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How should society manage dynamic systems that may suddenly collapse? As economists,

we are increasingly confronting this question. But when we study climate change, virus

outbreaks turning to pandemics, or the collapse of fisheries and ecosystems, we encounter

several approaches with different assumptions, sometimes yielding opposite policy con-

clusions. In this paper, we argue that the key question is how these approaches deal with

the possibility that a catastrophe may already be under way.

Consider the impact of climate change on the Greenland ice sheet. A catastrophic

melting might well be under way, though no one knows exactly (e.g., Kriegler et al.,

2009). We expect that some temperature increase will lead to a dramatic acceleration

in melting, but this threshold is unknown, reflecting scientific uncertainty or stochastic

shocks. Was this critical threshold exceeded already in the ‘70s, or will it be reached

in the near future? Evidently, we cannot tell the final effect of past actions because

there is a considerable delay between the cause (the accumulation of greenhouse gases

in the atmosphere) and the effect (melting) (e.g., Fitzpatrick and Kelly, 2017). Similar

thresholds and delays are not unheard of in other situations. Is a virus outbreak on its

way to cause a breakdown of the health system? Will habitat fragmentation lead to a

collapse of biodiversity, or is it already too late?

When facing such threats, one may take it as advisable to act on the assumption

that the catastrophe is on its way to be appropriately prepared for its occurrence. On

reflection, however, one may consider it equally advisable to assume the opposite to

focus on actions that avoid triggering the catastrophe in the first place. Both premises

produce valuable insights, as the literature has shown, but we are left with a logical

dilemma: the assumptions are mutually exclusive and the choice between them dictates

to a large degree the nature of policy recommendations. Our formal framework is designed

to address this dilemma, allowing us to develop a new protocol for planning under the

threat of a catastrophe.

We develop a general model of experimentation in which a planner manages both

how much to experiment with an unknown threshold and how to prepare for the poten-

tial impacts from exceeding this threshold. The planner controls a stock variable with

multiple interpretations (e.g., temperature, finite resource, infected population). The

stock triggers a catastrophe when it exceeds an unknown threshold. Once triggered,

the catastrophe itself occurs only after a stochastic delay. The key assumption is that

the planner does not know whether a catastrophe has been triggered or not: only the
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occurrence of a catastrophe is observable. Reaching a previously untried level is thus an

experiment whose results may be learned only later on.

The delay between the triggering of the event and its occurrence leads to an in-

formation structure in which the planner evaluates potential threats pending from the

past. Formally, for any date we define the legacy of the past as the probability that

past experiments, whether planned or simply inherited, have triggered the catastrophe.

As time goes by without any catastrophe occurring, we are more confident that nothing

will follow from the past experimentations and the legacy goes down — unless we keep

on experimenting, thereby causing an increase in future values of the legacy. Likewise,

when evaluating the present-day legacy, it matters how and when we experimented in

the past. For instance, a rapid increase in greenhouse gases in the recent past creates a

legacy higher than if the same increase took place in a distant past.

Two thought-experiments prove useful. First, if the planner could learn without any

delay the results from experiments, there would be no legacy. In this situation, what

would be the long-run level of the stock, say QE, at which the planner optimally stops

experimenting? Second, conversely, if one knew for sure that the catastrophe is pending,

what would be the stock level, say QD, that one aims at before the catastrophe occurs? It

turns out that the ordering of the two stock levels partitions possible planning situations

into two very different classes.

To fix ideas, consider the management of a pandemic for which the classical trade-off

is between economic activity, typically associated to young people, and mortality (or

morbidity) risk, typically borne by older people. In addition, there is the risk that too

many cases might lead to a collapse of the health system. Hence, in our model the stock

is the number of infected people which, by reaching an unknown threshold, may trigger

a catastrophe. The planner thus manages simultaneously this catastrophe risk and the

classical trade-off. Our protocol recommends in a first step to evaluate and rank the

values of QE and QD.

Our first theorem holds when QE < QD, a situation which follows when the planner

puts a high weight on economic activity in comparison with the social costs of deaths.

Then, all optimal policies allow infection levels to grow over time, as illustrated by path I

in Figure 1. Moreover, a higher legacy (e.g., because there was a recent and fast increase

in the number of cases before time t0) leads to more experimentation and a higher total

number of cases that the planner optimally tolerates: the idea is that since the occurrence
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of the catastrophe is likely, it is better to reap the gains from economic activity while

they still exist. Hence, a higher legacy of the past makes the planner less cautious. Our

first theorem rationalizes such fatalism from a set of well-founded primitives.

Figure 1

The second theorem applies when QE > QD, a situation holding when the planner

puts a high value to life vis-à-vis economic activity. A possible optimal policy is described

by path II in Fig. 1. When facing the same legacy as the planner of the first theorem,

it holds under intuitive conditions that the policy imposes a strict lockdown early to

reduce the number of cases and thus the impact of the potential catastrophe on the health

system. During the lockdown, the legacy of the past goes down as no new experiments

take place, and therefore the planner becomes more and more optimistic over time.

We prove that the first phase, in which the lockdown reduces the number of cases, is

optimally followed by a second phase, in which the planner accommodates increasing

levels of infections up to the level at which the lockdown started in the first place and

possibly even above. Hence, this optimal policy is non-monotonic. It implies that,

without changing the planner’s preferences, a lockdown or increasing infections can be

optimal depending on how the current level of infections was reached. Finally, and also

in contrast to the first theorem, now a higher legacy of the past makes the planner more

cautious in a sense that the lockdown becomes more stringent; however, the optimal

asymptotic stock level does not depend on the legacy.

The disease control problem nicely illustrates the key stock-flow tradeoffs and con-

tributes to the literature on virus outbreaks by adding a new learning-based rationale
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for non-monotonic policies.1 But these insights hold quite generally. Intuitively, when

data indicate that the catastrophe is bound to happen and if, in addition, gains to mit-

igation are small, there is little reason to restrain actions that produce benefits prior to

the occurrence. In the opposite case, gains to mitigation are high in the short run, but

the concern regarding catastrophes pending from the past dwindles in the long run if no

event occurs. This change in priority implies a non-monotonic trajectory for the stock.

In addition to pandemics, we illustrate the broad applicability of the results by “eating

a cake of unknown size” (building on Kemp, 1976) which is a problem that captures

the rudiments of many resource use settings and, finally, by a stylized climate-change

application. Climate-change targets are commonly expressed as “budgets” for total CO2

emissions; however, the budget deemed safe is highly uncertain (van der Ploeg, 2018;

IPCC, 2021). We model this unknown budget as a threshold for cumulative emissions

that should not be exceeded, lest a catastrophe be triggered. Several implications for

the policies on CO2 budgets follow. If the damage from a catastrophe cannot be much

altered by reducing the present emissions, then the first theorem applies: the policies

are monotonic and they imply a higher total budget when the legacy is higher (e.g.,

because the current emissions stock was reached quickly rather than slowly). Otherwise,

the second theorem applies and then, for a legacy high enough, the policies aim at sharp

emissions reductions early so that the budget is first not touched at all; only later can one

move on to consume it. None of these implications follows from the existing literature.

Literature. Our model allows to tie together two canonical but distinct approaches

to modeling catastrophes in the literature.2 In the first approach, the probability of a

catastrophe happening depends only on the current state of the system, typically through

an exogenous hazard rate function. There is thus no memory of the past, and no learning

over time. Moreover, while the catastrophe is bound to happen, action can be taken

to delay its occurrence and severity. This assumption features in many recent applied

papers (e.g., van der Ploeg and de Zeeuw, 2017), including quantitative assessments of

the optimal climate-change policies (e.g., Besley and Dixit, 2019).

1Assenza et al. (2020) provides a literature review on the so-called “hammer-and-dance” policies.
2Catastrophes, broadly interpreted, appear in a wide range of economic applications, including

macroeconomic disasters (e.g., Barro, 2006; Gourio, 2008), technology breakdowns and demand tip-
ping (e.g., Rob, 1991; Bonatti and Hörner, 2017), resource consumption (Kemp, 1976), nuclear accidents
(Cropper, 1976), and pollution control (Clarke and Reed, 1994; Polasky, de Zeeuw and Wagener, 2011;
Sakamoto, 2014; van der Ploeg and de Zeeuw, 2017; Bretschger and Vinogradova, 2019; Cai and Lontzek,
2019). See Rheinberger and Treich (2017) for a bibliometric analysis of the literature on catastrophes.
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In the second approach, the catastrophe occurs as soon as the critical variable ex-

ceeds a threshold whose exact value is unknown. The formal approach appears in Kemp

(1976), who studied the problem of eating a cake of unknown size. In Rob (1991) the

threshold is a kink in the demand curve. Tsur and Zemel (1994) focus on natural catas-

trophes (see also Tsur and Zemel, 1995 and 1996).3 In Chen (2020) firms face a common

threshold that they search individually with a private cost from passing the threshold;

in Diekert (2017) the cost of passing the threshold is common. The quantitative policy

evaluation in Lemoine and Traeger (2014) uses the threshold approach. Learning occurs

instantaneously in this literature: the planner is absolutely certain that the threshold

has not been exceeded in the past if no catastrophe has occurred so far. Beliefs are thus

revised, after each step, through a simple truncation of the prior for the threshold. This

feature matches the facts in most learning environments quite badly. For example, Roe

and Baker (2007) argue that the delays built into the feedback mechanisms governing

climate change will prevent us from learning the true nature of the problem in the coming

decades.4

Researchers in both camps end up working with a hazard rate for the event, one

assumed exogenously and another derived from the threshold distribution. This choice

may seem innocuous, but in fact its informational consequences could not be bigger:

in one approach the catastrophe is pending for sure, while in the other one it is so far

avoided with certainty. By introducing a delay, we explore a more general model where

the planner remains uncertain if the current standing is safe, even if he stops experi-

menting. The approaches in the literature follow as special cases if the delay goes to

zero or if past actions are known to have triggered the event. Neither of these canon-

ical approaches is suitable for interpreting the information content of past experiments

(planned or inherited) and thus they miss the mechanism that is key to our results.

Introducing delays implies that any given welfare impact from triggering a catastrophe

is delayed, which encourages to experiment more in total. This effect is somewhat trivial.

But delays also give rise to the legacy which has an ambiguous impact on experiments.

Under the first theorem, the legacy encourages to experiment more, and conversely under

the second theorem. This opposition links closely the literature in a precise sense: the

3We discuss their contributions in detail in Section 7.
4Crépin and Nævdal (2019) extend the threshold approach. The stock governs the rate of change of

another state variable which makes the catastrophe to occur when it goes above an unknown tipping
point. This introduces inertia in the path of this second state variable but learning is still instantaneous.
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extreme informational assumptions of the literature define two stock-level targets whose

comparison tells which one of the theorem applies. The theorems can be applied to a

broad class of existing models, which we illustrate for a class of climate-change models.

Our approach is different from the bandit models used to study experimentation in

various economic settings. As in Poisson bandit settings, the planner updates beliefs on

the arrival rate of a catastrophe by not observing the event (as in Malueg and Tsutsui,

1997; see also Keller, Rady and Cripps, 2005; and Bonatti and Hörner, 2011). In a sense,

our planner runs an endogenous continuum of such bandits (thresholds tried), and ob-

taining the information content of past actions requires aggregation over the experiments.

The belief updating that follows from this aggregation is new to the experimentation liter-

ature; even under a simplifying Poisson assumption for the distribution of the stochastic

delay, this aggregation encapsulates not only the value of the highest stock on record but

also the chronicle of past experiments.

A few recent papers on experiments are related to our work. Gerlagh and Liski (2018)

consider an explicit climate-economy model with learning about potentially catastrophic

damages. The objective of that paper is to study the impact of speed of learning on

the optimal policy path when the legacy is strictly between zero and one (using the

current terminology). In this sense, the paper is between the two canonical approaches

to catastrophes in the literature. However, that model does not have a structure that

connects the legacy to past experiments.

Laiho, Murto and Salmi (2023) shares with our paper the feature that the chronicle

of past actions determines the speed of information arrival. In their model, stochastic

flow gains are made possible by irreversible capacity expansions, but there is a risk of

overcapacity if the profitability, given by an unknown state, turns out to be bad. In our

model, the pay-off relevant stock level is reversible. Also, in our model, the chronicle of

past actions is essential for beliefs; in their setting, the precise timing of past experiments

does not matter.

Guillouët and Martimort (2020) study the foundations of a precautionary principle

in an environment where a catastrophe may happen after a delay when the stock exceeds

an unknown tipping point, as in our paper. The focus is different however, as they do

not allow the planner to condition the policy on his beliefs. Hence, a time-consistency

problem arises, and they characterize policies resulting from a Nash equilibrium between

different selves. Our question is very different as we focus on the optimal policy only,
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and we develop a framework in which beliefs from a chronicle of past actions, potentially

inherited, shape the policy. We also allow for non-monotonic policies and general payoff

functions, and thereby cover a broad set of applications.

1 Model

A planner controls a dynamic system over time. Section 1.1 defines the planner’s problem

in the absence of catastrophes. Section 1.2 adds catastrophes and delays. Section 1.3

introduces uncertainty. With the model components at hand, Section 1.4 formulates the

complete planning problem.

1.1 The Stock-Flow Problem (SFP)

Time t is a continuous variable in (−∞,+∞). At each date t ≥ 0, the planner chooses

a flow action qt to control a stock Qt according to a simple law of motion:

Q̇t = qt ∈ [q, q], Q0 given. (1)

We assume q < 0 < q, so that the stock may increase or decrease over time. The planner’s

objective function at date zero is the following discounted sum of payoffs:∫ +∞

0

u(qt, Qt) exp(−δt)dt. (2)

We allow the instantaneous payoff u(q,Q) to depend on both the stock level Q and the

flow value q. Parameter δ > 0 is the discount rate. The Stock-Flow Problem (SFP)

is a classical calculus-of-variations exercise in which one maximizes (2) under the law

of motion (1). To make this problem regular, we assume (subscripts denote partial

derivatives):

Assumption 1 Function u is twice continuously differentiable, bounded from above, and

weakly concave in q. Moreover, the function

ν(Q) ≡ uq(0, Q) +
1

δ
uQ(0, Q)

is weakly decreasing with respect to Q.

