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Résumé :

Dans les domaines mathématique ou applicatif, la multiplication de nombres posséde un role clef
pour le Calcul. En Science et en Ingénierie, la nonlinéarité offre de grands défis de modélisation mais
aussi de résolution. Notre approche vise, via la multiplication, I’étude de certains phénoménes non
linéaires que l'on retrouve fréquemment dans le domaine de la Science et de I'Industrie.

Pour cela, nous étudions dans cette thése la multiplication de nombres multidimensionnels, associée
a des structures algébriques en dimension finie appelées algeébres hypercomplexes. Nous utilisons la
multiplication comme lien entre les divisions apparentes des différents domaines théorique et pratique
que nous abordons par une approche transdisciplinaire.

Nous effectuons une analyse comparative entre les algébres hypercomplexes et les principaux ou-
tils de Calcul, approche qui n’est pas développée dans la littérature existante. Nous présentons une
synthése des applications existantes (par ex. robotique, modélisation 3D, électromagnétisme) et des
principaux avantages des algébres hypercomplexes, pour la Science et I'Ingénierie. A partir des consé-
quences de l'utilisation des structures alternatives (autres que réelles ou complexes), nous proposons
une extension nouvelle de la théorie spectrale présentée sous le nom de couplage spectral. Grace aux
algébres hypercomplexes et a la théorie du couplage spectral, nous présentons des applications inédites
a la mécanique et a la chimie ainsi que des perspectives pour le domaine du calcul quantique.

Pour les domaines d’applications présentés, existants ou inédits, nous étudions les aspects de modé-
lisation théorique et aussi d’analyse numérique. Nous montrons que suivant les cas d’étude, les aspects
numériques avantageux découlent d’un choix judicieux des modeéles et des algébres hypercomplexes
associées. Ces avantages sont principalement dus a la maniére de définir la multiplication dans les
algébres concernées.

Dans les domaines applicatifs abordés, une grande partie des modéles théoriques et numériques
repose actuellement sur I'utilisations des nombres réels ou complexes ainsi que sur l'algébre linéaire.
Nous montrons dans cette thése que les algebres hypercomplexes sont complémentaires des outils
algébriques actuellement utilisés et possédent un vaste potentiel théorique et pratique, grandement
sous-exploité pour le Calcul.

Mots-clefs :

Calcul, algebres hypercomplexes, nonlinearité, multiplication, couplage spectral, modélisation, sta-
bilité numérique
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Le Loup et le Chien

Un Loup n’avait que les os et la peau,
Tant les chiens faisaient bonne garde.

Ce Loup rencontre un Dogue aussi puissant que beau,
Gras, poli, qui s’était fourvoyé par mégarde.
L’attaquer, le mettre en quartiers,

Sire Loup ’edt fait volontiers ;

Mais il fallait livrer bataille,

Et le Mdtin était de taille
A se défendre hardiment.

Le Loup donc l’aborde humblement,

Entre en propos, et lui fait compliment
Sur son embonpoint, qu’il admire.

« Il ne tiendra qu’a vous beau sire,

D’étre aussi gras que mot, lui repartit le Chien.
Quittez les bois, vous ferez bien :

Vos pareils y sont misérables,

Cancres, héres, et pauvres diables,

Dont la condition est de mourir de faim.

Car quoi ¢ rien d’assuré : point de franche lippée ;
Tout a la pointe de [’épée.

Suivez-moi : vous aurez un bien meilleur destin. »
Le Loup reprit : « Que me faudra-t-il faire ?

— Presque rien, dit le Chien, donner la chasse aux gens
Portants bdtons, et mendiants ;

Flatter ceux du logis, a son Maitre complaire :
Moyennant quoi votre salaire
Sera force reliefs de toutes les fagons :

Os de poulets, os de pigeons,

Sans parler de mainte caresse. »

Le Loup déja se forge une félicité
Qui le fait pleurer de tendresse.

Chemin faisant, il vit le col du Chien pelé.

« Qu’est-ce la ? lui dit-il. — Rien. — Quoi ? rien ¢ — Peu de chose.
— Mais encore 2 — Le collier dont je suis attaché
De ce que vous voyez est peut-étre la cause.

— Attaché ? dit le Loup : vous ne courez donc pas
Ou vous voulez ¢ - Pas toujours ; mais qu’importe ?
— Il tmporte si bien, que de tous vos repas
Je ne veur en aucune sorte,

Et ne voudrais pas méme a ce prixz un trésor. »
Cela dit, maitre Loup s’enfuit, et court encor.

Jean de La Fontaine
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Introduction

Le Calcul est bien plus qu'une action mécanique et une réalisation pratique des opérations sur les
nombres. Le Calcul est aussi une action de pensée, c¢’est-a-dire le choix d’outils conceptuels dont on
dispose a chaque époque et que l'on s’autorise a utiliser. Pourquoi calculer 7 Pour tenter de repré-
senter et d’interpréter de fagon relative 'information qui nous entoure. Pour calculer, les nombres et
les opérations nous servent a construire la perception mathématique de notre environnement. Cette
perception évolue au fil de I’expérience humaine intelligible (ce que 'on peut comprendre) et sensible
(ce que 'on peut percevoir et/ou mesurer). Les savoirs développés et hérités depuis les communautés
humaines des premiers temps ont été compilés et enrichis pour étre utilisés et transmis au cours des

siécles.

Depuis I’Antiquité jusqu’a I’époque médiévale, le Calcul a été enseigné en Occident dans ce qui
s’appelle les arts libéraux, qui sont a la source de ’enseignement universitaire en Europe. Les arts
libéraux (ou septivium) désignent sept piliers : trois pour le « pouvoir de la langue » regroupés sous
le nom de trivium (grammaire, dialectique et rhétorique) , quatre pour le « pouvoir des nombres »
appelés le quadrivium (arithmétique, géométrie, musique et astronomie). L’acquisition du trivium était
un prérequis a la maitrise du quadrivium pour le Calcul. L’enseignement des arts libéraux avait pour
objectif de développer une ouverture intellectuelle et mettait en avant l'interaction entre le trivium
et le quadrivium, c’est-a-dire la maitrise de la pensée et des nombres. Les arts libéraux étaient une

source d’inspiration importante pour les illustrations médiévales (voir Figure 1).
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FIGURE 1 — Allégorie des arts libéraux, Hortus deliciarium, H. de Landsberg (1180)
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Cependant, les arts libéraux étaient séparés des arts mécaniques (artes mechanicae). Les arts
mécaniques regroupaient les métiers issus des différentes corporations d’artisans pour des applica-
tions techniques telles que la construction, les métiers du textile, 'agriculture ou de la logistique du
commerce (navigation, transport). Cette séparation constitue ce que nous interprétons ici comme un
premier principe de division entre 'intellect et la pratique.

La mise a I’écart de la pensée de I’époque médiévale au cours des siécles suivants ansi que le déve-
loppement progressif des disciplines et des sciences modernes ont lentement fait évoluer ’enseignement
vers une spécialisation, une séparation et un cloisonnement des disciplines. Ce mouvement n’a eu de
cesse de s’amplifier, chaque discipline étant elle-méme découpée en parties plus ou moins hermétiques.
Nous observons donc un second principe de division entre les disciplines et/ou au sein méme des dis-
ciplines. S’il faut reconnaitre que cette séparation a permis des avancées notables dans chacune des
disciplines, force est de constater que la communication entre chacune d’entre elles devient complexe
voire quasi impossible et nécessite toujours plus de temps et d’efforts (principalement sur le vocabu-

laire, les outils, les méthodes) pour arriver a faire fructifier leur interaction et leur complémentarité.

Ce constat de divisions etant posé, nous pouvons revenir au Calcul et a la position du travail
présenté dans cette thése. Un objectif idéal aurait été de présenter une approche unifiée du Calcul
permettant la synergie des différentes contributions, littéraire, scientifique et technique. Néanmoins,
les sujets interdisciplinaires demandent beaucoup de connaissances transverses pour rédiger mais aussi
pour lire ce type de recherche. La difficulté d’effectuer une synthése se répercute alors sur la com-
plexité de lecture d’une telle tentative. Il faut également mesurer l'intérét de vouloir consacrer un

temps conséquent a relier de force des sujets parfois trés éloignés, ce qui ne résulte pas nécessairement
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sur des apports significatifs & la connaissance du Calcul. C’est pourquoi nous restreignons notre champ
de recherches. Dans cette thése, nous présentons une approche plus raisonnable qui met en relation
et compare certaines branches des mathématiques et d’autres disciplines applicatives, avec un certain

aspect historique.

Le fil d’Ariane de ce manuscrit est la multiplication de nombres multidimensionnels, associée a
une structure algébrique en dimension finie. Nous utiliserons la multiplication comme lien entre les
divisions apparentes des différents domaines qui seront abordés dans la thése. Dans le domaine mathé-
matique ou applicatif, la multiplication de nombres posséde un roéle clef, souvent implicite ; role que
nous précisons dans la thése. Nous nous pencherons particuliérement sur les questions de modélisa-
tion en physique et en ingénierie. En particulier, notre approche vise, via la multiplication, 1’étude de
certains phénomeénes non linéaires que I'on retrouve fréquemment dans le domaine de la Science et de
I'Industrie. La nonlinéarité offre de grands défis de modélisation mais aussi de résolution. Nous verrons
que suivant les cas d’étude, des aspects numériques avantageux découlent d’'un choix judicieux des
modeéles et des structures algébriques associées. Ces avantages sont principalement dus a la maniére
de définir la multiplication dans les algébres concernées. Nous verrons que parmi toutes les structures
algébriques que l'on peut définir de maniére générale, certaines ont plus d’intérét que d’autres pour

calculer.

Nous avertissons le lecteur que le manuscrit suit une trajectoire quelque peu singuliére et non
linéaire, a I'image des thémes mathématiques abordés. Les nombreux domaines mathématiques ex-

plorés (algébre, géométrie, modélisation numeérique) et les liens avec d’autres disciplines (mécanique,
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chimie, physique) nécessitent une trés large bibliographie qui est disparate dans le temps, les thémes
et le style de rédaction. La mise en commun et la comparaison de différents formalismes nous a amené
a faire, a certains moments, des concessions sur la forme et la rigueur, afin de favoriser une prise de
recul par rapport aux points purement techniques qui nécessiteraient un développement plus large,
mais peu utile pour notre objectif qui est, rappelons-le, d’étudier le role de la multiplication pour le

Calcul.

La thése est constituée de deux parties articulées autour du Calcul et de la multiplication. Afin
de faciliter 'accés a la bibliographie, nous proposons une bibliographie par chapitre en plus de la

bibliographie compléte.

-Partie I :

La premiére partie est une mise en perspective des nombres et structures algébriques utilisés pour
calculer. Dans le premier chapitre, nous analysons certaines des inventions mathématiques pour le
Calcul. Ces inventions sont des transgressions radicales qui ne peuvent étre présentées de maniére
atemporelle mais qui sont liées au cours de ’Histoire.

Les Chapitres 2 et 3 présentent respectivement les algébres hypercomplexes et les algebres de
Dickson que nous allons utiliser et en expliciter I'usage dans la seconde partie.

Nous comparons ces structures algébriques dans le quatriéme chapitre avec d’autres approches
de Calcul (calcul vectoriel et algebres de Clifford). Nous mettons en avant la différence entre une
équivalence théorique descriptive (les isomorphismes de structures) et les conséquences pour le Cal-

cul (modélisation et comportement numérique) afin d’expliquer certains phénomeénes applicatifs que
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nous décrivons dans la seconde partie. Dans cette premiére partie, nous adoptons volontairement une
présentation discursive, non structurée par des théorémes et des propositions. En effet, les résultats
présentés sont techniquement démontrés dans la bibliographie, nous mettons en avant I'interprétation
de ces différents travaux et le fil qui les relie, aspects qui, a contrario, font défaut dans la littéra-
ture actuelle. La nouveauté que nous apportons dans cette partie est une approche comparative des
différentes structures utilisées pour calculer. Nous verrons que cette comparaison fait apparaitre des
différences notables pour le Calcul et des aspects trés spécifiques rarement soulevés dans les références
bibliographiques, qui se limitent pour la plupart a une présentation isolée d’une structure ou d’un

groupe particulier de structures algébriques.

-Partie II :

La seconde partie présente des nouveaux résultats mathématiques et applicatifs.

Le Chapitre 5 se concentre sur les conséquences de ['utilisation des structures alternatives (au sens
ordinaire : autres que R ou C) pour les racines de polyndmes.

Ceci permet dans le Chapitre 6 de proposer une extension nouvelle de la théorie spectrale présentée
sous le nom de couplage spectral.

Le Chaptitre 7 présente des applications inédites des Chapitres 5 et 6 a la mécanique et & la chimie.

Le Chapitre 8 est une synthése des applications existantes et des principaux avantages des algébres
que nous étudions, pour la Science et 'Ingénierie. Les structures algébriques étudiées offrent également

des perspectives pour le domaine du Calcul Quantique.

Au long de notre recherche, nous allons développer une certaine vision du Calcul pour montrer des

aspects méconnus, mais remarquables, que nous offre la multiplication de nombres.

20



Premiére partie

Approche comparative pour le Calcul :
un état des lieux
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Chapitre 1

Des chiffres et des nombres a travers les ages

Dans ce chapitre, nous présentons quelques éléments de I’Histoire des nombres pour le Calcul.
Cette approche qui peut paraitre n’étre qu’'un détail, un point tres particulier de I’Histoire des mathé-
matiques, est révélatrice de la lente évolution de la notion de Calcul au cours des ages. Il n’est pas ici
question de développer ’ensemble immense des connaissances mathématiques, mais de se concentrer
sur le Calcul et ses deux aspects numérique et algébrique. Par numérique, nous entendons relatif au
concept de nombre relié & des phénoménes de Calcul, ce qui différe énormément du terme moderne
concernant les progrés techniques associés a 'informatique. Les avancées majeures, liées aux décou-
vertes survenues au cours des siécles, sont des exemples préparatoires portant sur les nombres, qui vont
introduire notre démarche d’algébres alternatives pour le Calcul. Nous réintroduisons 'aspect histo-
rique des mathématiques lié au développement de certaines idées ainsi qu’a leur résistible acceptation.
Les exemples historiques que nous présentons constituent des ruptures radicales par rapport a l'idée
de ce qui était considéré comme un nombre suivant 1’époque. En tant que nouveauté qui intrigue et
qui dérange, ces ruptures ont fait face a une résistance conceptuelle et idéologique dont il ne faut pas
sous-estimer le role dans le développement actuel des mathématiques. Les résistances face a ces nou-

velles idées perdurent jusqu’a nos jours. Nous verrons en effet que certaines inventions associées aux
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structures algébriques étudiées dans cette thése ne sont pas encores pleinement considérées, malgré

leur intérét mathématique ainsi que leur apport dans les disciplines applicatives.

1.1 Une succession de transgressions créatives

Le concept de nombre évolue au cours du temps. Loin d’une approche monolithique ot les ma-
thématiques peuvent apparaitre comme une séquence logique de découvertes menant aux mathéma-
tiques du XXI™* siécle, les nombres qui sont l'outil de base du Calcul ont évolué par une succes-
sion de ruptures idéologiques ancrées dans I’histoire de leur temps. On peut regretter que ’'Histoire
des mathématiques ne soit pas enseignée conjointement aux aspects techniques, au moins pour les
personnes qui suivent des études scientifiques. Nous ne pouvons qu’encourager la lecture des ré-
férences sur I’'Histoire des nombres ou des mathématiques qui permettent & chacun de construire
son opinion & partir de faits historiques. Nous verrons dans la suite que ces aspects sont indisso-
ciables de notre approche mathématique. Parmi les nombreuses possibilités plus ou moins connues
telles que [Weil, 1984, van der Waerden, 1985, Conway and Guy, 1996, nous citons en particulier
[Ebbinghaus et al., 1998] qui présente dans leur contexte historique certains résultats peu dévelop-

pés ailleurs.

Il nous semble trop réducteur de ne voir dans les mathématiques qu’une collection de théories
et de théoréemes & démontrer de fagon purement logico-technique. Sans 'aide d’une interprétation
dans un contexte historique et philosophique, il semble hors de portée de comprendre les enjeux et la
profondeur des concepts mis a jour au cours des siécles.

Plutot que de suivre la présentation classique des mathématiques selon une logique atemporelle,

24



nous rappelons le role de I’'Histoire dans les inventions des mathématiciens. De grands savants reconnus
ont marqué leur temps, mais les réputations ou titres prestigieux associés a l'idéologie d'une époque
ne suffisent pas a garantir la valeur d’une découverte. Nous verrons qu’un certain nombre de résultats
dont la richesse dépasse toute distinction honorifique, sont relégués aux marges ou méme oubliés par
I’histoire officielle. Ces résultats dus aussi bien a des amateurs qu’a des mathématiciens accomplis

sont fondamentaux pour notre étude sur les nombres et le Calcul.

Il est important de mesurer la dimension temporelle qui caractérise I’'Histoire des nombres. Le temps
écoulé entre les découvertes, qui sont par nature des transgressions des régles communément acceptées,
et 'acceptation de leur validité peut durer des siécles. Le faible nombre de mathématiciens ou les
moyens de communication de I’époque ne sont pas les seules raisons de la lenteur de ces développement.
Il ne faut pas négliger la résistance idéologique ou conceptuelle que les théories nouvelles peuvent
rencontrer initialement. Pourtant ces inventions ne sont pas le résultat d’errances mathématiques mais
la réponse créative face a la nécessité imposée le plus souvent par le Calcul. Ces différentes inventions
ne sont pas non plus une simple reformulation ou une synthése des connaissances existantes, mais

correspondent a la production d’un concept qui n’existait pas auparavant.

1.2 Elements de contexte numérique

Nous rappelons en préambule la confusion commune qu’il faut éviter entre les chiffres et les
nombres. Les chiffres sont associés a la question de 'écriture (sytémes sexagésimal, décimal, binaire,
chiffres romains...). Les nombres sont en lien avec la notion de Calcul. Quelle que soit I'écriture des

nombres a ’aide de chiffres, cela ne change pas leur role calculatoire. Certaines notions de nombres
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nous sont parvenues sous une forme discursive sans aucune représentation chiffrée, en particulier pour
I’ Antiquité. Confondre les chiffres et les nombres revient & confondre 1’écriture et le concept.

Nous présentons ci-dessous trois concepts de nombres particuliérement marquants apparus au cours
de I'Histoire (les nombres irrationnels, le zéro et les nombres négatifs). Chacun a leur fagon, ils ont créé
une rupture dans la définition communément admise du concept de nombre & leur époque respective.
Ces trois exemples illustrent I’émergence d’un nouveau concept en réponse a un besoin de calcul.
Ils nous préparent a ’arrivée de ruptures algébriques qui seront 1'objet des prochains chapitres. Les
quelques éléments qui suivent respectent le sens chronologique de I’'Histoire. Depuis ’époque sumé-
rienne, I’ Antiquité grecque et les civilisations d’Orient (Inde, Chine, Bagdad) puis I’Occident, les idées
pour le Calcul se sont développées et enrichies. Ces quelques éléments offrent une perpective sommaire

et succinte que 'on peut retrouver de maniére plus détaillée dans les ouvrages cités plus haut.

1.2.1 Sumer

Les Sumériens, il y a plus de 4000 ans avaient des connaissances avancées de Calcul dans de nom-
breux domaines. Le travail toujours en cours des archéologues permet de retracer quelques éléments de
leur vaste savoir, depuis les tables de multiplication, calculs de taux d’intéréts jusqu’aux nombreuses
études géométriques, en particulier concernant les mesures astronomiques. Les Sumériens calculaient
en base soixante, notre mesure actuelle du temps (secondes, minutes et heures) et des angles en est
I’héritage direct. Ils étaient capables de résoudre certaines équations du second degré revétues d’un ha-
billage pratique, par exemple pour certains problémes liés a ’agriculture. Mais il ne faut pas réduire les

connaissances sumériennes a quelques calculs pratiques. La maitrise mathématique sumérienne, telle
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que nous la connaissons aujourd’hui, montre une compréhension remarquable de certains concepts
profonds. Parmi les traces écrites retouvées, la tablette Plimpton 322 contient une liste de triplets
pythagoriciens. La tablette YBC 7289 donne quant & elle une approximation de v/2 en base 60 a
environ 107 prés! Encore aujourd’hui, il n’y a aucune explication argumentée de 1’algorithmitique
et des motivations liées a ces connaissances, remarquables pour I’époque. Malgré les découvertes des
historiens et des archéologues, les origines de la maitrise mathématique de I’époque sumérienne reste
encore au niveau des suppositions. A partir des ces premiéres traces écrites, les connaissances mathé-
matiques se sont enrichies en traversant les civilisations et les époques dans les plus grands empires,

royaumes et cités du monde connu.

1.2.2 Gréce antique

La découverte de l'irrationnalité de v/2 a profondément heurté la philosophie mathématique
grecque. Il n’y a pas de trace directe comme les tablettes babyloniennes, seulement des copies de
discours. Le concept philosophique de nombre dans 'antiquité hellénique est avant tout fondé sur
les nombres rationnels. Les philosophes grecs tentent de comprendre le monde qui les entoure par le
concept de cosmos. Le cosmos représente 'idée d’ordre et d’harmonie du monde dont tous les éléments
doivent obéir a des lois physiques et mathématiques par un rapport de quantités commensurables.
C’est la raison pour laquelle v/2, qui défie ces lois rationnelles, n’est pas reconnu par les Grecs comme
un nombre, bien qu’il mesure la diagonale du carré unité! N’oublions pas que ratio signifie aussi bien

raison que rapport.
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1.2.3 Inde

Quelques siecles plus tard, en Inde, le zéro qui n’était qu'un chiffre, a émergé de maniére explicite
en tant que nombre. Il était déja utilisé pour effectuer des calculs pratiques depuis I’époque sumérienne
mais c’est en tant que concept que le zéro interroge les mathématiciens. En effet, naturellement lié
a l'addition, le zéro est a la fois un défi philosophique et mathématique [Chatelin, 2012|. Le nombre
zéro qui symbolise la non-existence peut-il lui méme exister? C’est également grace a la culture
mathématique indienne qu’a été développée la numération décimale, représentée par ce qui est plus
connu en Occident sous le nom de chiffres arabes. L’usage de ces chiffres permet d’écrire plus facilement
certaines opérations usuelles (multiplications, fractions), par comparaison avec les chiffres romains

utilisés dans une grande partie de I'Europe médiévale.

1.2.4 Orient (Inde, Chine, Bagdad)

Nous nous intéressons maintenant au cas des nombres négatifs, qui sont directement liés au zéro.
Les nombres négatifs, en tant qu’outils de calcul, sont connus depuis environ le premier siécle avant
notre ére en Chine. Dans Les Neuf Chapitres sur ’art mathématique, livre écrit comme compilation
anonyme des résultats de cette époque, les nombres positifs y sont représentés par des baguettes rouges
et les nombres négatifs par des baguettes noires, dans le but de résoudre des problémes d’échanges
commerciaux. Au VIIEMe siecle, en Inde, Brahmagupta, aprés avoir introduit le zéro donnait des régles
de calcul sur les nombres négatifs, sans aucune justification sur leur sens : « Une dette retranchée
du néant devient un bien, un bien retranché du néant devient une dette ». Le cas d’application
et le vocabulaire sont la encore limités aux échanges commerciaux, ou les quantités négatives sont

plus aisément concevables. Les connaissances mathématiques grecque et indienne ont été par la suite
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rassemblées et développées par Al-Khwarizmi, né dans la région du Khwarezm (actuel Ouzbékistan)
dans une famille perse qui a travaillé ensuite a Bagdad (IXéme siecle). C’est du nom de cet érudit
que découle le mot algoriste apparu au XIIT®™€ giscle en Ttalie pour qualifier un calculateur. Puis au

Xvireme siecle, le terme algorithme désigna une ordonnance de calculs arithmétiques.

1.2.5 Europe et Occident

Le socle de savoirs algébriques du monde arabophone a été apporté en Europe et développé princi-
palement par Gerbert d’Aurillac, le futur Pape Sylvestre II (999-1003), mais aussi Fibonacci a Pise en
Italie (v.1175-v.1250). Le manuscrit de Pamiers, rédigé en 1430 dans la langue vernaculaire du comté
de Foix (Ariege), est un traité d’arithmétique commerciale qui est une compilation des connaissances
mathématiques indienne et grecque. Il contient ce qui semble étre la premiére solution négative a une
équation en Occident, explicitement écrite (—10 2).

Cependant, 'interprétation des quantités négatives en tant que nombres est toujours un probléme.
En 1637, dans La géometrie, Descartes écrit : « Mais souvent il arrive, que quelques-unes de ces racines
sont fausses, ou moindre que rien, comme si on suppose que x désigne aussi le défaut d’une quantité,
qui soit 5, on a x +5 = 0 ». Descartes poursuit, et a propos d'un certain polynéme li¢ au calcul
précédent, écrit : « il y a quatre racines, & savoir trois vraies qui sont 2, 3, 4 et une fausse qui est
5 ». La difficulté d’interpréter les nombres négatifs se maintient pendant plusieurs siécles. A titre
d’exemple, nous mentionnons la position peu améne de Maseres, mathématicien anglais, & propos des
racines négatives : « Elles servent seulement pour autant que je sois capable d’en juger, a obscurcir
la doctrine tout entiére des équations et a rendre ténébreuses des choses qui sont dans leur nature

excessivement évidentes et simples. Il eit été souhaitable en conséquence que les racines négatives
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n’aient jamais été admises dans I’algébre ou qu’elles en aient été écartées » [Maseres, 1758].

Il est intéressant de constater que la difficulté d’interprétation des nombres négatifs est naturelle-
ment liée a celle de 'interprétation du zéro, en tant que quantité absolue ou relative. Lazare Carnot
(le pere de Sadi Carnot), mathématicien reconnu de 1’Académie des Sciences écrit : « Pour obte-
nir réellement une quantité négative isolée, il faudrait retrancher une quantité effective de zéro, oter
quelque chose de rien : opération impossible. Comment donc concevoir une quantité négative isolée 7 »
[Carnot, 1803].

