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Abstract

Environmental markets distribute tradable rights on natural resources that are available for

free on the earth such as water, biomass or clean air. In a framework where users differ solely in

respect of their access to the resource, I investigate the allocation of rights that are accepted in

the sense that, after trading, users obtain at least what they can achieve by sharing the resources

they control. I show that, among all accepted rights, the more egalitarian ones do not allow any

redistribution among users. Consequently, compared to an efficient allocation of resources, the

net trading of rights always increases inequality.
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1 Introduction

Economic development is driven by the exploitation of natural resources such as water, land, forest,

minerals, fossil fuels and fisheries. Economic activities are deteriorating our environment and

causing harm to biodiversity, the climate and our health. The uncontrolled extraction of natural

and environmental resources leads to the famous “tragedy of the commons” (Gordon, 1954, Hardin,

1968). Resources are wasted, misallocated and potentially exhausted irreversibly.

Economists tend to attribute this tragedy to the lack of clear property rights on open-access

natural resources and the environment. It deprives people of any incentive to conserve the resource

for future use, or to assign it to those who value it the most either now or in the future. Assigning and

enforcing property rights is a solution to the tragedy of the commons for natural resources (Demsetz,

1967) and environmental externalities (Coase, 1960). The trading of property rights in competitive

markets ensures that the resource is allocated efficiently among users. Total welfare from resource

exploitation is thus improved. The property right approach recommends the implementation of

environmental markets (Anderson and Libecap, 2014). Examples include water markets (Grafton

et al., 2011), tradable fishing quotas (Hannesson, 2004) or tradable emission schemes for air or

water pollution (Shortle, 2012, Schmalensee and Stavins, 2017; see Anderson and Libecap, 2014,

for a survey).

Environmental markets privatize resources that used to be free. For this reason, the initial

allocation of property rights is controversial. People are reluctant to buy something that used to

be available for free. When they do obtain property rights on some of the resource for free, the

initial allocation of rights is debatable on the grounds of fairness. For instance, under the principle

of equal rights to humans, natural resources should be divided equally. However, if everybody on

earth owns an equal share of a resource, the people who used to rely on the resource for their living

are now required to buy rights from others.

Examples of such controversies over the initial allocation of rights in environmental markets

abound. For air pollution controlled with tradable emission allowances, the way allowances are

assigned among polluting firms impacts their profits. Under grandfathering, the most polluting

firms enjoy windfall profits from owning and selling allowances they get for free, while new entrants

have to buy all their allowances. Similarly, water used for irrigation can be better managed through

tradable water rights or quotas. Yet some farmers might experience a loss of welfare by buying

rights, compared to unregulated extraction. Others might become far more wealthy by selling their

rights to municipalities or industries, rather than irrigating their own land. Setting water markets

might exacerbate inequality. Water trade can be a source of conflict among farmers (Libecap, 2009).

This paper investigates the allocation of rights in environmental markets. I examine the initial

allocation of rights that would normally be accepted by all the resource users. To do so, I rely

on cooperative game theory. I define the welfare that a group of users can secure by sharing the

amount of a resource they control collectively under free access. As Ostrom (1990) documented,

users are often able to organize themselves to manage natural resources, thereby solving or at

least mitigating, the tragedy of the commons. The so-called free-access welfare determines their

bargaining power. The allocation of rights is accepted if every group of users is assigned at least

its free-access welfare.

To address this problem, I consider a general framework in which resource users enjoy the
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same benefit from consuming it. The benefit increases with diminishing return. Users differ solely

in respect of their access to the resource. They are connected to one or several pools of a same

resource. The ability to draw from some pools and not others can be due to geographical proximity,

institutional constraints or technological capability. For instance, the resource pools may be a water

reservoir connected to farmers’ land by rivers, canals or irrigation ditches; or it may be oil and gas

fields in several locations. Users differ in their capability to extract these resources (e.g. being able

to drill deeply offshore) or to transform each source of energy into electricity (e.g. running a coal

or natural gas power plant). In the case of air pollution and emission allowances, the pool could

be the regulated cap on emissions in specific area. Users are firms running production plants in

different locations. They can reshuffle their production on the different locations depending on the

local price of emission allowances.