Function ν encapsulates the trade-off between instantaneous gains from an increase in

the flow, and the long-run effects from the associated increase of the stock. This function
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is decreasing for all values of the discount factor if both uqQ(0, Q) and uQQ(0, Q) are

weakly negative, but the assumption highlights the exact property we will rely upon:

increasing the stock is less valuable when the stock is higher.

The solutions to the problem (1)-(2) are easily shown to converge monotonically

toward the following long-run target:

Definition 1 QN (where N stands for “No catastrophe”) is the stock level at which ν(Q)

is zero. We assume QN is unique. By convention, we set QN = +∞ if ν is positive for

all Q, and QN = −∞ if ν is negative for all Q.

Indeed, because ν is decreasing from Assumption 1, if Q < QN then the payoff ν from

increasing the stock is positive, and conversely if Q > QN . Thus, QN is interpreted as

the long-run target in the absence of catastrophes. We obtain:

Proposition 1 There exists a solution to the Stock-Flow Problem (1)-(2). This solution

is monotonic and converges to QN .

1.2 Catastrophes and delays

Catastrophes are irreversible and costly events. An original feature of our model is that

we distinguish when a catastrophe is triggered from when it actually occurs. We say that

a catastrophe is triggered when the stock Q exceeds a threshold value S. Given a path

(Qt)t∈(−∞,+∞), the triggering time is a function of S:

T (S) ≡ inf{t : Qt > S}. (3)

Note that T (S) is infinite if the stock never exceeds S and that QT (S) = S otherwise. We

also define the highest stock on record at time t:

Qt ≡ max
t′≤t

Qt′

so that T (S) < t if and only if S < Qt. The catastrophe itself occurs only after a delay

τ ≥ 0, at date κ = T (S) + τ . Note that, in contrast to the SFP, now the full past

trajectory of the stock is relevant at time 0, as the catastrophe may have been triggered

in the past without occurring yet.

Before the catastrophe occurs, the planner’s instantaneous utility is u(qt, Qt) at each

date t. At time κ, the catastrophe occurs, the game ends, and the planner receives a
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continuation payoff V (Qκ) which depends on the value of the stock at the catastrophe

date κ.5 Hence, the planner can mitigate the impact of a catastrophe by changing the

level of the stock after the catastrophe was triggered but before it occurs. Making the

continuation payoff V to depend instead on the threshold S, or on the maximum level

tried in the past Qκ, would eliminate this possibility by assumption.

We assume that the planner prefers stabilizing the stock forever over getting immedi-

ately the continuation payoff from the catastrophe, and that this preference is stronger

when the stock is higher. Formally, define the damage D(Q) as the difference between

the discounted value of the no-catastrophe utility flow from stabilizing at Q and V (Q):

D(Q) ≡ u(0, Q)

δ
− V (Q). (4)

The following assumption is stated using this damage function D:6

Assumption 2 The damage function D(Q) is twice continuously differentiable, weakly

positive, and weakly increasing. Moreover, ν(Q)−D′(Q) is weakly decreasing.

Therefore, the planner can mitigate damages by reducing the stock value at the

occurrence date. The last part of the assumption ensures that higher stock levels reduce

the value of increasing the flow, taking into account the marginal damages associated to

a catastrophe. This part of the assumption is weaker than the convexity of damages,

but it is strong enough to imply that ν − kD′ is decreasing for any k ∈ [0, 1], and

thus encompasses situations in which the catastrophe is discounted, or occurs with a

probability below one.7

Overall, given S, τ , and a path (Qt)t∈(−∞,+∞), one applies (3) to compute T (S) and

κ = T (S) + τ , so that the planner’s payoff from date t = 0 onward equals∫ κ

0

u(qt, Qt) exp(−δt)dt+ exp(−δκ)V (Qκ).

5Applications to disease control and climate change will provide micro-foundations for V as the value
function of a post-catastrophe problem.

6Equivalently, the assumption states that: V is twice differentiable; V is less than the value u(0,Q)
δ of

stabilizing the stock forever, and this difference increases with the stock; and finally, uq(0, Q) + V ′(Q)
decreases with the stock, a property which holds if uqQ ≤ 0 and V is concave.

7Indeed, for k ∈ [0, 1] we have ν − kD′ = (1 − k)ν + k(ν − D′), and both terms are decreasing
by Assumptions 1 and 2. The early literature on catastrophes often relies on much more complicated
assumptions. For example, Tsur and Zemel (1994) relies on two assumptions U1 and U2, which involve
the solution to a constrained dynamic program. We later provide a general proof of their results relying
on our simpler assumptions.
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1.3 Uncertainty

We now introduce uncertainty over both the threshold S and the delay τ . The planner has

prior beliefs on S, characterized by a cumulative distribution function F on the interval

[S, S]. We underline that these are beliefs held at the beginning of times, t = −∞.

We assume throughout that F is continuously differentiable on its support, with density

f . We adopt a monotone hazard rate assumption, which makes the triggering of a

catastrophe more likely conditional on reaching a higher stock level:

Assumption 3 The hazard rate ρ(S) ≡ f(S)
1−F (S)

is weakly increasing.

The delay τ is also unknown to the planner. We assume it follows an exponential dis-

tribution with parameter α > 0, with the cumulative distribution function 1−exp(−ατ).

Thus, τ and S are independent.

A key assumption is that the planner does not observe whether a catastrophe was

triggered: he only observes its occurrence. This allows us to capture the idea that a

catastrophe might well be under way: the planner is unsure if the threshold was exceeded

in the past; he is unsure about the delay between triggering and occurrence. These are

uncertainties often invoked in biology, under the name of extinction debt (Tilman et al.,

1994).

To illustrate, one may imagine a skater on thin ice. Instantaneous utility flow increases

with the distance to the shore at a decreasing rate (Assumption 1), but the ice gets thinner

and thinner (Assumption 3). The skater does not observe whether the first crack in the

ice has appeared, but he may turn back as long as the ice is still holding. When the ice

finally breaks, the journey finds an abrupt end, and the damage to the skater depends

on the remaining distance to the shore (Assumption 2).

We may use the skater illustration to introduce two benchmarks important for later

results. First, assume the skater knows that the threshold has been exceeded and the

ice will ultimately break; only the timing of the event is uncertain. Where should the

skater stop? Suppose the skater has stopped and considers increasing the distance from
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the shore marginally (i.e., variable Q), giving the benefit measured by8

ν(Q)− α

α + δ
D′(Q). (5)

From Assumptions 1-2, this expression is weakly decreasing in Q, and lies below ν(Q).

Therefore, it may reach zero only at a value QD ≤ QN .

Definition 2 QD (where D stands for “Damages”) is the stock level at which (5) is zero,

and for simplicity we assume it is unique. By convention, we set QD = +∞ if (5) is

positive for all Q, and QD = −∞ if (5) is negative for all Q.

Second, assume that the skater is still at the shore, or is otherwise sure that no

threshold has been exceeded when standing at Q0. In such a situation, one may safely

stabilize the situation by playing q = 0 forever. One may also experiment a bit more be-

fore stabilizing. To compare these policy options, one computes the instantaneous utility

gain from experimenting and subtracts the expected discounted damage of triggering a

catastrophe to obtain the net gain from a marginal experiment:

ν(Q)− α

α + δ
ρ(Q)D(Q). (6)

Noticeably, the second term involves the level of damage D, not its derivative; the hazard

rate ρ measures the probability of triggering a catastrophe at the current level Q. Under

our assumptions, expression (6) is weakly decreasing in Q and lies below ν(Q). Therefore,

it may reach zero only at a value QE ≤ QN :

Definition 3 QE (where E stands for “Experimentation”) is the stock level at which (6)

is zero, and for simplicity we assume it is unique. By convention, we set QE = S if (6)

is negative at S, and QE = S if (6) is positive at S.

As we will see in the next section, the ranking of targets QD and QE is key to our

main theorems. The symmetry in equations (5)-(6) and our monotonicity assumptions

make it easy to find sufficient conditions. For example, we have:

8The marginal damage is discounted by a coefficient that takes into account the stochastic delay
before occurrence. Because this delay τ is distributed exponentially with parameter α, this coefficient is

E exp(−δτ) = α

∫
τ≥0

exp(−(α+ δ)τ)dτ =
α

α+ δ
.
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Lemma 1 If the function D(Q)(1−F (Q)) increases (resp. decreases) at Q = QD, then

QD < QE (resp. >).

The condition is simple, and its implication is clear: when the damage is relatively

sensitive to Q, the planner who knows that the event has been triggered mitigates the

expected losses from occurrence by aiming at low value QD for the stock. By contrast,

the condition QD > QE holds when the damage is a constant loss.

1.4 The planner’s problem

At the planning date t = 0, the planner inherits historical data which consist of the past

trajectory of the stock (Qt)t≤0. The plan is a contingency plan for survival: it conditions

on the event “no catastrophe occurred before time zero”, or equivalently κ = T (S)+τ ≥ 0.

Beliefs at time zero are obtained by this conditioning, i.e., they take into account the

past experiments and the possibility that they might have triggered a catastrophe that

did not occur yet. Therefore, the planner’s problem is as follows:

max
(qt)t⩾0

E
ï∫ κ

0

u(qt, Qt) exp(−δt)dt+ exp(−δκ)V (Qκ)

∣∣∣∣ κ ≥ 0, (Qt)t≤0

ò
(7)

Q̇t = qt ∈ [q, q]. (8)

While Qt is continuous by construction, we only require qt to be piecewise-continuous.

We say that a policy (Qt)t≥0 is monotonic if Qt is everywhere weakly decreasing, or

everywhere weakly increasing, with respect to time. Given a path (Qt)t∈(−∞,+∞), we

define Q∞ ≤ +∞ as the supremum value for the stock. We say that Q∞ is reached in

finite time if there exists T < +∞ such that QT = Q∞. Otherwise, we say that Q∞ is

reached asymptotically, and in this case one has Qt ≤ Qt < Q∞ for all t.

2 Learning and the survival probability

The planner learns from past experiments by observing that a catastrophe did not yet

occur: in this sense, no news is good news. Prior beliefs are thus revised over time by

conditioning on survival. We now show how these beliefs can be summarized in a survival

probability with simple dynamics. Given a path (Qt)t∈(−∞,+∞), let us define the survival

probability at time t as the decumulative density function of the catastrophe date κ,

computed at the beginning of time using the prior beliefs F :

pt ≡ Prob(κ ≥ t).
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To characterize this probability, one may distinguish two possibilities for survival at time

t. Either S is above Qt, so that no catastrophe could occur before time t, and survival is

certain. Or S is below Qt, and in this case a catastrophe was triggered at time T (S) < t,

but did not occur yet because the delay τ is above t− T (S), an event that happens with

probability exp[−α(t− T (S))]. Overall, we obtain

pt = 1− F (Qt) +

∫
S<Qt

exp[−α(t− T (S))]dF (S). (9)

Hence, the survival probability at time t exceeds 1− F (Qt), as a catastrophe may have

been triggered in the past but did not occur yet. Define the legacy of the past πt as the

probability at time t that the event was triggered in the past, conditional on survival:

Definition 4 For a given path, the legacy of the past at date t is

πt ≡

∫
S<Qt

exp[−α(t− T (S))]dF (S)

pt
∈ [0, F (Qt)].

Notice that π can also be computed directly from Q and p, as follows:

πt = 1− 1− F (Qt)

pt
.

Let us underline that the legacy is a direct consequence of the delay between triggering

and occurrence: in the limiting case without delay (α goes to infinity), pt equals 1 −
F (Qt), and then πt is identically zero. When delays are introduced, as soon as some

experimentation took place in the past, πt is not zero anymore: it is a sum of terms

which vanish over time, each term being associated to a possible value for the threshold

S < Qt. Therefore, a past experiment contributes less to πt if it took place a long time

ago rather than just before t.

The dynamics of the survival probability can now be simplified, thanks to assuming

an exponential law for the delay. Indeed, by applying (9) at t = 0, we get the information

content of the data (Qt)t≤0 relevant for planning:

p0 = 1− F (Q0) +

∫
S<Q0

exp[αT (S)]dF (S).

Moreover, by differentiating (9), we obtain a law of motion:

ṗt = α[1− F (Qt)− pt].
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These two equalities in turn imply (9), at all future dates t ≥ 0.

We are now in a position to rewrite the planner’s problem defined in (7)-(8). Recall

that the survival probability is the decumulative density function pκ of the catastrophe

date κ. It is the premise of planning that no catastrophe has happened at time t = 0,

and therefore the planner should condition on the event κ ≥ 0 by using the ratio pκ/p0.

His expected payoff can be written, leaving out the constant factor 1/p0,

E
ï∫

t≥0

1κ≥tu(qt, Qt) exp(−δt)dt+ exp(−δκ)V (Qκ)

ò
=

∫
t≥0

[E1κ≥t]u(qt, Qt) exp(−δt)dt+

∫
κ≥0

exp(−δκ)V (Qκ)d(1− pκ).

By relabelling κ into t in the second integral, we obtain the following problem:

max

∫ ∞

0

[ptu(qt, Qt)− ṗtV (Qt)] exp(−δt)dt, (10)

Q̇t = qt ∈ [q, q], Q0 given, (11)

Qt = max(max
0≤t′≤t

Qt′ , Q0), Q0 ≥ Q0 given, (12)

ṗt = α(1− F (Qt)− pt), p0 > 0 given, p0 ≥ 1− F (Q0). (13)

As time enters only through exponential discounting, this problem is autonomous.

The three state variables are the stock Q, the maximum stock on record Q, and the

survival probability p. Their initial values (Q0, Q0, p0) provide a sufficient summary of

the past trajectory (Qt)t≤0, thanks to the assumption that the delay τ is exponential.

