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Abstract

Modern problems in Al or in numerical analysis require nonsmooth approaches
with a flexible calculus. We introduce generalized derivatives called conservative
fields for which we develop a calculus and provide representation formulas. Func-
tions having a conservative field are called path differentiable: convex, concave,
Clarke regular and any semialgebraic Lipschitz continuous functions are path dif-
ferentiable. Using Whitney stratification techniques for semialgebraic and definable
sets, our model provides variational formulas for nonsmooth automatic differentia-
tion oracles, as for instance the famous backpropagation algorithm in deep learning.
Our differential model is applied to establish the convergence in values of nonsmooth
stochastic gradient methods as they are implemented in practice.
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1 Introduction

Classical approaches to solution methods for nonsmooth equations or nonsmooth opti-
mization come from the calculus of variations [42], [46] 5, 12 19 32] 43, 48]. They have
been successfully used in several contexts, from partial differential equations to machine
learning. But most of the advances made in these last decades apply to classes revolving
around convex-like non differentability phenomena: convex functions, semiconvex func-
tions or (Clarke) regular problems. On the other hand several major problems arising in
machine learning, numerical analysis, or non regular dynamical systems are not covered by
these regularity models due to various calculus restrictions and the necessity of decompos-
ing algorithms, see e.g., [I7] and references therein. We propose a notion of generalized
derivatives and identify a class of locally Lipschitz functions, called path differentiable
functions, for which we obtain a flexible calculus, should we accept to use weaker gener-
alized derivatives than standard ones. Our starting point is extremely elementary, we see
derivation as an inverse operation to integration:

fl) — fa) = / " ph)a.

We thus introduce and study graph closed set valued mappings D : RP = R?, and locally
Lipschitz functions f: RP — R related by

f(1) = f(4(0)) = /0 (Dy(y(1)),y()dt, ¥y € AC([0, 1], RP),

where we use Aumann’s integration while AC([0, 1], RP) is the set of absolutely continuous
functions from [0, 1] to R?. Rephrasing this property yields a generalized form of the zero
circulation property

/0 (D). 4(B) dt = {0}, ¥y € AC([0, 1], R?).

We naturally call these objects conservative set valued fields and a function having a
conservative field is called path differentiable. Convex, concave, Clarke regular, but also
any semialgebraic Lipschitz continuous functions or Whitney stratifiable functions are
path differentiable.

We provide a calculus and several characterizations of conservativity. First we show that
conservative fields are classical gradients almost everywhere, which makes the Clarke sub-
differential a minimal convex conservative field. Second, in the framework of semialgebraic
or o-minimal structures, we provide conservative fields with a variational stratification
formula [9]. This connection between Whitney stratification and conservativity allows
to generalize known qualitative properties from the smooth world to definable conserva-
tive fields: Morse-Sard theorem, Kurdyka-Lojasiewicz inequality [34] and convergence of
differential inclusions.

On a more applied side, conservative fields allow to analyze fundamental modern numerical
algorithms in machine learning or numerical analysis based on automatic differentiation
[49, 28] and decomposition [I7), 24] in a nonsmooth context. Automatic differentiation is
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indeed proved to yield conservative fields which allows in turn to study discrete stochastic
algorithms that are massively used to train Al systems. We illustrate this with the problem
of training nonsmooth deep neural networks which are designed to perform prediction
tasks based on a large labeled database [37].

Our work connects very applied concerns with the recent theory of o-minimal structures,
by revealing surprising links between the massively used numerical libraries (Tensorflow
[1], Pytorch, [44]), and Whitney stratifications.

Structure of the paper As a conclusion, let us mention that this article contains
material that can be considered as having distinct and independent interests. Researchers
working in analysis may focus on Section 2 and 3, which present conservative fields. Those
having affinity with geometry can also go through Section 4 which provides insights into
the semialgebraic and the definable cases. The more applied sections provide theorems
which we believe useful to several communities: Section 5 is on nonsmooth automatic
differentiation and a theoretical model for the corresponding “oracle”, while Section 6 on
studies stochastic gradient descent (with mini-batches) and deep learning.

2 Conservative set valued fields

Notations. We restrict our analysis to locally Lipschitz continuous functions in Eu-
clidean spacesﬂ Take p € N. A locally Lipschitz continuous function, f: R? — R is
differentiable almost everywhere by Rademacher’s theorem, see for example [26]. Denote
by R C RP| the full measure set where f is differentiable, then the Clarke subgradient of
f is given for any x € RP, by

0°f(x) = conv {U € RP, dy e with y, € R, v = Vf(yx) e v} '

A set valued map D: RP = R? is a function from RP to the set of subsets of R?. The
graph of D is given by

graph D = {(z,z), c € R?, z € D(z)}.

D is said to have closed graph or to be graph-closed if graph D is closed as a subset of
RP*4. An equivalent characterization is that for any converging sequences (z4), oy, (Vi) ey
in R?, with v, € D(xy) for all k € N, we have

lim v, € D(lim xy).

k—o0 k—o00
An absolutely continuous curve is a continuous function z: R +— RP which admits a
derivative & for Lebesgue almost all ¢ € R, such that & is Lebesgue measurable and z(t) —
x(0) is the Lebesgue integral of & between 0 and ¢ for all ¢ € R. Absolutely continuous
curves are well suited to generalize differential equations to differential inclusions [4].

! Although all results we provide are generalizable to complete Riemannian manifolds



Given a set valued map D: R? =2 RP, xg € RP, x: R — RP is a solution to the differential
inclusion problem

& € D(x)
z(0) = xo,

if x is an absolutely continuous curve satisfying z(0) = xy and @(t) = D(z(t)) for almost
all ¢ on a non trivial interval containing 0.

2.1 Definition and vanishing circulations

Throughout this section, we denote by D: RP == RP a set valued map with closed graph
and nonempty compact values. The following lemma is derived from results from the
overview textbook [2].

Lemma 1 Let D: RP = R? be a set valued map with nonempty compact values and closed

graph. Let v: [0,1] — RP be an absolutely continuous path. Then the following function

t— max (Y(t),v),
veD(v(t)) (i), v)

defined almost everywhere on [0, 1], is Lebesque measurable.

Proof : Consider the function I': [0, 1] — R? x R? defined for almost all ¢ € [0, 1] by

0= (3i)

I"is, by definition, Lebesgue integrable, in particular, pre-images of Borel sets are Lebesgue
sets. In addition, we consider the set-valued map D: RP x R? = RP defined as

D: (z,y) = (D(x),y).

D has closed graph and by [2, Theorem 18.20] it is measurable in the sense of [2], Definition
18.1]. Let f: R” x RP x R? x R? — R be such that

f('ra Y, U1, UQ) = <y7 U1>
Then the map

m: (z,y) — max f(z,y,w) = max (y,v)
weD(z,y) veD(x)

is Borel measurable according to [2l Theorem 18.19]. This means that preimage of Borel
sets are Borel sets. The function

t— max (Y(t),v
hax (3(t), )

is just m o I' and is hence Lebesgue measurable. U

We can now proceed with the central definition of a conservative set valued field.
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Definition 1 (Conservative set valued fields) Let D: R? =2 R? be a set valued map.
D is a conservative (set valued) field whenever it has closed graph, non empty compact
values and for any absolutely continuous loop v: [0, 1] — RP, that is v(0) = (1), we have

1

max (¥(t),v)dt =0
o (3(t), v)

where the integral is understood in the Lebesgue senseﬂ It is equivalent to require

1

min (y(¢),v)dt =0
o (3(t), v)

for all loops 7.

Remark 1 (min, max circulations and conservativity) The min formula is indeed
obtained by using the the reverse path 5(t) = v(1 —1¢) :

/O max <’y v>dt—/01 max  (—%(1 —t),v)dt

veD(5(t)) veD(y(1-t))

:_/0 min (3(1 —#),0) dt

vED(v(1-1))
0
= min (y(t),v) dt
| n (3(t), v)
1

= — min (y(¢),v)dt = 0.
i (3(t),v)

We deduce that for almost all ¢ € [0, 1], maxye ) (Y(t), v) = mingepeey) (Y(t),v).

Remark 2 (Vanishing circulation and conservativity) There is a measurable arg-
max selection in Lemma [I] (see [2, Theorem 18.19]) so that for any measurable selection

v: [0,1] = RP, v(t) € D(y(t)) for all t, we have fo (t),v(t))dt = 0. Thus, in the
setting of Definition [, an equivalent characterization is that the Aumann integral of
t = (%(t), D((t))) is {0}. In short

/0 (D((1)),5(1)) dt = {0}, 1)

exactly means that D is conservative. We recover the standard definition of conservativity
as fields with vanishing circulation.