In this framework, I set out to examine the extend to which inequalities of access can be ironed

out or at least mitigated by trading rights accepted by all users. It turns out that they cannot.

Using Dutta and Ray (1989)’s concept of egalitarianism under participation constraints, I show

that among all types of allocation of rights accepted by users, the most egalitarian ones entail no

net trade. Any trade of accepted rights in environmental markets exacerbates inequalities of access.

The paper is related to the axiomatic analysis of resource division (see Thomson, 2008, for a

survey). Free-access welfare corresponds to the core bounds of a cooperative game with externalities:

the welfare that a coalition of players can guarantee to itself depends on the behavior of other players

(Bloch, 1996). Free-access welfare assumes the worst that could potentially happen for the coalition

regarding the pools shared with outsiders, as they are all exhausted. It is as if outsiders where able

to exclude the coalition from those shared pools. Under this assumption, the core is not empty

and can be quite large. Yet I show that no redistribution of welfare can be achieved within the

core. This result is due to a property of the efficient allocation of the resource. The coalition of

users who get more than x units of the resource enjoys exactly their free-access welfare for any x.

Consequently, they block any transfer of welfare to those who get less that x.

The model shares some features with the river sharing problem introduced by Ambec and

Sprumont (2002).1 However, the spatial structure and the timing differ. In the river sharing

problem, access to the resource (water) is sequential from upstream to downstream. In contrast,

here, all users who are connected to the same pool have symmetric and simultaneous access.2

The structure of the model is similar to that of Bochet, Ilkilic and Moulin (2013), who generalize

the resource division problem (Sprumont, 1991) with several resource pools and unequal access.

They also focus on egalitarian solutions. However, their framework is with non-transferable utility:

only one good is consumed, and no trade or compensations are allowed. Their concern is the

allocation of the good which has to satisfy several desirable properties. I, on the other hand,

am interested in the distribution of the welfare from consuming the good by trading rights in

environmental markets.

The rest of the paper proceeds as follows. Section 2 describes the resource-sharing problem:

the model in Section 2.1, the efficient allocation of the resource in Section 2.2, and environmental

1The model has been extended by Ambec and Ehlers (2008) and Van der Brink et al. (2011).
2Ambec (2008) analyzes a single resource pool shared by several users under symmetric access with similar concave

benefit and transferable utility. However, the focus is on the Walrasian allocation with equal endowment which is

characterized with fairness principles.
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markets in Section 2.3. Section 3 contains the main analysis including the definition on the free-

access welfare in Section 3.1, and the main results in Section 3.2. Section 4 concludes with some

remarks. All proofs are in Appendix.

2 The resource sharing problem

2.1 The Model

A set of agents (consumers, farmers, firms, municipalities, countries) N = {1, ..., n} called “users”

are sharing a homogenous good called “resource” available in different locations called “pools”.

Each agent enjoys the same benefit b(x) from consuming x units of the resource. The benefit b is

increasing and concave, i.e., b′(x) > 0 and b′′(x) < 0. It is expressed in terms of money that can

be transferred among users at no cost, e.g., through trading of resource rights. We normalize the

benefit of zero consumption to zero: b(0) = 0. We further assume that b′i(0) is high enough (e.g.

b′(0) = +∞) so that assigning no resource to one agent is never efficient. Let M = {1, ...,m} be

the set of resource pools. Let ej denote the amount of resources available at pool j for every j ∈ M

with ej > 0. Each agent i has access to some subset Si ⊆ M of the sources. Symmetrically, each

pool j can supply a subset Rj ⊆ N of agents.

A resource-sharing problem P ≡ (N,M,S, b, e) is defined by a set of agents N = {1, ..., n}, a
set of pools M = {1, ....,m}, the sets of pools S = {Si}i∈N that are connected to each user, the

benefit function b and the amount of resource e = (e1, ..., em) available in each pool.3

An example of a resource-sharing problem with three users and three pools is represented in

Figure 1.

