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Business School, Universidad Carlos III, the University of Bristol and the University of Hamburg. This paper has
been funded by the Agence Nationale de la Recherche under grant ANR-17-EURE-0010 (Investissements d’Avenir
program) and grant ANR FINRIS (ANR-20-CE26-0010).

†IAE Savoie Mont Blanc. e-mail: haina.ding@univ-smb.fr
‡Toulouse Capitole University, Toulouse School of Economics and Toulouse School of Management. e-mail:

alexander.guembel@tse-fr.eu
§Toulouse Capitole University, Toulouse School of Economics. e-mail: alessio.ozanne@tse-fr.eu

mailto:ina.ding@univ-smb.fr
mailto: alexander.guembel@tse-fr.eu
mailto: alessio.ozanne@tse-fr.eu


1 Introduction

The Basel Committee on Banking Supervision elevates market discipline to one of its three

pillars of the prudential regulation of banks.1 In this lies an acknowledgement that markets

may achieve things that regulators cannot. Market discipline is often thought of as having two

broad roles (see, e.g., Kwan, 2002): a direct role by restricting undeserving banks’ ability to

access capital, and an indirect, informational role.2 In both cases, supervisors can presumably

not easily replicate what markets achieve. A supervisor may find it costly to impose directly

the penalties corresponding to the cost of modified funding conditions, and markets can provide

information that supervisors cannot.3 Market prices are free and forward-looking, generated

by speculators with monetary incentives that are hard to replicate by supervisors facing up to

increasingly complex banks (see Goldstein, 2023, and the citations therein, e.g., Stern, 2001).

Unfortunately, the Basel Framework provides little help in identifying how supervision can be

designed to leverage whatever it is that markets are good at. Pillar 3 largely reduces to a

recommendation to improve disclosure, so as to facilitate direct market discipline. By this logic,

more disclosure of supervisory information, including the disclosure of stress test results, fosters

direct market discipline.4 This leaves open the question of how the design and disclosure of

stress test results affects jointly the direct and indirect role of market discipline. This paper

explores the informational spillovers from supervisory information production, notably in the

form of stress tests, to market discipline in its direct and indirect roles.

We provide a model in which banks can be of two, privately known types. Both types try to

1The other two pillars are, loosely speaking, capital requirements (see Flannery, 2014 and Ngambou, 2022 for
overviews) and supervisory monitoring (see, among others, Colliard, 2019, and Carletti, Dell’Ariccia and Marquez,
2021).

2The distinction between direct and indirect market discipline is related to the monitoring and influence
functions of markets, identified by Bliss and Flannery (2002). Market discipline can affect banks in a variety of
other ways. See Flannery and Bliss (2019) for a detailed discussion and overview of research on market discipline.

3Acharya et al. (2014) and Haldane (2011) provide evidence that simple market capitalization based measures
of bank health were better than regulatory measures at identifying banks that eventually experienced distress.
Berger et al. (2000) show that both stock and bond prices are more accurate than supervisory assessments. As
Flannery and Bliss (2019) argue: “We believe that market discipline can, potentially, complement and support
official oversight of risky financial institutions, [...] by providing market signals that supervisors can use to
motivate their own actions...”

4For example, Bernanke (2013) argues “[...] the disclosure of stress test results and assessments provides
valuable information to market participants and the public [...] and promotes market discipline.” As Flannery
and Bliss (2019), however, point out “The appropriate relationship between market and regulatory discipline has
never been fully developed - at least not in official documents.”
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raise funds to invest in a risky loan portfolio, but it is only efficient for a high-type bank to do

so. The supervisor is concerned not to allow low-type banks to engage in wasteful risk taking.5

A supervisor can generate noisy information about the bank type by studying its resilience to a

stress test. The supervisor commits to a set of stress scenarios to which the bank is subjected

and then publicly discloses the test results. This is followed by direct and indirect market

discipline. Indirect market discipline, operating via informative price signals, is arguably most

effectively exercised by traded claims, such as equity due to the ready availability of data and

the liquidity of the underlying markets.6 We model this by having a speculator decide how

much costly information to produce, after having observed the stress test result. He then trades

in the bank’s shares which generates noisy price signals. Direct market discipline is mostly

exercised by capital providers, such as short-term creditors, who need to renew their funding

commitment frequently (see Kwan, 2002). We assume that the supervisor finds it too costly to

intervene directly in funding or shutting down banks, an assumption we relax in an extension.

She therefore relies on capital providers, such as uninsured depositors, to deny funding to low-

type banks and provide funding to high type ones. Capital providers decide on the funding

terms based on the information contained in the stress test result and the subsequent stock

price signals. To summarize, we allow markets to complement banking supervision in two ways:

indirectly, by producing information about banks and directly, by withdrawing funding from

potentially undeserving banks, conditional on the available information.

We first study a setting in which the supervisor’s cost of intervention is high, so she relies

exclusively on market discipline to avoid low-type banks from getting access to funds that would

then be squandered. We show that the optimal stress test design is a coarse pass / fail test

that exhibits leniency. We demonstrate that stock markets are not equally good at identifying

type-1 and type-2 errors of the stress test. Markets are better at identifying bad banks that

were erroneously classified as good by the stress test (type-2 error), but they are less useful

at identifying good banks that the stress test has mistakenly classified as bad (type-1 error).

5This way of modelling a low-type bank is consistent with regulators’ fear that some banks will engage in
zombie lending if they can raise funds. See Acharya et al., (2019) for empirical evidence on the prevalence of
zombie lending.

6The literature has also highlighted the potential role of sub-ordinated bonds (for an excellent discussion of
this point, see Flannery and Bliss, 2019). Our model is sufficiently stylized to make this distinction moot.
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This asymmetric reaction is the result of the speculator’s financial incentives to acquire and

trade on information, depending on whether a bank did well or poorly in the stress test. Banks

that fail a test are less likely to obtain funding, which reduces the scale of their operations,

making information production less valuable. The opposite is true for banks that do well in

the stress test: they are likely to get funding and have relatively larger operations, increasing

the speculator’s potential trading profits. A lenient stress test design makes it more likely that

a bank passes the test. This has the advantage of improving the quality of the price signal

upon which direct market discipline is based. However, distorting the test towards leniency

also has a cost. Since the price signal is noisy, the positive stress test outcome will sometimes

allow undeserving banks to obtain funding. Due to this trade-off, the optimal design features

leniency, but not to the point of rendering the test uninformative. Other papers, discussed in

more detail below, have shown that supervisors may employ lenient stress tests, either because

they suffer from ex post forbearance, or are driven by a concern about inefficient bank runs.

Our set-up features neither of these elements and is instead based on the interaction between

the supervisor’s direct information supply and the information environment in which market

discipline operates.

We also show that a pass/fail structure of the test is optimal, although the supervisor could

have chosen an arbitrarily granular test design. First, the optimal test, by virtue of being lenient,

must be somewhat coarse. That is, for a pass test to be credible, banks with low(ish) resilience

that would correspond to a marginal fail need to be lumped into the same test outcome as sig-

nificantly more resilient banks. Second, a more granular information design reduces the average

amount of information produced. Suppose the stress test had, in addition to a fail outcome,

two pass levels, a moderate and a strong pass. Following a moderate pass, uninsured depositors

would demand a fairly high interest rate. This dilutes equity, reduces trading profits and thereby

dulls the speculator’s information production incentives. It is therefore better to enlarge the

moderate pass to include more resilient banks, which reduces the expected interest rate that

banks in that category have to pay, thereby improving information production incentives.

Some papers have argued that stress tests should be lenient or kept confidential so as to
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prevent runs on banks (see Williams, 2017 and Bouvard, Chaigneau and de Motta, 2015).7

At the same time, recent crisis episodes have shown that supervisors are also worried that

sharp declines in a bank’s stock price may itself trigger a run. Regulators have therefore at

times prohibited short sales of bank stocks during crisis periods, somewhat in contradiction to

their stated commitment to market discipline.8 The question of how to design a stress test

remains open, when the supervisor must, on the one hand, worry about potential crises in which

fundamentally sound banks risk not being able to roll over their debt, and, on the other hand,

wish to allow market discipline to operate. We extend our model to capture the possibility

of a bank run or debt overhang. We do so by making creditors potentially deny funding to

banks that the supervisor would like to see funded. In other words, for banks to obtain funding,

creditors must have more positive beliefs about its type than the belief threshold the supervisor

would apply. We show that, in a benchmark where there is no scope for information production

by the speculator, debt overhang makes the optimal stress test more lenient.

Compared to this benchmark, the optimal stress test can be more lenient or more conserva-

tive when endogenous speculator information production is introduced. The argument for more

leniency remains the same as before: it increases the likelihood of a pass with a resulting posi-

tive effect on information production. However, there is now also a counter-veiling effect. Since

the benchmark pass grade is already quite lenient, and funds are provided by the market, the

funding cost of a bank that passes the test is quite high. This dilutes equity holders and reduces

information production, as mentioned above. In order to encourage information production, the

supervisor may optimally apply a test that is more conservative than the benchmark to ensure

that banks’ funding costs are moderate with a correspondingly positive impact on market infor-

mation and discipline. We show that the supervisor optimally sets a test more conservative than

the benchmark when the gulf between social preferences and creditor preferences is particularly

7In these papers the supervisor’s objective is for all banks to be funded, i.e., there is no role for market
discipline.

8The Securities and Exchange Commission (SEC) imposed restrictions on short sales of bank stocks during
the 2007-09 financial crisis, as did several European regulators during the 2011 sovereign debt crisis. Beber and
Pagano (2013) show that short-sales bans slowed down price discovery in these markets. A ban on short sales can
be justified by their potentially manipulative nature, as shown by Goldstein and Guembel (2008), Brunnermeier
and Oehmke (2014) or Gao, Jiang and Lu (2024). We do not analyse this possibility here. See also Acharya, Gale
and Yorulmazer (2011) for a detailed discussion of how rollover risks can lead to market breakdown.
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wide.9

We also extend our model to allow for direct intervention by the supervisor, when the

latter has noisy private information beyond the stress test result. A direct intervention can

take two forms. Either the supervisor shuts down a bank, even though markets would be

willing to fund it, or the supervisor provides public funding to a bank that is denied access to

funding from private markets. We assume that intervention is costly so that, for a high enough

cost, our extension nests the baseline model in which the supervisor never intervenes directly.

When the cost of intervention is zero, direct market discipline loses its purpose and the optimal

stress test degenerates to become completely uninformative. However, indirect market discipline

remains useful: The supervisor, whose private information is noisy, can still learn from price

signals. Since the supervisor’s intervention decision is no longer directly related to the stress test

outcome, passing the test ceases to be a pre-condition for stimulating information production

by a speculator. In this case, the supervisor wants to make as little information available as

possible, since any public information merely crowds out the speculator’s private information.

When the banking system is in good shape, such that creditors are willing to roll over debt

in the absence of any information, the optimal stress test is informative and lenient for any

strictly positive intervention cost, no matter how small. Intuitively, the supervisor wishes to

enlist market discipline to save on her intervention cost. Since price signals are noisy, having

some information from the stress test allows for more effective market discipline. When the

banking system is in worse shape, such that creditors’ default decision would be not to roll over

debt in the absence of any information, a completely uninformative stress test is optimal for

small, but strictly positive intervention costs and becomes lenient for higher intervention costs.

The supervisor is more reluctant to design a highly lenient stress test, because under such a

test, and given the poor health of the banking system, a pass grade is not sufficient for a bank

to roll over its debt. To make it useful, the supervisor would have to raise the stress test’s

pass threshold to a high level. A pass is then so informative that it leaves little scope for an

informational advantage to the speculator. At the same time, an uninformative test induces

speculator information production at low levels of intervention costs, since the supervisor will

9It is conceivable that the supervisor would like to apply a harsher funding rule than credtiors, for example if
there are default externalities. We analyse this case in Appendix A.
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often intervene and fund the bank. Hence, when the intervention cost is low, it is better to induce

speculator information production with a completely uninformative test, while an informative

and lenient design becomes optimal when the intervention cost increases.

The remainder of the paper proceeds as follows. We provide a review of the literature in

Section 2. Section 3 provides the description of the model, which is solved in Section 4 for

the benchmark case without informational feedback from the stock market. Section 5 presents

the main results on stress test design with market feedback. We extend the model to allow for

debt overhang in Section 6 and introduce supervisor private information in Section 7. Section 8

concludes.

2 Related Literature

There has been considerable interest in recent years in the question how information conveyed

by prices in secondary financial markets feeds back into real decisions (see Bond, Edmans and

Goldstein, 2012 and Goldstein, 2023 for surveys). One application of that literature points to the

importance of stock price information in guiding intervention decisions of regulators, for example,

a supervisor who needs to decide whether to intervene in a troubled bank (Bond, Goldstein and

Prescott, 2010, and Bond and Goldstein, 2015). The papers closest to ours are Bond and

Goldstein (2015) and Siemroth (2019) who study the interaction of a regulator’s information

(including a decision to disclose such information) with information revealed by share prices,

when that information is in turn used by the regulator. They show that more public information

may crowd out private information as it reduces the informational advantage of speculators.10

This effect is balanced by a crowding-in effect, as public information reduces the riskiness of

speculators’ trades, inducing them to take larger positions. Also related is Goldstein and Yang

(2019) who study the interaction between public disclosure and market-based information in a

context where the decision maker learns from both the public signal and market prices (unlike

in Bond and Goldstein (2015) where the regulator has information regardless of whether or

not it is made public). Goldstein and Yang (2019) focus on two dimensions of uncertainty and

10Recent empirical evidence by Heitz and Wheeler (2023) supports the notion that the information contained
in stress tests does indeed crowd out information production by financial markets.
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explore how disclosure affects the weight that traders put on one of the two private signals

they possess. They show that when information is disclosed about the dimension of uncertainty

that is relevant for the real decision, then this will reduce the weight that traders put on that

dimension of their private signals. By crowding out information aggregation on the “useful”

dimension, more public disclosure may reduce the overall amount of information relevant to the

real decision.

Our focus is different in several respects. First, we focus on endogenous information pro-

duction and not on the aggregation of an exogenous information endowment by speculators.

Second, we model feedback from prices via a bank’s access to funding. This is important be-

cause the bank’s expected funding cost affects incentives for information production. Finally, we

study information design in a way that allows us to identify leniency and coarseness as decision

variables. The papers by Bond and Goldstein (2015), Goldstein and Yang (2019) and Siemroth

(2019), share their focus on the intensity with which speculators trade on their private infor-

mation. They, like many others, use variants of the Grossman-Stiglitz framework that assume

normal distributions and thereby preserve the quasi-linearity of trades, which is a key property

for tractability. That framework, however, has a very specific property: Residual uncertainty

from the speculator’s perspective is independent of the realization of the public signal. In this

context, information design reduces to choosing the standard deviation of signal noise. This

property makes the framework arguably less well suited to studying trade in non-linear claims

such as highly leveraged bank equity. Quite plausibly, residual uncertainty is smaller for lower

signal realizations, i.e., when the expected equity payoff is nearer the default region. This in-

duces very different incentives to acquire information, depending on which part of the payoff

distribution a speculator expects to navigate.11 In our paper, the information production deci-

sion therefore depends sensitively on the realization of the public signal, with less information

being produced following a negative public signal than following a positive one.

The effect that trading profits differ, depending on whether the outlook is positive or nega-

tive, is related to Dow, Goldstein and Guembel (2017) who show that speculators’ information

production may break down when firms’ investment prospects are unfavorable. Such firms are

11The cost of moving away from the normal, quasi-linear framework, is that we cannot study the speculator’s
trading intensity, which is the main focus of the above papers.
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unlikely to invest, which therefore undermines the incentive for speculators to produce informa-

tion about those prospects. Deng and Shapiro (2024) identify feedback via consumer learning

as a further channel that can affect the information sensitivity of a firm’s shares, including a

degenerate case where firm profits become independent of the underlying state of the world. In

this paper we focus on the ex ante information design problem when information production in

financial markets depends on the trader’s belief about fundamentals. Moreover, the information

environment is designed by a planner who cares about ex ante bank value, while market infor-

mation is produced by stock traders. Since equity claims are protected by limited liability and

diluted by the bank’s fund-raising, this introduces a wedge between the payoffs that are relevant

for the planner and the information producer. As such, stock traders have little incentive to

produce information about banks with resilience levels close to and below the threshold where

they can obtain funding. Those are, however, precisely the banks that the planner would most

like to learn about. While we are by no means the first to point out that private incentives for

information production differ from social value (see Paul, 1992, or Lenkey and Song, 2017, for

a more recent example), we identify a new wedge between the two.

Davis and Gondhi (2024) analyse risk shifting with informational feedback from the stock

market. Their focus is different from ours in that they explore how an agency conflict between

debt and equity holders interacts with the endogenous information available in the stock market.

They show that the relationship depends crucially on whether investment distortions are of a

risk shifting or a debt-overhang type. As risk shifting in their model increases speculators’

incentives to produce information, the feedback mechanism mitigates the inefficiency caused by

the agency problem.

There are a number of papers that have studied whether stress test results should be dis-

closed, e.g., Bouvard, Chaigneau and de Motta (2015), and Leitner and Williams (2023) (see

also Goldstein and Sapra, 2014 and Goldstein and Yang, 2017 for a more general discussion

and review). Disclosure matters, as it may affect market discipline, the functioning of the inter-

bank market, financial stability, bank lending behaviour and risk sharing. Our model can be

re-interpreted as a disclosure choice: Since the supervisor relies on markets to discipline banks,

all that matters is publicly available information. Our results thus suggest that partial disclosure
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dominates full disclosure of stress test results. In an extension we allow the supervisor to act,

at a cost, on private information. This explicitly introduces a meaningful difference between

what the supervisor knows (a bank’s precise resilience level) and what she discloses (a stress

test result which corresponds to a region in which the resilience level lies).

Some papers have modelled the disclosure choice as a Bayesian persuasion problem, that is,

a supervisor chooses an information design to which she commits. One common theme among

those papers is a supervisor’s concern to design a stress test in a way to prevent bank runs (see

Faria-e-Castro, Martinez and Philippon, 2017, or Williams, 2017). In line with Kamenica and

Gentzkow (2011), this pushes the optimal experiment to be of a pass/fail nature, featuring a

maximum of pass grades consistent with avoiding a run. The optimal stress test is lenient, in the

sense that it admits type-2 errors (some low-type banks passing the test), but no type-1 errors

(no high-type banks failing the test). Some papers extend the basic Bayesian-persuasion-cum-

global-games approach, while remaining in relatively abstract settings that are not specifically

geared towards modelling bank stress tests. Quigley and Walther (2023) study how a publicly

disclosed stress test affects a bank’s incentives to privately disclose verifiable information at

a cost. They show that private disclosure may lead to unravelling, which the stress test can

preempt by applying a richer message space than a simple pass/fail. Inostroza and Pavan (2023)

look into robust information design in a global games framework with privately informed agents.

The optimal policy coordinates all market participants on the same course of action, but without

fully revealing the state. Under some conditions, the optimal policy is a pass/fail stress test.

Other papers add flesh to the Bayesian persuasion approach by modelling the details of

financial frictions faced by banks. Faria-e-Castro, Martinez and Philippon (2017) show that the

opacity implied by the test can generate an adverse selection cost at the fundraising stage. They

investigate the optimal test design as a function of a country’s fiscal capacity, when the regulator

can trade off more transparency against the fiscal costs of guarantees that prevent bank runs.

Goldstein and Leitner (2018) show that a more informative stress test may destroy insurance

opportunities among banks. This potentially renders no disclosure of stress test results optimal.

Inostroza (2023) studies stress testing with multiple audiences, such as short-term creditors

and shareholders. He shows that the optimal policy is opaque when the bank has high-quality

9



assets, and transparent when the bank has poor-quality assets. Full transparency is optimal

because the complementarity in incentives to provide funds between the two types of capital

providers generates a convexity in bank value as a function of the underlying fundamentals.

Orlov, Zryumov and Skrzypacz (2023) show the optimality of pass/fail tests failing all weak

and some strong banks in order to limit the stigma of failure. The optimal test is not fully

informative, because banks are subject to a convex cost of distress, which renders bank value

concave in its initial wealth. Fuchs, Fukuda and Neuhann (2024) study the interaction between

ex ante rules and ex post disclosure. They show that regulation helps ex ante incentive provision,

while ex post disclosure serves to provide insurance. Overall, the conclusions from these papers

are quite nuanced as optimal stress test design depends sensitively on the precise financing

frictions faced by banks.

