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Abstract

Accurate measurements of probabilistic beliefs have become increasingly im-
portant both in practice and in academia. Introduced by statisticians in the
1950s to promote truthful reports in simple environments, Proper Scoring Rules
(PSR) are now arguably the most popular incentivized mechanisms to elicit an
agent’s beliefs. This paper generalizes the analysis of PSR to richer environments
relevant to economists. More specifically, we combine theory and experiment to
study how beliefs reported with a PSR may be biased when i) the PSR payments
are increased, ii) the agent has a financial stake in the event she is predicting, and
iii) the agent can hedge her prediction by taking an additional action. Our results
reveal complex distortions of reported beliefs, thereby raising concerns about the
ability of PSR to recover truthful beliefs in general economic environments.
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1. Introduction

Introduced by statisticians in the 1950s, Proper Scoring Rules (PSR hereafter) are belief
elicitation techniques designed to provide an agent the incentives to report her subjective
beliefs in a thoughtful and truthful manner.1 Although the analysis of PSR has recently
been generalized to modern theories of risk and ambiguity (O¤erman et al. 2009), the
properties of PSR have yet to be characterized in general economic environments. This
paper combines theory and experiment in an attempt at partially �lling this void. More
precisely, we characterize the possible PSR biases (i.e. the systematic di¤erences between
an agent�s subjective and reported beliefs) for all risk averse agents and all PSR under three
e¤ects: i) a change in the PSR payments, ii) the introduction of a �nancial stake in the
event the agent is predicting, and iii) the possibility for the agent to hedge her prediction
by taking an additional action. The empirical signi�cance of the biases identi�ed are then
tested in an experiment.
Accurate measurements of probabilistic beliefs have become increasingly important both

in practice and in academia. In practice, numerous websites now o¤er public opinions (about
e.g. consumer products, movies, or restaurants) and predictions (about e.g. sporting or
political events).2 To be meaningful, these opinions and predictions must be informative.
When soliciting advice from experts (about e.g. health, environmental, or �nancial issues)
individuals typically expect unbiased recommendations. Recent suspicions of con�ict of
interest suggest that this may not always be the case.3 Finally, in an e¤ort to better manage
risk, �rms are increasingly turning to their employees to forecast (e.g.) sales, completion
dates, or industry trends.4 Precise belief assessments are also important in academia. In
particular, Manski (2002, 2004) argues that separate measures of choices and beliefs are
useful to estimate decision models properly. Modern macroeconomic theory considers that
monetary policy consists in large part in managing expectations (about e.g. in�ation),
which requires correct measures of probabilistic beliefs.5 Finally, experimental economists
are increasingly eliciting their subjects�beliefs to understand observed behavior better.6

Because they are incentive compatible under expected payo¤ maximization, PSR have
been one of the most popular belief elicitation techniques, with applications to numerous

1Early references in statistics include Brier (1950), Good (1952) and McCarthy (1956). Interestingly, it
seems that De Finetti �rst introduced PSR (De Finetti 1981). A broad and in�uential paper in the statistical
literature is Savage (1971). Early references in economics include Friedman (1979) and Holt (1979).

2Such opinion websites include ePinion, Ebay, Zagat, or Amazon. Prediction websites include the Iowa
Electronic Market, the Hollywood Stock Exchange, or Intrade.

3See e.g. the New York Times article �Questions Grow About a Top CNBC Anchor�(February 12, 2007)
about TV anchors for the �nancial news channel CNBC. Likewise, the pharmaceutical industry has long
been suspected to in�uence doctors�prescription behavior through various �marketing�campaigns.

4Such �rms include Yahoo!, Microsoft, Google, Chevron, General Electric, and General Motors. The
economic value of accurate forecasts may be illustrated with the case of the Dreamliner�s delays which are
expected to cost the Boeing Corporation up to $10 billion.

5See e.g. Woodford (2005), or Blinder et al. (2008) for a review of this literature. Note also that e¤orts
are currently underway at the Federal Reserve Bank of New York to develop better instruments to measure
individuals�in�ation expectations (Bruine de Bruin et al. 2009).

6Wagner (2009) identi�es more than 40 economic experiments using incentivized beliefs elicitation tech-
niques.

2



�elds such as meteorology, business, education, psychology, �nance, and economics.7 Re-
cently, with the rapid development of prediction markets, there has been an upsurge of
interest in PSR. In particular, Market Scoring Rules have been proposed as a way to over-
come the liquidity problems that have a¤ected some prediction markets.8 In short, Market
Scoring Rules may be described as follows. A group of agents is sequentially asked to make
a prediction about a particular event. Each agent is paid for her prediction according to a
PSR, but she also agrees to pay the previous agent for his prediction according to the same
PSR. Because of their attractive properties, Market Scoring Rules have been rapidly adopted
by several �rms operating prediction markets.9

It has long been recognized, however, that PSR can generate biases when agents are
not risk neutral (Winkler and Murphy 1970). The nature of these biases has typically been
analyzed in simple and speci�c contexts. Namely, a particular PSR and a given utility
function are selected, and the agent�s income is generally assumed to depend only on the
PSR payments. This paper contributes to the literature by extending the analysis i) to all
PSR and ii) to richer economic environments. More precisely, we characterize the possible
biases PSR generate in response to three e¤ects.
First, we consider how varying the PSR payments a¤ects reported probabilities. Al-

though experimental economists have long debated how incentives a¤ect choices (Camerer
and Hogarth 1999, Hertwig and Ortmann 2001), to the best of our knowledge, the problem
has not been explicitly addressed for PSR.10

Second, we consider an environment in which the agent has a �nancial stake in the event,
a situation common in practice. For instance, an agent may be asked to make a prediction
about an economic indicator (e.g. the stock market, the in�ation level) or an event (e.g. a
�ood, a favorable jury verdict). Similarly, an agent facing a Market Scoring Rule always has
a stake in the event she predicts, as her payment to the previous predictor depends on the
outcome of the event. Finally, subjects in (e.g.) public good experiments are often asked to
predict the contributions of others.11 In all those cases, independently of the PSR payments,
the agent�s income depends on the outcome of the random variable she is predicting. As we
shall see, such violations of the �no stake�condition (Kadane and Winkler 1988) may induce
further distortions.
Third, we o¤er the agent the possibility of hedging her prediction by taking an additional

action whose payo¤ also depends on the event. For instance, in the previous examples,
the agent predicting an economic indicator might also have to choose how to diversify her
portfolio, while the agent predicting a catastrophic event may also have to decide on her
insurance coverage. Likewise, subjects in public good experiments have to choose their own
contributions.12 As we shall see, because they are not independent, the prediction and the

7See Camerer (1995), O¤erman et al. (2009), or Palfrey and Wang (2009) for references.
8See, e.g., Hanson (2003), Ledyard (2006) or Abramowicz (2007).
9E.g. Inkling Markets, Consensus Point, Yoopick, Crowdcast, and Microsoft Corporation.
10Some have compared �nancially versus non-�nancially incentivized belief elicitation techniques (Beach

and Philips 1967, Rutström and Wilcox 2009). We extend this analysis by considering variations of strictly
positive �nancial incentives.
11See e.g. Croson (2000), Gachter and Renner (2010), or Fischbacher and Gachter (2010).
12Although experimental economists have recently been aware of stakes and hedging opportunities (Palfrey

and Wang 2009, Andersen et al. 2009, Fehr et al. 2010), these issues have typically been ignored (Costa-
Gomez and Weizsacker 2008, Fischbacher and Gachter 2010). Concerns have also been raised that eliciting
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additional action are in general di¤erent from what each decision would be if made separately.
In such cases, we show that hedging creates an additional source of distortions in the reported
probabilities.
Our analysis is divided in three parts. In the theory part, we assume expected utility

and consider the class of all PSR for binary events (Gneiting and Raftery 2007). We �rst
generalize previous results (Winkler and Murphy 1970, O¤erman et al. 2009, Andersen et
al. 2009) by showing that risk averters report more uniform probabilities, i.e. probabilities
skewed toward one half. In contrast to popular belief, we �nd that changing the rewards
of the PSR has an ambiguous impact on reported probabilities. In particular, smaller PSR
payments can either reduce or reinforce the PSR biases depending on whether the utility
function displays increasing or decreasing relative risk aversion. We then show that the
presence of a bonus (i.e. a positive stake) when the event occurs, lowers reported probabilities
under risk aversion. Finally, we show that the possibility of hedging by betting on the event
can severely alter predictions. In particular, we identify a region in our model where the
reported probabilities remain unchanged and are therefore completely independent of the
agent�s subjective probabilities.
In the second part, we report on an experiment aimed at testing whether the biases

induced by PSR are empirically relevant. The basic design is similar to O¤erman et al.
(2009) (OSKW hereafter). Subjects are presented with a list of events describing the possible
outcome of the roll of two 10-sided dice. The probabilities are elicited with a quadratic scoring
rule. In addition to a control treatment, six treatments are conducted by varying i) the PSR
payments (the �High Incentives� and �Hypothetical Incentives� treatments), ii) the stake
in the event (the �Low Stakes�and �High Stakes�treatments), and iii) the returns on the
amount bet on the event (the �Low Hedging�and �High Hedging�treatments). Although
not perfectly consistent in magnitude, the experimental results are generally in line with
the directions of the theoretical predictions made under risk aversion. In particular, we �nd
signi�cantly larger biases when the PSR pays higher amounts, which suggests that subjects
exhibit increasing relative risk aversion. In contrast, the absence of incentives produces less
biased yet noisier elicited probabilities. Consistent with the theory, the presence of a stake
leads subjects to report signi�cantly lower probabilities. Furthermore, we �nd a positive
correlation between the amount bet on an event and the bias in the reported probability for
that event, thereby providing evidence of hedging. Finally, we observe larger biases when
the underlying objective probabilities are compound or complex, which is inconsistent with
expected utility.
In the third part, we discuss some implications of our results for the elicitation of beliefs

with PSR in general economic environments. We conclude that accurate measures of sub-
jective probabilities may be di¢ cult to obtain in the �eld. For lab experiments, we discuss
possible remedial measures which (in theory) guarantee accurate elicitation of subjective
probabilities when subjects have a stake or a hedging opportunity.

beliefs of subjects engaged in a game, even absent any stakes and hedging considerations, may lead them
to think more strategically, therefore a¤ecting their behavior (Croson 2000, Rutström and Wilcox 2009,
Gachter and Renner 2010).
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2. Theory

In this section, we study the properties of the �response function�, that is the function that
gives the optimal reported probabilities of an agent who is rewarded according to a PSR.
The properties derived hold for all PSR, and are therefore not restricted to the quadratic
scoring rule (QSR hereafter) we use in the experiment.

2.1. Preliminary Assumptions

We consider a binary random variable, that is, an event and its complement. We assume
probabilistic sophistication, and thus restrict our attention to the subjective probability of
this event p held by the agent. We assume that p is exogenous: it is �xed and cannot be
a¤ected by the agent (i.e. there is no learning and no moral hazard).13

Let q 2 [0; 1] be the agent�s reported probability. A scoring rule gives the agent a
monetary reward S1(q) if the event occurs and S0(q) if the event does not occur. We assume
that the scoring rule is di¤erentiable and real-valued, except possibly that S1(0) = �1 and
S0(1) = �1.
In this section, we consider a standard expected utility framework. We assume that the

agent�s utility function over income, denoted u(:), is thrice di¤erentiable, strictly increasing,
state-independent, and satis�es the von Neumann Morgenstern axioms. The expected utility
assumption is then relaxed in Appendix B where we study the e¤ect of ambiguity aversion.
We start by assuming that the agent�s income depends only on the scoring rule payments.
We will relax this �no-stake� condition in sections 2.5 and 2.6 where we assume that the
agent�s income may also depend on the outcome of the random variable.

2.2. Proper Scoring Rules

A scoring rule is said to be proper if and only if a risk neutral agent truthfully reveals her
subjective probability.

De�nition 2.1. Proper Scoring Rule. A scoring rule S = (S1(q); S0(q)) is proper if and
only if:

p = arg max
q2[0;1]

pS1(q) + (1� p)S0(q) (2.1)

In the remainder of this section, we will illustrate some of our results using the popular QSR,
de�ned by

S1(q) = 1� (1� q)2 (2.2)

S0(q) = 1� q2

The QSR is represented in Figure 1a. It is straightforward to show that a QSR satis�es
(2.1) and is therefore proper.

13See Osband (1989), Ottaviani and Sorensen (2007) and Wagner (2009) for somewhat related theoretical
results obtained when p is endogenous.
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We now provide a simple characterization of all PSR for binary random variables. This
characterization has been recently proposed in the statistics literature by Gneiting and
Raftery (2007) in the multi-event situation, building on the pioneering work of McCarthy
(1956), Savage (1971), and Schervish (1989).

Proposition 2.1. A scoring rule S is proper if and only if there exists a function g(:) with
g00(q) > 0 for all q 2 [0; 1] such that

S1(q) = g(q) + (1� q)g0(q) (2.3)

S0(q) = g(q)� qg0(q)

The su¢ ciency of Proposition 2.1 is easy to prove.14 Indeed, under (2.3), the agent�s
expected payo¤ equals

�(q) � pS1(q) + (1� p)S0(q) = g(q) + (p� q)g0(q)

which reaches a maximum at q = p since g0 is strictly increasing.
Proposition 2.1 indicates that a PSR can be fully characterized by a single function g(:)

and a simple property on this function, namely, its convexity. In particular, it is easy to show
that g(q) = 0:5(q2 + (1� q)2 + 1) yields the traditional QSR in (2.2).15 Observe also that

S 01(q) = (1� q)g00(q) > 0
S 00(q) = �qg00(q) < 0

Hence, when a scoring rule is proper, the convexity of g(:) implies the intuitive property
that S1(q) must be increasing, and that S0(q) must be decreasing (see Figure 1a). This
implies that S1(q) and S0(q) cross at most once. Note also that PSR are invariant to any
transformation of the form aS + b where a 2 R�+ and b 2 R2. To simplify the presentation,
we often consider in what follows the set of �standard�PSR satisfying

g0(1=2) = 0 (2.4)

so that S1(:) and S0(:) cross at 1/2. Observe that this condition is implicit in the literature, as
it is satis�ed for the most common PSR. In particular, the traditional quadratic, logarithmic
and spherical scoring rules all verify (2.4).16

2.3. Risk Aversion

From now on, we relax the assumption of risk neutrality and allow for risk aversion. Winkler
and Murphy (1970), Kadane and Winkler (1988) and OSKW have examined the response

14The proof of the necessity of this Proposition, as well as the proofs of all the Propositions derived in
this section may be found in Appendix A.
15Likewise, the traditional logarithmic scoring rule S = (log q; log(1 � q)) and spherical scoring rule S =

(q��1; (1 � q)��1)(q� + (1 � q)�)(1��)=� with � > 1, are obtained with respectively g(q) = q log q + (1 �
q) log(1� q) and g(q) = (q� + (1� q)�)1=�.
16These three PSR also verify a stronger symmetry condition whereby g(q) = g (1� q) which implies

S1(q) = S0(1� q).
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function of a risk averse agent facing a QSR. They show that risk aversion leads the agent
to report probabilities skewed toward one half in the case of binary events. This makes
a risk-averter better o¤ since this reduces the di¤erence across terminal payo¤s. We �rst
generalize this result to the class of all standard PSR satisfying (2.3) and (2.4), and then to
the class of all PSR in subsection 2.5.
We de�ne the response function R(p) as follows

R(p) = arg max
q2[0;1]

pu(S1(q)) + (1� p)u(S0(q)) (2.5)

where S is a PSR as de�ned in (2.3). Our objective in the remainder of this section is to
analyze the properties of this response function. In particular, we want to characterize the
response function�s �bias�, jR(p)� pj.
The �rst order condition of the program above can be written as follows

f(p; q) � p(1� q)u0(S1(q))� (1� p)qu0(S0(q)) = 0: (2.6)

It is easy to see that @f(p;q)
@q

< 0, so that the program is concave and R(p) is unique. It is
also easy to check that it is optimal to report 0 when p = 0 and to report 1 when p = 1.
Observe, moreover, that @f(p;q)

@p
> 0; so that the response function R(p) is strictly increasing

in p, as stated in the following Lemma.