✟✟✟✟✟
❏
❏
❏
❏
❏
❏
❏
❏

Users Resource pools

1

2

3

e1

e2

e3

Figure 1: Example of a resource sharing problem with unequal access.

3Note that the model encompasses the extreme cases of equal access to all sources Si = M for every i ∈ N , as

well as exclusive access to pools Si ∩ Sj = ∅ for every i, j ∈ N .
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In the above example, users 1 and 2 share the e1 units of resources available in pool 1, user 2 has

exclusive access to e2 in pool 2, users 2 and 3 share e3 in pool 3. Resource access is defined by

the sets S1 = {1}, S2 = {1, 2, 3} and S3 = {3} or, equivalently, by R1 = {1, 2}, R2 = {2} and

R3 = {2, 3}.
An allocation of resources is a matrix X = [xji]j∈M,i∈N where xji ≥ 0 denotes i’s extraction

from pool j for every i ∈ N and j ∈ M . The allocation X is feasible if it satisfies the following

resource constraints for j = 1, ...,m: !

i∈Rj

xji ≤ ej . (1)

Let Ω denote the set of feasible allocations. The feasible allocation X yields the consumption plan

x = (xi)i∈N where xi =
"

j∈Si
xji for every i ∈ N . User i enjoys a benefit b(xi) from consuming xi

for i = 1, ..., n. The total welfare from consuming x is thus
"

i∈N b(xi). I now examine the feasible

allocations and consumption plans that maximizes total welfare.

2.2 Efficiency

An efficient allocation and consumption plan maximizes total welfare subject to the feasibility

constraints.4 In our framework with concave benefit function, the efficient consumption plan is

unique. However, it could be induced by several feasible resource allocations that all lead to the

same total welfare. Let us denote the efficient allocations and consumption path with a star as

superscript, i.e., X∗ and x∗ respectively.

An efficient allocation solves the following program:

maxX
"

i∈N b
#"

j∈M xji

$
s.t.

xji = 0 ∀(j, i) ∈ M\Si ×N

xji ≥ 0 ∀(j, i) ∈ Si ×N"
i∈Rj

xji ≤ ej ∀ j ∈ M

(2)

The first set of constraints assigns nothing from pools that users do not have access to. The second

one makes sure that extraction is non-negative. The third set consists of the resource constraints

that limit extraction to resource availability at each pool.

Denoting µj and λji the Langrangian multipliers associated with the resource constraint of pool

j and the non-negativity constraint for user i’s allocation of pool j for any (j, i) ∈ Si×N , we obtain

the following first-order conditions for every (j, i) ∈ Si ×N :

b′(x∗i ) = µj − λji, (3)

plus the complementary slackness conditions derived from the constraints of the program. The

first-order conditions (3) equalize each user i’s marginal benefit to the multiplier of the resource

constraint µj minus the multiplier of the non-negativity constraint λji for each pool j user i has

access to. The first-order conditions have several implications for the solution to the program.

4Note that this definition of efficiency is implied by Pareto efficiency with (costless) transferable utility as assumed

here.
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Consider two users who have access to the same pool. First, if they both extract some of the

resource from this pool, they should consume the same amounts. Technically speaking, if two users

l and h extract from the same pool j, it means that x∗jl > 0 and x∗jh > 0. Therefore the resource

constraint associated with pool j is binding, while the non-negativity constraints are not so for

both users. Thus µj > 0 and λjl = λjh = 0. The first-order conditions implies b′(x∗l ) = b′(x∗h) = µj ,

which implies bl = bh then x∗l = x∗h.