2which is possible thanks to Lemma



2.2 Locally Lipschitz continuous potentials of conservative fields

Definition 2 (Potential functions of conservative fields) Let D: R* =% R? be a
conservative field. A function f defined through any of the equivalent forms

1

f@) = O+ [ (3000 8)
= FO+ [ min (0, v) g

— F0)+ / Gi(6), D(y (1)) dt (4)

where 7 is an arbitrary absolutely continuous path joining 0 to x, is well and uniquely
defined up to a constant. It is called a potential function for D. We shall also say that D
admits f as a potential, or that D s a conservative field for f.

Remark 3 (a) To see that the definitions (2), and are indeed equivalent and
independent of the chosen path, one adapts classical ideas as follows. Consider any
x € RP, and any absolutely continuous paths 7, 72 such that +;(0) = 72(0) = 0 and
71(1) = 72(1) = 2. We have

/01 max )(7'1(t),v> dt—/o1 min  (45(¢), v) dt

veED(y1(t) vED(72(t))

:/01 max (7’1(t),v>dt+/01 max  — (4o(t), v) dt

veED(y1(t)) vED(72(¢))

1 1
2
= max (2v1(2t),v dt+/ max —275(2 — 2t),v) dt
/0 Pty 22 ) . Dy (22 = 2),0)

=0

since the concatenation of t — ~;(2t) for 0 <t < 1/2and t — v9(2—2¢t) for 1/2 <t < 1is
an absolutely continuous loop. This shows that the value of the integral does not depend
on the path. The “minimum and maximum integrals” are thus equal and we may set for
any r € RP:
1 1
x) = max (Y(t),v)dt = min (Y(t),v)dt
f@) = [ max GO.0)d= [ min (G500
for any ~ absolutely continuous with v(0) = 0 and (1) = =. The right hand-side in ({4))
is thus a single number, and the identity is therefore well defined.
(b) If f is differentiable, Vf is of course a conservative field (it is not unique). More
examples and a discussion are provided in Subsection
(¢) The definition can be directly extended to star-shaped domains.
(d) The potential function f is locally Lipschitz continuous. Indeed take a bounded set
S. Take z,y € S and use (c) above with the path [0,1] 5t — y(t) =tz + (1 — t)y,

1

[f(y) = f@) <ly—=| [ max |v|dt <Mz —y]|
o veD((1)
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where M 1is such that
M > max{|v| : x € conv S,v € D(z)}

with conv S being the convex envelope of S. From [I5, Lemma 3|, D is locally bounded
and such a finite constant must exist.

(e) If Dy, Dy are two graph-closed set valued mappings with compact nonempty values,
then Dy C Dy and D, conservative implies that D is conservative as well.

Observe also that if D is conservative x =2 conv(D(z)) is conservative as well.

Chain rule characterizes conservativity in the following sense:

Lemma 2 (Chain rule and conservativity) Let D: R? = RP be a locally bounded,
graph-closed set valued map and f: RP — R a locally Lipschitz continuous function. Then
D is a conservative field for f, if and only if for any absolutely continuous curve x: [0, 1] —
RP, the function t — f(x(t)) satisfies

%f(w(t)) =(v,2(t)) Vv De(a(t), (5)
for almost all t € [0, 1].

Proof : The reverse implication is obvious, using Lemma [I} integrating the characteriza-
tion in equation we obtain any of the equivalent equations of Definition . To prove
the converse, assume now that D is a conservative field for f. For any 0 < s < 1, we have

Flale) = S@O) = [ max(sa(st). o)

veD(z(st))

= max (x(t),v)dt
0 vGD(m(t))< ( ) >

= min (z(t),v) dt
0 vGD(a:(t))< ( ) >

The fundamental theorem of calculus states that s — f(z(s)) is differentiable almost
everywhere and for almost all s € [0, 1],

LH) = max (i), 0= min (i(s),0) = {i(s),0),

veD(z(s)) veD(xz(s))

for all v € D(z(s)). This shows that f is a potential for D. d

3 A generalized differential calculus

3.1 Conservativity, Clarke subdifferential and gradient a.e.

We start with the following fundamental result.
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Theorem 1 (A conservative field is a gradient almost everywhere) Let D: R? =
RP be a conservative field and f: RP +— R a (locally Lipschitz continuous) potential for
D. Then D = {V [} Lebesgue almost everywhere.

Proof : Fix a measurable selection a: R? — RP of D and f a potential for D. Measurable
selections exist because D has closed graph, with compact and nonempty values, and hence
is measurable in the sense of [2, Definition 18.1] so that [2, Corollary 18.15] applies (see
also Lemma [1)). Fix a direction v € RP, x € RP a base point, let s < t be real numbers
and ~y the path y(7) = (1 — 7)(z + sv) + 7(x + tv), then by using conservativity and an
elementary change of variable, we obtain for all z € R?

t
flz+tv) — f(x + sv) = / (v,a(x + Tv))dr.
Using the fundamental theorem of calculus (in its Lebesgue form), one obtains

f(y;v) = (v, aly)) (6)

almost everywhere on the line x 4+ Rv, where

flyo) = tim LWE=IW)

r—0, r#£0 r

when the limit exists. Since f is continuous, the two functions defined for all y € RP.

fly+sv) — fy) fly+sv) — fly)

fi(y;v) :==lim sup = lim sup
§0, 570 § k=00 0<|s|<1/k s

flyv) = lim  inf fly+sv) = f@) _ 0 e fW S0 - f(y))
s—0, s#£0 s k—00 0<|s[<1/k S

are Borel, hence Lebesgue measurable. Consider the following set

A={y eRP, fi(y;v) # (v,a(y)) or fi(y;v) # (v,a(y))} -

This set is Lebesgue measurable and for any y € RP \ A, we have

fyv) = fily;v) = fly;v) = (v, a(y)).

Furthermore, using (6] we have H'(AN (z+Rv)) = 0, where H' is the Hausdorff measure
of dimension 1. Since z € RP was arbitrary, we actually have H'(A N L) = 0 for any
line L, parallel to v and since A is measurable, Fubini’s theorem entails that A has
zero Lebesgue measure, and hence we have f'(y;v) = (v,a(y)) for almost all y € RP.
Now the Rademacher Theorem [26, Theorem 3.2], ensures that f is differentiable almost
everywhere, this implies that f'(y;v) = (Vf(y),v) for almost all y € RP and hence,
(Vf(y),v) = f'(y;v) = (v,a(y)) for almost all y € R? .

The direction v was chosen arbitrarily, we repeat the same construction for every v € QP
(which is countable) and obtain that (Vf(y),v) = (v,a(y)) for almost all y € RP and
every v € QP, that is a(y) = V f(y) for almost all y € RP.
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Since a was chosen as an arbitrary measurable selection for D, we may use [2, Corollary
18.15] which states that there is a sequence of measurable selections for D, (ay)ren such
that for any x € R?, D(z) = cl {a;(z) }sen. Using the previous Rademacher’s argument for
each i in N; there exists a sequence of measurable sets (.5;);eny which have all full measure
and such that a; = Vf on S;. Setting S = N;enS;, we have that R? \ S has zero measure
and a; = Vf on S for all 7 in N and hence, using [2, Corollary 18.15], D = {Vf} on S.
This proves the desired result. U

An important consequence of the above result is that Clarke subdifferential appears as a
minimal conservative field among convex valued conservative fields.

Corollary 1 (Clarke subgradient as a minimal convex conservative field) Let
f: RP — R be locally Lipschitz continuous and D: RP = RP be a conservative field for f.
Then O°f is a conservative field for f, and for all x € RP,

0°f(x) C conv(D(x)).

Proof : Let S C R? be a full measure set such that D = Vf on S (such a set exists by
Theorem [1)). Using [51, Proposition 2.2], we have, for any z € R?

0°f(x) = cl conv ({kh_{(r)lo Vf(zg), xi €S, xy . x}) :
Since D has closed graph and D = V f on S, we have
cl conv ({ lim Vf(zg), z € S, 2 — x}) C cl conv (D(z)) = conv (D(x)),
k—o0 k—o0

which allows to conclude. The fact that 0°f is conservative, follows right from the defini-
tion and the previous inclusion. Il

We deduce from Corollary (1] a Fermat’s rule for conservative fields.

Proposition 1 (Fermat’s rule) Let f: R? — R be a potential for Dy: RP == RP with
nonempty compact values and closed graph. Let x € RP be a local minimum or local
mazimum of f. Then 0 € conv(Dy(z)).

Proof : This is a consequence of Corollary (1| since Fermat’s rule holds for the Clarke
subdifferential [48, Theorems 9.61 and 10.1]. O

Given a fixed conservative field D with f as a potential, we say that x is D-critical for f
if D(x) 3 0. The value f(z) is then called a D-critical value. This idea originates in [I§].

Remark 4 The convex envelope in Fermat’s rule is necessary. For example, let D: z
sign(z) with D(0) = {—1, 1}, then D has closed graph and is conservative for the absolute
value. The origin is a global minimum of the potential, but 0 ¢ D(0).
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3.2 Path differentiability

Conservative fields convey a natural notion of “generalized differentiability”, a function
being differentiable if it admits a conservative field for which Definition [2 holds true. We
call such functions path differentiable and provide a characterization in this section.