In this triplet, one may equivalently replace p0 by the legacy of the past, π0 = 1 −
1−F (Q0)

p0
, which measures the probability that a catastrophe was triggered in the past,

conditional on survival. Intuitively, Q0 measures total experimentation so far, while π0

varies according to the past timing of these experiments; the data on the past enter

through these variables.

The optimal policy gives a path for the main variables that can be interrupted at any

time by the occurrence of a catastrophe. An illustrative and simple situation is the one in

which the legacy is one. Then, the planner knows that the catastrophe was triggered, but

still does not know when the catastrophe will occur. From (13), the survival probability

after time 0 is

pt = p0 exp(−αt). (14)
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Plugging this expression into (10), the optimal policy maximizes∫ +∞

0

[u(qt, Qt) + αV (Qt)] exp(−(α + δ)t)dt (15)

and the constraints reduce to Q̇t = qt ∈ [q, q], Q0 given.

Proposition 2 Suppose Q0 ≥ S. Then there exists an optimal path, which solves prob-

lem (15). Moreover, this optimal path is monotonic, and converges to the value QD

defined in Definition 2.

Our main theorems focus on the remaining situations in which Q0 < S.

3 Optimal policies

Characterizing the policy is not a simple task, as the problem involves three state vari-

ables, one being a record process, and additionally allows for non-parametric functions for

both the payoffs and the belief distribution. For such a problem, methods from optimal

control theory or calculus of variations methods that aim at deriving the policies from

the first-order conditions do not readily apply. Instead, we derive the main qualitative

properties that optimal paths must satisfy, and then the two main theorems.

The first qualitative property is the long-run behavior of an optimal path, as time

goes to infinity. If the path has exceeded at some point the maximum possible threshold

S, thus triggering a catastrophe with certainty, then the legacy of the past is fixed at its

maximum value 1, and convergence to QD follows, as shown in Proposition 2. Otherwise,

the catastrophe might never be triggered. In such a case, one easily obtains from (13)

that the survival probability converges to a finite positive value while the legacy of the

past goes to zero. This means that the long-run value of experimenting further can be

evaluated in a simple way. This allows us to determine the possible limits for the stock

value, based on our definition of QE (see Lemma D.2).

The second class of properties relates to the monotonicity of an optimal path. Suppose

that the stock is U-shaped, meaning that it takes the same value at two different dates

while remaining below this value between these two dates. Then the maximum stock

on record Q is a constant on this interval, and the probability of survival evolves in a

simple manner, following (13). One can then proceed to a simple experiment: replace

on this interval the candidate path by a constant path for which the stock remains at its
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initial level. Note that at the final date the two paths perfectly coincide with the same

values for the three state variables, so that one can evaluate the difference in payoffs

between these two paths by computing this difference only on the time interval under

study. Optimality of the candidate path then implies that this difference is positive. We

use this inequality repeatedly to derive monotonicity results (see Lemma B.1).

Finally, it is important to notice that standard continuity and convexity requirements

for the constraints fail to hold for the general problem, because of the presence of a

record process in (12). The consequence is that we are able to prove the existence of the

optimum only after collecting enough qualitative properties for candidate paths. Under

the assumptions of Theorem 1, the existence of the optimum can be verified from standard

theorems, such as Theorem 15, p.237, in Seierstad and Sydsaeter (1987). For Theorem

2, we compute the optimum for specific examples.

All these arguments are derived step by step in the Appendix.

3.1 The first theorem: when QE < QD

The first theorem applies when

Q0 < QE < QD < min(QN , S). (16)

In words, at the initial date, experimentation has barely begun, so the initial stock is

low. A sequence of arguments shows how (16) leads to our first theorem.

First, it is a general property of optimal paths that they are monotonically increasing

when they lie below QD. Intuitively, even in the worst case, in which the legacy is one,

the policy would optimally increase the stock toward QD. Corollary C.1 in the Appendix

shows is that this conclusion extends to lower levels of the legacy.

Second, given that QE < QD, it is not optimal to experiment further if one reaches

QD. Intuitively, either the legacy is very small, and then one should not experiment

any further if one is already above QE, or the legacy is very high, and then one should

optimally come close to the long-run target QD (this is lemma F.1 in the Appendix).

We conclude that optimal paths must be increasing and bounded byQD, and therefore

they must converge to some value QT ≤ QD at some date T ≤ +∞. Because the

record-process disappears, existence of optimal paths is now easily proven, using standard

results.
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Finally, with the above preliminaries, one can proceed to a classical dynamic pro-

gramming exercise: should the planner stop experimentation at date T , or a bit before

T , or after T? We outline next the key trade-off for the decision.9 If the planner stops

and decides to stay at QT forever, the payoff is the continuation value conditional on

survival at T , which we denote by zT in:

zT =
u0
T

δ
− α

α + δ
πTDT ,

with u0
T = u(0, QT ) and DT = D(QT ) for short. Intuitively, the legacy at T is crucial

for the expected damage. Alternatively, the planner could continue experimenting for a

short interval of time [T, T +∆] with qT > 0, and after this time stay at QT+∆ forever.

Looking at the objective in (10), the flow gain from such a short experimentation period

is 1
pT
[pTuT − ṗTVT ]∆, in which we divide by pT to condition on the fact that the planner

has survived to T . Substituting for the definition of ṗ, and using π = 1− (1− F )/p and

D = u0/δ − V in the flow gain, the welfare from the short experiment is

[uT + απT (
u0
T

δ
−DT )]∆ + exp(−δ∆)zT+∆.

Now, if it is indeed optimal to stop at T , the planner must be indifferent between doing

so and continuing as described. Manipulating this indifference leads to the condition

presented in theorem 1:

Theorem 1 Suppose (16) holds. Then there exists an optimal path. It is weakly increas-

ing, and reaches its maximum value QT at some time T ≤ +∞, such that:

ν(QT ) =
α

α + δ
[(1− πT )ρ(QT )D(QT ) + πTD

′(QT )] . (17)

This condition nicely consolidates the definitions (5)-(6) of QD and QE, with weights

given by the legacy at the time when the experimentation stops. The condition implies

that a higher legacy πT is associated to a higher long-run value of the stock. In this precise

sense, higher legacies of the past promote more experimentation: immediate consumption

becomes more of a priority when it is more likely that a catastrophe was triggered in

the past because, by the assumption QE < QD, relatively little can be done to limit

the damages from a potential catastrophe. This fatalism pushes the final value above

9The proof of theorem 1 is in Appendix F, and the dynamic programming interpretation in Appendix
H.1.
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QE, towards QD. This means that a higher legacy of the past should make the planner

experiment more, and thus be less cautious. Proposition 3 in Section 4 formally proves

this result in the case of a simple cake-eating problem.

Once QT is reached, as time goes by and no catastrophe occurs, the planner becomes

more and more certain that no catastrophe was triggered at all. Then, the legacy of

the past goes to zero. Now, since the stock is already above QE, there is no point

in experimenting further; and since the stock is below QN , reducing the stock is also

harmful. This is why the planner chooses to stabilize the stock forever after time T .

3.2 The second theorem: when QE > QD

We next reverse the key ranking of QE and QD, thus switching to a case when damages

are sensitive to the stock level at the occurrence date of a catastrophe:

QD < QE < min(QN , S). (18)

In this situation, a striking result is that the long-run target for the stock is easily

computed. Indeed, if the stock remains below S, then in the long-run the legacy of the

past must go to zero. This implies that one should not stabilize below QE as further

experimentation would be valuable. Conversely, further experimentation above QE is

suboptimal both when the legacy is zero, by construction of QE, and when the legacy is

high, because then one should aim at the lower value QD. We obtain:

Theorem 2 Suppose (18) holds. If an optimal path is such that Q∞ < min(QN , S), then

it converges to Q∞, and Q∞ = max(Q0, Q
E).

Once more, the interpretation is easier if one starts from a low level of the stock.

Then every optimal path that remains below the long-run target for the stock level in

the absence of catastrophe, and that does not trigger a catastrophe with certainty, must

converge to the value of the stock that makes further experimentation valueless. This

long-run target is in particular independent of the legacy at the initial date, contrary to

what happened with the previous theorem.

On the other hand, in the short-run the path need not be monotonic. We are only

able to provide a partial result: Lemma C.2 (in Appendix) shows that an optimal path

may be decreasing at some date only if the legacy of the past is above a threshold at this

date. The applications we now study will confirm that non-monotonic paths can indeed

be optimal.
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4 Eating a cake of unknown size

In a seminal paper, Kemp (1976) studies a cake-eating problem in which the size of

the cake is initially unknown. Consider, for instance, the extraction of services from

an ecosystem, such as a fishery, that may collapse due to overexploitation; or the view-

point in climate change that one should not exceed a safe carbon budget whose value

is uncertain (van der Ploeg, 2018), lest a catastrophe be triggered. We here extend this

model by incorporating a delay between triggering and occurrence of a catastrophe. We

additionally make strong assumptions on functional forms, so as to be able to perform

some comparative statics with respect to the initial legacy of the past π0.

At each date t, a decision-maker with discount rate δ > 0 chooses a net consumption

qt ∈ [q, q] and receives an instantaneous payoff u0 + u1qt, where u0 ≥ 0 is the existence

value of the cake, and u1 > 0 is the value of a unit of the cake. In contrast to Kemp’s

model, we allow net consumption to be negative: this might be for example because the

resource is at least partially renewable. The cumulative consumption is Qt.

The catastrophe is triggered when Qt exceeds the unknown threshold S, with a cu-

mulative distribution function F (S) and the associated hazard rate ρ(S); and it occurs

after an exponential delay τ , with parameter α > 0. After the occurrence, the planner

gets a continuation payoff that we allow to depend on cumulative consumption: we set

V (Q) = −v0Q, where Q is the cumulative consumption at the occurrence time, with

v0 ≥ 0.

In terms of the general model, the primitives of the cake-eating problem are now:

u(q,Q) = u0 + u1q V (Q) = −v0Q u1 > 0 u0, v0 ≥ 0.

We obtain:

ν(Q) = u1 > 0 D(Q) =
u0

δ
+ v0Q.

Therefore, QN equals plus infinity: there is no reason to limit consumption if catastrophes

are excluded by assumption. On the other hand, if the catastrophe was triggered with

certainty in the past, the relevant long-run target is now QD, and it is easily seen that this

target is plus or minus infinity, according to whether u1− α
α+δ

v0 is positive or negative.
10

Intuitively, both the marginal gains and expected losses from consumption are constant,

and thus the planner optimally either reaps consumption gains or mitigates damages

10For simplicity, we ignore here the natural constraint Q ≥ 0.
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as much as possible before the catastrophe occurs. Finally, when it is known that the

catastrophe has not been triggered at all, the experimentation threshold is QE, implicitly

defined by the following equality:

u1 =
α

α + δ
ρ(QE)

(u0

δ
+ v0Q

E
)
,

provided such a value belongs to the support of S (see Definition 3). We now distinguish

two cases.

Theorem 1 applied: Assume u1 > α
α+δ

v0, so that the ranking is QE < QD =

+∞. From Theorem 1, the optimal policies are weakly increasing. Consequently, the

problem in (10)-(13) simplifies because Q equals Q everywhere, and constraint (12) has

disappeared. Because the utility function and the constraints all are linear in q, the

Pontryagin principle is easily applied: we show in Appendix that the optimal policy

consist of setting q at its maximum level q in some time interval [0, T ], and then, after

time T , stabilizing the stock forever by setting q = 0. The following result characterizes

the optimal values of this stabilization time, which may be finite or infinite:

Proposition 3 For the cake-eating problem, let u1 > α
α+δ

v0 and Q0 = Q0 < QE. Then

there exists a value π∗ such that:

(i) If the initial legacy π0 is below π∗, the optimal policy is to set the control variable

at its maximum level until some finite date T : qt = q, t ∈ [0, T ], and to stabilize the stock

forever after this date: qt = 0, t ≥ T .

(ii) If the initial legacy π0 is above π∗, the optimal policy consists in triggering the

catastrophe with certainty, by setting qt at the maximum level q forever.

(iii) The stabilization date (T ∈ [0,+∞]) and the final stock level QT are nondecreas-

ing functions of the initial legacy π0.

This result nicely formalizes the main intuition in this case. With a low consumption

in the past, one is confident that the cake will not disappear soon, and this makes it worth

being cautious and to avoid experimentation. Conversely, after a high past consumption,

one expects the cake to disappear anyway, and therefore it becomes optimal to allow for

even more consumption while this is possible. The key result is the third one, proving

that higher legacies lead to more experimentation.
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Theorem 2 applied: Conversely, assume u1 < α
α+δ

v0, so that the ranking now is

QD < QE. For a stark illustration, suppose further that we start planning after intensive

experimentation in the recent past: the level of the stock is equal to the highest level on

record, the level itself is quite high in the following sense:

QE < Q0 = Q0 < min(QN , S) u1 <
α

α + δ
v0. (19)

Proposition 4 Consider the cake-eating example, and suppose (19) holds. If the legacy

π0 is small enough (u1 > π0
α

α+δ
v0), then there exists an optimal path, which consists in

stabilizing the stock forever: qt = 0 for all t. Otherwise, there exists a unique optimal

path, characterized by two dates t1 and t2 such that 0 < t1 < t2 < +∞, and which are

increasing with π0, such that:

• qt = q < 0 for t < t1;

• qt = q > 0 for t1 < t < t2;

• qt = 0 and Qt = Q0 for t > t2.

This result thus proves formally that optimal policies can be non-monotonic. It is

interesting also to compare to proposition 3: now, a higher legacy of the past makes the

planner more cautious in the short-run, since the threat of pending catastrophes leads

him to reduce the stock more. In the long-run, the legacy vanishes, and convergence to

the initial value Q0 follows.