Pour résumér la situation, nous nous appuyons sur l'analyse de Jean-Robert Argand, souvent
considéré comme mathématicien amateur, qui a pourtant apporté une interprétation rigoureuse des
nombres négatifs. Nous verrons dans la Section 1.3 qu’Argand joue un role important pour ses contri-
butions sur les nombres complexes. Concernant les nombres négatifs, il écrit que « Ces idées sont trés
élémentaires ; néanmoins, il n’est pas si aisé qu’il pourrait le paraitre d’abord de les établir d’une
maniére bien lumineuse, et d’y donner cette généralité que demande leur application aux calculs. On
ne peut d’ailleurs douter de la difficulté du sujet, si I'on réfléchit que les sciences exactes aient été
cultivées pendant un grand nombre de siécles, et qu’elles avaient fait de grands progrés avant qu’on
elit acquis les véritables notions des quantités négatives, et qu’on elit concu la maniére générale de les
employer » [Argand, 1806].

Il faudra attendre le XIX™¢ siécle afin que les nombres négatifs commencent & étre pleinement
acceptés par les savants de cette époque, sous l'influence de mathématiciens faisant autorité qui ont

repris a leur compte, ou a qui ont été attribués les résultats de mathématiciens moins renommeés.
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1.2.6 Résumé

Chacun de ces trois exemples, les nombres irrationnels, le zéro et les nombres négatifs présente un
développement similaire dans I’Histoire du Calcul que nous pouvons découper en trois étapes. D’abord,
ce sont des inventions utilisées comme un outil pratique de Calcul sans interprétation. Ensuite, la
formalisation de cette idée en tant que concept mathématique implique une remise en question des
savoirs établis. Selon un temps plus ou moins long, grace a I'influence de personnes reconnues ou a
leur intérét applicatif, ces ruptures radicales sont progressivement acceptées. Plus que les nombres
en eux-mémes, introduits pour une nécessité pratique de calcul, c’est leur portée philosophique qui
vient heurter les certitudes et qui, jusqu’a nos jours, met en avant la « déraisonnable efficacité des
mathématiques » [Wigner, 1960| pour représenter le monde qui nous entoure. Le développement de
Palgebre au XIX™¢ siécle va contribuer & l'étape de formalisation des exemples présentés dans ce
chapitre.

Nous verrons dans la partie suivante en quoi la découverte des nombres complexes constitue le
point de départ de notre étude sur les structures algébriques de nombres en dimension strictement

plus grande que 1.

1.3 Autour des nombres complexes

L’histoire des nombres complexes est un cas d’école de la conception des nouvelles idées et des
ses conséquences pour le Calcul. Les nombres complexes ont été introduits par Cardan comme un
outil pour trouver les solutions réelles de certaines équations du troiséme degré [Cardano, 1545].

Cette nouveauté s’est confrontée a une résistance notable (au premier chef de Cardan lui-méme trés
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troublé par ses propres inventions), en tant que transgression du cadre bien connu donc sécurisant
des nombres réels ot seuls les nombres positifs ont une racine carrée. Presque trois siécles apreés, ils
ont regu une interprétation géométrique dans le plan numérique grace & Wessel [Wessel, 1799] et aussi
Argand [Argand, 1806], 'auteur de la premiére démonstration compléte et rigoureuse du théoréme de
d’Alembert ( « Fundamental Theorem of Algebra (FTA) ») [Argand, 1814| qui parachéve les tentatives
incomplétes de d’Alembert (1746) et de Gauss (1799).

L’invention de l'unité imaginaire /—1, notée i par Euler, est une réponse créative a la nécessité
de dépasser le cadre limité de I’époque (nombres réels de carrés positifs) car ils peuvent servir d’outil
pour calculer des solutions réelles de certaines équations polynomiales a coefficients réels. Cette idée
qui ne semble si évidente aujourd’hui que parce qu’elle nous est familiére, a fini par profondément
changer la vision du Calcul au XIX™¢ siécle. Elle a ouvert des voies fécondes qui ont mené a des
théories fondamentales telles que ’anaylse complexe, la théorie de Galois et bien d’autres. L’invention
des nombres complexes est une rupture radicale qui a contribué au développement de l’algebre. Une
autre conséquence est ’association entre une structure algébrique et une géométrie donnée du plan.
Les nombres complexes représentent un saut conceptuel pour l'interprétation du plan réel, passant
de l'espace vectoriel R x R a ’algébre C. C’est pourquoi il n’est pas exagéré de dire que les nombres

complexes sont une révolution pour 'algebre, la géométrie et ’analyse.

1.4 Des résolutions numériques aux structures algébriques

Les nombres complexes, fondés sur une transgression du Calcul (existence de racines carrés de
nombres négatifs), ont été progressivement acceptés en Mathématiques principalement aprés qu’ils

eurent démontré leur intérét en Physique au XIX“" siécle. La nécessité qui s’impose par le Calcul de
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considérer des racines carrées de nombres négatifs ouvre la porte a I'idée de multiplier des nombres
en deux dimensions. L’idée de i est une transformation radicale d’une multiplication 1D sur la droite
réelle, le produit aa’ € R, en une multiplication 2D dans le plan, (a+ib)(a’+ib") = aa’—bb' +i(ab’+ba’),
qui méne a C.

D’un point de vue historique et épistémologique, le réle implicite de la multiplication en 2D est le
fil d’Ariane qui relie les travaux de Cardan a 'inteprétation géométrique d’Argand. Il est intéressant de
noter que dans le cadre de I'interprétation géométrique des nombres complexes, Argand a également
beaucoup travaillé sur les nombres négatifs. Ceci met en évidence le lien étroit entre 'idée des nombres
négatifs et celle des nombres complexes, idées qui posaient toutes deux encore probléme a I’époque
d’Argand, pour la géométrie et le développement de 1'algébre.

Les nombres complexes sont donc un pont entre les découvertes mathématiques liées aux nombres,
sur la droite réelle, et celles associées a I'algebre, aux structures de nombres qui sortent de la dimension
réelle et proposent des perspectives nouvelles pour la multiplication. Les nombres complexes consti-
tuent un exemple fondateur pour notre travail car le recul historique dont nous disposons aujourd’hui,
nous permet de mesurer I’enjeu et I'apport dans les disciplines scientifiques de ruptures radicales de
Calcul.

Le fil directeur avec la suite de notre développement est celui du Calcul et de la diversification
des outils algébriques utiles & cette fin. Pour cela, nous aurons besoin de détailler plus amplement
les propriétés mathématiques associées aux opérations classiques du Calcul et principalement de la
multiplication. Nous pourrons alors introduire plus précisément les structures algébriques et celles

de leurs applications que nous allons étudier dans la thése.
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Chapter 2

Let us multiply vectors

In this chapter, we will focus on some general algebraic principles that underlie the specific algebraic
constructions and applications to Computation to be presented in the following chapters. First, we
will recall some basic elements of algebraic structures and then the properties of operations classically
used in Computing. A special attention will be given to multplication, and especially multiplication of
vectors. This chapter contains basic concepts that are well known in abstract algebra but more rarely
used in a numerical context, that is the use of numbers to Compute. It is not written in a standard
algebraic way (several results or definitions are quickly presented on purpose), because the goal is to

use these properties for Computation and not only for a descriptive comprehension.

2.1 General properties

2.1.1 Basic notations and definitions

As a preliminary warning we mention that the following definitions are not to be considered for their
axiomatic aspects but for their role in Computation. In particular, the classical definition for rings and

algebras assumes associativity of multiplication. When the multiplication is no longer associative (see
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below), these structures are often called non associative rings or algebras |[Raffin, 1951, Schafer, 1995|
and we will see some examples later. We will specify it for the related structures, but we will keep
the usual terms algebra and ring, even though it is a slight abuse of classical definition.

We will follow the definition in [Schafer, 1995|, a ring (R, +, X) is equipped with an addition +,
an internal multiplication x such that multiplication x is distributive over addition. We suppose by
definition that a ring contains the neutral element for multiplication, denoted 1. Multiplication is not
supposed to be associative. As a convention, we suppose that rings are not reduced to zero (0 # 1).

In what follows, A is a real algebra of finite dimension equipped with the standard operation of
addition + (performed componentwise), an external multiplication by a scalar e and an internal mul-

tiplication x. We recall that a real algebra relies on these three properties:

1. (A, +,e) is a vector space over R, of finite dimension n € N*,
2. (A, +, X) is a ring,

3. VAER, V(z,y) € A%, Ao (zxy)=(Nex)xy=1xx (Aey).

A very important remark is that multiplication by an element a, distributive over addition, can
be considered as a linear application © — a X x as for a,z,y in A, o, Fin R, a X (nex+ fey) =

aeaxxr+eaxy.

Remark 2.1.1. In what follows, we will leave aside the symbol of external multiplication e. The
multiplication symbol X between real or complex quantities will be omitted in general. The notation
x will only be used for multiplication of the ring. We will explain later why we restrict this symbol
to multiplication and do not use it in linear algebra for the cross product. The cross product, as it is
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known in linear algebra, will be described as a consequence of multiplication in composition algebras

(see Chapter 3).

In this thesis, internal multiplication x will be our main concern. We recall the following properties:

1. Commutativity: ¥(x,y) € A%,z x y =y X ,

2. Associativity: ¥(z,y,z) € A3, (x xy) x 2=z x (y X 2),

3. Alternativity: V(z,y) € A%,z x (xxy)=(r xx)xyand (z xy) xy=2x X (y X y),
4. Flexibility: V(x,y) € A% (x xy) Xz =2 X (y X 1),

5. Power associativity: Yz € A,¥(i,7) € N2, 2% = x, 2 = o x 2%, 2° x 27 = 2™+,

From associativity to power associativity, each property implies the followings in a logical sequence
(2= 3= 4=5). Notice that there exist commutative algebras that are nonassociative (e.g. Jordan
algebras). In the most common frame for Computation, multiplication is often commutative (real
or complex analysis) or associative (matrices over R or C). It seems that Hamilton was the first to
introduce the name associativity [Ebbinghaus et al., 1998] and to discover the nonassociativity of the
octonions (see Chapter 3).

In the algebraic structures that we will use later, we will be interested in the consequences of the
existence or absence of these properties for Computation. In particular, it is quite instructive to study
the absence of a given property to understand its added incentive or, its necessity. We will develop
later why the properties 1, 2 and 3 (commutativity, associativity and alternativity) can be relaxed

without hindering computation. A suprising consequence is that this can be turned into an advantage
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in the computational possibilites and the modelling of Physics [Chatelin, 2012b|. This choice could
be considered as a trade-off process, to give up something to gain in return a more adequate Compu-

tational tool for given applications.

In order to estimate the effect of these properties on multliplication between vectors, we will use
three different quantitites for elements in A. In relation to the properties 1, 2 and 3, we introduce
the commutator of two elements x,y € A, [x,y] = x X y — y X x, and the associator of x,y, z,
[z,y,2] = (x X y) X 2z —x X (y X z). The commutator (resp. associator) is identically zero iff the
algebra is commutative (resp. associative). We will see that the commutator plays a central role in
the definition of the cross product in linear algebra. We call alternator of two elements x,y € A, the
associator [z,x,y] = (z X ) X y —x x (x X y) of z, x and y. These three concepts can be seen as a
measure of a distance to the relaxed property (commutativity, associativity, alternativity).

We intend consider these definitions in relation with Computation. The purpose of Computation is
twofold. Given a phenomenon, Computation can be used as a tool, either to quantify the phenomenon,
or to model it. Whereas the first goal can be greatly helped by machine computers, the second one
only relies purely on mathematical skill. It is important to keep in mind this dual purpose because
the usefulness of an algebra may depend on the chosen goal. Moreover our comparative study will
confirm that the loss of algebraic properties entails a loss of universality. As a sartorial metaphor,
considering algebras as a way to dress for Computation, R and C "fit all" like off the rack items

whereas nonalternative algebras are bespoke, "tailor-made".
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2.1.2 Specific concepts related to multiplication: inverses and zerodivisors
2.1.2.1 Invertible elements

Concerning multiplication, one of the first natural questions to ask is the existence of an inverse.
We recall that in the case of number algebras used for Computation, there will always exist the unit
1 as a neutral element. We say that an element x € A is invertible iff there exists y, z € A, such that
x X y =1 (right inverse) and z x z = 1 (left inverse). In the case where y = z, this element is called
the inverse of x.

The existence of a unique inverse is strongly related to the property of associativity. In an alter-
native ring, in case of existence the inverse is also unique. This is a consequence of a theorem due to
Artin saying that in an alternative ring, any subring generated by two elements is associative. In the
most general case of non associative rings, there is no general result [Raffin, 1951] . When a structure
with an identity element is non associative but has unique right and left inverses for every element, it

is called a loop.

A ring where all nonzero elements are invertible is a division ring. Another English-speaking
denomination that can be found in the litterature is skew field. We will not use this last term which
contains the implicit assumption that fields are supposed to be commutative which is not a necessity.
In all the following, we follow the continental concept of a field whether multiplication is commutative
or not.

We will see that the field structure is a very specific property in algebraic structures that we can
use to compute. As we explained before for the properties of multiplication (absence or existence), we

will keep the same idea to compare the complementary cases for the existence of invertible elements
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and the notion of zerodivisors in the next section.

2.1.2.2 Zerodivisors

An element x € A is a zerodivisor if x # 0 and Jy # 0, x x y = 0. It seems that the term
zerodivisor is due to Weierstrass in 1883 [Cartan, 1908, p.374, note 125|. As for inverses, there exists
the notion of left and right zerodivisors but this will not be necessary in our case. In associative
structures, an element cannot be at the same time invertible and a zerodivisor (z x y = 0 and «
invertible = 7! x  x y = 0 and thus y = 0).

For an element x € A, we introduce two notions that are important for the algebras that will be
of interest for Computation :

— idempotence: z? = x,

— mnilpotence: I3 n > 22" =0 (we will use in particular the case n = 2).

For a nilpotent element x, we call the degree or index of nilpotence the smallest integer ¢ such that
2t = 0 and 27! # 0. Both idempotent and nilpotent elements are zerodivisors. If x is idempotent,
x x (z —1) = 0 and for y nilpotent of index n, y x y"~! = 0. In associative algebras, all the multiples
of these elements are also zerodivisors. In [Lam, 1999, pp. 320-322|, a noncommutative ring in which
every element is either invertible or a zerodivisor is called a classical ring. It seems that the litterature
on this topic is quite rare. The fact that an element is either invertible or a zerodivisor will be widely
used in the associative algebras that we will consider. For non associative algebras, this distinction is
not valid anymore [Raffin, 1951] .

Idempotents and nilpotents are two specific categories of zerodivisors that will be often encountered

in the following. Zerodivisors, in general, will play a pivotal role in the examples that we will study.
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2.1.2.3 Examples with matrix algebras of order 2

Matrices are widely used in Linear Algebra and, when they are square, they offer a good example
of the results presented in this chapter. Even if square matrices are primarily considered as linear
operators, we will see that considered as numbers, they illustrate some computational features that
remain more or less implicit in their traditional role in linear algebra.

Let us consider some examples of the properties presented in this section with the ring of real
matrices of order 2.

The multiplication between matrices is associative and non commutative. Every matrix M such
that det M # 0 is invertible. If det M = 0, then M?— (tr M )M = 0, rewritten as M (M — (trM)I5) = 0.

M is thus a zerodivisor. Every matrix is either invertible or zerodivisor.

1 11 1 1 -1
Let us now consider the matrices £, = — and £ = 5 which satisfy

11 -1 1

E? = E, and E? = E_. This gives us two examples of idempotent elements as specific zerodivisors.

0 1
The matrix N = is the most basic example of nilpotent matrix as N? = 0. This kind

0 0

of structure is basic for the block decomposition of Jordan in linear algebra.

These simple examples have to be kept in mind as they will be useful in Chapter 4 when we will
compare the isomorphic formulations between algebraic structures. After this sequence of prepara-
tory algebraic properties, we will present the constructions of algebraic strutures starting with the

fundamental example of the numerical plane.
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2.2 Quadratic algebras of the numerical plane

In the first chapter, we have presented some elements concerning complex numbers as a first
example of 2D-multiplication. However, complex multiplication is not the only way to define a mul-
tiplication of vectors in R2. For example, there exist two other nonreal numbers u = /1 # =41,
u? = 1, [Cockle, 1848] and n = /0 # 0, n> = 0, [Clifford, 1873]. The three numbers 4, u,n are the
generators of the three canonical algebras R @ Rg,, g. € {i,u,n} that can equip R? [Capelli, 1941,
Kantor and Solodovnikov, 1973]. We denote *R = R ¢ Ru the algebra of bireal numbers and D =
R @ Rn the algebra of dual numbers. Notice that the dual unit is nilpotent n? = 0 and that the bireal
numbers e, = 3(1+u), e- = 1(1—u) are idempotent €3 = e; and zerodivisors e;e_ = e_e; = 0. The
general case presented by Capelli replaces g. by an arbitrary nonreal quadratic number g called gen-
erator. In order to ensure the closure of the plane by multiplication, it is necessary that ¢? = v +283g,
v, 8 € R. The two real parameters ~, 5 define a 2D algebra over R in the basis {1, g} so that every
number of this algebra can be written z = x 4+ yg, x,y € R. The quadratic equation for the generator

g can be rewritten (g — ()% = v + 3% = §. Depending on the sign of §, g can be taken of the form:

e S+iv/—0,0<0,
e S+ na,VaeR, d=0,
o B+ u\o, 5> 0.
We define the conjugate of g as g* = 23 —g. With the conjugation z — z* = x+yg* = x+28y—yg,

every algebra of this kind is involutive. The quantity p(z) = zz* is called the magnitude of z. It is

fundamental to remark that p is a quadratic form: u(z) = (x+yg)(z+ 20y —yg) = > +2Bzy —yy* =

1 B
2TSz, where S = . The determinant detS = —¢§ and the three above forms for the

B =
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generator g depending on the sign of § (6 < 0, § = 0, § > 0) are related respectively to the possible
types for the quadratic form p (elliptic, parabolic, hyperbolic); u is positive definite iff § < 0. Complex

numbers, bireal numbers and dual numbers respectively correspond to the cases 5 =0 and (y = —1,

The algebraic interest is to equip a vector space with a multiplication and a conjugation. The
structures R @ Rg are basic examples of quadratic ring extension. The operation of 2D-addition is
performed componentwise using 1D-addition only. The specificity of an algebraic structure is contained
in the properties of its multiplication. The shift of focus from addition to multiplication, from linear

to nonlinear is at the root of all algebras of higher dimensions [Cartan, 1908].

2.3 Algebraic diversification beyond the numerical plane

The first chapter has put in evidence the transition between purely numerical inventions and
algebraic inventions, from isolated numbers to algebraic structures. The case of complex numbers
has illustrated this transition with v/—1 considered first as a number and then as a generator for the
complex field. We will now stay on the track of agebraic inventions and we will have a decriptive look
at the fundamental work of Hamilton and its consequences. The technical description of the algebras
presented in this section will be done in the Chapter 3.

The quaternions H, a 4-D algebra invented by Hamilton in 1843 [Hamilton, 1844|, are the first
cornerstone in the modelling of 3D-space by a multiplicative structure (see Chapters 3 and 4, ZH],
the imaginary part of H). From this date, during several decades, an outburst of algebraic concepts
occured. Three months after the discovery of quaternions, J. T. Graves, Hamilton’s friend and Irish

compatriot, mentionned in a letter his invention of 8D- octonions. Hamilton quickly discovered that
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the multiplication invented by Graves was not associative. This started a sequence of inventions,that
came out during some decades after Hamilton’s idea, such as Clifford algebras and Dickson algebras

that will be described in the next chapter as number structures for Computation.

Like complex numbers at their time, some of these new algebraic structures faced strong resistance
coming from trendsetting scientists. Even though Maxwell used quaternions to write a first version of
electromagnetism, this did not prevent them from being harshly criticised. Maxwell was aware at the
same time of the algebraic potential and of the difficulty for quaternions to be accepted as computa-
tional tools. He wrote in 1870 in Application of Quaternions to Electromagnetism: "The limited use
which has up to the present time been made of Quaternions must be attributed partly to the repug-
nance of most mature minds to new methods involving the expenditure of thought" [Maxwell, 1870].
He adds later in his famous book [Maxwell, 1891]: "I am convinced, however, that the introduction
of the ideas, as distinguished from the operations and methods of Quaternions, will be of great use to
us in the study of all parts of our subject, and especially in electrodynamics, where we have to deal
with a number of physical quantities, the relations of which to each other can be expressed far more

simply by a few words of Hamilton’s than by the ordinary equations".

Quaternions have been replaced in electromagnetism by Vector Calculus [Crowe, 1994] under the
influence of Gibbs, a chemist, and Heaviside, a physicist, that transformed Maxwell’s equations. We
will illustrate in Chapters 3 and 4, the differences between a Vector Calculus approach and quaternions
with their consequences for Computation. We will see that Vector Calculus splits the quaternions

H = R & ZH into the real part with scalars in R and the imaginary part ZH isomorphic to R3.
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Beyond electromagnetism, Vector Calculus techniques quickly spread and linear algebra became a
main topic for researchers. The vector space structure lead to great advances during the 20" century
especially for Scientific Computing. The resolution of linear systems and spectral analysis represented
a large part of the results in applied research during the last decades such as Krylov methods and the

QR algorithm. For more information, see [Chatelin, 2012a).

The short summary presented above illustrates two main ideas. The first one is that the pioneering
work of Hamilton had the effect of a dam break. It gave birth to a real algebraic explosion of concepts.
The second point to keep in mind and meditate is the strong delay in time, from creation to acceptation.
Almost two centuries after their birth and in spite of all their fruitful consequences, a large part of

these revolutionary ideas remains quite marginal.

2.4 Algebras in any dimension

After decades of intense algebraic inventions, a natural question that has been explored at the end of
the 19"" and the beginning of the 20" century was: how to relate all these algebraic strutures ? Some of
the great mathematicians of that time, amongst them Frobenius, Study, Cartan, Wedderburn, Dickson
and Noether, investigated this question. Each of them gave contributions that are now gathered under

the name of hypercomplex numbers.

2.4.1 A landmark: Cartan’s article (1908)

The fundamental paper of Elie Cartan |[Cartan, 1908, developing the work of Study, presents the
most general way to define a multiplication over a vector space in any finite dimension n > 2. It starts
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with complex numbers and then summarises the number structures known at that time. This includes
Clifford algebras and goes further with the doubling process for Dickson algebras (non associativity
and beyond) and with a general framework for hypercomplex numbers. The special case of dimension
2 described in section 2.2 is a basic brick for the algebras that are of interest for Computation amongst
all possible ones. We will now describe how to equip a n-dimensional vector space with a multiplication
following the work of Cartan.

Let K be equal to R or C, then the linear vector space K™, n > 3 with basis {e;}, i = 1 to n can

be transformed into an algebra by defining the multiplication

n
e X €5 = E Vijker, 1 <14,75,<n
=1

which is distributive with respect to addition, we denote this algebra by A. The structural cube is

formed by the n® scalars v, € K and is represented in Figure 2.1.

Figure 2.1 — Structural cube v, € K

The associativity property ((e; X e;) x e, = e; X (e; x ¢;)) is guaranteed iff the scalars ;. € K
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satisfy the condition

Z%’jk%lm = Z%’km’mk, 1<4,5,l,m<n, 1<k<n.
k=1 k=1

The commutativity condition e; X e; = e; X ¢; is satisfied iff
Yijk = Vjik, 1 Sl,j,kgn

The notion of structural cube is not contained in the work of Cartan. This is an interpreta-
tion of the relations expressed with the coefficients ;. If the hypercomplex algebra is associative
and commutative, it consists of what we call analytic numbers and is denoted by AN, because the
classical differential and integral calculus may be performed [Scheffers, 1893]. For more information
about the history and the technique related to hypercomplex numbers see [van der Waerden, 1985]

and [Chatelin, 2018|.

There is an interesting consequence to this presentation of hypercomplex numbers. In the littera-
ture, it can sometimes be found that Hamilton invented the quaternions because he could not multiply
triplets. With no more precision, this sentence is incomplete. It appears that with the notion of hy-
percomplex number and Cartan’s work, there is no restriction to the dimension n > 2. In particular,
it is possible to define a multiplication in a 3D-space. The implicit assumption of Hamilton at that
time was to maintain the property ||z X y|| = ||z|| ||y|| and to avoid zerodivisors. The theorem of
Frobenius (1877) proved in fact that the only associative fields over the real numbers are R, C and

the quaternions H. The notion of zerodivisor came after the invention of quaternions and the concept
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was still hard to accept at that time, even by Hamilton himself!. Of course, this remark is not made
to criticise Hamilton’s exceptional invention, but to correct misleading opinions that can be encoun-
tered until today in some historical accounts. The next section will give a definition of hypercomplex
numbers which is more restrictive than the one given by Cartan but is taken as a basis in the current

international litterature.

2.4.2 Hypercomplex numbers

The litterature on the subject is highly scattered and we will make a choice and take as definition
the one found in [Kantor and Solodovnikov, 1973|, mainly used in current papers. A hypercomplex
algebra is a finite dimensional algebra over the real numbers. Elements are expressed on a basis
(1,41, ...,4,) with real coordinates where n + 1 is the dimension of the algebra, 1 the real unit and for
practical reasons, it is conventional to choose the vectors (i1, ..,i,) such that i2 € {—1,0,1}. Notice
that the multiplication is only required to be distributive with respect to addition and not necessarily
associative. Wedderbun showed in 1908 that associative hypercomplex numbers could be represented
by matrices, or direct sums of systems of matrices [Wedderburn, 1908] . Two remarks can be made
on this point. First, we will see in Chapter 4 that a descriptive equivalence is not a computational
equivalence so that hypercomplex numbers cannot be described only by matrices. The second point is
that hypercomplex numbers also include non associative structures such as the octonions that cannot

fully be described by associative structures.