Second, if one of the two users connected to the same pool extracts from the pool and the

other does not, then the later consumes at least as much than the former. If, say, user l extracts

from j but not user h does not, formally if x∗jl > 0 and x∗jh = 0, this implies that user h has

the non-negativity constraint binding for pool j , hence λjl = 0. The first-order conditions imply

b′(x∗l ) = µj ≥ b′(x∗h) = µj − λjh, which in turn implies x∗l ≤ x∗h. Intuitively, if user l is extracting

some resource from pool j but not from pool h, it is because user h has access to other pools

which are more “abundant” in the sense that they have lower shadow values defined by the resource

constraint multiplier µj . Therefore user h should extract from those abundant pools instead of pool

j which is left to l and to the other users connected to j who consume less than user h.

Third, if a user extracts from two pools, those pools should have same shadow value. Formally,

if user i extracts from pools h and l, i.e., if x∗hi > 0 and x∗li > 0, then λhi = λli = 0 in (3), which

implies b′(x∗i ) = µh = µl.

Using the above properties, we can rank users and resource pools according to their shadow

values. Formally, an efficient allocation X∗ solution to (2) defines a partition {Nk}Kk=1 of the set

of users N and a partition {Mk}Kk=1 of the set of pools M . Each subset Mk is the set of pools with

same shadow value µk for k = 1, ...,K with µ1 > .... > µK . Each subset Nk is the set of users who

extract from at least one pool in Mk. They all enjoy the same marginal benefit equals to µk. Their

consumption is thus the same, equal to b′−1(µk). Hence we can rank the efficient consumption plan

x∗ as consumption levels {xk}Kk=1 with x1 < .... < xK where every agent in Nk consumes xk for

k = 1, ...,K. Users in Nk extracts only from the pools in Mk. They do not extract from pools

outside Mk, either because those pools have a higher shadow value for pools in M1 to Mk−1, or

because they are not connected to those pools for pools in Mk+1 to MK .

2.3 Environmental markets

The resource pools are divided among users through property rights. An allocation of rights (or

“endowment”) is a feasible resource allocation W = [wji]j∈M,i∈N . The column i of W defines the

rights that are assigned to user i on each pool j = 1, ...,m. The line j of W describes the rights on

pool j assigned to users i = 1, ..., n. Rights be can consumed, sold to other users or bought from

other users. Assume complete markets: a market exists for resource located in each pool. User i

can sell part or all the wji units she or he owns from pool j in market j at a price pj . She or he

can buy rights on the resource located in pool j in market j at price pj for j = 1, ...,m. I assume

that environmental markets are competitive and, therefore, efficient. Users are price-takers, they

decide how much to extract, sell or buy from each pool given the equilibrium prices p = (pj)j∈M .

Given the initial allocation of rights W , a competitive (Walrasian) equilibrium is defined by a

feasible resource allocation X and a vector of prices p = (pj)j∈M such that each user i ∈ N chooses
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the amount of resource xji she or he extracts from every pool j ∈ M that maximizes

bi

%

&
!

j∈Si

xji

'

(+ pj(wji − xji), (4)

and the following market clearing conditions hold for every j ∈ M :

!

i∈N
xji =

!

i∈N
wji. (5)

The First Theorem of Welfare applies so that the competitive equilibrium is efficient. The allo-

cations of resource solution to (4) are efficient as described in the previous section. The equilibrium

consumption plan is therefore efficient and unique. It is denoted x∗. Furthermore, by maximizing

(4) with respect to (xji)j∈M for every user i, we obtain the following first-order condition that

characterize the equilibrium prices :

b′(x∗i ) = pj , (6)

for every j ∈ Si and i ∈ N . Comparing (3) and (6) shows that equilibrium prices are equal to the

shadow value of the resource constraints: pj = µj for every j ∈ M such that x∗ji > 0 for one i ∈ N

at least.

To sum up, an allocation of rights W might lead to several resource allocations which are all

efficient X∗. However, the vector of equilibrium prices p is unique and equal to the shadow value of

resource scarcity at each pool µj for every pool j ∈ M . Similarly, the consumption plan is unique

and efficient x∗.