5 Disease control and social distancing

We now provide a simple model of a pandemic that includes a trade-off between social

distancing and economic activity. This trade-off is common in the literature; see, e.g.,

Bloom, Kuhn and Prettner (2022) for a review. Additionally, we include the possibility

that the health system, or even the entire economy, breaks down when the situation

becomes severe enough. The threat of such a catastrophe is new in the literature, and

allows to derive a rich set of predictions, as we now show.

Consider a population of agents whose mass is normalized to one. During the early

stages of the pandemic, the population It of infected agents at time t follows a simple

law of motion:

İt = (Rt − (r + d))It, I0 > 0 given.
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The recovery rate r and the death rate d are positive parameters. Variable Rt ∈ [0, R]

measures new infections, with maximum value R > r + d attained when people behave

as in the absence of the pandemic. By mandating social distancing, the social planner

can reduce the value of Rt, so that stabilization occurs when R = r + d, and complete

isolation is associated to the value R = 0. The benefit from social distancing is to

eventually reduce the number of deaths, with a value of statistical life w > 0. But this

reduction comes at an economic cost: the value of production at time t is an increasing

and concave function Y (R) of R. Therefore, the instantaneous payoff is

Y (R)− wdI.

If we now define

Q ≡ log I, q ≡ R− (r + d),

we are back to our model, with

u(q,Q) = Y (q + r + d)− wd exp(Q), Q̇ = q ∈ [q ≡ −r − d, q ≡ R− r − d],

and an initial value Q0 = log I0.
11 Variable q is thus the rate of increase of the population

of infected agents. Function ν is defined as in Assumption 1:

ν(Q) = uq(0, Q) +
uQ(0, Q)

δ
= Y ′(r + d)− wd

δ
exp(Q), (20)

and it is indeed decreasing with Q. In the absence of catastrophes, the long-run target

for the stock of infected agents is defined by the equality ν(QN) = 0, or equivalently:

IN = exp(QN) =
δY ′(r + d)

wd
. (21)

The policy target IN varies intuitively with parameters, and reaching it over time

follows from a social distancing policy implementing R > r + d on a path starting at

I0 < IN . However, planning in a pandemics may not be such a smooth operation. One

may worry that society, or the health system, breaks down if the number of infected

agents is too high, or that the pathogen mutates into something much more dangerous.

We now add the possibility of such concerns to the simple stock-flow problem above.

Assume that a catastrophe is triggered when the logarithm of the number of infected

agents exceeds a threshold S whose value is unknown. With this interpretation, the

11In epidemiology, R is the matching rate. The reproduction rate, as commonly defined, is the
matching rate R times the time spent in the infected state, 1

r+d . Therefore, q = 0 corresponds to a
matching rate equal to r + d and a reproduction rate equal to 1.
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distribution F of S on the support [0, S] and the associated hazard rate ρ are as defined

in the general model.

When the catastrophe occurs, the planner loses control: the matching rate takes

an exogenous value R∗, and the output remains fixed at a low level Y ∗ < Y (r + d).

The proportion of deaths increases to d∗ > d, the recovery rate becomes r∗, and the

resulting rate of increase q∗ of the number of infected is assumed to satisfy the following

inequalities:12

0 < q∗ ≡ R∗ − (r∗ + d∗) < δ.

After the catastrophe has occurred at time κ, we therefore have It = Iκ exp[q
∗(t − κ)],

and the continuation payoff can be computed explicitly:

V (Qκ) =

∫ +∞

κ

[Y ∗ − wd∗It] exp[−δ(t− κ)]dt =
Y ∗

δ
− wd∗

δ − q∗
exp(Qκ).

Consequently, the damage function can be written as the sum of a production loss, and

of the value of the mortality increase:

D(Q) =
u(0, Q)

δ
− V (Q) =

Y (r + d)− Y ∗

δ
+ wµ∗d

δ
exp(Q), (22)

where the parameter µ∗ measures the increase in mortality:

µ∗ ≡
d∗

δ−q∗
− d

δ

d
δ

> 0.

After some manipulations, we obtain the long-run target ID:

ID = exp(QD) = IN
1

1 + α
δ+α

µ∗ < IN ,

meaning that one rationally braces for the catastrophe by reducing infections below the

no-catastrophe target IN , and the more so the bigger is the change in mortality measured

by µ∗. The expression for IE is more complicated. Some calculus leads to the following

result:

Lemma 2 In the disease control model, if one has

1

1 + Y (r+d)−Y ∗

wµ∗dID

< ρ(ID), (23)

then IE < ID, and Theorem 1 applies. Otherwise, IE > ID, and Theorem 2 applies.

12The last inequality allows to avoid infinite values for the discounted welfare cost of deaths. Alterna-
tively, one could assume that a vaccine is discovered after some (exogenous but possibly stochastic) date
T ; or one could endogenize the value of R∗ after the catastrophe by allowing the planner to control it;
or one could impose that the number of infected agents cannot exceed the population size, by switching
from a simple exponential model to a full S-I-R model.
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This result underlines the role played by the ratio Y (r+d)−Y ∗

wµ∗d
, which measures the

relative importance of economic losses vis-à-vis mortality increases. It is remarkable that

this simple parameter determines important characteristics of optimal paths, as we now

explain by ways of simulations.

Figure 2

Optimal paths in the plane (π, I) for a linear production function Y (R) = Y0R. Parameters
are: δ = 0.03, q∗ = 0.01, w = 1, d = 0.01, r = 0.99, d∗ = 0.2, α = 0.2, Y0 = 1000, Y ∗ = 900,
I0 = 32, q̄ = 1. Distribution F for log(I) is uniform: F = 1/6. Benchmark values are
IN = 300, ID = 110, and IE = 50.

Theorem 1 applied: Consider first the case of a planner who cares more about

economic activity than about deaths, so that condition (23) is satisfied. Assume that the

production function is linear, and initial beliefs are uniform (all parameters are specified

in Figure 2). The solid curve Figure 2 depicts the infection level I satisfying the stopping

condition of theorem 1, eq. (17), as a function of legacy π. When there is no legacy (π0 =

0), the infection level is IE = 50, and similarly, when π0 = 1 we get ID = 110. Under

the conditions in Theorem 1, optimal policy paths are monotonic and must stabilize the

infection levels at a point (π, I) from this solid curve.

Let us then see how the legacy and the infection level jointly evolve before the sta-

bilization.13 Each dotted curve depicts this relationship, for varied initial legacies, but

13The problem is linear in q, and, by standard dynamic programming arguments, the optimal control
takes the maximum value q̄ under the conditions in theorem 1 until the stopping condition holds.
This gives a differential equation for the legacy. We solved the differential equation and the two-point
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with the same initial infection level set at I0 = 32. As in the cake-eating example, one

observes that a higher initial legacy leads to a higher long-run value for the stock.14

The intuition is the same: if the stock of infected agents has increased very rapidly be-

fore time zero, then the probability that the catastrophe was triggered is high, and the

planner chooses to privilege high production levels before the event occurs, at the price

of additional deaths. Another noteworthy remark is that along each optimal path the

legacy πt is increasing with t: this means that the planner allows the stock of infected

to increase quite fast, thereby increasing the probability that a catastrophe is triggered.

This fatalistic behavior is at odds with what prudence would recommend; but it is the

rational consequence of an emphasis on production, relative to deaths.

Theorem 2 applied: Let us now enter the domain of Theorem 2, by assuming that

the planner mainly aims at reducing the number of deaths, so that inequality (23) is

reversed. For this illustration, assume that planning starts so late that that the infected

population I0 is close to the long-run target in the absence of catastrophes IN . By

Theorem 2, optimal paths must converge to this initial level in the long-run. We compute

the solution path in Appendix G.2.

Figure 3

The population of infected agents over time, for a linear production function. Parameters
are: δ = 0.025, q∗ = 0.02, w = 5, d = 0.02, r = 0.98, d∗ = 0.2, α = 0.2, Y0 = 1000, I0 = 230.

Figure 3 depicts the optimal time path of the stock of infected agents for different

boundary value problem numerically to reach the stopping condition from given (π0, I0).
14Note that π0 = 1 − (1 − F (Q0))/p0 cannot exceed F (Q0). This is why π0 only takes values below

0.5 in the graph.
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values of the legacy at the initial date. A complete lockdown turns out to be optimal in

a first phase, as soon as the legacy is strictly positive. After a while, if the catastrophe

does not occur the planner becomes more and more convinced that the catastrophe was

not triggered in the past, and chooses to gradually relax the lockdown. In the long-run,

it is optimal to increase the stock up to the initial value, because the probability that

the threshold lies below it has become negligible.

Figure 4

The optimal control, for a linear production function. Parameters are: δ = 0.025, q∗ =
0.02, w = 5, d = 0.02, r = 0.98, d∗ = 0.2, α = 0.2, Y0 = 1000, I0 = 230.

Figure 4 depicts the optimal time path of the control variable Rt, corresponding to

the paths in Figure 3. The Figure confirms that with a higher initial value for the

legacy the lockdown lasts longer, and the recovery is slower, though in the long-run all

paths converge to the same level. We conclude that contrary to what happened before,

a higher legacy makes the planner initially more cautious. Finally, the optimality of

early containment followed by a relaxation and increasing infections resembles the so-

called hammer-and-dance policies for Covid-19. This learning-based rationale for the

hammer-and-dance policy differs from those surveyed in Assenza et al. (2020).
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6 Remarks on climate change

Consider a pollution stock Qt that follows a simple law of motion:

Q̇t = Et − γQt, (24)

where Et is the pollution flow, and γ > 0 is the constant decay rate of the stock. The

output, denoted by Yt, is

Yt = exp(−θQ)K1−βEβ
t (25)

where K stands for capital, which we will set to 1 in this illustration, Et measures the

fossil-fuel energy use, and β ∈ (0, 1) is the factor share. With θ > 0, the first term

corresponds to the production losses due to the accumulation of the pollution stock.

Production is entirely consumed at each date, so that Ct = Yt. Instantaneous utility of

consumption is U(C) = logC.

We are back to our model if we set q = E − γQ. Then,

u(q,Q) = β log(q + γQ)− θQ, ν(Q) =
β

Q

γ + δ

γδ
− θ

δ
.

and solving ν(QN) = 0 yields

QN =
β

θ

γ + δ

γ
.

These stock-flow tradeoffs present a toy model for climate change, inspired by Golosov

et al. (2014). The target QN increases in the abatement cost β, in the rate at which CO2

disappears from the athosphere γ, and declines in the percentage of output lost per unit

increase in the stock θ.

It is a common concern that such smooth stock-flow tradeoffs may not well describe

the climate change problem (e.g., Pindyck, 2014). There are numerous components of the

Earth system that are susceptible to experiencing tipping events leading to irreversible

processes (Lenton et al., 2008), with considerable variation in how long the catastrophes

may be pending before they actually occur (van der Ploeg and de Zeeuw, 2017). The

Greenland ice-sheet is such a component for which the melting, after a critical temper-

ature, is the irreversible process. As, for example, in Cai and Lontzek (2019), when

occurring, the catastrophe irreversibly changes the production possibility frontier. We

may capture this impact by making θ to increase by a factor k > 1, and we assume that

this shock is important enough:

k > 1 +
γ

δ
.
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After the catastrophe has occurred, the planning goes on, and the continuation value

V (Q) becomes:15

V (Q) =
−kθ

δ + γ
Q+

β

δ
[log(γQN)− log k − 1]. (26)

Then the damage D(Q) = u(0,Q)
δ

− V (Q) equals:

D(Q) = θQ(
k

γ + δ
− 1

δ
) +

β

δ

Å
log

Q

QN
+ log k + 1

ã
.

This simple setting allows highlighting the basic conceptual differences in two the

approaches to modelling a catastrophe in the literature.

In the first approach, the catastrophe is pending. For example, van der Ploeg and

de Zeeuw (2017) is explicit about the idea that the ultimate arrival of the catastrophe

is evident, and the focus is on how to prepare for such an event. In our toy model, the

corresponding target is QD, and from Definition 2 we get:

QD = QN γ + δ + α

γ + δ + kα
,

which indeed is less than QN .

In the second approach, there is no legacy from the past because there is no delay

between triggering and occurrence. Then the relevant target QE can be expressed, thanks

to Definition 3, as a solution to equation

QE = QN α + δ

α + δ + αρ(QE)g(QE)
,

where function g is defined as

g(Q) ≡ Q(
δk

γ + δ
− 1) +

β

θ
(log

Q

QN
+ log k + 1)

Function g is strictly increasing and concave with g(QN) > 0, so it holds that QE < QN .

When there is no delay we have α
α+δ

= 1, and then the information structure is no

different from that, for instance, in Lemoine and Traeger (2014).

By comparing the above equations, one immediately obtains that QE is below QD

if and only if the hazard rate is high enough, as already observed in Lemma 2 for the

pandemic case. In light of this one-parameter variation, we observe that both theorems

15The planning problem is to maximize V (Q0) = max
∫∞
0

lnCt exp(−δt)dt, subject to Ct = Yt =

exp(−kθQt)(qt + γQt)
β , and Q̇ = q, Q0 given. This is a simple exercise in optimal control, whose

solution leads to V (Q).
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are potentially relevant for the optimal policies. But this is only the first step of plan-

ning, as the planner should also evaluate the legacy, the information content of the past

experiments. In fact, our results suggest an agenda for the applied quantitative research

evaluating the optimal climate policies with detailed climate-economy descriptions: mod-

els should quantify the information content of past (unplanned) experiments to give a

structural interpretation to beliefs. Our model and applications illustrate the idea but

remain stylized. Cutting-edge quantitative approaches, including Cai and Lontzek (2019)

and Traeger (2023), offer frameworks for exploring the question.

7 Connections to the literature

The hazard rate approach. The comparison with the approach used in Clarke and

Reed (1994), Polasky, de Zeeuw and Wagener (2011), Sakamoto (2014), van der Ploeg

and de Zeeuw (2017), or Besley and Dixit (2019) is instructive. In those works, the

catastrophe happens at time t with a hazard rate h(Qt), where h is a given function, so

that the survival probability reads as:

pt = p0 exp(−
∫ t

0

h(Qτ )dτ).