1. In a letter to Graves on the 17th October 1843 (Math. Papers 3,pp.106—110) he wrote:"Behold me therefore
tempted for a moment to fancy that ij = 0. But this seemed odd and uncomfortable, and I perceived that the same

supression of the term which was de trop might be attained by assuming what seemed to me less harsh, namely that
el

Ji=—ij
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This general frame contains a lot of algebraic structures. The algebras of the numerical plane that
we presented in section 2.2 are simple examples of hypercomplex numbers. In the next chapter, we
will give details about specific constructions when the dimension of the algebra is n = 2*.

We will now make the link between hypercomplex numbers and square matrices. This is another

example of how to see differently standard computational tools.

2.4.3 Square matrices as hypercomplex numbers

Matrices over R or C are intensively used in Scientific Computing in the framework of Linear
Algebra. Contemporary to the algebraic explosion of the 19" century, the concept of matrices became
a full-blown topic that lead to great advances in Science and its applications. Nevertheless, the relation
between matrices and hypercomplex numbers is rarely mentionned in Linear Algebra textbooks.

We have already put in evidence some examples for matrices of order 2 in section 2.1.2.3, but
these are general properties shared by squares matrices. A square matrix of order p is a hypercomplex
number of dimension n = p?. The algebras of square matrices are associative and non commutative. As
was said for matrices of order 2, square matrices are invertible (det A # 0) or zerodivisors (det A = 0).

The description of matrices as hypercomplex numbers is not founded on purely aesthetic algebraic
reasons. Indeed, we will see in Chapter 4 and in the applications of Chapter 7 how some properties,
usually presented in a matrix formulation, can be explained with hypercomplex numbers. For practical
uses, we will also illustrate the difference between these formulations and why matrices, compared to

hypercomplex numbers, may not offer the most efficient way to compute in finite precision.
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2.5 Bibliographical notes

The topic of nonassociative algebras is rarely addressed in the general textbooks, safe for abstract
algebra matters. The book [Schafer, 1995] is a very precious reference for non associative algebras.

Concerning hypercomplex numbers, it is quite remarkable that this very rich content is almost
never taught to students. The different algebraic possibilities for the numerical plane remain quite
unknown in most western countries (outside Russia) safe for some algebraists. It is always instructive
to note the cultural differences concerning education. The reference [Kantor and Solodovnikov, 1973]
which is a good introduction to hypercomplex numbers is used in Russia as a textbook for highschool
students.

Beyond its high mathematical value, Cartan’s article is also interesting on several other aspects.
This article remains untranslated in English language up to now and this may explain why this article
is not a classical reference. In the last conference on Clifford algebras in 2017 (ICCA1l), a large
majority of researchers were unaware of the fact that Cartan discovered the 8-periodicity of Clifford
algebras, usually attributed to Bott [Baez, 2002]. We will see other examples with different languages
and we must not forget that a large part of Science and Mathematics before World War 1I was not
written in English. Some results tend now to fall into oblivion because their original language is not
English. Cartan’s article is also an example of the intensive cooperation between european resarchers
and countries (France and Germany in this case). As mentionned earlier, the article is an augmented
translation of the work of Study. This cooperation was suspended at the beginning of World War I. The
two world wars of the 20" century slayed, amongst all the victims, many world class mathematicians

and deeply affected the evolution of mathematical ideas.
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Chapter 3

Dickson algebras

In Chapter 2, we presented the three types of algebras for the plane and the extension to hyper-
complex numbers in any dimension. For computational purposes, we will now introduce a specific
type of algebras called Dickson (or Cayley-Dickson) algebras. First, we will give some mathematical
and conceptual precisions on the quaternions and the octonions. We will see that the real numbers,
the complex, the quaternions and octonions share some crucial properties for measure. In addition
to common features, these four algebras of dimension 1,2,4,8 are the first four instances of the du-
plication (or doubling) process that generates an infinite sequence of algebras in dimension 2%, k € N

through an iterative definition of multiplication and conjugation by Dickson [Dickson, 1919].

3.1 At the origin of Dickson algebras: quaternions and octonions

3.1.1 Quaternions

As mentionned in Chapter 2, quaternions have been introduced by Hamilton in 1843 as an answer to
his original quest to multiply triplets representing geometrical points in the real 3D-space. Quaternions

are a non commutative field.
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The algebra of quaternions is defined in the orthonormal basis 1,1, j, k as:
H={q=a+bi+cj+dk,(a,b,c,d) € R}.

where i and j (the two non real generators) and k = i x j are linked by the relation that Hamilton

cut on a stone of Brougham (Broom) bridge in Dublin:

These relations came to his mind in 1843 in Dublin, when Hamilton was on his way to the Royal
Irish Academy. As he walked along the towpath of the Royal Canal with his wife, he suddently had
the idea of the fundamental formulae of quaternions.

The multiplication table defines the rules to multiply quaternions:

Flgl—k|=1] i

k| § | —il|-1

For a quaternion ¢ = a + bt + ¢j + dk, a € R was called by Hamilton the scalar part and
bi + ¢j + dk the vector part (or pure or imaginary part). These concepts have later been used by
Gibbs and Heaviside to restrict H to vector calculus by splitting the 4D-space of quaternions H into
R @ R3 with no multiplicative link between the scalar and the vector parts. The version of Gibbs
and Heaviside ignores the connection which is explicit in quaternions through the definition of their
4D-multiplication.
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Following the formulation of complex numbers from real numbers C = R @& Ri, we can write the
quaternion as H=C@® C x j, ¢ =a+ bi +¢j +dk = a+ bi + (¢ + di) x j. The quaternion ¢ is thus
represented by complex components and can be written ¢ = (a+ bi, ¢+ di). We will see in Section 3.3

that this form is obtained from C by the doubling process of Dickson.

Like Cardano’s complex numbers, quaternions were far too advanced an idea at the time when
Hamilton invented them. After its invention, quaternionic calculus was soon eclipsed by vector cal-
culus, designed to be easier to grasp, it only enjoyed a revival in the second half of the 20" century.
Quaternions are now the tool of choice used in practical applications in Science and Industry to rep-
resent rotations in a more efficient way than Euler angles or matrices for various fields of research,
from spatial engineering to 3D-modelling for computers and also molecular simulation in Chemistry

(Chapters 4, 8).

3.1.2 Octonions

Octonions have been first invented by Graves in 1843 and independently rediscovered by Cayley two
years later |Graves, 1845, P.S. p.320] [Cayley, 1845|. As observed by Hamilton [Ebbinghaus et al., 1998],
they are an 8D non associative division algebra. Unlike quaternions’ table, the multiplication table
for octonions is not unique. Non associativity implies the existence of 480 tables essentially disctinct
up to a homeomorphism [Coxeter et al., 1946|. Only two are generally considered, the one of Cartan
and Schouten for Physics [Cartan and Schouten, 1926] with the Fano plane [Baez, 2002] and the other
one given by Graves who defines an octonion as a pair of quaternions. The table of Cartan is related

to geometric aspects whereas the table of Graves is based on the recursive definition of multiplication
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of octonions as pairs of quaternions, which is the starting point of Dickson’s work. In what follows,
the algebra of octonions will be denoted G to underlie Graves’ pioneering invention.

Despite the fact that they are the first historical example of a non associative algebra, octonions
have not been a main focus of attention for researchers. Due to non associativity, there is no equivalent
matrix description. However nonassociativity in the form of alternativity can be turned into an asset:
alternative structures have remarkable aspects that are used in particle and high energy physics to
describe fundamental interactions. Non associativity is often presented as an irretrievable loss, but it
can be of added value for geometry and computation such as with the seven dimensional cross product

to be presented in Section 3.5.

3.2 Composition algebras

In 1877, Frobenius discovered that the algebras R, C and H are the only associative fields over
the real numbers. In relaxing associativity, this result has been extended by Hurwitz to show that
the only finite dimensional division algebras over R with multiplicative norm (||x x y|| = ||z|| ||yl|)
are R, C, H and the octonions G [Hurwitz, 1898|. Zorn also found a similar result, replacing the
hypothesis of multiplicative norm by that of alternativity of multiplication [Zorn, 1931]. The logical
link between norm multiplicativity and alternativity is given at the end of Section3.5.1. More generally,
a composition algebra A is an alternative algebra over a field K equipped with a quadratic form N

such that

Ve,y € A, N(x xy) = N(z)N(y)
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The only possible dimensions for composition algebras over a field K are 1, 2 , 4 and 8. For
example, over R, the algebras R, C, H and G are composition algebras associated with N = ||.||?, the

square of the euclidean norm.

3.3 Dickson algebras

3.3.1 Definition

Dickson algebras (Ay)ren are a sequence of embedded hypercomplex algebras over R obtained
by a duplication process from Ag = R, Ay 1 — Ap = Ap_1 & Ar_1 X gg, where the g are nonreal
orthonormal generators such that g7 = —1, k > 1 [Dickson, 1919.

The elements of A, kK > 1 are obtained as pairs of elements in A;_;:
Ay={z=x+yx g, (z,y) € AZ_|}.

By construction, Ay, is a vector space over R. The addition and external multiplication are defined
from the ones in Ay_;. Therefore, dim(Ay) = 2dim(Ay_1) = 2¥ and for 2 = 2+yx gy, 2/ = 2'+y' X g €
A, and A € R we have 2+ 2 = (x +2/) + (y + ') X gxr and Az = Az + Ay X gi. For z =z + y X gy,
we will also use the notation z = (z,y).

Conjugation and multiplication are defined recursively in Ay by:

— (2,y) = (T, —y),

— (1Y) x (¢y) = (e x 2’ =y xy, ¥ xx+yxa).
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Conjugation is used to define two other real-valued applications for z € A, — R:

— trace : z—>T1(2) =2+Z €R,

— magnitude: z+— p(z) =2z xz € R,

We define for an element z € A the real part Re(z) = 3(z + %) = 37(2) and the imaginary part
Im(z) = 3(z — %) so that z = Re(z) + Im(z). We denote Re(Ay) = {z € Ay, 2 = z € R} and
Z(Ag) = {z € Ay, 7(2) = 0}, the imaginary part of Ay, i.e. the set of imaginary or pure vectors. For
z€I(Ay), Z=—z.

In the case of Dickson algebras, the magnitude has a simple form. For z = (z,y) € Ay, k > 1,
the magnitude can be written as the sum of the squares of the euclidean norms of the parts in A;_1,
w(z) = [|z]]* + ||ly||*. Hence it equals the sum of the square of all its components. This is a reason
why we use the term magnitude instead of norm to avoid an abuse of language (in some papers the
word "norm" is incorrectly used for the square of a norm).

Magnitude p : z — p(z) = z X Z is a quadratic form already seen for 2D-algebras; for the trace of
an element z we have 7(z) = 2Re(z).

Vk > 1 Dickson algebras Ay are quadratic:

Vel ,22=(z2+2)xz—2xZ="1(2)z — u(2).

2 can be expressed as a linear combination of 1 and z

This quadratic relation is essential as z
with real coefficients that are the trace 7(z) and the opposite of magnitude —pu(z) respectively . This
implies that the evolution of multiplicative powers for an element z remains in the plane {1, z}, 2z ¢ R,

with consequences for polynomials and exponential functions.
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As a consequence, we have a general formula for the inverse of z with nonzero magnitude:

Yz, pu(z) # 0,271 =

The first four Dickson algebras are the real division algebras Ag = R, A; = C, Ay = Hand A3 = G.
They are alternative composition algebras. The doubling process of Dickson is a constructive link
between the four division algebras. We will se below, from Section 3.3.3 to 3.3.5, ways to generalise

Dickson algebras.

3.3.2 Generators, basis and dimension

In addition to the real unit 1, the algebra A; of dimension 2 k > 1 has k non real generators
(g:)1<i<k- They are the generators that give, by multiplication, a basis for the vector space Ay. Each
new generator g, is orthogonal to the set of the other generators.

For example in Ay, the field of complex numbers C = R & Rz, 1 and g = ¢ are the generators of C
and form the 2D-basis {ep = (1,0) =1, e; = (0,1) =i}. C is a special case because the basis vectors
are exactly the generators (the possible products between generators are limited to 1 x i = i).

As, the algebra of quaternions H = C @ C x j, has 3 generators 1, g1 = i, g» = 7 and form the
(22 = 4)D-basis {eg = (1,0,0,0) = 1, e; = (0,1,0,0) = i, e5 = (0,0,1,0) = j, e3 = (0,0,0,1) = k}.

Notice that k£ = i x j is a basis vector but not a generator, k is the product of the two generators ¢ and ;.
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For k > 3, as multiplication is no longer associative, the order of multiplication should be respected
to mark the difference between the two basis vectors (g1 X g2) X g3 # g1 X (g2 X g3) fo example. The
distinction between the k& generators and the 2 basis vectors, obtained as products of generators is
fundamental for Dickson algebras. We will see in Chapter 4 that this is a key point for the comparison

with Clifford algebras.

The increase in dimension should be contrasted with the one occuring in numerical linear algebra.
For matrix problems, the dimension is often a consequence of mesh refinement for finite elements or
from the number of nodes in graph theory, among other possiblities. The notion of dimension impacts
the complexity of resolution for the resulting linear systems, but computation rules and physical
meaning remain unchanged whatever the size of the matrices.

As a consequence of multiplication, one of the main differences between linear algebra formulations
and the duplication process for Dickson algebras is that the increase of dimension implies a modification
of the associated algebraic properties and therefore of the physical interpretation that can be done.
Dimension in Dickson algebras is linked to modelling, not to discretisation. Each new duplication
step creates a change in the computing rules: as k — k + 1 the loss of some properties in A; can be

balanced by the emergence of new ones in A ;.

3.3.3 Generalised Dickson algebras

From the classical definition of multiplication and conjugation in the Dickson process, a more
general form for Ay can be obtained by replacing in the definition of multiplication —1 by the square

of the generators g2 =; € R*, 0 <i < kas (z,y) X (2/,¢y) = (x x 2’ + vy Xy, ¥ X v +y X 1').
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This generalisation is due to Albert [Albert, 1942], but we will be interested in this thesis, by the
particular case that we present in the next section. The original Dickson algebras with g? = —1 are

often called standard.

3.3.4 Split-Dickson algebras

The case v; = —1, i < k and ~, = 1 gives a sequence of algebras called split algebras denoted A,
as a reference to the signature of the magnitude as a quadratic form (equal numbers of + and —)
[Schafer, 1995|. We have already seen that the term "norm" is abusive in the standard Dickson process
as the magnitude is the square of the euclidean norm but it is even more confusing in split-Dickson
algebras where magnitude is a real quantity, with no fixed sign ( for z = (z,y), u(z) = ||z||* — ||y||* €
R).

The real numbers R, the complexes C, the quaternions H, the octonions G and their associated
split forms (split-complexes & = 2R, split-quaternions M, split-octonions &) are the seven composition

algebras that exist over R [Jacobson, 1958].

3.3.5 Extension of scalars

Another generalisation concerns the extension of scalars for Dickson algebras from R to fields or
rings. In [Albert, 1942|, the Dickson process is presented over a field, not supposed to be R. An
interesting possiblity is to use the complex field C for scalars in Dickson algebras. Hamilton already
considered the case with his biquaternions denoted H(C) , quaternions with complex coefficients that
are use in Quantum Mechanics and Quantum Computing under the name of Pauli algebra (Chapter 8).

It is also possible to use one of the two others algebras in the plane (dual or bireal numbers) , which are
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no longer fields but rings. In [Clifford, 1873|, Clifford used the term "biquaternions" to denote H(*R),
quaternions with bireal components. The biquaternions of Hamilton should not be confused with
those of Clifford. Hamilton’s biquaternions have received more attention than Clifford’s biquaternions
due to their applications and we will restrict the term biquaternions to the work of Hamilton. Using
dual numbers as scalars, is a very effective way to compute in rigid body mechanics. In particular,
we can mention the use of dual quaternions H(ID) (Chapter 8). Notice that the extension of scalars
deeply transforms the properties of the original real algebras. For example, quaternions are a field
but complex quaternions form a ring with zerodivisors (nilpotents and idempotents).

We made a detailed comparative classification of possible algebras based on Dickson algebras
that could be used for Computation |Latre, 2013]. Notice that the required framework for a correct
mathematical description would be module theory. We will not go here at this level of generality as the
point of this thesis is not to present algebras for the sake of descriptive or algebraic purpose, but rather

to focus on some specific structures for their remarkable consequences in practical computations.

3.3.6 Zerodivisors in non alternative Dickson algebras, k > 4

In the case of Dickson algebras, we have already seen that R, C, H and G are the only division
algebras over R. The bifurcation between Az and Ay is quite remarkable and implies deep consequences
for the notion of measure as we will see below. For Dickson algebras that are not alternative (Ag, k >
4), there exist zerodivisors and for z € Ay, z # 0 , we consider its set of zerodivisors Zer(z) = {a €
Ay, a x z=0,a # 0}.

In the case of Dickson algebras, there is no need to consider the difference between left and right

zerodivisors, due to the properties of magnitude (||a x z||*> = ||z x a||?). It is quite remarkable that
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Zer(Ay), the set of zerodivisors in the sedenions A4, is isomorphic to the exceptional compact Lie
group G, [Khalil and Yiu, 1997, Moreno, 1998|. For more information on the matter of zerodivisors
in Dickson algebras, see [Chatelin, 2012].

It is also fundamental to notice the consequences of mutliplication in A; when we try to measure
the product = x y. For z, y in A, considered as the vector space RQk, the two vectors x and y can
be described thanks to their real components x = (z;), ¥ = (y;). A direct calculation shows that
the classical euclidean scalar product in R, < z|y >= Z«Tiyi € R, can be written < z|ly >=
1(Re( x y)) = 2(z x ¥+ y x T). From the geometric intuifcion in the 3D-space, the length, that is
the euclidean norm of a single vector x € Ay, is obtained from the scalar product: p(z) = ||z||* =<
Tt >=T X x =1 XT.

For the product = x y, we have ||z X y||> =< z X y|z x y >=< y|T X (x x y) > and, for a given
vector z, we consider the linear map F, : y — T X (zxy). For 0 < k < 3, F, = |||[*[gr, where I, is
the identity map of R2". This result corresponds to the case of composition algebras where the norm
is multiplicative ||z x y|| = ||z|| ||y||. For k > 4, this simple expression for F, is no longer true, F,
becomes a nondiagonal positive semi definite operator with nontrivial spectral decomposition. ||x||?
is still an eigenvalue of F,, with multiplicity 4p, p > 2 and there are up to 2¥=2 — 2 > 2 distinct
eigenvalues of multiplicity 4p, p > 1 [Moreno, 2005] whose arithmetic mean is [|z||? [Chatelin, 2012].
The norm of x x y could be either equal to ||z X y|| = ||z|| ||y|| if v is in the eigenspace associated to
||z [2, or ||z x y|| = VX ||y|| if ¥ is in the eigenspace for A, where X is another eigenvalue of F,, such
that 0 < X < [|z[|> or A > [|z||?. If XA = 0 is an eigenvalue of F,, ||z X y||? =0 = 2 x y = 0 and z,y
are zerodivisors (but ||z|| ||y|| # 0).

These results must be considered seriously. First, we have to remember that nonalternativity for
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Ay, k > 4 cannot be interpreted thanks to the usual computational and geometrical habits. This huge
difference is revealed when we try to measure a product and not a single vector. For a single vector,
its magnitude (squared euclidean norm) is a ("static") isolated measure. But the magnitude of a
product measures the ("dynamic") interaction between two vectors. Considering multiplication with
the linear map F., the information relative to a product is a local result that reflects the nonisotropy
of the space R2* equipped with Dickson multiplication, in the presence of the multiplicative action of

T on y.

3.4 Automorphisms of Dickson algebras

The group of automorphisms Aut(A), applications that are isomorphisms over an algebra A, pre-
serves the properties of the structure A, and in particular, multiplication. Given our specific attention
to multiplication, it is quite natural a question to study the automorphisms in Dickson algebras, that

have a specific structure.

3.4.1 Dickson algebras in dimensions 1,2,4,8

Over R, the only automorphism is the identity. Over C, the identity and the conjugation are
the two elements of Aut(C). We only consider continous maps and do not take into account the
wild automorphisms of C that require the axiom of choice to exist. For the quaternions, all the
automorphims are inner: Aut(H) = {z — ¢xx x ¢!, ¢ € H, g # 0}. We will see in the next chapter
the computational role of Aut(H) for spatial rotations. Concerning octonions, it is remarkable that
Aut(G) is isomorphic to Go. This makes a tight connection between the automorphisms of octonions

and the zerodivisors of the sedenions (section 3.3.6) through the compact form of the exceptional Lie
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group Gs, GS ~ Aut(G) ~ Zer(A4) [Khalil and Yiu, 1997].

3.4.2 Composition algebras

From the Dickson algebras process, Jacobson described the automorphisms related to composition
algebras [Jacobson, 1958|. This includes the automorphisms presented in the previous sections for
R, C, H and G and also their split form (split-complexes & split-quaternions H, split-octonions @&).
It is interesting to notice the similarity between the Dickson algebras and their related split-form.
The only automorphism of split-complex numbers is the conjugation. For split-quaternions, all the
automorphims are inner: Aut(H) = {z — ¢ x x x ¢~%, ¢ € H, ¢ # 0}. As the automorphisms of H
are related to euclidean rotations in 3D, Aut(H) is linked to the hyperbolic rotations of the Poincaré

disk model |[Karzel and Kist, 1985]. Aut(%) is isomorphic to the non-compact form of Gy

3.4.3 Nonalternative Dickson algebras A, k£ > 4

The general case of automorphisms of Dickson algebras has been conjectured and proved for the
sedenions A in [Brown, 1967|. The complete proof of this conjecture appeared in [Eakin and Sathaye, 1990].
What is remarkable in the formula given by Brown is that there is a clear break point for Dickson
algebras Ay, k > 4. There is no way to relate the automorphisms of R, C, H and G. But, for k > 4,
there is an iterative formula to construct the automorphisms of A, from the automorphisms of Aj;_;.

It is very interesting that the loss of alternativity in the sedenions A, implies a radical transformation
for the zerodivisors and the automorphisms for A, & > 4. We have seen in Section 3.3.6 that zerodi-
visors are associated to the question of measure. Automorphisms are often considered because they

preserve the structure and are associated to conservative aspects. As a consequence, computational
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properties related to measure and conservative operations must be addressed with caution, depending
whether they concern the algebras Ay for £ < 3 or k > 4.
The automorphisms of Dickson algebras are a very wide and dense topic of which we only presented

a very small part useful for our purpose.

3.5 About cross/vector and dot/scalar products

3.5.1 Scalar and Vector product in Dickson algebras

Let us consider x = zg + X (resp. y = yo + Y) € Ay, where g = Re(x) (resp. yo = Re(y)) and
X = Im(z) (resp. Y = Im(y)). We define in Dickson algebras the scalar product of x and y, by
< zly >= 3(Re(T x y)) = 5(x xy+y x T). This corresponds to the classical euclidean scalar product
< zly >= szyz € R. In the case of an imaginary vector X € Z(A;), X = —X (Section 3.3), thus

we have < X|Y >= —3(X x Y +Y x X). We also define for two imaginary vectors of Z(Ay), the

vector product X&Y = 5(X xY =Y x X) =5 [X,Y] € Z(Ay).

1 1
2 2
With these definitions in Ay, the product of two imaginary vectors X x Y can be simply written

as

X XY =—< X[V > +X&Y.

For Ay = R and A; = C, the vector product is identically 0 because multiplication is commutative.
For the quaternions Ay, = H and the octonions A3 = G the product & corresponds to a specific vector
product known as cross product in linear algebra. We will use the notation wedge A originally used

by Clifford for the cross product. As stated in Chapter 2, Remark 1.1, the symbol x is only used
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for multiplication in our presentation. The notation wedge is now classically attached to the exterior
product. But is the exterior product meaningful for Comptutation ? We will address this question
in Section 3.5.2 and also in the next chapter when we will compare the hypercomplex formulation of
Clifford algebras.

In an oriented euclidean space of dimension 3 (historically R?), the cross product of two vectors a
and b is defined as the vector a A b othogonal to a and b such that the basis (a, b,a A b) respects
right-hand rule (direct basis) and that ||a A b|| = ||a]| ||b]| |sin(Z£(a,b))| (parallelogram rule). The
operation A is distributive and anticommutative and was first defined by Clifford, then borrowed by
Gibbs for his vector calculus.

If we identify the canonical basis of R? with the three vectors i, j, k in the imaginary part of the
quaternions H = A,, we can link a vector a = (a1, as,as) (resp. b = (by, by, b3)) to the imaginary
quaternion q = ayi + asj + ask (resp. ¢ = byi+byj + bsk) in Z(H) ~ R3. By direct calculations of the
components it appears that the multiplication of the quaternions q and ¢’ gives Re(¢x¢') = — < a|b >
and q&¢' = Im(q x ¢') = a A b, where < alb > is the dot/scalar product. The cross/vector product

is the imaginary part of the product of two pure quaternions.

In standard linear algebra, the cross product is only defined in 3D euclidean space. It is less
known that the classical cross product is also defined in 7D, identifying R” with the imaginary part
of the octonions. In 7D, the choice of geometric direction for the orthogonal cross product is in
R5 instead of R in 3D but the parallelogram rule is still valid. In fact, it can be shown that the
only dimensions where a vector product always respects this rule for its length are 0,1,3 and 7

[Brown and Gray, 1967, Darpd, 2009] and these dimensions correspond to the imaginary parts of the
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alternative composition algebras that we redefined in Section 3.2. In dimension 0 and 1, the vector
product is identically zero but in the cases of 3D and 7D four algebras can be equipped with the
classical notion of vector product (standard and split forms of quaternions and octonions).

The definition of the vector product as %[X , Y] is still valid in all Dickson algebras but the
property that the length is the area of the parallelogram built on X, Y is no longer valid in gen-
eral. For X and Y in Z(Ay), k& > 4, the vector product & satisfies the parallelogram rule when
| X <Y =||X]] ||[Y]| < [X,X,Y],Y >=0< [V, X], X >=0< [X,X,Y]=00r [Y,Y, X] =0
(see [Chatelin, 2012, Prop 2.3.2 and Prop 2.7.1]. Due to non alternativity for k& > 4, this is only a

local property which does not concern the whole set Z(Ay).