Lemma 2.1 For all PSR de�ned by (2.3), R0(p) > 0 together with R(0) = 0 and R(1) = 1.

Next, we show that truthful revelation of subjective probabilities is in general not optimal
under risk aversion. Moreover, we show that the deviation from truth telling is systematic
and depends on p. To see this, observe that f(p; q) in (2.6) evaluated at q = p has the sign
of u0(S1(p))� u0(S0(p)), which captures the marginal bene�t of increasing q at q = p. This
means that under risk aversion the response function R(p) is larger (respectively lower) than
p when S1(p) is lower (respectively larger) than S0(p). In particular, for a standard PSR
de�ned by (2.3) and (2.4), we have S1(p) � S0(p) if and only if p � 1=2. This implies that
the agent reports more uniform probabilities in the following sense: the response function
is higher than p when p < 1=2 and lower than p when p > 1=2, as stated in the following
corollary.17

Corollary 2.1 For all standard PSR de�ned by (2.3) and (2.4), R(p) � p if and only if
p � 1=2.

The response function is therefore �regressive�(i.e., it crosses the diagonal from above),
with a �xed point equal to one half. Figure 1b displays such a regressive response function
for the QSR in (2.2) together with a quadratic utility function u(x) = �(2�x)2 with x � 2.
Note that Corollary 2.1 implies R(1=2) = 1=2, so that the agent truthfully reveals her

subjective probability at p = 1=2. This result is due to the condition in (2.4). However,

17In contrast, risk lovers facing a PSR always report more extreme probabilities. In particular, when an
interior solution exists, it is easy to show that the response function is lower than p when p < 1=2 and higher
than p when p > 1=2.
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if one applies a positive a¢ ne transformation to one of the two PSR payo¤s, S1(1=2) and
S0(1=2) would di¤er, while the scoring rule remains proper. In that case, the result that risk
aversion leads to reporting more uniform probabilities does not hold anymore. This e¤ect is
studied in more details in subsection 2.5.
Finally, we derive a Proposition that generalizes Corollary 2.1. This Proposition states

that more risk averse agents (in the classical sense of Pratt 1964) always report more uniform
probabilities. We denote Ru(p) and Rv(p), the response functions associated with utility
functions u(:) and v(:).

Proposition 2.2. Let v(w) = �(u(w)) with �0 > 0 and �00 � 0. For all standard PSR
de�ned by (2.3) and (2.4),

Rv(p) � Ru(p) if and only if p � 1=2

The intuition is that a more risk averse agent is willing to sacri�ce more in terms of
expected payo¤ to reduce the di¤erence across terminal payo¤s. This can be achieved by
reporting more uniform probabilities, i.e. probabilities closer to one half. An increase in
risk aversion therefore leads the response function to increase before the �xed point, and
to decrease afterwards. The response function thus moves further away from p, which can
naturally be interpreted as an increase in the response function�s bias.

2.4. Incentives

We now study the e¤ect of changing the incentives provided by the PSR. More precisely, we
study the e¤ect of changing a > 0 on the response function

R(p; a) = arg max
q2[0;1]

pu(aS1(q)) + (1� p)u(aS0(q)) (2.7)

We show that this e¤ect depends on the relative risk aversion coe¢ cient (x) = �xu00(x)
u0(x) .

Proposition 2.3. For all standard PSR de�ned by (2.3) and (2.4), and for all a > 0, under
0(x) � (�)0,

@R(p; a)

@a
� (�)0 if and only if p � 1=2.

In other words, when the relative risk aversion with respect to income is increasing (de-
creasing), raising the PSR payments leads the agent to report more (less) uniform probabili-
ties. One can present the intuition as follows. There are two e¤ects when the PSR payments
increase: i) a wealth e¤ect, as the agent gets a higher reward for any given reported proba-
bility, and ii) a risk e¤ect, as the di¤erence between the rewards in the two states becomes
more important. The sign of the derivative of the relative risk aversion (x) ensures that one
e¤ect always dominates the other. In particular, when relative risk aversion is increasing, the
risk e¤ect dominates the wealth e¤ect so that the agent reports more uniform probabilities
to reduce the variability of her payo¤.
An implication of this result is that it may not be possible to mitigate the bias of the

response function by adjusting the incentives of the PSR. In particular, changing the PSR
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payments has no e¤ect on the response function when the utility exhibits constant relative
risk aversion (CRRA) with respect to income.18 Furthermore, a reduction of the PSR pay-
ments may in fact exacerbate the PSR bias as long as the utility function displays decreasing
relative risk aversion (DRRA) with respect to income. Hence, the common belief that paying
agents smaller amounts necessarily induces more truthful reports is misleading in general.19

The result of Proposition 2.3 is illustrated in Figure 1c. The added response function
compared to Figure 1b is calculated for a = 2. Observe that both response functions are
regressive with a �xed point at 1=2. Yet, the increased incentives lead to reporting more
uniform probabilities. This is because the quadratic utility function used for the numerical
example displays increasing relative risk aversion.

2.5. Stakes

Kadane and Winkler (1988) de�ne the presence of a stake as a situation in which, absent any
PSR payments, the agent�s �nal wealth varies depending on whether or not the event occurs.
Consistent with that de�nition, we introduce a stake by assuming that income increases by
an exogenous amount � 2 R when the event occurs. Observe, however, that this is formally
equivalent to adding a constant � to S1(q) in (2.3). As a result, it is immediate that
any PSR remains proper in the presence of a stake. Note also that the PSR de�ned by
(S0(q); S1(q) + �) does not necessarily satisfy condition (2.4). Consequently, the results in
this section generalize the analysis under risk aversion to the class of all PSR.
The response function is de�ned by

R(p;4) = arg max
q2[0;1]

pu(4+ S1(q)) + (1� p)u(S0(q)) (2.8)

in which the added reward 4 is a �nite (positive or negative) �stake�. The �rst order
condition can be written

f(4; q) � p(1� q)u0(4+ S1(q))� (1� p)qu0(S0(q)) = 0 (2.9)

As before, @f(4;q)
@q

< 0 under risk aversion, so that the program is concave. In addition, it is
immediate to see that the properties of Lemma 2.1 are still satis�ed. Finally, observe that
@f(4;q)
@4 < 0 so that the response function is decreasing in 4 under risk aversion, as stated in

18To illustrate, consider a CRRA utility function u(x) = (1 � )�1x1� with  > 0 and a spherical
scoring rule S = (q; (1 � q))(q2 + (1 � q)2)�1=2. This combination yields a closed-form solution R(p; a) =
p1=(1+)(p1=(1+) + (1� p)1=(1+))�1, which is indeed independent from a.
19This is not incompatible with a well-known result in the literature showing that the agent reveals her

beliefs truthfully when a tends toward 0, i.e. lima!0R(p; a) = p (Kadane and Winkler 1988, Ja¤ray and
Karni 1999, Karni 1999). Indeed, these authors consider a utility function of the form u(x) = U(w + x),
where w is the agent�s initial wealth, and with U 0(w) < 1. This implies that 0(0) = �U 00(w)=U 0(w) is
strictly positive under risk aversion. Therefore, the agent necessarily displays increasing relative risk aversion
with respect to income as x tends toward 0. However, the utility function may still be DRRA locally for
some x > 0. An example of such a utility function is u(x) = � exp(1=(w+ x)). Consistent with Proposition
(2.3), a reduction of the income through a could then initially move the response function away from p for
this utility function, but, once a gets su¢ ciently close to 0, R(p; a) would start converging toward p. In
other words, although it is correct that lima!0R(p; a) = p when U 0(w) is de�ned, a reduction in a does not
guarantee more truthful responses.
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the following Lemma.

Lemma 2.2 For all PSR de�ned by (2.3), @R(p;4)
@4 � 0

The intuition for this result is straightforward. Under risk aversion, an increase in 4
reduces the marginal utility when the event occurs. Therefore, to compensate for the di¤er-
ence in marginal utility across states, the agent wants to increase the rewards of the PSR
when the event does not occur. This can be done by reducing the reported probability that
the event occurs. We can now state a Proposition that characterizes the response function
when the agent has a stake.

Proposition 2.4. For all PSR de�ned by (2.3), the response function R(p;4) is character-
ized as follows:
i) if there exists a bp such that 4+ S1(bp) = S0(bp), then we have

R(p;4) � p if and only if p � bp
ii) if 4+ S1(p) � (�)S0(p) for all p, then we have

R(p;4) � (�)p

Proposition 2.4 is illustrated in Figure 1d. Compared to Figure 1b, there are two addi-
tional response functions in Figure 1d, one for 4 = 1=2 and the other (the High Stake) for
4 = 1. Both response functions are regressive, but the �rst has a �xed point at 1=4 and the
second is below the diagonal everywhere. Note also that the presence of a stake does not
necessarily increase the PSR bias. In particular, for any p � 1=4, jR(p)� pj is smaller when
4 = 1=2 than when 4 = 0.

2.6. Hedging

In addition to her prediction, we now assume that the agent can make another decision
whose payo¤ depends on the outcome of the event. This hedging opportunity can create a
stake in the event, and it may therefore be interpreted as an endogenous stake. Suppose the
agent receives an endowment � and can invest an amount � in [0; �] in a risky asset. This
investment returns k if the event occurs, and -1 (i.e., the investment is lost) if the event does
not occur. We assume that k and � are strictly positive and �nite. The problem becomes

max
q2[0;1];�2[0;�]

pu(S1(q) + k�+ �) + (1� p)u(S0(q)� �+ �) (2.10)

The following Proposition presents properties of the response function when this particular
form of hedging is available.
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Proposition 2.5. For all standard PSR de�ned by (2.3) and (2.4), the solutions R(p) and
�(p) to program (2.10) satisfy the following properties:

i) for p � p(k), we have �(p) = 0 and R(p) 2 [0; 1
1+k
] with R0(p) > 0,

ii) for p in [p(k); p(k)], we have �(p) 2 [0; �] with �0(p) > 0 and R(p) = 1
1+k
,

iii) for p � p(k), we have �(p) = � and R(p) 2 [ 1
1+k
; 1] with R0(p) > 0,

together with

p(k) =
u0(S0(

1
1+k
) + �)

ku0(S1(
1
1+k
) + �) + u0(S0(

1
1+k
) + �)

and

p(k) =
u0(S0(

1
1+k
))

ku0(S1(
1
1+k
) + (k + 1)�) + u0(S0(

1
1+k
))

This Proposition tells us that there are two critical threshold values for subjective proba-
bilities that shape the optimal investment rule: when p � p(k), the agent does not invest at
all; and when p � p(k), the agent invests the maximum amount �. According with intuition,
the investment opportunity is not attractive when p is low and becomes more attractive as p
increases. Note that when p is high enough so that the agent invests the maximum amount
�, then the investment opportunity has an e¤ect similar to a stake equal to (k+1)�. In the
intermediate range where p belongs to ]p(k); p(k)[, the agent invests some strictly positive
amount in ]0; �[. Perhaps most interestingly, the agent reports probabilities that are con-
stant in this interval, and are therefore independent from p. The intuition is that the PSR is
used as a transfer scheme across states, while the investment opportunity is used to adjust
risk exposure to changes in p. Note �nally, that when k > 1; we have p(k) < 1=(1 + k), so
that it can be optimal to invest in the risky asset even when its expected return is negative.
This shows that the presence of the PSR can also alter the investment decision. We plot
in Figures 1e and 1f the optimal investment share �(p)=� and the response function under
k = 1 and � = 0:5.

3. Experimental Treatments

The main features of the experimental design are similar to OSKW�s (2009) calibration
experiment without explicit reference to beliefs or probability. The subjects are presented
with a list of 30 events (e.g. �the two dice sum up to 4�), each describing the possible
outcome of the roll of two 10-sided dice. Observe that, as in OSKW, each event has an
objective probability (i.e. it can be calculated using standard probability theory). Unlike
OSKW, however, the events in our experiment are not homogenous and consist of three
di¤erent series of 10 events. A precise description of the events and series is postponed to
subsection 3.5.
For each of the 30 events, a subject is asked to make a choice consisting of selecting 1

out of 149 possible options called �choice numbers�. To each choice number correspond two
payments generated with a QSR. As further explained below, the �rst is the payment to the
subject when the event occurs, while the second is the payment to the subject when the event
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does not occur. A subject�s set of possible choice numbers, as well as their corresponding
payments, was presented in the form of a �Choice Table�(see Appendix C).20 Observe that
the Choice Table is ordered such that, as the choice number increases, the payment when the
event occurs increases, while the payment when the event does not occur decreases. Note
also that the choice number 75 guarantees the same payment to a subject regardless of the
roll of the dice.