Although we share with the above papers the feature that a supervisor chooses an information

design and then commits to it, our focus is on optimal learning. As such, we assume that the

supervisor is limited to noisy experiments, as in Parlatore and Philippon (2022). The choice of

scenario adversity then affects the trade-off between type-1 and 2 errors of the experiment. A

more adverse scenario increases the probability of a type-1 error (mistakenly classifying a good

bank as bad) and reduces that of a type-2 error (mistakenly classifying a bad bank as good).

Shapiro and Zeng (2024) study the reputational implications of stress test design for a

supervisor. A supervisor may design either a lenient or a tough stress test, depending on

whether she wishes to build a reputation for being soft or tough. This approach is closer in

spirit to Bouvard, Chaigneau and de Motta (2015) and Parlasca (2024) where, in contrast to

Bayesian persuasion, the supervisor chooses information revelation strategically, after having

become privately informed herself.

Our paper is also related to the literature on banking regulation which regards a moral

hazard problem at the bank level as a central friction to address by regulation, for example,

Bhattacharya (1982), Rochet (1992), Hellmann, Murdock and Stiglitz (2000), Gorton and Huang

(2004), Morrison and White (2005), Calzolari and Lóránth (2011), Calzolari, Colliard, and

Lóránth (2019) or Fecht, Inderst and Pfeil (2022). In Carletti, Dell’Ariccia and Marquez (2021)

banks take too much risk in a laissez-faire equilibrium and supervision is designed to reduce their
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risk exposure. The supervisor monitors and learns about the amount of a bank’s capital (and its

portfolio) and can then intervene so as to reduce risk exposure. When an intervention occurs,

shareholders are expropriated. Our model is similar in spirit, except that the supervisor finds

it costly to intervene directly and therefore wishes to enlist market discipline. High leverage

associated with a poorly capitalized bank could also lead to debt overhang, a problem addressed

by Philippon and Schnabl (2013) who analyze the efficient design of a recapitalization when the

regulator does not know the bank’s type. We extend our model to analyse the possibility of

debt overhang. Our central point on designing the supervisor’s information and its interaction

with market-based information and discipline is new to this literature.

Also somewhat related are models on the design of credit rating agencies’ evaluation scheme.

Goldstein and Huang (2020) predict that CRAs inflate ratings in a model where creditors’

heterogeneous beliefs affect credit market conditions, which in turn generates a feedback loop

from the CRA to the firm’s actual investment decisions.12 Apart from the difference in focus,

Goldstein and Huang (2020) have in mind a CRA without commitment power over its rating

announcements, so ratings are subject to ex-post opportunism by the CRA. Moreover, in their

paper the issue of information production by speculators or other market participants does not

arise, as creditors have an exogenous information endowment. Piccolo and Shapiro (2022) look

at a CRA who is subject to a moral hazard problem in information production. Informative

stock prices serve to mitigate the agency problem. Higher ratings precision reduces information

production.13

3 Model Set-up

We begin with a brief overview of the model. There are five dates t = 0, ..., 4. At the initial

date t = 0, a banking supervisor designs a stress test. The outcome of the stress test is publicly

observable at date t = 1. Afterwards, a speculator decides how much effort to expend on

information acquisition. At date t = 2 the speculator can trade in the bank’s shares and prices

12Terovitis (2020) models a similar feedback loop from credit rating to project financing where managers have
private information about the project quality.

13Note that private information in the loan market may also be transmitted through interest rates, which act
to coordinate banks’ actions in supplying credit to the real economy (see Shen, 2021).

11



are publicly observed. Then, at t = 3, providers of capital, such as uninsured depositors, choose

whether and at what terms to roll over credit to the bank. If the bank can roll over the credit,

it invests in a risky loan portfolio. Payoffs are realized at the final date t = 4.

We now describe the full model. There is a state of the world ω, which can take the values

l and h with equal probability. The state ω realizes at t = 0, is unobservable and determines

whether the bank is worth funding (ω = h) or not (ω = l). We can think of the model as

applying to a single bank, or to many ex-ante identical banks. In the latter case, ω should be

interpreted as specific to banks, i.e., we do not model learning about an aggregate shock from

conducting stress tests across many banks (see Parlatore and Philippon, 2022, or Parlasca, 2024,

for learning about aggregate shocks). Although the bank’s true type ω is not directly observed,

there is a learnable characteristic that is correlated with the bank’s type ω, which we call the

bank’s resilience s ∈ [0, 1]. For analytical tractability, we assume

f(s|ω = h) = 2s,

f(s|ω = l) = 2(1− s),

(1)

with corresponding cumulative distributions Fω(s) ≡ F (s|ω). The supervisor designs a stress

test at t = 0, which reveals information about the bank’s resilience s.14 Both the test design

and its outcome are publicly observed. A stress test is formally defined as follows.

Definition 1 (Stress Test and Outcome). A stress test is a partition S = {s0, s1, . . . , sn} of the

stress resilience space [0, 1] with 0 = s0 < s1 < · · · < sn = 1. An outcome of the stress test S is

a public signal mi for s ∈ [si−1, si), i ∈ {1, . . . , n}.

Suppose, for example, that the supervisor chooses a partition {0, s1, s2, 1} where 0 < s1 <

s2 < 1. This stress test can be interpreted as consisting of two scenarios s1 and s2. The

supervisor can first apply the more benign stress scenario s1 which will result in either a pass or

a fail.15 If the bank fails scenario s1 the supervisor knows that the bank’s underlying resilience

14Since the supervisor does not intervene directly, it does not matter whether she observes s or learns about s
from the stress test. In Section 7 we allow the supervisor to intervene at a cost and observe s independently of
the stress test design.

15The pass/fail nature of the response to an individual scenario is only for illustrative purposes. Since a stress
test is an arbitrarily granular partition, the overall stress test can be much more nuanced than a simple pass/fail.
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is quite weak (s < s1). If the bank passes scenario s1 the supervisor can apply the more adverse

scenario s2 > s1. If the bank passes scenario s1 but fails scenario s2 the supervisor knows that

the bank’s resilience s is in the interval [s1, s2). If, however, the bank passes both scenarios, the

supervisor knows that resilience is s ≥ s2. Note that from (1) it follows that all banks, even

ω = l types, pass the most lenient stress scenario 0 and all banks, including the ω = h types,

fail the most adverse scenario, given by 1.

Note that our definition of stress test S is quite flexible. In particular, since the supervisor

can run as many scenarios as she wishes at no cost, we allow for complete learning of s, i.e.

fully granular grades (n → ∞). Alternatively, the stress test may provide no information about

s (n = 1), or learning s noisily (n finite).16 Nevertheless, we impose two notable restrictions.

First, we require the stress test to be monotone, i.e. two disjoint intervals cannot produce the

same test outcome. This assumption is motivated by the fact that the stress test consists of a

sequential application of stress scenarios. This way of learning is plausible and rules out that an

observer may believe that resilience can be high or low, but not in the middle. Second, in some

of the Bayesian persuasion literature, the supervisor can condition the public signal mi directly

on the state of the world ω, such that the full revelation of the true state is possible. We rule

this out by assuming that a bank’s resilience s is itself only a noisy signal of ω. This is intended

to capture real world limitations to how informative stress tests can be.17

Using (1) it is easy to show that a stress test S induces a distribution of posterior beliefs

νi ≡ Pr(mi) = si − si−1, (2)

µi ≡ Pr(ω = h|mi) =
si−1 + si

2
, (3)

satisfying Bayes-plausibility, i.e.
∑n

i=1 νiµi = Pr(ω = h) = 1/2, with
∑n

i=1 νi = 1.

16Strictly speaking, with n being an integer, the stress test cannot fully reveal s which is a real number.
However, since the limiting case is not materially affected by this distinction, we prefer to avoid complicating the
notation in a way that would be required to formally take on board this point.

17As Leitner and Yilmaz (2019) argue, more intense monitoring by the supervisor may lead to a reduction in the
informativeness of the bank’s internal model. This puts a limit on how much a supervisor can learn, even if the
supervisor’s monitoring technology could be arbitrarily precise. Parlatore and Philippon (2022) study the design
of stress test scenarios as an optimal learning problem when a supervisor receives noisy signals from multiple
banks in response to the application of a stress scenario.
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At date 1 the outcome of the stress test mi is publicly observed. The speculator then chooses

how much private information to acquire about the underlying state ω.18 Information acquisition

generates a signal z ∈ {l, h,∅}. The signal is fully informative (z = ω) with probability σ and

uninformative (z = ∅) otherwise. The speculator can choose σ, i.e., how much information to

acquire, subject to a cost 1
2τσ

2 (with τ > 0) this incurs. We assume throughout that τ is large

enough to ensure that the optimal σ ≤ 1.

At t = 2 the speculator can trade. His order is denoted xI ∈ R. In addition to the speculator,

there is a noise trader who either buys or sells with equal probability a number of units that

we normalize to one. The noise trader’s order is denoted xU ∈ {−1, 1}. The speculator and the

noise trader both submit their market order to a market maker, who can observe each order, but

not its originator, i.e., orders are anonymous. Formally, we let order flow X be random, taking

either the value X = (xI , xU ) or X = (xU , xI) with equal probability. The market maker sets

a price that allows him to make zero profits in expectation on any trades he makes out of his

inventory. That is, like in a standard Kyle (1985) model, the market maker sets the price equal

to the expected value of a share, conditional on the information contained in the order flow.

At date 3 the bank can make an investment of 1 in a risky loan portfolio. For a type ω = h

bank the loan portfolio returns, at date 4, R with probability p and 0 otherwise. Assume pR > 1.

A type l bank has returns R with probability pl and zero otherwise. For simplicity, we set pl = 0.

Suppose investing generates a (small) private benefit for the banker and the social planner does

not care about the banker’s private benefit. The bank thus invests whenever it can, regardless

of its type.19 If the bank does not invest, it has a value that we normalize to 0.20

In order to capture capital market discipline, assume that the bank has internal funds nor-

malized to 1 and short-term creditors who have a total claim of 1 coming to maturity at date 3.

If the creditors do not roll over their loans, the bank has to pay out its internal funds and cannot

18Although we do not explicitly endogenize the timing of information acquisition, it is clearly optimal for the
speculator to wait until after he observes the stress test result. Doing so allows him to condition the amount of
costly information acquisition on the information contained in the stress test.

19This is a simple way of modeling excessive risk taking or over-investment. For our purposes it does not matter
whether the bank knows its own type as long as the low type banker cannot be prevented contractually from
engaging in excessive risk-taking.

20An alternative interpretation is that all banks have a brick-and-mortar line of activities which has zero
net present value, but only high type banks have access to an additional, positive NPV project. Under this
interpretation, even low type banks deserve to operate the brick-and-mortar business, but they should be prevented
from expanding into further activities.
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invest. If the creditors roll over their loans, the bank can use its internal funds for investment in

risky lending. Note that it would make no difference if we assumed instead that the bank does

not have any of its own funds and needs to raise 1 from outside providers of capital. The two

are equivalent, because the bank could pay off the old creditors using internal funds and then

raise funds from fresh creditors for the investment. Assume that the bank can invest if and only

if it secures private funding. Hence, we rule out any direct capital injections by the supervisor.

We relax this assumption in Section 7.

After the stress test and the bank’s share price have been observed, the bank can make a

take-it-or-leave-it offer asking creditors to roll over their loans at a gross interest rate r.21 If

creditors do not roll over their loans, the bank is forced to pay out 1 to creditors and does not

invest.

The timing is summarized in Figure 1.

Supervisor chooses S,
ω and s realize

mi publicly observed,
Speculator chooses σ,
z privately observed

Share trading,
stock price realized

Creditors choose
debt rollover a ∈ {0, 1}

Payoffs realize

t = 0 t = 1 t = 2 t = 3 t = 4

Figure 1: Timing

The supervisor cares about the total value created from the bank’s activity. We denote by

V the bank’s expected payoffs at date 4, net of any amount invested at date 3.22 This payoff

depends on both the state of the world ω and an action a ∈ {0, 1}, denoting the creditors’

rollover decision. We set a = 1 if creditors roll over their debt and a = 0 if they do not. We can

therefore write the supervisor’s payoff V a
ω as follows:

V 1
h = pR− 1, (4)

V 0
h = 0, (5)

21We do not introduce any frictions in negotiations with multiple creditors, so we can think of the bank rolling
over debt with a single creditor who is subject to a break-even constraint.

22Since capital providers break even in expectation, the supervisor’s objective is the same as when maximizing
the joint payoffs of the bank and its providers of capital.
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V 1
l = −1, (6)

V 0
l = 0. (7)

Since V 1
h > V 0

h and V 0
l > V 1

l , it is socially optimal to allow a high type bank to invest, while

it is optimal not to provide funds to a low type bank. The same two inequalities imply that

V 1
h − V 0

h > 0 > V 1
l − V 0

l which in turn implies V 1
h − V 1

l > V 0
h − V 0

l . That is, the action a = 0

reduces the variability of bank value compared to a = 1. As such, we can think of a = 0 more

broadly as an action that leads to the reduction in risk, be it downsizing / failing to expand the

bank’s operations, or a direct intervention to reduce the bank’s risk exposure (see also Carletti,

Dell’Ariccia and Marquez, 2021 or the discussion of market influence in Flannery and Bliss

(2019)).

4 Optimal Stress Test without Price Signals

This section develops the benchmark in which stock markets provide no information, so the

capital providers can only condition their roll-over decision on the stress test result. Denote by

µ the belief that the state is ω = h, conditional on all publicly available information. In this

section, public information is limited to the stress test result, while the next section allows for an

additional endogenous signal stemming from noisy stock prices. It will be useful to define belief

thresholds for which the supervisor prefers for the bank to be able to invest. The supervisor

prefers the bank to continue if

µV 1
h + (1− µ)V 1

l ≥ µV 0
h + (1− µ)V 0

l . (8)

Defining ∆Vh ≡ V 1
h − V 0

h and ∆Vl ≡ V 0
l − V 1

l , this can be re-written as

µ ≥ ∆Vl

∆Vl +∆Vh
. (9)
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or, using the definitions of ∆Vh and ∆Vl, as

µ ≥ µ∗ ≡ 1

pR
. (10)

Consider next the bank’s funding problem. Good and bad banks will try to roll over debt

and invest, but only good banks repay with probability p. Creditors’ participation constraint

therefore depends on their belief µ as follows:

µpr ≥ 1. (11)

Since the bank can make a take-it-or-leave-it offer, the interest rate is set at

r =
1

µp
. (12)

For a debt roll-over to be feasible, we also require

r ≤ R. (13)

The constraints (12) and (13) together imply that a debt roll-over is only feasible if creditors

are sufficiently optimistic they are lending to a high-type bank:

µ ≥ µ̂ ≡ 1

pR
. (14)

Note that µ∗ = µ̂. Hence, the supervisor’s preferred action is also the one implemented via

market discipline. We relax this assumption in Section 6 and Appendix A.23

The supervisor’s stress test design problem is potentially quite complex as the partition

describing the test can be arbitrarily granular. In the benchmark, the problem simplifies con-

siderably, because the stress test induces a single action a which can take only two values, 0

or 1. From (3) we know that beliefs µi, induced by stress test outcome mi are increasing in i.

23In Section 6 we allow for debt overhang, so that some bank types are unable to raise funds, although it would
be socially optimal to do so, i.e., µ∗ < µ̂. In Appendix A we allow for default externalities, which implies that
the supervisor would prefer to apply a harsher continuation threshold than that of capital providers (µ∗ > µ̂). In
both cases, we show the robustness of our main result, namely an optimal distortion toward leniency.
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We can thus collect all partitions that induce action a = 0 into one message, and all those that

induce a = 1 into another message. The stress test can thus be described by a single cut-off s1

such that for a test result m1 (i.e., s < s1), we have µ1 < µ̂ and a = 0. If the test result is m2

(i.e., s ≥ s1), then µ2 ≥ µ̂ and a = 1.24 The supervisor’s objective function is thus given by

v(s1) ≡
1

2

(
Fh(s1)V

0
h + Fl(s1)V

0
l +

(
1− Fh(s1)

)
V 1
h +

(
1− Fl(s1)

)
V 1
l

)
=

1

2

(
s21V

0
h + (2s1 − s21)V

0
l + (1− s21)V

1
h +

(
2(1− s1)− (1− s21)

)
V 1
l

)
,

(15)

and the stress test design problem is

max
s1

v(s1)

s.t. µ1 < µ̂,

µ2 ≥ µ̂,

(16)

where from (3), µ1 =
s1
2 and µ2 =

1+s1
2 . Denote by sN the solution to (16), that is, the optimal

cut-off in the no-feedback benchmark.

Lemma 1. Without information acquisition by the speculator, the optimal stress test is a binary

partition with a passing threshold sN = µ∗.

Proof. See Appendix B.

The optimal stress test simplifies to a pass/fail experiment. Failing the test (message m1),

shows that the bank’s resilience level s is below sN = µ̂ = µ∗, which means that market discipline

bites and the bank cannot roll over its debt. The opposite happens if the bank passes the test

(message m2). Note that the optimal cut-off sN depends on the relative costs of making type-1

and type-2 errors. Define a type-1 error as denying funds to a good bank. The benefit of avoiding

this error is ∆Vh.
25 Under a type-2 error a bad bank can roll over debt and invest. Avoiding a

type-2 error has a benefit of ∆Vl. If a type-2 error is relatively more costly, then µ∗ increases

24Since µ1 tends to zero for s1 close to 0 and µ2 tends to 1 for s1 close to 1, it is always possible to choose an
s1 that induces actions that are contingent on the stress test result. It is also optimal to do so because a stress
test that never affects a would throw away useful information.

25Denying funding to a high type bank leads to a reduction in credit supply to the real economy. See Acharya
et al. (2018) for the declined lending by stress-tested banks in the US and Ahmed and Calice (2023) for the UK
banks that failed the stress tests.
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(see (9)). This in turn corresponds to an increase in the optimal pass threshold sN : The test

becomes more conservative.

In what follows we will use sN = µ∗ as the reference level of how lenient / conservative a

stress test should be and we will be interested in how the possibility of generating informative

price signals affects the optimal stress test design compared to this benchmark.

5 Optimal Stress Test with Feedback from Stock Prices

Before fully characterizing the stress test design problem with an active speculator, we need to

calculate the profits the speculator can reap from acquiring and trading on private information.

For this, we need to determine the fundamental value of the shares, which depends on the

underlying state ω and on the bank’s access to capital, captured by a. If the bank rolls over its

debt, equity value will depend on the interest rate r, which is a function of beliefs µ. We denote

the underlying equity value by Ea
ω(µ).

If the bank raises funds (a = 1) the required repayment is r = 1
µp (see (12)). The expected

equity value of a high type bank which can roll over its debt is therefore

E1
h(µ) = p(R− r) =

1

µ̂
− 1

µ
. (17)

Note that E1
h(µ) is increasing in µ, because equity is more valuable when the bank can roll over

debt at a lower interest rate. This in turn happens when the creditors have more positive beliefs

(higher µ) about the bank’s type. The equity value is zero in all other states, either because the

bank fails to roll over its debt (E0
h = E0

l = 0), or because the bank rolls over debt but wastes

the funds on a bad investment (E1
l = 0).26 We can now state the speculator’s trading strategy

and resulting profits, π(µ), conditional on the belief µ induced by a stress test.

26The assumption that equity is wiped out following a bank’s failure to secure funding is stronger than strictly
necessary, but significantly simplifies the exposition. What is crucial for our mechanism to work, is that the
traded claim (be it equity or subordinated bonds) becomes less responsive to the true state of the world when
the bank fails to raise funds (a = 0). Note that this property may hold more generally since a = 0 is defined
as a risk-reducing action (V 1

h − V 1
l > V 0

h − V 0
l ). Here we make the simplifying assumption that security payoffs

following a = 0 do not depend on ω at all. Note that this can be the case in practice, even if equity retains a
positive value. For example, if a = 0 corresponded to a liquidation or a forced takeover by another bank one
could have E0

h = E0
l > 0. In that case, security payoffs do not depend on ω following a = 0 and a speculator

cannot benefit from acquiring private information about ω.
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Lemma 2. The speculator’s optimal trading strategy is

x(z) =


1 if z = h

0 if z = ∅

−1 if z = l.

For a given amount σ of information produced, the speculator’s trading profits π(µ) are

π(µ) =


σ µ(1− µ)

(
1

µ̂
− 1

µ

)
if µ ≥ µ̂

0 if µ < µ̂.

(18)

Proof. See Appendix B.

Note that the speculator’s trading profits are zero if the stress test induces a belief µ < µ̂. To

see why, consider possible order flows and associated trading profits. If the speculator acquires

information and trades on it, order flow can either reveal or hide his direction of trade. When

order flow is (−1,−1) or (1, 1), the speculator’s direction of trade is fully revealed. Since the

speculator only buys if ω = h and only sells when ω = l, these orders fully reveal ω. The

market maker then sets a price that fully reflects ω and the speculator therefore cannot make

a trading profit. An order flow of (−1, 1) or (1,−1) does not reveal the speculator’s order.