3.5.2 Alternative extensions for the vector product

Should the cross product be only a geometric property? Or could it be a notion related to Compu-
tation which has, in the particular case of composition algebras a very specific geometric interpretation
? We should always be careful about geometric intuition beyond dimension 3 and we may ask the fol-
lowing question: does the definition of the cross product inherited from 3D-geometric intuition should
obey the limitations of its geometric origin? Could it not, rather, betray its computational origin? The
3D-cross product is a consequence of multiplication in quaternions, even if the link between both
is often presented as a coincidence. The distinction in Physics between the scalar part and vectors
is reunited in the framework of 4D-quaternions. Dot product and cross product are linked through
multiplication. To ignore this connection may lead to additional hypotheses such as the intoduction

of specific gauges in Physics, especially in electromagnetism [Chatelin, 2015].
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We will develop these remarks in the next chapter as we compare the geometrical generalisation of
the cross product in exterior algebra and its computational generalisation in nonalternative Dickson
alebras. The idea of Gibbs and Heaviside to linearly split H into the real part and the vector part as
R®R3 was a pragmatic way to avoid to have to deal with an abstract 4D-superstructure [Gibbs, 1893).
Nevertheless, the multiplicative link between both parts which is implicit in their formulation may

have tangible consequences, see [Chatelin, 2019].

All of this sheds light on interesting differences between a bottom-up and top-down view. They
are complementary hence bring complementary insights. The example of H considered in linear
algebra and Physics as R @ R? is quite instructive. The cross product can be viewed as (i) a direct
computational consequence of multiplication restricted to Z(H), or (ii) as a constructed geometric
3D-object. The first option (i) maintains a global multiplication x in dimension 2¥ and relaxes length
(in dimension 2%7!). The second option (ii) maintains length (in dimension n € N) and downplays
multiplication. The idea of bifurcation that we introduced for numbers and structures, applies equally
for the cross product. The dominant influence of Grassmann, Clifford and Cartan in geometry has
implicitly determined the future of the concept of cross product in more than 3D, in fostering the
second option (ii) which is geometric (length by parallelogram rule) rather than the first (i) which is

computational (existence of multiplication in a superstructure).

3.5.3 Differences in vocabulary and notations

With few exceptions, the birth of the algebraic tools that are now especially used in linear algebra

took place in Europe during the first 70 years of the 19" century. Multiplication was denoted X,
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scalar product < .|. > and vector product A, where names were coined by Clifford. A major disruption
occured in the 1880’s in the english spaking world due to the invention of vector calculus by Gibbs in
the USA and then transmitted to Heaviside in the UK. The break impacted notations and vocabulary

in the following way:

Europe English speaking world
product z x y xy
scalar product < z|y > dot product x.y
vector product xz Ay cross product x X y

We observe that the right column is largely dominant in most of countries. Notations and writing
habits substantially vary between different countries around the World and correspond to several
ways to write Mathematics. The cultural differences impact the approach of a given topic (from the
notations to te mathematical properties) and as we have seen earlier (Bibliographical notes in Chapter

2), this is really noticeable in textbooks and teaching methods.

3.6 Summary

Dickson algebras provide an instructive example of a family of algebras A, whose evolutive struc-
ture is recursively defined from Ay = R by three operations (addition, multiplication and conjugation).
The loss of associativity when k evolves from 2 to 3 entails no severe disruption because G retains
alternativity as a weak form of associativity on two vectors, one of them repeated. By comparison, it
appears that the step from k£ = 3 to k = 4 marks a fundamental frontier on many accounts. First, on

the one hand, there is the loss of alternativity, of norm multiplicativity, of general invertibility and of

70



isotropy. Second, on the other hand automorhpisms and derivations evolve iteratively. The pay-off for
the increased freedom in behaviour is a decrease in predictability. High dimensional Dickson algebras

remain largely terra incognita.

3.7 Bibliographical notes

The main remark concerns the name that we choose for Dickson algebras. In the litterature, the
usual name is Cayley-Dickson algebras. On the one hand, Cayley discovered the octonions 2 years
later than Graves but octonions are still often called Cayley numbers, a chronology can be found in
[Baez, 2002]. On the other hand, there is no sign in Cayley’s work that indicates how to go from the
quaternions to the octonions (which is the way Graves found the octonions in December 1843), nor any
indication of the general duplication process found by Dickson [Dickson, 1919]|. The fact that Cayley
was considered as a professional mathematicican whereas Graves was a lawyer learnt in Mathematics
may explain this unfortunate attribution. In a whole, it is not a lack of consideration to say that
Cayley did not play a central role in these algebras, and that Graves, often presented as an amateur,
succeded in finding the remarkable idea of octonions. The real father and central figure of recursive
definition was Dickson who discovered the doubling process by generalising Graves’ construction from
H to G. He collaborated with Wedderburn who worked on hypercomplex numbers and Jacobson
was a student of Wedderburn. The duplication process obtained by Dickson has been generalised by
his student Albert [Albert, 1942|. A detailed study of the suprising specificities of standard Dickson

algebras can be found in [Chatelin, 2012].
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Chapter 4

Isomorphic formulations and Modelling

In this chapter, we will be interested in comparing some isomorphic algebraic formulations, not
of resolution methods for a given equation but of equations modelling a given phenomenon. Just
as there exists a variety of resolution methods to choose from, there exists equally a large collection
of mathematical tools that can be considered to approach and build a representation of physical
phenomena. Rather than adapting a physical problem to an a priori fixed algebraic frame, our
objective is to look for an algebra that matches as best as possible the physical properties. For
associative algebras, there exist several other formulations than the ones we presented in the previous
chapters and we will put in evidence that the notion of descriptive equivalence is different from that of
computational equivalence. We will mainly focus on the relations beween the three other formulations,

namely matrices, Clifford algebras and tensors that are widely used in Science and Engineering.

4.1 Matrix representations of associative structures

As a preliminary remark, we first mention that because their product is associative, square matrices
cannot faithfully represent non associative algebras as we explained in Chapter 3 with the (alternative)

octonions, used for example in Particle Physics. This means that a matrix formulation is not sufficient

I0)



to describe the algebras that we consider, in particular Dickson algebras in dimension > 8.

4.1.1 2D-algebras

We recall that an isomorphism is a bijective application that preserves the algebraic structure
(group, ring, algebra). Two algebraic structures are isomorphic if there exists an isomorphism be-
tween them. For isomorphic structures there can be several distinct applications that describe the
isomorphism between these structures. In Chapter 2, we described the canonical algebras of the
plane, the complex numbers C with i> = —1, the bireal numbers 2R, with u?> = —1 and the dual
numbers D, with n? = 0. There exists isomorphisms z — M, between these three algebras and three
subrings of square matrices of order 2. This means that for z in one of the three algebras of the
plane and «,  in R, the isomorphism preserves addition, internal multiplication and multiplication
by scalars: My,45. = oM, + M, and M., = M, M, . We present below in parallel for each of the
three algebras, the explicit form of M., the matrix representation I of the real unit 1 and the matrix

version of each generator ¢, u, n in the corresponding algebra. In what follows, x, y are real components.
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z =+ Z =T +uy Z =r+ny
r =y Ty ry
Yy Yy x 0 x
10 10 10
12 = ) [2 = ) [2 = >
01 01 0 1
- 0 —1 - 01 N 01
= = M, U= =M, N = = M,
1 0 10 00
Ty
For complex numbers, the isomorphism can also be represented by z +— M. = = MT.

M, represents the linear map a — z X a = (xb — yc,yb + xc) considering the complex number

b r -y b xb —yc
a = b+ 1ic as a 2D-real vector a = , that is M,a = =

c y c yb+ xc

The matrix M. = M5 represents, as a linear map, the multiplication by Z, a — Za, that is equal
to M, only if z is real (y = 0). The two matrices M, and M! = M define two isomorphisms be-
tween complex numbers and matrices of order 2, but they do not represent the same multiplication if
they are considered as linear maps. It is important to make the difference between the isomorphism

between algebras and the matrix formulation of multiplication as a linear application for vectors in R2.

In Section 1.2.3 of Chapter 2, we introduced examples of zerodivisors for matrices. For dual

numbers, the nilpotent matrix N , such that N’ =0is a representation of the nilptotent unit n.
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: . =T : o e R
Notice that we can also use the matrix N* (there is no descriptive distinction in taking N™ instead

of N).

11 1 -1

For the bireal numbers, the two matrices M., = 1 and M, =

5 that

1
2
11 -1 1
have been respectively introduced in Chapter 2 as E, and E_ correspond to the bireal numbers
e; = 3(14u) and e- = 1(1—u) such that €3 = ey, e;e_ = e_e; = 0 correspond to M2 = M., = E.
and B E_ = M, M, =0 . Notice that |lex|| = \/LE
Let z€?R, 2 =2+yu= Xey +Ye_, X =x+y,Y =x—1y. The bireal numbers e, and e_ form
an idemptotent basis of 2R = Re, @ Re_. In this basis, addition and multiplication are performed
componentwise: because e;e. = e e, =0, 22/ = XX’e, + YY’e_. This natural parallelism in
R has interesting consequences for multiplanar numbers (Section 4.1.2) and for practical numerical
computations (see Chapter 8). If we represent in Figure 4.1 the bireal plane with the axes 1,u
as the original basis and the idempotent basis {e;,e_}, the change of basis represents a geometric

T
transformation combining a rotation centred at the origin with angle v and a scale change of the

axes, as the basis {e,,e_} is no longer orthonormal in the sense of euclidean geometry (||ex|| = \/Li)

Figure 4.1 — The idempotent basis {e,,e_} for *R
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The above change of basis is represented by the matrix P = % , where H =
1 -1 1 -1

is known as a Hadamard matriz. We recall that Hadamard matrices are square matrices with +1
as entries and orthogonal column vectors [Hadamard, 1893]. The link between idempotent basis and
Hadamard matrix will be developped in the next section and also in Chapters 7 and 8 where we

address applications in Mechanics and Quantum Computing.

4.1.2 Muliplanar numbers
4.1.2.1 Definition and origin

An iterative construction based on the bireal structure allows us to generate a sequence of algebras
in dimension 2%, k > 2 in order to obtain the multiplanar numbers. Let R; € {C, R, D} be a basis

ring of dimension 2. Given Rj_; and a nonreal generator w;, ¢ Ry_1, u; = 1, then
Ry = Ri_1[ug] = Re1 & Ry_1uy,

is a commutative ring where uy, is the £ nonreal generator such that dimR; = 2%, k > 2.

Addition is performed componentwise and for z = x + yuy, 2’ =2+ y'uy € Ry, 2 x 2/ =z x 2’ +
y Xy + (zxy +yxa)u.

In setting B, = 2R, one can see that this is equivalent to start with Ry = R and u; = u the bireal
unit. This adds one step to the process and shows why in this case the family of algebras { Ry }r>o is
called multireals.

The original idea of this sequence of algebras goes back to the italian algebraist C. Segre who defined
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in[Segre, 1892] the multicomplez numbers using imaginary units iy, ii = —1 for duplication instead of
the u. Multicomplex numbers are defined inductively such that Co = R and C,,11 = {z = = + yi, 11
,,y € Cp}, n > 1, where (iy)1<p<n is a sequence of genererators such that iy = —1. The properties
of mutliplication are similar at each level k£ to complex multiplication using the fact that by definition
generators commute, Vk,[ > 1, iy x i; = i; X iy. C; is the set of complex numbers and elements of
C, = 2C are called bicomplex numbers. The algebra C,, is of dimension 2" over R. The algebraic
study has been fully performed by Segre and the properties of these structures as Banach algebras for
analysis have been investigated in |Price, 1991].

As generators commute, we notice that (ip x i;)? = 1 plays a role equivalent to that of ug, this
is why the definition of multicomplex numbers by Segre is contained into the multiplanar one by
choosing Ry = C. This can be checked for example with the bicomplex numbers C, between the
version of Segre (two imaginary units 41, i) and the one with the imaginary unit ¢ and the bireal unit
u. The two basis (1,1i,1s,1; X iy) and (1,4,u X 7,u) can be easily related, taking i = iy, u X i = iy
and u = —i; x iy. This last version of bicomplex numbers goes back to Cockle who called them
tessarines some 44 years before Segre [Cockle, 1848|. Inspired by Hamilton, he invented the nonreal
numbers u; = u and uy which square to 1 in respective dimensions 2 and 4. The two forms have
distinct properties especially concerning their matrix formulations [Chatelin, 2018, Chap.5|: in Segre’s
formulation, the matrix reduction of multicomplex numbers does not present the same block structure
as we will see in the next section. This is why we will keep the formulation with the units uy.

Multiplanar algebras are very different from the Dickson algebras presented in Chapter 3. Even if
they share a common dimension 2* resulting from a duplication process, the definition of multiplication

in multiplanar algebras implies no novelty in the algebraic properties for multiplanar numbers. By
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contrast, only Dickson algebras display a creative power by induction. For multiplanar algebras, the
induction simply produces replication of the properties of the initial algebra. We will see in the next

section a consequence in this replication, with the specific matrix formulation of multireal numbers.

4.1.2.2 Recursive construction and reduction for hierarchical parallelism

Let Z be a multireal number in Rj, we can expand the components of Z in the successively

embedded algebras:

J = A + B uy € Ry , A B € Ry,
v N\ v N\
Ay + Biugq Ay +Boux1 € Ry, A1, Ay, By, By € Ry

which corresponds in matrix representation to:

Al By A2 By

Al|B Bl A1 BQ AQ MA MB
MZ: — =

Bl A As | B2 | A1 | By Mp | Ma

By | Ay | By | Ay

The matrix that represents the multireal number Z has a 2 x 2 block circulant structure and each
block is itself circulant.

The matrix that represents the multireal number Z can be reduced to a diagonal form, by using
the idempotent representation, recursively at each level (k — k — 1 — .. — 1), as was done for the

bireal numbers in Section 4.1.1 with the idempotent basis. From

Z: A+Buk = (A+B)€k++(A—B)6k_
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and then with A; + Biuyx_; and B=A45 + Bouy_1, we have

Z = [(A1+ Byux_1) + (Ay + Boug_1)] exr + [(A1 + Biug_1) — (As + Boug_1)] ex—
= [(A1 + Az) + (B + B)uy q] ey + [(Ar — Ag) + (B — By)uy 1] ex—
= [[(A1 + A3) + (B1 + Bo)] e+ + [(A1 + A2) = (By + Ba)] eqr—r)-| er+
+ [[(A1 = A9) + (BL = Bo)] ege—1y+ + [(Ar — Az) = (B1 — Ba)l ey en—
= [(A1+ Az) + (B1 + By)| e—1yrers + [(Ar + Az) — (Br + Ba)] er—1)—exy
+[(A1 — A2) + (B1 — Ba)| ey e + [(A1 — Ag) — (B1 — Ba)] er—1)-€x—
We can thus recursively construct an idempotent 2* basis whose vectors are products of idempotents

of each level R,,, 1 < m < k which corresponds in matrix representation to:

This process reflects the arborescent structure to obtain a diagonal form thanks to idempotent 2%
basis. This is a structural form due to the algebra and not to computation. The interesting part of

this reduction concerns the matrix for the change of basis:

k—k—1 k—1

Hyp 1| Hpq

[N

Hy 1 | —Hg

Up to a coefficient (the idempotent basis is not orthonormal), the sequence {2FP; = Hp}r>1 is
a particular case of Hadamard matrices [Hadamard, 1893]. This particular sequence of Hadamard
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matrices was known to Sylverster (1867). It plays a key role in the Walsh-Hadamard transform
in Discrete Fourier Transform (DFT) used for data compression in signal and image processing
[Ahmed et al., 1974]. The relation between the structure of the multireals and the method of Walsh-
Hadamard transform is a remarkable connection which is not widely appreciated [Alfsmann et al., 2007].
The reduction principle for multireals relies on dichotomy and on the uniqueness of the idempotent
basis that gives a recursive construction of naturally embedded blocks. Notice that with R, = C or
R; =D, we cannot achieve a fully diagonal form but a 2 x 2 block diagonal one. The 2 x 2 blocks are

the matrices M, of the form given in Section 4.1.1 for complex or dual components.

We will now go back to Dickson algebras with quaternions and we will see the specific consequences
of an evolutive definition of multplication for their matrix formulations, which contrast with the

replication of algebraic properties in multiplanar algebras.

4.1.3 Quaternions

Let ¢ = a+bi+cj+dk € H. Quaternions have several representations over R, one of the common

form found in the litterature is given by

a b c d
-b a —-d c AN A
MR(Q) = - ’
—c d a —=b -T Z
—d —c b a
a —b c —d
where Z = M, = and T' = M.1;q =
b a d c
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We can represent the left (resp. right) multiplication of a quaternion p by a quaternion ¢ as matrix
L, (resp. R,) acting as a linear map over R*, where the quaternion p = w + i +yj + 2k is considered

as a vector of R%, p = (w, 2,7y, 2):

Z =V a —b c d
Ly:p—=qxp, Ly= , with Z = and V =

vV Z b a d —c

w

x Z =TT
such that ¢ x p = L, =Lpand Ry:p—pxq, B, = = Mg(q)T.

Y T Z7

2z

The matrices that represent left and right multiplications by the quaternion ¢ as the linear maps
L, ., R, are unique, but the matrix representation of the quaternion ¢ itself is not. The standard
formulation Mg(q) generaly found in textbooks is the transposed matrix of the right multiplication
matrix R,. As there exist several distinct representations of quaternions, "the matrix form" of a
quaternion is an ambiguous term. If we represent quaternions by matrices, we introduce a potential
misunderstanding that does not exist with Hamilton’s unique formulation of the quaternions. As
for complex numbers, this shows the difference between isomorphic structures and multiplication as
a linear map.

Notice also that as H is associative, V¢, ¢ € H, [L,Ry] = LRy — RyL, = 0 that is Vo €
H,qg x (z xq') = (¢ x ) x ¢. This result will be used for the representation of rotations in Section

4.3.1.
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Quaternions also have a matrix representation over C, rewriting ¢ = (a+bi)+(c+di) X j = z+t x j,

z,t € C, we get back the form obtained by the Dickson doubling process.

z t
Let Mc(q) = , that is Mc(q) = aly + bI + ¢J + dK,
—t z
10 ¢t 0 0 -1 0 —
where [, = , I = ,J = and K =
01 0 —2 1 0 - 0

Mc is an isomorphism between quaternions and 2 x 2 complex matrices [Dickson, 1924|. Matrices
I,J and K are closely related to Pauli matrices in Quantum mechanics (see Chapter 8).
Unlike for real matrices, there is some limitation to the matrix representation over C. Only right

multiplication can be defined for p =z +yj, =2 +tj € H, x,y, z,t € C. If p = (x,y) is considered

z —t
as a vector of C* and R, = = Mc(q)" then :
t z
B T
R,:p—pxq=(rvz—tytr+yz) =R, = R,p.
)

The left multiplication operator L, : p — ¢ x p cannot be a linear map due to conjugation. The
product ¢ x p = (zx—7t, yz+1T) expressed as a matrix-vector product would involve the two conjugate
T x T
vectors and but not the vector corresponding to p.

Y Y )
The real matrix forms put in evidence an ambiguity due to nonuniqueness in the formulation. The

presentation of a quaternion as a complex matrix is coherent only if we consider matrices as numbers,
thanks to the isomorphism between structures, and not as linear applications. The difference is that
mutliplication is either an operation between two elements of the same nature (two quaternions) or a

matrix-vector product between two distinct mathematical objects to represent a quaternion (a matrix
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and a vector).
The real formulation of quaternions is the only one that can represent the two linear maps corre-
sponding to left and right multiplications. Once again, this is due to the difference between isomorphic

structures and the formulation of left and right multiplication as linear maps.

4.2 Clifford algebras

4.2.1 Preliminary warning

The topic of Clifford algebras requires an advanced technical knowledge in algebra. We will give
in this section a quick overview of the main features of Clifford algebras. These algebras are not the
main concern of our work and we try to sum up in the next sentences, for the reader not acquainted
with this topic, the most important aspects related to our work. A more technical introduction is
presented in the Section 4.2.2.

Clifford algebras are associative structures and there exist descriptive isomorphisms between
associative hypercomplex algebras and Clifford algebras. By definition, given a vector space V' of
dimension n, the product of vectors is not a vector in V' but is an element of the Clifford algebra of
dimension 2", derived from V. The geometric aspect for n = 3 is at the basis of the theory of Clifford
algebras with dimV = n > 3 along with the notions of exterior algebra due to Grassmann. Clifford
algebras represent the choice to favour a geometric perspective inherited from 3D-geometry instead
of a computational one centered on multiplication which is the backbone this thesis.

With hypercomplex and Dickson algebras, we focus on an inner multiplication of vectors (a product

of vectors is a vector) and geometry is a consequence of Computation. In Clifford algebras, the
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choice is made to extend as much as possible the 3D geometric behaviour into the n-dimensional
case n > 3. Both formulations are, of course, correct and we can characterise Clifford algebras
vs. our hypercomplex algebras as (3D)geometry-driven vs computation-driven approaches. We can
also contrast the bottom-up (3D to nD in Clifford algebras) geometric version and the top-down
computational perpsective, not limited to associativity, in analogy with the ideas developed at the

end of Chapter 3 for the extension of vector/cross product.

4.2.2 Introduction to Clifford algebras

Clifford algebras are a family of unital associative algebras generated by a vector space V of
dimension n over a field K = R or C and a nondegenerate quadratic form @ : z € V — Q(z) € R.
In what follows we consider the case K = R and we mention the differences for the case K = C.
We denote by B the symmetric (hermitian for K = C) bilinear form associated to ) such that
Ve,y € V,B(z,y) = Q(x +y) — Q(z) — Q(y). Notice that even if K = C, as B is hermitian,
B(y,z) = B(z,y) and Q(z) = B(z,z) € R. Let Fy be the symmetric (hermitian for K = C)
invertible matrix associated with @ such that, Vz,y € V, Q(z) = z' Fgz, then B(z,y) = z' Fyy.
The Clifford algebra CI(V, Q) of dimension 2" is the algebra generated by elements of V' with the only
condition for the associative multiplication in CI(V, Q) to verify v? = Q(v), Vv € V or equivalently
ww+vu = 2B(u,v). If V=R" (resp. C"), with the euclidean inner product (.|.) (in this case Fyy = I,,)
and the corresponding algebra are denoted Cl,,(R) (resp. Cl,(C)).

The spectrum of the matrix Fyy associated with ) can be split in two parts, p stricly positive and

q striclty negative eigenvalues , p + ¢ = n with p,q € N, and their associated eigenvectors form an

orthogonal basis of V' (eq, .., €y, €p41, .., €p1q). The quadratic form has signature (p,q). Notice that
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depending on English-speaking or continental notations, the role of p and ¢ may be exchanged in the

litterature. The Clifford algebra CI(V, Q) is also denoted Cl,, ,(K).

Let us consider an orthonormal eigenbasis (ey, ey, €, .., €,) for @ in V, such that, for 1 <7 <p,
e2=Q(e;)=1,and forgq=n—p<i<n, e =Q(e)=—1.

The set {e; €4y..€5,, 1 <iy3 <iy <. <iy<n, 0<k<n} is a basis of the Clifford algebra with
the convention that the case kK = 0 corresponds to the multiplicative unit 1. This is related to the
concept of free algebra and corresponds to all the distinct products obtained by multiplying the vec-
tors (ey, e, €4, .., €,) of V taking into account the relations implied by Q: since the basis (e, .., e,)
of V' is orthonormal, 2B(e;,e;) = e;e; + eje; = 0 such that for ¢ # j, e; and e; anticommute:
eie; = —eje;. . The dimension of the Clifford algebra is 2". For example, let dimV = 3 with
an orthonormal basis (eq, e, e3) and @) a quadratic form of signature (3,0). A basis of the Clifford
algebra Cl(V,Q) = Cl3o(R) of dimension 2° = 8 is (1,e1, ea, €3, €162, €263, €163, €1€9€3). The other
products obtained from (ey, eq, €3) can be reduced, up to a sign, to an element of the basis of CI(V, Q),
where €2 = e = €2 = 1 and e, e and ez anticommute (e.g. ejesejezes = er(—erea)(—eae3) = e3).
If we compare this to the associative hypercomplex algebras, the orthornomal basis of V' plays the
role of external generators for the Clifford algebra (Section 3.3.2 in Chapter 3), the basis of CI(V, Q)
is obtained by multiplication of the basis in V' associated to the constraints of the quadratic form
(anticommutativity and real square). Another important difference is that because multiplication in

Clifford algebras is associative, it cannot bring as much evolution when n increases, than what is

possible in the case of nonassociative Dickson algebras (n > 3).
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As expected in Clifford algebras, the product of two vectors a, b in V' denoted ab is not a vector
of V but a vector of the Clifford algebra CI(V,Q). The antisymmetric part 1(ab — ba) = 1 [a, D] is
called a bivector and is denoted a A b (exterior product of Grassmann). The subalgebra generated by
the scalars and the bivectors is called the even subalgebra denoted CLY (K'). The notion of bivector is
linked with geometry, generalised from the 3D-case that we develop now. For n = 3, the bivector is
interpreted as the "oriented area" defined by the two vectors a and b. The geometric case in 3D for
V' is at the origin of the generalisation of bivectors in higher dimensional Clifford algebras.