Both prices and consumptions depend on the total amount of rights at each pool
"

i∈N wji =

ej but not on how rights are divided among users. Yet the allocation of rights determines the

distribution the total welfare among users. It allows to transfer welfare among users. The post-

trade welfare of an arbitrary user i ∈ N is:

ui = b(x∗i ) +
!

j∈M
µj(wij − x∗ji) (7)

An allocation of rights W yields a distribution u = (ui)i∈N of the total welfare
"

i∈N bi(x
∗
i )

where ui is defined by (7) for every i ∈ N . Importantly, u is unique because, even if W induces

several efficient resource allocations X∗, they all yields the same net trade transfer
"

j∈M µj(x
∗
ji −

wij) for every i ∈ N . Hence W yields a unique welfare distribution u defined by (7) for i = 1, ..., n.

3 The free-access welfare and inequality

3.1 A cooperative game approach

I now rely on cooperative game theory to investigate which allocations of rights can be accepted

by users. An allocation of rights W is blocked by a coalition of users if this coalition can secure

a higher welfare under free access. W is accepted if it is not blocked by a coalition of users. To

compute the welfare that a group of users can achieve on its own under free access, I assume that

users coordinate extraction efficiently given the resource available to them. This assumption is

7



conservative on resource availability: a group of users can rely only on the resource pools it fully

controls. It is as if users expect to get nothing from pools shared with outsiders. The assumption

is the lowest bound on the welfare that a group of users can guarantee to itself providing that the

resource is shared efficiently within the group. I now define formally the free-access welfare.

Let us consider an arbitrary group of users or coalition T ⊆ N . Let ξ(T ) = {j ∈ M |Rj ⊆ T} be

the set of pools fully controlled by coalition T . Denoted v(T ), coalition T ’s free-access welfare is:

v(T ) = maxXT

"
i∈T b

#"
j∈ξ(T ) xji

$

s.t.

xji = 0 ∀(j, i) ∈ M\Si × T

xji ≥ 0 ∀ (j, i) ∈ Si ∩ ξ(T )× T"
i∈T xji ≤ ej ∀ j ∈ ξ(T ).

(8)

Let us denote by XT
T a resource allocation solution to program (8) for any T ⊆ N . It is an efficient

allocation of the resource-sharing problem (T, ξ(T ), b, {Si}i∈T , eξ(T )). Let us denote x
T
T the (unique)

consumption plan solution to (8).

The allocation of rights W is blocked by coalition T if the after-trade welfare distribution u

is such that
"

i∈T ui < v(T ). An allocation of rights W is accepted if the after-trade welfare

distribution u is not blocked. Hence, for W to be accepted, u must satisfy the following free-access

welfare bounds for every T ⊂ N : !

i∈T
ui ≥ v(T ). (9)

It is easy to show that the set of accepted rights is not empty. Consider the allocation of rights

that assign an efficient allocation of resources. Whenever W = X∗, no net trade occurs among

users so that the after-trade welfare of any user i is simply ui = b(x∗i ), i.e. the benefit of consuming

all the rights from the pools she or he has access to. Let us call it the no-trade welfare distribution

and denote it as u0. It turns out that the no-trade welfare distribution is not blocked by any

coalition. The proof of Lemma 1 is in Appendix A.

Lemma 1 W = X∗ is an accepted initial allocation of rights.

Lemma 1 relies on a simple economic intuition. The allocation of rights W = X∗ leads to the no-

trade welfare distribution which assigns to any coalition its welfare with the efficient consumption

plan. It is also the highest welfare that the coalition can achieve if outsiders extract their efficient

consumption levels. The free-access welfare assumes that outsiders extract more than that: they

extract all resource from pools they are connected to. Therefore the free-access welfare cannot be

higher. It cannot exceed the welfare achieved with the no-trade welfare distribution.

3.2 Reducing inequality with accepted allocation of rights

Under the same diminishing return from resource consumption as assumed here, the total welfare

would be maximal with an equal division of the resource available in every pool. However, some

users might not be able to consume it due to unequal access. Indeed, as already mentioned,

efficiency assigns the same consumption level for users in each subset Nk but less for users in Nk−1
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for k = 2, ...,K. I examine whether differences in resource consumption and, therefore, in benefits

from resource use, can be mitigated by an allocation of rights that is not blocked by users.