The market maker learns nothing and sets a correspondingly uninformative price. Hence, the

roll-over creditors do not learn anything from market prices, and stick to the belief µ induced by

the outcome of the stress test. When that outcome is so negative as to deny the bank access to

funds (µ < µ̂), the bank’s equity value drops to zero, regardless of the bank’s true type. Since

the equity valuations no longer depend on the true state ω, the speculator cannot benefit from

learning and trading on knowledge of ω.

When the belief µ induced by the stress test is high enough to allow the bank to roll over its

debt (µ ≥ µ̂), trading profits are hump-shaped. As µ becomes very large, everyone, including

the market maker, is confident that the bank is of a high type. This leaves little scope for

the speculator to benefit from acquiring private information, which, with a high likelihood,
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will simply confirm the public belief. The speculator can benefit most from acquiring private

information, when doing so confers a significant informational advantage. This is the case when

the stress test is least conclusive, i.e., when possible resilience levels are intermediate (µ close

to 1
2). Moreover, as µ drops, the bank will have to roll over debt at less favorable terms, leaving

less value for equity holders. This makes it less attractive to speculate on the bank’s stock.

When µ = µ̂, trading profits drop to zero, because rolling over debt is so expensive as to reduce

equity value to zero. Overall, trading profits are maximized at µ = 1+µ̂
2 ∈

(
1
2 , 1
)
.

From the expression for trading profits (18) we can take the first-order condition with respect

to σ to find the optimal amount of information acquired by the speculator:

σ(µ) =


1
τ µ(1− µ)

(
1

µ̂
− 1

µ

)
if µ ≥ µ̂

0 if µ < µ̂.

(19)

In what follows, we assume

τ >
1

µ̂

(
1− µ̂

2

)2

, (20)

which ensures that information acquisition in (19) is a non degenerate probability.

We can now express the supervisor’s problem in a simplified manner.

Lemma 3. The supervisor solves the following stress test design problem:

max
S

V (S) = v(s1) + Σ(S)

s.t. µ1 < µ̂

µ2 ≥ µ̂,

(21)

where v(s1) is defined in (15) and

Σ(S) ≡ 1

2τ

n∑
i=2

νi µi(1− µi)
2

(
1

µ̂
− 1

µi

)
. (22)

Proof. See Appendix B.

Lemma 3 states that the supervisor’s objective function can be decomposed into two parts.

21



The first part, v(s1) consists of the supervisor’s expected payoff, when the only source of infor-

mation is the stress test. This corresponds to the payoff under the benchmark in Section 4. The

second part, Σ(S), consists of the additional payoff from an improved allocation of capital when

the stock market provides useful information. Note that the choice of s1 also enters this second

part via its effect on ν2 and µ2 (see (2) and (3)).

We can now state one of our key results.

Proposition 1. With information acquisition by the speculator, the optimal stress test is a

binary partition with a single passing threshold, sF , where sF is the unique s1 that solves

s1 = µ∗ − 1

4τ
(1− s1)

2

(
s1 −

3µ∗ − 1

2

)
. (23)

The test is lenient (sF < µ∗) and informative (sF > 0).

Proof. See Appendix B.

When market information matters, the stress test is optimally distorted toward leniency

(sF < sN = µ∗). That is, it awards pass grades to some banks that would have failed the test

in the benchmark without market feedback.

Why does the supervisor wish to apply a more lenient pass threshold? The answer is that,

by virtue of being lenient, the stress test generates more pass grades. Since a pass grade is a

precondition for the speculator to acquire information, leniency encourages the production of

market information. This information helps creditors in their roll-over decision. In particular,

some banks that would be marginal fail under the benchmark (banks with resilience levels

s ∈ [sF , µ̂)) are worth investigating further before denying them access to capital. That way,

some of them will be identified as high type banks who were unlucky to have a marginally sub-

standard resilience level. When their stock price holds up after the stress test announcement,

creditors will be willing to roll over their debt, which is efficient. Of course, some of them

will see their stock price drop and be denied funding. While this is also efficient, it does not

constitute an improvement compared to the situation where the stress test was not distorted

towards leniency: those banks would have failed the benchmark stress test and thus also have

been denied funding.
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But leniency also has a cost: it allows some banks to roll over debt and invest, although this is

socially inefficient. This is the case of a low type bank that marginally passes the lenient test, for

which the stock price fails to adjust downwards. This allows such a bank to inefficiently roll over

debt, which would have been prevented under a less lenient stress test. The trade-off between the

direct information value of the stress test, and its role in encouraging information production by

the speculator implies that the optimal cut-off is determined as an internal solution, sF ∈ (0, µ∗).

Note that our model encompasses the corner solutions of a completely uninformative stress

test (s1 ∈ {0, 1}), which is just like not conducting a stress test at all. If the test was unin-

formative and µ̂ > 1
2 , there would never be any information production by the speculator. An

informative test then leads to crowding-in of speculator information. In this case it is obviously

optimal to have an informative test. When µ̂ ≤ 1
2 , and the stress test is uninformative, the

speculator would always produce some information. This is, however, not efficient, because

costly information gets produced even about banks that have a resilience level that pins down

their type with high precision. Instead, it is better to have the speculator produce a lot of

information about some banks and little (or no) information about others, rather than an inter-

mediate amount of information about all banks. By rendering the stress test informative, the

supervisor can boost the speculator’s information production for the banks that pass the test.

This is because the bank’s debt roll-over is less dilutive when creditors are more optimistic about

the bank’s type. An informative stress test changes the allocation of information production

incentives across bank types, but in general does not neatly map into crowding out (or crowding

in) as in some of the literature (see Goldstein and Yang, 2017).

As a thought experiment it is instructive to consider a modification of our model whereby

it is easy to induce speculator information production. Suppose τ was very small, but positive

such that the speculator would always produce the maximum amount of information (σ = 1) as

long as he anticipates the bank to roll over its debt following an uninformative stock price. An

informative test would then clearly lead to crowding out when µ∗ ≤ 1
2 : with an uninformative

test, the speculator would produce a maximum amount of information on all banks. Following

an informative test, the speculator would produce no information for banks that failed the test,

and (still) produce the maximum amount for those that pass it. That is, there is an overall
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reduction in information production. An uninformative test, however, would not be optimal

even in this case. That is because the speculator’s information gets impounded into the price

with noise. Even if an uninformative test were to lead to maximum information production

about all banks, the capital providers will roll over debt for many undeserving banks: When

the stock price is uninformative and the bank has a low resilience level, which remains unknown

since the stress test is uninformative, a bank gets funded, but should not. It is therefore optimal

to reveal very low resilience levels, i.e., make the test informative and lenient, even if it is very

easy to induce information production by speculators.

Another result from Proposition 1 is that the optimal test retains its pass/fail nature. This no

longer follows immediately from the binary nature of the capital providers’ decision (a ∈ {0, 1}),

because the stress test also affects information production which is a continuous choice variable.

The mechanism described before points to a robust reason why the test must be coarse on a

sub-interval around µ∗: Leniency aims to encourage information production for some banks with

resilience levels below µ∗. But for the capital market to fund such banks, they must be lumped

into the same category as banks with a resilience level s > µ̂ = µ∗. In other words, for a pass

category to contain sub-standard banks (s < µ̂) and be credible, it must also contain a sufficient

number of above-standard banks.

Note also that it is sub-optimal to introduce further sub-categories of a pass test. With a

single pass category and a lenient cut-off sF < µ∗, the induced belief µF
2 is below that which

generates maximum information production (µF
2 < µ̃ = µ∗+1

2 ). Suppose now that sF was

kept unchanged, but a second pass grade with a cut-off s2 ∈ (µ∗, 1) was introduced. There

would thus be two possible pass grades m2 and m3 with corresponding induced beliefs which

we denote by µ′
2 and µ′

3, respectively. By construction, we have µ′
2 < µF

2 < µ̃, and µ′
3 > µ̃. As

a result, information production following either pass grade m2 or m3 would drop. Intuitively,

after a moderate pass (m2) the interest rate of roll-over debt increases, which dulls information

production incentives. After a strong pass m3 there is little uncertainty over the bank’s true type.

This reduces the speculator’s potential advantage from becoming privately informed, decreasing

information acquisition. Hence, splitting a single pass grade in two will reduce information

production and is therefore sub-optimal.
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Going back to the broader question of the role of market discipline in supporting banking

supervision, our analysis reveals the following insight. Markets, via the information they provide,

can help reduce type-2 errors. That is, if a bad bank slips through the supervisor’s net (by

passing a stress test), it will be subject to market scrutiny and possibly “disciplined” by being

denied funding. This provides a reason to allow more banks to slip through the net, i.e., to be

lenient. On the other hand, markets are not good at reducing type-1 errors. Banks that are

caught in the supervisor’s net (by failing the stress test), will not be subject to market scrutiny.

Any mistake made in the supervisory process will thus not be corrected. Given the asymmetry

in the way that (indirect) market discipline operates, a lenient stress test design is optimal. This

contrasts with the literature, which has mainly associated leniency with a misalignment of the

supervisor’s objective and the objective of the recipients of the stress test result. For example,

in Bouvard et al. (2015), Williams (2017), Goldstein and Leitner (2018), Parlasca (2024) and

Shapiro and Zeng (2024), the supervisor may wish to hide information from markets to avoid a

bank run.

In addition to identifying a new channel via which stress tests matter, our theory also

provides new policy implications. The improvement in the information environment from stress

test leniency only accrues to banks whose shares are publicly traded. Our theory therefore

implies that publicly listed banks should be subject to more lenient stress tests than otherwise

equivalent privately held banks. To the extent that regulation does not explicitly distinguish

between publicly listed and privately held banks in the stress test design, this would lead to

sub-optimal supervision. Ignoring the impact of stress test design on the quality of price signals,

would lead to stress tests that are too adverse, reducing the information in the price signals

available to creditors in banks who do poorly in the test.

The following proposition describes how the optimal degree of leniency is affected by model

parameters.

Proposition 2. At the optimum, the stress test is more lenient, i.e. sF decreases, when:

• the high type bank’s expected returns are higher (p or R increase),

• information acquisition is less expensive (τ decreases).
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Proof. See Appendix B.

In general, the optimal pass threshold sF is directly affected by changes in µ∗ and indi-

rectly by the optimal extent of distorting s1 away from µ∗. In developing the intuition for the

comparative statics, we will make use of this distinction.

Consider a reduction in the cost of information acquisition, τ . Note that τ has no direct

effect on µ∗. It does, however, have an effect on sF : When financial markets can cheaply acquire

information about the bank’s fundamentals, private information becomes more precise, and the

supervisor obtains more benefit from distorting the stress test towards more leniency.

By contrast, changes in p and R have a direct effect on the relative costs of type-1 and type-

2 errors and thereby on µ∗. In addition, they have an indirect effect on the optimal extent of

distorting s1 away from µ∗. As p and R increase, the cost of a type-1 error increases, as denying

funds to a good bank becomes more costly. A bank is therefore allowed to continue for a lower

resilience level, i.e., µ∗ decreases and so does sF . In addition, there is an indirect effect. Higher

financial returns of the good bank increase the information sensitivity of the equity claim and

thus the speculator’s incentives to acquire information. As a consequence, market information

becomes more precise, increasing the benefit of distorting the stress test towards more leniency.

The direct effect of an increase in p and R on µ∗ and the indirect effect thus work in the same

direction towards more leniency.

5.1 Social versus Private Value of Information

It is instructive to ask how much information the supervisor would acquire if she had access to

the speculator’s information technology and could make the collected information public so as

to allow market discipline to be based on it. We do not consider this possibility throughout the

paper, because we want to capture the notion, advanced by regulators, that financial markets can

generate information that supervisors cannot. However, since the speculator’s incentives are not

aligned with the supervisor’s, this raises the question of what distortion the misalignment may

create. In particular, one may ask how the belief µ affects the supervisor’s value of producing

additional information. This depends on whether a bank can roll over its debt when z = ∅,
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which in turn depends on whether µ is above or below µ∗. When µ < µ∗, and z = ∅, creditors

do not roll over debt (a = 0). Hence, the supervisor’s expected payoff is

E(V ) = µ(σV 1
h + (1− σ)V 0

h ) + (1− µ)V 0
l − τ

2
σ2. (24)

When µ ≥ µ∗, the expected payoff is instead

E(V ) = µV 1
h + (1− µ)(σV 0

l + (1− σ)V 1
l − τ

2
σ2. (25)

Taking the first-order condition in each of the two regions gives us the supervisor’s optimal

amount of information production, as a function of belief µ, denoted by σS(µ):

σS(µ) =


1
τ (1− µ)∆Vl if µ ≥ µ∗

1
τ µ∆Vh if µ < µ∗.

(26)

In the above expression, σS(µ) is continuous and maximized at µ = µ∗. This is intuitive. At

µ∗, the expected cost of making a type-1 or a type-2 error is the same. That is precisely when

additional information is most valuable. In sharp contrast, the speculator’s incentives to acquire

information are zero at the belief µ = µ∗. This is because at the corner µ = µ∗ the bank needs

to raise funds at the least favorable conditions: creditors only roll over their debt at such a

high interest rate that nothing is left for equity holders. The speculator therefore cannot make

a trading profit, even if the bank can roll over its debt. There is therefore a wedge between

the social and the private value of information. Viewing the problem from this angle gives

us a further understanding of the main result on the optimal leniency of the stress test: The

social value of information is highest for banks with levels of resilience around the threshold µ∗.

However, these are precisely the banks for which the speculator’s private value of information

is particularly low. The supervisor therefore induces information production about these banks

by lumping them into the same stress test result as those banks for which the speculator has a

strong information production incentive.
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5.2 Empirical Implications

While our analysis is largely normative in nature, our theory has a number of empirical implica-

tions. In particular, our theory predicts that the amount of informed trading in a bank’s shares

depends on how a bank performs in the stress test. We would expect there to be less informed

trading following the announcement that a bank failed a stress test, compared to when it passes

it. Some papers have shown that there is abnormal trading volume after the announcement of

stress test results (see Flannery, Hirtle and Kovner, 2017 among others). This is indicative of

informed trading activity, although not proof of it. More direct measures of informed trading

have been developed in the market micro-structure literature, for example, bid-ask spreads, the

probability of informed trading (PIN) (see Easley, Kiefer and O’Hara, 1997) or Multimarket In-

formation Asymmetry (MIA) (see Johnson and So, 2018). It would thus be possible to estimate

such microstucture-based measures for banks after the announcement of stress tests and check

whether they are lower for banks that did poorly in the test compared to those that did well.

There is no empirical research to date that conducts such an analysis.

A few papers have looked into abnormal returns following stress test announcements. If

the stress test conveys information, one would expect prices to increase if the stress test result

is better than expected and decrease if the opposite is true. Petrella and Resti (2013) and

Morgan, Peristiani and Savino (2014) provide evidence supporting this hypothesis using stock

price reactions to the first stress tests after the 2008-09 crisis. The findings remain similar for

the more recent, regular stress tests implemented by both the ECB and the US Federal Bank

(See Ahnert et al., 2020, for example). Since the event date (announcement of stress test results)

is known in advance, one would, however, expect there to be no abnormal returns on average

after the announcement. As pointed out by Flannery, Hirtle and Kovner (2017), this is a direct

implication of market efficiency. It should thus be true in our model, but is not specific to it.

As Flannery, Hirtle and Kovner (2017) argue, a more relevant metric is |CAR|, the absolute

value of cumulative abnormal returns, which should be higher after the announcement date for

banks that are subject to a stress test compared to banks that are not. Flannery, Hirtle and

Kovner (2017) do not condition specifically on the stress test outcome and find that |CAR| is
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Figure 2: Difference between |CAR| for Tested and Non-Tested Institutions: χ(τ, µ∗)

indeed higher for the sample of tested banks compared to non-tested banks.27 We can compute

a comparable metric implied by our model, by calculating the ex-ante expected |CAR| as a

function of the stress test design. One can think of the banks that were not stress tested as the

limit case in our model where the stress test is uninformative. Figure 2 depicts the difference

between |CAR| for tested and non-tested institutions, χ(τ, µ∗), using the optimal design for

tested institutions and an uninformative design for non-tested institutions (see Appendix C

for detailed computations). This speaks directly to the additional price changes induced by

information production following the stress test announcement, which is positive for reasonable

parameter values, as found by Flannery, Hirtle and Kovner (2017).

6 Recapitalization under Debt Overhang (µ∗ < µ̂)

So far, we have analysed the case where the supervisor’s preferred course of action coincided

with that implemented by capital providers (µ∗ = µ̂). In practice, supervisors often worry about

disclosing negative news for fear of tightening financial constraints for sound banks, including

the extreme case of provoking a bank run. Similarly, banks may be unable to access private

27Note that from a theoretical perspective it is not entirely clear whether |CAR| should increase for tested
banks. The test has two implications for |CAR|. First, the information contained in the announcement has a
direct effect on prices. Second, information production and trade depend on the public information revealed (or
not) through the test. Hence, non-tested banks could have a higher |CAR| if markets produced significantly more
private information about them.
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funding due to a debt overhang problem (see Philippon and Schnabl, 2013). In our framework,

this corresponds to the case µ∗ < µ̂. Banks with observed resilience levels s ∈ [µ∗, µ̂) will not

be able to fund their activities, although the supervisor would like them to.

One way, among others, to illustrate this case is by modifying our micro-foundation to

allow for debt overhang, which drives a wedge between the efficient investment choice and that

actually implemented by the capital market.28 To adapt our model, suppose banks have an

existing t = 1 level of senior debt D < R outstanding, which cannot be renegotiated. D could

capture the amount of insured deposits, for example. The level of pre-existing debt does not

affect the desirability of investing, so µ∗ remains unchanged. In order to abstract away from

complications arising with multiple classes of pre-existing creditors, we no longer interpret the

funding stage as a roll-over of existing debt. Suppose instead that the bank needs to raise 1

from new providers of capital who are junior to depositors.29 The participation constraint of

capital providers, such as uninsured creditors, changes to

µp(r −D) ≥ 1. (27)

Together with the feasibility constraint r ≤ R this pins down a new belief threshold given by

µ̂ =
1

p(R−D)
> µ∗. (28)

In order not to burden the notation, we continue to refer to the threshold defined in (28) simply

as µ̂. Taking the special case D = 0 gets us back to the definition of µ̂ from Section 4. We begin

by clarifying how the benchmark is affected by debt overhang.

28An alternative would be to micro-found the belief threshold based on a coordination problem among multiple
uninsured depositors who may run on the bank, as in Bouvard et al. (2015). Applying a global game refinement
generates a unique belief cut-off, much like what we have. One shortcoming of the bank-run approach as typically
implemented is that uninsured depositors’ claims are assumed to be fixed. Hence, equityholders’ payoffs depend
only on whether a run occurs, but not on the beliefs when a run does not occur. In our setting creditors demand
a higher interest rate when they extend credit at more pessimistic beliefs.

29With debt overhang, a junior creditor who needs to roll over debt faces a different outside option than
an outside provider of capital, since the former depends on the bank’s liquidation value. In order to keep the
treatment simple, we do not introduce this complication here. In general, if the bank has a large liquidation value,
it may be the case that markets are willing to fund it, even though the planner would prefer a liquidation, i.e.,
µ∗ > µ̂. While conceivable, this case appears of lesser concern in practice. We provide an analysis of this case in
Appendix A.
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Lemma 4. Without information acquisition by the speculator, the optimal stress test is a binary

partition with passing threshold sDN ≡ max{2µ̂− 1, µ∗}.

Proof. See Appendix B.

Lemma 4 shows that the stress test has a cut-off at µ∗, just like before. Since µ∗ < µ̂

this test is lenient from the capital provider’s point of view: The supervisor labels banks as a

pass when she thinks they should have access to capital, not when capital markets would like

them to. From the perspective of capital providers, the supervisor is too generous with pass

grades. Note that a cut-off at sDN = µ∗ only implements the supervisor’s preferred outcome, if

it induces a sufficiently positive belief such that the capital market is willing to provide funds.