Let us detail the case n = 3 where K = R, V has the orthonormal basis (e, €2, e3) and @ a quadratic
form of signature (3,0) with S = I3. Let a = aje; + ases + ages and b = byeg + baeg + bzes in V| with
ab = (aye1+agestases)(brer+baea+bses) € Cl(V, Q) = Cl3(R). After computation the exterior product
ofaand bis aAb = %(ab— ba) = (a1by —asby)eres+ (asbs — agbe)eses + (asby —arbs)ese;. The exterior
product of two 3D-vectors has the same components in the even subalgebra CZIO(R) as
the classical 3D-cross product in H. CI5,(R) of dimension 4 with the basis (1, ezes, ezeq, egez) is

isomorphic to H. For I # m, (ejem)? = (e1em)(€1em) = ei(—eiem)em = —eie?,. Asel =e2 =€ =1,
eges, e1eg, ese1 square to —1, anticommute and verify the same multiplicative rules as the quaternions
(i?=j2=k=—-1,ixj=k jxk=1i kxi=j),if we take i ~ eye3, j =~ ejey and k =~ eze;
(e.g. (ege3)(e1e2) = eseq is isomorphic to @ X j = k). Notice that as the basis of V' is orthonormal,
eie; = e; Nej, © # j. The subalgebra Cl;O(R) is generated by products of generators in V. By
comparison in H, the generators are directly given.

It is not clear that Clifford algebras bring any additional computational information compared

to the formulation of associative hypercomplex numbers. Indeed, as matrix representations, Clifford

algebras introduce ambiguity, because practical computations rely on the coefficients of the basis but
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several Clifford algebras can describe the same hypercomplex algebra using different vector spaces
as generators, and different choices of basis. Isomorphic description could use Clifford algebras or
even subalgebras. For example, Cly2(R) has four dimensions and is spanned by (1, €1, €2, e1e2), where
ey, ea, €162 square to —1 and anticommute, making Clp2(R) isomorphic to H. This brings a lot of
confusion because there is no standard form to describe the algebra. On the contrary, in associative
hypercomplex algebras, one can exhibit an explicit multiplication table with the generators and as-
sociated basis. The generalisation to dimension n > 3 designed for geometry does not concern our
computational purposes and is unable to fully represent the nonassociative structures, that are used in
Physics (particle and high energy Physics) [Baez, 2002, Catto et al., 2016|. Like for matrix algebras,
one must distinguish between the descriptive use of Clifford algebras in Physics to classify elements
(symmetry groups,..) and the practical role for computational purpose.

Under the influence of the physicist David Hestenes, Clifford algebras over R considered primar-
ily for their geometric aspects (rotations, inversions in n dimensions) are called geometric algebras
[Hestenes and Sobezyk, 2012] and enjoy great popularity. For more on this topic, one of the most

fundamental references amongst the existing litterature is once again |Lounesto, 2001].

We give below some of the most used equivalences between Clifford algebras and our formulation.
Clyo(R) is isomorphic to R. Clo1(R) is of dimension 2 and generated by e; that squares to —1, so
that Cly1(R) is isomorphic to C. ?R is isomorphic to Clyo(R) but also to lefl(R) the even part of
Cly1(R). For the complex case, Clo(C) is isomorphic to the complex numbers, Cl;(C) is isomorphic to

the bicomplex numbers C, = 2C (Section 4.1.2.1) and Cl;(C) is isomorphic to the complex quaternions

H(C) (Section 3.5 in Chapter 3). Let A € {R,C, H}, it is established that all Clifford algebras can be
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expressed as one of the three following forms: A, the direct sum A @ A or the square matrices over A,
M, (A). This result is related to the Artin-Wedderburn theorem for matrix formulation and to the
periodicity of Clifford algebras discovered by Cartan [Cartan, 1908| and usually attributed to Bott as

in [Baez, 2002] (See Bibliographical notes in Chapter 2).

4.3 Rotations

Rotations are an interesting example to compare the different formulations of a given problem.
We will put in evidence that some misunderstandings are due to the conceptual approach that is
associated with each version. In order to possess all the necessary elements to study rotations in the

3D-space, we will first study the 4D case and the relation with quaternions.

4.3.1 4D-rotations

In 4D, a rotation can be expressed as a matrix of the special orthogonal group, S € SO4(R),
SST = 1I,, det S = 1. Since Hamilton and Cayley, a 4D-rotation can be also represented as a product
of quaternions. Let z, I, r € H, | and r with unit euclidean norm (||/|| = ||r|| = 1), the rotation
of x is represented by the map x + [ X = x r. According to the real matrix form of left and right
multiplication as linear maps presented in Section 4.3.1, we can represent the two quaternions [ and r
by their respective matrices L; and R,.. For simplicity we write L; = L and R, = R. As ||l|| = ||r]| = 1,
L and R are orthogonal matrices. If x is considered as a vector of R*, we can write the rotation of
x as Sx = LRx. As L and R commute (associativity of H, see Section ), we have S = LR = LR
and this decomposition is unique. There exist two ways to find from S the components of L and

R. This is done either by direct calculation in [van Elfrinkhof, 1897] or with a constructive method
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in [Rosen, 1930]. It is interesting to notice that Rosen® found this decomposition in the case of the
relation between quaternions and Lorentz transforms. We introduce in the next section the notion of

isoclinic rotations which allows us to link the geometric aspects of rotations angles with quaternions.

4.3.2 Isoclinic rotations in 4D

We recall the standard reduction of orthogonal matrices into a block diagonal form. In the case of

a rotation in R*, a rotation matrix can be reduced as:

Clan) 0 cosa —sina

0 C(az) sina cos

with a; and ay the angles of the two orthogonal rotations corresponding to the 4 complex eigen-
values ¥ e*ie2 (2 pairs of conjugate eigenvalues), with unit modulus.

In the particular case of 4D, a rotation of R* such that a; = +as is said to be isoclinic. By
convention we distinguish left isoclinic (o = ag) and right isoclinic (ay = —aw) rotations. The
decomposition of a general rotation in 4D as the product of 2 rotations (left and right isoclinic) in
2 orthogonal planes in R* is due to [Goursat, 1889] for the pure geometric point of view, with no
mention of quaternions.

The two references [Coxeter, 1946] and [Weiner and Wilkens, 2005], put in evidence the link be-
tween isoclinic rotations and quaternions. For ¢ € H , ||g|| = 1, it can be shown that L,, R, € SOy
+ia

have a pair of double eigenvalues e™* (o = oy = Fay). L, corresponds to a left isoclinic rotation

(a1 = ap) and R, corresponds to a right isoclinic one (a; = —az).

1. He is the R of the EPR experiment in Quantum Mechanics.
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The matrix L, and R, are respectively similar to , and

Going back to the matrix S = LR = L;R,., if we denote o; and «,. the angles corresponding to the

reduced forms of I; and R,, we have:

g C(al) 0 C(Oér) 0 B C’(ozl + Oér) 0
0 Clw) 0 C(—ap) 0 Cla; — o)

In summary, we can say that a general rotation in 4D is the product of a left and a right isoclinic

rotation respectively represented by the left and right multiplications of two unit quaternions.

4.3.3 An alternative view for 3D-rotations

We are now able to explicit the role of quaternions for 3D spatial rotations compared to other
formulations. The quaternionic formulation of 3D-rotations can be seen as a particular case of the
4D-rotations.

Let ¢ = a + bi + ¢j + dk € H a unitary quaternion ||¢|*> = a> + 0>+ +d*> = 1, and w =
0+ zi + yj + zk € ZH, an imaginary (=pure) quaternion. The rotation of w in ZH is given by
Hamilton: w — ¢ X w x ¢~' = ¢ x w x g. This is an automorphism of quaternions as presented in
(Section 4.2 Chapter 3). The result of the rotation w — ¢ X w x ¢~! is a pure quaternion.

If we now represent rotations with orthogonal matrices of order 3 and matrix-vector product,

corresponding to the quaternionic multiplication, we have the Euler-Rodrigues formula:

a?+b?—c?—d? 2bc—2ad 2bd+2ac x
_ _ : 3
0= 2bc+2ad a?—b2+c2—d? 2cd—2ab , W= Yy in R
2bd—2ac 2cd+2ab a?—b2—c24d? V4
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O is a rotation matrix (OOT = I3, det O = 1) and the rotation of w considered as a vector in R3

is the vector Ow.

We will now be more specific about the angle of the rotation in 3D which is a source of controversy
in the litterature. If we consider the rotation angle 6 with the rotation axis v = (r, s,t) a unit vector
of R3, then the rotation is expressed by the 4D-quaternion ¢ = Cos(g) + sin(g)(ri + sj + tk). In
[Altmann, 1989|, Altmann gives all credit for rotations in 3D to Olinde Rodrigues who actually gave
the matrix version and a coordinate free formula [Rodrigues, 1840|. He goes as far as to suggest that
Hamilton did not understand properly his own invention of quaternions! His two arguments are that
1) since the rotation of quaternions is not of the form w +— ¢ x w, "it is no longer possible to say
that the quaternion operates on a vector transforming it into another vector" and 2) the angle in
the quaternionic formula is not the vector angle # but half of it. Both arguments display a profound
misunderstanding of quaternionic computation and its geometric interpretation in 3 and 4D. This
misguided point of view is quite popular in the Geometric Algebra community (the real Clifford alge-
bras presented in Section 4.2.2) and forms the basic reason for the definition of general rotations in
Clifford algebras’ formulation. These two claims of Altmann put in evidence that he only considers
imaginary quaternions to represent 3D-rotations. There is no mention in his work of quaternions used
for 4D-rotations and that 3D-rotations with quaternions are a consequence of the 4D-case, the full
dimension of quaternions. As we explained, quaternions act as 4D-rotations so that the left multi-
plication corresponds to a left isoclinic rotation in 4D... and not in 3D. Once again, this shows the
reluctance to consider a quaternion as a number that can be multiplied. The result of the multiplica-

tion is a quaternion not limited to be a pure quaternion (assimilated to a 3D-vector). The quaternionic
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multiplication that represents 3D-rotations is the composition of two rotations, the left isoclinic with
q = cos(%) +sin(%)(ri + sj + tk) and a right isoclinic with ¢~ =g = cos(&) — sin(%) (ri + sj + tk).
The resulting geometrical effect of these two rotations in 3D is an invariant axis which is the rotation
axis and a plane with a total rotation angle of g + g = # according to the decomposition into isoclinic
rotations. Another important remark is that there is no trace of a multiplication and an algebraic
structure in the papers of Rodrigues. His results are absolutely correct but do not reveal the compu-
tational role of multiplication blindingly present in Hamilton’s work. All of these discussions present
two radically distinct points of view. Researchers ignoring the real part of 4D-quaternions tend to
force them to behave like 3D-vectors. Following Hamilton, we present a different point of view, based

onw— qxwx q !, where w € Z(H), q € H.

The example of 3D-rotations and quaternions is highly instructive. We have seen that it is a bifur-
cation point between different conceptions. In Physics, with a vectorial approach, there is no multipli-
cation of 4D-vectors: scalars in R and vectors in Z(H) are independent components of R* = R ¢ R3.
In Clifford algebras the result of multiplication is not a vector. The idea that underlies our work with
hypercomplex algebras is based on computational reasons and centred on multiplication. We will see
in Chapter 8, that the quaternionic version of 3D-rotations is intensively used in applicative fields for

their algorithmic and numerical advantages.

After matrices and Cifford algebras, we will now have a look at tensors formulations. This is an
isolated aspect of our work for comparison of structure but we will use it for practical applications in

continuum mechanics and quantum computing.
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4.4 A few words about tensors

Tensors are used in a large range of applications in Science. We will not discuss their role as
multilinear operators in data analysis or in differential geometry since it bears no connection with the
goal of this thesis.

In our work, the role of a tensor formulation is reduced to be that of a descriptive tool to classify
algebras, encountered for example with complex quaternions H ®r C but with no computational
use. Indeed, concerning practical computations for the two main applications that we will develop
in Chapters 7 and 8, we will see that either a tensor formulation does not bring any additional
information, or its properties are actually not used in computation. In particular, notice that the
notion of eigenvalue or eigenvector of a general tensor has no clear meaning. In the case of continuum
mechanics, the properties of the symmetric stress tensor (see Chapter 7) in mechanicist parlance is
all due to the spectral theory of matrices.

For Quantum Computing, we will see that the description of quantum gates presented as tensor
products can be reduced in practice to matrix block products (Kronecker product) and we will provide

another formulation with hypercomplex algebras.

Summing up this chapter, we have seen that there exist different formulations of the same mathe-
matical objects that represent historical and conceptual choices originating in Physics, Geometry and
Computation. One key point for Computation is whether the multiplication of vectors is explicitly
considered.

We have indicated that isomorphisms with matrices and Clifford algebras can only be used for

associative structures, a fact which is a strong limitation compared to the hypercomplex formulation.
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Concerning matrices, the isomorphisms with 2D algebras and quaternions are not unique and thus
ambiguous if the isomorphism used is not clearly specified. Complex matrices are only able to repre-
sent right quaternionic multiplications as linear operators. The real form of left and right quaternionic
multiplication is related to the description of general rotations in 4D. The notion of isomorphism is
relative: it is valid for formal description where the different formulations reveal different aspects. We
will see in the applications (Chapters 7 and 8) that there is not only a fundamental conceptual differ-
ence between isomorphic structures but that it also implies important consequences about algorithmic

and numerical aspects.
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Deuxiéme partie

Nouveaux résultats et applications
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READING KEYS FOR THE SECOND PART

We present in this part a novel vision and new results on already known fields of application.
More than the technical aspects, what really matters in this part is relating disconnected
theoretical and applicative fields with common mathematical principles.

“C’est méme des hypothéses simples dont il faut le plus se défier, parce que ce sont celles qui ont le
plus de chances de passer inapercues.”

Henri Poincaré (1892)

"It is the simple hypotheses of which one must be much wary, because these are the ones that have
the most chances of passing unnoticed".
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Chapter 5

Hypercomplex roots of real polynomials

In this chapter, we will focus on the alternative solutions of polynomials with real coefficients. In
particular, we will question the implicit assumption that solutions should be limited to real or complex
numbers for practical computations. The result for complex numbers in the Fundamental Theorem
of Algebra (FTA) is reconsidered when we relax some properties of classical multiplication, like the
nonexistence of zerodivisors. We will mainly focus on the exsitence of roots in the three algebras of
the plane, C , 2R and D, but this alternative view for roots of a polynomial with real coefficients can

be extended to other hypercomplex and Dickson algebras.

5.1 Quadratic polynomials and algebras in the plane R?
Let us consider the following quadratic equation
X% —-2aX +b=0,a,becR.

The classic resolution introduces the discriminant and the above equation can be rewritten as
(X —a)?=a*>—-b=AeR. If A <0, there are two complex conjugate solutions £ = a + iv/—A and

E =a—1v/—A.If A > 0, the two real solutions r; = a+vA and ry = a—+/A are known since Sumerian
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times, four millennia ago. The introduction of the bireal unit u naturally adds two bireal conjugate
solutions ad-uv/A which satisfy ((a+uyv/A)—a)? = u?’A = A. If A = 0, the double real solution r = a is
complemented by an infinity of dual roots to yield a+Rn such that VA € R, ((a+An)—a)* = A*n? = 0.
We summarise in parallel these three cases and represent for each case the 2D-roots in the respective

algebras C , 2R and D as presented in [Chatelin et al., 2014, Latre et al., 2015].

Basis (1, 1) Basis (1, u) Basis (1,n)
* i
— D e —— E
® VA
2 complex nonreal roots 2 real roots 11 # 1y, 1 double real root r = a ,
a=+i/[A| +2 bireal nonreal roots + infinity of dual nonreal
r+r r =
! 24 1 20 roots r + Rn

2 2

The fact that an equation of degree 2 may have four bireal solutions (2 real and 2 nonreal) or even
an infinity of dual roots goes beyond what is true (2 roots only) under the implicit assumption that
limits the set of possible solutions to be R or C. As bireal roots (resp. dual roots) lie in the ring *R
(resp. D) and not in the field C, such a limitation is not to be considered. When this is generalised to
a polynomial of degree n with real coefficients, there can exist up to n? bireal roots and an infinity of
dual roots, depending on the multiplicity of the real solutions [Latre, 2013]. In the next section, we

will focus on the specific properties of bireal roots.
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5.2 Bireal roots of polynomials with real coefficients

The results concerning the existence of bireal roots is a particular case of the theory in [Segre, 1892]
for bicomplex numbers (see Multicomplex numbers in Section 1.2 of Chapter 3). Even if it is written
in the outdated vocabulary of its time, the paper resonates with modern algebra. It presents the
ring structure, the existence of the two ideals of zerodivisors (called "nullifici della prima e seconda
schiera", §29 p. 458) and the complete theorem for bicomplex roots of polynomials with bicomplex
coefficients (§31, p.462-463). This seminal article remains today untranslated in English. As a result,
the solution for bicomplex polynomials has been periodically rediscovered.

The development concerning the structure of roots (Figures 5.1 and 5.2) and multiple factorisations
of a polynomial with its bireal roots is original. The more general case concerning facorisation of
polynomials with bicomplex coefficients is also presented in [Latre, 2013] but the bicomplex case will

not be used for practical purposes in this thesis.

5.2.1 Roots description

We consider the polynomial P = i a; X" of degree n > 2 with real coefficients a;, 0 < i < n and
=0
we consider the zero set of P as the slet of bireal roots of P.
As we will only use the result concerning bireal numbers, we will assume that all of the n roots,
counted wiht multiplicity, are real (see |Latre, 2013| for the general case with complex roots and
bicomplex polynomials). It is useful to keep in mind that nonreal bireal roots exist iff at least 2

distinct real roots exist to start with. In what follows, we assume that there are at least two distinct

real roots and we denote by d the number of distinct real roots ri,..,rq of P, 2 <d <n.

Proposition 5.2.1. There are d* roots q;. of P in *R given by the coupling of real roots r; and ry
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such that

Tj+Tk+Tj—Tk 1—|—u+ 1—u
k= uU=r; r
ik 2 2 i S

=rjeqr +re—, 1 < g,k <n.

When j = k, we simply get back the d real roots so that there are d* —d = d(d—1) distinct nonreal
bireal roots. If all the roots are simple so that d = n, P has n? distinct bireal roots, with 2 < n < n?,
where n is the number given by the classic FTA. We can represent the bireal roots of P with the table

in Figure 5.1 as a root coupling.

J2 P (&} .. T . Tq
1
T - Gk
Td
Figure 5.1 — gj, = rjeq + rpe- = “2™% + "ty g2 roots of P

If we introduce for the distinct real roots r; the multiplicities m;, 1 < ¢ < d, the bireal root g
resulting from the coupling of r; and ry is repeated with the multiplicity m;m;, in the zero set of P

(Figure 5.2).

In Chapter 2 we have introduced the conjugation of bireal numbers: for z = x + uy, z* = x — yu.

Notice that for each bireal root g, the bireal conjugate ¢, is also a root of P and we have ¢}, = gi;.

Let us take a simple example with P = (X — 1)(X — 2)(X — 5). Figure 5.3 gives the 9 bireal (3
real and 6 nonreal) solutions of P in ?R. Figure 5.4 displays the network of the 6 additionnal roots in

the bireal plane 3(3+u), 3(7+3u), 34 2u arising from the 3 real roots of (X —1)(X —2)(X —5) = 0.

[
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P
70 .. 7/. . 7/. .o 7" CEEE) /r'
p 1 Kk k d d
T qd11 did - q1d
Tj 4k . gk
m; : S
] qjk - ik
Td qd1 qdd - qdd
mg : : : :
Td qd1 qdd - qdd

Figure 5.2 — The n? bireal roots counted with their multiplicity in the zero set of P

P
p 1 2 )
1 1 (3 —u) 3—2u
2 1(3 4 u) 2 L(7 - 3u)
5 3+2u  2(7+3u) 5

Figure 5.3 — The nine roots of P = (X — 1)(X —2)(X —5) in °R

As (3 + 2u)(3 — 2u) = 9 — 4u? = 5, we remark by direct calculation that (X — (3 + 2u))(X —
(3—2u)) = X? —6X +5 = (X — 1)(X — 5), which means that P = (X — 1)(X —2)(X —5) =
(X —2)(X — (3+2u))(X — (3 —2u)) so that factorisation of P over *R is not unique. We recall that,
because C is an algebraically closed field, any complex polynomial enjoys a unique factorisation over
C (up to order) by means of n factors of degree 1, distinct or not. The most compact representation

m

uses d distinct roots p € C with multiplicity m, and d factors of the form (z — p)
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Niw N

[N

v

Figure 5.4 — 3 real roots and 6 nonreal roots (circles) in the bireal plane

5.2.2 Multiple distinct factorisations with bireal roots

We define a system of roots for the polynomial P to be a set of n roots g;; chosen in the zeroset

for P such that

P = anﬁ(X — Qjk)- (5.1)

If we denote py, .., pn, the n real roots of P without distinction of multiplicity (Vs,1 < s < n,3s’,1 <

s' <d, such that p; = ry ), we have the new result

Proposition 5.2.2. A system of roots for P is obtained by choosing rs and r; so that Vs, t1 < s,t < n,

each rs is associated with one and only one r; to produce qs.

This corresponds to a set of n bireal roots with exactly one root choosen in each line and column

in Figure 5.2. As stated in Section 5.2.1, this result is proven in a more general case in |Latre, 2013].
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We denote by F' the number of distinct factorisations for P (up to order). We have a second new

result that shows a key difference between C and ?R:

Proposition 5.2.3. When the roots of P are simple there are F' = n! systems of roots which are all
distinct. The presence of multiple roots allows for the existence of identical systems and in that case

F < nl

Going back to the above example, the polynomial (X —1)(X —2)(X —5) admits 3 simple real roots
thus n? = 9 bireal roots which are simple. Therefore P admits 3! = 6 distinct factorisations over 2R.
In addition to the two already given (X —1)(X —2)(X —5) and (X —2)(X — (3+2u))(X — (3 —2u))
that correspond respectively to the system of roots {1, 2, 5} and {2, 3 —2u, 3+ 2u}, there are 4 others
defined by the 4 systems of roots:

{1, 2(7+3u), 3(7-3uw)}, {3 (3+uw), 5(3—u),5}, {3—2u, (3+u), 2(7+3u)}, {3+2u, 3(3—u), 1(7—3u)}.

One is led to distinguish between two types of “multiplicity” for each distinct root ¢;, of P. First,
the multiplicity of repetition i, = m;my, > 1, 1 < 5,k < d such that g, occurs pj, times in the
zeroset for P. Second, the algebraic multiplicities v, relative to a given factorisation in which g5 can
appear. The nonuniqueness of factorisations of polynomials over 2R entails that a bireal root has an
algebraic multiplicity relative to the factorisation at hand equal to v, < min(m;, m;). The multiple
root gj;, for P fills a block of size m; x my, in Figure 5.2. Multiplicity v;; in a factorisation for P cannot
exceed min(m;, my), but depends on the chosen factorisation. In particular, it can be 0. We sum up

this new result with:

Lemma 5.2.1. 0 < vj; < min(m;,my).
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For example with the polynomial (X —1)(X —2)(X —5), all the roots (real and bireal) are distinct
and have the muliplicity of repetition 1, but the algebraic multiplicity relative to a factorisation can
be 0 or 1 depending on which factorisation is considered: for the bireal root ¢5; = 3 + 2u, us; = 1
but v5; = 0 in the system of roots {3 — 2u, (3 + u), 5(7 + 3u)} and v5, = 1 in the factorisation

(X = 2)(X — (3+2u)(X — (3 — 2u)).

The general description of distinct factorisations over bicomplex numbers involves combinatorics
on multisets which is out of the scope of this thesis. A more specific development about this question

and the potential applications will be investigated in [Latre, 2019].

5.3 Summary

We have presented in this chapter some elements concerning roots in the algebras of the plane,
but this question is of importance for other hypercomplex algebras. The older example of quater-
nions H [Hamilton, 1844| already questions FTA. Every pure unit quaternion ¢ = xi + yj + zk,
2?2 +y*+ 22 = 1 = —¢?, is a solution of X?+1 = 0. The whole imaginary unit sphere is solution of this
equation. FTA is relative to the fields R and C. Computation in any other algebraic context exposes
the ambiguity of the denomination FTA. We recall that quaternions are a field, thus the relative
nature of FTA is not necessarily linked to the existence of zerodivisors. We can put in evidence the
existence of other roots of real polynomials in hypercomplex algebras. In this thesis we will only use
the results concerning algebras in the plane, but this chapter is an introductive invitation to consider
other roots than the results coming from FTA or field extensions. For more about polynomial roots

of hypercomplex numbers see [Chatelin, 2018|.
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The consequences of the existence of alternative roots in hypercomplex algebras do run beyond mere
semantics. For example, a natural application of the above study concerns the characteristic polynomial
of symmetric matrices (Chapter 6). The classical approach for spectral theory and quadratic forms can
thus be expanded from the real line R to the bireal plane 2R. We will see in Chapter 7 and Chapter

8 that these alternative polynomial roots have physical interpretation.

Keep in Mind for Chapter 5

The existence of bireal roots was already known since [Segre, 1892|. New results of Chapter
5 concern root description (tabular form) and multiplicities (Section 5.2.1). The character-
isation of factorisations in Section 5.2.1 is fully original. More general results for bicomplex

polynomials with bicomplex coefficients are presented in |Latre, 2013| and will be extended

in [Latre, 2019].
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Chapter 6

Spectral coupling for symmetric matrices
in the light of R

This chapter is a brief introduction to spectral coupling, a theory intended to model the notion of
coupling in Physics and Life Sciences, intimately connected with nonlinearity. The process of pairing
two distinct real roots of polynomials in the hyperbolic number plane provides a natural extension of
classical spectral theory. One considers vectors which describe an invariant plane, rather than being
invariant in direction (i.e. eigenvectors) under the action of a real symmetric matrix. This chapter re-
calls some aspects of the interplay between geometry, analysis and algebra taking place in the theory
of spectral coupling. The maximal coupling owes much to the more elementary one taking place in

the numerical plane R? and the algebra of bireal numbers 2R (Chapter 5).