3.1. The Control Treatment

The subjects�payments in the control treatment (T0) are generated with a QSR of the form
S1(q) = a � [1� (1� q)2] and S0(q) = a � [1� q2], where a = 4; 000FCFA in our experiment.21
Each entry in the choice table, and in particular the link between choices and payments,
was explained in details and illustrated through several examples (see Appendix C). After
reading the instructions, the subjects�understanding of the table was submitted to a test,
which was then solved by the experimenter. The subjects were then presented with the list
of 30 events, one series at a time. No time limit was imposed, and the subjects could modify
any of their previous choices at any time.
Once all subjects had completed their task, the experimenter randomly selected one

of the 30 events and rolled the two dice once to determine whether this event occurred
or not. All subjects in a session was then paid according to their choice number for the
event randomly drawn. For instance, if a subject selects the choice number 30 for the event
randomly selected, she receives either 1,440 FCFA if the event obtains or 3,840 FCFA if the
event does not obtain (see Appendix C). This amount constitutes the entirety of a subject�s
payments, as no show-up fee was provided in the control treatment.
Based on the theoretical analysis conducted in the previous section, we can frame the

experimental hypotheses for each treatment in terms of the properties of the response func-
tion R(p). In particular, assuming subjects in our experiment are risk averse, we can use
Corollary 2.1 to formulate our �rst hypothesis.

H0: The response function in T0 is i) regressive (i.e. it crosses the diagonal from above)
and ii) has a �xed point at 1=2.

3.2. The �High Incentives�and �Hypothetical Incentives�Treatments

Two treatments were conducted to study the e¤ect of incentives. As indicated in Table 1,
where the di¤erences between treatments are summarized, the �High Incentives�treatment
(T1) is identical to the control treatment except that every payment in the choice table is
now multiplied by 10. For instance, if a subject chose row 30, she received either 14,400
FCFA (instead of 1,440 FCFA in T0) if the event obtains or 38,400 FCFA (instead of 3,840
FCFA in T0) if the event does not obtain. The �Hypothetical Incentives� treatment (T2)
is identical to the �High Incentives�treatment except that payments are now hypothetical.

20How best to present PSR to subjects remains an open question. Tables, although not ideal, have been
often adopted in part because they are simple to implement (see e.g. McKelvey and Page 1990, Sonnemans
and O¤erman 2004, Rutström and Wilcox 2009, Blanco et al. 2009).
21The Franc CFA is the currency used in Burkina Faso where the experiment was conducted (see Section

3.6 for details). The conversion rate at the time was roughly $1 for 455 FCFA.
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More speci�cally, subjects in T2 were asked to make their choices as if they would be paid
the amounts in the choice table. Yet, they knew they would receive only a �at fee of 3,000
FCFA for completing the task, regardless of their choices.
Proposition 2.3 shows that higher incentives a¤ect the response function only when rela-

tive risk aversion is non-constant. To derive a hypothesis, we follow most of the experimental
economics literature (including recent papers on scoring rules such as OSKW or Andersen
et al. 2009) and assume constant relative risk aversion with respect to income.

H1: The response function in T1 is identical to the response function in T0.

Since subjects�choices are not incentivized in T2, no theoretical prediction can be derived.
However, Holt and Laury (2002) suggest that treatments with high hypothetical payments
and treatment with low real payo¤s yield similar results. This leads to our next hypothesis.

H2: The response function in T2 is identical to the response function in T0.

3.3. The �Low Stake�and �High Stake�Treatments

Two treatments were conducted to study the e¤ect of stakes. These treatments are identical
to the control treatment except that subjects receive a bonus when the event occurs. The
bonus is 2,000 FCFA in the �Low Stake�treatment (T3) and 8,000 FCFA in the �High Stake�
treatment (T4).
Lemma 2.2 demonstrates that adding a positive stake when the event occurs lowers the

response function. Therefore, the response functions in T3 and T4 are predicted to be less
elevated everywhere than the response function in T0. Moreover, Proposition 2.4 identi�es
two special cases, one in which the response function is regressive with an interior �xed point
and one in which the response function is below the diagonal everywhere (and therefore has
no interior �xed point). It is easy to show, given the size of the stakes and the speci�c QSR
we used, that T3 corresponds to the �rst case with a �xed point at 1=4, while T4 corresponds
to the second case. This leads to the following hypotheses.

H3: The response function in T3 i) is lower than in T0 and ii) has a �xed point at 1=4.

H4: The response function in T4 i) is lower than in T3 and ii) is lower than p.

3.4. The �Low Hedging�and �High Hedging�Treatments

Two treatments were conducted to study the e¤ect of hedging. These treatments are identical
to the control treatment except that subjects are asked to make an additional decision for
each event. Namely, subjects were given 2; 000 FCFA and o¤ered the opportunity to bet a
share of this endowment. If the event does not occur, the bet is lost. If the event occurs, the
bet multiplied by 2 (respectively, 4) is paid to the subjects in the �Low Hedging�treatment
T5 (respectively, the �High Hedging�treatment T6). Finally, in both states of the world, the
subjects retain the part of the 2; 000 FCFA they did not bet. In other words, in addition to
selecting a choice number, subjects in the hedging treatments are asked to make a simple
portfolio decision with two assets, a riskless and a risky asset.
Proposition 2.5 shows that, with the possibility for hedging, the response function is

regressive, yet constant when the share of the endowment invested is in ]0,1[. Proposition
2.5 also shows that a subject invests all her endowment when p is high enough. In this case,
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the hedging opportunity operates as a stake of 4; 000 FCFA (respectively, 8; 000 FCFA) in
treatment T5 (respectively, treatment T6), and the response functions are reduced accordingly
compared to T0. Observe �nally that T5 corresponds to the case k = 1 and T6 to the case
k = 3 in section 2.6. It is then easy to show that the �xed points in T5 and T6 are respectively
1=2 and 1=4. This leads to the following hypotheses:

H5: The response function in T5 is i) regressive with a �xed point at 1=2, ii) equal to 1=2
when the share invested is in ]0,1[, and iii) lower than in T0 when p is close to 1.

H6: The response function in T6 is i) regressive with a �xed point at 1=4, ii) equal to 1=4
when the share invested is in ]0,1[, and iii) lower than in T5 when p is close to 1.

3.5. Comparison of the Three Series

As mentioned previously, the 30 events presented to a subject had been split into 3 series of
10 events. In each series, the 10 events describe the possible outcome resulting from the roll
of two 10-sided dice (one black, the other red). To better compare a subject�s choices across
series, the 10 events in each series have the same objective probabilities 3%; 5%; 15%; 25%;
35%; 45%; 61%; 70%; 80%; and 90%. The events in Series 1 are similar to those in OSKW�s
calibration exercise. Namely, we told subjects that the red die determines the �rst digit and
the black die determines the second digit of a number between 1 and 100. For instance, we
described the event with an objective probability of 25% as �the number drawn is between 1
(included) and 25 (included)�. A complete description of the events and the order in which
they were presented to subjects may be found in Appendix C.
In Series 2, we consider events whose probabilities, although still objective, are arguably

more di¢ cult to calculate than those in Series 1. Namely, we told subjects that the two dice
would be added to form a number between 0 and 18. For instance, we described the event
with 25% probability as �the sum obtained is between 2 (included) and 6 (included)�.
The object of Series 3 is to test how subjects respond when faced with (objective) com-

pound probabilities. To do so, we asked subjects to select a single choice number not for
one but for two possible events. The subjects were told that the experimenter would throw
a fair coin to determine which of the two possible events would be taken into consideration
for payments. The events used in Series 3 are similar to those in Series 1, i.e. the roll of
the red and black dice produces a number between 1 and 100 and the events give a possible
range for that number. For instance, we described the event with a probability of 25% as
�If the coin falls on the Heads side, then the event is : "the number drawn is between 82
(included) and 89 (included)" ; otherwise, if the coin falls on the Tails side, then the event
is : "the number drawn is between 25 (included) and 66 (included)"�.
Since the objective probabilities are the same in each series, the response functions should

not di¤er across the three series if subjects behave in a way consistent with expected utility
based on von Neumann Morgenstern axioms.22 Nevertheless, experimental evidence suggests
that subjects�responses may be a¤ected by the complexity in calculating objective probabil-
ities. In particular Halevy (2007) �nds that most subjects in his experiments do not reduce

22This statement remains true if one assumes that subjects are only able to identify the objective proba-
bility P0 with some noise in Series 2 or 3. Indeed, if a subject�s subjective belief may be written P = P0 + "
with E["] = 0, then the response function is still characterized by (2.5) under expected utility.
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compound probabilities. From a theoretical perspective, there are di¤erent ways to relax the
standard reduction axiom. We opted for a simple model recently introduced by Klibano¤,
Marinacci and Mukerji (2005) (KMM hereafter), in which ambiguity aversion may induce
violations of the reduction axiom under objective probabilities.23

Under this model, we show in Proposition B.1 (see Appendix B) that, in the context
of our experiment, ambiguity aversion reinforces the e¤ect of risk aversion. As a result,
the response functions obtained with Series 2 and 3 may be more biased than the response
function obtained with Series 1, as shown in Proposition 2.2. To derive a hypothesis, however,
we consider the standard expected utility approach.

H7: The response functions obtained in Series 1, 2, and 3 are identical.

3.6. Implementation of the Experiment

The experiment took place in Ouagadougou, Burkina Faso, in June 2009.24 The choice of
location was motivated by two factors. First, we wanted to take advantage of a favorable
exchange rate i) to create salient �nancial di¤erences between treatments (e.g. between the
reference and the �Hypothetical Incentives� treatments), and ii) to provide subjects with
substantial incentives so that risk aversion had a fair chance to play a role.25 Second, one
of the authors had conducted several experiments in Ouagadougou over the past three years
(see e.g. Armantier and Boly 2009, 2010). Building on our experience, we followed a well
established protocol to hire subjects and rent a lab to conduct the experiment.
More speci�cally, we used a local recruiting �rm (Opty-RH) to place �iers around Oua-

gadougou stating that we were looking for subjects for a paid economic experiment. The
subjects had to be at least 18 years old and be current or former university students. People
interested had to come to the recruiting �rm location with a proof of identi�cation and either
a valid university diploma or a proof of university enrollment. After their credentials were
validated, subjects were randomly assigned to a session and told when and where to show-up
for the experiment.
The sessions were conducted in a centrally located high school we had already rented in

the past to conduct other experiments. Upon arrival, the subjects were gathered in a large
room. The instructions were read aloud, followed by questions and a comprehension test.
The subjects were then presented with the 30 events and asked to make their choices using
pen and paper. Finally, the subjects �lled out a short survey, after which the experimenter
made the random draws and the subjects were paid in cash. Two sessions were conducted
for each treatment, with each session taking on average 90 minutes to complete.

23See the discussion in KMM (2005: 1863-64). We realize that the term �ambiguity aversion� is not
appropriate to characterize the behavior of an agent facing objective probabilities. We only use this term
in the paper for simplicity. Note, however, that Halevy (2007) �nds a tight association between ambiguity
aversion and the failure to reduce compound objective lotteries. Finally, our choice of KMM preferences is
partially motivated by their ability to distinguish ambiguity aversion from risk aversion, a property that we
will use in the proof in Appendix B.
24Burkina Faso is a Francophone country in West Africa with over 13 million inhabitants, among which

around 1:4 million live in the capital city Ouagadougou.
25The maximum payment of 40; 000 FCFA in the �High Incentives�treatment slightly exceeds the monthly

average entry salary for a university graduate.
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As indicated in Table 2, a total of 301 subjects participated in the experiment, with a
minimum of 41 subjects per treatment. The subjects were composed mostly of men (74%)
and students currently enrolled at the university (68%), ranging in age between 19 and 38
(with a median age of 25). In the post-experiment survey, slightly more than half the subjects
reported having taken a probability or a statistics class at the university. Finally, most of
the subjects (86%) reported not having participated in a similar economic or psychology
experiment. Excluding the �Hypothetical Incentives�treatment (where earnings were �xed
at 3; 000 FCFA), the average earnings of a subject were 8; 861 FCFA. As indicated in Table
2, however, earnings varied greatly across subjects and treatments (the smallest amount paid
was 100 FCFA and the maximum was 40; 000 FCFA).

4. Experimental Results

4.1. The Control Treatment (T0)

Figure 2 shows the subjects�average responses to the events in the three series for each of
the 7 treatments conducted. According with hypothesis H0, the three response functions
in the control treatment are regressive. Moreover, they exhibit the traditional inverse S-
shape with a �xed point around 1=2. This observation is consistent with the literature, as
similar shapes have been previously identi�ed when eliciting beliefs (Huck and Weizsaker
2002, Sonnemans and O¤erman 2004, Hurley and Shogren 2005, OSKW). Figure 2 also
reveals that the three series can be ordered with respect to their respective biases. Indeed,
it appears that Series 1 (the simple probabilities) yields the smallest biases for virtually all
objective probabilities (i.e. Series 1�s response function is consistently the closest to the
diagonal), while Series 2 (the complex probabilities) generates the largest biases. This result
appears to contradict hypothesis H7 which states that under expected utility there should
be no systematic di¤erences across the three series.
To test our hypotheses more formally, we compare statistically the subjects�choices across

series and treatments with a parametric model of the form:

bPit = ' (Pt) + �i + uit (4.1)

where bPit is the reported probability corresponding to the choice number Nit selected by
subject i for event t = 1; :::; 30 (i.e. bPit = 2=3 � Nit), Pt is the objective probability of
occurrence of event t, �i is a zero-mean normally distributed individual speci�c error term,
uit follows a normal distribution truncated such that bPit 2 [0; 1], and ' (:) is a continuous
function satisfying ' (0) = 0, ' (1) = 1 and '0 (:) > 0. Consistent with previous literature,
we consider a function that may exhibit an inverse S-shape:

' (Pt) = exp
�
[lnPt]

b � [ln(a)]1�b
�

(4.2)

where a 2]0; 1] and b > 0.
Observe that under the reparametrization

n
b = �; a = exp

�
��

1
1��

�o
, (4.2) is in fact the

probability weighting function w (Pt) = exp (�� [� lnPt]�) proposed in a di¤erent context
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by Prelec (1998). The speci�cation in (4.2) was preferred to Prelec�s because the parameters
are easier to interpret with our experimental data. Indeed, observe that ' (a) = a and
'0 (a) = b. In other words, a captures where the function ' crosses the diagonal, while b
captures the slope of ' at this �xed point.26 Finally, we control for treatment and series
e¤ects by modeling the parameters in (4.2) as follows:

a = a0 + a1 � (S2 + S3) + a2 � S3 + a3 � T0 + a4 � T0 � (S2 + S3) + a5 � T0 � S3

where T0 is a dummy variable equal to 1 when the observation was collected in the control
treatment, while S2 and S3 are dummy variables equal to 1 when the event belongs respec-
tively to Series 2 and Series 3. The parameter b is modeled in an analog fashion. To estimate
the model with the data collected only in the control treatment, the parameters a3 to a5, as
well as b3 to b5, are all set equal to zero. The parameters, estimated by Maximum Simulated
Likelihood, are reported in Table 4.
First, observe that in the control treatment a0 is not signi�cantly di¤erent from 1=2,

while b0 is signi�cantly smaller than 1. This therefore con�rms that the subjects�response
function for the events in Series 1 exhibits an inverse S-shape and crosses the diagonal near
1=2. Note also that a1 and a2 are not signi�cant in the control treatment. In other words,
the response functions��xed points do not appear to vary signi�cantly for the three series
in the control treatment. In contrast, b1 is signi�cantly smaller than 0, while b2 is positive
and signi�cant. This result con�rms that the curvature of the inverse S-Shape is the most
pronounced for the events in Series 2 and the least pronounced for the events in Series 1.
Observe also in Table 4 that the sign and signi�cance of (a1; a2), as well as (b1; b2), are
generally consistent across treatments. This therefore implies that the ranking of the three
series in terms of the biases they generate is generally preserved regardless of treatment.27