When µ∗ is too low, a pass grade may no longer allow the bank to raise funds. In this case, the

supervisor chooses a threshold sDN at the lowest level that still ensures that a pass grade allows

the corresponding banks to access capital markets.30

Proposition 3. With information acquisition by the speculator, the optimal stress test is a

binary partition with passing threshold

sDF ≡ max{2µ̂− 1, s̃ } (29)

where s̃ is the unique s1 that solves

s1 = µ∗ − µ∗

µ̂

1

4τ
(1− s1 )

2

(
s1 −

3µ̂− 1

2

)
. (30)

The stress test is:

• neutral, i.e. sDF = sDN , when µ∗ ∈ (0, µ◦] or µ∗ = 3µ̂−1
2 ,

• conservative, i.e. sDF > sDN , when µ∗ ∈
(
µ◦, 3µ̂−1

2

)
,

30This observation is akin to the finding in Williams (2017), or Bouvard et al. (2015). In their model, the
supervisor would like all banks to be able to access capital markets, corresponding to the case µ∗ = 0. When
µ̂ ≤ 1

2
, then sDN = µ∗ = 0, is optimal as a completely uninformative test allows all banks to access capital markets.

An uninformative test is like no information disclosure in Bouvard et al. (2015). When µ̂ > 1
2
, an uninformative

test would result in no bank being able to access capital markets. In that case, it is better to raise the threshold
just enough to allow the banks that receive a pass grade to get funding. That threshold is given by s1 such that
µ̂ = s1+1

2
.
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• lenient, i.e. sDF < sDN , when µ∗ ∈
(
3µ̂−1
2 , µ̂

)
.

where

µ◦ ≡ 2µ̂− 1

1 + 1
2τ

(1−µ̂)3

µ̂

. (31)

Proof. See Appendix B.

0 µ◦ 2µ̂− 1 3µ̂−1
2

µ̂

2µ̂− 1

3µ̂−1
2

µ̂
sDN

sDF

µ∗

Figure 3: Passing Threshold of the Optimal Stress when µ∗ < µ̂.
Benchmark sDN (in black) and Model with Feedback from Stock Prices sDF (in red).

Figure 3 summarizes Proposition 3 by depicting the cutoff of the optimal stress test with

feedback from stock prices and in the benchmark without such feedback. The key takeaways

from Proposition 3 are as follows. When µ∗ is close to µ̂, the optimal stress test is distorted

towards leniency (sDF < µ∗). This is just an extension of the result in Proposition 1, where

we have already shown the optimality of leniency. As µ∗ drops, distorting towards leniency

becomes increasingly unattractive as the cut-off s1 moves further and further below the cut-off

µ̂, making the recapitalization ever more expensive. This in turn reduces the trading profits

a speculator can make. In order to provide sufficient incentives for the speculator to acquire

information, the recapitalization must not be too expensive, requiring a high enough threshold

sDF to make the pass grade convey sufficiently good news. Hence, as µ∗ drops, the supervisor

lowers sDF less than one for one and eventually the test becomes conservative (sDN < sDF ). In other
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words, conservatism serves to make the financing terms at the recapitalization stage adequately

attractive to preserve incentives for the speculator to acquire information about stock values.

This result is reminiscent of Orlov et al. (2023) who show that the optimal stress test admits

false-negatives. In their paper, banks that fail the test must recapitalize. By making the test

more conservative, failing it conveys less negative information, allowing such banks to recapitalize

at more favorable terms. In our case, a more conservative test conveys more positive information

for a bank that passes it, allowing the latter to raise funds at a lower cost. One key difference is

that in Orlov et al. (2023) a more dilutive recapitalization constitutes an inefficient allocation

of capital and thus reduces welfare. In contrast, in our model, any dilution at the capital-raising

stage redistributes wealth from high to low type banks, but is not inefficient per se. Nevertheless,

dilution matters because it affects the quality of the price signal.

Finally, as µ∗ drops even further, sDF will reach the lower bound given by 2µ̂ − 1. At this

point, passing the test becomes such a weak signal that the recapitalization will be so expensive

as to undermine the speculator’s information acquisition incentives. Although the market signal

disappears at this point, the stress test still generates market discipline by directly providing

information to capital providers. This improves resource allocation just like in the benchmark

of Lemma 4.

The following comparative statics hold.

Proposition 4. At the optimal passing threshold sDF decreases, when:

• the high type bank’s financial returns are higher (p and R increase),

• the level of outstanding debt is lower (D decreases).

When the stress test is lenient (conservative) the optimal passing threshold sDF increases (de-

creases) in τ . When the stress test is neutral the passing threshold sDF is independent of τ .

Proof. See Appendix B.

First, consider the case where a pass grade conveys sufficiently positive news to render the

debt rollover constraint non-binding (sDF > 2µ̂− 1). An increase in p and R reduces the optimal

pass threshold as in the model without debt overhang (see Proposition 1): higher financial
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returns for the good bank increase the cost of a type-1 error (direct effect) and increase the

speculator’s incentives to acquire information (indirect effect). By contrast, an increase in the

debt exposure of the bank, D, has no direct effect on µ∗ but reduces the optimal pass threshold

sDF through its indirect effect on the speculator’s incentives to acquire information. A higher level

of outstanding debt destroys value to equity holders only in the state where the bank is able to

repay such debt (ω = h). As a consequence, the equity claim becomes less information sensitive,

depressing the speculator’s profits. This reduces information acquisition and the information

content of the price signal, which weakens the supervisor’s motive to distort the stress test

towards leniency. Interestingly, a reduction in the cost of information acquisition, τ , affects the

optimal pass threshold differently, depending on whether the test is lenient or conservative. This

happens because a reduction in τ makes market information more precise, and thus amplifies

the supervisor’s motives toward leniency/conservatism.

Finally, consider the case where µ∗ and therefore sDF are so low that any further reduction

in the cut-off would undermine the possibility to recapitalize the bank. In this case, the pass

threshold is pinned down by the belief threshold that induces funding provision, µ̂. Nevertheless,

the qualitative effects of changes in p, R, and D remain the same: higher financial returns of

the good bank and lower debt exposure relax the funding constraint reducing µ̂ and hence sDF .

Since the speculator makes no profits and does not acquire information, the pass threshold is

independent of the cost of information acquisition, τ .

7 Supervisor Private Information

So far, we have assumed that the supervisor does not directly intervene in banks, be it to fund

those unable to roll over their debt, or to restrict the activities of banks that have access to private

funding. Whether banks are able to invest in a risky project depends entirely on their ability to

roll over their debt, i.e., on market discipline. Going back to the baseline model without debt

overhang (µ∗ = µ̂), the lack of direct intervention by the supervisor can be justified in several

ways. First, when µ∗ = µ̂, creditors implement the supervisor’s preferred action. If they have

the same information as the supervisor, there is no need for the latter to intervene. Second, even
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if the supervisor had private information, she might not intervene if there is a sufficiently high

cost of doing so. The appeal to market discipline as a pillar in the Basel framework is an implicit

acknowledgement of the practical relevance of such costs. For example, a supervisor may find

it costly to inject public funds into banks that are unable to roll over their debt, because of

tax distortions (e.g., White and Yorulmazer, 2014, Faria-e-Castro et al., 2017, or Shapiro and

Zeng, 2024). Moreover, the supervisor may suffer from forbearance or be reluctant to restrict

the activities of banks that can access credit markets (Martynova et al., 2022).

In this section we extend our analysis to the case where the supervisor has private information

and can intervene at a cost, including the corner of a zero cost. Suppose parameter values are

such that µ∗ = µ̂, i.e., we are back to the base-line model.31 The timing is as follows. Like before,

assume that the supervisor designs a stress test at date 0. Subsequently, the stress test result

is publicly observed. The supervisor simultaneously and privately observes the bank’s true

resilience level s. Since the supervisor’s information is independent of the stress test design,

the latter is just a disclosure strategy to which the supervisor commits.32 At date 1, after

having observed the stress test result, the speculator decides whether to become informed and

trade. After a trade has taken place and prices are observed, the supervisor can take an action

as ∈ {∅, 0, 1}. If the supervisor does nothing (as = ∅), the bank approaches creditors and

tries to roll over its debt. Assume that creditors observe as. When the supervisor chooses not

to intervene, creditors update their beliefs and funding conditions are set accordingly. If the

supervisor intervenes (as ∈ {0, 1}), she incurs a cost δ ≥ 0 and can either provide public funding

to the bank (as = 1),33 or shut it down (as = 0). As before, the intervention as = 0 should be

thought of more broadly as an action that reduces the bank’s risk exposure, but for simplicity we

just refer to it as shutting down of the bank. If the supervisor provides public funding (as = 1),

we assume that she does so at an interest rate that allows her to break even, conditional on her

31Studying the case µ∗ = µ̂ allows us to focus on what we view as the core focus of this paper, namely the
information spillovers from stress tests to market discipline. If we had µ∗ < µ̂, the supervisor might want to
intervene even without private information, simply because market discipline is too tough. This case (without
stock price feedback) has been studied by Faria-e-Castro et al. (2017) among others. For analytical clarity and
tractability, we focus only on the first mechanism.

32This distinguishes our approach from Bouvard et al. (2015) and Parlasca (2024) who analyze the signalling
game where the supervisor has private information before deciding a disclosure strategy or stress test design.

33One may associate this to the practice of the Emergency Liquidity Assistance (ELA) that the ECB may offer
to a financially distressed bank, such as in the case of Greek banks in 2014.
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private signal s.34 To keep the treatment simpler, we restrict the stress test design problem to

a pass/fail test, i.e., there is a single cut-off s1 ∈ [0, 1].

The bank’s expected value depends on the cut-off s1 via the beliefs and actions that the

stress test induces. The speculator needs to form beliefs about the likelihood and direction of

the supervisor’s future direct interventions. In particular, it may happen that under a lenient

test design, the supervisor chooses to unwind a bank, even though it passed a test. Conversely,

under a conservative test, the supervisor may fund a bank that failed the test. For which

resilience levels s a supervisor intervenes depends on the cost δ of such an action. We can thus

distinguish the following regions.

Region a(i): s1 < 2µ∗ − 1. The cut-off is so low, i.e., the stress test so lenient, that in the

absence of a price signal, creditors are not willing to roll over debt, even if the bank passes the

test. This happens when µ2 =
s1+1
2 < µ∗, i.e., when s1 < 2µ∗−1. This region is empty if µ∗ < 1

2 .

The bank can roll over its debt following a positive signal from the stock price. Following an

uninformative stock price, creditors would not roll over their claims, but the supervisor would

intervene and provide funding if

sV 1
h + (1− s)V 1

l − δ ≥ sV 0
h + (1− s)V 0

l ,

i.e., when

s ≥ s̄ ≡ ∆Vl + δ

∆Vl +∆Vh
= µ∗(1 + δ). (32)

Region a(ii): s1 ∈ [2µ∗ − 1, µ∗(1− δ)). In this region, the stress test is sufficiently informa-

tive to allow a bank to roll over debt (in the absence of a price signal) if it passes the test, but

not if it fails it, i.e., µ1 < µ∗ ≤ µ2. Since s1 < µ∗, the supervisor never wants to fund a bank

that failed the stress test. However, the supervisor may wish to intervene by shutting down

the bank, even though it passed the test. Following message m2, and an uninformative stock

price, the creditors would roll over their debt, while, the supervisor, knowing s, would prefer to

34In principle the supervisor could provide funding at a subsidized rate. This may be undesirable if the cost of
public funds is high. Moreover, a supervisor may be reluctant, for political reasons, to undercut private providers
of capital for the benefit of leaving a rent to the bank. Finally, the assumption enables a clearer comparison to
the main model since the only margin is when a bank can raise funds, but not whether the funding is subsidized.
The supervisor cannot provide funds at a higher rate than the competitive one, since her willingness to do so
signals to the market that s ≥ µ̂, in which case creditors will choose to roll over debt at competitive terms.
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intervene by shutting down the bank (as = 0), if

sV 0
h + (1− s)V 0

l − δ > sV 1
h + (1− s)V 1

l .

The supervisor would thus intervene and shut down the bank when

s < s ≡ ∆Vl − δ

∆Vl +∆Vh
= µ∗(1− δ). (33)

Region p: s1 ∈ [µ∗(1− δ), µ∗(1 + δ)]. In this region, the supervisor is always passive since

the intervention cost is higher than the expected benefit of intervening.

Region b(i): s1 ∈ (µ∗(1 + δ), 2µ∗). The test is conservative. Absent a price signal, the

creditors are willing to roll over debt for a bank that passed the test, but not for a bank that

failed it, i.e., µ1 < µ∗ ≤ µ2. The supervisor is willing to intervene and fund a bank that has

failed the test if the resilience level is s > s̄. The supervisor never shuts down a bank that

passed the test since s1 > µ∗.

Region b(ii): s1 ∈ [2µ∗, 1]. In this region s1 is so high, i.e., the test so conservative, that even

a bank that failed the test would be able to roll over its debt. This region is empty if µ∗ > 1
2 .

The supervisor intervenes to unwind a bank if s < s.

Note that the regions a(ii) and b(i), in which the supervisor intervenes with a positive

probability, are non-empty only if δ ≤ min{1, 1
µ∗ − 1}. For higher values of δ the supervisor

never intervenes and the analysis of Section 5 is directly applicable.

The supervisor’s objective function depends on the region in which s1 is located. Lemma 6

in Appendix B provides the full details and Figure 5, also in Appendix B, depicts the objective

function for some parameter values. We denote by sPF the optimal cut-off in the supervisor

private-information case, when there is feedback from stock prices.

Proposition 5. When the supervisor can intervene according to her private information s, the

optimal stress test is uninformative (i.e. sPF = 0) when intervention is costless (δ = 0). When

intervention is costly (δ > 0) and µ∗ ≤ 1
2 , the optimal stress test is informative and lenient with
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passing threshold

sPF =

 s
a(ii)
1 if s

a(ii)
1 < µ∗(1− δ)

sF if s
a(ii)
1 ≥ µ∗(1− δ),

(34)

where s
a(ii)
1 ≡ δ

1−σ2
2

σ2
2
(pR−1)

with σ2 defined in (62), and sF solves (23). When µ∗ > 1
2 and δ is

high enough, the optimal stress test is informative and lenient with passing threshold s1 = sF .

Proof. See Appendix B.

Proposition 5 shows robustness of leniency when a privately informed supervisor can directly

intervene in banks. Leniency only breaks down in the limit case when the supervisor’s inter-

vention cost is δ = 0, in which case the optimal stress test is completely uninformative. When

δ = 0, the supervisor always intervenes, based on her private information, and direct market

discipline becomes superfluous. Effectively, feedback from prices to real decisions now only acts

via direct learning by the supervisor (as in Bond and Goldstein, 2015). The bank’s ability to

continue and its funding conditions therefore do not depend on the stress test outcome and a

negative test result no longer undermines the speculator’s information production incentives.35

These are now maximized when the market maker remains completely in the dark about the

bank’s type, that is, when the stress test is uninformative (s1 = 0).

Consider now what happens when the intervention cost is positive but very small. We need

to distinguish between the cases µ∗ ≤ 1
2 and µ∗ > 1

2 . When µ∗ ≤ 1
2 the default is for banks

about which nothing is known to be funded by the market. In this case, it is optimal to set

s1 > 0 for any δ > 0. For a small positive s1, banks with very low resilience will fail the stress

test and not get funded by the market. This allows the supervisor to save on the intervention

cost for banks with very low resilience levels, i.e., those for which the supervisor is in any case

very confident that they should be shut down.36 For the large majority of banks that pass

the test, there will be market information available. In those cases where the market price is

uninformative, but the supervisor observes a resilience level s ∈ (s1, s), she can intervene by

shutting down the bank. In setting the stress test cut-off s1 the supervisor trades off the cost of

35Note that δ = 0 also eliminates the dilution effect that a more lenient test may have at the roll-over stage.
This is because the bank is recapitalized by the supervisor at conditions that entirely depend on her private
observation of the bank’s resilience, decoupling funding conditions from the stress test result.

36Note that a bank with resilience level s = 0 is certain to be a low type.
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direct interventions against the loss of market information. The optimum is thus a lenient yet

informative test for any δ > 0.

When µ∗ > 1
2 banks do not get funded in the absence of further information. The supervisor

thus needs to intervene by funding banks. When moving from s1 = 0 to a small s1 > 0 the

market still does not fund a bank even if it passes the test. The supervisor therefore does not

benefit from a reduction in intervention costs. Setting s1 close to 1 would achieve that as banks

that pass the test would now get funded, even in the absence of a price signal. It would, however,

undermine the speculator’s information production incentives: for the few banks that pass the

test, the speculator stands to gain little informational advantage, while most of the banks that

fail will end up being shut down (only those with s ∈ (s̄, s1) will be rescued by the supervisor).

It is therefore better to leave the test uninformative for small but positive values of δ, and then

jump to the usual lenient test, once δ becomes large enough so that the supervisor prefers to

refrain from direct interventions.

To summarize, by allowing the supervisor to learn from stock prices and intervene at a cost,

we bridge the gap between two sets of models. First, there are papers that focus on a supervisor

learning from stock prices (e.g., Bond and Goldstein, 2015 and Siemroth, 2019). Others study

the implication of information design on access to capital (e.g., Inostroza, 2023, Orlov, Zryumov

and Skrzypacz, 2023 or Fuchs, Fukuda and Neuhann, 2024). In this extension we allow for

an interplay between these mechanisms: stress tests directly affect funding conditions, but to

the extent that the supervisor can intervene at a cost, supervisory learning from stock prices

becomes a more important determinant of the information design problem. While the precise

stress test design depends on model parameters, we identify leniency as a robust feature.

8 Conclusion

This paper models the link between bank stress test design and market discipline. It allows

markets to play an indirect role by generating useful price signals about bank fundamentals,

and a direct role by providing funding at terms that are sensitive to the stress test results as

well as stock price signals. We show that markets are useful at reducing type-2 errors, that is,
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identifying bad banks that did well in a stress test. Markets are less good at reducing type-1

errors, i.e., providing funds to good banks that did poorly in the stress test. The supervisor

optimally distorts the test to be lenient, because this improves market discipline. We extend

the model to allow for non-trivial interplay between direct intervention by the supervisor and

market discipline. The supervisor prefers to save on direct interventions as they are costly, and

therefore enlists market discipline. The optimal stress test is still distorted towards leniency,

and it may degenerate into a completely uninformative test when the intervention cost becomes

negligible.

Although our model is set up to address the design of bank stress tests, we believe the

underlying information design problem is pertinent in other contexts. For example, a credit

rating agency needs to decide on a rating system, keeping in mind that this may have an impact

on the information that speculators subsequently produce about the issuing firm. Similarly,

there is a degree of freedom in setting up accounting rules so that a firm’s financial health can

appear better or worse (e.g., marking to market versus historical value rules, loan-loss accounting

rules etc.). Little is understood about how such rules interact with other sources of information,

particularly those contained in stock prices. Our paper proposes a tractable model that can be

used in future research to address these questions.

Finally, our model makes empirical predictions concerning the information content of bank

stock prices, depending on the stress test design and outcome. These remain to be tested in

future research.
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Appendix A: Default Externalities (µ∗ > µ̂)

So far, we considered the case where the supervisor would finance more banks than the capital

providers are inclined to support (µ∗ ≤ µ̂). In principle, it could be the case that the social

value of liquidating a bank is higher than internalized by the bank’s capital providers and the

supervisor is more inclined than the market to cease the bank’s operations. This might be the

case, for example, if a bank’s default generates negative externalities, either on other banks or

the real economy. This corresponds to the case µ∗ > µ̂: banks with resilience levels s ∈ [µ̂, µ∗)

would be able to raise funds, although the supervisor would like to prevent that.

To capture this situation, we modify our baseline micro-foundation in Section 4 by introduc-

ing a social cost c of defaulting. A default occurs when the bank raises funds and invests, but

then generates a zero cash flow from the investment. Capital providers do not internalize the

default externality so that µ̂ remains unchanged. For a given belief µ the supervisor prefers for

a bank to invest (a = 1) if

µ(p(R− 1) + (1− p)(−1− c)) + (1− µ)(−1− c) ≥ 0. (35)

Hence, the supervisor prefers a = 1 for beliefs

µ ≥ µ∗ ≡ 1 + c

p(R+ c)
> µ̂. (36)

We start by providing the optimal stress test in the absence of stock market signals.

Lemma 5. Without information acquisition by the speculator, the optimal stress test is a binary

partition with passing threshold sLN ≡ min{2µ̂, µ∗}.

Proof. See Appendix B.

The test is a pass/fail experiment just like in previous cases. Whenever the market im-

plements the supervisor’s preferred course of action, the optimal cut-off is set at sLN = µ∗ to

minimize type-1 and type-2 errors. When µ∗ is too high, even a fail grade conveys sufficiently

positive news for capital providers to extend credit to the bank. Therefore, the pass thresh-
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old is optimally adjusted downward to sLN = 2µ̂, ensuring the credibility of the fail grade and

dissuading the market from extending credit.

The following proposition describes the optimal stress test design with feedback from stock

prices.