To address this question, I further investigate the free-access welfare. It is often quite low. For

instance, as long as a group of users shares all its resource pools with at least one outsider, its

free-access welfare bowls down to zero. It therefore does not restrict the set of accepted rights. To

identify which coalitions are restricting to the greatest extend the set of accepted rights with its

free-access welfare, I need to established a further property of the efficient resource allocation X∗.

Consider any threshold consumption level xk in x∗. Coalition ∪K
l=kNk includes all the users who

consume at least xk. The following Lemma states that users that belong to ∪K
l=kNl are extracting

only from pools they fully control for k = 1, ...,K. The proof is in Appendix B.

Lemma 2 ∪K
l=kMl = ξ(∪K

l=kNl) for k = 1, ...,K.

Lemma 2 implies that coalition ∪K
l=kNl’s free-access welfare coincides with its welfare with the

efficient consumption plan. Formally, for every l = 1, ...,K, we have:

v(∪K
l=kNl) =

!

i∈∪K
l=kNl

bi(x
∗
i ) =

K!

l=k

|Nl|b(xl), (10)

where the last equality is due to the decomposition of x∗ into K levels of consumption (xk)k=1,...,K .

The group of users consuming at least xk obtains their free-access welfare for every threshold level

xk for k = 1, ..., n. This property has a straightforward implication for redistribution through the

trading of rights. It precludes any net transfer of wealth through net trade from coalition ∪K
l=kNl to

coalition ∪k−1
l=1 Nl for k = 2, ...,K. The set of users with at least xk units of resource - each of them

is enjoying b(xk) or more - blocks any allocation of rights that transfers welfare to those consuming

less than xk - i.e. those enjoying strictly less than b(xk). They block any allocation of rights that

makes them a net buyer of rights. Hence, any allocation of rights that would reduce inequalities of

consumption through trade is blocked.

To capture rigorously the idea that inequalities inherent to unequal access cannot be mitigated

we rely on the concept of equalitarianism under participation constraints proposed by Dutta and

Ray (1989). A welfare distribution u is egalitarian under participation constraints if no other wel-

fare distribution that satisfies the participation constraints Lorenz dominates u. In our framework,

the participation constraints are the free-access welfare bounds. It turns out that the no-trade

welfare distribution u0 is the Dutta-Ray solution. The proof is in Appendix C.

Theorem W = X∗ leads to the most egalitarian welfare distribution induced by an accepted

allocation of rights.

The main result implies that, among all allocation of rights that are accepted by users, the more

egalitarian ones do not involve any net trade. Hence any allocation of rights which involves some

net trade among users is either blocked by a coalition of users, or leading to a more unequal welfare

distribution. The trading of rights that are accepted by users can only exacerbate inequalities due

to unequal access.

The reader familiar with the cooperative game literature might wonder whether the game defined

by the free-access welfare v is convex. A cooperative game is convex if the marginal contribution
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of each player to any coalition weakly increases when the coalition expands, i.e., v(S) − v(S\i) ≥
v(T )− v(T\i) for every i ∈ T ⊂ S. It turns out that the cooperative game induced by the resource

sharing problem is neither convex nor concave. It is easy to find examples where the marginal

contribution of a user weakly increases when the coalition expands. But the reverse can also be

true for instance in the resource-sharing problem graphed in Figure 1 with (e1, e2, e3) = (3, 1, 7).

The marginal contribution of user 1 to {1, 2} is v({1, 2})− v({2}) = 2b(2)− b(1), while her or his

marginal contribution to {1, 2, 3} is v({1, 2, 3})−v({2, 3}) = b(3)−2b(4)−2b(4) = b(3). By b being

concave, b(3)− b(2) < b(2)− b(1) which shows v({1, 2, 3})− v({2, 3}) < v({1, 2})− v({2}).