We mention that spectral coupling in the framework of positive definite hermitian matrices is pre-
sented in |[Chatelin, 2012]. At the origin of this theory lies the pioneering work of Gustafson started in
1968 |Gustafson, 2012 for operator trigonometry and perturbations for contraction semigroup theory
(with application to real positive definite matrices). The theory of spectral coupling is an original

extension developed in the Qualitative Computing Group research program which includes this the-
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sis. The chapter focuses on the aspects of spectral theory which betray an implicit connection with
2R. They are our personal contribution. The first original results that relate geometry and analy-
sis of spectral coupling with bireal numbers can be found in [Latre, 2013]. They are incorporated in
[Chatelin et al., 2014]. The more recent reference [Chatelin and Rincon-Camacho, 2017| treats in full

generality the case of indefinite hermititian matrices.

6.1 About spectral coupling

6.1.1 Pairing distinct real eigenvalues

We consider the coupling of distinct real eigenvalues of a real symmetric matrix, a transformation
called spectral coupling. Let A be a symmetric matrix of order n > 2 and {\;}1<;<,, be the n eigenvalues
of A which form the spectrum Sp(A). We suppose that there exist at least two distinct eigenvalues in

Sp(A), A\, N € Sp(A), A < X that are the real roots of the quadratic polynomial

(X=X -N)=X*-2aX+b=(X—-a)—-e"=0,A=a>-b>0 (6.1)

where the real numbers a,e and b are defined by a = ’\+TX, e = VA = LQ_’\ >0and b =\ =

a? — e2. The role of the bireal roots of real polynomials, introduced in Chapter 5, is illustrated in

this chapter by means of the characteristic polynomial and the eigenvalues of A. We will develop the
connection between the bireal roots a +ue of Equation 6.1 (u? = 1,u # +1) and the theory of spectral

coupling. Observe that b = A\ = p(a & eu) € [—€?, d?|.

Let ¢ and ¢’ € R™ be orthonormal eigenvectors associated respectively with A and N. Any =z =
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719+ 22q, (71, 7o) € R? in the subspace M spanned by ¢ and ¢’ is such that Az = Az1q+ Nx2q' € M.
The subspace M remains invariant under A, thus it is called invariant plane. It has 2 real dimensions
and the orthonormal projection of A onto M defines a 2 x 2 symmetric matrix Ay; whose eigenvalues

A and X lie on R called the spectral line. Because {\, N'} = {a £+ e}, Ay is similar to the symmetric

a e
matrix . The algebra of bireal numbers appears to be a natural algebraic framework for

€ a

spectral coupling. Equation 6.1 says that the problem is quadratic in essence. The matrix Ay, similar

a e
to , is the isomorphic formulation of the bireal number a +ue (denoted M, . in Chapter 4)

e a

and we will see in Section 6.2 how bireal numbers describe specific configurations in spectral coupling.

Let us draw in R? the circle I' centered at C' = (a,0) with radius e > 0: it passes through the
real eigenvalues (A, 0) and (X, 0); it also passes through the two bireal ones a + eu. Hence it realises
a geometric link between the two interfering eigenvalues A and A and between the bireal a + eu,
a link drawn in the plane R? called the spectral plane, which is isomorphic to 2R. Assuming that
ae # 0 (N # £X), we consider M a point lying on I" and the corresponding triangle OMC'. Two of
the side lengths are fixed: OC' = |a| and M C = e, while the third length OM varies with M (Figure
6.1(a)). We denote the three angles of OMC' as follows: o« = Z(OC,OM), f = Z(MC,MO) and
v = Z(CO,CM) (Figure 6.2(a)). For future considerations, we also introduce for 0 < v < 7, the
half angle 0 = 3 = Z(A'A,A'M), 0 <5 < 5 (A= (X0), A = (XN,0)). Unless otherwise stated, we
shall assume that a # 0 (C' # O), so that the triangle OMC' is not degenerate into OM. Notice that
AN = p(a £ eu), the magnitude of the bireal eigenvalues a £ eu, is the power of the point O with

respect to the circle T'.
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(a) Spectral plane (b) Invariant plane, ||z|| =1

Figure 6.1 — Spectral coupling

The circle I is well-known in Continuum Mechanics as Mohr’s circle. This circle has been proposed
by C.O. Mohr in 1882 as a graphical tool to analyse the dynamics of the Cauchy stress tensor in 2
and 3D. We will see in Chapter 7 how bireal numbers and spectral coupling can offer a novel insight

into Continuum Mechanics.

In this chapter we only consider a symmetric real matrix but the use of I' that is proposed in the
general case of spectral coupling is valid whether A is real symmetric or complex hermitian, definite
or not. The theory is fully original when A is hermitian and z is a complez vector in C" (complex
angles and toric structure see |[Chatelin and Rincon-Camacho, 2017|. Notice also that in the general
symmetric case, the position of the circle with respect to the origin depends on the signs of A and
on the real line. In this chapter, the elements of theory concerning spectral coupling in Section 6.2 do

not depend on the sign of eigenvalues, which is not true for the complete theory.
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6.1.2 Pairing the spectral and invariant planes

We consider z = (cosf)q + (sinf)q’ € M, with unit norm ||z|| = 1, § € [0,27[. When 6 varies in
0, 27, the vector x describes the unit circle (C) € M centered at O and passing through the eigen-
vectors +¢, £¢/, see Figures 6.1(b) and 6.2(b). We also consider the action of the matrix A on the

vector x, Az = (cos ) Aq + (sinf)N'¢'.

tld'}
A |
a7 A-al)x ;0
nl, |
o > o - ax .
(@) A v
“ {a)
(a) Spectral plane (b) Invariant plane

Figure 6.2 — X'\ > 0: triangles are congruent ~ ~v = 26

When z is not an eigenvector (6 ¢ {0,%, 2% 7}) and a # 0, the three vectors az, Az and Az — ax
are linearly independent and they form a non degenerate triangle OM'C’, see Figure 6.2 (b). If a = 0,
the triangle OM'C" is degenerate (C' = O). We are interested in the relations between the triangle
OMC in the spectral plane and the triangle OM’C” in the invariant plane. We introduce therefore a

result proved in [Chatelin and Rincon-Camacho, 2017, lemma 2.1]:
Lemma 6.1.1. Vz € (C) C'"M’' = ||[Ax —azx| =€ .

Proof: C'"M' = || cos (A — a)q+sinf(N — a)'|| =e|| — qgcosf + ¢'sinb|| =e=CM .
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If we compare the triangle OMC parameterised by ¢ and the triangle OM’'C" parameterised by 6

we obtain the following result [Chatelin and Rincon-Camacho, 2017, corollary 2.3|:
Lemma 6.1.2. The equality 6 = 0 in |0, 5[ yields the congruence OMC = OM'C".

Proof: The triangles have two fixed side lengths OC' = OC’ = |a| and CM = C'M' = e. Each pair
of sides envelops the same angle  if 0 = 6 in |0, 5[: v = 26 = 26 €]0, 7[.

Therefore we denote the angles of the triangle OM'C’ by a = Z(z, Ax), f = L(Az, Az — ax),

v = ZL(—ax, Ar — az) (Figure 6.2(b)).

When the triangle OMC' in the spectral plane and the triangle OM'C” in the invariant plane are
congruent, a remarkable property is that the spectral information processing in the spectral plane is
mirrored in the invariant plane. This connection between geometric information in planes of distinct

nature (spectral vs. invariant) is a cornerstone of spectral coupling valid under the assumption v = 26.

The theory of spectral coupling investigates the key property for symmetric matrices of congruence
between the triangle OMC' in the spectral plane and the triangle O’ M’C” in the invariant plane. The
dynamics of eigenvector coupling is reflected in the spectral plane without any loss of information.

In [Chatelin and Rincon-Camacho, 2017], the theory of spectral coupling describes the maximisa-
tion of the angles & (when AN > 0) and 8 (when AN < 0) associated with the above triangles and the
related set of vectors x associated to these optimal cases. Remarkably, i, < 5 = fand B < § = «
respectively: the optimal triangle OMC' is right-angled at the vertex M when AN > 0 or at O when
AN < 0. The results concerning « and [ are linked with variational principles coming from Euler’s
equations. As shown in this paper as well as in [Gustafson, 2012, Chatelin and Rincon-Camacho, 2015],
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spectral coupling has fruitful consequences in Physics, Numerical Analysis, Statistics and Economet-

rics.

6.2 Maximal spectral coupling

6.2.1 Triangle surface optimality and bireal eigenvalues

In this section, we focus on another aspect related to the optimality of the surface of the triangle

OMC' in the spectral plane and its relation to the algebra of bireal numbers.

v

(a) AN >0 (b) AN <0

Figure 6.3 — Maximum surface of the triangle OMC' in the spectral plane

Lemma 6.2.1. When M describes I' and a # 0, the surface of the triangle OMC' is maximum and

equal to X = %|a|e iffv=735.

Proof: The surface of OMC'is X(v) = 3|alesiny < ¥ = J|ale = $|\? — X2

The maximum ¥ is achieved for M at (a,e) so that OM = v/a? + €2, see Figure 6.3 (a) and (b).

Moreover, the real (resp. unreal ) part of (a + eu)? is equal to OM? = a? + €? (resp. 4%.). The surface
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() of the triangle is a measure of what we call the intensity of coupling when a # 0. It varies
between 0 (eigenvalues) and . The symmetric of M with respect to the horizontal axis N(a, —e) is
the second possible case to achieve . If a = 0, OMC is degenerate thus ¥() = 0 for all M on I': this
is not an appropriate measure of coupling when a = 0 X' = —\ = e It can be replaced by the altitude
PM = e|siny| < e. Notice that Lemma 6.2.1 found in [Chatelin and Rincon-Camacho, 2017, lemma
3.5] is valid for AN € R. This is not the case in general for the properties of spectral coupling as we
stated briefly in Section 6.1.2. More precisely, with the angular (rather than surface) point of view,
the optimal triangles are such that OM? = a? — €2 = AN > 0 () or OM? =2 —a?> = = AN > 0
(Bmaz)- One recognizes the hyperbolic magnitudes of a +eu. They replace the euclidean one |[|OM]|* =
a® + e? present in the surface point of view given above. This reveals an implicit role of 2R in the
angular viewpoint. It appears that the geometric analysis of spectral coupling betrays an interplay
between euclidean and hyperbolic geometries. This resonates with Poincaré’s opinion: "Une géométrie
ne peut étre plus vraie qu’une autre; elle peut seulement étre plus commode" in [Poincaré, 1902, p.50].
Moreover, if we release the assumption A < ) to consider e = 0 >~ A = X = q, the third algebra D
enters the game, whenever multiple real eigenvalues exist in Sp(A). In case of the self-interference of
A with itself, the circular link I' is replaced by the opened straight line A + Rn. Going back to the
surface point of view, we relate the lemma 6.2.1 with bireal numbers to produce the original result in

[Latre, 2013]:

Proposition 6.2.1. In the spectral plane, equipped with a bireal structure, the maximal surface of the
triangle OMC' is reached for the points M and N, that are the geometric representation of the bireal

conjugate roots a + eu and a — eu of Equation 6.1. These roots are the two nonreal bireal eigenvalues

of A.
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It is quite remarkable that the geometric locus of optimality in terms of the surface of OMC' in
the spectral plane exactly matches the position of bireal roots in the bireal plane (Chapter 5). This
configuration represents the maximal coupling in terms of surface of the triangles. Under spectral
coupling, the spectral plane is thus naturally equipped with an implicit 2D bireal structure which
complements the 1D real structure associated with classical spectral analysis.

As Jale = 1(N? = A2?) = (N + A\)(X — )), it is also quite natural to relate the magnitude of the

bireal numbers A + Mu and X 4+ M in 2R with the measure of the maximal surface 3.
Corollary 6.2.1. 4|ale = —pu(A + Nu) = p(N + M) and thus, 85 = —pu(A + Nu) = p(N + Au).

It is noticeable that the magnitudes pu(A + Nu) = —u(N + Au) = —4|ale = —8% may receive the
geometric interpretation in terms of the extremal area ¥ = |ale € R of the triangle OMC as M

describes I

6.2.2 Structural optimality in the invariant plane: midvectors

We define the set of four midvectors

v={u=

The optimal configuration in the spectral plane is associated to v = 26 = 7. Due to the connection

(eq+e'qd), e==+1, ¢ = il},

Sl

between the triangles OMC and OM’'C” with the angles 6 and #, in the case of the maximal surface we
have 0 = 6 = 7. As a consequence of lemma 3.6 and theorem 3.7 in [Chatelin and Rincon-Camacho, 2017,

when a # 0, the 4 triangles OM'C’, v = OC” € V, have the maximal surface %|a|e.
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Taking P = [vy,v_]| = \/iﬁ with vy = \/Lﬁ(q + ¢') (see Figure 6.4),
1 -1
a e 1 N+EX XN =) N0
we have M, e = =3 = pT P, with PTP = I,. The
e a N=X N+ 0 A

orthonormal basis (v, ,v_) of midvectors relates the matrix A to the matrix M, . associated to the

bireal algebra.

vt

v

Figure 6.4 — Midvectors vy and v_ in M

The vectors associated to the optimal configuration for the triangle surface are the midvectors.
The midvectors are the bissectors of the original eigenvectors ¢ and ¢’ and they do not depend of the
values of A and X and of the parameters a and e. Midvectors are common to all matrices with a fixed

eigenbasis and a varying spectrum. To sum up, in M the coupling between A and X' is mazimum and

Ll VA V=

structural when Ay is represented by — which displays the linear combinations
N=X N+
N+ Xand M — A. And the eigenbasis is rotated by the angle 7 independently of the spectrum.

Remark 6.2.1. The generic concept of a midvector is absent from Gustafson’s theory which focuses
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on o when AN > 0. The notion only appears in a statistical setting under the guise of an “inefficient”

vector, see [Chatelin and Rincon-Camacho, 2017, Section 5] and [Gustafson, 2012, p. 190].

6.2.3 Spectral coupling and vector product, n=3 and n =7

We can make a connection between the theory of spectral coupling and vector product that we
introduced in Chapter 3. We recall that the vector product in dimension 3 and 7 is related respectively
to the imaginary part of the quaternions and the octonions. In dimension 3 and 7, the vector product
maintains at the same time the geometric and computational aspects discussed in Chapter 3, Section 5.

Let us consider in R? the vector product of z = (cosf,sinf,0)T and Z = (—cos6,sind,0)T:
z A &= (0,0,2sin60cosf = sin20)”. The surface of the triangle OMC' is X(x) = %|alesin~y. The
quantity 23 (z) measures the vector product R = ar A (Ax —ax) =ax N Ax = Az A (Az —ax) =
aex A T which lives in M*. The vector £ is the vector product of any two adjacent sides in OM'C’; it
represents the action of the coupling outside the invariant plane. Its direction is fixed in M*; if n = 3,
it is but the third eigendirection. This notion is also valid in dimension n = 7, but the direction in
M- is in a subspace of dimension 7 — 2 = 5 instead of 3 — 2 = 1 in the 3D-case.

The norm ||R|| = |alesiny = 2%(x) is twice the intensity of coupling. It represents the influence of
x outside its plane of evolution in R? or R7. In other words, the vertices of OM'C" are submitted to an
equal torque as the triangle rotates about O. The torque is nonzero when OM’C" is non degenerate
(x ¢ {£q,%q¢'} and ae # 0).

The midvectors have the largest influence |ale and bireal eigenvalues associated with the maximal

surface represent the maximum possible coupling between the real eigenvalues of A.
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6.3 Conclusion

The spectral theory and the optimality of quadratic forms are most often treated only in real or
complex analysis. The above presentation shows the contribution of a bireal analysis. This should be
considered as an invitation to enlarge the algebraic possibilities offered by Computation. Real numbers
and complex numbers have become such a natural and implicit choice of frameworks that they may
overshadow the potential of other algebras that could be equally useful in Scientific Computing. The
case of polynomials with real coefficients is a good example which demonstrates the power of algebraic
diversity. It is often forgotten that the context of interpretation is relative to the chosen space of
solutions (complex numbers, quaternions, bireal numbers among many others..). We will present in
the next chapter, a fully original application of this work. It concerns Continuum mechanics and

relates I' to Mohr’s circle. It also illustrates the geometric aspect of spectral coupling.

Keep in Mind for Chapter 6

The theory of spectral coupling has been developed in the Qualitative Computing research

Group. The results concerning geometric optimality in spectral coupling are detailed in

[Chatelin and Rincon-Camacho, 2017]. The original result of Chapter 6 (Prop. 6.2.1) con-

cerns the relation between spectral coupling and bireal eigenvalues (introduced in Chapter

5). The consequences for Science and Engineering will be developed in the next chapter.
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Chapter 7

Applications of bireal numbers and spectral
coupling

In this chapter we connect through multiplication theories spread along centuries starting from
antiquity to present. The results presented in this chapter are fully original and have been presented
in major international academic [Latre et al., 2017, Latre, 2017b| and industrial |Latre et al., 2016,
Latre, 2017a| conferences. The novel applications of bireal numbers and spectral coupling that we
develop in what follows concern structural mechanics, chemistry and in a more general scope, the

physical models associated to the harmonic oscillator and a quadratic potential energy.

7.1 Application to Continuum Mechanics

7.1.1 Cauchy stress tensor

In order to assess the stress of a mechanical element from the perspective of linear elasticity,
a common tool used by engineers in continuum mechanics is the so-called Cauchy stress tensor
[Truesdell, 1966], for 3D and 2D stresses. We present the 3D-Cauchy stress tensor in mechanicists

parlance. The 3D-Cauchy tensor is a symmetric tensor of order 2 often denoted o which therefore is iso-

~
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morphic, in a given orthonormal basis of R3, to the 3 x 3 real symmetric matrix F =

Tez Tyz | Oz

which we call the stress matrix.
A quadratic form () is associated to the Cauchy stress tensor, that is given the real symmetric
matrix F' and for a vector X = (z,y,2), we have Q(X) = XTFX = (X, FX) which is an invariant

scalar for the tensor [Pernés, 2003, p.64|. For the following, we suppose that F' has 3 distinct real

Oz Ty
eigenvalues. For future reference to the 2D-case, we set F} =
Tey Oy
o
The tensor o relates a normal unit 3D-vector n to a 2D-stress vector T = in the cutting
T

plane associated to n (Figure 7.1 (a)).

Normal *ane
-r\“ i

(a) (b)

Figure 7.1 — Cutting plane relative to n

The two real components ¢ and 7 of the stress vector 1" are respectively called normal stress and
shear stress. As shown in Figure 7.1 (b), we have ||T||* = ||Fn||* = ¢® + 72 Given F and n, the

normal and shear components can be computed thanks to the following formulas:
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oc=n"Fn=Q(n)eR,

7T=+v/nTFTFn — o2 € R.

These formulas are expressed in mechanics with 7' = n®o, where ® denotes the tensor contraction,

such that

0:n®g®nand7':\/||g®n||2—02.

Notice that the shear stress 7 is derived as a consequence of the normal stress ¢ with pythagorean
computation. We give both expressions coming either from tensors or from matrices. Some confusion
may arise in the literature when authors do not make the distinction between the tensor g and its
matrix formulation F', the stress matrix that is used in the sequel.

For the 2D-case, the action of the tensor in the x — y plane is represented thanks to its matrix

formulation by the 2 x 2 matrix F}. The following section will present the graphical technique due to

Mohr that is used in continuum mechanics to determine the normal stress ¢ and the shear stress 7.

7.1.2 Mohr’s circle (2D) and the tricircle (3D)

C.0O. Mohr proposed in 1882 a geometric technique as a graphical tool to analyse the stress ex-
trema |Timoshenko, 1983|. The so-called Mohr’s circle limits in the plane of constraints o (horizontal
axis) and 7 (vertical axis) the set of admissible stress states induced by the 2D-Cauchy stress tensor
[Brannon, 2003|. A derivation from the equilibrium of forces gives the parametrical equations that
correspond for a 2D-Cauchy stress to the Mohr’s circle (see Figure 7.2). It intersects the o-axis at the
two eigenvalues A < ) of Fj. Thus it plays the role of I' in Chapter 6 for spectral coupling. Moreover

the associated eigenvectors and values for F} are the principal axes and stresses of the tensor.
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Ta

Figure 7.2 — Mohr’s circle in the plane o0 — 7 of constraints

In 3D, F' enjoys 3 eigenvalues (supposed to be distinct). Their pairings create 3 circles, the form
which involves the corresponding 3 circles is known in mechanics as a tricircle. It is based on the
determination of the principal axes and the principal stresses of the tensor, which are in matrix
language the eigenvectors and eigenvalues of the related stress matrix F. The notion of eigenvector
and eigenvalue of a tensor, which is a multilinear operator, has no cristal clear meaning. As mentionned
in Chapter 4 about tensor formulations, the critical information of continuum mechanics that we use

is contained in spectral form into its matrix formulation /" and is not related to any specific property

7 10 0
of the tensor o. A numerical example of the Mohr’s tricircle for the matrix F' = | 19 4 2 | is
0 2 1
15.7284
15.6119
given in Figure 7.3. The eigenvalues of F' are A = 1.2716 |, those of F} are
—4.6119
—5.0000

Notice that the eigenvalues of the stress matrices need not be positive. Negative eigenvalues are

interpreted by mechanicists as compression movement.
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The numerical simulation for the 3D-stress F' represents, for a set of randomly generated normal
vectors n;, the associated normal and shear stresses relative to the corresponding cutting plane. De-
pending on the number of normal vectors, the whole theoretical area defined by Mohr’s tricircle can

be filled by the simulation (see Figure 7.3).

(a) 1000 normal vectors (b) 10000 normal vectors

Figure 7.3 — Numerical example of Mohr’s tricircle for F

Figure 7.3 confirms the remarkable and well-known property of the Mohr’s circle in 2D and 3D that
the intersections of the circles with the horizontal axis are the real eigenvalues of the stress matrices
Fy (2D) and F' (3D). The extrema of the normal stress ¢ are given by the spectral information of the
matrix. The extrema for the shear stress 7 remain classically uninterpreted algebraically. The results
in Chapter 5 and 6 suggest that they are the bireal eigenvalues of F; and F'. They are represented for
F in Figure 7.3(b) with triangle tops for local extrema and the lower point of the square for global

maximum (apex of the largest circle which connects the extreme eigenvalues).
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7.1.3 A global bireal spectral interpretation of the stress extrema ¢ and 7

We have observed that the position of the shear stress extrema (Figure 7.3) in the plane of con-
straints is the same as that of the bireal eigenvalues of F' in the bireal plane (Chapter 6). In other

words, we have the new result

Proposition 7.1.1. Maximal shear stresses are obtained from the coupling of extremal normal stresses,

that are the two extreme eigenvalues i and \pya of the 3 X 3 stress matriz F'.

Eigenvectors for real eigenvalues correspond to the directions for extremal normal stress. Using
the correspondence presented in Chapter 6 between the spectral plane (the bireal eigenvalues) and

the invariant plane (associated eigenvectors), we have:
Proposition 7.1.2. The midvectors are the directions of shear stress extrema.

It is quite remarkable that bireal eigenvalues and their associated eigenvectors and midvectors
present a physical meaning in continuum mechanics. We can summarise the aspect of spectral coupling

in continuum mechanics:

Theorem 7.1.1. The extrema of the stress matriz F (G pmin, Omazs Tmins Tmaz) ar€ the 4 bireal roots of
(X — Anin) (X — Apaz) that correspond to the spectral coupling of the minimum and mazimum real
roots of the characteristic polymomial of F. Eigenvectors associated to these bireal eigvenvalues and

midvectors correspond respectively to the direction of extremal normal and shear stresses.

The added-value consists in expressing in a unified way, in the bireal plane, the stress extrema (both
normal and shear stresses). They are the solutions (real and bireal) of the characteristic polynomial for

the symmetric stress matrix coming from structural mechanics. The geometry of bireal roots (Figure
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7.4) is that associated with the extreme spectral coupling (equal to zero for real roots or maximal for
nonreal ones), that was treated in Chapter 6, the bireal roots of the real quadratic form associated to
the symmetric matrix F'. Quadratic forms as well as spectral theory have thus equipped the constraints

plane (0 — 7) with the bireal algebraic structure.

Figure 7.4 — Characteristic geometric configuration for bireal roots and spectral coupling

7.1.4 Mohr’s tricircle and Archimedes’ arbelos

Figure 7.5 — Arbelos (picture by Thomas Schoch)

The geometric object described by Mohr’s tricircle has been known in mathematics since the time

of Archimedes (ca. 287- 212 BC) as an arbelos [Boas, 2006, Section 7|. The name is that of the ancient
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tool used by cobblers (leather-cutters) since Antiquity (see Figure 7.5). A detailed study of the arbelos

can be found in |Gorin, 2006] and in [Boas, 2006| with 44 historical references.

From 3 seemingly independent topics, bireal numbers in algebra, spectral coupling in geometry and
analysis and stress extrema in continuum mechanics, we have shown in this section a tight relation
between them in a synthetic way.

We will see in the next section that the role of bireal numbers in spectral coupling is not limited
to application in continuum mechanics. We will take a specific example on molecular simulation that

can be extended to a large class of problems depending on the harmonic oscillator.

Keep in Mind for Chapter 7

In Continuum Mechanics, it is well known that normal extrema are real eigenvalues and
associated eigenvectors are the directions of the normal stress extrema. Shear extrema are
obtained with Mohr’s circle without algebraic interpretation.

New results of this chapter are obtained thanks to the theory of spectral coupling. The
shear extrema are obtained as the coupling of the stress extrema (Prop. 7.1.1) and the
corresponding directions are the midvectors (Prop. 7.1.2). Spectral coupling and bireal roots

allow to describe in a unified way the different extrema as real and bireal roots of the

characteristic polynomial associated to the symmetric stress matrix (Theorem 7.1.1).
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7.2 Molecular simulation and harmonic oscillator model

7.2.1 Harmonic oscillator model

A harmonic oscillator is a system, when displaced from its equilibrium position, experiences a
restoring force proportional to the displacement (Hooke’s law). In the case where there is no damping,
a harmonic oscillator has a simple harmonic motion. Simple harmonic motion is typified by the motion
of a mass on a spring when it is subject to the linear elastic restoring force given by Hooke’s law. One
of the key features of the harmonic ocillator is that the potential energy is a quadratic form.