Definition 3 (Path differentiability) We say that a locally Lipschitz continuous func-
tion f : RP +— R is path differentiable if f is the potential of a conservative field on RP.

We deduce from Corollary [I]the following characterization of path differentiable functions.

Corollary 2 (Characterization of path differentiable functions) Let f: R? — R
be locally Lipschitz continuous, then f is path differentiable if and only if its Clarke sub-
gradient is a conservative field (in which case it admits f as a potential).

The following property is sometimes called integrability, it has been studied for convex
functions in [47] and for broader classes in, e.g., [22] [52] 13}, 53].

Corollary 3 (Integrability and Clarke subdifferential) Let f: R? — R and g: RP —
R be two locally Lipschitz path differentiable functions such that 9°g(x) C 9°f(x) for all
x € RP, then f — g is constant.

Proof : Path differentiability entails that subdifferentials are conservative fields by Corol-
lary [Il The result follows by definition of potential functions through integration in Def-
inition [2 O

We briefly compare some standard subgradients notions and conservative fields. We use
the vocabulary and notations of [4§].

Proposition 2 (Some path differentiable functions) Let f : R? — R be Lipschitz
continuous, the following are sufficient conditions for f to be path differentiable

(i) f is convex or concave.
(ii) f or —f is Clarke regular.
(i1i) f or —f is prox regular.

() f is real semialgebraic (or more generally tame, i.e., definable in some o-minimal
structure).

Proof : Using the chain rule characterization, all proofs boil down to providing a chain
rule with the Clarke subdifferential for each of the above mentioned situation. We refer
to [48] for convex, Clarke and prox regular functions, [24] for tame functions. O

In general, conservative fields may be distinct from all other classical subdifferentials,
even in the tame case. Define for instance D : R — R by D(0) = {—1,0,1}, D(1) = [0, 2]
and D(x) = 0 otherwise. It is a conservative field on R with any constant function as a
potential function.
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Remark 5 (Historical aspects) Our effort to define a subclass of locally Lipschitz con-
tinuous functions which has favorable differentiability properties is one attempt among
many others. The closest idea we found is due to Valadier who introduced in 1989 the
notion of “fonctions saines” [54]. Although Definition [2| looks much more general than
the notion given in [54], the equivalent characterization of Corollary [2[ shows that path-
differentiable and “saines” functions are actually the same! Later on, at the end of
the nineties, Borwein and Moors introduced the notion of essentially smooth functions
(strictly differentiable almost eveywhere) as a well-behaved subclass of locally Lipschitz
continuous functions [13]. Interestingly, the notion of saines functions was as well re-
considered and slightly modified in [14] to describe the larger class of arcwise essentially
smooth functions. Following [54] and Chapter 1 of [55], we see that, in the univariate
case, saine and essentially smooth functions coincide. This is no longer true for p > 2,
the set of “fonctions saines” is a subset of essentially smooth functions.

Remark 6 (Genericity: theory and practice) The work of Wang et al. [55] [15] al-
lows to claim that generic 1-Lispchitz functions are not path differentiable. Paradoxically,
we shall see in further sections that most functions arising in applications are path differ-
entiable (e.g. any semialgebraic or tame function is path differentiable)ﬂ

3.3 Conservative mappings and calculus

In this part we often identify linear mappings to their matrices in the canonical basis.
For general conservative mappings, we adopt here a definition through the chain rule
rather than circulations in order to simplify the exposition. However it would be relevant
to provide a direct extension of Definition [I| involving vanishing circulations through set
valued integration, this is matter for future work.

Definition 4 (Conservative mappings) Let F': R? — R™ be a locally Lipschitz func-
tion. Jp: RP = R™*P is called a conservative mapping for F', if for any absolutely
continuous curve 7: [0, 1] — RP, the function ¢ — F(v(t)) satisfies

d

Q@) =Vit) ¥V € Jp(y(t)

for almost all ¢ € [0, 1].

Remark 7 (Conservative fields are conservative mappings) Note that if D: R =
RP is a conservative field for f: RP +— R, it is of course also a conservative mapping for f.

The following lemma provides an elementary but essential way to construct conservative
matrices.

3Valadier’s terminology finds here a surprising justification, since “saine”, healthy in English, is chosen
as the opposite of pathological
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Lemma 3 (Componentwise aggregation) Let F': R? — R™ be a locally Lipschitz
continuous function. Let Jp: RP = R™*P be given by:

v
Jr(z) = : , v; € Di(x),i=1...,m, VzreRP
T
Um
where D; is a conservative field for the i-th coordinate of F, i = 1,...,m. Then Jr is a

conservative mapping for F'.

Proof : This follows Lemma [2 the product structure of Jr and the fact that a finite
union of Lebesgue null sets is a Lebesgue null set. U

A partial converse holds true (thanks to Lemma : projection on rows of conservative
mappings have to be conservative mappings for the corresponding coordinate function.

Lemma 4 (Coordinates of conservative mappings) Let F': R? — R™ be locally Lip-
schitz continuous. Let Jp: RP = R™*P be a conservative mapping for F', then the projec-
tion of J on the first row of J, is a conservative field for the first coordinate of F.

Observe however, that these “generalized Jacobians” may have a more complex structure
than the product structure outlined in Lemma [3]

The following chain rule of generalized differentiation follows readily from the definition.

Lemma 5 (The product of conservative mappings is conservative) Let F;: R? —
R™ and Fy: R™ s R be locally Lipschitz continuous mappings. Let J: RP = R™*P be a
conservative mapping for Fy and Jy: RP = R™™ be a conservative mapping for Fy. Then
the product mapping Jo - J1 1s a conservative mapping for Fy o F}.

Proof : Consider any absolutely continuous curve v: [0,1] — RP. By local Lipschitz
continuity, ¢t — Fy(v(t)) is also absolutely continuous and by definition of J; we have,

d

SR(®) = A6 ae on (0,1)

Furthermore, F, o F} oy is also absolutely continuous by the local Lipschitz continuity of
F5. From the definition of Jy, we have

d d
5 2o 1(v(1))) = L(F1(y(1)) x — (F1(+(#))) a.e. on (0,1)
The last two identities lead to the conclusion. O

We deduce the following chain rule by enlargement.

Lemma 6 (Outer chain rule) Let F': R? — R™ and g: R™ — R be locally Lipschitz
continuous. Let Dp: RP = R™*? and Dy: R™ = R™ be some set valued mappings such
that F;, the i-th coordinate of F', is a potential for [Dp(y(t))]:, the i-th row of Dp for i =
1...m and g is a potential for D,. Then goF is a potential of D: x = Dp(z)" D,(F(z)).
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Proof : This is obtained combining Lemmas [3], [5] and Remark [7] O

A simple consequence is a “sum rule” by subdifferential enlargement which is fundamental
in the study of the mini-batch stochastic gradient:

Corollary 4 (Outer sum rule) Let fi,..., f, be locally Lipschitz continuous functions.
Then f =", f; is a potential for Dy = Y7 | D, provided that f; is a potential for each
Di; Z:L,TL

4 Tameness and conservativity

Let us beforehand provide two useful reading keys:

— The reader unfamiliar with definable objects can simply replace definability as-
sumptions by semialgebraicity assumptions. It is indeed enough to treat major
applications considered here, as for example deep learning with ReLU activation
functions and square loss.

— Semialgebraicity and definability being easy to recognize in practice, the results in
this section can be readily used as “black boxes” for applicative purposes.

4.1 Introduction and definition

We recall here the results of geometry that we use in the present work. Some references
on this topic are [23], 25].

An o-minimal structure on (R, +,-) is a collection of sets O = (O,)pen Where each O, is
itself a family of subsets of R?, such that for each p € N:

(i) O, is stable by complementation, finite union, finite intersection and contains RP.
(ii) if A belongs to O,, then A x R and R x A belong to O,1;

(iii) if 7 : RP*' — RP is the canonical projection onto R? then, for any A € 0,1, the
set m(A) belongs to Op;

(iv) O, contains the family of real algebraic subsets of RP, that is, every set of the form
{r e R” [ g(x) =0}
where g : R? — R is a polynomial function;

(v) the elements of O, are exactly the finite unions of points and intervals.

A subset of R? which belongs to an o-minimal structure O is said to be definable in O.
Very often the o-minimal structure is fixed, so one simply says definable or tame. A set
valued mapping is said to be definable in O whenever its graph is definable in O.
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The simplest o-minimal structure is given by the class of real semialgebraic objects. Recall
that a set A C RP is called semialgebraic if it is a finite union of sets of the form

ﬂ{x € R | gi(x) <0, hy(x) = 0}

where the functions g¢;, h; : R? — R are real polynomial functions and £ > 1. The key
tool to show that these sets form an o-minimal structure is Tarski-Seidenberg principle.