Comparing with (14), we see that those works can be interpreted to assume that

a catastrophe was triggered in the past. They then focus on how to best manage two

distinct elements. First, the delay before the catastrophe occurs can be controlled by

reducing the stock since they assume that h is an increasing function of Q. We do not

allow for this possibility in our model, as our delay follows a process with a constant

hazard rate α. Second, the damage from the catastrophe can be controlled by varying

the stock, as in our model; this effect is stronger if the damage varies more with the

stock, which makes QD lower compared to QN . Overall, by assuming exogenous delays

our setting is somewhat less general but, on the other hand, it allows to deal with the

question of whether to trigger a catastrophe in the first place.

The uncertain threshold approach. Tsur and Zemel (1994, 1995, 1996), and

more recently Lemoine and Traeger (2014), Diekert (2017), and Chen (2020) all use an

uncertain threshold approach in which a catastrophe occurs as soon as the threshold

is reached, so that there is no delay between triggering and occurrence. Consequently,

there is no legacy of the past. In our model, this corresponds to the case when α goes to
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infinity. The definition for QE in (6) is now modified since α/(α + δ) goes to 1, and the

target stock QE0 (superscript 0 stands for the absence of delays) is such that

ν(QE0) = ρ(QE0)D(QE0).

The following result was first obtained in Tsur and Zemel (1994). Since our assumptions

are weaker than theirs, we offer a general proof in the Appendix. The statement Q0 = Q0

is made for simplicity.

Proposition 5 Suppose Q0 = Q0. In the absence of delay (α = +∞), there exists an

optimal path, and it is:

(i) decreasing and converging to QN , if Q0 > QN ;

(ii) constant, if Q0 ∈ [QE0, QN ];

(iii) increasing and converging to QE0, if Q0 < QE0.

In particular, the optimal path is a constant in case (ii): one does not want to

experiment further because the stock is already above QE0, and reducing the stock is

also useless, as the current situation is safe.16

8 Concluding remarks

Inferences about catastrophes are difficult before they actually happen. This paper devel-

oped a novel approach for optimal experimentation with catastrophes that have delayed

observable impacts and severity depending on past actions. The model interprets histor-

ical data for obtaining beliefs on the gains and losses of further experiments: it highlights

the importance of timing of past actions. Slow histories generate more information than

fast histories, so the same current stock standing can come with different information

contents and different optimal actions forward. For crises such as Covid-19, the model

predicts that similar planners can take very different optimal courses of actions depend-

ing on the legacy. Late planning starting after an explosion of infections can justify the

optimality of a lockdown, but the same infection level can justify further steps forward

16This confirms the findings in the literature, as summarized in the following citation (Tsur and Zemel,
1996, page 1291):

”The steady states of the optimal emission process form an interval, the boundaries of
which attract the pollution process from any initial level outside the interval.”
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if the current level was approached slowly. The lesson for climate change would be: The

“lockdown of emissions” may be optimal until unknowns can be ruled out.

The information structure developed in this paper seems broadly applicable, including

also good events such as breakthroughs in basic science and technology development. In

fact, the gestation times in basic research are measured in decades (e.g., Adams, 1990),

and therefore the delay between the cause and the impact seems essential in assessments

of past investments in research. Should basic research, private or government sponsored,

conducted steadily over time or as intensive bursts? The delayed learning from knowledge

stocks could offer a new avenue studying such questions and implications for policies that

seek to internalize the spillovers between research and commercially oriented R&D (see,

e.g., Akcigit, Hanley and Serrano-Velarde, 2020).
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A Preliminaries

Note: to alleviate notations, we often omit arguments when there is no am-

biguity, and we write e for exp(−δt), LHS for left-hand side, and RHS for

right-hand side. We also use the convention that the hazard rate ρ is zero

outside the support of S.

For a given admissible path, we can easily compute the unique solution to the differ-

ential equation (13):

Lemma A.1 For any T and t ≥ T , one has:

pt = pT exp(−α(t− T )) + α exp(−αt)

∫ t

T

(1− F (Qτ )) exp(ατ)dτ. (A.1)

In particular, when Q is a constant on [T, t], we denote the survival probability by P , and

one has:

Pt = 1− F (QT ) + (pT − 1 + F (QT )) exp(−α(t− T )). (A.2)

Here are also some simple facts about the survival probability and the legacy of the

past.

The survival probability pt is by definition strictly positive before the catastrophe

occurs. From (13), pt is weakly decreasing and thus must converge. Therefore ṗt goes to

zero, and pt goes to 1 − F (Q∞), where Q∞ is the supremum of stock values for a given

path.

The legacy of the past is πt = 1− (1− F (Qt))/pt ∈ [0, F (Qt)]. πT is zero only when

there has been no experimentation at all in the past, i.e., QT ≤ S. Finally, one useful

property is ṗt = −αptπt.

B A useful inequality

The next result will be used repeatedly to study the monotonicity and convergence of

optimal paths. It follows from replacing, on an interval [t1, t2], the candidate optimal

path by a constant path.

Lemma B.1 Let (Qt)t≥0 be an optimal path. Then∫ t2

t1

(Qt −Qt1)

Å
ṗt(D

′(Qt1)−
α + δ

α
ν(Qt1)) + δ(1− F (Qt))ν(Qt1)

ã
exp(−δt)dt
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≥ αδ

α + δ
ρ(Qt1)D(Qt1)

∫ t2

t1

(1− F (Qt))(Qt −Qt1) exp(−δt)dt, (B.1)

for all (t1, t2) such that one of the following two cases holds:

• Case (i): 0 ≤ t1 < t2 = +∞.

• Case (ii): 0 ≤ t1 < t2 < +∞, Qt1 = Qt2, Qt1 = Qt2.

Proof of Lemma B.1: First, let us compute the payoff W from the optimal path on

an interval [t1, t2]. Recall that by definition V (Q) = u(0,Q)
δ

−D(Q), so that

W ≡
∫ t2

t1

[pu− ṗV ]edt =

∫ t2

t1

[pu− ṗ
u(0, Q)

δ
+ ṗD]edt.

Integrate by parts ṗu(0, Q)/δ to get:

W = −[p
u(0, Q)

δ
e]t=t2

t=t1 +

∫ t2

t1

[p(u− u(0, Q) + q
uQ(0, Q)

δ
) + ṗD]edt.

The concavity of u in q implies:

W ≤ −[p
u(0, Q)

δ
e]t=t2

t=t1 +

∫ t2

t1

ï
p(quq(0, Q) + q

uQ(0, Q)

δ
) + ṗD

ò
edt.

In the integral we recognize ν, and this expression can be rewritten as

W ≤ −[p
u(0, Q)

δ
e]t=t2

t=t1︸ ︷︷ ︸
=A

+

∫ t2

t1

[pqν + ṗ(D −D(Qt1))] edt︸ ︷︷ ︸
=B

+D(Qt1)

∫ t2

t1

ṗedt︸ ︷︷ ︸
=C

. (B.2)

Now, consider an alternative path (q′t, Q
′
t)t≥t1 that consists in setting q′t = 0 on the

same interval [t1, t2], so that the stock remains set at Qt1 on this interval; complete this

path by setting q′t = qt after time t2. Proceeding as above, we obtain that the payoff for

this new path on the interval [t1, t2] equals

W0 = −[P
u(0, Qt1)

δ
e]t=t2

t=t1︸ ︷︷ ︸
=A0

+D(Qt1)

∫ t2

t1

Ṗ edt︸ ︷︷ ︸
=C0

. (B.3)

where the survival probability P is now given by (A.2). In case (i) of the Lemma, the

optimality of the initial path implies the inequality W ≥ W0. In case (ii), the condition

(Qt1 = Qt2 , Qt1 = Qt2) ensures that the survival probability is the same under both

paths on the interval [t1, t2], and that the payoff from both paths is the same after t2.

Therefore, once more the inequality W ≥ W0 must hold. We now compare the different

terms in this inequality.
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Observe first that A in W equals A0 in W0. Indeed, in case (i) the bracketed terms

are equal at t = t1, and also at t2 = +∞ because the exponential is zero. In case (ii),

this follows because Qt1 = Qt2 and Qt1 = Qt2 , so that P and p are everywhere equal in

this interval.

Secondly, in case (ii) C equals C0, because as already observed we have p = P . In

case (i), we compute the difference between these terms by integrating by parts:

C − C0 =

∫ +∞

t1

(ṗ− Ṗ )edt = δ

∫ +∞

t1

(p− P )edt.

By applying (A.1) at T = t1 to both p and P , we compute:

pt − Pt = α exp(−αt)

∫ t

t1

(F (Qt1)− F (Qτ )) exp(ατ)dτ.

Another integration by parts yields:

C − C0 =
αδ

α + δ

∫ +∞

t1

(F (Qt1)− F (Qt)) exp(−δt)dt.

Now, we have:

F (Qt)− F (Qt1) =

∫ Qt

Qt1

f(S)dS =

∫ Qt

Qt1

(1− F (S))ρ(S)dS ≥ (1− F (Qt))ρ(Qt1)(Qt −Qt1)

because ρ is increasing and 1− F is decreasing.17 This yields the RHS in (B.1).

There only remains to study B in (B.2). To do so, define the function N(Q) ≡∫ Q

Qt1
ν(x)dx. We have:∫ t2

t1

pqνedt = [pN(Q)e]t=t2
t=t1 −

∫ t2

t1

N(Q)(ṗ− δp)edt.

Notice that the bracketed term is zero at t1 (because N = 0) and at t2 (because the

exponential is zero in case (i), or because N = 0 in case (ii)). Therefore:

B =

∫ t2

t1

[δpN + ṗ(D −D(Qt1)−N)] edt.

Assumption 1 implies that N is concave, so that

N(Q) ≤ (Q−Q1)ν(Qt1).

17Recall that by convention ρ is zero outside the support of S. Thus this inequality also holds when
Qt1 is below S or above S.
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Assumption 2 implies that D −N is convex, so that

D(Q)−N(Q) ≥ D(Qt1) + (Q−Q1)(D
′(Qt1)− ν(Qt1)).

Since dotp ≤ 0, we obtain:

δpN + ṗ(D −D(Qt1)−N) ≤ (Qt −Qt1)[δpν(Qt1) + ṗ(D′(Qt1)− ν(Qt1))].

Finally, we use (13) to replace p by 1− F (Q)− 1
α
ṗ:

δpN + ṗ(D−D(Qt1)−N) ≤ (Qt −Qt1)[δ(1−F (Q))ν(Qt1) + ṗ(D′(Qt1)−
α + δ

α
ν(Qt1))].

This yields the remaining terms in (B.1), and concludes the proof. ■

C Consequences for monotonicity

Corollary C.1 Every optimal path is weakly increasing when Qt is below QD.

Proof of Corollary C.1: Let us proceed by contradiction. Consider an optimal path

such that QD > QT > QT ′ at some dates T < T ′. One possibility is that QD > QT ≥ Qt

for all t > T , the last inequality sometimes being strict. Then we get a contradiction by

applying (B.1) at t1 = T and t2 = +∞ (case (i)): Qt − QT is negative, and sometimes

strictly negative; the first product is negative because QD > QT and ṗt ≤ 0, the second

product is negative as QN > QT , and the RHS is zero as Q is a constant.18

Therefore, there exists t1 < t2 such that QD ≥ Qt1 = Qt2 ≥ Qt for all t ∈ [t1, t2], the

last inequality being sometimes strict. On this interval, one has Qt = Qt1 = Qt2 , so that

we are able to obtain a similar contradiction by checking (B.1) in case (ii). ■

Corollary C.2 Suppose QD < Qt1, and that the stock decreases at the right of t1. Then

πt1 >
δ
α

ν(Qt1 )

D′(Qt1 )−ν(Qt1 )
, and this bound is strictly below 1, and is strictly positive if and only

if Qt1 < QN .

18Strictly speaking, this only shows that the LHS is weakly negative, while the RHS is zero. But for
the LHS to be exactly zero one would need to find points at which ṗt = 0 = 1 − F (Qt), and from (13)
we would obtain pt = 0, in contradiction with the fact that the catastrophe did not occur yet. In other
proofs, we shall skip such arguments, for the sake of brevity.
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Proof of Corollary C.2: because the stock decreases at the right of t1, it is possible

to apply Lemma B.1 in case (i) or (ii), on an interval [t1, t2 ≤ +∞[ on which Qt < Qt1 ,

so that Qt = Qt1 . Then there must exist t such that the function in the integral in (B.1)

is negative, so that:

ṗt(D
′
1 −

α + δ

α
ν1) + δ(1− F (Qt1))ν1 < 0.

Since πt = 1− 1−F (Qt)
pt

, we obtain ṗ = α(1− F (Qt)− pt) = −αpπ, and thus:

(D′
1 −

α + δ

α
ν1)αptπt > δpt(1− πt)ν1,

or equivalently πt >
δ
α

ν(Qt1 )

D′(Qt1 )−ν(Qt1 )
. Moreover, because Qt is a constant, πt is decreas-

ing, and therefore πt1 ≥ πt. This establishes the announced inequality. The bound is

below one because Qt1 > QD (check the definition in (5)); it is above zero if and only if

ν(Qt1) > 0, or equivalently Qt1 < QN , as announced. ■

D Consequences for convergence

The next result establishes the convergence of optimal paths for which there is a positive

probability of not triggering the catastrophe:

Lemma D.1 If an optimal path is such that Q∞ < S and Q∞ ≤ QN , then it converges

to some value Q∞ as time goes to infinity. Moreover, one of the three following cases

must hold:

(i) Q∞ = QN ;

(ii) Q∞ > QN , and the stock value Qt is weakly decreasing for t high enough;

(iii) Q∞ < QN , and the stock value Qt is weakly increasing for t high enough.