Proposition 6. With information acquisition by the speculator, the optimal stress test is as

follows:

• if µ∗ ∈ (µ̂, µ), where µ is defined in (84), it is a binary partition with passing threshold

sLF = s̃, where s̃ is the unique s1 that solves (30);

• if µ∗ ∈ [µ, 1) and µ̂ < 2/5 it contains two coarse buckets followed by granular grades for

resilience levels above the buckets, where the threshold that separates the two buckets is

sL1,F ≡ min
{
2µ̂, s†

}
, (37)

where s† is the unique s1 that solves (86), while the threshold that separates the upper

bucket from the granular grades is

sL2,F ≡ 1− 1

2

(
sL1,F − µ̂

)
; (38)

• if µ∗ ∈ [µ, 1) and µ̂ ≥ 2/5, there exists a threshold µ (defined in (88)) such that if µ∗ < µ

the optimal stress test is as described above and if µ∗ ≥ µ the test contains only one coarse

bucket followed by granular grades, where the threshold that separates the coarse bucket

from the granular grades is

sLF,g ≡ min
{
2µ̂, s‡

}
, (39)

where s‡ is the unique s1 that solves (89).

Proof. See Appendix B.

The stress test is a lenient binary partition when the supervisor’s and the capital providers’

preferences about debt roll-over decisions are sufficiently aligned, i.e. when µ∗ is close to µ̂.
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The advantages of leniency are once again rooted in the additional information generated by

the speculator, which in turn guides funding decisions more effectively. As µ∗ rises, the optimal

passing threshold follows suit to minimize the test’s statistical errors, but remains lenient to

incentivize information production by the speculator. As the passing threshold rises, the pass

grade progressively conveys better news to speculators by encompassing banks of increasingly

superior quality. Consequently, residual uncertainty following a pass diminishes, reaching a

point where speculators’ incentives to acquire information begin to decline. This happens when

s1 surpasses µ̂, as the pass grade induces beliefs µ2 = s1+1
2 while information acquisition is

maximized at µ = µ̂+1
2 . At this point, it is optimal to exclude highly sound banks from the pass

grade by setting s2 below 1. This maintains residual uncertainty following a pass without the

need to lower s1 far below the benchmark sLF . By doing so, the supervisor improves both direct

and indirect market discipline by maintaining the speculator’s incentives to gather information

while optimizing resource allocation in the absence of market signals. Surprisingly, resilience

levels above s2 are fully disclosed. Why does the supervisor not lump them into a unique,

coarse grade m3? Refining the coarse grade m3 by splitting it into two grades m
′
3 and m

′′
3

increases information production following m
′
3 and reduces it following m

′′
3 , as the latter message

constitutes more conclusive news. Since information production has value only when a poorly

capitalized bank passes the test, an event that is less and less likely for higher resilience levels,

refining the grade increases the ex-ante level of information acquisition.

As µ∗ continues to increase, the passing threshold will eventually reach its upper bound

defined by 2µ̂. At this point, the fail grade represents excessively positive news, to the extent

that any further increase in the passing threshold would prompt capital providers to finance

the bank after a fail. To ensure direct market discipline and efficient resource allocation, it is

optimal to maintain the passing threshold at a constant level. Figure 4 depicts the cutoffs of

the optimal stress test with feedback from stock prices and in the benchmark.
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Figure 4: Thresholds of the Optimal Stress when µ∗ > µ̂, and µ̂ < 2/5.
Benchmark (sLN , 1) (in black), and Model with Feedback from Stock Prices (sL1,F , s

L
2,F ) (in red).

Appendix B: Proofs

Proof of Lemma 1. Ignoring the constraints in problem (16), the FOC for s1 is :

v′(s1) = 1− s1
µ∗ = 0,

and is solved for s1 = µ∗. Since µ̂ = µ∗ the constraints are satisfied at the unconstrained

optimum.

Proof of Lemma 2. Consider the trading game at date 2 and let µ be the public posterior

beliefs (that ω = h) after a generic stress test result. Consider the following speculator’s equi-

librium trading strategy:

xI(z) =


1 if z = h

0 if z = ∅

−1 if z = l.

First, we determine the price p(X) chosen by the market maker as a function of the order X.

Notice that any order xI /∈ {−1, 1} fully reveals the speculator’s order who can therefore not

make a trading profit. When the speculator is active, we can restrict attention to orders of size

xI ∈ {−1, 1}. When X = (1, 1) the market maker infers that the informed speculator submitted
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a buy order and hence must have received a private signal z = h. It follows that the market will

fund the bank (a = 1) at date 3. The market maker sets a price that reflects the speculator’s

private information and the supervisor’s intervention decision, i.e. P (1, 1) = E1
h(1). Similarly,

when X = (−1,−1) the low state is revealed, the market maker sets P (−1,−1) = E0
l = 0.

When X ∈ {(1,−1), (−1, 1)} the order flow allows no inference over the speculator’s private

information and the market maker’s posterior belief therefore remains equal to the prior, µ.

When X ∈ {(1, 0), (−1, 0)} the market maker understands that the speculator received an

uninformative signal z = ∅ and abstained from trading. Again, the market maker does not

update from the prior. It follows that, for X ∈ {(1,−1), (−1, 1), (1, 0), (−1, 0)} ≡ X∅, i) at

date 3, the market will make the funding decision contingent on the outcome of the stress test

alone, as the equity price reveals no additional information; and ii) the market maker sets a

price P (X) = µmax{E1
h(µ), 0} (since when E1

h(µ) < 0 the capital providers will not fund the

bank). Thus, the price schedule is

P (X) =


E1

h(1) if X = (1, 1)

µmax{E1
h(µ), 0} if X ∈ X∅

0 if X = (−1,−1).

Next, we compute the speculator’s profits from the proposed trading strategy. If z = h, the

speculator submits a buy order (xI = 1). With probability 1/2 the liquidity trader trades in the

same direction (xU = 1 and X = (1, 1)) and the speculator’s private information is revealed to

the market maker (and the investors) who then sets a price equal to E1
h(1). The speculator’s

trading profits are nil, E1
h(1)− P (1, 1) = 0. With probability 1/2 the liquidity trader trades in

the opposite direction (xU = −1 and X = (−1, 1)), the speculator retains his private information

and makes profits equal to max{E1
h(µ), 0} − P (−1, 1) = (1− µ)max{E1

h(µ), 0}. It follows that,

given z = h the speculator’s expected trading profits are 1
2(1 − µ)max{E1

h(µ), 0}. If z = l,

the speculator submits a sell order (xI = −1) and, by the same reasoning trading profits are

1
2µmax{E1

h(µ), 0}. If z = ∅ the speculator abstains from trading and makes profits equal to 0.
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In summary, the expected trading profits are

π(z, µ) =


1
2(1− µ)max{E1

h(µ), 0} if z = h

0 if z = ∅
1
2µmax{E1

h(µ), 0} if z = l

Taking expectations over z, we get the expected equilibrium trading profits after the realization

of the stress test result:

π(µ) =µσ

(
1

2
(1− µ)max{E1

h(µ), 0}
)
+ (1− µ)σ

(
1

2
µmax{E1

h(µ), 0}
)

=σµ(1− µ)max{E1
h(µ), 0}.

We show that the proposed trading strategy is indeed optimal. Consider trading after a

test result inducing a belief µ ≥ µ̂. Given z = h it is optimal to buy: abstaining from trading

yields profits equal to 0 < 1
2(1− µ)E1

h(µ) and selling yields profits 1
2(µE

1
h(µ)− E1

h(µ)) +
1
2(0−

0) = −1
2(1 − µ)E1

h(µ) < 0. Given z = l it is optimal to sell: abstaining from trading yields

profits equal to 0 < 1
2µE

1
h(µ). If the speculator buys instead, the order flow will be either

X = (1, 1) or X = (−1, 1). In either case, the bank gets funded and expected trading profits are

1
2(0− E1

h(1)) +
1
2(0− µE1

h(µ)) < 0. If z = ∅ and the speculator buys, the bank will be funded

and trading profits will be 1
2(µE

1
h(1)−E1

h(1))+
1
2(µE

1
h(µ)−µE1

h(µ)) < 0. If the speculator sells

instead, the order flow can be X = (−1, 1), in which case the bank obtains funding and has

equity value µE1
h(µ). Since this is equal to the price paid in this state, profits are zero. Instead,

order flow may be X = (−1,−1). The price will now be zero, the bank will not be funded and

its equity value zero, yielding again zero trading profits.

Consider trading after a test result inducing a belief µ < µ̂. If the speculator sells, he

always gets a price of zero, and there will never be funding so the equity value will also be zero.

Hence, selling yields zero profits. If the speculator buys, with probability 1
2 order flow will be

X = (−1, 1) in which case the price is zero, there will be no funding, and equity value will

also be zero. With equal probability, the order flow will be X = (1, 1), and the price equals

E1
h(1) while the equity value would be lower and equal to µE1

h(1). If the speculator deviated to
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purchasing information and learned ω = h, he makes zero trading profits. Hence, the deviation

generated a loss, net of the information acquisition cost. If the speculator deviated to buying

without a positive signal, the expected value of equity is below E1
h(µ) so the speculator makes

a loss.

Proof of Lemma 3. Consider all the outcomes mi that induce beliefs µi < µ̂. All these mi

result in no information production by the speculator (σ(µi) = 0) and no funding provision by

the market (a(µi) = 0). Hence, we can pool all these potential signals in a unique signal m1 for

all s ∈ [0, s1) with µ1 < µ̂. The corresponding expected value for the supervisor generated by

the outcome m1 is

g(s1) =
1

2

(
Pr(m1|ω = h)V 0

h + Pr(m1|ω = l)V 0
l

)
=

1

2

(
s21V

0
h + (2s1 − s21)V

0
l

)
.

Now, consider all the outcomes mi for i ∈ {2, 3, . . . , n}. These outcomes induce posterior

beliefs µi ≥ µ̂ (otherwise we could have pooled the signal mi with m1). If, at date 2, the order

flow is uninformative the market invests (a(µi) = 1) at date 3. However, since the outcome

induces a positive level σ(µi) of information production by the speculator, if the order flow

reveals that ω = l, the market does not invest at date 3 and chooses a = 0. If the state is ω = l,

order flow reveals it with probability 1
2σ(µi). The corresponding expected bank value generated

by some outcome mi is

f(si−1, si) =
1

2

(
Pr(mi|ω = h)V 1

h + Pr(mi|ω = l)

(
V 1
l +

1

2
σ(µi)∆Vl

))
=
1

2

(
(s2i − s2i−1)V

1
h +

(
2(si − si−1)− (s2i − s2i−1)

)(
V 1
l +

1

2
σ(µi)∆Vl

))
.

The ex-ante expected value of the bank for a given stress test S can be written as

V (S) = g(s1) +

n∑
i=2

f(si−1, si). (40)
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Note that, the second term in (40) is a telescoping sum where

n∑
i=2

(s2i − s2i−1) = (1− s21),

n∑
i=2

(
2(si − si−1)− (s2i − s2i−1)

)
= 2(1− s1)− (1− s21).

It follows that the objective function can be written as

V (S) =
1

2

(
s21V

0
h + (2s1 − s21)V

0
l + (1− s21)V

1
h +

(
2(1− s1)− (1− s21)

)
V 1
l

)
+

+
1

2

n∑
i=2

(
2(si − si−1)− (s2i − s2i−1)

)1
2
σ(µi)∆Vl

= v(s1) +
1

2

n∑
i=2

(si − si−1)

(
1− si−1 + si

2

)
σ(µi)∆Vl,

where v(s1) is defined in (15). By applying the definitions in equations (2), (3) and (19) we

obtain the objective function in (22).

Proof of Proposition 1. We first introduce some notation. Let

S(a, b) ≡ {a = s0, s1, . . . , sn−1, sn = b}

be a partition of the interval [a, b] ⊂ R such that a = s0 < s1 < s2 · · · < sn−1 < sn = b. In

our application we will have 0 ≤ a < b ≤ 1 so that S(a, b) can be thought of as a partition of a

subspace of [0, 1]. Let S(a, b) be the set of all possible partitions S(a, b) over the interval [a, b].

Let S(a, b) be the finest partition in S[a, b], i.e. such that n → ∞; and let S(a, b) be the coarsest

partition in S[a, b], i.e. such that n = 1. Lastly, for some function f : [a, b] → R, we define

R
(
f, S(a, b)

)
≡

n∑
i=1

(si − si−1)f

(
si−1 + si

2

)

as the midpoint Riemann sum of f with respect to the partition S(a, b). In what follows, we

will use the following properties of the midpoint Riemann sum (see, e.g., Davis and Rabinowitz

(1984) p. 54):
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• if f is convex over [a, b] then R(f, S(a, b)) ≥ R(f, S(a, b)), ∀S(a, b) ∈ S(a, b);

• if f is concave over [a, b] then R(f, S(a, b)) ≥ R(f, S(a, b)), ∀S(a, b) ∈ S(a, b).

We proceed in 3 steps. Step 1 establishes the general structure of the stress test. Step 2

simplifies the objective function in problem (21) and writes it as a function of two thresholds

(s1, s2). Finally, Step 3 determines the optimal thresholds.

Step 1 (General Structure). Fix the optimal s1 and assume it is interior, i.e. s1 ∈ (0, s2)

(this will be true at the optimum), consider a subset [s1, 1] ⊆ [0, 1] and define the function

Σ̂(s) : [s1, 1] → R as

Σ̂(s) =
1

2τ
s(1− s)2

(
1

µ∗ − 1

s

)
=

1

2τ
(1− s)2

(
s

µ∗ − 1

)
.

Consider a partition S(s1, 1) ≡ {s1, s2, s3, . . . , sn−2, sn−1, 1} and note that the stress test design

problem (21), with µ̂ = µ∗, is equivalent to

max
S(s1,1)

R(Σ̂, S(s1, 1))

s.t.
s1 + s2

2
≥ µ∗

0 + s1
2

< µ∗.

(41)

The first and second derivative of Σ̂(s) are, respectively:

Σ̂′(s) =
1

2τ

[
−2(1− s)

(
s

µ∗ − 1

)
+ (1− s)2

1

µ∗

]
,

Σ̂′′(s) =
1

2τ

[
2

(
s

µ∗ − 1

)
− 4(1− s)

1

µ∗

]
,

so that Σ̂(s) attains its maximum at s = 1
3 + 2

3µ
∗ and it is concave over

[
s1,

2
3 + 1

3µ
∗] and

convex over
(
2
3 + 1

3µ
∗, 1
]
. For some j, we have S(s1, 1) = S(s1, sj)∪S(sj , 1) and R(Σ̂, S(s1, 1)) =

R(Σ̂, S(s1, sj)) + R(Σ̂, S(sj , 1)). For the properties of the midpoint Riemann sum introduced

above, the partition that maximizes R(Σ̂, S(s1, 1)) is S(s1, 1) = S(s1, sj) ∪ S(sj , 1) for some

optimally chosen sj , that is the partition that solves problem (41) has a unique coarse sub-
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interval [s1, sj ] with s1 < sj and a collection of infinitesimally small sub-intervals over the

interval [sj , 1]. Relabelling sj = s2, we have that the optimal stress test has two coarse messages

(m0 = s ∈ [0, s1) and m1 = s ∈ [s1, s2)) and a set of granular grades for s ∈ [s2, 1].

Step 2 (Simplifying the Objective Function). Step 1 allows us to write the objective V (S) as a

function of the thresholds (s1, s2) only. Note that if the stress test S has fully granular grades

for s ∈ [s2, 1] we have νi = ds and µi = s for i ∈ {3, . . . , n} where n → ∞. It follows that the

objective function in problem (21) reduces to:

V (s1, s2) = v(s1) +
1

2τ

(
ν2µ2(1− µ2)

2

(
1

µ∗ − 1

µ2

)
+

∫ 1

s2

s(1− s)2
(

1

µ∗ − 1

s

)
ds

)
.

Adding and subtracting
∫ s2
s1

s(1− s)2
(

1
µ∗ − 1

s

)
ds on the right-hand side we get

V (s1, s2) = v(s1) +
1

2τ

(∫ 1

s1

s(1− s)2
(

1

µ∗ − 1

s

)
ds+A(s1, s2)

)

where

A(s1, s2) ≡ ν2µ2(1− µ2)
2

(
1

µ∗ − 1

µ2

)
−
∫ s2

s1

s(1− s)2
(

1

µ∗ − 1

s

)
ds,

=

∫ s2

s1

[
µ2(1− µ2)

2

(
1

µ∗ − 1

µ2

)
− s(1− s)2

(
1

µ∗ − 1

s

)]
ds,

=

∫ s2

s1

[
1

µ∗

(
µ2(1− µ2)

2 − s(1− s)2
)
−
(
(1− µ2)

2 − (1− s)2
)]

ds,

=

(
1

µ∗
1

12
(s2 − s1)

3(2− 3µ2)

)
−
(
− 1

12
(s2 − s1)

3

)
.

It follows that the objective function simplifies to:

V (s1, s2) = v(s1) +
1

2τ

(∫ 1

s1

s(1− s)2
(

1

µ∗ − 1

s

)
ds+

1

12
(ν2)

3

(
1

µ∗ (2− 3µ2) + 1

))
, (42)

where v(s1) is defined in (15), while ν2 = s2 − s1 and µ2 =
s1+s2

2 , as defined in (2) and (3), and
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the stress test design problem in (21) simplifies to:

max
s1,s2

V (s1, s2)

s.t. µ1 < µ∗

µ2 ≥ µ∗.

(43)

Step 3 (Optimal Thresholds). Neglecting the constraints in problem (43), the FOCs are:

∂V

∂s1
= v′(s1) +

1

2τ

[
−s1(1− s1)

2

(
1

µ∗ − 1

s1

)
− 3

12
(ν2)

2

(
1

µ∗ (2− 3µ2) + 1

)
− 3

24
(ν2)

3 1

µ∗

]
= 0,

∂V

∂s2
=

1

2τ

[
3

12
(ν2)

2

(
1

µ∗ (2− 3µ2) + 1

)
− 3

24
(ν2)

3 1

µ∗

]
= 0,

and after simple algebra they simplify to:

∂V

∂s1
= v′(s1) +

1

2τ

[
−(1− s1)

2

(
s1
µ∗ − 1

)
− (ν2)

2 1−
1
2(s2 − µ∗)− s1

2µ∗

]
= 0,

∂V

∂s2
=

1

2τ
(ν2)

2 1−
1
2(s1 − µ∗)− s2

2µ∗ = 0.

(44)

First, we show that when the constraints in problem (43) are slack the optimal stress test is

a binary partition, s2 = 1; we show that the partition features leniency, s1 < µ∗; and we provide

the equation that implicitly defines the optimal s1. Note that the second equation in (44) has

two solutions: s2 = s1 and s2 = 1 − 1
2(s1 − µ∗). The first solution is a stationary point where

∂V
∂s1

= ∂2V
∂s21

= 0 but is not a maximum. The second solution, s2 = 1− 1
2(s1 −µ∗), is greater than

1, if s1 < µ∗.

Suppose the optimal s1 < µ∗ and therefore the optimal s2 = 1. If s2 = 1, the first-order

condition with respect to s1 becomes:

∂V

∂s1

∣∣∣∣
s2=1

= v′(s1) +
1

2τ

[
−(1− s1)

2

(
s1
µ∗ − 1

)
− (1− s1)

2 1−
1
2(1− µ∗)− s1

2µ∗

]

= 1− s1
µ∗ +

1

2τ
(1− s1)

2
3µ∗−1

2 − s1

2µ∗ = 0,

(45)

which is equivalent to (23). The first-order condition (45) has a unique solution in s1 ∈ [0, 1],
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since the left-hand side of (the second line of) equation (45) is strictly decreasing. To see this

differentiate it with respect to s1 to get:

− 1

µ∗ − 3

4µ∗τ
(1− s1)(µ

∗ − s1)

which is strictly negative if

τ >
3

4
(1− s1)(s1 − µ∗).

This inequality is satisfied even when the right-hand side takes the highest possible value, i.e.

3
4

(
1−µ∗

2

)2
(attained at s1 = (1 + µ∗)/2), since we have

τ >
1

µ∗

(
1− µ∗

2

)2

>
3

4

(
1− µ∗

2

)2

by assumption (20). Finally, using (45) and substituting s1 = µ∗ it is immediate that the result-

ing expression is negative, hence the solution to (45) features s1 < µ∗. Similarly, substituting

s1 = 0 yields a positive expression, implying that the solution to (45) features s1 > 0.