To gain a di¤erent perspective on the data, we calculate four statistics in Table 3. The
�rst is the average number of �extreme predictions�, that is, the average number of times
a subject selects a choice number below 10 (which corresponds to a reported probability
below 6:66%) or above 140 (which corresponds to a reported probability above 93:33%).
We also calculate two measures of the errors made by subjects when ranking the objective
probabilities. The �rst one (Error 1) consists of the average number of times a subject
incorrectly ranks two consecutive choice numbers with respect to their objective probabilities
(e.g. the choice number selected by a subject for the objective probability 5% is higher than
the choice number he selected for the objective probability 15%). The second measure
captures the number of reported probabilities on the incorrect side of 1=2. More speci�cally,
�Error 2�consists of the average number of times a subject selects a choice number above
(below) 75 for an objective probability below (above) 50%. Finally, the choice numbers a
subject selects for a given objective probability are ordered across the three series from least

26More generally, a captures the �elevation� of ' (:) and b captures its �curvature� (Gonzalez and Wu,
1999). Indeed, assuming b < 1 so that '(:) is inverse S-shaped, then when a increases '(:) increases, while
when b increases '(:) increases if and only if p > a.
27Similar conclusions can be reached nonparametrically using Friedman tests for each objective probability

and series. Table 6 shows that in most treatments Series 1 (Series 2) generally has the lowest (highest) ranking
of reported probabilities for objective probabilities below 50%, and the lowest (highest) ranking of reported
probabilities for objective probabilities above 50%.
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to most biased. We can see in Table 3 that these four criteria paint a consistent picture:
Series 1 (respectively, Series 2) has the most (least) extreme predictions, the fewest (most)
errors, and the best (worst) ranking in terms of bias. These results therefore provide further
support against the hypothesis that subjects respond similarly to the events in the three
series.
To summarize, we �nd statistical evidence that the response functions in the control

treatment exhibit the traditional inverse S-shape with a �xed point around 1=2. This result is
consistent with subjects being risk averse expected utility maximizers, and therefore supports
hypothesis H0. Moreover, we �nd that the responses to the events in Series 1 (Series 2) are
statistically the most (least) biased. This result cannot be explained under expected utility,
and therefore it contradicts hypothesis H7. Instead, the systematic di¤erences between
the three series could be explained by a form of ambiguity aversion under the additional
assumption that Series 1 (the simple probabilities), Series 3 (the compound probabilities)
and Series 2 (the complex probabilities) are perceived as ambiguous, and ranked in increasing
order of ambiguity. This assumption could perhaps �nd support in the fact that, although
all objective, these three types of probabilities (simple, compound, and complex) require
di¤erent levels of computational sophistication to calculate. In a recent paper, Halevy (2007)
concludes that attitudes toward ambiguity and compound objective lotteries are tightly
associated. Our experimental results support Halevy�s conclusion, but also extend it by
suggesting that complex objective probabilities may also be perceived �as if�ambiguous.28

4.2. The Incentives Treatments (T1 and T2)

Figure 2 indicates that the response functions for the three series in the �High Incentives�
treatment are �atter than in the control treatment, although they still cut the diagonal
around 1=2. This observation is con�rmed statistically in Table 4. Indeed, a3 to a5 are not
signi�cantly di¤erent from 0 in T1, thereby suggesting that the �xed points of the di¤er-
ent response functions cannot be distinguished statistically across the two treatments. In
contrast, we �nd the parameter b3 to be positive and signi�cant in T1. This con�rms that,
compared to the control treatment, the response functions are generally �atter in the �High
Incentive� treatment. Similar conclusions are reached nonparametrically by using Mann-
Whitney tests for each objective probability and each series. Indeed, Table 5 shows that for
most series and objective probabilities (except some objective probabilities around 1=2) the
distributions of responses in T1 are closer to the diagonal than in T0. Note also that the
the signs and magnitudes of b4 and b5 in Table 4 suggest that subjects�choices are more
homogenous across the three series in T1. This observation �nds additional support in the
criteria reported in Table 3. Indeed, responses to the events in Series 2 (Series 1) remain the
most (least) biased and the most (least) prone to errors, but the di¤erences across series are
not as severe as in T0.

28Our experiment also points out a potential problem with OSKW approach to correct for risk aversion
when eliciting beliefs with a PSR: for the same agent, di¤erent correction functions could emerge in their
calibration exercise depending on the type of objective probabilities considered. An argument could be
made for using the �simplest�objective probabilities possible (such as those in Series 1), but our experience
suggests that simplicity is a relative concept: while obvious for anyone with basic knowledge of probability,
the events in Series 1 seemed challenging for some of our subjects.
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To sum up, responses in T1 are signi�cantly di¤erent from those in T0, which refutes
hypothesis H1 derived under the assumption of constant relative risk aversion. Instead, as
explained in Section 2:4, choices in T1 are consistent with subjects exhibiting increasing
relative risk aversion. In a recent paper, Andersen et al. (2009) also conclude that their
subjects�behavior in a similar belief elicitation experiment may be best described under
increasing relative risk aversion. It is also interesting to note that our results imply that
paying more does not necessarily yield �better� answers. Instead, we �nd that, because
of our subjects� speci�c form of relative risk aversion, using a PSR that provides higher
incentives generates more biases.
As for the �Hypothetical Incentives� treatment T2, Figure 2 reveals that subjects� re-

sponses, although still exhibiting the inverse S-shape, are on average closer to the diagonal
than in the control treatment. This observation is con�rmed statistically in Table 4 as b3
is found to be negative and signi�cant in T2. Note also that �u, the standard deviation of
the error term uit in (4.1), is signi�cantly larger for T2 than for T0. In addition, observe in
Table 3 that the number of extreme predictions and errors (of both forms) is systematically
greater in T2 than in T0. In other words, it appears that, although not as biased, subjects�
responses are noisier in the �Hypothetical Incentives�treatment. These results therefore do
not support hypothesis H2. Instead, we �nd that, when eliciting beliefs with a QSR, subjects
behave di¤erently when provided with real or hypothetical incentives. Our conclusions are
only partially consistent with the literature. Like Gachter and Renner (2010), we �nd that
�nancial incentives reduce the noise in the beliefs elicited. In contrast with our experiment,
however, Sonnemans and O¤erman (2004) �nd no di¤erence between rewarding predictors
with a QSR or with a �at fee.

4.3. The Treatments with Stakes (T3 and T4)

For the smallest objective probabilities, no obvious di¤erence is visible in Figure 2 between
the response functions in the control treatment and those in the low and high stakes treat-
ments. In contrast, Figure 2 clearly shows that, compared to T0, responses for the highest
objective probabilities are lower in T3 and lowest in T4. These observations are con�rmed
by the nonparametric tests in Table 5. There, we can see that the samples of responses for
each of the three series are stochastically lower in T0 for most objective probabilities above
25%. In addition, the comparison of the low and high stakes treatments in Table 5 indicates
that in general there exists a signi�cant di¤erence between the two treatments, whereby the
probabilities stated by subjects are generally lower in T4 than in T3. The parametric estima-
tions in Table 4 con�rm these results. Indeed, a3 and b3 are positive and signi�cant for both
treatments T3 and T4 but signi�cantly larger for treatment T4. This implies that, compared
to T0, the response functions become lower and �atter in the �Low Stake� treatment and
that the magnitude of this e¤ect is stronger in the �High Stake�treatment. In other words,
part i) of predictions H3 and H4 (i.e. the response functions are less elevated in T3 and T4)
is veri�ed. Behavior in the experiment, however, is not fully consistent with our predictions.
Indeed, observe in Table 4 that the parameter a3 is signi�cantly di¤erent from 1=4 in T3,
and from 0 in T4, thereby contradicting part ii) of H3 and H4.
To sum up, we �nd that when they have a stake in the event, subjects in our experiment

tend to smooth their payo¤s across the two states, especially when the event is likely to
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occur. This treatment e¤ect is only partially in agreement with the theory: the direction is
correct, but the magnitude is insu¢ cient.

4.4. The Treatments with Hedging (T5 and T6)

The response functions for the two hedging treatments plotted in Figure 2 reveal several
di¤erences from those in the control treatment. First, for the highest objective probabilities,
the response functions become lower in T5 and lowest in T6. Second, although the �xed point
of the response function is also around 1=2 in T5, it is slightly above 40% in T6. Third, the
response functions appear slightly �atter (but not perfectly �at) around the diagonal in both
hedging treatments. Most of these observations are con�rmed statistically by the parametric
and nonparametric tests in Tables 4 and 5. In particular, observe in Table 4 that the estimate
of a3 is insigni�cant in T5, while it is positive and signi�cant in T6. The former is consistent
with part i) of hypothesis H5, as we cannot exclude that, as in the control treatment, the
response functions in the �Low Hedging�treatment cut the diagonal at 1=2. In the �High
Hedging�treatment, however, the parameter a0 is found to be signi�cantly greater than 1=4,
which contradicts part i) of hypothesis H6. Observe also that b3 is signi�cant and positive in
both T5 and T6, thereby indicating �atter responses around the diagonal in the two hedging
treatments compared to T0. The nonparametric tests in Table 5 also con�rm that, compared
to T0, responses for most objective probabilities above 60% are statistically lower in T5, and
lowest in T6. This result therefore supports part iii) of hypotheses H5 and H6.
Turning now to the subjects�betting behavior in the two hedging treatments, we can see

in Figure 2 that subjects in the �High Hedging� treatment invest more in the risky asset
for any objective probability than in the �Low Hedging� treatment. This observation is
con�rmed statistically by the nonparametric tests reported in the last column of Table 5.
The subjects�betting behavior, however, is not fully consistent with the theory. In particular,
we can see in Figure 2 that, on average, subjects invest strictly positive amounts even for low
probabilities, while they do not invest all of their endowments even for high probabilities.
To summarize, although not fully consistent with the theory, subjects in our experiment

appear to take partial advantage of their hedging opportunities. In particular, we �nd that
subjects tend to bet high on the most likely events, while simultaneously making lower
predictions than in the control treatment. In other words, it seems that subjects are willing
to take some risk on the bet, while using the scoring rule as an insurance in case the event
does not occur.

5. Discussion and Conclusion

Introduced in the 1950s by statisticians, Proper Scoring Rules (PSR) have arguably become
the most popular incentivized belief elicitation mechanism. In the simplest environment, a
well known result is that, under the most common PSR, risk averters are better o¤ mis-
reporting their beliefs by stating more uniform probabilities (i.e. closer to one half in the
case of a binary event). Combining theory and experiment, we �nd that this result does
not generalize to richer environments of particular interest to economists. Instead, we have
shown that higher incentives, stakes, and hedging may lead to severe distortions in reported
probabilities.
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We believe our results have implications for the elicitation of subjective probabilities with
PSR in general �eld settings. Indeed, as argued in the introduction, eliciting beliefs in the
�eld typically involves some form of a stake or the possibility to hedge one�s prediction.
In particular, agents who participate in Prediction Markets based on PSR (the so called
Market Scoring Rule) always have a stake in the event they predict. In addition, as in our
experiment, the stakes in �eld environments are likely to be far larger than the prediction�s
reward. For instance, most prediction payments are likely to pale in comparison with the
stakes the agent may have in the stock market, a natural catastrophe, or the future of her
industry. Our results therefore suggest that in general �eld settings stakes and hedging are
likely to distort substantially the beliefs reported with a PSR.
Moreover, the stakes and hedging opportunities an agent may have in the �eld are typi-

cally unobserved by the analyst. In such cases, theory cannot be used to predict and correct
the distortions generated by PSR. Suppose, nevertheless, that an agent has no stake in the
event she is predicting. Then, two additional issues arise. First, one may be concerned that
the beliefs elicited are not informative since the agent had no incentives ex-ante to acquire
information about the event. Second, one cannot rule out the possibility that the agent will
look for hedging opportunities ex-post. The presence of such opportunities may lead the
agent to bias her reported beliefs even though she has no stake when making her prediction.
In other words, (unobserved) stakes and hedging may lead to unpredictable distortions in
reported beliefs, thereby rendering PSR ine¤ective in recovering subjective probabilities in
general �eld environments.
Our results may also be relevant for traditional lab experiments. Indeed, as argued in

the introduction, belief elicitation in many lab experiments involve a stake or a hedging
opportunity. This may therefore explain why i) some subjects fail to best-respond to their
stated beliefs (e.g. Costa-Gomez and Weizsaker 2008), and ii) observers make di¤erent
predictions about the play of a game than the subjects actually playing the game (e.g.
Palfrey and Wang 2009). Observe, however, that our subjects were paid more than in
most lab experiments.29 Consequently, our results may not generalize to traditional lab
settings where risk aversion may play a lesser role. Nevertheless, there is evidence that stakes
and hedging can play a role in lab experiments. Indeed, consistent with our experimental
outcomes, Blanco et al. (2010) �nd that, when faced with transparent and strong hedging
opportunities, many subjects in their lab experiment distort both their beliefs and their
actions. In contrast with the �eld, however, the analyst has more control in the lab and
possible remedial measures may be devised to recover subjective beliefs when using a PSR.
We now discuss the e¤ectiveness of some of these remedial measures in the presence of stakes
and hedging.
The method most frequently implemented in the lab to mitigate the e¤ect of risk aver-

sion on elicited beliefs consists in using a PSR that pays smaller amounts (e.g. Nyarko and
Schotter 2002, Rutström and Wilcox 2009). This approach, however, is at odds with one
of the basic principle of experimental economics whereby thoughtful decisions by subjects
should be incentivized with salient monetary rewards. More importantly, there is no guaran-
tee that this approach produces more truthful reports. In fact, we have shown theoretically

