗d(h).

Therefore, we proved Lemma 7.
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Thus, we have a unique increasing solution γ∗d(h) to system (19). Now recall that γd(h) =

FCd|d,w=0(cd(h)). By Lemma 2, FCd|d,w=0(cd) are strictly increasing and C1, thus invertible. As a

consequence:

c∗d(h) = F−1
Cd|d,w=0(γ∗d(h))

So, if there exists a unique set of solution {γd(h)}d∈{0,1} to the rewritten system (19), there exists

a unique set of increasing functions {cd(h)}d∈{0,1} solution to the original system (2).

This unique set of functions identify the optimal CCCs c∗d(h) from the data (cd, d, w).

C Appendix of Estimator Performance

C.1 T = 1 Special case

Let us focus on the one-shot decision problem with T = 1. This case is interesting because I can

obtain closed-form solutions to the problem, and easily compare true Maximum Likelihood Esti-

mator with my estimator. Obviously, because of the existence of this closed-form solution, the

time comparison between the methods is irrelevant. But this T = 1 example is useful for efficiency

comparison with maximum likelihood.

Closed form solution:

The agent works in t = 1, retires in t = 2 and dies in t = 3. The retiree consumes everything she

has left, to obtain a3 = 0. Thus the consumption of the retiree is c2 = (1 + r)a2 + pension(y2), and

is independent from η2. Moreover, by the budget constraint, a2 = (1 + r)a1 +y1d1− cd1 + (1−d1)b1.

I set the benefits b1 equal to 0 in this example. Thus in period t = 1, the only period of her working

life, conditional on d, the agent solves:

max
cd1

c1−σ
d1

1− σ
η̃d(η1, γd, sd) + αd1 + ω(1− w)d1 + εd1

+ βE
[((1 + r)2a1 + (1 + r)y1d1 − (1 + r)cd1 + pension(y2))1−σ

1− σ
η̃d(η2, γ0, s0)

]
.

where E[η̃d(η2, γ0, s0)] = eγ0+s20/2, also there is no ε2 shock in the retirement period, and the retire-

ment utility is the same as the utility when unemployed.
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It yields the closed form solution for the conditional consumption in t = 1:

cd1 =
1

(1 + r) +
(
β(1 + r)eγ0+s20/2/η̃d(η1, γd, sd)

)1/σ

(
(1 + r)2a+ (1 + r)y1d+ pension(y2)

)
.

The agent consumes a share of available income which depends on the decision. Since the retiring

utility is the same as the unemployed one, I only identify γ1, s1 with respect to γ0, s0 and β.19 Thus,

the parameters to estimate are θ = (σ, γ1, s1, α, ω). β is fixed at 0.98, γ0 = 0, s0 = 0.25.

Table 4: Comparison of the estimators when T = 1

Method
Truth DCC MLE SMM

1,000 10,000 1,000 10,000 1,000 10,000

σ 1.60 1.5806 1.5782 1.6042 1.5992 1.6135 1.5970
(0.1759) (0.0827) (0.0444) (0.0137) (0.0560) (0.0211)

γ1 0.00 0.0071 0.0040 -0.0061 0.0007 -0.0269 -0.0009
(0.0714) (0.0286) (0.0205) (0.0072) (0.0213) (0.0078)

s1 0.40 0.4246 0.4043 0.4005 0.4001 0.3926 0.3857
(0.0747) (0.0366) (0.0187) (0.0060) (0.0245) (0.0073)

α -0.50 -0.4782 -0.5092 -0.4928 -0.5000 -0.4986 -0.4850
(0.3266) (0.1016) (0.0852) (0.0268) (0.0989) (0.0401)

ω -1.00 -1.0689 -1.0044 -1.0115 -0.9931 -1.0308 -1.0029
(0.1715) (0.0484) (0.1577) (0.0441) (0.2919) (0.0665)

Avg Time taken: 16s 32s 1s 9s 16s 50s

Other initializations: Number of Monte-Carlo = 1, 000.
Pr(w1 = 1) = 0.7. yH is set to 20 and in this case I impose Pr(y = yH) = 1.

a1 = 12.5 for everyone here. Benefits b = 0. Pension Percentage of income = 50%.
Fixed parameters: γ0 = 0, s0 = 0.25, β = 0.98, r = 0.05.

Results: (Table 4)

First, the speed comparison is irrelevant here. Indeed with one period one does not need to solve
19Notice that if I had a specific retirement utility, different from the unemployment one, I could also identify

parameters of unemployed with respect to retirees.
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for the value function so it is considerably easier, especially since we also have closed-form solutions

to simulate the model and compute the likelihood. On average here SMM already takes longer than

my DCC method but only because it requires to test more set of parameters to find the optimum,

as the objective are different between the two functions. It could be the reverse, and one could

expect both methods to go at relatively similar speed when T = 1 in general. The real benefits of

my method are when it allows to avoid solving for the value function, i.e., as soon as T > 1.

Concerning the statistical efficiency, as expected when you have a closed form solution for the

likelihood, MLE is always the most efficient. It is also the quickest as I do not need to estimate

any reduced form in a first stage and I am using a known closed form solution in this T = 1

case. Obviously once I go to more period, MLE becomes the longest method, and is becoming

untractable.

My method (DCC) is consistent and relatively efficient, but less than the MLE benchmark.

Simulated Method of Moments (SMM) with moments drawn from the reduced forms conditional

distributions of cd|d, w, x and conditional probabilities pd|w,x is also consistent. It is also more

efficient (except for the additive parameter ω). I lose efficiency because of the two-step nature of

my method, since I’m always computing the second step using first step optimal choices estimates.

But overall, the efficiency loss is largely compensated by time gains in more complicated models.
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