O-minimality is an extremely rich topological concept: major structures, such as globally
subanalytic sets or sets belonging to the log-exp structure provides vast applicative op-
portunities (as deep learning with hyperbolic activation functions or entropic losses, see
[24), (18] for some illustrations). We will not give proper definitions of these structures in
this paper, but the interested reader may consult [25].

The tangent space at a point x of a manifold M is denoted by T, M. Given a submani-
foldF_f] M of a finite dimensional Riemannian manifold, it is endowed by the Riemanninan
structure inherited from the ambient space. Given f: R? +— R and M a differentiable
submanifold on which f is differentiable, we denote by grad ,;f its Riemannian gradient
or even, when no confusion is possible, grad f.

A (7 stratification of a (sub)manifold M (of RP) is a partition S = (M, ..., M,,) of M
into C" manifolds having the property that cl M; N M; # 0 implies that M; is entirely
contained in the boundary of M; whenever ¢ # j. Assume that a function f : M — R is
given and that M is stratified into manifolds on which f is differentiable. For x in M, we
denote by M, the strata containing = and we simply write grad f(x) for the gradient of
f with respect to M,.

Stratifications can have many properties, we refer to [25] and references therein for an
account on this question and in particular for more on the idea of a Whitney stratification
that we will use repeatedly. We pertain here to one basic definition: a C"-stratification
S = (M;);er of a manifold M has the Whitney-(a) property, if for each z € cl M; N M;
(with ¢ # j) and for each sequence (zy)reny C M; we have:

lim z, ==
k—o00

and —= T,M; C T
k—o00
where the second limit is to be understood in the Grassmanian, i.e. “directional”, sense.
In the sequel we shall use the term Whitney stratification to refer to a C'-stratification
with the Whitney-(a) property.

4.2 Variational stratification and projection formulas

Let us fix an o-minimal structure O, so that a set or a function will be called definable if
it is definable in O.

4We only consider embedded submanifolds
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Definition 5 (Variational stratification) Let f: R? — R, be locally Lipschitz contin-
uous, let D: R? = RP be a set valued map and let » > 1. We say that the couple (f, D)
has a C" wvariational stratification if there exists a C" Whitney stratification S = (M;);er
of RP, such that f is C" on each stratum and for all x € RP,

Projr,, @ D(z) = {grad f(z)}, (7)

where grad f(z) is the gradient of f restricted to the active strata M, containing z.

The equations are called projection formulas and are motivated by Corollary 9 in [9]
which states that Clarke subgradients of tame functions have projection formulas.

Theorem 2 (Projection formula [9]) Let f: R? — R be definable, locally Lipschitz
continuoud’], and let r € N. Then there exists a finite C" Whitney stratification S =
(M;)ier of RP such that for all x € RP,

Projp, (1,)0° f(x) = {grad f(z)} .

In other words, the couple (f,0°f) has a a C" variational stratification.

4.3 Characterization of tame conservative fields

The following is a direct extension of the chain rule result given in [24, Theorem 5.8]. It
relies also on Theorem [2] and implies that a tame function f is a potential of its Clarke
subgradient.

Theorem 3 (Integrability (from [24])) Let f: RP — R, be locally Lispchitz continuous
and let Dy: RP = RP be compact valued and graph closed, with a C' projection formula
for f. Then f is a potential of Dy.

Proof : The proof given in [24] was proposed for the Clarke subdifferential but holds for
larger classes of stratifiable set valued map. We reproduce the arguments here for clarity.

Let S be a stratification provided by the C' projection formula. Fix an absolutely con-
tinuous path ~v: [0, 1] — RP. Fix an arbitrary t € (0,1) and M € S such that

V() € M, (1) € Tu(y(1)) (8)
In this case, the projection formula ensures that for any v € D¢ (y(t))
d
(3(2),v) = (3(t), grad f(v(t))) = — f(v(1)).
Set Qx = {t € [0,1], v(t) € M, () &€ Tam(y(t))}. Fix any ty € Quy, there exists a

small closed interval I centered at ¢y such that I N Q= {to}, otherwise one would have
F(to) € Tar(y(to)). The interval I may be chosen with rational endpoints and this gives

5In [9] the authors assume f to be arbitrary and obtain similar result, for simplicity we pertain to the
Lipschitz case.
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an injection from ,; to Q2. Hence 2x is countable. Since S contains only finitely many
strata, for almost all ¢ € [0, 1], relation holds for some other M € S and the result
follows using the chain rule characterization of conservativity in Lemma [2] U

We aim at proving the following converse in the context of tame analysis.

Theorem 4 (Variational stratification for tame conservative fields) Let D: RP =
RP be a tame, nonempty compact valued, graph closed conservative field having a tame

potential denoted by f: RP +— R. Then (f, D) has a C" wvariational stratification, i.e.

there exists a stratification {M;};c; of RP such that

Pr.a, D(z) = {grad f(x)}

whenever M, is the active strata.

Proof : We actually establish a slightly stronger result and prove that the result holds
by replacing the underlying space RP by a C" tame finite dimensional manifold M with
D(z) C T, M, i.e., D is a set valued section of the tangent bundle. We follow a classical
pattern of stratification theory, see e.g., [25], and we establish that the failure of the
projection formula may only occur on a convenient small set. More precisely, we shall
provide a stratification S = {Mj, ..., M,} of M for which each of the sets:

R; ={x € M; : grad f(x) # Prp,D(z)}, (withi=1,...,q), (9)
has a dimension strictly lower than M,;.

If we had such a stratification, let us see indeed how we would refine the stratification
in order to downsize further the set of “bad points”. For each R; we would consider
the stratification R},..., R} of fig, into smooth functions. For each j = 1,...,r the
couple x — f|pi(z), 2 = Pp piD(z) would satisfy the assumption of the theorem but
on a manifold with strictly lower dimension. So we could then pursue the process and
conclude by exhaustion.

To obtain S, we consider a “constant-rank” Whitney stratification of f, S = {Mj, ..., M,},
i.e. such that f is smooth on each M; and has a constant rank, 0 or 1 in our case (see
[25]). Take M; an arbitrary strata and R; as in (9). We only need to prove that R; has a
lower dimension than M;.

For simplicity set R; = R, M; = M. We consider first the rank 0 case and deduce the
other case afterward.

Assume that rankf = 0 on M, i.e., f is constant. We want to prove that for almost all
x in M, max{|jv|| : v € Pr,yDf(x)} = 0. We argue by contradiction and assume that
for some T we have a ball of radius p > 0 on which the max is strictly greater than a
positive real m. Consider the mapping G: x = argmax{||v|| : v € Pr,pDf(x)} which is
tame with nonempty compact values. Use the definable choice’s theorem to obtain a tame
single-valued selection H of G. H is a (nonsmooth) vector field on M that we may stratify
in a way compatible with By (Z, p). The ball By (Z, p) must contain a stratum of maximal
dimension and hence there exists & € By (z,7), 0 < € < p such that, H(z) € T, M is
smooth over B(Z,¢€) C B(Z, p). We may thus consider a curve such that

¥ =H(), 7(0) = 1.
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For this curve, which is non stationary, one has almost everywhere

d
Ef(W(t)) = max (j,v) =  max : |v||? > m? >0,

veDf(r (1) vE€Pr, v Df(y(t

which is in contradiction with the fact that f is constant. This concludes the null rank
case.

Assume now that rank f = 1, so that grad f is nonzero all throughout M. Consider
D = D — grad f which is tame, convex valued and has a closed graph. By linearity
of the integral D is conservative and has zero as a potential function over M. Indeed if
v :[0,1] — M is an arbitrary absolutely continuous curve, we have the set valued identity:

/0 (D). 4Bt = / (D(3(1)). 4(8))d — / (grad £(7(£)). 4 ()t

f(y(1) = f(7(0)) = (f(~(1)) = £(7(0)))
- 0.

Since the null function has rank 0 on M, we deduce as above that Pr, wD(z) = {0} for
almost all z € M. Since D = Df —grad f and grad f(x) € T, M for all x € M, we deduce
that Pr, D f(xz) = {grad f(z)} for almost all x € M which is what we needed to prove.[]

Remark 8 (Alternative proof) Another method for proving Theorem [2| relies on the
repeated use of Theorem [I, We chose to avoid the use of strong analysis results, as
Rademacher theorem, and pertain to standard self-contained definable arguments.

4.4 Geometric and dynamical properties of definable conserva-
tive fields

This section describes some properties of definable conservative fields (with definable
potential function). The ideas and proofs are direct generalizations of [9].

Theorem 5 (Nonsmooth Morse-Sard for D critical values) Let f: R? — R be a
definable locally Lipschitz continuous function and D: RP = RP a definable conservative
field for f. Then the set of D critical values {f(x), x € RP, 0 € D(x)} is finite.