29A notable exception is Andersen et al. (2009) whose subjects were paid up to $100 for a similar belief
elicitation task.
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that smaller PSR payments can actually exacerbate the PSR biases if the agent exhibits
decreasing relative risk aversion.
Recently, OSKW and Andersen et al. (2009) have independently proposed a di¤erent

approach to correct PSR biases in simple environments (i.e. without stakes or hedging).
Following (e.g.) Kadane and Winkler (1988), these �truth serums�are built on the premise
that if an agent�s primitives (e.g. utility, wealth) are known, then her optimal reported
probability can be calculated for any subjective probability. This function could then be
inverted to recover the agent�s unobserved beliefs from her stated probabilities. In OSKW,
relevant information is �rst collected in a calibration exercise to estimate this correction
function. This approach, however, tends to make belief elicitation with a PSR (an already
intrusive method) even more cumbersome. It is also unclear how this approach can be
generalized to economic environments with stakes and hedging.
Another well known remedial measure is to induce risk neutrality by paying agents in

lottery tickets that give them a chance to win a prize (Roth and Malouf 1979, Allen 1987,
Schlag and van der Weele 2009). In theory, it is easy to show that this approach is e¤ective
under expected utility in eliciting truthful beliefs as long as all payments (including the
stakes and hedging revenues) are made in lottery tickets. In practice, however, doubts have
been expressed about the ability of this approach to control for risk attitude (Davis and Holt
1993, Selten, Sadrieh and Abbink 1999). In addition, if the stake or hedging opportunity
arises from a task involving a risky choice (e.g. an investment or insurance decision), then
the analyst may not necessarily want to induce risk neutrality for that task.
A related approach when eliciting beliefs while playing a game consists in using random

draws to make the prediction and the game decision independent. For instance, Blanco et
al. (2010) propose to pay subjects randomly either their game or their prediction payo¤s.
Likewise, a subject in Armantier and Treich (2009) is randomly matched with two di¤erent
partners. The subject plays the game against the �rst partner, and her prediction is scored
against the play of the second partner. Observe, however, that, although promising, the
practical e¤ectiveness of these methods remains mostly unproven.
To conclude, note that the adverse e¤ects of stakes and hedging are not speci�c to PSR. It

is easy to show that other incentivized belief elicitation techniques, although they may o¤er
some protection against risk aversion in the simplest environments, are not immune to stakes
and hedging. This is the case, for instance, for the standard lottery mechanism (Kadane and
Winkler 1988) and for the direct revelation mechanism recently proposed by Karni (2009).
In fact, we are not aware of any incentivized belief elicitation method that would directly
address these issues.30 In this context, one may want to consider the merits of eliciting beliefs
without o¤ering any �nancial reward for accuracy. Although not incentive compatible, this
approach is simple, transparent, and commonly used in statistics, psychology, and �eld
surveys. In his review of the survey literature in economics, Manski (2004) concludes that
the beliefs elicited in such a way are informative. Our results support this view and suggest
that hypothetical payo¤s may be preferred if one is willing to trade noise for unbiasedness.

30Importantly, Karni and Safra (1995) show that unbiased belief elicitation based on marginal rates of
substitution is impossible when stakes are not observed by the experimenter. This impossibility result holds
even if the utility function is observable and even if several experiments can be implemented.
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Figure 1a: Quadratic scoring rule 
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Figure 1b: Risk-aversion – response function 
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Figure 1c: Incentives – response functions 
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Figure 1d: Stakes – response functions 
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Figure 1e: Hedging – share invested (bet) 
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Figure 1f: Hedging – response function 

Simulations were done with Mathematica. 
Figure 1a represents a quadratic scoring rule (QSR): S1(q)=1-(1-q)2 and S0(q)=1-q2.  
Figures 1b, 1c and 1d represent the response functions under a QSR and a quadratic utility function: u(x)=-(2-x)2 
with x≤2. Figure 1c represents the response functions for respective incentives a=1(plain curve) and a=2 
(dashed curve). Figure 1d represents the response function for respective stakes D=0 (plain curve), D=½ (dashed 
curve) and D=1 (dashed curve, below the diagonal).  
Figures 1e and 1f represent respectively the optimal share invested (amount bet divided by maximal possible 
amount to bet) and the response function under a QSR, a quadratic utility function, a double-or-nothing 
investment opportunity (k=1) and a maximal possible amount to bet equal to 0.5. 
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Table 1 : Financial Differences between Treatments (in FCFA) 
 T0 

 

Control 

T1 
High 

Incentives 

T2 
Hypothetical 

Incentives 

T3 
Low 

Stakes 

T4 
High 

Stakes 

T5 
Low 

Hedging 

T6 
High 

Hedging 
Show-up-fee 0 0 3,000 0 0 0 0 

Maximum Scoring Rule Payment 4,000 40,000 0 4,000 4,000 4,000 4,000 
Stakes 0 0 0 2,000 8,000 0 0 

Maximum Return on Investment 0 0 0 0 0 4,000 8,000 
 

Table 2 : Characteristics of the Subject Pool 
 T0 

 

Control 

T1 
High 

Incentives

T2 
Hypothetical 

Incentives 

T3 
Low 

Stakes 

T4 
High 

Stakes 

T5 
Low 

Hedging

T6 
High 

Hedging
Number of Subjects 43 43 48 41 44 41 41 

Age 
24.581 
(2.373) 

25.119 
(2.350) 

24.208 
(2.042) 

24.350 
(2.315) 

25.605 
(2.977) 

24.850 
(3.286) 

25.475 
(2.792) 

% of Female 27.9% 23.8% 25.0% 29.3% 23.3% 25.0% 29.3% 
% Currently Enrolled at the University 67.2% 64.5% 71.6% 70.5% 60.8% 68.0% 61.5% 

%  with University Course in Probability 60.0% 52.8% 54.2% 61.0% 57.5% 50.0% 53.7% 
% with Previous Participation in Experiment  14.6% 15.0% 16.7% 9.8% 20.9% 15.4% 12.2% 

Subjects’ average Earnings 
3,055.2 

(1,565.5) 
28,341.8 
(8,121.7) 

3,000 
(__) 

5,277.3 
(1,173.2) 

7,864.9 
(4,189.5) 

4,992.8 
(1,226.3) 

6,155.8 
(1,583.9) 

 

Table 3 : Features of Subjects’ Responses 
  

Series 
T0 

 

Control 

T1 
High 

Incentives 

T2 
Hypothetical 
 Incentives 

T3 
Low 

Stakes 

T4 
High 

Stakes 

T5 
Low 

Hedging 

T6 
High 

Hedging 
 

 
Extreme 

Prediction1 

 

S1 
1.070 

(0.985) 
0.023 

(0.152) 
2.116 

(1.531) 
1.148 

(1.236) 
0.977 

(1.000) 
1.122 

(1.166) 
1.244 

(1.985) 
 

S2 
0.558 

(0.796) 
0.093 

(0.366) 
1.465 

(1.120) 
0.415 

(0.774) 
0.864 

(1.268) 
0.439 

(0.808) 
0.780 

(2.019) 
 

S3 
0.721 

(0.959) 
0.070 

(0.258) 
1.488 

(1.470) 
0.902 

(0.944) 
0.932 

(1.208) 
0.683 

(1.059) 
1.000 

(1.987) 
 
 

Error 12 

 

S1 
1.093 

(0.947) 
0.953 

(1.045) 
1.698 

(1.301) 
1.049 

(0.973) 
0.955 

(0.861) 
1.171 

(1.093) 
1.049 

(0.973) 
 

S2 
1.744 

(1.157) 
1.465 

(1.437) 
2.349 

(1.066) 
1.683 

(0.934) 
1.727 

(1.169) 
1.878 

(1.364) 
1.439 

(1.285) 
 

S3 
1.395 

(1.158) 
1.209 

(1.186) 
2,372 

(1.047) 
1.537 

(1.247) 
1.409 

(1.085) 
1.488 

(0.952) 
1.293 

(1.123) 
 
 

Error 23 

 

S1 
0.419 

(0.626) 
0.372 

(0.655) 
0.605 

(0.760) 
0.634 

(0.733) 
0.932 

(1.087) 
0.537 

(0.636) 
0.878 

(1.345) 
 

S2 
0.767 

(0.947) 
0.674 

(0.919) 
1.163 

(0.998) 
0.878 

(0.872) 
1.523 

(1.191) 
0.683 

(0.960) 
1.220 

(1.475) 
 

S3 
0.674 

(0.680) 
0.372 

(0.725) 
1.163 

(0.924) 
0.805 

(0.782) 
1.227 

(1.309) 
0.390 

(0.737) 
1.073 

(1.403) 
 

 
Series 

Ranking4 

 

S1 
1.515 

(0.669) 
1.828 

(0.629) 
1.795 

(0.721) 
1.732 

(0.254) 
1.748 

(0.694) 
1.793 

(0.251) 
1.741 

(0.263) 
 

S2 
2.398 

(0.724) 
2.112 

(0.712) 
2.091 

(0.792) 
2.318 

(0.250) 
2.255 

(0.731) 
2.220 

(0.242) 
2.310 

(0.241) 
 

S3 
2.087 

(0.708) 
2.060 

(0.676) 
2.114 

(0.783) 
1.950 

(0.292) 
1.998 

(0.717) 
1.988 

(0.257) 
1.949 

(0.228) 
In each cell, the first number is the average per subject, while the number in parenthesis is the standard deviation. 
1 For each subject and each Series, “Extreme Prediction” captures the number of time his choice number is below 10 or above 140.  
2 For each subject and each Series, “Error 1” captures the number of time his choice numbers are incorrectly ordered (e.g. In Series 1, the choice number 
associated with the 5% probability event is greater than the choice number associated with the 15% probability event). 
3 For each subject and each Series, “Error 2” captures the number of time a choice number above 75 is selected for an event with probability below 50%, 
plus the number of time a choice number below 75 is selected for an event with probability above 50%.  
4 For each subject and each of the 10 objective probabilities, the three series are ranked from least to most biased. “Series Ranking” therefore equals to 1, 2 
or 3, depending on that ranking.  

 



 

 

 

 

 

 

Table 4 : Estimation of the Response Function 
 T0 

 

Control 

T1 
High 

Incentives 

T2 
Hypothetical 

Incentives 

T3 
Low 

Stakes 

T4 
High 

Stakes 

T5 
Low 

Hedging 

T6 
High 

Hedging 

 
0.480*** 
(0.024) 

0.501*** 
(0.006) 

0.499*** 
(0.156) 

0.425*** 
(0.016) 

0.393*** 
(0.032) 

0.493*** 
(0.012) 

0.402*** 
(0.029) 

 
 

0.026 
(0.021) 

0.004 
(0.005) 

-0.018 
(0.016) 

0.019 
(0.013) 

0.006 
(0.014) 

-0.024 
(0.016) 

0.013 
(0.013) 

 
 

0.004 
(0.011) 

-0.002 
(0.006) 

-0.020 
(0.043) 

2.851E-4 
(0.014) 

-0.007 
(0.012) 

0.009 
(0.013) 

-0.010 
(0.008) 

 
 

__ 
-0.034 
(0.023) 

-0.038 
(0.059) 

0.048** 
(0.023) 

0.109*** 
(0.040) 

-0.031 
(0.029) 

0.101*** 
(0.035) 

 
·  

__ 
0.020 

(0.020) 
0.047 

(0.048) 
0.005 

(0.024) 
0.003 

(0.031) 
0.052* 
(0.028) 

-0.009 
(0.023) 

 
·  

__ 
0.008 

(0.013) 
0.024 

(0.045) 
0.004 

(0.017) 
0.015 

(0.016) 
-0.005 
(0.017) 

0.025* 
(0.014) 

 
0.736*** 
(0.054) 

0.289*** 
(0.033) 

0.901*** 
(0.060) 

0.622*** 
(0.037) 

0.518*** 
(0.038) 

0.543*** 
(0.057) 

0.499*** 
(0.040) 

 
 

-0.242*** 
(0.029) 

-0.053*** 
(0.015) 

-0.195*** 
(0.043) 

-0.189*** 
(0.025) 

-0.119*** 
(0.024) 

-0.210*** 
(0.032) 

-0.157*** 
(0.017) 

 
 

0.067*** 
(0.021) 

0.009 
(0.013) 

0.015 
(0.035) 

0.129*** 
(0.024) 

0.056** 
(0.026) 

0.086*** 
(0.024) 

0.072*** 
(0.013) 

 
 

__ 
0.434*** 
(0.061) 

-0.147** 
(0.068) 

0.107** 
(0.051) 

0.222*** 
(0.071) 

0.207** 
(0.083) 

0.197*** 
(0.062) 

 
·  

__ 
-0.179*** 
(0.032) 

-0.058 
(0.055) 

-0.048 
(0.039) 

-0.103** 
(0.042) 

-0.042 
(0.046) 

-0.049 
(0.031) 

 
·  

__ 
0.055 

(0.034) 
0.052 

(0.042) 
-0.063 
(0.042) 

0.012 
(0.036) 

-0.017 
(0.035) 

-0.010 
(0.024) 

 0.020*** 
(0.004) 

0.024*** 
(0.003) 

0.029*** 
(0.003) 

0.026*** 
(0.005) 

0.093*** 
(0.017) 

0.025*** 
(0.003) 

0.114*** 
(0.015) 

 
0.107*** 
(0.006) 

0.097*** 
(0.003) 

0.133*** 
(0.004) 

0.101*** 
(0.003) 

0.106*** 
(0.004) 

0.117*** 
(0.004) 

0.103*** 
(0.004) 

ln  -2602.37 -5362.18 -5532.78 -5165.09 -5220.24 -4832.89 -4937.02 
In each cell, the first number corresponds to the point estimate, while the number in parenthesis is the estimated standard deviation of 
the parameter. ***, **, and * respectively indicate parameters significant at the 1%, 5% and 10% levels. 