Proof of Lemma D.1: For t, t1 such that t ≥ t1, define the function

B(t1, t) = ṗt(D
′(Qt1)−

α + δ

α
ν(Qt1)) + δ(1− F (Qt))ν(Qt1).

Step 1: we first show that for every ε > 0, there exists a date Γ(ε) < +∞ such that, for

all t and t1 such that t ≥ t1 > Γ(ε), one has

|ṗt(D′(Qt1)−
α + δ

α
ν(Qt1))| < δ(1− F (Qt))ε. (D.1)
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Indeed, the right-hand side is at least δ(1−F (Q∞))ε, which is strictly positive. Moreover,

recall thatD′(Q)−α+δ
α
ν(Q) is weakly increasing from Assumption 2, and let us distinguish

two cases:

• Either Qt1 < QD, and therefore the path is increasing from date 0 to date t1, from

Corollary C.1. Then we have

D′(Q0)−
α + δ

α
ν(Q0) ≤ D′(Qt1)−

α + δ

α
ν(Qt1) ≤ 0.

• Either Qt1 ≥ QD, and because Qt1 ≤ Q∞ < S, which is finite, we have

0 ≤ D′(Qt1)−
α + δ

α
ν(Qt1) ≤ D′(S)− α + δ

α
ν(S).

This shows that in any case the factor of ṗt in (D.1) is bounded. Since ṗt goes to

zero, the result follows.

Step 2: suppose that there exists t1 such that Qt1 < QN and t1 > Γ(ν(Qt1)). We show

that Qt must be weakly increasing at the right of Qt1 .

Indeed, under our assumption in this step, from Step 1 (D.1) must hold at ε =

ν(Qt1) > 0, for all t ≥ t1. This implies that B(t1, t) is strictly positive for every t ≥ t1,

as the second term in B is strictly positive as Qt1 < QN , and this term is strictly above

the absolute value of the first term.

Now, notice that the expression inside the integral in (B.1) is at most equal to

(Qt − Qt1)B(t1, t). Therefore, if Qt lies below Qt1 for all t ≥ t1, and is sometimes

strictly below Qt1 , we reach a contradiction with inequality in (B.1) in case (i). And if

there exists t2 ≥ t1 such that Qt1 = Qt2 ≥ Qt for all t ∈ [t1, t2], with sometimes a strict

inequality, we once more reach a contradiction with (B.1) in case (ii). Therefore, Qt must

be weakly increasing at the right of Qt1 , as announced.

Step 3: suppose that for all t1 above a threshold, we have either (Qt1 < QN and t1 >

Γ(ν(Qt1))), or (t1 ≤ Γ(|ν(Qt1)|)). If the second domain is bounded, then after a threshold

date the path must fully belong belong to the first domain, so that the path is weakly

increasing after this threshold date, from Step 2. Since the path is bounded by the finite

value Q∞, it must converge. In particular, if it converges to a value strictly below QN ,

then it must be weakly increasing for t high enough, as announced in case (iii) of the

Lemma.
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Alternatively, if the second domain is unbounded, as t1 grows without bounds in this

domain the inequality t1 ≤ Γ(|ν(Qt1)|) implies that ν(Qt1) must get closer and closer

to zero, so that Qt1 must get arbitrarily close to QN ; and whenever t1 belongs to the

first domain, then Qt must be weakly increasing at the right of t1 from Step 2, thus get-

ting closer to QN . This shows that the path converges to QN , as in case (i) of the Lemma.

Step 4: Otherwise, for every T there exists t1 ≥ T such that Qt1 > QN and t1 >

Γ(−ν(Qt1)).

A first possibility is that, after some threshold date, the path is weakly decreasing

whenever it is above QN . From our assumption in this step, the path must therefore

remain above QN . Being weakly decreasing and bounded from below, the path must

converge. In particular, if it converges to a value strictly above QN , then it must be

weakly decreasing for t high enough, as announced in case (ii) of the Lemma.

Otherwise, for every T there exists t1 ≥ T such that Qt1 > QN , t1 > Γ(−ν(Qt1)), and

the path is increasing at the right of Qt1 . From Step 1, B(t1, t) is strictly negative for all

t ≥ t1. If the path remains weakly above Qt1 for t ≥ t1, we obtain a contradiction with

(B.1) in case (i); so that the path must at some point go strictly below Qt1 . Therefore,

there exists t2 > t1 such that Qt1 = Qt2 ≤ Qt for t ∈ [t1, t2]. If moreover Qt1 = Qt2 , we

obtain a contradiction with (B.1) in case (ii). We have thus shown that for each such t1,

after t1 the path strictly exceeds the maximum stock on record Qt1 , before going strictly

below Qt1 . Therefore the path fluctuates an infinite number of times, and the amplitude

of each fluctuation is increasing as time goes by.

Let us number these fluctuations using an integer index n. What we have shown is that

there exists two increasing and unbounded sequences (τn)n≥0 and (τ ′n)n≥0 such that τn <

τ ′n < τn+1, and τn is the date at which the nth fluctuation reaches a minimum, and τ ′n is

the date at which this fluctuation reaches a maximum. Moreover, Qτn must be decreasing

with n; but if it goes down below QN , then it must be that τn ≤ Γ(ν(Qτn)), because

otherwise the stock is increasing. This inequality implies that the limit of Qτn must be

at least QN , and therefore that the stock remains above QN forever. Symmetrically, Qτ ′n

must be increasing with n, and because Qτ ′n = Qτ ′n
this sequence must converge to Q∞.

In the long-run, Qt becomes arbitrarily close to Q∞, and the planner learns almost

nothing new from each fluctuation. Therefore πt must go to zero, and the planner’s

problem becomes identical to the Stock Flow Problem without catastrophes, for which
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all solutions are weakly decreasing paths that converge to QN . We thus have reached a

contradiction. ■

The following result characterizes the possible limit values for the stock:

Lemma D.2 Suppose an optimal path is such that Q∞ < S. Suppose moreover that the

stock Qt converges to a value Q∞ when t goes to infinity. Then QE ≤ Q∞ ≤ QN , and

Q∞ = QN if Q∞ < Q∞.

Proof of Lemma D.2: The proof consists of six steps.

Step 1: we first state several simple results. By assumption, Qt converges to Q∞, and

Qt converges to Q∞, and Q∞ ≤ Q∞ < S.

From (13), pt is weakly decreasing and thus must converge. Therefore ṗt goes to zero,

and pt goes to 1− F (Q∞).

Because QT goes to Q∞, the difference Q∞ −QT =
∫
t≥T

qtdt goes to zero. Moreover,

an integration by parts yields∫
t≥T

qt exp(−δ(t− T ))dt =

∫
t≥T

qtdt− δ

∫
t≥T

Å∫
τ≥t

qτdτ

ã
exp(−δ(t− T ))dt

so that the left-hand side goes to zero when T goes to infinity.

Step 2: we now show that the planner’s payoff:

W (T ) ≡
∫
t≥T

(ptu(qt, Qt)− ṗtV (Qt)) exp(−δ(t− T ))dt

converges to the value Z ≡ (1− F (Q∞))1
δ
u(0, Q∞).

A first remark is that since the path is optimal, then W (T ) is at least the payoff

W0(T ) from stabilizing the stock forever at its level QT . Using (A.2), we compute

W0(T ) ≡
∫
t≥T

(Ptu(0, QT )− ṖtV (QT )) exp(−δ(t− T ))dt

= u(0, QT )

Ç
1− F (QT )

δ
+

pT − 1 + F (QT )

α + δ

å
+

α

α + δ
V (QT )(pT − 1 + F (QT )).

Since pT converges to 1− F (Q∞), we have shown:

W (T ) ≥ W0(T ) and lim
T→+∞

W0(T ) = Z. (D.2)
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A second remark is that one can decompose ptu(qt, Qt)− ṗtV (Qt) into

(pt − 1 + F (Q∞))u(qt, Qt)

+(1− F (Q∞))(u(qt, Qt)− u(qt, Q∞))

+(1− F (Q∞))(u(qt, Q∞)− u(0, Q∞))

+(1− F (Q∞))u(0, Q∞)

−ṗtV (Qt).

Because u is concave in q, the third line is less than (1−F (Q∞))qtuq(0, Q∞); and the

last result in Step 1 implies that the integral on t ≥ T of this last expression, weighted

by exp(−δ(t− T )), goes to zero as T goes to infinity.

Now, for T high enough one can restrict attention to Q taking values in a bounded

neighborhood A of Q∞. Because u and uQ are bounded on [q, q]×A, and V is bounded

on A, the first, second, and last terms go to zero as t goes to infinity, and so do their

integrals when weighted by exp(−δ(t− T )).

Overall, by integrating on t ≥ T we obtain that W (T ) is below the weighted integral

of the fourth term, which is Z, plus some terms that go to zero as T goes to infinity.

Together with (D.2), this establishes that both W (T ) and W0(T ) converge to Z, as an-

nounced.

Step 3: in this step, we define an alternative, feasible path with payoff W1, and we

exhibit a simple condition on W1 ensuring that this path dominates the candidate path –

something that should not happen since the candidate path is supposed to be a solution

to the planner’s problem. Each of the next three steps then uses this result in different

cases to prove different parts of the Lemma by contradiction.

Given (T , q̂ ∈ [q, q], a > 0), we define an alternative path: play q̂ on [T, T + a],

and 0 afterwards. This path is feasible, and we obtain new trajectories for the variables

(q̂, Q̂, Q̂, p̂):

• For t ∈ [T, T + a]:

q̂t = q̂ Q̂t = QT + q̂(t− T ) Q̂t = max(QT , Q̂t)

and from (A.1):

p̂t = pT exp(−α(t− T )) + α exp(−αt)

∫ t

T

(1− F (Q̂τ )) exp(ατ)dτ.
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• For t ≥ T + a:

q̂t = 0 Q̂t = Q̂T+a Q̂t = Q̂T+a

and from (A.2):

p̂t = 1− F (Q̂T+a) + (p̂T+a − 1 + F (Q̂T+a)) exp(−α(t− T )). (D.3)

Overall, this alternative path yields a payoff W1, as follows:

W1(T, q̂, a) ≡
∫ T+a

T

(p̂tu(q̂, Q̂t)− ˙̂ptV (Q̂t)) exp(−δ(t− T ))dt

+

∫
t≥T+a

(p̂tu(0, Q̂T+a)− ˙̂ptV (Q̂T+a)) exp(−δ(t− T ))dt.

Consider now the following condition:

∃ q̂, ā > 0, k > 0, ∀a ∈]0, ā[, lim
T→+∞

∂W1

∂a
(T, q̂, 0) > k. (D.4)

Suppose it holds. Then we have

W1(T, q̂, ā) = W1(T, q̂, 0) +

∫ ā

0

∂W1

∂a
(T, q̂, a)da.

Moreover, we have W1(T, q̂, a) = W0(T ), and we know from Step 2 that W0(T ) and

W(T) have the same limit when T goes to infinity. Therefore:

lim
T→+∞

[W1(T, q̂, ā)−W (T )] =

∫ ā

0

lim
T→+∞

∂W1

∂a
(T, q̂, a)da > āk > 0,

which means that for T high enough the alternative path (T, q̂, ā) dominates the initial

path. This is impossible, as the initial path was assumed to be a solution. In each of the

last three steps, we thus only have to show that (D.4) holds to reach a contradiction.

Step 4: in this step, we proceed by contradiction, by assuming Q∞ > QN . Choose q̂ such

that q ≤ q̂ < 0. For some T and a > 0, consider the alternative path (T ,q̂, a).

Because q̂ < 0, this alternative path is such that the highest stock on record Q̂t is a

constant, equal to QT . Let us compute the derivative of W1(T, q̂, a) with respect to a.

Using Step 3, we compute the following expressions, for t ≥ T + a:

∂p̂t
∂a

=
∂p̂T+a

∂a
exp(−α(t− T )) = α(1− F (QT )− p̂T+a) exp(−α(t− T )) (D.5)

∂ ˙̂pt
∂a

= −α
∂p̂t
∂a

. (D.6)
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Therefore, ∂W1

∂a
(T, q̂, a) equals

p̂T+au(q̂, Q̂T+a) exp(−δa)− p̂T+au(0, Q̂T+a) exp(−δa)

+

∫
t≥T+a

α(1− F (QT )− p̂T+a)(u(0, Q̂T+a) + αV (Q̂T+a)) exp(−(α + δ)(t− T ))dt

+

∫
t≥T+a

Ä
p̂tuQ(0, Q̂T+a)q̂ − ˙̂ptV

′(Q̂T+a)q̂
ä
exp(−δ(t− T ))dt. (D.7)

From Step 1, as T and t ≥ T + a go to infinity, Q̂T+a goes to Q∞ + aq̂, Q̂T+a goes

to Q∞, p̂T+a and p̂t both go to 1 − F (Q∞), and ˙̂pt goes to zero; recall also that V ′ is

bounded on a neighborhood of Q∞ from Assumption 2. Therefore, limT→+∞
∂W1

∂a
(T, q̂, a)

equals

(1− F (Q∞)) exp(−δa)q̂
[u(q̂, Q∞ + aq̂)− u(0, Q∞ + aq̂))

q̂
+

uQ(0, Q∞ + aq̂)

δ

]
. (D.8)

Finally, recall that we chose q̂ to be strictly negative, and notice that the bracketed

term is strictly negative for q̂ close enough to zero, as its limit is ν(Q∞) < 0. This shows

(D.4), and we obtain a contradiction thanks to the reasoning at the end of Step 3. This

shows that Q∞ cannot exceed QN .

Step 5: in this step, we proceed by contradiction, by assuming Q∞ < Q∞ and Q∞ < QN .

Choose q̂ such that 0 < q̂ ≤ q. For some T and a > 0, consider the alternative path (T ,q̂,

a).

Because Q∞ < Q∞ one can choose a small enough so that Q∞ + aq̂ < Q∞, and

therefore the alternative path is such that that the highest stock on record Q̂t is a

constant, equal to QT .