Proof : The proof is as in [9, Corollary 5] and follows from the variational stratification
property, applying the definable Sard theorem to each strata. This ensures that the set
of critical values has zero Lebesgue measure in R and since it is definable, it is a finite
set. U

The following is a generalization of the result of Kurdyka [34]
Theorem 6 (A nonsmooth KL inequality for conservative fields) Let f: R? — R

be a definable locally Lipschitz continuous function and D: RP = RP a definable conser-
vative field for f. Then there exists p > 0, ¢: [0, p) — Ry, definable strictly increasing,
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Ct on (0, p) with p(0) = 0 and a continuous definable function x: Ry + (0,400), such
that for all x € R? with 0 < |f(x)] < x(||z]|) and v € D(x),

[0l (1f (2)]) > 1.
Proof : This is deduced from the variational stratification property as in Theorem 14 of
[9]. O
The following convergence result is a consequence and calls for many questions regarding

nonsmooth generalized gradient systems [35].

Theorem 7 (Conservative fields curves have finite length) Let f: R? — R be a
tame locally Lipschitz function and D: RP = RP a tame conservative field for f. Let
x: Ry — RP be a solution of the differential inclusion

i € —conv(D(x)),

+oo
then if x is bounded, x has finite length: / ||| < 400 and in particular x is a
0

convergent trajectory.

Proof :

Assume without loss of generality that D has convex values, set || D(x)| := minyep) ||v||
for any x € RP. We have

d 2
5 (@) = = D((t)]

for almost all ¢ > 0. We deduce that ¢ — f(x(¢)) has a limit, say 0. The limit points w
of x are entirely contained in a compact zone of [f = 0]. Uniformize the nonsmooth KL
inequality on a tubular neighborhood, say Z, of this zone (see [10, Lemma 6]), and finally
assume that z(t) € Z for some t > t;. On Z, set D(z) = D(z) x ¢'(f(z)) and observe
that D is a conservative field for ¢ o f, hence for almost all ¢ > ¢

L0 F((t) = (#(t), ¢/ () D(a)
= O (F(@) < IO FEN D@ < (0]

Since ¢(f(z(t)) tends to 0, we obtain that /0+00 lZ|| < @(f(x(0))). d

5 Automatic differentiation

Automatic differentiation emerged in the 70’s as a computational framework which allows
to compute efficiently gradients of multivariate functions expressed through smooth ele-
mentary functions. When the function formula involves nonsmooth elementary functions
the automatic differentiation approach fails to provide gradients. This issue is largely
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studied in [28, chapter 14] which discusses connections with Clarke generalized deriva-
tives using notions such as “piecewise analyticity” or “stable domain”. Let us mention
[29] which developed piecewise linear approximation for functions which can be expressed
using absolute value, min or max operators. This approach led to successful algorithmic
developments [30] but may suffer from a high computational complexity and a lack of
versatility (the Euclidean norm cannot be dealt with within this framework). Another
attempt using the same model of branching programs was described in [33] where a qual-
ification assumption is used to compute Clarke generalized derivatives automaticallyﬂ

We provide now a transparent interpretation of automatic differentiation which provides
conservative fields which do not correspond to any known sort of subgradients.

5.1 A functional framework: “closed formula functions”

Automatic differentiation deals essentially with composed functions, that is functions
coming as “closed formulas”. It presumes the existence of a chain rule and aggregates
the basic derivation operations according to this principle. We refer to [28] for a detailed
account. The purpose of this section is to demonstrate that our nonsmooth differentiation
model is perfectly fit to deal with this approach.

The function f we consider now is accessible through a recursive algorithm which ma-
terializes an evaluation process built on a directed graph. This graph[] is modelled by a
discrete map called parents and a collection of known “elementary functions” g:

a) geN, g>p

b) parents maps the set {p +1,...,q} into the set of tuples of the form (i1,..., ;)
where m € N and iy, ..., 14, range over {1,...,q— 1} without repetition. It has the
property that for any k € {p+1,..., ¢}, parents(k) is a tuple without repetition
over the indices {1,...,k —1}.

¢) (9i){—,4, such that for any i =p+1,...,q, g;: Rlparents()l 5 R

Algorithm 1: Definition program of f: RP +— R
Input: z = (z41,...2))
1. fork=p+1,p+2,...qdo
2: Set:

Ty = gk(xparents(k))

where Tparents(k) — (xl)
3: end for
Return: z, =: f(z).

i€parents(k)"

This defines the function f through an operational evaluation program.

5From a practical point of view, qualification is hard to enforce or even check.
"Which we shall not define formally since it is not essential to our purpose.
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Algorithm 2: Forward mode of automatic differentiation for f

Input: variables (z1,...1,); d; = (dij)?:fents(k)l € Di(%parents(i)), i =p+1...q
1: Initialize: % =1L, k=1,...,p.

2 for k=p+1,...Pdo

3:  Compute:
al‘k 8xj
ok 2 d
ox , Z ox

jé€parents(k)
where z = (z1,...,2,).
4: end for

Return: aam“’ )
T1,....p

,,,,,

Example 1 The idea behind automatic differentiation is that the original function is
given through a closed formula, which is then interpreted as a composed function in
order to make its differentiation (or “subdifferentiation”) amenable to simple chain rule
computations. For instance for f(z) = (2122 + tanzs)(|z1| + z12923), we may choose

Ty = g4($1,$2) = X1x2, Ty = 95(1‘2) = tanxq, ¢ = 96(%) = |551|7
X7 = 97(9537 354) = T34,

xs = gs(T4, T5, Te, T7) = (T4 + 25) (27 + 26)

where the parents function is in evidence parents(4) = {1,2}, parents(5) = {2},
parents(6) = {1}, parents(7) = {3,4}, parents(8) = {4,5,6,7}. Observe that the
derivatives or subdifferentials of gy, ..., gs are known in closed form. Concerning gs = | - |
one has 0°¢s(0) = [—1, 1]. Thus in practice we need to choose a specific element in that set,
as 0, and perform the computation with this choice (see below the forward or backward
differentiation modes).

5.2 Forward and backward nonsmooth automatic differentiation

In order to compute a conservative field for f, we need in addition the following:
d) Forany i =p+1,...,q, D;: RParents()l — Rlparents(i)l j5 5 conservative field for g;.

For example, D; could be the Clarke subgradient of g; if g; is definable (a mere definable
selection in the Clarke would also work). For instance in Example |1, one may set Dg(0) =
{0} or Dg(0) = [0, 1]. Given (z;){_, as computed in Algorithm I} an algorithm to compute
a conservative field of f is described in Algorithm [2l This is a direct implementation of
the chain rule as described in Lemma[6] This ensures that the output of Algorithm [2]is a
conservative field for the function f described in Algorithm [1} Furthermore, the reverse
mode of automatic differentiation described in Algorithm [3| computes essentially the same
quantity but with a lower memory and time footprint.

Theorem 8 (Forward and backward “autodiff” are conservative fields) Let f be
given as in Algorithm [1]
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Algorithm 3: Reverse Mode of automatic differentiation for f
Input: variables (x1,...2,); a the map {parents(t)}icq1,.q}; associated derivatives

d’i = (dij)L'F:]l:entS(k)l € Di('rparents(i))g 1= p+ 1... q
. Initialize: v = (0,0,...,0,1) € R?
fort=gq,...p+1do
for j € parents(t) do

Update coordinate j of v:

vli] = v[t]dy

5. end for
6: end for
Return: (v[1],v[2],...,v[p]).

(i) Set for any x € RP, D(z) = {v € RP; oulput of Algorithm |3}, for any choice of
dy € Dy, k=p+1,...,P. Then D: R? =2 RP is a conservative field for f.

(ii) The same results holds for Algorithm [3

Proof : We substitute the functions (gx)} by functions (G)i_, ., such that for each

k=p+1,...,q

=p+1 p+1

Gki RY? — R?
& & + ek (Tparents(k)) — Tk),
where e, is the k-th element of the canonical basis. Similarly, for all k e p+1,...,q, we
still denote by Dj: R? = R? the conservative field of g, seen as a function of zy, ..., z,

(simply add zeros to coordinates which do not correspond to parents of k). Then f as
computed in Algorithm [1} is equivalently given by

f(@) =[(GgoGyr0...0Gpa(21,. .., 2, 0,...,0))], = [GgoGyor10...0Gy(x)],

where G, maps the first p coordinates (24),_, to the vector ((x;)j_;,(0){_,,;) € R? and
indexation [-], denotes the ¢-th coordinate of a g vector. For each k =p+1...,¢, x € RY,
the following “componentwise derivative” of Gy in a matrix form

Ly: x> {] —eper +epdt, de Dk(x)} , (10)
is a conservative mapping for Gy by Lemma [3] For each k = p+1... ¢, we choose one
such matrix according to a fixed input of Algorithm |2, di € Dg(z1, ..., x,),

Jp =1 —epef +epd) € Li(zq,...,2,) (11)

For each k =p+1,...q, denote by M, the matrix defined by blocks as follows

M, = | € R¥*P




where % is computed by Algorithm [2| Denote also by J, € R?*? the diagonal matrix

which diagonal elements are 1 and the remainders are 0, the Jacobian of G,,. One can see
that
My = Jp X Jpo1 X oo X 1 X

for all k =p+1,...q. This is easily seen for M, as Algorithm [2| computes é,aL =d;.