4 Concluding comments

Environmental markets solve the tragedy of the commons. Overexploitation can be avoided by

assigning property rights on common-pool resources. Making those rights tradable ensures that

the resource is assigned efficiently to those who value it the most. Equity can be addressed by the

initial allocation of rights. By trading their rights, users can be compensated for the inequality

of access to the resource pools. However, some users may oppose to this redistribution though

trading if they are worse off compared to free access. When users are collectively able to manage

the resources that they fully control, any allocation of rights that induces some redistribution of

welfare by trading rights is opposed by at least one group of users. The most equalitarian allocation

of rights that is accepted by all users involves no net trade among them. It requires the resource

to be assigned efficiently without trading. Inequality of access cannot be mitigated through the

allocation of rights in environmental markets. Worse, any trading of rights that are accepted by

users exacerbates inequalities.

I conclude by mentioning further issues that can be addressed within the same framework.

First, another way to mitigate the inequality of access is to connect the users who consume

less to more resource pools. This can be done in practice by building canals for surface water,

subsidizing tube-wells for groundwater, or merging local permit markets for air pollution. It would

reduce the bargaining power of the coalition of users who previously had exclusive access to the

resource pools but cannot rely any more on them without including the newcomers. It would make

the no-trade welfare distribution less unequal.

Second, the impossibility to compensate for inequality of access to common-pool resources holds

not only in environmental markets but also for other regulations. Consider for instance a refunded

tax (or price) system in which users have to pay a fee per unit of resource. Efficiency requires the

resource to be taxed (or priced) at the shadow value of the pool. Hence, users who consume less

would have to pay more per unit of resource extracted since they have access to more expensive

pools. However, any redistribution of the revenue collected from taxing the resource that offset the

tax bill of poor users is blocked by rich users.

Third, the result relies on the assumption that users can efficiently manage the resource pools

they fully control under free access. Conflicts among users would reduce the free-access welfare and

therefore their bargaining power. The trading of rights could then allow some redistribution. How

much redistribution is accepted, depending on the efficiency loss of collective management, is an

open question.
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A Proof of Lemma 1

The no-trade welfare distribution assigns
"

i∈T b(x∗i ) to an arbitrary coalition T , which is also the

solution to the following program:

maxXT

"
i∈T bi

#"
j∈M xji

$
s.t.

xji = 0 ∀j ∈ M\Si, ∀ i ∈ T

xji ≥ 0 ∀j ∈ Si, ∀i ∈ T"
i∈T∩Rj

xji ≤ ej −
"

i∈Rj\T x∗ji ∀ j ∈ ST

(11)

Programs (8) and (11) have the same objective and control variables. They differ only on the last

set of constraints, which are more stringent in (8) than in (11). Therefore the value of the objective

in (8) cannot be higher than the one in (11), which shows that (9) holds for coalition T .

B Proof of Lemma 2

First observe that efficiency implies ξ(∪K
l=kNl) ⊂ ∪K

l=kMl. Otherwise some pools that belong to

ξ(∪K
l=kNl) will be not extracted, because users outside ∪K

l=kNl do not have access to them by

definition, which contradicts the assumption that x∗ is efficient. Second we show that ξ(∪K
l=kNl) ⊃

∪K
l=kMl. Suppose that it is not so. Suppose there exists a pool j such that j ∈ ∪K

l=kMl and

j /∈ ξ(∪K
l=kNl). Since j /∈ ξ(∪K

l=kNl), by definition, there exists a user f outside ∪K
l=kNl who has

access to pool j: ∃f ∈ N\∪K
l=kNl such that j ∈ Sf . Pick a user h ∈ ∪K

l=kNl who extracts from pool

j, i.e., such that x∗jh > 0. Since f ∈ N\ ∪K
l=k Nl and h ∈ ∪K

l=kNl, then b′(x∗f ) > b′(x∗h). Therefore

∃ε > 0 such that x∗jh− ε > 0 and b′(x∗f + ε) > b′(x∗h− ε). Consider the feasible resource consumption

plan x′ defined by: x′f = x′f + ε, x′h = x∗h − ε, x′j = x∗j for every j ∕= f, h. It increases total welfare

by:

