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Abstract
In this paper we examine a game-theoretical generalization of the land-

scape theory introduced by Axelrod and Bennett (1993). In their two-bloc
setting each player ranks the blocs on the basis of the sum of her individual
evaluations of members of the group. We extend the Axelrod-Bennett setting
by allowing an arbitrary number of blocs and expanding the set of possible
deviations to include multi-country gradual deviations. We show that a Pareto
optimal landscape equilibrium which is immune to profitable gradual deviations
always exists. We also indicate that while a landscape equilibrium is a stronger
concept than Nash equilibrium in pure strategies, it is weaker than strong Nash
equilibrium.
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1 Introduction

This paper examines the class of strategic environments covered by the “landscape
theory”introduced by Axelrod and Bennett (1993) (AB — henceforth). In the land-
scape setting the actors (countries) are partitioned into two mutually exclusive blocs
on the basis of their propensity to work together with other bloc members on the
bilateral basis. All players rank groups according to the sum of her individual eval-
uations of all members of the group. In this sense the AB approach to international
interactions is related to Bueno de Mesquita (1975, 1981) who constructed a proximity
matrix for every pair of nations based on history of their defense cooperation.

Each actor i is characterized by the value of her size/strength/influence parameter
si. For each pair of countries i and j there is a parameter pij (positive or negative), the
value of which represents the propensity for collaboration between i and j. Thus, the
data of the model consists of an n-dimensional vector of countries’ strength parameters
and an n× n matrix P of pairwise proximity coefficients.

For an arbitrary partition of all countries into two blocs, AB define the frustration
of a country i as the sum of the proximity coefficients pij for all members outside
her bloc weighted by their strength parameter sj. Obviously, the country frustration
will be reduced if it avoids countries with whom it has a strong negative propensity
to align. The energy of any two-bloc partition is then determined as the sum of
individual frustrations of all countries weighted by their size. The objective of the
theory is to identify the configurations that yield, as AB call it, a local and global
minimum of energy. To attain these outcomes, AB used the incremental or gradual
approach by allowing single countries to switch their membership, one at a time, to
generate a new configuration with the reduced energy level. Assuming the symmetry
of the proximity matrix P , i.e. pij = pji for all pairs of players i, j, AB showed that
for any initial bloc structure, the sequential gradual reduction of energy does not
contain cycles and is terminated when a stable configuration is attained. Note that
the symmetry of the proximity matrix P is essential to obtain stable configurations.
Indeed, consider a game with two players, where player 1 prefers to join player 2, i.e.,
p12 > 0, whereas player 2 would like to avoid being together with 1, i.e., p21 < 0.
The game obviously does not admit a stable partition, as the partition in two groups
would be challenged by player 1, while the creation of a two-country bloc would be
rejected by player 2.

AB provide a spectacular application of the landscape theory to European al-
liances prior to World War II. By using the Correlates of War data and estimating
the propensity for cooperation based on ethnic and border conflicts, history, etc., AB
calibrate a matrix P to conclude that that there were two stable configurations. One
is the expected partition to the Axis and Allies of World War II, while the other sep-
arates USSR, Yugoslavia and Greece from the rest of Europe! Axelrod et al. (1995)
also illustrate and test the landscape theory by estimating the choices of nine com-
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puter companies to join one of two alliances sponsoring competing UNIX operating
system standards in 1988.

Even though AB have not done that explicitly, it is natural to present their setting
in game-theoretical terms. Each actor i is a player with two available pure strategies
corresponding to two blocs, X and Y , and her payoff function is represented by her
frustration level derived from the two-bloc partition. Thus, after minor adjustments,
proper reformulation, and clarifications, AB in fact show the existence of a pure
strategies Nash equilibrium in landscape games. As Bennett (2000, p. 51) points out:
”A local optimum is defined as a configuration for which every adjacent configuration
has higher (worse) energy. When the system reaches one of those points, no further
improvement in energy is possible given a single step (change of coalition by one
actor). This optimum is akin to a Nash equilibrium in game theory, wherein no
single actor can improve its own payoff by choosing a different move.” Interestingly
enough, the AB energy function E could be viewed as a potential, so that symmetric
landscape games belong to the class of potential games examined by Monderer and
Shapley (1996).