1

,,,,,,

The rest is a simple recursion. In the end Algorithm [2] computes
e’ M, =el' x J, x Jp_1 X ... X Jpq X J,

q*q q q pP—1 " .- p+1 P

€el X Lyx Loy x ... x Ly X J,

Combining Lemma [f] and Lemma [, the right hand side is a conservative field for f.
Actually it can be seen from equations and that the right hand side consists
precisely of all possible outputs of Algorithm [2|for all possible choices of di, k = p+1,...,q.
This proves the claim for Algorithm

Regarding Algorithm [3] we will show that it computes the same quantity reversing the
order of the products. Set for all t =¢,...,p+ 1, set v; € R? to be the vector v obtained
after step ¢ of the “for loop” of Algorithm . We have v, = e+ dg = (I + dge])e?. An
induction shows that for all t =¢,...,p+1

V¢ = ([ + dtetT) e ([ -+ dqe:‘f)eq.
Using the same notations as in equation , set fort=g¢q,...p+1
we=J x.ox Il xeg

It is easy to see that w, and v, agree on the first ¢ — 1 coordinates. By recursion, for
t=gq,...p+1, w; and v, agree on the first ¢t — 1 coordinates (recall that d; is supported on
the first £ — 1 coordinates). We deduce that w,4; and v, agree on the first p coordinates
so that the output of Algorithm [3is

T _ T _ T T T g _ g7
JG,Upr1 = Jg, Wpp1 = Jg, X g, X ..o x Jg xel =M e,

which is the same quantity as computed by Algorithm [3] The claim follows. O

Remark 9 Automatic differentiation is not necessarily convex valued. Consider the func-
tion

fi(z,y) = |max(z,y)|

Both the max and absolute value functions are convex so that their respective convex
subgradients are conservative fields. Applying the chain rule in Lemma [5|at z =y = 0
we obtain a conservative field for f evaluated at zero of the form

D ={tv; te[-1,1], v e A}

where A is the one dimensional simplex in R?. The set D is not convex.
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The following corollary is a direct consequence of Theorems [2] and [§f Note that a result
close to equation was already guessed in [28, Proposition 14.2].

Corollary 5 (automatic differentiation for definable functions) Assume that all the
gr defining f and their conservative fields Dy, are definable. Then f is differentiable al-
most everywhere, more precisely

Dy ={V/} (12)

on the complement of finitely many smooth manifolds with dimension at most p — 1.
Furthermore, for any v,w in RP,

f(w) - fv) = / (Dy((1 = t)o + tw), w — v) (13)

Proof : From Theorem [§, Dy is a conservative field for f. Basic closedness properties
of definable objects ensure that both f and D; are definable so that Theorem {4| ensures
the existence of a variational stratification [5] The fact that f is differentiable almost
everywhere is a basic result of tame geometry. To obtain , use the stratification
provided in Theorem [ and consider the dense open set given by the union of the finite
number of strata of maximal dimensions. The integration formula is the application of
Definition [2| along any segment. U

Remark 10 (The limitations of the smooth chain rule) It is surprising to use The-
orem {| which is non trivial to obtain (12]). It is instead tempting to simply use the
expression of f provided in Theorem [8}

flx)=elGyo...0Gy(x)
and to differentiate it “almost everywhere” to obtain
flx) =€l G (Gpoi(...Gylr))..) 0 ... 0 Gi(),

which would give the desired result. Unfortunately this expression has no obvious mean-
ing, since for instance, the image of G, may be entirely contained in the points of non-
differentiability of G,_1, so that G_,(G,(r)) has no meaning. This result is illustrated
further in the deep learning section through an experimental example.

6 Algorithmic consequences and deep learning

What follows is in the line of many works on decomposition methods [16], in particular
those involving nonconvex problems, see e.g., [41l [17, 24, 39, 20]. Our study uses con-
nections with dynamical systems, see e.g., [38, 36, 8, I1] in order to take advantage of
continuous-like properties as null circulation in . Using our formalism, we gather ideas
from [24], 18], and use the Benaim-Hofbauer-Sorin approach [8], to obtain almost sure
subsequential convergence to steady states that are carefully defined. To our knowledge,
this provides the first proof for the subsequential convergence of SGD with mini-batches
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in deep learning when the actual backpropagation model is used instead of the subgradi-
ent one’s, which is the case in almost all applications involving nonsmooth objects. As
outlined in a conclusion, many more algorithms could be considered along this perspective.

All sets and functions we consider in this section are definable in the same o-minimal
structure.

6.1 Mini-batch stochastic approximation for finite nonsmooth
nonconvex sums aka “nonsmooth nonconvex SGD?”

We consider the following loss function on RP
1 n
Twe ~ Z fi(w) (14)

where each f;: R? — R is definable and locally Lipschitz continuous. We assume that for
each7=1...n, D;: R? =2 RP? is a definable conservative field for f;, for example the ones
provided by automatic differentiation. We consider the following recursive process, given
a sequence of nonempty mini-batches subsets of {1,...,n}, (Bi),cy, taken independently,
uniformly at random, (o), @ deterministic sequence of positive step sizes, and wy € R?,
iterate

Wgt1 = wk — agdy,
D;(w 15
|Bk\ ; ) (15)

i€ By,

We set

Ds:w= %COHV (Z Di(w)>

=1

and crity = {w € R?, 0 € Ds(w)}, the set of Dz-critical points. Combining our results
with the approach of []], we obtain the following asymptotic characterization.

Theorem 9 (Convergence of mini-batch SGD) Assume that o, = o(1/log(k)). For
any M > 0, conditioning on the event supyey ||wel| < M, setting, w C RP, the set
of accumulation points of (wy)ren. We have, almost surely, ) # w C crity and J is
constant on w.

Proof : We condition on the event sup,y ||wi|| < M. D7 is a conservative field for 7.
Hence J is a Lyapunov function for crit; and the differential inclusion

w e _DJ(U))a

which admits solutions according to [4, Chapter 2, Theorem 3|. We have by uniform
randomness

B Z D;(wy, ] = %ZDi(wk) C D (wp).

1€ By
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By conditioning, everything remains bounded so that there exists a constant C'(M) which
only depends on M such that almost surely

sup i — o] < C(M)

ﬁ 3 Di<wk>]

1€By,

st. vekp,

Theorem |2 implies that J(crity) is finite, and hence has empty interior. The result
follows by combining Theorem 3.6, Remark 1.5 and Proposition 3.27 of [§], see also [T,
Proposition 4.4] for discussion on the step size. Il

Remark 11 (Convergence) We conjecture that, beyond subsequential convergence, it-
erates should converge in the case of definable potentials.

6.2 Deep Neural Networks and nonsmooth backpropagation

We pertain to feed forward neural networks even though much more general cases are
adapted to our auto-differentiation setting and to our definability assumptions.

Let us consider two finite dimensional real vector spaces spaces X', ). The space X models
input objects of interest (images, economical data, sentences, texts) while ) is an output
space of properties of interest for the objects under consideration. The points y in )
are often called labels. The goal of deep learning is to label automatically objects in
X by “learning the labelling principles” from a large dataset of known paired vectors
(@i, Yi)i=1,..n. Given z in X, we thus wish to discover its label y. This is done by
designing a predictor function whose parameters are organized in L layers, each of which

is represented by an affine function A;: RP/ — RPi+! for values p; € N, 5 =1,..., L. Our
predictor function has then the form
X>r— UL(AL(UL—l(AL—1<- .. Ug(AQ(O’l(Al(.I'))>> .. )))) c y (16)

where for each j, the functions o;: R? +— RP/  is locally Lipschitz continuous. These
functions are called activation function and usually apply univariate functions coordi-
natewise. Very often one simply takes a single activation function o: R — R and apply
it to coordinates of each layer. Classical choices for o include:

1. identity: t +— ¢,

1

2. sigmoid: ¢ — 7 =,

3. hyperbolic tangent: t — tanh(t),
4. softplus: t — log(1 + exp(t)),
5. ReLU: t — max{0,t}, aka positive part,

6. “Leaky-ReLU”: t — max{0,t} + amin{t,0}, a > 0, parameter.
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7. piecewise polynomial activations.