 

 

 

 

 



Table 5 : Non-Parametric Comparison of Treatments 
Objective  

Probability 

 

Series 
 

T0 vs. T1 
 

T0 vs. T2 
 

T0 vs. T3 
 

T0 vs. T4 
 

T3 vs. T4 
 

T0 vs. T5 
 

T0 vs. T6 T5 vs. T6 
Prediction Bet 

 
3% 

 

S1 2.60E+02 1.20E+03 8.29E+02 9.48E+02 9.60E+02 7.02E+02 8.78E+02 1.02E+03 5.92E+02 
8.64E-09 1.74E-01 6.37E-01 9.90E-01 6.08E-01 1.07E-01 9.71E-01 9.10E-02 1.60E-02 

 

S2 3.98E+02 1.37E+03 9.65E+02 1.07E+03 9.33E+02 5.98E+02 1.01E+03 1.19E+03 5.00E+02 
5.19E-06 7.00E-03 4.55E-01 2.90E-01 7.88E-01 1.10E-02 2.40E-01 1.00E-03 1.00E-03 

 

S3 3.50E+02 1.22E+03 9.88E+02 1.08E+03 9.42E+02 7.90E+02 1.05E+03 1.06E+03 5.63E+02 
6.55E-07 1.37E-01 3.42E-01 2.39E-01 7.28E-01 4.09E-01 1.23E-01 3.90E-02 6.00E-03 

 
5% 

 

S1 2.23E+02 1.26E+03 8.97E+02 8.49E+02 7.97E+02 7.18E+02 8.38E+02 9.55E+02 5.05E+02 
1.30E-09 7.10E-02 8.93E-01 4.09E-01 3.52E-01 1.43E-01 6.93E-01 2.87E-01 1.00E-03 

 

S2 3.83E+02 1.28E+03 8.22E+02 1.13E+03 1.13E+03 7.15E+02 9.12E+02 1.04E+03 4.41E+02 
2.70E-06 4.50E-02 5.94E-01 1.26E-01 4.80E-02 1.34E-01 7.85E-01 6.50E-02 6.44E-05 

 

S3 3.60E+02 1.35E+03 1.16E+03 1.19E+03 8.56E+02 7.78E+02 1.07E+03 1.08E+03 3.96E+02 
1.04E-06 1.10E-02 1.20E-02 4.10E-02 6.82E-01 3.54E-01 9.20E-02 2.40E-02 1.89E-05 

 
15% 

 

S1 2.29E+02 1.14E+03 6.91E+02 7.38E+02 8.98E+02 5.36E+02 9.34E+02 1.17E+03 3.37E+02 
1.73E-09 3.75E-01 8.80E-02 7.70E-02 9.72E-01 2.00E-03 6.41E-01 2.00E-03 1.96E-06 

 

S2 3.31E+02 1.36E+03 7.65E+02 1.09E+03 1.15E+03 6.38E+02 9.68E+02 1.13E+03 3.38E+02 
2.71E-07 9.00E-03 2.95E-01 2.26E-01 3.20E-02 2.90E-02 4.38E-01 7.00E-03 1.80E-06 

 

S3 3.77E+02 1.16E+03 8.09E+02 1.06E+03 1.07E+03 5.22E+02 8.79E+02 1.15E+03 2.94E+02 
2.04E-06 2.92E-01 5.13E-01 3.46E-01 1.35E-01 1.00E-03 9.79E-01 4.00E-03 1.89E-07 

 
25% 

 

S1 3.54E+02 1.33E+03 8.77E+02 1.14E+03 1.09E+03 7.44E+02 9.06E+02 9.76E+02 2.58E+02 
7.59E-07 1.80E-02 9.68E-01 9.90E-02 9.50E-02 2.18E-01 8.26E-01 2.09E-01 4.34E-08 

 

S2 4.84E+02 1.52E+03 1.11E+03 1.25E+03 9.83E+02 8.65E+02 9.60E+02 9.39E+02 2.84E+02 
1.24E-04 9.87E-05 4.50E-02 1.00E-02 4.76E-01 8.82E-01 4.84E-01 3.60E-01 1.29E-07 

 

S3 4.48E+02 1.35E+03 1.10E+03 1.20E+03 9.16E+02 9.51E+02 1.22E+03 1.08E+03 2.51E+02 
3.36E-05 1.10E-02 4.80E-02 3.00E-02 9.02E-01 5.32E-01 3.00E-03 2.90E-02 1.83E-08 

 
35% 

 

S1 3.54E+02 9.24E+02 7.29E+02 9.38E+02 1.02E+03 3.99E+02 8.02E+02 1.22E+03 2.25E+02 
7.02E-07 3.88E-01 1.72E-01 9.42E-01 2.88E-01 1.46E-05 4.76E-01 3.98E-04 5.29E-09 

 

S2 7.46E+02 1.16E+03 1.10E+03 1.36E+03 1.09E+03 7.73E+02 1.04E+03 1.08E+03 2.14E+02 
1.13E-01 3.13E-01 4.50E-02 3.70E-04 9.80E-02 3.18E-01 1.42E-01 2.10E-02 3.14E-09 

 

S3 4.95E+02 1.16E+03 9.35E+02 1.25E+03 1.16E+03 7.11E+02 9.29E+02 1.01E+03 1.47E+02 
1.36E-04 3.13E-01 6.34E-01 1.00E-02 2.40E-02 1.22E-01 6.73E-01 1.22E-01 5.35E-11 

 
45% 

 

S1 7.81E+02 1.03E+03 9.90E+02 1.25E+03 1.09E+03 8.59E+02 1.11E+03 1.08E+03 1.63E+02 
1.95E-01 9.90E-01 3.26E-01 1.00E-02 8.70E-02 8.34E-01 4.20E-02 2.50E-02 1.21E-10 

 

S2 9.98E+02 1.11E+03 1.12E+03 1.24E+03 9.73E+02 1.00E+03 1.17E+03 1.02E+03 1.46E+02 
5.08E-01 5.37E-01 2.80E-02 1.10E-02 5.28E-01 2.47E-01 7.00E-03 7.00E-02 3.90E-11 

 

S3 1.12E+03 1.21E+03 1.07E+03 1.41E+03 1.16E+03 1.02E+03 1.38E+03 1.22E+03 2.40E+02 
7.50E-02 1.61E-01 8.40E-02 7.18E-05 2.30E-02 2.05E-01 5.68E-06 2.48E-04 1.01E-08 

 
61% 

 

S1 1.28E+03 9.79E+02 1.18E+03 1.33E+03 1.03E+03 1.11E+03 1.14E+03 8.86E+02 1.43E+02 
2.00E-03 6.73E-01 7.00E-03 1.00E-03 2.43E-01 3.80E-02 2.10E-02 6.69E-01 1.48E-11 

 

S2 1.27E+03 1.13E+03 1.08E+03 1.44E+03 1.16E+03 1.29E+03 1.35E+03 1.05E+03 1.42E+02 
3.00E-03 4.31E-01 7.80E-02 2.63E-05 2.10E-02 2.52E-04 1.91E-05 4.50E-02 2.68E-11 

 

S3 1.11E+03 1.08E+03 8.59E+02 1.22E+03 1.18E+03 9.82E+02 1.16E+03 1.02E+03 1.59E+02 
1.04E-01 7.04E-01 8.40E-01 2.00E-02 1.40E-02 3.51E-01 1.30E-02 8.20E-02 7.82E-11 

 
70% 

 

S1 1.48E+03 1.11E+03 1.23E+03 1.38E+03 9.51E+02 1.07E+03 1.29E+03 1.05E+03 2.51E+02 
1.60E-06 5.21E-01 2.00E-03 2.45E-04 6.69E-01 9.10E-02 2.71E-04 4.50E-02 6.00E-09 

 

S2 1.23E+03 7.81E+02 1.10E+03 1.45E+03 1.20E+03 1.10E+03 1.22E+03 9.78E+02 1.63E+02 
7.00E-03 4.50E-02 4.80E-02 1.47E-05 9.00E-03 4.50E-02 3.00E-03 1.98E-01 8.45E-11 

 

S3 1.32E+03 1.08E+03 9.48E+02 1.25E+03 1.14E+03 1.07E+03 1.27E+03 1.05E+03 2.65E+02 
1.00E-03 7.26E-01 5.51E-01 9.00E-03 4.00E-02 9.70E-02 1.00E-03 4.60E-02 1.65E-08 

 
80% 

 

S1 1.36E+03 7.57E+02 9.89E+02 1.38E+03 1.22E+03 9.35E+02 1.24E+03 1.10E+03 3.30E+02 
1.62E-04 2.90E-02 3.38E-01 2.57E-04 5.00E-03 6.34E-01 1.00E-03 1.40E-02 8.78E-08 

 

S2 1.07E+03 6.33E+02 1.10E+03 1.16E+03 9.05E+02 1.07E+03 1.09E+03 8.73E+02 2.16E+02 
2.19E-01 1.00E-03 4.60E-02 7.50E-02 9.79E-01 9.50E-02 5.90E-02 7.65E-01 1.91E-09 

 

S3 1.31E+03 8.81E+02 9.66E+02 1.38E+03 1.25E+03 9.92E+02 1.18E+03 1.03E+03 2.35E+02 
1.00E-03 2.28E-01 4.51E-01 2.34E-04 2.00E-03 3.21E-01 7.00E-03 8.40E-02 1.91E-09 

 
90% 

 

S1 1.50E+03 8.06E+02 1.17E+03 1.53E+03 1.24E+03 1.10E+03 1.27E+03 9.82E+02 3.15E+02 
5.68E-07 7.10E-02 9.00E-03 6.37E-07 3.00E-03 5.20E-02 4.60E-04 1.88E-01 2.66E-08 

 

S2 1.42E+03 9.48E+02 1.12E+03 1.51E+03 1.24E+03 1.18E+03 1.39E+03 1.05E+03 2.55E+02 
1.92E-05 5.04E-01 3.50E-02 1.87E-06 3.00E-03 7.00E-03 5.68E-06 4.70E-02 5.56E-09 

 

S3 1.43E+03 8.10E+02 1.20E+03 1.50E+03 1.24E+03 1.24E+03 1.36E+03 9.47E+02 3.26E+02 
1.45E-05 7.70E-02 5.00E-03 2.69E-06 3.00E-03 1.00E-03 1.67E-05 3.20E-01 9.87E-08 

In each cell, the first number is the Mann-Whitney U Test Statistic, while the second number is the p-value.                                                            
A cell shaded in dark (light) gray indicates a difference between the two treatments significant at the 5% (10% level).



Table 6 : Non-Parametric Comparison of Series 
Objective  

Probability 

 

 Series T0 T1 T2 T3 T4 
T5  T6  

Prediction Bet Prediction Bet 

3% 

Rank 
Sum 

S1 53.5 76 78.5 68.5 77.5 67.5 88.5 71.5 82.5 
S2 108 92.5 102.5 100 103.5 104 75.5 97.5 83 
S3 96.5 89.5 107 77.5 83 74.5 82 77 80.5 

Friedman Statistic 40.256 5.024 11.313 14.327 10.652 23.638 5.93 11.827 0.230 
p-value 1.81E-9 0.081 0.003 0.001 0.005 7.36E-6 0.052 0.003 0.892 

5% 

Rank 
Sum 

S1 58 76.5 78.5 65 79 68.5 86 67 84.5 
S2 103 90 108.5 111 101 95 75 100.5 76 
S3 97 91.5 101 70 84 82.5 85 78.5 85.5 

Friedman Statistic 28.429 4.299 11.538 32.253 7.189 11.071 4.625 16.797 2.627 
p-value 6.71E-7 0.117 0.003 9.92E-5 0.027 0.004 0.099 2.25E-4 0.269 

15% 

Rank 
Sum 

S1 60 78.5 82 65 88 67.5 90.5 65 84 
S2 102.5 90 104 103 93 86.5 76.5 96 75 
S3 95.5 89.5 102 78 83 92 79 85 87 

Friedman Statistic 25.024 2.793 6.265 19.128 1.307 10.836 6.559 16.197 4.727 
p-value 3.68E-6 0.247 0.044 7.02E-5 0.520 0.004 0.038 3.04E-4 0.094 

25% 

Rank 
Sum 

S1 67 74.5 89 76 75 78.5 92 74.5 96.5 
S2 97.5 89.5 91 91 92 92 76.5 98 69.5 
S3 93.5 94 108 79 97 75.5 77.5 73.5 80 

Friedman Statistic 13.485 7.068 4.589 3.294 6.734 4.828 7.167 12.607 17.435 
p-value 0.001 0.029 0.101 0.193 0.034 0.089 0.028 0.002 1.64E-4 

35% 

Rank 
Sum 

S1 59 79.5 88.5 73.5 84.5 80 90.5 72.5 90 
S2 112.5 89 106.5 88.5 97.5 89.5 80.5 92 69.5 
S3 86.5 89.5 93 84 82 76.5 75 81.5 86.5 

Friedman Statistic 35.565 2.209 3.795 3.058 3.693 2.919 6.024 5.953 12.998 
p-value 1.89E-8 0.331 0.150 0.217 0.158 0.232 0.049 0.051 0.002 

45% 

Rank 
Sum 

S1 69.5 86.5 93.5 80.5 81.5 76.5 88 80.5 88.5 
S2 95 91 97.5 82 96.5 85.5 72.5 88.5 77.5 
S3 93.5 80.5 97 83.5 86 84 82.5 77 80 

Friedman Statistic 10.920 2.056 0.22 0.123 3.038 1.706 5.957 2.482 3.800 
p-value 0.004 0.358 0.896 0.940 0.219 0.426 0.051 0.289 0.150 

61% 

Rank 
Sum 

S1 102 92 106 87.5 96.5 86 94 98 89 
S2 77.5 81.5 95 74.5 81.5 72.5 69 70 73.5 
S3 78.5 84.5 87 84 86 87.5 83 78 83.5 

Friedman Statistic 9.859 1.814 3.978 2.277 3.203 4.707 13.362 14.726 8.157 
p-value 0.007 0.404 0.137 0.320 0.202 0.095 0.001 0.001 0.014 

70% 

Rank 
Sum 

S1 109 95 105 86 108.5 97 91.5 94 88.5 
S2 65.5 77 96 63.5 63 65.5 67 72 73.5 
S3 83.5 86 87 96.5 92.5 83.5 87.5 80 84 

Friedman Statistic 23.448 5.184 3.447 14.392 27.856 16.65 14.702 8.198 11.023 
p-value 8.10E-6 0.075 0.178 0.001 8.93E-7 2.42E-4 0.001 0.017 0.004 

80% 

Rank 
Sum 

S1 109.5 89.5 110 96.5 98.5 93.5 98.5 92 88 
S2 59.5 86 92.5 61 88.5 68 66 71.5 73.5 
S3 89 82.5 85.5 88.5 77 84.5 81.5 82.5 84.5 

Friedman Statistic 32.191 0.778 6.777 17.337 6.431 11.34 19.757 7.322 13.086 
p-value 1.02E-7 0.678 0.034 1.72E-4 0.040 0.003 5.13E-5 0.026 0.001 

90% 

Rank 
Sum 

S1 105 95 103 96 101 98 86.5 103 85.5 
S2 69.5 77 83 71.5 75.5 73.5 73 64.5 78.5 
S3 83.5 86 102 78.5 87.5 74.5 86.5 78.5 82 

Friedman Statistic 15.988 5.184 5.676 8.327 8.857 12.924 6.000 28.13 6.125 
p-value 1.74E-3 0.075 0.059 0.016 0.012 0.002 0.050 7.79E-7 0.047 

Friedman tests are conducted to compare a subject’s individual responses across Series. Under the null hypothesis, the distributions of a subject’s responses are the 
same across series. Cells shaded in dark (light) gray indicate that the subject’s responses are significantly different across Series at the 5% (10% level). 