To rule out a maximum where µ∗ < s1 < s2 < 1, substitute the candidate interior optimum

s2 = 1− 1
2(s1 − µ∗) into the first expression of (44) to get

∂V

∂s1
= v′(s1) +

1

2τ

[
−(1− s1)

2

(
s1
µ∗ − 1

)
−
(
1− 1

2
(s1 − µ∗)− s1

)2 1− 1
2(1−

1
2(s1 − µ∗)− µ∗)− s1

2µ∗

]
.

(46)

Note that v′(s1) < 0 for s1 > µ∗. It is therefore sufficient to show that the expression in

square brackets is negative. We have

−(1− s1)
2

(
s1
µ∗ − 1

)
−
(
1− 1

2
(s1 − µ∗)− s1

)2 1− 1
2(1−

1
2(s1 − µ∗)− µ∗)− s1

2µ∗ < 0,

if and only if

2(1− s1)
2(s1 − µ∗) +

1

2

(
1− s1 −

1

2
(s1 − µ∗)

)3

> 0.

By our hypothesis that s1 > µ∗ it follows that 2(1 − s1)
2(s1 − µ∗) > 0. We now show that
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the second addend is also positive. The term is decreasing in s1, so showing that it is positive

for the highest admissible value for s1 is sufficient. Note that the constraint s2 > s1 with

s2 = 1 − 1
2(s1 − µ∗) implies s1 < 2+µ∗

3 . For s1 = 2+µ∗

3 , the term
(
1− s1 − 1

2(s1 − µ∗)
)
is equal

to

1− 2 + µ∗

3
− 1

2

(
2 + µ∗

3
− µ∗

)
= 0.

Hence, we have ∀s1 ∈
(
µ∗, 1− 1

2(s1 − µ∗)
)
,

∂V

∂s1

∣∣∣∣ s1>µ∗

s2=1− 1
2
(s1−µ∗)

< 0,

hence the optimal s1 must be below µ∗.

Lastly, we show that the constraints in problem (21) are satisfied at the unconstrained

optimum. The first constraint µ1 = (0 + s1)/2 < µ∗ is satisfied since we know s1 < µ∗. The

second constraint, µ2 = (s1 + 1)/2 ≥ µ∗, is satisfied if s1 ≥ 2µ∗ − 1. Consider the following

derivative:
∂V

∂s1

∣∣∣∣s1=2µ∗−1
s2=1

= 1− 2µ∗ − 1

µ∗ +
1

2τ

(1− µ∗)3

µ∗ .

Note that ∂V
∂s1

∣∣∣s1=2µ∗−1
s2=1

> 0 (and so s1 > 2µ∗ − 1) since µ∗ < 1. Thus, we have µ2 > µ∗ and all

the constraints are satisfied at the optimum.

It follows that the optimal stress test is a binary partition with s1 < µ∗.

Proof of Proposition 2. The optimal cutoff sF is implicitly defined as the solution to equation

(23), which can be rearranged as

µ∗ − sF +
1

4τ
K(sF , µ

∗) = 0, (47)

where

K(sF , µ
∗) ≡ (1− sF )

2

(
3µ∗ − 1

2
− sF

)
.

Since the sF that solves equation (47) is in the interval
(
3µ∗−1

2 , µ∗
)
we have that K(sF , µ

∗) < 0.
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In what follows, we will also use the fact that

k(sF , µ
∗) ≡ ∂K

∂sF
= 2(1− sF )(−1)

(
3µ∗ − 1

2
− sF

)
+ (1− sF )

2(−1)

= −3(1− sF )(µ
∗ − sF ) < 0.

Employing the implicit function theorem, we totally differentiate equation (47) with respect to

τ and µ∗ to get:
∂sF
∂τ

=
1

4τ2
K(sF , µ

∗)
1
4τ k(sF , µ

∗)− 1
> 0

∂sF
∂µ∗ =

1 + 1
4τ

∂K
∂µ∗

1− 1
4τ k(sF , µ

∗)
> 0,

where the last line follows from the fact that ∂K
∂µ∗ = (1− sF )

2 3
2 > 0.

Proof of Lemma 4. Neglecting the constraints in problem (16), the FOC for s1 is :

v′(s1) = 1− s1
µ∗ = 0,

and is solved for s1 = µ∗. The constraint µ1 = s1/2 < µ̂ is satisfied for s1 = µ∗ since µ∗ < µ̂.

The constraint µ2 ≥ µ̂ is satisfied at the unconstrained optimum when (µ∗ + 1)/2 ≥ µ̂ and is

binding otherwise. When the constraint is slack, the optimum is s1 = µ∗. When it is binding,

s1 is chosen to satisfy the constraint, i.e. s1 = 2µ̂− 1. Thus, the optimal stress test is a binary

partition with cutoff s1 = max{2µ̂− 1, µ∗}.

Proof of Proposition 3. The proof proceeds as in Proposition 1 until Step 3, and the stress

test design problem can be written as:

max
s1,s2

V (s1, s2)

s.t. µ1 < µ̂

µ2 ≥ µ̂,

(48)
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where

V (s1, s2) = v(s1) +
1

2τ

(∫ 1

s1

s(1− s)2
(
1

µ̂
− 1

s

)
ds+

1

12
(ν2)

3

(
1

µ̂
(2− 3µ2) + 1

))
, (49)

and v(s1) is defined in (15), while ν2 = s2 − s1 and µ2 =
s1+s2

2 , as defined in (2) and (3).

Neglecting the constraints in problem (48), the FOCS, after some algebra, simplify to:

∂V

∂s1
= v′(s1) +

1

2τ

[
−(1− s1)

2

(
s1
µ̂

− 1

)
− (ν2)

2 1−
1
2(s2 − µ̂)− s1

2µ̂

]
= 0,

∂V

∂s2
=

1

2τ
(ν2)

2 1−
1
2(s1 − µ̂)− s2

2µ̂
= 0.

(50)

First, we show that when the constraints in problem (48) are slack the optimal stress test is

a binary partition, s2 = 1, and we provide the equation that implicitly defines the optimal s1.

Note that the second equation has two solutions: s2 = s1 and s2 = 1 − 1
2(s1 − µ̂). The first

solution is a stationary point where ∂V
∂s1

= ∂2V
∂s21

= 0 but is not a maximum. The second solution,

s2 = 1− 1
2(s1 − µ̂), is greater than 1, since at the optimum we have s1 < µ̂.

Suppose the optimal s1 < µ̂ and therefore the optimal s2 = 1. If s2 = 1, the first-order

condition with respect to s1 becomes:

∂V

∂s1

∣∣∣∣
s2=1

= v′(s1) +
1

2τ

[
−(1− s1)

2

(
s1
µ̂

− 1

)
− (1− s1)

2 1−
1
2(1− µ̂)− s1

2µ̂

]

= 1− s1
µ∗ +

1

2τ
(1− s1)

2
3µ̂−1
2 − s1

2µ̂
= 0,

(51)

which is equivalent to (30). The first-order condition (51) has a unique solution in s1 ∈ [0, 1],

since the left-hand side of (the second line of) equation (51) is strictly decreasing. To see this

differentiate it with respect to s1 to get:

− 1

µ∗ − 3

4µ̂τ
(1− s1)(µ̂− s1)

which is strictly negative if

τ >
3

4

µ∗

µ̂
(1− s1)(s1 − µ̂).
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This inequality is satisfied even when the right-hand side takes the highest possible value, i.e.

3
4
µ∗

µ̂

(
1−µ̂
2

)2
(attained at s1 = (1 + µ̂)/2), since we have

τ >
1

µ̂

(
1− µ̂

2

)2

>
3

4

µ∗

µ̂

(
1− µ̂

2

)2

by assumption (20). Finally, using (51) and substituting s1 = µ̂ it is immediate to show that

the resulting expression is negative, hence the solution to (51) features s1 < µ̂. Similarly,

substituting s1 = 0 yields a positive expression, implying that the solution to (51) features

s1 > 0.

To rule out a maximum where µ̂ < s1 < s2 < 1, substitute the candidate interior optimum

s2 = 1− 1
2(s1 − µ̂) into the first expression of (51) to get

∂V

∂s1
= v′(s1) +

1

2τ

[
−(1− s1)

2

(
s1
µ̂

− 1

)
−
(
1− 1

2
(s1 − µ̂)− s1

)2 1− 1
2(1−

1
2(s1 − µ̂)− µ̂)− s1

2µ̂

]
.

(52)

This expression is similar to (46) with the exception that µ̂ replaces µ∗ in the expression in

square brackets. Hence, the proof proceeds as in Proposition 1, and this yields that the optimal

s1 must be below µ̂.

Second, we show that the constraints in problem (48) are satisfied at the unconstrained

optimum when µ∗ ≥ µ◦ where

µ◦ ≡ 2µ̂− 1

1 + 1
2τ

(1−µ̂)3

µ̂

. (53)

The first constraint µ1 = (0+s1)/2 < µ̂ is satisfied since we know s1 < µ̂. The second constraint,

µ2 = (s1 + 1)/2 ≥ µ̂, is satisfied if s1 ≥ 2µ̂− 1. Consider the following derivative:

∂V

∂s1

∣∣∣∣s1=2µ̂−1
s2=1

= 1− 2µ̂− 1

µ∗ +
1

2τ

(1− µ̂)3

µ̂
.

Note that ∂V
∂s1

∣∣∣s1=2µ̂−1
s2=1

≥ 0 (and so s1 ≥ 2µ̂− 1) if and only if µ∗ ≥ µ◦. Thus, we have that the

constraint µ2 ≥ µ̂ is satisfied when µ∗ ≥ µ◦ and binding otherwise.

Lastly, we show that when the constraint µ2 ≥ µ̂ is binding the optimal stress test is a

61



binary partition with cutoff s1 = 2µ̂− 1. When the constraint is binding we have s1 = 2µ̂− s2.

Plugging this in the first-order derivative of s2 we get

∂V

∂s2

∣∣∣∣
s1=2µ̂−s2

=
1

2τ
(s2 − µ̂)2

2− µ̂− s2
µ̂

≥ 0 for s2 ≤ 2− µ̂.

Hence the objective function V (2µ̂− s2, s2) is weakly increasing in s2 over the entire domain so

that the optimum is s2 = 1.

It follows that the optimal stress test is a binary partition with cutoff given by (29).

Proof of Proposition 4. When the constraint is not binding, the optimal cutoff is sDF = s̃ and

is implicitly defined as the solution to equation (30), which can be rearranged as

µ∗ − s̃+
1

4τ
H(s̃, µ∗, µ̂) = 0, (54)

where

H(s̃, µ∗, µ̂) ≡ (1− s̃)2
µ∗

µ̂

(
3µ̂− 1

2
− s̃

)
.

The sign ofH(s̃, µ∗, µ̂) depends on whether the stress test is lenient or conservative, in particular,

H(s̃, µ∗, µ̂) > 0 if and only if µ∗ < 3µ̂−1
2 . To see this note that from Proposition 3 we have that

µ∗ < 3µ̂−1
2 implies that s̃ > µ∗, hence the s̃ that solves (54) has to be such that H(s̃, µ∗, µ̂) > 0.

Similarly, µ∗ > 3µ̂−1
2 implies that s̃ < µ∗ and H(s̃, µ∗, µ̂) < 0.

In what follows, we make use of the fact that:

h(s̃, µ∗, µ̂) ≡ ∂H

∂s̃
= 2(1− s̃)(−1)

µ∗

µ̂

(
3µ̂− 1

2
− s̃

)
+ (1− s̃)2

µ∗

µ̂
(−1)

= −3(1− s̃)
µ∗

µ̂
(µ̂− s̃) < 0,

(55)

since we have s̃ < µ̂ from Proposition 3.

To do comparative statics, we express equation (54) in terms of the primitives (p,R,D) to get:

1

pR
− s̃+

1

4τ
H(s̃, p, R,D) = 0, (56)
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where

H(s̃, p, R,D) = (1− s̃)2
(
3

2

1

pR
−
(
1

2
+ s̃

)(
1− D

R

))
,

and
∂H

∂p
= −(1− s̃)2

3

2

1

p2R
< 0,

∂H

∂R
= −(1− s̃)2

(
3

2

1

pR2
+

(
1

2
+ s̃

)
D

R2

)
< 0,

∂H

∂D
= (1− s̃)2

(
1

2
+ s̃

)
1

R
> 0.

(57)

Employing the implicit function theorem, we totally differentiate equation (56) with respect to

(p,R,D) to get:

∂s̃

∂p
=

1
4τ

∂H
∂p − 1

p2R

1− 1
4τ h(s̃, µ

∗, µ̂)
< 0,

∂s̃

∂R
=

1
4τ

∂H
∂R − 1

pR2

1− 1
4τ h(s̃, µ

∗, µ̂)
< 0,

∂s̃

∂D
=

1
4τ

∂H
∂D

1− 1
4τ h(s̃, µ

∗, µ̂)
> 0,

where the inequalities follow from (55) and (57). Doing the same for τ we get:

∂s̃

∂τ
= −

1
4τ2

H(s̃, µ∗, µ̂)

1− 1
4τ h(s̃, µ

∗, µ̂)
,

where ∂s̃
∂τ < 0 if and only if µ∗ < 3µ̂−1

2 (as this implies H(s̃, µ∗, µ̂) > 0), since h(s̃, µ∗, µ̂) < 0 by

(55).

When the constraint is binding, so that sDF = 2µ̂ − 1, the comparative statics are driven by

µ̂ = 1/p(R−D), and are thus the same as above.

Lemma 6. When the supervisor can intervene according to her private information s, she solves

the following stress test design problem:

max
s1∈[0,1]

V (s1)
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where

V (s1) =



Va(i)(s1) if s1 ∈
[
0, 2µ∗ − 1

)
,

Va(ii)(s1) if s1 ∈
[
2µ∗ − 1, µ∗(1− δ)

)
,

Vp(s1) if s1 ∈
[
µ∗(1− δ), µ∗(1 + δ)

]
,

Vb(i)(s1) if s1 ∈
(
µ∗(1 + δ), 2µ∗),

Vb(ii)(s1) if s1 ∈
[
2µ∗, 1

]
.

(58)

and Va(i), Va(ii), Vp, Vb(i), Vb(ii) are defined in (59)-(70).

Proof of Lemma 6. The supervisor’s value function depends on i) the default action taken by

the market without a stock market signal, and, ii) whether the supervisor intervenes or not to

revert the market’s action. Accordingly, we distinguish several cases and first state the relevant

functions V (s1) for each region. The proof of the expression (59)-(70) follows further below.

• region a(i), s1 ∈ [0, 2µ∗ − 1). Note that this region is non-empty only if µ∗ > 1
2 . Expected

bank value is

Va(i)(s1) =
V 1
h + V 1

l

2
− 1

2
∆Vh

(σ2
2
s21 +

(
1− σ2

2

)
s̄2
)

+
1

2
∆Vl

(σ2
2

+
(
1− σ2

2

)
(2s̄− s̄2)

)
− δ

(
1− σ2

2

)
(1− s̄),

(59)

where σ2 is the information produced by the speculator if the bank passes the test, given

by

σ2 =
1

4τ

(
1− s̄2

)(
pR− 1

1+s̄
2

)
. (60)

The speculator does not produce information if the bank fails the test.

• region a(ii), s1 ∈ [2µ∗ − 1, µ∗(1− δ)).

Va(ii)(s1) =
V 1
h + V 1

l

2
− 1

2
∆Vh

(σ2
2
s21 +

(
1− σ2

2

)
s2
)

+
1

2
∆Vl

(σ2
2

+
(
1− σ2

2

)
(2s− s2)

)
− δ

(
1− σ2

2

)
(s− s1).

(61)

There is no information acquisition following a fail result, and information acquisition
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following a pass is given by

σ2 =
1

4τ

(
1− s2

)(
pR− 1

1+s
2

)
. (62)

Note that σ2 from (62) and (60) are the same. This can be shown using the expressions

for s, s̄ and µ∗ = 1
pR .

• region p, s1 ∈ [µ∗(1− δ), µ∗(1 + δ));

Vp(s1) =
V 1
h + V 1

l

2
− 1

2
s21∆Vh

+
1

2
∆Vl

(σ2
2

+
(
1− σ2

2

)
(2s1 − s21)

)
.

(63)

There is no information acquisition following a fail result, and information acquisition

following a pass is given by

σ2 =
1

4τ

(
1− s21

)(
pR− 1

1+s1
2

)
. (64)

• region b(i), s1 ∈ [µ∗(1 + δ), 2µ∗).

Vb(i)(s1) =
V 1
h + V 1

l

2
− 1

2
∆Vh

(
1− σ1

2

)
s̄2

+
1

2
∆Vl

(σ1
2
(2s1 − s21) +

(
1− σ1

2

)
(2s̄− s̄2)

)
+

1

2
∆Vl

σ2
2

(1− s1)
2

− δ
(
1− σ1

2

)
(s1 − s̄).

(65)

Since the bank is sometimes funded even when it fails the test, the speculator acquires

information σ1 following m1 (and σ2 following m2):

σ1 =
1

2τ

(
s21 − s̄2

) 1− s1
2

s1

(
pR− 1

s1+s̄
2

)
, (66)

σ2 =
1

4τ

(
1− s21

)(
pR− 1

1+s1
2

)
. (67)
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• region b(ii), s1 ∈ [2µ∗, 1]. Note that this region is non-empty only if µ∗ < 1
2 . We again get

information acquisition following both a fail and a pass result.

Vb(ii)(s1) =
V 1
h + V 1

l

2
− 1

2
∆Vh

(
1− σ1

2

)
s2

+
1

2
∆Vl

(σ1
2
(2s1 − s21) +

(
1− σ1

2

)
(2s− s2)

)
+

1

2
∆Vl

σ2
2

(1− s1)
2

− δ
(
1− σ1

2

)
s,

(68)

where

σ1 =
1

2τ

(
s21 − s2

) 1− s1
2

s1

(
pR− 1

s1+s
2

)
, (69)

σ2 =
1

4τ

(
1− s21

)(
pR− 1

1+s1
2

)
. (70)

Note that σ1 from (69) and (66) are identical. This can be seen by using the expressions

for s, s̄ and µ∗. Moreover, σ2 in (70) and (67) are also identical. Finally, note also that on the

interval s1 ∈ [s̄, 1], σ1 is maximized at s1 = 1, σ2 is maximized at s1 = s̄ and that σ1(s1 = 1) =

σ2(s1 = s̄). We define σ ≡ σ1(s1 = 1), given by

σ =
1

2τ
(1− s̄)

(
1 + s̄

2µ∗ − 1

)
. (71)

It is straightforward to verify that V (s1) is continuous over the entire interval s1 ∈ [0, 1] and

that V (s1 = 0) = V (s1 = 1).

Figure 5 depicts the objective function V (s1) for some parameter values. We now prove the

expressions (59)-(70).

Region a(i): s1 ∈ [0, 2µ∗ − 1), non-empty only if 2µ∗ − 1 > 0. Since s1 < 2µ∗ − 1, we have

µ1 < µ2 < µ∗. Without information from the share price, neither the regulator nor the capital

provider will act to fund the bank if the stress test generates message m1. There is hence no

information production by the speculator. Creditors do not roll over their debt even after a pass

result, unless the stock price reveals ω = h. Following a test outcome m2, the supervisor funds
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0 µ∗ 1
s1

V (s1)

(a) δ = 0 and µ∗ = 1
4

0 µ∗ 1
s1

V (s1)

(b) δ = 0 and µ∗ = 3
4

0 s µ∗ s̄ 2µ∗ 1
s1

V (s1)

(c) δ = 2
5 and µ∗ = 1

4

0 2µ∗ − 1 s µ∗ s̄ 1
s1

V (s1)

(d) δ = 3
20 and µ∗ = 3

4

Figure 5: Objective Function V (s1) and maxs1 V (s1) (in red).

the bank if the stock price is uninformative and s > s̄. This then provides incentives to the

speculator to acquire information and trade following m2.

Given the funding rate r = 1
ps the equity value given ω = h and a = 1 is

E1
h(s) = pR− 1

s
.

We have Pr(ω = h, s|m2) = Pr(ω = h|s)f(s|m2) =
s

1−s1
and hence, the market maker sets the
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price when the order flow is uninformative following m2 at

P (m2) =

∫ 1

s̄

(
pR− 1

s

)
s

1− s1
ds,

=
1

2

1− s̄2

1− s1
E1

h,

where

E1
h ≡ pR− 1

s̄+1
2

.