Examples 1, 5, 6, 7 are semialgebraic, the others are definable in the same o-minimal
structure (R-exp definable sets). Among these examples, the ReLU activation function
[27] played a crucial role in the development of deep learning architectures as it was found
to be efficient in reducing “vanishing gradient” issues (those being related to the flatness
of the commonly used sigmoid). This activation function is still widely used nowadays and
constitutes one of the motivations for studying in more details automatic differentiation
oracles applied to nonsmooth functions.

In order to lighten the notations, the weights of all the A; in are concatenated into
a global weight vector w in R?, so we may simply write the parametrized predictor with
parameter w,

9w, z) = or(Ar(or(. . o1(A(2))))))-

Learning a predictor function is finding an adequate collection of weights w. To do so one
trains the neural networks by minimizing a loss of the form:

Tw) =5 3 Uglw, 2, 1) 7)

where [ is some elementary loss function, typical choices include the square loss [(a, b) =
lla = b|]%, (a,b) € R? for regression or binary cross entropy for classification: I(a,b) =
blog(a) + (1 —b)log(1 —a), where a € (0,1), b € {0,1}. In view of matching the abstract
model (14), set fi(z) = I(g(w, z;),y;) for all 4. It is obvious to see that:

Lemma 7 (Deep Learning loss in algorithmic form) Given o4,...,01 and [, each
term f; of the deep learning loss J has a representation as in Algorithm 1.

Let us now fix o1, ...,07 and I. Choose a conservative map®| D; for each oy, i =1..., L,
and D; for [. An index i being fixed, the backpropagation algorithm applied to f; is
exactly backward auto-differentiation over f; based on the data of {D;},—1_ and D;. We
denote by BPy, the output mapping. We have:

Corollary 6 (Backpropagation defines a conservative field) With the above con-
ventions, assume that | and oy, ...,0p as well as the corresponding conservative maps are
definable in the same o-minimal structure, then the mapping BPy, is a conservative field.
As a consequence

BP;, =V
save on a finite union of manifolds of dimension at most d — 1.
As a consequence, setting

1 n
BPy =~ > BP, (18)

=1

81f a unique o: R — R is applied to each coordinate of each layer, this amounts to consider a conser-
vative field for o, for example its Clarke subgradient.
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we obtain a conservative field, and thus
BP; =VJ a. e. (19)

T(w) = T(v) = /O (BP7((1— t)o + tw), w — v}, (20)
for any v,w in RP.

Remark 12 (Backpropagation and differentiability a.e.) (a) The backpropagation
algorithm was popularized in the context of neural networks by [49] and is at the heart
of virtually the totality of numerical algorithms for training deep learning architectures
[37, [T, 44]. Most importantly, and this was the main motivation for our work, the back-
propagation algorithm is used even for network built with non differentiable activation
functions one of the most well known example being ReLU [27]. Using such nondiffer-
entiable functions completely destroys the interpretation of backpropagation algorithm
as computing a gradient or even a subgradient. Our results says that, although not
computing any kind of known subdifferential, the nonsmooth backpropagation algorithm
computes elements of a conservative field. As a consequence, it satisfies the operational
chain rule given in Lemma[2] Note also that virtually all deep network architectures used
in applications are actually definable, see e.g. [24].

(b) Despite our efforts we do not see any means to obtain Corollary @ easily. In the “com-
positional course of loss differentiation” (recall Algorithm 1 and 3), one can indeed get
trapped in “nondifferentiability zones” and thus speaking of the derivative of the active
layers at this point has no meaning. Thus the smooth chain rule is of no use (see Remark
and the nonsmooth chain rules, for limiting or Clarke subdifferential are simply false
in general, see for example [33].

To illustrate the fact that nonsmooth zones can be significantly activated during the
training phase, we present now a numerical experiment. Let us consider a very simple
feed forward architecture composed of L layers of fixed size p. Each layer is computed
from the previous layer by application of a linear map, from RP to R?, composed with
coordinatewise application of ReLLU. The input layer is the first element of the canonical
basis and we sample the weights matrices with iid uniform entries in [—1, 1]. We repeat
this sampling many times and estimate empirically the probability of computing ReL.U(0)
during forward propagation of the network (this would require to use the derivative of
ReLU at 0 during backpropagation).

The results are depicted in Figure [} It appears very clearly that for some architectures,
with nonvanishing probability, we sample weight matrices resulting in the computation of
ReLU(0). This means that, although the output of the network is piecewise polynomial
as a function of weight matrices, and hence almost everywhere differentiable, we still
need to evaluate intermediate functions at points where they are not differentiable with
non zero proability. Hence, as we already mentioned, one cannot assert that the fact
that the output is differentiable almost everywhere implies that the classical chain rule of
differentiation applies almost everywhere. This assertion is just false.
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Figure 1: Estimation of the probability of applying ReLU to 0, as a function of the size and
number of layers in a feedfoward network. The input is set to the first element of the canonical
basis and we then propagate application ReLLU layers with linear functions. The weights of the
linear term are sampled uniformly at random between -1 and 1.

6.3 Training nonsmooth neural networks with nonsmooth SGD

To our knowledge the following result is the first genuine analysis of nonsmooth SGD
for deep learning taking into account the real nature of backpropagation and the use of
mini-batches. Note that the steady states below, BP7 critical points (see (18))), are the
actual steady states of the corresponding dynamics. For simplicity of reading, we consider
the special case of Relu networks with squared loss.

Corollary 7 (Convergence of SGD for Deep Learning) Consider a feed forward neu-
ral network with mean squared error and ReLU activation function. Then the bounded
sequences generated by the mini-batch SGD algorithm using the backpropagation oracle
approach the BPy critical set of the loss function with probability one.

This is a direct consequence of Theorem [9] since the squared norm and ReLU are semial-
gebraic. The same result holds with any functions o4,...,0 and [ definable in the same
structure. As mentioned previously more complex architectures are accessible since our
results rely only on abstract automatic differentiation and definability.

7 Conclusion

We introduced new tools for nonsmooth nonconvex problems, based on the idea that the
choice of a fixed notion of subdifferential right from the start can be extremely limiting
in terms of analysis and even of representation (e.g., automatic differentiation).

Our approach eventually consists in the following protocol. Consider an optimization
problem involving an automatic differentiation oracle. We focused on the example of
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deep learning, but other application fields are possible (numerical simulations, optimal
control solvers or partial differential equations [40], 21]).

— “Choose your optimization method and then choose your subdifferen-
tial”. Evaluate precisely your decomposition requirements, in terms of sum or
product, e.g., mini-batches for SGD. Infer from the decomposition method and the
use of nonsmooth automatic differentiation a conservative field matched to the con-
sidered algorithm, e.g., coming back to SGD, set Dy = > Dy,.

— “Verify definability or tameness assumption”. Check that the various objects
are definable in some common adequate structure. The problems we met are covered
by one of the following, by order of frequency: semialgebraicity, global subanalyticity
or log-exp structures.

— “Identify Lyapunov/dissipative properties”. Use a Lyapunov approach, e.g.
a la Benaim-Hofbauer-Sorin, to conclude that the algorithm under consideration
has dissipative properties and thus fine asymptotic properties.

To feel the generality of this protocol one can for instance consider mini-batch stochastic
approximation strategies based on discretization of standard continuous time dynamical
systems with known Lyapunov stability. Prominent examples include the heavy ball
momentum method [3] commonly proposed in deep learning libraries, as well as INDTAN
introduced and studied in [18].

Acknowledgements. The authors acknowledge the support of ANR-3IA Artificial and
Natural Intelligence Toulouse Institute, Air Force Office of Scientific Research, Air Force
Material Command, USAF, under grant numbers FA9550-19-1-7026, FA9550-18-1-0226,
and ANR MasDol. J. Bolte acknowledges the support of ANR Chess, grant ANR-17-
EURE-0010 and ANR OMS.

References

[1] Abadi M., Barham P., Chen J., Chen Z., Davis A., Dean J., Devin M., Ghemawat
S., Irving G., Isard M., Kudlur M., Levenberg J., Monga R., Moore S., Murray
D., Steiner B., Tucker P., Vasudevan V., Warden P., Wicke M., Yu Y. and Zheng
X. (2016). Tensorflow: A system for large-scale machine learning. In Symposium
on Operating Systems Design and Implementation.

[2] Aliprantis C.D., Border K.C. (2005) Infinite Dimensional Analysis (3rd edition)
Springer

[3] Attouch H., Goudou X. and Redont P. (2000). The heavy ball with friction
method, I. The continuous dynamical system: global exploration of the local
minima of a real-valued function by asymptotic analysis of a dissipative dynam-
ical system. Communications in Contemporary Mathematics, 2(01), 1-34.

30



[4]

[10]

[11]

[12]

[13]

[16]

[17]

[18]

[19]

Aubin, J. P., Cellina, A. (1984). Differential inclusions: set-valued maps and
viability theory (Vol. 264). Springer.

Aubin, J.-P.; and Frankowska, H. (2009). Set-valued analysis. Springer Science
& Business Media.