 

 



Appendix A: Demonstration of the Propositions in Section 2

Proposition 2.1 A scoring rule S is proper if and only if there exists a function g(:) with
g00(q) > 0 for all q 2 [0; 1] such that

S1(q) = g(q) + (1� q)g0(q)
S0(q) = g(q)� qg0(q)

Proof: We proved the su¢ ciency in the text. We now prove the necessity. De�ne

g(p) � max
q
pS1(q) + (1� p)S0(q) = pS1(p) + (1� p)S0(p) (6.1)

by the de�nition of a proper scoring rule. By the envelope theorem, we have g0(p) =
S1(p) � S0(p). Replacing S1(p) by g0(p) + S0(p) and S0(p) by S1(p) � g0(p) in (6.1) di-
rectly gives the result.�

Proposition 2.2 Let v(w) = �(u(w)) with �0 > 0 and �00 � 0. For all standard PSR
de�ned by (2.3) and (2.4),

Rv(p) � Ru(p) if and only if p � 1=2

Proof: The function Ru(p) � Ru is de�ned by the �rst order condition:

p(1�Ru)u0(S1(Ru))� (1� p)Ruu0(S0(Ru)) = 0 (6.2)

We want to examine the sign of the similar �rst order condition for v(:) evaluated at Rv(p) =
Ru:

L(p) � p(1�Ru)v0(S1(Ru))� (1� p)Ruv0(S0(Ru))
= p(1�Ru)u0(S1(Ru))�0(u(S1(Ru)))� (1� p)Ruu0(S0(Ru))�0(u(S0(Ru)))
= (1� p)Ruu0(S0(Ru))[�0(u(S1(Ru)))� �0(u(S0(Ru)))]

where the second inequality uses v(w) = �(u(w)) and the last inequality uses (6.2). Observe
that L(p) has the sign of the term in brackets, and thus of [S0(Ru)))� S1(Ru))] since �0 is
decreasing. Consequently, L(p) is positive if and only if Ru � 1=2. By the properties of Ru
exhibited in Corollary 2.1, this holds true if and only if p � 1=2.�

Proposition 2.3 For all standard PSR de�ned by (2.3) and (2.4), and for all a > 0, under
0(x) � (�)0,

@R(p; a)

@a
� (�)0 if and only if p � 1=2.

Proof: The response function R(p; a) � R is de�ned by the �rst order condition

M(a) � p(1�R)au0(aS1(R))� (1� p)Rau0(aS0(R))) = 0 (6.3)

Since the objective function is concave, the sign of @R(p;a)
@a

is the same as that of M 0(a). We
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obtain

M 0(a) = p(1�R)aS1(R)u00(aS1(R))� (1� p)RaS0(R)u00(aS0(R))

= p(1�R)u0(aS1(R))
aS1(R)u

00(aS1(R))

u0(aS1(R))
�

(1� p)Ru0(aS0(R))
aS0(R)u

00(aS0(R))

u0(aS0(R))

= p(1�R)u0(aS1(R))[(aS0(R))� (aS1(R))]

where the last equality uses (6.3) and the de�nition of (x). Notice that M 0(a) has the sign
of the term in brackets. Using the properties of S0 and S1 in (2.3) and (2.4), and those of R,
we conclude that, under (x) increasing (respectively decreasing), M 0(a) is positive if and
only if p is lower (respectively larger) than 1=2. �

Proposition 2.4 For all PSR de�ned by (2.3), the response function R(p;4) is characterized
as follows:
i) if there exists a bp such that 4+ S1(bp) = S0(bp), then we have

R(p;4) � p if and only if p � bp
ii) if 4+ S1(p) � (�)S0(p) for all p, then we have

R(p;4) � (�)p

Proof: The response function R(p; a) � R is characterized by the following �rst order
condition

g(4; R) � p(1�R)u0(4+ S1(R))� (1� p)Ru0(S0(R)) = 0
We compute the marginal bene�t of increasing R at p :

g(4; p) = p(1� p)[u0(4+ S1(p))� u0(S0(p))]

which is positive if and only if

N(p) � 4+ S1(p)� S0(p) � 0

We thus have R � p if and only if N(p) � 0. Since, by our assumptions on the PSR, N(p)
is strictly increasing, there is at most one bp satisfying N(bp) = 0. Therefore either bp exists
and we are in case i), or bp does not exist and we are in case ii). It is then direct to conclude
the proof for each case i) and ii).�

Proposition 2.5 For all standard PSR de�ned by (2.3) and (2.4), the solutions R(p) and
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�(p) to program (2.10) satisfy the following properties:

i) for p � p(k), we have �(p) = 0 and R(p) 2 [0; 1
1+k
] with R0(p) > 0,

ii) for p in [p(k); p(k)], we have �(p) 2 [0; �] with �0(p) > 0 and R(p) = 1
1+k
,

iii) for p � p(k), we have �(p) = � and R(p) 2 [ 1
1+k
; 1] with R0(p) > 0,

together with

p(k) =
u0(S0(

1
1+k
) + �)

ku0(S1(
1
1+k
) + �) + u0(S0(

1
1+k
) + �)

and

p(k) =
u0(S0(

1
1+k
))

ku0(S1(
1
1+k
) + (k + 1)�) + u0(S0(

1
1+k
))

Proof : The conditions which characterize the interior solutions (��, q�) of the program
(2.10) are

pku0(S1(q
�) + k�� + �)� (1� p)u0(S0(q�)� �� + �) = 0 (6.4)

p(1� q�)u0(S1(q�) + k�� + �)� (1� p)q�u0(S0(q�)� �� + �) = 0 (6.5)

which imply q� = 1
1+k
.

Therefore the condition (6.4) writes

pku0(S1(
1

1 + k
) + k�� + �)� (1� p)u0(S0(

1

1 + k
)� �� + �) = 0 (6.6)

Di¤erentiating with respect to p and rearranging yields

@��

@p
= �

ku0(S1(
1
1+k
) + k�� + �) + u0(S0(

1
1+k
)� �� + �)

pk2u00(S1(
1
1+k
) + k�� + �) + (1� p)u00(S0( 1

1+k
)� �� + �)

> 0

Therefore �� can only increase in p; moreover, the condition (6.4) cannot be satis�ed at
p = 0 or at p = 1. Indeed it is strictly negative at p = 0 and strictly positive at p = 1.
Consequently, �(p) is �rst equal to zero, then equal to �� > 0 and strictly increasing in p, and
�nally constant and equal to �. There are thus two critical values of subjective probability
denoted p(k) and p(k) with 0 < p(k) < p(k) < 1 such that the optimal � is equal to zero for
p � p(k) and is equal to � for p � p(k). Moreover, the response function R(p) = 1

1+k
when

p is in [p(k); p(k)].
We now study more speci�cally the response function when p � p(k). Since �� = 0,

the response function R(p) is equal to the reported probability without hedging e¤ects, as
characterized by q solving

p(1� q)u0(S1(q) + �)� (1� p)qu0(S0(q) + �) = 0
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The threshold probability p(k) is de�ned by the p solving

pku0(S1(
1

1 + k
) + �)� (1� p)u0(S0(

1

1 + k
) + �) = 0

We thus have

p(k) =
u0(S0(

1
1+k
) + �)

ku0(S1(
1
1+k
) + �) + u0(S0(

1
1+k
) + �)

as stated in the Proposition. Moreover, the properties of the standard PSR (2.3) and (2.4)
imply p(k) < 1

1+k
if and only if k > 1. Notice also that an increase in k decreases p(k).

Finally, it is easy to check that R(p(k)) = 1
1+k
.

We �nally study the response function when p � p(k). Since �� = �, the optimal
reported probability q is de�ned by

p(1� q)u0(S1(q) + (k + 1)�)� (1� p)qu0(S0(q)) = 0

The threshold probability p(k) is de�ned by the p solving

pku0(S1(
1

1 + k
) + (k + 1)�)� (1� p)u0(S0(

1

1 + k
)) = 0;

that is by

p(k) =
u0(S0(

1
1+k
))

ku0(S1(
1
1+k
) + (k + 1)�) + u0(S0(

1
1+k
))

as stated in the Proposition.�
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Appendix B: The E¤ect of Ambiguity Aversion

We consider the theory of ambiguity introduced by KMM (2005). We assume that the
agent�s subjective probabilities are represented by a random variable ep, to which the possible
realizations belong to [0; 1]. Consistent with KMM preferences, an ambiguity averse agent
facing a PSR solves

max
q
(E�(epu(S1(q)) + (1� ep)u(S0(q))))

in which � is assumed to be continuously di¤erentiable, strictly increasing, and concave.
Under KMM preferences, the concavity of � corresponds to ambiguity aversion. The �rst
order condition is

K(q) � Ef(ep(1� q)u0(S1(q))� (1� ep)qu(S0(q)))�0(epu(S1(q)) + (1� ep)u(S0(q)))g = 0 (6.7)
It can be easily checked that the second order condition is satis�ed under u and � concave.
Our objective is to compare the response function of an ambiguity averse agent to that of

an ambiguity neutral agent. Under � linear, the agent is ambiguity neutral and essentially
behaves as an expected utility maximizer, reporting q� de�ned by

E(ep(1� q�)u0(S1(q�))� (1� ep)q�u(S0(q�))) = 0
Observe that this last condition is equivalent to (2.6) with p = Eep. We are done if we can
compute the sign of K(q�), which expresses the marginal bene�t under ambiguity aversion
of increasing q at the optimal reported probability q� under ambiguity neutrality. Denoting
as before f(p; q) � p(1� q)u0(S1(q))� (1� p)qu0(S0(q)) and using the previous equality, we
have

K(q�) = Covep[f(ep; q�); �0(epu(S1(q�)) + (1� ep)u(S0(q�)))]
We now use the following Lemma stating the well-known covariance rule (e.g., Kimball 1951).

Lemma B.1 If X(p) is increasing in p; then Covep(X(ep); Y (ep)) � 0 if and only if Y (p) is
decreasing in p.

Observe that f(p; q) is increasing in p. Moreover, observe that the derivative of �0(pu(S1(q�))+
(1 � p)u(S0(q�))) with respect to p has the sign of S0(q�) � S1(q�) under �00 < 0. Conse-
quently, under (2.3) and (2.4) K(q�) is positive if and only if q� is lower than 1=2. We then
use Corollary 2.1 that characterizes q� to obtain the next Proposition. In this Proposition,
we denote Ra(ep) the optimal reported probability under ambiguity aversion (� concave) and
R(ep) the optimal reported probability under expected utility (� linear) with a subjective
probability Eep.
Proposition B.1 For all standard PSR de�ned by (2.3) and (2.4), Ra(ep) � R(ep) if and
only if Eep � 1=2.
Essentially, this result indicates that ambiguity aversion leads to reporting more uni-

form probabilities compared to ambiguity neutrality (i.e., expected utility). In other words,
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ambiguity aversion reinforces the bias induced by risk aversion. It is also possible to show
that ambiguity aversion reinforces the e¤ect of risk aversion when there is a stake. That is,
ambiguity aversion leads to increasing the response function before the �xed point and to
decreasing the response function after the �xed point.
A particular case is u(x) = x. In that case, the agent is ambiguity averse but risk neutral.

This implies q� = Eep: when the agent is both ambiguity neutral and risk neutral, she always
reports the mean of her subjective beliefs Eep by the de�nition of a PSR. Proposition B.1
then reduces to the following Corollary.

Corollary B.1 For all standard PSR de�ned by (2.3) and (2.4), Ra(ep) � Eep if and only if
Eep � 1=2.
This Corollary, similar to Corollary 2.1, thus further suggests that the e¤ect of ambiguity

aversion is similar to that of risk aversion.
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Appendix C                Identification Code :______ 

 

INSTRUCTIONS  
(translated from French) 

 

You are about to take part in an experiment aimed at better understanding decisions made under uncertainty. In the 

experiment you will earn an amount of money. This amount of money will be paid to you at the end of the experiment, 

outside the lab, in private, and in cash. The amount of money you will earn may be larger if : 
 

1. You read the instructions below carefully. 

2. You follow these instructions precisely. 

3. You make thoughtful decisions during the experiment. 
 

If you have any questions while we read the instructions or during the experiment, then call us by raising your hand. 

Any form of communication between participants is absolutely forbidden. If you do not follow this rule, then we will 

have to exclude you from the experiment without any payment. 

 

The Task 

You will be given 30 different «events», divided into 3 series of 10. Each of these events describes the possible 

outcome produced by the roll of 2 dice. One of the die is red, the other die is black. Each die has 10 sides numbered 

from 0 to 9. Each die is fair, which means that any of the 10 sides has an equal chance to come up when the die is 

rolled. Consider now two examples of events we could give you: 

 Event 1: «The red die equals 5 and the black die equals 3».  

 Event 2: «The red die produces a number strictly greater than the black die».  
 

As explained below, 1 out of the 30 events will be randomly selected for payment at the end of the experiment. We 

will then roll the 2 dice once in order to determine whether the event occurs or whether the event does not occur. For 

instance, if Event 1 above is randomly selected for payment, then we will say that Event 1 occurred when the outcome 

of the roll of the 2 die is such that the red die produces a 5 and the black die produces a 3. For any other number 

produced by either the black or the red die, we will say that Event 1 did not occur. Likewise, if Event 2 is randomly 

selected for payment, then we will say that Event 2 occurred when the outcome of the roll of the 2 dice is such that the 

red die produces a number strictly greater than the black die. Otherwise, we will say that Event 2 did not occur. 

 

Your Choices: 

For each of the 30 events, you will be asked to make a choice. One of these choices will determine the amount of 

money you will earn both when the event randomly selected for payment occurs and when it does not occur. Each of 

your choices consists in selecting a number between 1 and 149 in the table we gave you separately. We will now 

explain how your choice for the event randomly selected for payment affects the amount of money you will earn.  
 



If you look at the table, you can see that there are two amounts associated with each of the 149 possible choice 

numbers. The first is the amount of money you receive if the event occurs. The second is the amount of money you 

receive if the event does not occur. For instance, you can see in the table that the amounts associated with the choice 

number “1” are 53 and 4,000. This means that the amount of money you earn would be 53FCFA if the event occurs or 

4,000FCFA if the event does not occur. As you can see, when the choice number increases from 1 to 149, the amounts 

in the first columns increase, while the amounts in the second column decrease. For instance, the amounts associated 

with the choice number “90” are 3,360FCA and 2,560FCFA. In other words, if you choose the number “90” instead of 

the number “1” then you would earn more if the event occurs (3,360FCFA instead of 53FCFA), but you would earn 

less if the event does not occur (2,560FCFA instead of 4,000FCFA). Note also, that the highest choice numbers (those 

closer to 149) produce the largest amounts of money when the event occurs, but the smallest amounts of money when 

the event does not occur. For instance, the choice number “140” produces 3,982FCFA if the event occurs, but only 

516FCFA when the event does not occur.  
 