The trading profit is therefore

E(π) =
σ2
2

[∫ 1

s̄

s

1− s1

(
E1

h(s)− P (m2)
)
ds+

1

2

s̄2 − s21
1− s1

(−P (m2)) +
1

2

(1− s1)
2

1− s1
P (m2)

]
− τ

2
σ2
2,

=
σ2
2

[
1

2

1− s̄2

1− s1

(
E1

h − P (m2)
)
+

1

2

s̄2 − s21
1− s1

(−P (m2)) +
1

2

(1− s1)
2

1− s1
P (m2)

]
− τ

2
σ2
2,

which can be simplified to

E(π) =
σ2
4
(1− s̄2)E1

h −
τ

2
σ2

Taking the first order condition, we get the amount of information acquisition at the optimum,

following message m2, given by (60). The supervisor’s expected payoff is thus

Va(i)(s1) =
1

2
(1− s̄2)

[σ2
2
V 1
h +

(
1− σ2

2

) (
V 1
h − δ

)]
+

1

2
(1− s̄)2

(σ2
2
V 0
l +

(
1− σ2

2

) (
V 1
l − δ

))
+

1

2
[s̄(2− s̄)− s1(2− s1)]V

0
l +

1

2
(s̄2 − s21)

(σ2
2
V 1
h +

(
1− σ2

2

)
V 0
h

)
+

1

2

[(
2s1 − s21

)
V 0
l + s21V

0
h

]
.

After some calculations, we get (59).

Region a(ii): s1 ∈ [max{0, 2µ∗ − 1}, s), where s = µ∗(1 − δ). We have µ1 < µ∗ ≤ µ2 so

that, in the absence of an informative stock price, creditors roll over their debt following a pass

but not a fail result. If s < s1 there is no information production and the bank will fail to

raise funds from private markets or the supervisor. Following a pass result, capital providers
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are willing to fund the bank, unless the stock price signal reveals ω = l. The supervisor does

not intervene, unless the bank passes the test, the stock price is uninformative and s ∈ [s1, s).

In that case, the supervisor shuts down the bank (as = 0). Overall, this yields the following

expected payoff to the supervisor:

Va(ii)(s1) =
1

2

[
(1− s2)V 1

h + (s2 − s21)
[σ2
2
V 1
h + (1− σ2

2
)(V 0

h − δ)
]
+ s21V

0
h

]
+

1

2

[
1− (2s− s2)

] [σ2
2
V 0
l + (1− σ2

2
)V 1

l )
]
]

+
1

2

[[
2s− s2 − (2s1 − s21)

] [σ2
2
V 0
l + (1− σ2

2
)(V 0

l − δ)
]
+ (2s1 − s21)V

0
l

]
.

After some calculations, we get the expression in (61).

Next, we need to determine prices and trading profits in order to determine the relation

between s1 and the amount of information σ2 produced by the speculator. When m2 is observed

and the order is uninformative, the market maker does not know whether the bank will be able

to continue. This depends on whether s is above or below s. Denote by µa
ω(m2) = Pr(ω, a|m2).

Here a denotes whether the firm is able to continue (a = 1) or not (a = 0). To ease the exposition

we do not introduce extra notation to distinguish between the case where the supervisor is

decisive (unwinds before the bank can try to raise capital), or the providers of capital are

not willing to fund the bank. For the sake of brevity, we drop the function argument m2 from

µa
ω(m2). Beliefs following m1 do not require a similar distinction since the supervisor and capital

providers agree that the optimal action in this case is a = 0 and the speculator produces no

information.

µ1
h =

1

2

1− s2

1− s1
,

µ0
h =

1

2

s2 − s21
1− s1

,

µ1
l =

1

2

1−
(
2s− s2

)
1− s1

,

µ0
l =

1

2

2s− s2 − (2s1 − s21)

1− s1
.

The speculator’s expected trading profits, after having observedm2 and acquired information
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σ2 are

E(π) =
σ2
2

[
µ1
h(E

1
h − P ) + µ0

h(−P ) + (µ1
l + µ0

l )P
]
− τ

2
σ2
2.

Since the market maker learns nothing if the order flow is uninformative, and since E0
h = E1

l =

E0
l = 0, the price is

P (m2) = µ1
hE

1
h

where E1
h is computed below. The expression for trading profits can be simplified to

E(π) = σ2E
1
hµ

1
h(1− µ1

h − µ0
h)−

τ

2
σ2
2.

To calculate E1
h note that the bank only gets to approach capital markets if the supervisor

has allowed it to go ahead. This reveals to the capital providers that s ≥ s. Hence, at this

point, the capital providers believe Pr(ω = h) = 1+s
2 . Since the interest rate is set as a function

of the belief µ at r = 1
pµ , we get

E1
h = pR− 1

1+s
2

= pR− 2

1 + s
.

From this, we can calculate overall trading profits as

E(π) =
σ2
2

(
pR− 2

1 + s

)(
1− s2

) 1− 1+s1
2

1− s1
− τ

2
σ2
2,

which can be simplified to

E(π) =
σ2
4

(
pR− 2

1 + s

)(
1− s2

)
− τ

2
σ2
2.

Taking the first order condition with respect to σ2 we get the expression in (62).

Region p: s1 ∈ [s, s̄), where s = µ∗(1 − δ)), s̄ = µ∗(1 + δ). We have µ1 < µ∗ ≤ µ2 so that

creditors roll over their debt following a pass but not a fail result. The supervisor is always

passive: Following a pass result, s > s so the supervisor does not want to intervene with as = 0.

Following a fail result, we always have s < s̄ and hence the supervisor does not want to fund the
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bank. Since the supervisor is completely passive, the game proceeds as in the baseline model,

and the supervisor’s value function is given by Lemma 3. By setting s2 = 1 and after some

simplifications we get the value function in (63) and the amount of information acquisition in

(64).

Region b(i): s1 ∈ [s̄,min{2µ∗, 1}). We have µ1 < µ∗ < µ2. If the bank fails the test,

but the supervisor observes s ∈ [s̄, s1], she funds the bank at rate r = 1
ps . Since the bank gets

funded with positive probability following a test outcome m1, the speculator may now acquire

information even after such a comparatively unfavorable test result, i.e., in spite of an induced

belief µ1 < µ∗. Denote by σ1, the amount of information produced by the speculator, following

m1, and similarly, σ2 denotes the information acquired following m2.

We proceed to calculate trading profits following m1. As before, the equity value is only

non-zero when ω = h and a = 1. Given the funding costs r = 1
ps , the equity value is

E1
h(s) = pR− 1

s
.

We have Pr(ω = h, s|m1) = f(s|m1) Pr(ω = h|s) = s
s1

and hence, the market maker sets the

price when order flow is uninformative following m1 at

P (m1) =

∫ s1

s̄

(
pR− 1

s

)
s

s1
ds,

=
1

2

s21 − s̄2

s1
E1

h,

where

E1
h ≡ pR− 1

s̄+s1
2

.

From this we can calculate trading profits:

E(π) =
σ1
2

[∫ s1

s̄

s

s1

(
E1

h(s)− P (m1)
)
ds+

1

2

s̄2

s1
(−P (m1)) +

1

2

s1(2− s1)

s1
P (m1)

]
− τ

2
σ2
1,

=
σ1
2

[
1

2

s21 − s̄2

s1

(
E1

h − P (m1)
)
+

1

2

s̄2

s1
(−P (m1)) +

1

2

s1(2− s1)

s1
P (m1)

]
− τ

2
σ2
1.

71



After some simplifications and taking the first-order condition with respect to σ1, we find the

expression in (66).

Trading profits and therefore information acquisition following m2 can be calculated as in

the baseline model. Using the function (18) derived previously and setting µ = µ2 = 1+s1
2 we

get the expression in (67). The supervisor’s expected payoff is given by

Vb(i)(s1) =
1

2

[
(1− s21)V

1
h + (s21 − s̄2)

(
V 1
h − (1− σ1

2
)δ
)
+ s̄2

(σ1
2
V 1
h +

(
1− σ1

2

)
V 0
h

)]
+

1

2

[
(1− s1(2− s1))

(σ2
2
V 0
l + (1− σ2

2
)V 1

l

)]
+

1

2

[
(s1(2− s1)− s̄(2− s̄))

(σ1
2
V 0
l + (1− σ1

2
)(V 1

l − δ)
)
+ s̄(2− s̄)V 0

l

]
.

and after some simplification, this can be written as the expression in (65).

Region b(ii): s1 ∈ [2µ∗, 1], non-empty only if 2µ∗ < 1. In this region µ∗ ≤ µ1 < µ2 so

that capital providers are willing to fund the bank even if it fails the test (unless the stock

price reveals ω = l). The supervisor intervenes and sets as = 0 if she observes s < s. After the

message m2 the game proceeds as in the baseline model: the speculator’s information acquisition

after m2 is given by (70) and in the absence of a revealing stock price the market invests.

Following the message m1, if the stock price reveals nothing, the supervisor may intervene

depending on the realization of her private signal. When the market sees no intervention it

realizes that s ∈ [s, s1) and chooses the interest rate accordingly, leading to an equity value of

E1
h = pR− 1

s+s1
2

.

We can determine the speculator’s and market maker’s beliefs over the state and the expected
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supervisor’s decision, µas
ω = Pr(ω, as|m1) = Pr(ω|as) Pr(as|m1). These are:

µ1
h =

s+ s1
2

s1 − s

s1

µ0
h =

s

2

s

s1

µ1
l =

(
1− s+ s1

2

)
s1 − s

s1

µ0
l =

(
1− s

2

) s

s1
.

The market maker chooses a price

P = µ1
hE

1
h,

and the speculator’s expected profits are

E(π) =
σ1
2

[
µ1
h(E

1
h − P ) + µ0

h(−P ) + (µ1
l + µ0

l )P
]
− 1

2
τσ2

1

= σ1µ
1
h(1− µ1

h − µ0
h)E

1
h −

1

2
τσ2

1.

By taking the first-order condition with respect to σ1 we get the expression in (69).

The supervisor’s objective function is:

Vb(ii)(s1) =
1

2

[
s2
(σ1
2
V 1
h +

(
1− σ1

2

)
(V 0

h − δ)
)
+
(
(s21 − s2) + (1− s21)

)
V 1
h

]

+
1

2

[
(2s− s2)

(σ1
2
V 0
l +

(
1− σ1

2

)
(V 0

l − δ)
)]

+
1

2

[(
2(s1 − s)− (s21 − s2)

)(σ1
2
V 0
l +

(
1− σ1

2

)
V 1
l

)]
+

1

2

[(
2(1− s1)− (1− s21)

)(σ2
2
V 0
l +

(
1− σ2

2

)
V 1
l

)]
.

This can be simplified to get (68).

Lemma 7. The function V (s1) defined in (58) attains a local maximum on the interval s1 ∈ [0, s̄]

at

s1 = sPF ≡

 s
a(ii)
1 if s

a(ii)
1 < µ∗(1− δ)

sF if s
a(ii)
1 ≥ µ∗(1− δ),

∈ [0, µ∗), (72)

where s
a(ii)
1 ≡ δ

1−σ2
2

σ2
2
(pR−1)

with σ2 defined in (62), and sF solves (23).
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Proof. When µ∗ ≤ 1
2 , region a(i) is empty. For s1 in region a(ii), the supervisor’s objective is

given by (61). It is straightforward to show that

∂Va(ii)

∂s1
= δ

(
1− σ2

2

)
− s1

σ2
2
∆Vh. (73)

Note that
∂Va(ii)

∂s1
is strictly positive at s1 = 0 and δ > 0. Moreover, Va(ii)(0) = Vb(ii)(1). Hence,

for any δ > 0 the optimal s1 ∈ (0, 1). If s1 increases so that we are in region p, we know from

Proposition 1 that Vp(s1) attains a maximum at s1 < µ∗, as we have
∂Vp

∂s1
< 0 at s1 = µ∗. Hence,

V (s1) must attain a local maximum between 0 and µ∗.

The following can be said about whether the local maximum lies in region a(ii) or region p.

The maximum of Va(ii)(s1) is reached at

s1 = δ
1− σ2

2
σ2
2 (pR− 1)

≡ s
a(ii)
1 , (74)

where σ2 is defined in (62). If s
a(ii)
1 < s = µ∗(1 − δ), then V (s1) reaches a local maximum in

region a(ii). Moreover, using the expressions for Va(ii)(s1) and Vp(s1), it can be shown that at

the point s1 = s we have
∂Va(ii)

∂s1
<

∂Vp

∂s1
. Hence, if

∂Vp

∂s1
< 0 at the corner s1 = s of region p, then

the local maximum is in region a(ii). If s
a(ii)
1 > s we have that Va(ii)(s1) is strictly increasing

on the entire region a(ii) and the local maximum lies in region p. There can be cases where

∂Va(ii)

∂s1
< 0 for the corner s1 = s in region a(ii), but

∂Vp(s1)
∂s1

> 0 for the corner s1 = s in region

p. In that case, V (s1) has two local maxima on [0, µ∗].

When µ∗ > 1
2 , the relevant regions are a(i) to b(i). Va(i)(s1) is decreasing on the entire region

a(i), as can be seen by calculating its derivative:

∂Va(i)(s1)

∂s1
= −s1

σ2
2
∆Vh, (75)

which is negative. Moreover, we know from before that for s1 in regions a(ii)-p, the local

maximum is below µ∗. It then follows that the local maximum over regions a(i)-p is either at

the corner s1 = 0, or is interior and given by sPF .
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Lemma 8. For µ∗ ≤ 1
2 , s

P
F is a global maximum.

Proof. The proof of Lemma 8 follows from the following two claims.

Claim 1. On regions b(i)-b(ii), the objective function V (s1) attains a maximum at one of its

corners s1 ∈ {s̄, 1}.

Claim 2. For δ > 0 we have V (sPF ) > max
{
V
(
s̄
)
, V (1)

}
. For δ = 0 we have sPF = 0 and

V (0) = V (1) > V (µ∗).

Proof of Claim 1 : The proof proceeds by constructing a straight line connecting the extreme

points (s̄, V (s̄)) and (1, V (1)) of the value function V (s1) and then showing that V (s1) lies below

that line for all s1 ∈ (s̄, 1). First, consider region b(i), i.e. s1 ∈ [s̄, 2µ∗). We want to show that

the straight line connecting (s̄, Vb(i)(s̄)) to (1, Vb(ii)(1)) lies above Vb(i)(s1) for all s1 ∈ [s̄, 2µ∗).

Note that Vb(i)(s1) > Vb(ii)(s1) if and only if s1 < 2µ∗ so that the line connecting (s̄, Vb(i)(s̄))

to (1, Vb(ii)(1)) lies above the line V̂b(i)(s1) connecting (s̄, Vb(i)(s̄)) to (1, Vb(i)(1)). We prove the

stronger claim that the line V̂b(i)(s1) lies above Vb(i)(s1) for all s1 ∈ [s̄, 2µ∗). The line V̂b(i)(s1) is

defined as

V̂b(i)(s1) = Vb(i)(s̄) +
Vb(i)(1)− Vb(i)(s̄)

1− s̄
(s1 − s̄).

This can be re-written as

V̂b(i)(s1) =
1− s1
1− s̄

Vb(i)(s̄) +
s1 − s̄

1− s̄
Vb(i)(1).

We then get V̂b(i)(s1) ≥ Vb(i)(s1) if

∆Vh

(
σ
s1 − s̄

1− s̄
− σ1(s1)

)
s̄2 + 2δ(σ − σ1(s1))(s1 − s̄)−∆Vlσ2(s1)(1− s1)

2

+∆Vl

(
σ(1− s̄)2 + σ1(s1)(1− s1)

2 − σ1(s1)(1− s̄)2
)
≥ 0,

where σ is given by (71) and σ1(s1) and σ2(s1) by (66) and (67), respectively.
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Using

(1− s̄)2 = (1− s̄)2 − (1− s1)
2 + (1− s1)

2,

this can be re-written as

∆Vh

(
σ
s1 − s̄

1− s̄
− σ1(s1)

)
s̄2 + 2δ(σ − σ1(s1))(s1 − s̄)

+ ∆Vl

(
(σ − σ1(s1))

[
(1− s̄)2 − (1− s1)

2
]
+ (σ − σ2(s1))(1− s1)

2
)
≥ 0. (76)

We then make use of ∆Vl = 1, ∆Vh = 1
µ∗ − 1 and

σ − σ1(s1) =
1

2τ

1− s1
s1

(
s1(1− s1)

2µ∗ + s1 − µ∗(1− δ2)

)
,

σ
s1 − s̄

1− s̄
− σ1(s1) = − 1

2τ

(s1 − s̄)(1− s1)

s1

s1 − 2µ∗(1− δ)

2µ∗ ,

σ − σ2(s1) =
1

2τ
(s1 − s̄)

(
s1 + s̄

2µ∗ − 1

)
.

(77)

Since s1 ≥ s̄ and σ ≥ σ1(s1) and σ ≥ σ2(s1), the last line of (76) is positive. A sufficient

condition then is that the first line is also positive.

Using (77) the first line is positive if

(s1 − s̄)(1− s1)

s1

(
µ∗(1− µ∗)(1 + δ)2

2µ∗(1− δ)− s1
2µ∗ + 2δ

[
s1(1− s1)

2µ∗ + s1 − µ∗(1− δ2)

])
≥ 0.

The factor (s1−s̄)(1−s1)
s1

≥ 0. The remainder of the expression is a negative quadratic function.

It is therefore sufficient to check that at its borders s1 = s̄ and s1 = 2µ∗, the terms in brackets

is positive. At s1 = s̄, the expression becomes

1

2
µ∗(1− µ∗)(1 + δ)2(1− δ)− µ∗(1− µ∗)δ(1 + δ)2 + δ(1 + δ)− µ∗δ(1− δ2),

which can also be written as

1

2
µ∗(1− µ∗)(1 + δ)2(1− δ) + δ(1 + δ) [1− µ∗(1− µ∗)(1 + δ)− µ∗(1− δ)] . (78)
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Since µ∗ ≤ 1
2 we have µ∗(1−µ∗) ≤ 1

4 and 1+ δ ≤ 2 so that µ∗(1−µ∗)(1+ δ) ≤ 1
2 . Moreover,

µ∗(1− δ) ≤ 1
2 and hence (78) is positive.

At s1 = 2µ∗ we get

δ(2− 2µ∗(1− δ2)− µ∗(1− µ∗)(1 + δ)2),

which is also positive. It follows that the line connecting Vb(i)(s̄) to Vb(i)(1), lies above Vb(i)(s1)

for all s1 ∈ [s̄, 2µ∗], implying that the line connecting Vb(i)(s̄) to Vb(ii)(1), also lies above Vb(i)(s1)

for all s1 ∈ [s̄, 2µ∗].

Now, consider region b(ii), i.e. s1 ∈ [2µ∗, 1]. We want to show that Vb(ii)(1) ≥ Vb(ii)(s1) for

all s1 ∈ [2µ∗, 1]. Since, V (s1) is continuous across regions, this is enough to conclude the proof

of the claim.

Using (68) we can write

Vb(ii)(1) =
V 1
h + V 1

l

2
− δ

(
1− σ

2

)
s − 1

2
∆Vh

(
1− σ

2

)
s2 +

1

2
∆Vl

(σ
2
+
(
1− σ

2

) (
2s− s2

))
.

We can then write the condition Vb(ii)(1)− Vb(ii)(s1) ≥ 0 as follows:

1

4
∆Vhs

2 (σ − σ1(s1)) +
1

2
δs(σ − σ1(s1))−

1

4
∆Vlσ2(s1)(1− s1)

2

+
1

4
∆Vl

(
σ(1− s)2 + σ1(s1)

[
(1− s1)

2 − (1− s)2
])

≥ 0,

where σ is given by (71) and σ1(s1) and σ2(s1) by (69) and (70), respectively.

Using (1− s)2 = (1− s)2 − (1− s1)
2 + (1− s1)

2, this can be re-written as

(
∆Vhs

2 + 2δs
)
(σ − σ1(s1))+∆Vl(σ− σ2(s1))+∆Vl(σ− σ1(s1))

(
(1− s)2 − (1− s1)

2
)
≥ 0.

Note that σ ≥ σ1(s1) and σ ≥ σ2(s1). Moreover, (1− s)2 ≥ (1− s1)
2 since s1 ≥ 2µ∗ > s. Hence,

the inequality holds. It follows that on regions b(i)-b(ii), V (s1) attains a maximum at one of its

corners.
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Proof of Claim 2 : For δ > 0, we have that V (sPF ) > V (0) since we know from Lemma 7 that

V (s1) is increasing at s1 = 0. Since V (0) = V (1), it follows that V (sPF ) > V (1). Moreover, we

know that V (sPF ) > V (µ∗) > V
(
µ∗(1 + δ)

)
, where the last inequality follows from Vp(s1) being

decreasing for s1 ≥ µ∗. Hence, for δ > 0, sPF is the global maximum. For δ = 0, we have sPF = 0,

region p disappears, and V (0) > V (µ∗) since Va(ii)(s1) is decreasing over region a(ii) (see (73)).