Baydin A., Pearlmutter B., Radul A. and Siskind J. (2018). Automatic differ-
entiation in machine learning: a survey. Journal of machine learning research,

18(153).

Benaim, M. (1999). Dynamics of stochastic approximation algorithms. In
Séminaire de probabilités XXXIII (pp. 1-68). Springer, Berlin, Heidelberg.

Benaim, M., Hofbauer, J., Sorin, S. (2005). Stochastic approximations and
differential inclusions. SIAM Journal on Control and Optimization, 44(1), 328-
348.

Bolte, J., Daniilidis, A., Lewis, A., Shiota, M. (2007). Clarke subgradients of
stratifiable functions. STAM Journal on Optimization, 18(2), 556-572.

Bolte J., Sabach S., and Teboulle M. (2014). Proximal alternating linearized
minimization for nonconvex and nonsmooth problems. Mathematical Program-
ming, 146(1-2), 459-494.

Borkar, V. (2009). Stochastic approximation: a dynamical systems viewpoint
(Vol. 48). Springer.

Borwein J. and Lewis A. S. (2010). Convex analysis and nonlinear optimization:
theory and examples. Springer Science & Business Media.

Borwein J. M. and Moors W. B. (1997). Essentially smooth Lipschitz functions.
Journal of functional analysis, 149(2), 305-351.

Borwein J. M. and Moors, W. B. (1998). A chain rule for essentially smooth
Lipschitz functions. STAM Journal on Optimization, 8(2), 300-308.

Borwein, J., Moors, W. and Wang, X. (2001). Generalized subdifferentials: a
Baire categorical approach. Transactions of the American Mathematical Society,

353(10), 3875-3893.

Bottou L. and Bousquet O. (2008). The tradeoffs of large scale learning. In
Advances in neural information processing systems (pp. 161-168).

Bottou L., Curtis F. E. and Nocedal J. (2018). Optimization methods for large-
scale machine learning. Siam Review, 60(2), 223-311.

Castera C., Bolte J., Févotte C., Pauwels E. (2019). An Inertial Newton Algo-
rithm for Deep Learning. arXiv preprint arXiv:1905.12278.

Clarke F. H. (1983). Optimization and nonsmooth analysis. Siam.

31



[20]

[21]

28]

[29]

[30]

[31]

[32]

[33]

Chizat, L., and Bach, F. (2018). On the global convergence of gradient descent
for over-parameterized models using optimal transport. In Advances in neural
information processing systems, 3036-3046.

Corliss G., Faure C., Griewank A., Hascoet L. and Naumann U. (Editors)
(2002). Automatic differentiation of algorithms: from simulation to optimiza-
tion. Springer Science & Business Media.

Correa R. and Jofre, A. (1989). Tangentially continuous directional derivatives
in nonsmooth analysis. Journal of optimization theory and applications, 61(1),
1-21.

Coste M., An introduction to o-minimal geometry. RAAG notes, Institut de
Recherche Mathématique de Rennes, 81 pages, November 1999.

Davis, D., Drusvyatskiy, D., Kakade, S., Lee, J. D. (2018). Stochastic sub-
gradient method converges on tame functions. Foundations of Computational
Mathematics.

van den Dries L. and Miller C. (1996). Geometric categories and o-minimal
structures. Duke Math. J, 84(2), 497-540.

Evans, L. C. and Gariepy, R. F. (2015). Measure theory and fine properties of
functions. Revised Edition. Chapman and Hall/CRC.

Glorot X., Bordes A. and Bengio Y. (2011). Deep sparse rectifier neural net-
works. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics (pp. 315-323).

Griewank, A., Walther, A. (2008). Evaluating derivatives: principles and tech-
niques of algorithmic differentiation (Vol. 105). SIAM.

Griewank A. (2013). On stable piecewise linearization and generalized algorith-
mic differentiation. Optimization Methods and Software, 28(6), 1139-1178.

Griewank A., Walther A., Fiege S. and Bosse T. (2016). On Lipschitz optimiza-
tion based on gray-box piecewise linearization. Mathematical Programming,
158(1-2), 383-415.

Toffe A. D. (1981). Nonsmooth analysis: differential calculus of nondifferentiable
mappings. Transactions of the American Mathematical Society, 266(1), 1-56.

loffe, A. D. (2017). Variational analysis of regular mappings. Springer Mono-
graphs in Mathematics. Springer, Cham.

Kakade, S. M. and Lee, J. D. (2018). Provably correct automatic sub-
differentiation for qualified programs. In Advances in Neural Information Pro-
cessing Systems (pp. 7125-7135).

Kurdyka, K. (1998). On gradients of functions definable in o-minimal structures.
In Annales de l'institut Fourier 48(3), 769-783.

32



[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

[51]

Kurdyka, K., Mostowski, T. and Parusinski, A. (2000). Proof of the gradient
conjecture of R. Thom. Annals of Mathematics, 152(3), 763-792.

Kushner H. and Yin, G. G. (2003). Stochastic approximation and recursive
algorithms and applications (Vol. 35). Springer Science & Business Media.

LeCun Y., Bengio Y., Hinton, G. (2015). Deep learning. Nature, 521(7553).

Ljung L. (1977). Analysis of recursive stochastic algorithms. IEEE transactions
on automatic control, 22(4), 551-575.

Majewski, S., Miasojedow, B. and Moulines, E. (2018). Analysis of nonsmooth
stochastic approximation: the differential inclusion approach. arXiv preprint
arXiv:1805.01916.

Mohammadi, B. and Pironneau, O. (2010). Applied shape optimization for
fluids. Oxford university press.

Moulines E. and Bach, F. (2011). Non-asymptotic analysis of stochastic approx-
imation algorithms for machine learning. In Advances in Neural Information
Processing Systems (pp. 451-459).

Moreau J.-J. (1963). Fonctionnelles sous-différentiables.

Mordukhovich B. S. (2006). Variational analysis and generalized differentiation
I: Basic theory. Springer Science & Business Media.

Paszke A., Gross S., Chintala S., Chanan G., Yang E., DeVito Z., Lin Z., Des-
maison A., Antiga L. and Lerer A. (2017). Automatic differentiation in pytorch.
In NIPS workshops.

Robbins H. and Monro, S. (1951). A stochastic approximation method. The
annals of mathematical statistics, 400-407.

Rockafellar R. T. (1963). Convex functions and dual extremum problems. Doc-
toral dissertation, Harvard University.

Rockafellar R. (1970). On the maximal monotonicity of subdifferential mappings.
Pacific Journal of Mathematics, 33(1), 209-216.

Rockafellar, R. T., Wets, R. J. B. (1998). Variational analysis. Springer.

Rumelhart E., Hinton E., Williams J. (1986). Learning representations by back-
propagating errors. Nature 323:533-536.

Speelpenning, B. (1980). Compiling fast partial derivatives of functions given by
algorithms (No. CO0-2383-0063; UILU-ENG-80-1702; UITUCDCS-R-80-1002).
[llinois Univ., Urbana (USA). Dept. of Computer Science.

Thibault, L. (1982). On generalized differentials and subdifferentials of Lipschitz
vector-valued functions. Nonlinear Analysis: Theory, Methods & Applications,
6(10), 1037-1053.

33



[52]

[53]

[54]

[55]

Thibault, L. and Zagrodny, D. (1995). Integration of subdifferentials of lower
semicontinuous functions on Banach spaces. Journal of Mathematical Analysis
and Applications, 189(1), 33-58.

Thibault, L. and Zlateva, N. (2005). Integrability of subdifferentials of direc-
tionally Lipschitz functions. Proceedings of the American Mathematical Society,
2939-2948.

Valadier, M. (1989). Entrainement unilatéral, lignes de descente, fonctions lips-
chitziennes non pathologiques. Comptes rendus de I’Académie des Sciences, 308,
241-244.

Wang X. (1995). Pathological Lipschitz functions in R". Master Thesis, Simon
Fraser University.

34



	backprop.pdf
	Introduction
	Conservative set valued fields
	Definition and vanishing circulations
	Locally Lipschitz continuous potentials of conservative fields

	A generalized differential calculus
	Conservativity, Clarke subdifferential and gradient a.e.
	Path differentiability
	Conservative mappings and calculus

	Tameness and conservativity
	Introduction and definition
	Variational stratification and projection formulas
	Characterization of tame conservative fields
	Geometric and dynamical properties of definable conservative fields

	Automatic differentiation
	A functional framework: ``closed formula functions" 
	Forward and backward nonsmooth automatic differentiation

	Algorithmic consequences and deep learning
	Mini-batch stochastic approximation for finite nonsmooth nonconvex sums aka ``nonsmooth nonconvex SGD"
	Deep Neural Networks and nonsmooth backpropagation
	Training nonsmooth neural networks with nonsmooth SGD

	Conclusion