For each of the 30 events, you are free to select any choice number you want. Note that there is no correct or incorrect 

choice. The choice numbers selected may differ from one individual to the next. In general however, you may find it 

profitable to choose a higher choice number when you think the chances that the event occurs are higher. Indeed, as 

we just explained, such a choice number will produce a larger amount if the event occurs. Conversely, you may find it 

profitable to choose a smaller number when you think the chances that the event occurs are lower.  

 

Your Payment 

The amount of money you receive today will be determined in 3 steps. In a first step, we will randomly select one of 

the 30 events for payment. In a second step, we will roll the 2 dice once to determine whether the event selected for 

payment occurs or does not occur. Finally, in a third step, we will look at the choice number you chose for the event 

selected for payment in order to determine the amount of money you will receive.  

We will proceed as follows to select one of the 30 events for payment. At the beginning of the experiment, we will ask 

you to write your identification code on a piece of paper that you will then fold. Your identification code is located on 

the top right hand corner on the first page of the instructions. At the end of the experiment, we will draw at random 

one of the pieces of paper. The person whose identification number has been drawn will randomly choose 1 out of 30 

numbered tokens from a bag. The number written on the token selected indicates the event that will be considered for 

the payment of each person in the room.  

We will then draw at random a second piece of paper. The person whose identification code has been drawn will roll 

the 2 dice once to determine whether the event selected occurs or not. This single roll will be used to determine the 

payment of each person in the room.  
 

If you do not wish to be one of the persons rolling the dice or drawing the token, then simply leave your piece of paper 

blank. Just fold it without writing your identification code.     

 

 

 

 



Comprehension Test:  

Understanding the instructions well is important if you want to improve your chances to earn a larger amount of 

money during the experiment. In order to make sure you understand the instructions well, we will now conduct a 

quick test without monetary consequences. Imagine first that Event 1: «The red die equals 5 and the black die equals 

3» has been selected for payment. In addition, imagine that an individual selected the choice number 98 for this event, 

while a different individual selected the choice number 139. Please, write in the table below the amount of money 

each of these 2 individuals would receive if the roll of the dice produces the following outcomes: 
 

 

Outcome produced by the roll of the 2 dice 
Payment to the individual with  

A choice number of 98 A choice number of 139 

The red die equals 6 and the black die equals 4 ________FCFA ________FCFA 

The red die equals 5 and the black die equals 4 ________FCFA ________FCFA 

The red die equals 5 and the black die equals 3 ________FCFA ________FCFA 
 

Imagine now that Event 2: «The red die produces a number strictly greater than the black die» has been selected for 

payment. In addition, imagine that an individual selected the choice number 6 for this event, while a different 

individual selected the choice number 71. Please, write in the table below the amount of money each of these 2 

individuals would receive if the roll of the dice produce the following outcomes: 
 

 

Outcome produced by the roll of the 2 dice 
Payment to the individual with  

A choice number of 6 A choice number of 71 

The red die equals 3 and the black die equals 9 ________FCFA ________FCFA 

The red die equals 5 and the black die equals 2 ________FCFA ________FCFA 

The red die equals 0 and the black die equals 5 ________FCFA ________FCFA 
 

 

Please, do not hesitate to raise your hand now if the instructions we just read were not perfectly clear. Once the 

experiment starts you can still call us to answer any question by raising your hand. 
 

Note that the amount of money you will receive today may be larger or smaller depending on your choices and on the 

outcome produced by the roll of the 2 dice. By accepting to participate in the experiment,  you accept the 

consequences associated with your choices and with the roll of the dice. If you do not wish to participate in the 

experiment you are free to leave now, in which case you will receive a flat fee of 500FCFA. 

 

 

 

 

 

 

 

 



Series 1 : 

For the first series of 10 events, we will consider that the red die determines the first digit (meaning 0, 10, 20, 30, 40, 

50, 60, 70, 80, or 90) and the black die determines the second digit (meaning 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9) of a number 

between 1 and 100  (both dice equal to zero corresponds to the number 100). As a result, every number between 1 and 

100 has an equal chance to come out from the roll of the 2 dice.  
 

 

Event 
 

Description 
 

Your Choice Number 

1 « the number is between 1 (included) and 25 (included) »  

 2 « the number is between 62 (included) and 66 (included) »  

 3 « the number is between 16 (included) and 76 (included) »  

 4 « the number is between 3 (included) and 92 (included) »  

 5 « the number is between 52 (included) and 96 (included) »   

 6 « the number is between 9 (included) and 88 (included) »  

 7 « the number is between 44 (included) and 58 (included) »   

 8 « the number is between 23 (included) and 25 (included) »  

 9 « the number is between 37 (included) and 71 (included) »  

 10 « the number is between 28 (included) and 97 (included) »   

 

 

Series 2 : 

For the next series of 10 events, we will sum the outcome of the red die to the outcome of the black die. Since each die 

can only produce a number between 0 and 9, the sum obtained can only be a number between 0 and 18. Observe that 

some of these sums (for instance 0) can only be obtained from a unique combination of the 2 dice, while other sums 

(for instance 6) can be obtained from multiple combinations of the 2 dice. As a result, some of the 19 possible sums 

have more chances to come out than other sums.  
 

 

Event 
 

Description 
 

Your Choice Number

 11 « The sum is between 0 (included) and 4 (included) »  

 12 « The sum is between 2 (included) and 10 (included) »   

 13 « The sum is equal to 16 »  

 14 « The sum is between 4 (included) and 14 (included) »   

 15 « The sum is between 5 (included) and 13 (included) »   

 16 « The sum is between 0 (included) and 14 (included) »  

 17 « The sum is between 10 (included) and 18 (included) »   

 18 « The sum is equal to 4 »  

 19 « The sum is between 11 (included) and 17 (included) »   

 20 « The sum is between 2 (included) and 6 (included) »   

 



Series 3 : 

The last series of 10 events is similar to the first series. The red die determines the first digit and the black die 

determines the second digit of a number between 1 and 100. The difference with the first series is that, when you 

select your choice number, you are not facing 1, but 2 possible events. For instance, the 1st of the 2 possible events 

could be «the number is between 1 (included) and 25 (included)» and the 2nd of the 2 possible events could be «the 

number is between 55 (included) and 59 (included)». You are asked to select a single choice number without 

knowing which of the 2 possible events will be used to determine your payment. It is only at the end of the experiment 

that we will toss a coin to identify which of the 2 possible events will be used for payment. If the coin lands on Heads, 

then your payment will be determined using the 1st event. If the coin lands on Tails, then your payment will be 

determined using the 2nd event. As with Series 1, we will then roll the 2 dice to determine whether the event identified 

by the coin toss occurs or not. Here is an example :  
 

♦ If the coin lands on Heads, then the event is : 

«the number is between 1 (included) and 25 (included)». 

♦ Or, if the coin lands on Tails, then the event is :  

«the number is between 55 (included) and 59 (included)». 
 

You must select a unique choice number before you know which of the possible 2 events will be used for payment. 

Imagine for instance that an individual selects the choice number 70. We have to distinguish between different 2 

situations to determine how much the individual will be paid: 

♦ Either the coin tossed at the end of the experiment lands on Heads. In this case, the event used for payment 

is «the number is between 1 (included) and 25 (included)». Then, the event occurs if the 2 dice produce a 

number that is indeed between 1 (included) and 25 (included), and the individual in our example is paid 

2,862FCFA. On the other hand, if the 2 dice produce a number that is not between 1 (included) and 25 

(included), then the event does not occur and the individual in our example is paid 3,129FCFA. 

 ♦ Or the coin tossed at the end of the experiment lands on Tails. In this case, the event identified is «the 

number is between 55 (included) and 59 (included)». Then, the event occurs if the 2 dice produce a number 

that is indeed between 55 (included) and 59 (included), and the individual in our example is paid 2,862FCFA. 

On the other hand, if the 2 dice produce a number that is between 55 (included) and 59 (included), then the 

event does not occur and the individual in our example is paid 3,129FCFA. 
 

To summarize, there are only 2 cases under which the event occurs : 1) The coin lands on Heads and the 2 dice 

produce a number between 1 (included) and 25 (included), or 2) the coin lands on Tails and the 2 dice produce a 

number between 55 (included) and 59 (included). In all other cases, the event does not occur. Thus, when you select 

your choice number, you might want to imagine the different cases under which the event occurs and does not occur. 

 

If these explanations are not sufficiently clear, please call us by raising your hand. We will then come to your desk to 

answer any questions you may have. We would like to remind you that it is important for you to understand the 

instructions well so that you can make the decisions that suit you the best. 

 



 

Event 
 

Description 
 

Your Choice Number 

 
 

 21 

♦ If the coin lands on Heads, then the event is : 

«the number is between 48 (included) and 82 (included)». 

♦ Or, if the coin lands on Tails, then the event is :  

«the number is between 14 (included) and 48 (included)». 

 

 
 

 22 

♦ If the coin lands on Heads, then the event is : 

«the number is between 21 (included) and 35 (included)». 

♦ Or, if the coin lands on Tails, then the event is :  

«the number is between 30 (included) and 44 (included)». 

 

 
 

 23 

♦ If the coin lands on Heads, then the event is : 

«the number is between 25 (included) and 89 (included)». 

♦ Or, if the coin lands on Tails, then the event is :  

«the number is between 2 (included) and 96 (included)». 

 

 
 

 24 

♦ If the coin lands on Heads, then the event is : 

«the number is between 66 (included) and 97 (included)». 

♦ Or, if the coin lands on Tails, then the event is :  

«the number is between 13 (included) and 70 (included)». 

 

 
 

 25 

♦ If the coin lands on Heads, then the event is : 

«the number is between 56 (included) and 58 (included)». 

♦ Or, if the coin lands on Tails, then the event is :  

«the number is between 78 (included) and 80 (included)». 

 

 
 

 26 

♦ If the coin lands on Heads, then the event is : 

«the number is between 82 (included) and 89 (included)». 

♦ Or, if the coin lands on Tails, then the event is :  

«the number is between 25 (included) and 66 (included)». 

 

 
 

 27 

♦ If the coin lands on Heads, then the event is : 

«the number is between 7 (included) and 88 (included)». 

♦ Or, if the coin lands on Tails, then the event is :  

«the number is between 3 (included) and 100 (included)». 

 

 
 

 28 

♦ If the coin lands on Heads, then the event is : 

«the number is equal to 12». 

♦ Or, if the coin lands on Tails, then the event is :  

«the number is between 49 (included) and 57 (included)». 

 

 
 

 29 

♦ If the coin lands on Heads, then the event is : 

«the number is between 26 (included) and 86 (included)». 

♦ Or, if the coin lands on Tails, then the event is :  

«the number is between 14 (included) and 74 (included)». 

 

 
 

 30 

♦ If the coin lands on Heads, then the event is : 

«the number is between 1 (included) and 83 (included)». 

♦ Or, if the coin lands on Tails, then the event is :  

«the number is between 36 (included) and 91 (included)». 

 

 



  
Choice 
Number 

Your Payment (in FCFA) 
when the Event 

  
Choice 
Number 

 

Your Payment (in FCFA) 
when the Event 

  
Choice 
Number 

Your Payment (in FCFA) 
when the Event 

Occurs 
Does not 

Occur 
Occurs 

Does not 
Occur 

Occurs 
Does not 

Occur 
1 53 4000 51 2258 3538 101 3573 2186 
2 106 3999 52 2293 3519 102 3590 2150 
3 158 3998 53 2327 3501 103 3607 2114 
4 210 3997 54 2362 3482 104 3624 2077 
5 262 3996 55 2396 3462 105 3640 2040 
6 314 3994 56 2429 3442 106 3656 2002 
7 365 3991 57 2462 3422 107 3671 1965 
8 415 3989 58 2495 3402 108 3686 1926 
9 466 3986 59 2528 3381 109 3701 1888 
10 516 3982 60 2560 3360 110 3716 1849 
11 565 3978 61 2592 3338 111 3730 1810 
12 614 3974 62 2623 3317 112 3743 1770 
13 663 3970 63 2654 3294 113 3757 1730 
14 712 3965 64 2685 3272 114 3770 1690 
15 760 3960 65 2716 3249 115 3782 1649 
16 808 3954 66 2746 3226 116 3794 1608 
17 855 3949 67 2775 3202 117 3806 1566 
18 902 3942 68 2805 3178 118 3818 1525 
19 949 3936 69 2834 3154 119 3829 1482 
20 996 3929 70 2862 3129 120 3840 1440 
21 1042 3922 71 2890 3104 121 3850 1397 
22 1087 3914 72 2918 3078 122 3861 1354 
23 1133 3906 73 2946 3053 123 3870 1310 
24 1178 3898 74 2973 3026 124 3880 1266 
25 1222 3889 75 3000 3000 125 3889 1222 
26 1266 3880 76 3026 2973 126 3898 1178 
27 1310 3870 77 3053 2946 127 3906 1133 
28 1354 3861 78 3078 2918 128 3914 1087 
29 1397 3850 79 3104 2890 129 3922 1042 
30 1440 3840 80 3129 2862 130 3929 996 
31 1482 3829 81 3154 2834 131 3936 949 
32 1525 3818 82 3178 2805 132 3942 902 
33 1566 3806 83 3202 2775 133 3949 855 
34 1608 3794 84 3226 2746 134 3954 808 
35 1649 3782 85 3249 2716 135 3960 760 
36 1690 3770 86 3272 2685 136 3965 712 
37 1730 3757 87 3294 2654 137 3970 663 
38 1770 3743 88 3317 2623 138 3974 614 
39 1810 3730 89 3338 2592 139 3978 565 
40 1849 3716 90 3360 2560 140 3982 516 
41 1888 3701 91 3381 2528 141 3986 466 
42 1926 3686 92 3402 2495 142 3989 415 
43 1965 3671 93 3422 2462 143 3991 365 
44 2002 3656 94 3442 2429 144 3994 314 
45 2040 3640 95 3462 2396 145 3996 262 
46 2077 3624 96 3482 2362 146 3997 210 
47 2114 3607 97 3501 2327 147 3998 158 
48 2150 3590 98 3519 2293 148 3999 106 
49 2186 3573 99 3538 2258 149 4000 53 
50 2222 3556 100 3556 2222    

 