Hence, sPF = 0 is the global maximum when δ = 0.

Lemma 9. For µ∗ > 1
2 , when δ = 0 the global maximum is s1 = 0 and there exist a δ̃ such that

s1 = sPF is a global maximum for δ ≥ δ̃.

Proof. The following two claims establish that the local maximum is also the global maximum.

Claim 3. On region b(i), the objective function V (s1) attains a maximum at one of its corners

s1 ∈ {s̄, 1}.

Claim 4. There exists a δ̃, such that V (µ∗) > V (1) for δ ≥ δ̃. For δ = 0, we have V (0) > V (µ∗).

Since argmaxVp(s1) < µ∗, and V (sPF ) > V (µ∗) claims 3 and 4 imply that for δ ≥ δ̃, sPF is

the global maximum.

Proof of Claim 3 : We want to show that the straight line passing from Vb(i)(µ
∗(1 + δ)) =

Vb(i)(s̄) and Vb(i)(1) lies above Vb(i)(s1) for all s1 ∈ [s̄, 1]. Define the straight line by V̂b(i)(s1).

The maximum of V̂b(i)(s1) is obviously attained at either of the two corners s1 = s̄ or s1 = 1.

Moreover, if V̂b(i)(s1) ≥ Vb(i)(s1) for s1 ∈ [s̄, 1], knowing that by construction V̂b(i)(s1) = V (s1)

at the corners s1 = s̄ and s1 = 1, then Vb(i)(s1) must also attain its maximum at either of the

two corners.

First, construct the function V̂b(i)(s1). Denoting by

T ≡ V h
1 + V l

1

2
− s̄2

2
∆Vh +

s̄(2− s̄)

2
∆Vl,
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we can write

Vb(i)(s1) = T +
σ1(s1)

4

(
s̄2∆Vh + (1− s̄)2∆Vl

)
+

σ2(s1)− σ1(s1)

4
(1− s1)

2∆Vl − δ

(
1− σ1(s1)

2

)
(s1 − s̄),

where σ1(s1) and σ2(s1) are defined in (66) and(67), respectively. The linear function is given

by

V̂b(i)(s1) = Vb(i)(s̄) +
Vb(i)(1)− Vb(i)(s̄)

1− s̄
(s1 − s̄).

It is useful to note that σ1(s1 = s̄) = 0 and σ2(s1 = s̄) = σ, where σ is given by (71). Moreover,

σ1(s1 = 1) = σ and σ2(s1 = 1) = 0. We can then write

V̂b(i)(s1) = T +
σ

4
(1− s̄)2∆Vl +

[
σ

4

s̄2

1− s̄
∆Vh − δ

(
1− σ

2

)]
(s1 − s̄).

The inequality V̂b(i)(s1) ≥ Vb(i)(s1) can be written as:

(σ − σ1(s1)) (1− s̄)2∆Vl − (σ2(s1)− σ1(s1)) (1− s1)
2∆Vl

+

(
σ
s1 − s̄

1− s̄
− σ1(s1)

)
s̄2∆Vh + 2 (σ − σ1(s1)) (s1 − s̄)δ ≥ 0. (79)

We can re-write the first line as follows

(σ − σ1(s1)) (1− s̄)2∆Vl − (σ2(s1)− σ1(s1)) (1− s1)
2∆Vl

= (σ − σ2(s1))(1− s1)
2∆Vl + (σ − σ1(s1))(s1 − s̄) (2(1− s1) + (s1 − s̄))∆Vl.
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Substituting this expression into (79) and simplifying yields

1

2τ

(1− s1)(s1 − s̄)

s1

[
s1 − µ∗(1− δ)

2µ∗ s1(1− s1)

]
+

1

2τ

(1− s1)(s1 − s̄)

s1

[
−µ∗(1− µ∗)(1 + δ)2

s1 − 2µ∗(1− δ)

2µ∗

]
+

1

2τ

(1− s1)(s1 − s̄)

s1

[
2(1− s1)

(
s1(1− s1)

2µ∗ + s1 − µ∗(1− δ2)

)]
+

1

2τ

(1− s1)(s1 − s̄)

s1

[
(s1 − s̄+ 2δ)

s1(1− s1)

2µ∗ + (s1 − s̄+ 2δ)(s1 − µ∗(1− δ2))

]
≥ 0.

This can be re-written as

s1(1− s1)
s1 − µ∗(1− δ)

2µ∗ + 2(1− s1)

[
s1(1− s1)

2µ∗ + s1 − µ∗(1− δ2)

]
+

s1(1− s1)

2µ∗ (s1 − s̄+ 2δ)

+
1

2
(1− µ∗)(1 + δ)2(2µ∗(1− δ)− s1) + (s1 − s̄+ 2δ)(s1 − µ∗(1− δ2)) ≥ 0.

Since in region b(i), s1 ≥ µ∗(1 + δ) = s, we know that the first line is non-negative. A sufficient

condition is thus that the second line is also non-negative. Re-writing the second line, this

reduces to the quadratic equation

(s1 − s̄)2 + b(s1 − s̄) + c ≥ 0,

where

b ≡ 1

2

(
µ∗(1 + δ)(1 + 3δ)− (1− δ)2

)
c ≡ 1

2
µ∗(1 + δ)

(
(1− δ)2 + µ∗(1 + δ)(3δ − 1)

)
,

which is always non-negative if b2 − 4c ≤ 0. This last inequality, after simple algebra, can be

re-written as:

∆(µ∗) ≡ (1− δ)2

4

((
3(1 + δ)µ∗

)2
− (1 + δ)(10 + 6δ)µ∗ + (1− δ)2

)
≤ 0. (80)

Note that ∆(µ∗) is convex so that if (80) is satisfied at either extremes of µ∗, then it also holds

for any interior µ∗. We know that µ∗ ∈ [1/2, 1/(1 + δ)) since for region b(ii) to exists we also
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need s = µ∗(1 + δ) < 1. Consider first the lower bound and note that:

∆

(
1

2

)
=

(1− δ)2

4

(
9

4
(1 + δ)2 − (1 + δ)(5 + 3δ) + (1− δ)2

)
=

(1− δ)2

4

(
−(1 + δ)

3

4
− 2 +

(1− δ)2

1 + δ

)
< 0,

since (1− δ)2/(1 + δ) < 1 < 2. Consider next the upper bound:

∆

(
1

1 + δ

)
=

(1− δ)2

4

(
9− (10 + 6δ) + (1− δ)2

)
=

(1− δ)2

4
(δ(δ − 8)) < 0,

since δ ≤ 1. It follows that (80) is satisfied, implying that V̂b(i)(s1) ≥ Vb(i)(s1) for every

s1 ∈ [µ∗(1 + δ), 1], i.e. that on region b(i), the objective V (s1) attains a maximum at one of its

corners.

Proof of Claim 4 : Using the corresponding expressions, the condition Vp(µ
∗) > Vb(i)(1) can

be written as

− 1

2
∆Vh(µ

∗)2 +
1

2
∆Vh(1−

σ

2
)s̄2 +

1

2
∆Vl

(
σ̂2
2

+ (1− σ̂2
2
)(2µ∗ − (µ∗)2)

)
− 1

2
∆Vl

(σ
2
+ (1− σ

2
)(2s̄− s̄2)

)
+ δ(1− σ

2
)(1− s̄) > 0,

where σ = σ1(s1 = 1) given in (71) and σ̂2 = σ2(s1 = µ∗) ≥ σ. The inequality can be rewritten

as

1

2

(
1− σ

2

)
h(δ) >

1

2
∆Vh

σ

2
(µ∗)2 +

1

2
∆Vl(1− µ∗)2

(
1− σ̂2

2

)
, (81)

where

h(δ) ≡ ∆Vh(s̄
2 − (µ∗)2) + ∆Vl(1− s̄)2 + 2δ(1− s̄).

Note that σ is a decreasing function of δ while σ̂2 is independent of δ. Hence the right-hand
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side of inequality (81) is decreasing in δ. Moreover, h(δ) can be simplified to yield

h(δ) = 1− µ∗(1− µ∗) + 2δ − µ∗(1 + δ)2.

Note that h(δ) reaches its maximum at δ = 1
µ∗ − 1 and is increasing for lower values of δ.

Furthermore, since we require s̄ = µ∗(1 + δ) ≤ 1, the maximum admissible value of δ when

µ∗ > 1
2 , is just δ = 1

µ∗ − 1. Hence, the left-hand side of inequality (81) is increasing in δ.

For the special case δ = 0, we have σ = σ̂2 and inequality (81) reduces to

1

2

(
1− σ̂2

2

)
(1− µ∗)2 >

1

2
µ∗(1− µ∗)

σ̂2
2

+
1

2

(
1− σ̂2

2

)
(1− µ∗)2,

which is violated. At the upper bound of δ we have s̄ = 1 or, equivalently δ = 1
µ∗ − 1. Using

the observation that σ(s̄ = 1) = 0, inequality (81) can be written as

1

2

(
1− µ∗(1− µ∗) + 2

(
1

µ∗ − 1

)
− 1

µ∗

)
>

1

2
(1− µ∗)2

(
1− σ̂2

2

)
,

or, equivalently, as

1

2
(1− µ∗)2

1 + µ∗

µ∗ >
1

2
(1− µ∗)2

(
1− σ̂2

2

)
,

which always holds as 1+µ∗

µ∗ > 1 > 1− σ̂2
2 . Hence, there is a threshold value of δ, denoted δ̃,

such that for any δ above the threshold V (µ∗) > V (1).

Hence, for δ above δ̃ we have V (sPF ) > V (µ∗) > V (1) = V (0), where the first inequality

follows from Lemma 7. Moreover, we have that V (sPF ) > V (µ∗) > V (µ∗(1+δ)) where the second

inequality follows from Vp(s1) being decreasing for s1 ≥ µ∗. For δ = 0, region p disappears, and

V (0) > V (µ∗) since Va(i)(s1) is decreasing over region a(i) (see 75).

Proof of Proposition 5. The proof of Proposition 5 follows from Lemma 7, Lemma 8 and

Lemma 9.

Proof of Lemma 5. The stress test design problem is given by (16) but, to ensure that an

optimum exists, the constrained set changes to µ1 ≤ µ̂ and µ2 > µ̂, that is we want to solve:
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max
s1

v(s1)

s.t. µ1 ≤ µ̂,

µ2 > µ̂,

(82)

where v(s1) is defined in (15). Neglecting the constraints in problem (82), the FOC for s1 is :

v′(s1) = 1− s1
µ∗ = 0,

and is solved for s1 = µ∗. The constraint µ2 = (s1 + 1)/2 > µ̂ is satisfied for s1 = µ∗ since

µ̂ < µ∗. The constraint µ1 = s1/2 ≤ µ̂ is satisfied at the unconstrained optimum when µ∗/2 ≤ µ̂

and is binding otherwise. When the constraint is slack the optimum is s1 = µ∗, when it is

binding, s1 is chosen to satisfy the constraint, i.e. s1 = 2µ̂. Thus, the optimal stress test is a

binary partition with cutoff s1 = min{2µ̂, µ∗}.

Proof of Proposition 6. When µ∗ > µ̂, the stress test design problem is given by (21) but,

to ensure that an optimum exists, the constrain set changes to µ1 ≤ µ̂ and µ2 > µ̂. Hence, the

stress test design problem is

max
s1,s2

V (s1, s2)

s.t. µ1 < µ̂

µ2 ≥ µ̂,

(83)

where V (s1, s2) is defined in (49), v(s1) is defined in (15), while ν2 = s2 − s1 and µ2 =
s1+s2

2 , as

defined in (2) and (3).

The proof proceeds as in Proposition 1 until Step 3, and the FOCs are the ones in (50). We

replicate the FOCs here for ease of exposition:

∂V

∂s1
= v′(s1) +

1

2τ

[
−(1− s1)

2

(
s1
µ̂

− 1

)
− (ν2)

2 1−
1
2(s2 − µ̂)− s1

2µ̂

]
= 0,

∂V

∂s2
=

1

2τ
(ν2)

2 1−
1
2(s1 − µ̂)− s2

2µ̂
= 0.

83



First, we show that when µ∗ < µ, where

µ ≡ µ̂

1− 1

τ

1

µ̂

(
1− µ̂

2

)3 , (84)

the optimal stress test is a binary partition, s2 = 1, and we provide the equation that

implicitly defines the optimal s1. Suppose s2 > s1, the second equation is solved for s2 =

1− 1
2(s1 − µ̂). If at the optimum we have s1 < µ̂, then it is optimal to set s2 = 1. To determine

when this is the case, we evaluate the sign of the following derivative:

∂V

∂s1

∣∣∣∣ s1=µ̂
s2=1− 1

2
(s1−µ̂)

= 1− µ̂

µ∗ − 1

2τ

(1− µ̂)3

4µ̂
.

We have that ∂V
∂s1

∣∣∣ s1=µ̂
s2=1− 1

2
(s1−µ̂)

< 0 when µ∗ < µ. It follows that for these parameter values, we

have s1 < µ̂ and s2 = 1. The optimal s1 solves:

∂V

∂s1

∣∣∣∣
s2=1

=1− s1
µ∗ +

1

2τ

[
−(1− s1)

2

(
s1
µ̂

− 1

)
− (1− s1)

2 1−
1
2(1− µ̂)− s1

2µ̂

]

=1− s1
µ∗ +

1

2τ
(1− s1)

2
3µ̂−1
2 − s1

2µ̂
= 0,

(85)

and thus is equal to s̃, the unique solution to (30). The constraints are satisfied. The constraint

µ1 = (0 + s1)/2 ≤ µ̂ is satisfied since at the optimum we have s1 < µ̂. The constraint µ2 =

(s1 + s2) > µ̂ is also satisfied since at the optimum we have s1 > 2µ̂− 1. To see this note that:

∂V

∂s1

∣∣∣∣s1=2µ̂−1
s2=1

= 1− 2µ̂− 1

µ∗ +
1

2τ

(1− µ̂)3

µ̂
> 0,

since we have that 1− (2µ̂− 1)/µ∗ > 0 as µ∗ > µ̂ > 2µ̂− 1, and the other term is also positive.

We now distinguish two cases when µ∗ > µ: Case A, where µ̂ < 2/5, and Case B, µ̂ ≥ 2/5.

Consider Case A. We show that when µ∗ > µ the optimal stress test contains two buckets with

fully granular grades for resilience levels above the buckets, i.e. s2 < 1. From the discussion

above we already know that for these parameter values, we have s1 > µ̂ and s2 = 1− 1
2(s1 − µ̂).
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When the constraints are satisfied, the optimal optimal s1 solves:

∂V

∂s1

∣∣∣∣
s2=1− 1

2
(s1−µ̂)

=1− s1
µ∗ − 1

2τ

[
(1− s1)

2

(
s1
µ̂

− 1

)
+

(1− 3
2s1 +

1
2 µ̂)

3

4µ̂

]
= 0. (86)

The constraints are indeed satisfied when

µ∗ ≤ 2µ̂

1− 1
2τ

(
(1− 2µ̂)2 +

(1− 5
2 µ̂)

3

4µ̂

) ≡ µ◦. (87)

To see this note that the constraint µ2 = (s1 + s2)/2 > µ̂ is satisfied since s2 ≥ s1 > µ̂, while

the constraint µ1 = s1/2 ≤ µ̂ is satisfied if s1 ≤ 2µ̂ and this is the case when

∂V

∂s1

∣∣∣∣ s1=2µ̂
s2=1− 1

2
(s1−µ̂)

= 1− 2µ̂

µ∗ +
1

2τ

(
(1− 2µ̂)2 +

(1− 5
2 µ̂)

3

4µ̂

)
≤ 0,

which is equivalent to (87).

We can also verify that at the optimum s2 = 1− 1
2(s1−µ̂) > s1. This happens when s1 <

2
3+

1
3 µ̂,

which is the case when

∂V

∂s1

∣∣∣∣ s1= 2
3
+ 1

3
µ̂

s2=1− 1
2
(s1−µ̂)

= 1−
2
3 + 1

3 µ̂

µ∗ − 1

2τ

2

27

(1− µ̂)3

µ̂
< 0,

or equivalently, when

µ∗ <

2

3
+

1

3
µ̂

1− 1

τ

1

µ̂

(
1− µ̂

3

)3 ≡ µ. (88)

One can show that this condition is milder than (87) when µ̂ < 2/5 and τ > 1
µ̂

(
1−µ̂
2

)2
, as by

assumption (20).

When the constraint µ1 ≤ µ̂ is binding, i.e. (87) is not satisfied, it is optimal to choose s1 to

satisfy the constraint, s1 = 2µ̂, and s2 = 1− 1
2 µ̂. Note that, once again, s2 > s1 if µ̂ < 2/5.

Consider now Case B. From the discussion above, we have that s1 < s2 when (88) is satisfied

and the optimal stress test is as discussed above. When (88) is not satisfied, a coarse pass grade
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is not optimal anymore and thus we have s2 = s1. Plugging s2 = s1 in the FOC for s1 we get

the equation that implicitly defines the optimal s1:

∂V

∂s1

∣∣∣∣
s2=s1

= 1− s1
µ∗ − 1

2τ
(1− s1)

2

(
s1
µ̂

− 1

)
= 0. (89)

The constraint µ1 = s1/2 ≤ µ̂ is satisfied when

µ∗ ≤ 2µ̂

1− 1
2τ (1− 2µ̂)2

(90)

since this implies that

∂V

∂s1

∣∣∣∣
s2=s1=2µ̂

= 1− 2µ̂

µ∗ − 1

2τ
(1− 2µ̂)2 ≤ 0. (91)

When the constraint is binding, it is optimal to choose s1 and s2 to satisfy the constraint,

s1 = s2 = 2µ̂.

Appendix C: Computations of χ(τ, µ∗) for Section 5.2

Denote by rt+1 the returns around the stress test, and by pt and pt+1 the bank’s equity prices

before and after the stress test. The bank’s absolute cumulative abnormal returns when the

bank is subject to an informative stress test with passing threshold s1 is:

|CAR|(s1) ≡ E
(∣∣rt+1 − E(rt+1)

∣∣) = E
(∣∣∣∣pt+1 − E(pt+1)

pt

∣∣∣∣) = E
(∣∣∣∣pt+1 − E(pt+1)

E(pt+1)

∣∣∣∣) ,

where the last equality follows from the efficient-market hypothesis, i.e. the pre-test price

incorporates future information, pt = E(pt+1).

For a bank subject to a stress test with passing threshold s1 the bank’s expected equity price

is:

E(pt+1) = (1− s1)

[
µ2σ(µ2)

1

2
E1

h(1) +

(
1− 1

2
σ(µ2)

)
µ2E

1
h(µ2)

]
≡ p(s1). (92)

With probability s1 the bank fails the test, there is no information acquisition and no funding

provision, so that the price is equal to 0. With the residual probability (1− s1), the bank passes
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the test. The realized price is E1
h(1) whenever the bank is financially sound and the speculator’s

positive signal is revealed to the market maker. Conversely, when the bank is insolvent and a

negative signal is revealed to the market maker, the price is equal to 0. Finally, when the order

flow is uninformative, or when the speculator observes no signal, the price is µ2E
1
h(µ2). Note

that if the stress test is informative (µ2 ≥ µ̂), information acquisition σ(µ2) and the expected

price p(s1) are positive numbers. Following a similar reasoning we can compute |CAR|(s1):

|CAR|(s1) = (1− s1)µ2σ(µ2)
1

2

∣∣∣∣E1
h(1)− p(s1)

p(s1)

∣∣∣∣+
+ (1− s1)

(
1− 1

2
σ(µ2)

) ∣∣∣∣µ2E
1
h(µ2)− p(s1)

p(s1)

∣∣∣∣+
+

(
(1− s1)(1− µ2)σ(µ2)

1

2
+ s1

) ∣∣∣0− p(s1)

p(s1)

∣∣∣.
(93)

For institutions that are subject to a stress test, we compute the |CAR| at the optimal passing

threshold sF (τ, µ
∗) derived in Proposition 1 (equation (23)), while for non-tested institutions,

we consider the |CAR| implied by an uninformative stress test. In the latter case, the price

and its expectation differ depending on whether the speculator acquires information at the prior

beliefs (in which case the expected price is E(pt+1) = p(0)), or not (E(pt+1) = 0). The difference

between the |CAR| for tested and non-tested institution is:

χ(τ, µ∗) =


|CAR|

(
sF (τ, µ

∗)
)
− 0 if 1

2 < µ∗

|CAR|
(
sF (τ, µ

∗)
)
− |CAR|

(
0
)

if 1
2 ≥ µ∗.

(94)
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