!

i∈N
b(x′i)−

!

i∈N
b(x∗i ) = b(x′f ) + b(x′h)− (b(x∗f ) + b(x∗h))

= b(x∗f + ε)− b(x∗f )− [b(x∗h)− b(x∗h − ε)]

> (b′(x∗f + ε)− b′(x∗h − ε))ε

> 0

where the first inequality is due to the concavity of b while the last one is due to the assumption

on ε. This contradicts that x∗ is efficient.

C Proof of Theorem

Let us denote the consumption of users in Nk as xk in the efficient consumption plan x∗ for

k = 1, ...,K. We know from Lemma 1 that the no-trade welfare distribution u0i = b(x∗i ) for

i = 1, ..., n satisfies the free-access welfare bounds. I show that any welfare distribution with (non-

zero) net trade that satisfies the free-access welfare bounds is Lorenz-dominated by the no-trade

welfare distribution. Suppose that it is not so. Suppose u0 does not dominate a welfare distribution

u′ that satisfies the free-access welfare bounds. Furthermore, assume without loss of generality that

11



u′ is not dominated by any other welfare distribution which satisfies the free-access welfare bounds.

Let us relabel users according to their welfare in u0 from the poorest 1 to the richest n. Then ∃j
such that

j!

i=1

u′i >

j!

i=1

u0i . (12)

Since u0 and u′ are welfare distributions, we have

n!

i=1

u′i =
n!

i=1

u0i = v(N) =

K!

k=1

|Nk|b(xk). (13)

Clearly j cannot be the richest user n because then (12) contradicts (13). Suppose j = n − 1.

Equations (12) and (13) imply u′n < u0n = b(xK) where the last equality is due to the definition of

u0. The free-access lower bound for coalition NK yields:

!

i∈NK

u′i ≥ |NK |b(xK)

Then ∃l ∈ NK such that u′l ≥ b(xK) > u′n which contradicts the assumption that n is the wealthier

user. Hence u′n ≥ u0n = b(xK) and j < n− 1. Moreover, if u′n > u0n, then one can define a welfare

distribution u′′ with u′′n = u0n and u′n − u0n transferred to other poor users so as to satisfy the free-

access welfare bounds. Then u′′ Lorenz dominates u′ a contradiction. Therefore u′n = u0n = b(xK).

The same argument shows that u′i = b(xK) = u0i for the |NK | richest users, i.e. all users i ∈ NK .

Hence user j in (12) is such that j ≤ n − |NK |. Furthermore, since u′i = b(xK) = u0i for every

i ∈ NK , (13) implies:
n−|NK |!

i=1

u′i =

n−|NK |!

i=1

u0i =

K−1!

k=1

|Nk|b(xk)

Proceed as before to show that u′i = b(xK−1) = u0i for all users i ∈ NK−1, which implies j ≤
n− |NK |− |NK−1|. And so forth for k = K − 2, ..., 1.
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Bochet, Olivier, Rahmi Ilkilic and Hervé Moulin (2013) Egalitarianism Under Earmark Con-

straints, Journal of Economic Theory, 148: 535-562.

Coase, Ronald (1960) The Problem of Social Cost, Journal of Law and Economics, 3:1-44.

Demsetz, Harold (1967) Toward a Theory of Property Rights, American Economic Review 57(2):

347-359.

Dutta, Bhaskar, and Debraj Ray (1989) A Concept of Egalitarianism under Participation Con-

straints, Econometrica, 57(3), 615–635.

Grafton, Quentin R., Gary D. Libecap, Samuel McGlennon, Clay Landry, and Bob O’Brien (2011)

An Integrated Assessment of Water Markets: A Cross-Country Comparison Review of Envi-

ronmental Economics and Policy 5(2): 219-239.
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