We then proceed exactly as in Step 4, to get a contradiction: the final expression

for the limit is unchanged, and it is strictly positive because now q̂ and ν(Q∞) are both

strictly positive. Hence, Q∞ = QN if Q∞ < Q∞, as announced in the Lemma.

Step 6: once more proceeding by contradiction, we now assume Q∞ < QE, so that

Q∞ = Q∞ from Step 5. Choose q̂ such that 0 < q̂ ≤ q. For some T and a > 0, consider

the alternative path (T ,q̂, a).

A new feature is that the new highest stock on record may now depend on a, since q̂ >

0. Referring to (D.3), we note that we only have to care about the value of Q̂T+a, which

now equals max(QT + aq̂, QT ). We therefore define the indicator function 1QT+aq̂≥QT
,
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and the only changes to our computations are in (D.5) and (D.6), which we rewrite into:

for t ≥ T + a,

∂p̂t
∂a

= α(1−F (Q̂T+a)−p̂T+a) exp(−α(t−T ))+1QT+aq̂≥QT
f(QT+aq̂)q̂(exp(−α(t−T ))−1)

and

∂ ˙̂pt
∂a

= −α2(1−F (Q̂T+a)−p̂T+a) exp(−α(t−T ))−α1QT+aq̂≥QT
f(QT+aq̂)q̂ exp(−α(t−T )).

The derivative ∂W1

∂a
(T, q̂, a) now becomes

p̂T+au(q̂, Q̂T+a) exp(−δa)− p̂T+au(0, Q̂T+a) exp(−δa)

+

∫
t≥T+a

(
α(1− F (Q̂T+a)− p̂T+a)(u(0, Q̂T+a) + αV (Q̂T+a))

)
exp(−(α + δ)(t− T ))dt

+

∫
t≥T+a

Ä
p̂tuQ(0, Q̂T+a)q̂ − ˙̂ptV

′(Q̂T+a)q̂
ä
exp(−δ(t− T ))dt

+1QT+aq̂≥QT
f(QT + aq̂)q̂u(0, Q̂T+a)

∫
t≥T+a

(exp(−α(t− T )− 1) exp(−δ(t− T ))dt

+α1QT+aq̂≥QT
f(QT + aq̂)q̂V (Q̂T+a)

∫
t≥T+a

exp(−α(t− T )) exp(−δ(t− T ))dt.

We now compute the limit of this derivative when T goes to infinity. Since Q∞ = Q∞

and q̂ > 0, Q̂T+a and Q̂T+a both go to Q∞ + aq̂, and the first three lines converge as

before to (D.8). Also, for T high enough 1QT+aq̂≥QT
is 1. Finally, using the definition of

D, the last two integrals go to

−(1− F (Q∞ + aq̂)) exp(−δa)q̂
α

α + δ
ρ(Q∞ + aq̂)D(Q∞ + aq̂).

By choosing q̂ strictly positive but small enough, we can make this limit arbitrarily

close to

(1− F (Q∞)) exp(−δa)q̂[ν(Q∞)− α

α + δ
ρ(Q∞)D(Q∞)],

which is strictly positive because q̂ > 0 and Q∞ < QE. Using the same reasoning as

at the end of Step 3, we obtain a contradiction. Therefore, Q∞ has to be at least QE, as

announced in the Lemma. ■
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E Consequences for benchmarks

We can now apply our useful inequality (B.1) to two benchmarks: the Stock-Flow Prob-

lem without catastrophes, and the case when the catastrophe was triggered with certainty

in the past.

Proof of Proposition 1: Existence of a solution to the SFP follows from Theorem

15, p.237, in Seierstad and Sydsaeter (1987). Consider such a solution. To study it, we

can make use of the above Lemmas, taking into account that by definition catastrophes

cannot happen: hence, we set p = 1, ṗ = 0, and F = f = ρ = 0. In particular, we have

QE = QN (see Definition 3.) Then (B.1) becomes

ν(Qt1)

∫ t2

t1

(Qt −Qt1) exp(−δt)dt ≥ 0

for all (t1, t2) as in case (i) or case (ii) in Lemma B.1. Now, suppose there exists T < T ′

such that QN > QT > QT ′ . A first possibility is that Q is weakly decreasing forever

after T . Then we have both ν(QT ) > 0, and QT ≥ Qt for all t ≥ T , this inequality

being sometimes strict. But this contradicts the above inequality at (t1 = T, t2 = +∞).

Therefore, the stock must sometimes be increasing after time T , and this implies the

existence of t1 < t2 such that QN > Qt1 = Qt2 ≥ Qt for all t ∈ (t1, t2), the last inequality

being sometimes strict. But we obtain a similar contradiction at (t1, t2), as ν(Qt1) > 0

and Qt ≤ Qt1 , the last inequality being sometimes strict.

Therefore, the stock Q is weakly increasing when it is strictly below QN . Symmet-

rically, Q is weakly decreasing when it is strictly above QN . This implies that Q never

crosses QN , and that Q is monotonic, as announced.

This also implies that the path converges to some value Q∞. Lemma D.2 then implies

that this value is QN , since QE = QN . ■

Proof of Proposition 2: The proof follows exactly the proof of Proposition 1, since in

the two problems the constraint sets are identical; and the objectives (2) and (15) are

formally identical; and u and u+αV share the same properties. In particular, recall how

ν is built from u and δ, and proceed similarly with the new objective function φ ≡ u+αV

and α + δ: we have

φq(0, Q) +
φQ(0, Q)

α + δ
= uq(0, Q) +

uQ(0, Q) + αV ′(Q)

α + δ
,
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and using the definition of V in (4) this expression reduces to ν(Q) − α
α+δ

D′(Q), which

is decreasing in Q from our assumptions. This is the only property we need to apply the

proof of Proposition 1. ■

F Optimal policies: main theorems

We begin by a few intermediate results that we will use repeatedly in the proofs of our

main theorems.

Lemma F.1 Suppose QE ≤ QD and Q0 ≤ QD. Then optimal paths cannot exceed QD.

Proof of Lemma F.1: If QD ≥ S, Proposition 2 implies that if the stock exceeds S, it

must converge to QD in a monotonic way, which shows the result.

Suppose now QE ≤ QD < S. Let us proceed by contradiction. Consider a path such

that Q0 ≤ QD < Qt < S for some t > 0. Then there exists t1 such that Qt crosses Q
D

from below at t1. Moreover, from Corollary C.1 we know that after t1 the path must

remain above QD. Therefore, we have Qt ≥ Qt > Qt1 = Qt1 = QD ≥ QE for all t ≥ t1,

and we can apply Lemma (B.1) in case (i): The first term is zero by definition of QD, and

the difference between the second term and the RHS is strictly negative, as 1− F (Qt) is

strictly positive (at least for t close to t1), Qt −Qt1 ≥ Qt −Qt1 > 0, and Qt1 > QE. This

contradicts inequality (B.1). ■

Lemma F.2 Suppose an optimal path is such that QE < Q∞ < min(QN , S). Then Q∞

is reached in finite time.

Proof of Lemma F.2: let us proceed by contradiction. Suppose that Q∞ is reached

only asymptotically, necessarily from below. From Lemma D.1, there exists T such that

Qt is weakly increasing for t ≥ T , and converges asymptotically to Q∞, so that Qt = Qt

for t ≥ T . Moreover, because Q∞ > QE, we can choose T such that QT > QE. We

therefore have, for every t ≥ T , Qt = Qt ≥ QT > QE.

Referring to Lemma B.1, consider the function

B(t1, t) = ṗt(D
′(Qt1)−

α + δ

α
ν(Qt1)) + δ(1− F (Qt))(ν(Qt1)−

α

α + δ
ρ(Qt1)D(Qt1)),
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defined for t ≥ t1 ≥ T . Because Qt1 > QT > QE, the second term is strictly negative; in

fact, it is strictly less than

k− ≡ δ(1− F (Q∞))(ν(QT )−
α

α + δ
ρ(QT )D(QT )) < 0.

Because ṗ goes to zero, the first term becomes negligible compared to k− when t is high

enough, so that we can choose t1 high enough so that B(t1, t) < 0 for all t ≥ t1. Finally,

because the stock is weakly increasing, we have Qt = Qt, and therefore the function in

(B.1) equals (Qt −Qt1)B(t1, t). This function is everywhere weakly negative, and some-

times strictly negative since Q must grow up to Q∞. So its integral in case (i) cannot be

weakly positive, and we have a contradiction with (B.1). This shows that Q∞ must be

reached in finite time. ■

Lemma F.3 Let T ∈]0,+∞[. Suppose an optimal path Qt is weakly increasing on [0, T ]

and constant afterwards, with Qt = QT = Q∞ for t ≥ T . Then the planner’s payoff at

time 0 equals

p0

Å
u(0, Q0)

δ
− α

α + δ
π0D(Q0)

ã
+

∫ T

0

pt[Bt + qtCt] exp(−δt)dt

and moreover CT = 0, where

Bt ≡ u(qt, Qt)− u(0, Qt)− qtuq(0, Qt),

and

Ct ≡ ν(Qt)−
α

α + δ
[(1− πt)ρ(Qt)D(Qt) + πtD

′(Qt)] . (F.1)

Proof of Lemma F.3: the planner’s payoff is

W (T ) ≡
∫ T

0

[ptu(qt, Qt)− ṗtV (Qt)]edt+

∫ +∞

T

[Ptu(0, QT )− ṖtV (QT )]edt

where the survival probabilities p and P are given in Lemma A.1. The function in the

second integral can be computed as follows. First, we replace Pt by 1 − F (QT ) − Ṗt/α

from (13), and then we use (A.2) to compute Ṗt/α. The second integral is thus∫ +∞

T

[(1− F (QT ))u(0, QT ) + (pT − 1 + F (QT )) exp(−α(t− T ))(u(0, QT ) + αV (QT ))]edt

and thus equals exp(−δT ), times

(1− F (QT ))
u(0, QT )

δ
+ (pT − 1 + F (QT ))

u(0, QT ) + αV (QT )

α + δ
.
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Using the definition V (Q) = u(0,Q)
δ

−D(Q), this can be simplified into

Z(T ) ≡ pT
u(0, QT )

δ
− α

α + δ
(pT − 1 + F (QT ))D(QT ). (F.2)

In particular, we have W (0) = Z(0), and thus W (T ) = Z(0) +
∫ T

0
W ′(t)dt, where W ′(t)

stands for the left-derivative of W at t. There remains to compute W ′(T ), which is

exp(−δT ), times

pTu(qT , QT )− ṗTV (QT ) + Z ′(T )− δZ(T ).

We have ṗT = α(1 − F (QT ) − pT ). Let u0 denote u(0, QT ), and u0Q denote uQ(0, QT ).

The above expression becomes:

pu(qT , QT )− α(1− F − p)(
u0

δ
−D) + α(1− F − p)u0/δ + pq

u0Q

δ

− α

α + δ
(α(1− F − p) + qf)D − α

α + δ
(p− 1 + F )qD′ − pu0 + δ

α

α + δ
(p− 1 + F )D.

Almost all terms in u0 and D cancel each other. We obtain that the left-derivative of

W (T ) is pT exp(−δT ), times

u(qT , QT )− u0 + q
u0Q

δ
− α

α + δ

qfD

p
− α

α + δ
(1− 1− F

p
)qD′.

We finally use the definitions max π = 1−(1−F )/P , ρ = f/(1−F ), and ν = u0q+u0Q/δ

to get the announced expression for the planner’s payoff.

There remains to show that CT = 0. Because the path is optimal, it must be that T >

0 maximizes the planner’s payoff W (T ), as computed above. Two optimality conditions

must hold. Firstly, the first-order condition W ′(T ) = 0 yields BT + qTCT = 0 at the

optimal date T , so that:

u(qT , QT )− u(0, QT )− qTuq(0, QT ) + qTCT = 0.

Secondly, W (T ) is also maximized with respect to the path before T , and the value

of qT is free; therefore, qT must maximize BT + qTCT , so that

qT ∈ arg max
q∈[q,q]

u(q,QT )− quq(0, QT ) + qCT .

The first condition expresses that both qT and 0 are solution to the program in the

second condition. Because 0 is interior to the interval [q, q], this implies that the deriva-

tive of the objective of the objective function is zero at q = 0. This shows CT = 0, as
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announced. ■

Proof of Theorem 1: from Lemma F.1, optimal paths cannot exceed QD; from Corol-

lary C.1, optimal paths are weakly increasing, so that Qt = Qt and qt ≥ 0. Existence of

a solution then follows from Theorem 15, p.237, in Seierstad and Sydsaeter (1987). We

also obtain that the optimal path converges toward the maximum value Q∞ ∈ [QE, QD],

from Lemma D.2, and that the stock level is constant after Q∞ is reached. Lemma F.3

then gives the planner’s payoff.

If Q∞ is reached asymptotically, then a contrapositive to Lemma F.2 implies that the

stock converges to Q∞ = QE. Since the legacy πT vanishes when T goes to infinity, we

obtain that (17) indeed holds at T = +∞, πT = 0, and QT = QE, as announced.

If Q∞ is reached at time T < +∞, since Q0 < QE it must be that T > 0. We thus

have to determine T > 0 to maximize the planner’s payoff W (T ), and Lemma F.3 implies

CT = 0, as announced. ■

Proof of Theorem 2: Because Q∞ < min(QN , S), case (iii) in Lemma D.1 is the only

possibility. Therefore the path converges to a value Q∞ strictly below QN , and Lemma

D.2 implies Q∞ = Q∞. And Q∞ is at least Q0 by definition of the maximum stock on

record, and at least QE from (iii) in Lemma D.1.