The harmonic oscillator model is very important in Physics, because any mass subjected to a force
in stable equilibrium acts as a harmonic oscillator for small vibrations. Harmonic oscillators occur
widely in Nature and are exploited in many applications such as masses connected to springs (see
Figure 7.6) and acoustical systems. In particular, we point out the fields of modal and seismic analysis

and the case of molecular vibration presented in Section 7.2.2.

ma mg mc mA mg mc

(a) Symmetric motion (b) Asymmetric motion

Figure 7.6 — Example of motions of a harmonic oscillator with 3 masses and 2 springs

When a system is composed of n elements, the equation of motion that concerns our following

2

examples is of the form SR AX | where X = (z;), 1 < i < n is the real vector of displacement
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variables and A is a real symmetric matrix of size n. The components of A are real constants that
depend on the parameters of the system (mass, stiffness of springs).

A normal mode of an oscillating system is a pattern of motion in which all parts of the system
move sinusoidally with the same frequency and with a fixed phase relation. The motion described by
the normal modes takes place at the fixed frequencies. These fixed frequencies of the normal modes
of a system are known as its resonant frequencies. A physical object, such as a building, bridge, or
molecule, has a set of normal modes and their resonant frequencies that depend on its structure,
materials and boundary conditions.

In mathematical terms, normal modes are obtained from the spectral analysis of the matrix A, with
the different eigenvalues relative to resonant frequencies and associated eigenvectors that correspond
to normal modes (= eigenmodes). The general solution of the system is a superposition (= linear
combination) of its normal modes (eigenvectors). In the general case that we will not present here,

the solution is related to the generalised eigenvalue problem [Chatelin, 2012].

7.2.2 Molecular vibration: coupled oscillations in the plane

The point of this thesis is not to focus on Chemistry but rather on the mathematical aspects that
undelie the behaviour of atoms and molecules. The brief elements of chemical theory presented in this
section and in Section 7.2.3 are discussed in [Wilson et al., 1980, Cotton, 2003| which are the main
references in this topic.

A molecular vibration occurs when atoms in a molecule are in periodic motion while the molecule
as a whole has constant translational and rotational motion. The frequency of the periodic motion is

known as a vibration frequency. As a simple but widely used approximation, the motion in a normal
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vibration can be described as a harmonic oscillator. In general, a molecule with n atoms has 3n — 6
normal modes of vibration.

Internal coordinates (related to what is called in Chemistry the Eckart conditions) describe the dif-
ferent movements of the molecule (changes in position, angle and length of bonds) [Wilson et al., 1980].
In order to illustrate the link between molecular vibration and spectral coupling, we will take the ex-
ample of carbon dioxide C'O,, with two double covalent bonds between the atoms of carbon and
oxygen O = C' = O. We are interested in the stretching that is, in molecular vibration, a change in

the length of a bond of the molecule.

o-0-¢

Figure 7.7 — Carbon dioxide molecule with one carbon atom (black) and two oxygen atoms (red)

The carbon dioxide molecule (Figure 7.7) is represented by a system of coupled oscillators in the
plane that correspond to the system in Figure 7.6 with m the mass of an oxygen atom and M the mass
of the carbon atom. The model for the two C-O bonds is 2 identical springs whose stiffness constant

k is set according to the chemical properties of the bond.

T
As there are two coupled oscillations, the displacement vector X has two components X =
)
2 a b
This system of coupled oscillations corresponds to the motion STE AX where A = and a
b a

and b are real constants depending of the masses of the atoms and the stiffness k. Applying Newton’s
law on the axis of the molecule, one finds after computations that a = —(1 + %)% and b = —%.
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The point is not to focus on the solution of this problem but on the structure of its solution. With
the classic assumption that the solution X is of the form X = X (t) = X,e™*, the equation of motion

is reduced to (A + w?I)X = 0 and we have to find the eigenvalues and eigenvectors of A.

1 1
The diagonalisation of A is obtained thanks to H = , H* =21, H' = {H such that
1 -1
w? 0
HAH ! =
0 wi

The two resulting normal modes are ¢;(t) = Cjcos(wit+ ¢1) q2(t) = Cscos(wat + p2) where
C4,Cy, 1, o are real constants. The general solution in the original basis is a superposition (=linear
combination) of the 2 (eigen)modes z1(t) = ¢1(t) + ¢2(t) and x2(t) = ¢1(t) — q2(t) via H, X =

0 g1+ q2

H —

a2 Q1 — Q2
The coupling of oscillators is represented by the characteristic form of the matrix H (Hadamard

matrix, see Chapter 4) associated to the idempotent basis of bireal numbers H = 2[e;, e_] that we
used for spectral coupling in Chapter 6. We focus here on the mode coupling and we have the following

result:

Proposition 7.2.1. The general solution for coupled oscillations in the plane is given by the super-

position of modes that correspond to midvectors of the symmetric matriz A associated to the system.

For the C'Oy, molecule, the C' = O stretches are not independent. There is an O = C' = O
symmetric stretch that corresponds to x1, the sum of the two carbon-oxygen stretching coordinates
(the two carbon-oxygen bond lengths change by the same value and the carbon atom is stationary),
and an O = C' = O asymmetric stretch that corresponds to x5, the difference of the two carbon-oxygen
stretching coordinates, one carbon-oxygen bond length increases while the other decreases.
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It is important to notice that the resolution is structural and that the matrix H does not depend
on the 2 parameters a, b of the system. The same eigenvectors are used for varying eigenvalues and
the diagonalisation is obtained as as consequence of the real symmetric structure of A of order 2 (see
Chapter 6, Section 6.2.2. This model is not limited to COs but to all molecules represented by the
harmonic oscillator. In case of more complex molecules, other displacements than streches have to be
considered (for example spatial rotations with quaternions, see chapter 8) and this general analysis
relies on molecular symmetry that we will briefly introduce in the next section.

The model of coupled harmonic oscillators can be extended to n coupled oscillators in a linear or
closed chain. The matrix A, obtained through the equations of motion due to a quadratic potential
energy, is still real symmetric. We will not insist on this generalisation and rather focus in the next

section on molecular symmetry and quantum mechanics.

7.2.3 Molecular symmetry and quantum mechanics

Molecular symmetry is used to study the symmetry in molecules and the classification of molecules
according to their characteristics. Molecular symmetry is a fundamental concept in Chemistry, because
it can be used to predict or explain many chemical properties of a molecule (e.g. dipole moment,
spectroscopic transitions). Depending on their symmetry, molecules will have different vibration states.
The general theory of molecular symmetry requires a lot of group theory which can be found in
[Cotton, 2003].

A molecular vibration is excited when the molecule absorbs a quantum of energy E, corresponding
to the vibration’s frequency v, as E' = hv ( h is Planck’s constant). A fundamental vibration is excited

when one such quantum of energy is absorbed by the molecule in its ground state (the less excited
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state). When two quanta are absorbed the first overtone is excited, and so on to higher overtones.
The model of the harmonic oscillator is still valid and leads to the resolution of the eigenvalues of the

Hamiltonian H in the stationnary (time-independent) Schrédinger equation

HY = BV,

where the eigenvalues E are energy levels associated to eigenstates W called Molecular Orbitals
(MO). MO describe the wave-like behaviour of an electron in a molecule. A standard approximation
is that MO are linear combinations of Atomic Orbital (AQ), the functions that describe the behaviour
of an electron in the different atoms of the molecule. MO are a key model of wave-particule duality of
a molecule.

One of the main objective in molecular symmetry is to determine the symmetry group of the
molecule in order to reduce to factored form the characteristic polynomial (called secular equation
in Chemistry) and be able to get the different energy levels of the molecule. The energy levels are
represented in a 1D-diagram classifying the energy levels in increasing order (the real line of eigenvalues
of the Hamiltonian). The most stable state of the molecule, the ground state, corresponds to the lowest
energy level. The more excited states that correspond to higher energy levels are represented in the

increasing order of the eigenvalues.

7.2.3.1 Natural coupling examples with hydrocarbons

Hydrocarbons are molecules only composed of hydrogen and carbon atoms that are fundamental
in all the derivatives of obtained from pretroleum.

Ethylene , C5H,, is a such hydrocarbon which is widely used in chemical industry. For hydrocar-
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bons, a standard model is the Hiickel method which supposes that molecular orbital W are obtained as
linear combinations of the atomic orbitals ® that constitute the molecule. This leads to a simplification

of the Hamiltonian H = (H;;) in the following way

o, ifi=j

H;; = { A, if the atom i is adjacent to j >

0 else
\

where o and [ are constants and respectively correspond to the energy of an electron in a specific
atomic orbital and to the interaction energy between two atomic orbitals (the specific AO is 2p, see

[Cotton, 2003]).
The Hamiltonian of the ethylene obtained from the Hiickle method is H = , that we now

use to relate to spectral coupling.
The two energy levels are F = o+ § and the associated MO are U = \/Li(fl)l + ®5) where ®; and

®, are the AO of the ethylene. This corresponds to the spectral coupling of orbitals and we have

Proposition 7.2.2. Under Hiickel method, the enerqgy levels of the ethylene correspond to the spectral

coupling of atomic orbitals.

As the Hamiltonian is symmetric under Hiickel assumptions spectral coupling is not limited to
ethylene, but can be applied to other hydrocarbons such as benzene that we describe in more details
introducing an important phenomenon in Chemistry.

Benzene, CgHg, has a very specific structure composed of six carbon atoms joined in a ring with
one hydrogen atom attached to each with alternating simple and double bounds between the carbon
atoms. In the standard chemical representaion of hydrocarbons, hydrogen atoms are omitted and
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carbon atoms are the edges of segments that represent bonds (1 line for simple bonds and 2 for double

bonds) see Figure 7.8.

Figure 7.8 — Benzene molecule

The structure of benzene has been given by Kekulé in 1865 after lots of attempts by other chemists.
However, the structure of benzene proposed by Kekulé still presented a problem: the observed energy
of the benzene does not correspond to the description given by its structure. The phenomem of
resonance or delocalisation has been discovered in 1899 by Thiele as an attempt to explain the stability
of benzene. Resonance corresponds to the interaction between two energy states initially close that
are split in two equivalent equilibrium states %(\Ill + U,). The symmetric combination %(\Ill + WUy)
gives the ground state while the antisymmetric combination %(\Ifl — W,) gives the first excited state
as shown in Figure 7.9. The exceptional stability of benzene in chemical reactions is not explained
by its structure but by the phenomenon of resonance which is a coupling of equivalent equilibrium
energy states. The mathematical formulation of resonance appears to behave according to the theory
of spectral coupling. More work has to be done to confirm the link between spectral coupling and

resonance.
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Figure 7.9 — Resonance in the energy levels of benzene

Keep in Mind for Chapter 7

In Chemistry, we use the classical theory of molecular vibration to add the novel interpreta-

tion of spectral coupling and bireal numbers in a general solution for coupled oscillations in

the plane (Prop. 7.2.1). Bireal structure naturally appears for the given examples of energy

levels of molecules as exemplified by ethylene (Prop. 7.2.2). The relation between energy

levels of hydrocarbons and spectral coupling requires more investigations.

7.3 Conclusion and perspectives

We have seen in this chapter several novel applications of spectral coupling and potential future
research directions. The extrema of the Cauchy stress tensor in continuum mechanics provide a phys-
ical meaning to bireal roots. The role of midvectors is also studied in the case of coupled harmonic
oscillators that have a great variety of applications.

Molecular vibration is closely linked to quantum mechanics and is a synthesis of mechanical and
energetic coupling. We will see in the next chapter that spectral coupling of energy levels may have
connections to superposition in quantum mechanics, hence it may not be a surprise to find a link
between bireal numbers and Quantum applications. Spectral coupling in the bireal plane is not a

method associated to a specific field of application but seems to be a general computational mechanism
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and could implictly be present in several other domains of Science and Engineering.

7.4 Bibliographical notes

One more example of the difficulty of transdisciplinarity. The remarkable connection between
Mohr’s tricircle (19" century) and the arbelos (3™ century B.C.) is largely ignored in Continuous Me-
chanics despite [Bisegna and Podio-guidugli, 1995]. And it remains a piece of lore for the few mathe-
maticians who know about its historical existence (through Apollonius of Perga, Pappus of Alexandria
and Pythagorean triangles). H. Boas in 2006 seems to have been the first mathematician aware of the

role played by the arbelos in Continuous Mechanics [Boas, 2006, Section 7, pp. 246-247|.

Keep in Mind for Chapter 7

As concluded in this chapter, we repeat and insist on the fact that spectral coupling in the

bireal plane is not a method associated to a specific field of application but seems to be a
general computational mechanism and could implictly be present in several other domains

of Science and Engineering.
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Chapter 8

On current and potential uses of
hypercomplex numbers in Computational
Science, Engineering, Physics and Chemistry

In this chapter, we present the main areas in Science and Engineering for which certain hypercom-
plex number structures are currently used or show strong promise. Among all the algebras that we
defined in the first part of the thesis, the aim is to pinpoint which ones (beyond linear algebra over R
or C) are of interest to compute, for already existing or potential applications, be it from a practical

or theoretical point of view.

8.1 Hypercomplex numbers and Numerical Analysis

In this section, we present some aspects of hypercomplex numbers related to numerical analysis
and finite precision computations. Quaternions are a fundamental example and maybe the best known
algebra among the possible algebraic structures beyond R or C. The two other examples concerning

dual numbers and bireal numbers are more unconventional.

147



8.1.1 Quaternions for 3D-rotations

Spatial rotations are a key notion for many mechanical systems. Spatial mechanics during the
second half of the 20" century put in evidence the advantages of quaternions compared to other
representations. Quaternions are a solution to a historical issue related to rotations associated with
Euler angles called gimbal lock, that corresponds to singular configurations and the loss of a degree
of freedom in the system. Gimbal lock is a dangerous configuration for aircrafts (that occured for
example during the Apollo 11 mission), or for robotic systems (called "wrist flip") where it leads to

uncontrolled movements and velocities.

In Chapter 4, we have presented the theoretical equivalence between the isomorphic formulations
of 3 x 3 unitary matrices and unit quaternions to represent rotations. However, this does not imply
an equivalent numerical behaviour and computational cost.

1) First, only 4 parameters are necessary for quaternions instead of 9 for matrices which means
that less memory cost for computations is required.

2) In the different cases of application, the point is not to perform a single rotation but a sequence
of successive rotations that represent the evolution of spatial positions in a given time frame. Then,
if we compare the number of operations for composing two successive rotations we observe that the
product of two rotation matrices requires 27 multiplications and 18 additions whereas the product
of two quaternions requires 16 multiplications and 12 additions, outperforming matrix multiplication
[Howell and Lafon, 1975, Eberly, 2002|.

3)The last point concerns numerical stability. In theory, a sequence of rotations should be a rotation

due to the group structure but because of finite precision, we observe a loss of orthogonality for ma-
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trices and of the unit norm of quaternions. The renormalisation of a quaternion to adjust for floating
point errors (vector norm) is cheaper than the renorthogonalisation of a rotation matrix. Quaternions

have a better numerical stability than rotations matrices relative to successive multiplications.

Left dormant for almost a century after their invention by Hamilton because of the rise of vector
calculus, quaternions reappeared as main tools to compute for engineers in spatial mechanics and
they are now a cornerstone of numerical models for a wide range of applications in industrial and
commercial softwares. Beyond their role in Physics, quaternions are widely used in applicative fields
such as Chemistry (molecular simulation), robotics and computer graphics see Section 8.2. For a large
number of references (more than 1000 !) concerning the role of quaternions in mathematical physics

and applications , see |[Gsponer and Hurni, 2005a, Gsponer and Hurni, 2005b].

8.1.2 Bireal numbers
8.1.2.1 Idempotent basis and numerical behaviour

Bireal numbers have several algorithmic and numerical attractive features that rely on the idem-
potent basis. We recall (see Chapters 2 and 4) that in 2R, a number 2z = z + uy has an idempotent
representation

z=Xer +Ye_

where X =x+y, Y =2 —y and {e,,e_} is the orthonormal idempotent basis given by

1
ey = 5(1 + u).
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Thus, we have the following properties which are interesting for parallel computing. Let 2’ = 2/ +¢'u =
X'e,,Y'e_), then
27 = (x+yu)(2' +y'u)
= (Xey+Ye )(X'er +Y'e)
= XX'e,+YY'e_
that is a natural parallelism. The fact that thanks to the idempotent basis, additions and multi-
plications are performed componentwise (see Chapter 4) is for example used in signal processing, see

Section 8.2.2.

Moreover, there is another point that is not presented in the existing litterature of hypercomplex
algebras to the best of our knowlegde. The idempotent representation is found to be helpful for
avoiding numerical instability. As an example, we can compute the magnitude p(z) previously defined
in Chapter 2 as:

pwiz) =2 —y* €R.

On the other hand, if we use the basis {e,e_}, the magnitude is equal to

n(z) = XY

Catastrophic cancellation occurs when operands are subject to rounding errors and the computa-
tion of 22 — y? is an archetypal example of this phenomenon |Goldberg, 1991]. It is more accurate to
evaluate it as XY = (x+y)(x —y). This improved form still has a subtraction, but it is a more benign

cancellation of quantities, less catastrophic. Notice that the use of the idempotent basis is not just a
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rewriting trick but a natural way to transform subtractive operations thanks to bireal multiplication,

in order to reduce castrophic cancellation issues.

8.1.2.2 Quadratic iterations in the bireal plane

A compelling example about the differences between the behaviour of complex numbers and bireal
numbers is the quadratic iteration z — 22 + ¢ and its dynamics in the plane. When z € C: complex
dynamics leads to the well-known Mandelbrot set, when z €2 R: bireal dynamics leads to a square! This
surprising result is proven in [Metzler, 1994]|. The two sets are based on [—2, i] horizontally, see Figure
8.1. The case of bireal numbers is presented in [Pavlov et al., 2009a| and the generalisation of quadratic

iterations to the quadratic algebras of the plane has been independently done in [Chatelin et al., 2014].

-2 -1 0 1

(a) ¢,z € C (b) ¢,z € *R

Figure 8.1 — Quadratic iteration z + 22 + ¢

8.1.2.3 Numerical computation of magnitudes for quadratic iteration

We can make a link between the computation of bireal magnitude and quadratic iterations in the
plane. In [Pavlov et al., 2009b], the analytic solution for Julia set on bireal numbers is presented in

the case of the quadratic map z,,1 = z, + ¢, at ¢ = 0. In the complex case, Julia set corresponds to
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points for which the sequence is bounded and in the case ¢ = 0 is a circle. In the bireal plane, the

analogous case corresponds to the region inside the hyperbolas as presented in Figure 8.2:

Figure 8.2 — Analytic solution for the bireal Julia set with ¢ = 0 [Pavlov et al., 2009b]

In [Pavlov et al., 2009b|, the authors point out the problem to compute the correct shape with
algorithms. We represent below, for each point of the bireal plane in [—2,2]?, the computation of the
bireal magnitude using ;(z) = 2 — y? in the left column in Figure 8.3(a),(c),(e) and u(z) = XY in
the right column of Figure 8.3(b),(d),(f). For a given maximum number of iterations (n = 100 for
(a),(b), 300 for (c),(d) and 800 for (e) and (f)), the colormap at each line of Figure 8.3 represents the
number of iterations necessary to reach an absolute value of the magnitude greater than the threshold.
As the points oustside of the filled Julia set have unbounded iterations, we make the arbitrary choice
of 500 for the threshold. Different values of the threshold do not change the shape of the numerical

simulations, only the number of iterations required to get the same behaviour.

We observe a significant difference between the two computations of the bireal magnitude. The
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computed results in the left column that correspond to u(z) = x? —y? are already far from the theoret-
ical solution (Figure 8.2). The correct shape of the filled Julia set is not clearly defined even for a small
number of iterations (Figure 8.3(a)). This problem worsens with an increased numbers of iterations
(Figure 8.3(c)) and in the last case (Figure 8.3(e)), the exact Julia set is almost indistinguishable.
On the contrary, the results obtained using p(z) = XY fit with the analytic solution for the different
iteration numbers (Figure 8.3(b,d,f)). After 300 iterations, numerical perturbations start to appear in
the region where the branches of hyperbolas are close to the asymptotes (Figure 8.3(d)). Unavoidable
numerical effects due to finite precision can be seen on the last case (Figure 8.3(f)) but the Julia set

is still easily identified.

As pointed out in Section 8.1.2.1, the results on the left column in Figure 8.3 illustrate the poor
numerical stability and behaviour related to catastrophic cancellation. Even if it cannot totally avoid
the intrinsic issues of computation in finite precision, the computation of the magnitude using the

idempotent basis brings a clear improvement in the quality of the results.
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8.1.3 Error free derivatives with dual numbers

We recall that the computation of derivatives is a major topic for Scientific Computing. Algorithmic
resolution of PDE’s in industry mainly relies on finite differences schemes although more efficient
techniques are available. The use of complex numbers for the derivative computation has been already
studied in [Martins et al., 2003, Lantoine et al., 2012]. In order to compute the derivative of a function
f : R — R at a point x, this function is extended over the complex numbers. Numerically this is done by
overloading operators and functions in a given programming language. The Taylor expansion around

x is as follows for h € R

Flo+ hi) = f(x) + f/(0)hi — L8p2 - @3 4 4 L@ pkik Ly o(pk)

with imaginary part Im[f(z + hi)] = f'(z)h — %hi& + L18@p5 4 o(RF)

Then, the derivative of f at x is:

f’(x) _ Im[f(z-i-hi)] + O(h2), (8,1)

This process can be generalised for higher order derivatives by means of Multicomplex numbers (Chap-
ter 4), see [Lantoine et al., 2012]. Complex steps is a solution for subtractive cancellation error but
the truncation error relative to the Taylor expansion remains.

On the contrary, if the dual numbers (Chapter 2) are used as proposed in |[Dimentberg, 1965,
Dimentberg, 1968|, then because n?> = 0, the Taylor expansion around x is simply f(z + hn) =

f(z) + f'(x)hn, from where we get the nonreal part Un[f(x + hn)] = f'(x)h and thus
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— Un[f(z+hn
f!(x) = Lellethn)] (8.2)

Therefore, there are no truncation error and no subtractive cancellation error.

In order to test these results, we consider the function

_ e®(3cos z+5 cos 3z+9 sin z+sin 3z)

= 3
8(sin® z+cos3 ) 2

flz) = \/ﬁ» f(z)

which is extended to C and D as f(z) = v(z,y) + w(x,y)g, g € {i,n}.

Notice that this could also be done for bireal numbers but we did not find practical applications

concerning derivatives. According to (8.1) and (8.2), the approximative derivative is given by @

and the approximation error is E(z,y) = || f'(x) — @H In Figure 8.4, the approximation error

(a) 2 € C, Br,y) < 4 (b) 2 €D, , Bz,y) < 107

Figure 8.4 — Derivative approximation error
is displayed for (z,y) € [0,0.75)%. Readily we see that the best option is when the function f is
extended to the dual numbers, where the error F(x,y) is of the order of machine epsilon 1075,
Figure 8.4 (b). The reason of this surprising results is due to the Cauchy Riemann (CR) conditions

in D described in [Chatelin et al., 2014]. Let z = 2 4+ yn € D be in a domain U C R? and suppose
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f(z) = v(z,y) + w(x,y)n to be C*, i.e. v,w € C*(U), thus the (CR) conditions are v, = w,, v, = 0
and f is of the form f(x +y n) = f(x) + f'(z)y n, for any y € R, not only small as it is usually
supposed in the derivative approximation by Taylor series. Notice that the advantages of this method
are limited to functions satisfying these specific conditions. For example, the real functions exp(x),

sin(z), z* extended over D) are as follows:

exp(z + yn) = exp(z) + exp(z)yn,
sin(z + yn) = sin(x) + cos(x)yn,

(z +yn)k = 2% + ka*yn.

Moreover, it is possible to recursively compute higher order derivatives by means of the pluridual
numbers already exploited in the movie industry, [Piponi, 2004]. We denote D the set of dual
numbers with dual components: z € D® = D(D), then, if we introduce two nilpotent units n,

and ny, we get

Z=yo+nay1, Yo,y1, €D defined by ny

z = (zo +x1n1) + ng(20 +1301), N2 =0, n3=0, (nng)* =0

and a function f : D@ s D® is given by f(2) = f(yo + nay1) = f(vo) + naf’(yo)y1, where f(yo) =
f(zo + z1n1) = f(wo) + nuf'(xo)x1, f(yo) = f'(wo + x1n1) = f'(x0) + nif"(xo)z1. Thus, for z =

Zo 4+ hiny + hane € D@ it can be proved that:

f(.??o + hml + hgng) = f(l’()) + hlf/($0)n1 + hgf/(l'o)ng —+ hlhgf"(xo)nlm.
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from where we obtain the second order derivative with the component of f(zg+ hini + hong) on ning

denoted Uny,,p,, f(zo + hing + hong):

~ Unpyn, f (w0 + hang + hony)

f//(‘ro) h1h2

In [Fike, 2013], this technique is used in the framework of multi-objective optimisation in Computa-
tional Fluid Dynamics with computations of second order derivatives for turbulent transonic flow over
an airfoil and supersonic flow over a wedge. Computations are more expensive but give better results
in terms of precision. This work has been continued in [Brake et al., 2016] and used in uncertainty
quantification by developing parameterised reduced order models for geometric perturbations of an
ideal model. These parameterisations are based upon Taylor series expansions of the system matrices
about the ideal geometry. The numerical derivatives required by the Taylor series expansions are ob-
tained as presented above. In addition to the accuracy of the derivatives up to machine precision, the
key advantage is that this method only generates a single mesh for all the different perturbations and

associated geometric variations.

8.2 Computer Science and Engineering

8.2.1 Rigid body dynamics

Since their introduction by Clifford, dual numbers presented in Chapter 2 have been applied to
constrained movements in mechanics with a specific attention to kinematics of rigid body dynamics

through the works of Kotelnikov (Ukraine) and Study (Germany) [Kotelnikov, 1895, Study, 1901].
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Dual numbers are used to represent Screw Theory (combined translation and rotation) in a synthetic
way. By what roboticians call the transfer principle, the model with real numbers can be written
with dual numbers. Dual numbers are used in screw movements to respresent translation along the
real part and the rotation angle on the dual part. The generalisation of operators to dual numbers
allows engineers to have a compact formulation, with 3 dual equations instead of 6 real equations
[Brodsky and Shoham, 1999|. The resolution of kinematic equations is highly improved in term of
speed compared to algorithms with real numbers. This is shown with the example of the 4-bar system,
which is ubiquitous in rigid body dynamics [Pennestri and Stefanelli, 2007|. For this 4-bar system,
dual numbers and dual complex numbers (complex numbers with dual components, see extension of
scalars in Chapter 4) are used to represent singularities of the system with both theoretical and nu-
merical examples [Cheng and Thompson, 1996]. In this paper, the infinity of dual roots of polynomials

presented in Chapter 5, represent singularities of the displacement equations.

More recently, several approaches have used dual quaternions (8D), quaternions with dual com-
ponents to combine the respective advantages of each algebra. For example, dual quaternions allow
researchers to control robotic arms [Pham et al., 2010] or inertial navigation systems [Wu et al., 2006].
Concerning robots using video cameras to control their movement, dual quaternions are used for the
initialisation of relative position and the orientation between the robot and sensors called "hand-eye
calibration" . According to the roboticians, dual quaternions are an optimal solution for this kind of
problem because there is no redundant information and variables which is not true for matrices. The
main advantage of dual quaternions is that they can represent by the same multiplication a trans-

lation and a rotation, whereas matrix or vector formulations require to perfom these two operations
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separately [Daniilidis, 1999|. For a mathematical description, see [Rincon-Camacho and Latre, 2013,
Chatelin et al., 2014].

In summary, the different approaches of roboticians concern both analytical and numerical exam-
ples and the main reasons in praise of dual quaternions are the compactness of formulation (reduction
of the number of equations), a better singularity analysis and in general a more efficient simulation

and control of the systems.

8.2.2 Signal and image processing
8.2.2.1 Signal processing

In signal processing, quaternions have been the first alternative algebraic structure to be used in
the 90’s to define transfer functions and classical transforms (Fourier, Hadamard). Even if effective
algorithms have been implemented [Pei et al., 2001], quaternions are not adapted to a large number
of signals. Quaternions are limited to 3 distinct signals, one signal for each imaginary axis. On the
contrary, more recent works focus on some algebras presented in Chapter 4 especially bireal numbers
[Alfsmann and Gockler, 2007|, bicomplex numbers [Pei et al., 2004] and the general case in dimension

2" with multicomplex numbers and multireal numbers [Alfsmann, 2006].

The advantage of structures based on multiplanar numbers is the decomposition in orthogonal
components thanks to the idempotent basis (see Section 1.2.2 of Chapter 4). We recall that the
idempotent basis relies on the existence of zerodivisors (z and y # 0 s.t. x x y = 0) which is by
definition unreacheable in fields. This specific property due to the definition of multiplication is used

to reduce complexity of algorithms with componentwise operations.
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8.2.2.2 Image processing

In the case of image processing, bicomplex numbers are used for pattern detection (size, shape,..)
[Pei et al., 2004]. Unlike signal processing, quaternions are used in an efficient way for Fourier trans-
form. For a given image using RGB-model (Red, Green, Blue), each point (pixel) of the image can
be considered as a single quaternion with data relying on quaternion multiplication and no longer the
superpositon of 3 scalar images [Ell and Sangwine, 2007|. As there are only 3 signals (R,G, B) quater-
nions match the requirements of image processing, which is not the case for general signal processing

as presented above.

8.2.2.3 3D-modelling (Mesh, textures, augmented reality)

For several years, quaternions have been widely used in 3D-models (rendering and game engines)
to represent rotations [Azuma et al., 1999, DeLoura, 2001|. Another intensive applications are codes
for numerical simulation in Chemistry [Karney, 2007|. These applications are directly inherited from
the examples in rigid body dynamics. Texture maps (geometric skinning) are both concerned with
kinematics of rigid bodies (animated objects) and rotations in 3D-space. As these numerical models
are consequences of some aspects of robotics, it is quite natural to find again dual quaternions. The
algebra of dual quaternions is an improvement which avoids numerical singularities of meshes due to
linear algebra (Figure 8.5, left), keeping an equivalent memory cost and speed [Kavan et al., 2008|.
This is not limited to animated characters but concerns, in a more general way, the transformations
of 3D-meshes.

The objective of this method using dual quaternions is not to give the most realistic deformations

(that requires other techniques [Vaillant et al., 2013|), but to produce a fast algorithm able to handle
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Figure 8.5 — Comparison between a linear model (left) and dual quaternions (right) [Kavan et al., 2008|
for textures (geometric skinning).

multiple objects in interaction with a low computational cost.

In 3D computer graphics, there exist specific algorithms concerning lighting technology for the
gaming and entertainment industries. Notice that the company Geomerics that produces a code using
quaternion compression (with the formalism of Clifford algebras) for this enlighting technique has
been bought by ARM, the multinational semiconductor and software design company, in 2013 and is

one of the leaders of this segment.

8.3 Physics

The perspectives for the use of hypercomplex numbers in Physics are even more interesting than
the previous cases of applications. But we must warn that there is a huge difficulty gap between prac-
tical applications in Science or Engineering, and the complexity of hypercomplex models concerning
advanced topics of Physics. Hypercomplex algebras, used as alternative tools, are closely linked with

major topics of Physics (relativistic mechanics, particle physics, electromagnetism, quantum mechan-
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ics). Linear algebra and complex numbers have proven their efficiency for a wide range of topics which
can be explicitly formulated, in particular euclidean geometries but in the case of more general phe-
nomena with underlying nonlinear principles, these tools may not be sufficient, they are too restrictive
compared to hypercomplex algebras.

A general remark concerning geometry is that the three kinds of nonreal units in the plane that
square to —1, 0 or 1 (see Chapter 2) are respectively related to elliptic, parabolic and hyperbolic
cases |Kisil, 2012|. A remarkable example concerning bireal numbers and hyperbolic geometry can be
found in hydrodynamics, in particular the transition state of the differential equation from subsonic

to hypersonic regimes [Lavrentiev and Chabat, 1980].

8.3.1 Electromagnetism

In electromagnetism, we mentionned in Chapter 2 the position of Maxwell concerning quaternions
[Maxwell, 1891]. The operator nabla denoted V defined by Hamilton in 1847, whose name was given
by P. Tait in a personal correspondence with Maxwell, is the only remaining trace of Hamilton’s
inheritage. The operator V is often presented as a handy symbol to write the operators gradient,

divergence and curl of a function f respectively denoted gradf, divf and rotf. The original idea of

9

ox

Hamilton to interpret the symbol V = aﬁ as an imaginary quaternion led to write gradf = Vf,
Y

9
0z

divf =< V|f > and rotf = V A f. These identities have been reduced to a mere notation in 3D-
vector analysis [Wilson and Gibbs, 1902, Heaviside, 1892]. However, they are well defined formulae in
the field of quaternions, thanks to the existence of addition and multiplication in 4D. The modern hy-

percomplex versions of electromagnetism are using complex quaternions and can represent Maxwell’s
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relations, uniting scalar and vector equations which is impossible in linear algebra [Kravchenko, 2003|.
The avantages of complex quaternions are presented in [Khmelnytskaya and Kravchenko, 2009, where
analytic and numerical solutions of electromagnetism are compared to those coming from linear alge-
bra. We insist on the fact that the main current version of Gibbs and Heaviside with vector analysis
is not the original one of Maxwell, based on quaternionic operations.

It is interesting to notice that famous researchers have followed the original path of Maxwell work-
ing at the frontier of Electromagnetism and Special Relativity. In particular, we can mention the
work of Silberstein, for the representation of the electromagnetic field with the Riemann-Silberstein
vector [Silberstein, 1912|. Another remarkable work comes from Lanczos which is well-known in nu-
merical analysis for his many contributions (Lanczos algorithm, conjugate gradient). Indeed, it is less
known that Lanczos started and spent the main part of his career working on mathematical physics
and especially Electromagnetism and Relativity since his thesis in 1919 using complex quaternions

[Lanczos, 1919]. He also served as assistant to Einstein between 1928 and 1929.

8.3.2 Modern Physics

In relativistic Physics, it is interesting to notice that Lorentz transformations and the Lorentz
group have been written in the formalism of complex quaternions. We already pointed out in Chapter
4 the contribution of Rosen (third author of the Einstein-Podolsky-Rosen paradox), to the matrix
formulation of quaternions and 4D-rotations in Special Relativity (SR) but the complete description
of Lorentz transforms with complex quaternions was given ealier by Klein that uses Noether’s work
[Klein and Sommerfeld, 1910] and Silberstein [Silberstein, 1912].

After the introduction of spinor theory, particularly in the hands of E. Cartan and then Pauli, the
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biquaternion (=complex quaternion [Hamilton, 1853]) representation of the Lorentz group was super-
seded. Nevertheless, it is remarkable to notice that hypercomplex algebras are still implictly present
in current theory. For example in Special Relativty (SR), what physicists call the complex lightcone
is the set of zerodivisors of H(C). It is rarely mentionned that, when limited to one space variable, it

corresponds to idempotent lines in the bireal plane [Sobczyk, 1995].

Concerning Quantum Mechanics, we can (once again) mention the use of complex quaternions (see
Section 8.4) that is common to SR and quantum mechanics, and also the role of octonions and alter-
nativity [Baez, 2002, Dray and Manogue, 2015]. Octonions are especially used in the field of particle
physics: there exist, so far, no other way than octonionic multiplication to represent quark transtition
states [Catto et al., 2016]. A factual observation is that the more researchers investigate fundamental
phenomena and their interactions, the more algebras in higher dimension associated with a specifc

multiplication are frequently found useful.

Sir Michael Atyiah (Fields medal 1966, Abel prize 2004) kept all along his career an inter-
est in Clifford and Dickson algebras since his work with Bott [Atiyah et al., 1964] and up to now
[Azcarraga, 2018|. His main points of interest concern geometry, spinors and gravitation. In his opin-

ion, non associativity, alternativity and octonions should not be neglected, especially for gravitation.

8.4 Quantum Computing

Over the past years, quantum computing has evolved to appear as an emerging technology with

the potential to tackle some scientific problems that cannot be solved by classical computers even with
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a high level of paralelisation. The point is not to determine if a quantum computer could replace a
classical computer but how it could be of great interest for some fields of research such as combinatorics,
factorisation, chemistry, quantum sensors for metrology. Quantum computing is a combination between
several areas but mainly quantum mechanics, thermodynamics for material sciences, mathematics and
algorithmics. We will only briefly present some aspects related to the mathematical context of quantum

mechanics.

8.4.1 Elements of quantum principles and their historical background

There exist no fully satisfying theory to explain the phenomena related to quantum mechanics
(superposition, entanglement, decoherence,..) and these ideas have been the source of unresolved
controveries since their discovery in the beginning of the 20" century. It is interesting to notice that
the matrix mechanics formulated by Born, Heisenberg and P. Jordan was for some time opposed to
the wave mechanics of Schréodinger. The reconciliation between the two approaches in the framework
of Hilbert spaces occured with Dirac. The bra-ket notation of Dirac is just based on complex vectors
in Hilbert spaces, but in the early 20" century, matrices and linear algebra were not a common tool
for physicists.

P. Jordan, which played a central role in the mathematical aspects of matrix mechanics, extended
the algebraic tools to tackle nonassociativity associated with observables, in particular using octonions
[Jordan et al., 1934]. Due to the advanced mathematical theory that was required by the path opened
by Jordan (non linear algebra, nonassociativity) and also historical reasons that separated Jordan from
the Copenhagen group (see Bibliographical notes), most physicists remained on the danish path of

linearity and associativity. Jordan’s interest for nonassociativity has been taken up by mathematicians
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(in particular Albert, the student of Dickson, see Chapter 3) and gave birth to what is now called
Jordan algebras which are based on a nonassociative multiplication [Schafer, 1995|. After the sixties,
octonions made their appearance in quantum mechanics again, but only few physicists kept on the
track of nonassociativity. For detailed explanations concerning this point, see [Glinaydin et al., 1978|.

In quantum mechanics, Pauli described the spin of an electron thanks to the matrices

o1 = , 0o = and03: 5
10 1 0 0 -1

that are currently called Pauli matrices. The matrices that Pauli used for spin theory are coming
from Lorentz transformations and their complex quaternions formalism, see Section 8.3.2. They are
the matrix transcription of the basis vectors of complex quaternions (see Chapter 4, Section 1.3) and
we have the isomorphism {I,i03,i09,i01} ~ {1,1,j,k}, with i* = j2=k®* = —1,i x j = k and I the

identity matrix of order 2. Considering p, ¢,r, s € C, a complex quaternion p + ¢i + rj + sk € H(C) =

p+iq r+1s
C ® H is isomorphic to the matrix

—r+1is p—1q
8.4.2 Quantum Computing and hypercomplex algebras

The model for the quantum analogues of bits for classical computers, called qubits "quantum bits
", is based on complex Hilbert spaces and the notation bra-ket of Dirac. The spatial representation of
the different states of qubits uses the Bloch sphere, which is a unit sphere of R? that describes spatial
rotations (SO(3), SU(2)). In theory, a quantum computer with n qubits can have up to 2" superposed
states. Computations are performed using quantum gates (represented by unitary hermitian matrices),
the quantum equivalent of logic gates.

In the current direction followed by industrials and by the most advanced research works on
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quantum computing [Bravyi et al., 2018], the main quantum gates are called "Clifford gate set" and
correspond to Pauli matrices with notations I = I, X = 01,Y = 09, Z = 3. Implictly, these quantum
gates use complex quaternions computational mechanisms. Another fundamental quantum gate used

1 1

to model superposition states is the Hadamard gate represented by the matrix H = %

1 -1
The role of this matrix has been largely discussed in Chapters 4, 6 and 7 and correspond to the use of
idempotent elements within a bireal structure. A more general relation between quantum gates and

hypercomplex algebras can be found in [Vlasov, 1999, Vlasov, 2001|. Fundamental aspects of Quantum

Computing are thus naturally related to hypercomplex algebras |Latre, 2018|.

8.4.3 Issues for Quantum Computing

We have seen in Chapter 4 that a theoretical isomorphism could lead to misunderstandings and also
that two isomorphic formulations do not necessarily have the same numerical behaviour, see Section
8.1. The use of SO(3) for rotations is not numerically efficient . Concerning unitary matrices SU(2)
that are generally associated to the tensor product to obtain the dimension 2", the first problem is
that the formulation is not unique and depends of the choice of coordinates to build matrices. The
tensor product, as it is used in quantum computing, has a descriptive role and in practice is reduced to
the product of block matrices (Kronecker product). Notice that the role of tensor product in Quantum
Computing, limited to linear algebra, should not be confused with the one in differential geometry
and also in data analysis, where tensors are used for their multilinear properties.

In Chapter 7, we have presented relations between spectral coupling and quantum chemistry.
Chemistry is one of the main targets of quantum computing and the coupling of energy levels obtained

from the stationnary Schrodinger equation use the same Hadamard matrix than the superposition of
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quantum states. Much work has to be done to deepen this connection.

Another key issue concerns the measure problem. Measure is already a difficult question for stan-
dard computers. The choice of a specific norm can change a numerical result or the convergence of
an algorithm. When it comes to quantum computing, other specific properties (superposition, en-
tanglement) are added which become conflictual with the standard notion of norm. We have seen
that complex quaternions or bireal numbers are implicitly present in quantum computations which
means that non euclidean metrics and zerodivisors have to be taken into account. Indeed, wee recall
(see Chapter 4) that H(C) cannot be naturally equipped with a norm: there exist idempotent and
nilpotent elements that are zerodivisors and thus computational singularities. The use of the algebraic
structures presented in this thesis could represent an interesting direction to clarify in an explicit
formulaion these crucial points. If we keep in mind the instructive example of electromagnetism and
the differences between original quaternionic equations and the modern form in vector analysis we
may ask the following question: do complex Hilbert spaces and matrices define the most efficient way

to perform quantum computations that are highly nonlinear?

8.5 Summary

In Computational Science and Engineering, many of the algebras presented in this thesis allow
researchers to compute with a reduced number of equations and parameters, or with a better numerical
stability and efficiency. Bireal and dual numbers offer numerical possibilities that are unreachable with
complex numbers even if computations may be more expensive due to the overloading of operators.
Concerning the practical implementations, there exist no standard and optimised codes, only custom

made examples often designed for a specific field of application. This may explain why these tools are
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not widespread, since their efficiency is not universal.

Without falling into name dropping, it is quite striking to notice that major mathematicians and

physicists of the 19" and 20" centuries have worked with hypercomplex numbers on key parts of

Science such as electromagnetism, relativity and quantum mechanics.

We sum up in Table 8.1 the fields of application that we have found, where hypercomplex numbers

bring an added value, either theoretical or practical. Concerning split algebras which are not detailed

in this thesis, a list of relevant references can be found in |Latre, 2013].

dimension algebras
— 2
2 C £ = R D
1,2,6, 8 1,2,4,9
) H :C=CCR) C({D) _ DD)
1,2,5,7,8 | 56 1,2,579 1,2, 4 9,11, 12
3 G 24 H = H(*R) H(D) H(C)
3,57 7 3 1,2, 4 5,6,7,8,10

Table 8.1 — Some of the current theoretical and practical applications for hypercomplex algebras in

dimensions 2, 4, 8

1: Signal Processing

3: Kinematics

5: Electromagnetism
7: Quantum Mechanics

9: Automatic Differentiation

11: Optimisation

In conclusion of this chapter, we can see that hypercomplex algebras are not limited to specific fields

of application, so they should be considered as number structures to compute with great potential for

current and future parts of scientific research.
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2: Image Processing

4: Robotics

6: Special Relativity

8: Quantum Computing
10: High Energy Physics

12: CFD




8.6 Bibliographic notes

The bibliographic material is largely scattered due to the many topics addressed, the different
communities involved and the long time periods. There is a mix between, on one hand, mathematical
publications on the invention of hypercomplex numbers, their algebraic properties and their applica-
tion to Physics mainly published between the 1840’s and 1940’s, written in diverse languages, and on
the other hand, applications in engineering mostly developed after 1950 with the widespread avail-
ability of electronic computers. As pointed in Chapter 2 with the example of Cartan’s article, which
remains untranslated in English, the facts that hypercomplex numbers are not a common academicly
taught topic in Science and the lack of authoritative solid references are major issues which render
transdisciplinarity an elusive task.

The mere designation of structures is so diverse that it requires semantic clarification. Depending
on the bibliographical references and on the mathematical or engineering communities, the structures
appear under multiple names and descriptions. The comparison between algebraic formulations as was
done in Chapter 4 is a prerequisite and a first step for a sound communication between researchers in
different fields. For example, one can find in current use the following terms (partial list) to refer to
the algebra R = R @ Ru:

— bireal numbers [Bencivenga, 1946| , as a subset of bicomplex numbers, [Segre, 1892],

— double numbers in plane geometry [Yaglom, 1963],

—  split-complex numbers, for generalised Dickson and composition algebras [Albert, 1942],

— the even subalgebra of Cly1(R), for Clifford algebras [Lounesto, 2001,

— hyperbolic numbers, for quadratic forms [Deheuvels, 1983|, SR in 1D-space [Sobczyk, 1995].

This is just an example for one algebraic structure among all the algebras that are presented
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in the thesis! In all the references since the 1950’s that we found, we have to point out significant
contributions, both theoretical and numerical, coming from the Russian school. It is quite remarkable
to notice, that hypercomplex algebras have received much more attention in Russia than in any other
country. As pointed out in Chapter 1, this is partly due to educational differences (hypercomplex
algebras are taught in high schools). A large number of russian publications remains unstranlated in

English.

Concerning quantum mechanics, we sum up in a few lines some facts concerning P. Jordan found
in [Schroer, 2003]. Jordan’s case is one more illustration of why Science, as a human construction
(reflecting the prejudices of its time, that form the Zeitgeist), cannot be separated from History.
Jordan joined the NSDAP (the national socialist german party) in 1933 and it appears that, due
to his education and personal beliefs, his project was to convince the NSDAP leaders that modern
physics with Einstein and the Copenhagen school of quantum theory was the best antidote against the
"materialism of the Bolsheviks". His active pre-war collaboration with his Jewish colleagues made him
appear less than trustworthy in the german side during the war. Then after WW2, his link with the
national-socialist party delayed enormously the recognition of his important scientific contributions.
An undeserved double scientific punishment. By comparison, Heisenberg’s active involvement in the

german war effort hardly tarnished after 1945 his well-established scientific reputation...
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Conclusion

Nous avons exploré différents aspects de la multiplication de nombres ainsi que les structures al-
gébriques associées qui sont utilisées pour la Science et I'Ingénierie. Le caractére particulier de ces
algébres, lié au role de la multiplication, en fait un cadre de calcul potentiellement mieux adapté aux
problémes non linéaires. Cela fait émerger de nouvelles possibilités pour le Calcul, qui restent large-

ment inexplorées a ce jour.

Contrairement a la plupart des références trouvées dans la littérature qui traitent chaque structure
ou type de structure comme des cas particuliers isolés, nous avons présenté une approche comparative
des différentes algébres hypercomplexes et du procédé de Dickson tout en regroupant les différentes
applications que nous avons recensées a ce jour. C’est justement la comparaison de ces structures
qui met en évidence que le Calcul revét par exemple une forme trés spécifique dans le corps C, alors
qu’il prend une forme différente pour les autres algébres du plan 2R et ID. Nous soulignons notamment
I'existence de diviseurs de zéro qui, loin d’étre un frein au Calcul, s’avére étre un véritable avantage
pour les cas que nous avons présentés. Nous avons également vu que, dans une perspective de Calcul,
la notion d’isomorphisme est a relativiser. Concernant les apports personnels, la théorie du couplage
spectral associée aux nombres biréels permet de présenter des aspects mathématiques novateurs par

rapport a l'existant et cela méme dans des domaines bien établis comme la théorie spectrale.
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L’utilisation des algébres hypercomplexes semble bien implantée dans certains domaines applicatifs
(robotique, informatique) et implicitement présente dans de nombreux exemples de la physique. Nous
avons mis en évidence de nouveaux domaines d’applications comme la mécanique des milieux continus
ou la chimie, grace au couplage spectral. Nous mettons en avant trois raisons principales qui, selon
nous, légitiment la promotion des algébres que nous avons étudiées.

1) Premiérement, pour l'aspect scientifique. En effet, il reste aujourd’hui beaucoup a découvrir sur
les propriétés théoriques de ces nombres et les aspects numériques qui en découlent. Deux axes de
recherche méritent selon nous une attention particuliére. Tout d’abord, ’étude du plan numérique 2D
demeure incompléte. Les nouveaux résultats que nous avons présentés pour les biréels et le couplage
spectral ne sont qu’un début prometteur pour la découverte de nouveaux principes de Calcul qui restent
encore implicites. Nous rappelons le travail d’Adrien Douady un demi-millénaire (!) aprés I'invention
des nombres complexes, a approfondi des résultats remarquables sur les itérations quadratiques dans
le plan complexe. Cet exemple, tres court a 1’échelle de temps du Calcul, montre que des résultats
profonds peuvent encore surgir grace a des polynémes de degré 2 et au plan numérique. Le role des
nombres biréels et celui des duaux (que nous avons a peine éffleuré) pour le Calcul est loin d’étre
une question résolue, tout comme l'interaction des trois algebres et géométries du plan. Selon nous,
la dimension 2 demeure un défi sous-estimé. Ensuite, les algébres de Dickson non alternatives (de
dimension > 16) jouent un réle crucial dans le traitement différentiel de I'information de par I'aspect
local des calculs et de la notion de mesure [Chatelin, 2019]. Avec 'essor de techniques de traitement
des données (machine learning, intelligence artificielle) et de ’émergence du Calcul Quantique, les
algébres hypercomplexes pourraient permettre de compléter utilement les techniques actuelles qui

exploitent I'aspect combinatoire et statistique de données discretes. Cependant, un constat flagrant
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concernant les algébres hypercomplexes et les algébres de Dickson est que leur visibilité est ralentie
par la connaissance encore trop limitée de leur existence et de leurs propriétés algébriques. Du point
de vue applicatif, le manque de formation théorique associé a ces structures mais aussi de codes de
calculs accessibles et efficaces doit étre pris en compte.

2) Dans le prolongement du point 1), un second aspect concerne la nécessité d’un enseignement
mathématique associé. En effet, a notre connaissance, la formation actuelle mathématique ou appli-
cative développe principalement le Calcul réel, complexe ou matriciel. La connaissance des différentes
possibilités de multiplication, qui est une opération fondamentale, semble souvent limitée aux corps
et aux structures associatives, & part pour certains domaines spécifiques de 'algébre. L’utilisation
d’autres structures, au dela et plus encore de 'alternativité, offre une perspective complémentaire
aux domaines existants.

3) Le dernier point dépasse le simple domaine mathématique, et nous permet de revenir sur une
réflexion au dela de la segmentation des disciplines. Il ne faut pas oublier que les mathématiques sont
une ceuvre humaine, c’est-a-dire une action inscrite dans le temps, qui posséde ses propres limites.
Nous avons mis en avant la résistance idéologique de la raison humaine face & la nouveauté et aux
ruptures radicales. Ce phénoméne ne doit pas étre négligé ni sous-estimé. Méme si ces algébres ont
été découvertes il y a plus d'un siécle par des inconnus ou des mathématiciens de grande renommée,
elles sont sujettes d’'une maniére continue & une forte résistance provenant de la majeure partie de la

communauté scientifique.

Au vu de I'intérét mathématique, de 'emploi varié dans de nombreux domaines de la Science, ainsi
que des domaines potentiels comme le Calcul Quantique, il nous semble déterminant d’approfondir

dans 'avenir I’étude des structures présentées, afin d’apporter de réelles idées nouvelles pour le Calcul.
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