Now, let us proceed by contradiction, and suppose Q∞ > max(Q0, Q
E). Then Lemma

F.2 implies that Q∞ is reached in finite time. (iii) in Lemma D.1 implies that Qt is weakly

increasing for t high enough. Together, these properties imply that there exists T < +∞
such that Qt is weakly increasing just before T , and equals Q∞ after T . Then we can

apply Lemma F.3 to obtain that (17) holds. But this equality implies that QT lies be-

tween QE and QD, and this contradicts the inequalities QD ≤ QE < QT = Q∞. ■

G Applications

G.1 Cake-eating

Proof of Proposition 3: let us first consider the case when after some time t0 the

optimal policy exceeds the upper value S, so that the catastrophe is triggered with

certainty. Then we know that the optimal policy maximizes (15), which in this simple

53



case is ∫
t≥t0

(u0 + u1qt − αv0Qt) exp(−(α + δ)t)dt.

Thanks to a simple integration by parts, this objective can be transformed into∫
t≥t0

(u0 + (u1 −
α

α + δ
v0)qt) exp(−(α + δ)t)dt.

Because we have assume u1 >
α

α+δ
v0, the solution consists in setting qt = q forever.

We can now examine the optimal policy when the stock lies below S. We can focus

on “bang-bang” policies that set qt either to zero or to q. Recall that from Lemma F.3

we can consider that the control is set to zero after some date T ≤ +∞. This Lemma

also gives a useful expression for the payoff. Since by linearity of function u the Bt terms

are identically zero, this payoff reduces to∫ T

0

qtptCt exp(−δt)dt,

where we can use the definition of π to replace in (F.1):

ptCt = ptu1 −
α

α + δ
[(1− F (Qt))ρ(Qt)D(Qt) + (pt − 1 + F (Qt))D

′(Qt)]

= pt(u1 −
α

α + δ
v0)−

α

α + δ
(1− F (Qt))(ρ(Qt)D(Qt)−D′(Qt)).

Now, suppose that qt is zero between two dates t0 and t1, and is q just after t1. This

implies that the integral after time t1 is positive; otherwise, one would play qt = 0 forever.

But then the idle time between t0 and t1 is wasted: it would be better to instead play at

t ≥ t0 what is scheduled for t ≥ t1. Indeed, not only one would follow the same path for

the stock at a earlier date, but in addition one would also benefit from a a higher survival

probability; and in the expression above this higher probability is beneficial because it is

multiplied by a positive coefficient.

This shows that in any case the control variable must be equal to q until some date

T ≤ +∞, and be zero afterwards. We thus have to maximize on T the objective

q

∫ T

0

ptCt exp(−δt)dt.

Moreover, from (A.1) we have

pt = p0 exp(−αt) + α exp(−αt)

∫ t

0

(1− F (Q0 + τq)) exp(ατ)dτ,
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so that the cross-derivative in (p0, T ) of the objective above is strictly positive. By

supermodularity, this implies that a higher p0 leads to a higher choice of the stopping

time T , and therefore to a higher value for the final stock. Since we have

π0 = 1− 1− F (Q0)

p0
,

a higher p0 is equivalent to a higher initial legacy π0. This shows the existence of a

threshold π∗, and the results in the Proposition follow. ■

Proof of Proposition 4: From Theorem 2, we can focus on paths that converge to

Q∞ = Q0 = Q0. Therefore, the planner never experiments after time 0. Then p can be

explicitly computed using (A.2):

pt = 1− F (Q0) + (p0 − 1 + F (Q0)) exp(−αt),

and the objective function

W =

∫ +∞

0

[pt(u0 + u1qt) + ṗtv0Qt] exp(−δt)dt

becomes

W = p0

∫ ∞

0

qtat exp(−δt)dt+ C,

where C is a constant, and

at ≡ (1− π0)u1 + π0 exp(−αt)(u1 −
α

α + δ
v0).

Now, if u1 ≥ π0
α

α+δ
v0, then at is positive for all t, and the planner would like to set

q as high as possible, taking into account the constraint that the stock must converge to

Q0. Hence, the solution indeed consists in stabilizing the stock from the start.

Otherwise, if u1 < π0
α

α+δ
v0, then at is initially negative, before becoming positive at

some strictly positive time t1, which is easily found to be increasing in π0. The solution

therefore consists in setting q = q < 0 until t1, and then setting q = q until the stock is

back to Q0, at time t2 such that qt1 + qt2 = 0, so that t2 is also increasing in π0. The

optimal policy is thus as stated in the claim. ■
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G.2 Social distancing illustration

Theorem 2 applied: Under constraint It ≤ I0, we can solve for p explicitly and, by

using the same arguments as in the proof of Proposition 4, we write the general payoff

as ∫ ∞

0

btqt exp(−δt)dt+B,

where B is a constant and

bt ≡ (1− π0)
(
Y0 −

wdIt
δ

)
+ π0

(
Y0 − (

αwd∗

δ − q∗
+ wd)

It
α + δ

)
exp(−αt).

The flow payoff is thus proportional to the distancing measure qt with b0 < 0: the

first term of b0 is zero by the definition of IN , and for the second term note that(
Y0 − (αwd∗

δ−q∗
+ wd) IN

α+δ

)
=

(
wdIN

δ
− (αwd∗

δ−q∗
+ wd) IN

α+δ

)
<

(
1
δ
− 1

(δ−q∗)

)
α

α+δ
wd∗IN < 0.

A complete lockdown, q = −(r+d) implying R = 0, is thus optimal at t = 0 and, in fact,

for all t with bt < 0. But the lockdown must end: bt turns positive at some finite t′ > 0

when the lockdown policy is followed at all times t prior to t′. The optimal policy after

t′ is to relax social distancing so that I grows back to I0. When infections grow we must

have btqt ≥ 0 which holds with bt = 0 unless with choice set for q binds. The numerical

recovery paths in the Figures satisfy bt = 0. ■

H Additional results

H.1 Dynamic programming and optimal stopping

We develop the stopping condition by variational methods, after several intermediate

steps needed for the validity of the approach (see the proof of theorem 1). Taking these

steps as given, for intuition, we now invoke a dynamic programming argument to describe

the tradeoff at T .

Consider the part of the overall welfare that accrues after stopping in [T,∞), as

defined by the objective (10). Noting that in [T,∞) the stock is stabilized q = 0, and

then the survival probability pt follows a formula (lemma A.1) that allows us to express

the said welfare as a product of discount factor exp(−δT ) and19

pT
u0
T

δ
− α

α + δ
(pT + FT − 1)DT ,

19This expression is line (F.2) above.
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where we use shorthands u0
T = u(0, QT ), FT = F (QT ), and DT = D(QT ). Throughout

this paper, the planner stands at t = 0 but think, momentarily, that the planner has

survived to T . Multiply the welfare expression above by 1/pT to condition on survival

and use π = 1−(1−F )/p to see that the planner’s welfare, standing at the stopping time

T , takes the following intuitive form: zT ≡ u0
T/δ − α

α+δ
πTDT . Alternatively, the survivor

could continue experimenting for a short interval of time [T, T + ∆] with qT > 0, and

after this time stop with qT+∆ = 0. By the above logic, the welfare at T +∆ is

zT+∆ =
1

pT
[pT+∆

u0
T+∆

δ
− α

α + δ
(pT+∆ + FT+∆ − 1)DT+∆].

The flow gain from this one-shot experiment follows from the objective (10) that,

together with the discounted zT+∆, leads to the full welfare at T

1

pT
[pTuT − ṗTVT ]∆ + exp(−δ∆)zT+∆.

This one-shot experimentation welfare can be better grasped by rewriting with π =

1− (1− F )/p, D = u0/δ − V , and the first-order approximation of exp(−δ∆)zT+∆ with

respect to ∆,

[uT + απT (
u0
T

δ
−DT )]∆ + zT − δzT∆+ z′T∆,

where z′T = ∂zT+∆

∂∆
|∆=0. Now, at optimal T , the planner cannot strictly prefer one of the

two options. Using this indifference and choosing the optimal experimentation intensity

qT gives the condition:

0 = max
qT

{
uT + απT (

u0
T

δ
−DT )− δzT + z′T

}
.

After careful evaluation of terms, this condition becomes

0 = max
qT

{
u(qT , QT )− u(0, QT )− qTuq(0, QT ) + qTC(T )

}
where

CT ≡ ν(QT )−
α

α + δ
[(1− πT )ρ(QT )D(QT ) + πTD

′(QT )] . (H.1)

H.2 The model without delay

Proof of Proposition 5: since α is infinite, the problem under study is to maximize∫ +∞

0

[ptu(qt, Qt)− ṗtV (Qt)] exp(−δt)dt,
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under the constraints Q̇t = qt ∈ [q, q], pt = 1 − F (Qt), Qt = max0≤t′≤t Qt′ , Q0 being

given. Consider a candidate path, and let us proceed by necessary conditions.

Step 1: we first show that one may focus on monotonic paths. Suppose there exist two

arbitrary dates 0 and T > 0, such that Q0 = QT ≥ Qt for t ∈ [0, T ]. In such a case, the

maximum stock on record is a constant (Q0 = QT ), and therefore the problem at time

zero and the problem at time T are identical. This proves that at time zero the planner

could as well adopt the strategy he has planned to apply at time T . This procedure can

be applied to all periods of time when Q is first decreasing, then increasing. Therefore, we

can focus on paths that are first weakly increasing on some interval [0, T ], and then weakly

decreasing on [T,+∞[. If T = 0 or T = +∞, we are done, so suppose 0 < T < +∞.

Then QT is the maximum stock value. Therefore, after time T catastrophes cannot occur

anymore, and one maximizes
∫
t≥T

u(qt, Qt) exp(−δt)dt under the constraints Q̇t = qt and

Qt ≤ QT . If QT ≤ QN , the best thing to do is to make the last constraint binding

everywhere,20 and therefore we are done, as the candidate path is weakly increasing on

[0, T ] and constant over [T,+∞[, and is thus monotonic.

The only remaining case is when QT > QN . Then the optimal policy after time T

is to behave as in the SFP, and to adopt a path that is decreasing (see Proposition 1)

for t above T . For t < T , because the stock level is weakly increasing we have Qt = Qt.

Therefore pt = 1− F (Qt), and the complete payoff from the candidate path is:∫ T

0

[u(qt, Qt)(1− F (Qt)) + f(Qt)qtV (Qt)] exp(−δt)dt+ exp(−δT )W (QT )(1− F (QT )),

where W (Q) denotes the value of the SFP program when the initial stock value is Q.

The left-derivative with respect to T of this expression is exp(−δT ), times

ZT ≡ (1− F (QT ))(u(qT , QT )− δW (QT ) + qTW
′(QT )︸ ︷︷ ︸

=A

) + f(qT )qT (V (QT )−W (QT )︸ ︷︷ ︸
=B

).

Now, by definition of W we have, for 0 < T ′ < T ,

exp(−δT ′)W (QT ′) ≥
∫ T

T ′
u(qt, Qt) exp(−δt)dt+ exp(−δT )W (QT ),

and since the difference is zero at T ′ = T , its derivative wrt T ′ at the left of T is weakly

negative, and we exactly obtain A ≤ 0. Similarly, Assumption 2 states that V (Q) is at

20This is easily shown: this problem is autonomous, and consequently it admits a monotonic solution.
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most u(0,Q)
δ

, which is the payoff from stabilizing the stock forever, and is thus belowW (Q).

This shows B ≤ 0. Finally, because Q is increasing at the left of T , we get qT ≥ 0, and

therefore ZT is weakly negative for every T > 0. This shows that one may as well apply

the SFP solution from date zero onwards, so that once more we obtain a monotonic path.

Step 2: From Step 1, we easily obtain that a solution exists. Indeed, either the candidate

path is weakly decreasing: then catastrophes cannot occur, pt is a constant (1− F (Q0))

forever, and we are back to the SFP case with the additional constraint qt ≤ 0, for which

existence of a solution is easily proven. Or the candidate path is weakly increasing, so

that Qt = Qt everywhere, and pt = 1− F (Qt). The objective function becomes∫ +∞

0

[u(qt, Qt)(1− F (Qt)) + f(Qt)qtV (Qt)] exp(−δt)dt

to be maximized under the constraint Q̇t = qt ≥ 0, Q0 given. This problem is au-

tonomous, and once more our assumptions ensure the existence of a solution.21 Overall,

a solution follows from the comparison of these two candidates.

In case (i) of the Proposition, suppose that the path Qt is weakly increasing, so that

Qt = Qt and pt = 1 − F (Qt). We can then study the inequality (B.1) at (t1 = 0,

t2 = +∞). The expression under the integral is Qt −Q0, which is positive, times

ṗt(D
′(Q0)− ν(Q0)) + δ(1− F (Q))(ν(Q0)− ρ(Q0)D(Q0)),

and both terms are negative, a contradiction. Therefore, in case (i) the path must be

weakly decreasing, and by construction such a path involves no experimentation. The

best path is thus the SFP path, and it converges to QN , as announced.

In cases (ii) and (iii), a weakly decreasing path would involve no experiment, and

therefore would maximize
∫
uedt, with the additional constraint qt ≤ 0. But because

Q0 < QN , the solution to the SFP is weakly increasing, and therefore this additional

constraint would be binding everywhere. Therefore, a weakly decreasing path would in

fact be a constant path, so that we can focus on the case of a weakly increasing path.

The problem now consists of maximizing∫ +∞

T

[u(qt, Qt)(1− F (Qt)) + f(Qt)qtV (Qt)] exp(−δt)dt

21See Theorem 15, p. 237, in Seierstad and Sydsaeter (1987).
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under the constraints Q̇t = qt ≥ 0, with an initial value Q0 < QN . As explained above, a

solution exists. The problem is autonomous, and we can proceed as in Proposition 1 to

show that the optimal stock level converges to a valueQ such that wq(0, Q)+wQ(0, Q)/δ =

0, where w is the function in the integral above. Here, this condition translates into

uq(1− F ) + fV +
uQ(1− F )− uf

δ
= 0

or equivalently ν(Q) = ρ(Q)D(Q), which is the definition of QE0. This is possible if

QE0 ≥ Q0 (case (ii.c)). Otherwise, the constraint q ≥ 0 binds, and the stock remains

forever set at Q0. ■
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