Notice that landscape games belong to the class of hedonic games pioneered by
Banerjee, Konishi and Sönmez (2001) and Bogomolnaia and Jackson (2002). Hedonic
games are coalition formation games, where the payoff of any player depends solely
upon the composition of the coalition to which she belongs, and a strategic choice
made by the coalition does not impact its members’ payoffs. This is the case for
landscape games, where each player possesses a precise evaluation of every potential
partner and then ranks groups according to the sum of her individual evaluations of all
members of the group she may join. In the case of equal values of the strength param-
eter si for all countries, this model belongs to the class of additively separable games
in Banerjee, Konishi and Sönmez (2001). By constructing a potential function, as in
AB, Bogomolnaia and Jackson (2002) show that the symmetric additively separable
hedonic games, including the landscape games, admit a Nash stable configuration.

In this paper, we consider the class of landscape games that expands the AB
framework in two aspects. First, we allow for an arbitrary number of blocs to form,
without limiting ourselves to two-bloc configurations.1 The configurations with more
than two blocs have a place in various environments. In fact, during the Cold War
between East and West that followed the end of the World War II, an important role
has been played by the third bloc of non-aligned countries. And nowdays, when the
world is often described as a multi-polar environment, the study of multi-bloc settings
becomes even more relevant. Another distinction with regard to the AB model is that
we expand the notion of incremental or gradual deviations in AB, in which only one
country at a time was allowed to switch its bloc membership. In our framework we
take the gradual approach further by allowing several countries to switch their blocs

1See Florian and Galam (2000) for a discussion on a three-bloc extension of the landscape theory.
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at the same time. However, the cost of absorption of new members from different
blocs could be quite high. Thus, a switch will be allowed only for a subgroup from one
bloc to another. We call such a deviation gradual and define a landscape equilibrium
as a configuration immune to gradual deviations. Note that individual deviations are
obviously allowed under the umbrella of gradualism.

Our main result shows that, under the symmetry assumption, there is a landscape
equilibrium. Our proof relies on the potential approach. While our game itself is not
a potential game, we show that it is strategically equivalent to a potential game. That
is our game admits a weighted potential in Monderer and Shapley’s (1996) terminol-
ogy. The application of the potential approach allows us to obtain even a stronger
result, namely the existence of a Pareto optimal landscape equilibrium. It is impor-
tant pointing out that the existence of a Pareto optimal landscape equilibrium rules
out an emergence of prisoner’s dilemma type of situation, where countries acting in
their own self-interest generate a suboptimal outcome. Interestingly, some aspects of
Pareto optimality have been discussed by AB, who searched for the global optimum
as the lowest energy level of any configuration. Since the concept of landscape equi-
librium is stronger than Nash equilibrium, our result reconfirms the existence of a
Nash equilibrium in landscape games. On the other hand, we also consider a more
demanding notion of strong Nash equilibrium introduced by Aumann (1959), which
requites immunity against any deviation by any group of players. However, as is im-
plied by a result in Banerjee, Konishi and Sönmez (2001), a strong Nash equilibrium
in landscape games may fail to exist. Thus, the unrestricted extension of the set of
feasible deviations not only violates the concept of gradualism, but also diminishes
the likelihood of obtaining a meaningful existence result.

The paper is organized as follows. In the next section we offer a brief review of
the literature. In Section 3 we present a model and the necessary definitions. In
Section 4 we state and prove our result on existence of a Pareto optimal landscape
equilibrium. In Section 5 we discuss the links of our equilibrium concept with other
modifications of Nash equilibrium.

2 Related Literature

The main feature of landscape games examined in this paper is that the strategic
decisions made by players are driven by their pairwise evaluations of other players.
The environments with such a property were widely studied in the literature. In the
international relations setting, Bueno de Mesquita (1975, 1981) constructed a matrix
that captures the proximity between pairs of nations according to their alliances on
defense issues and defined “indicators of tightness” which are used as a key determi-
nant to evaluate the war proneness of the international system. Le Breton and Weber
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(1994) consider such a setting in the case where only a two-player coalitions can be
formed. Desmet et al. (2011) consider a nation formation game where pairwise he-
donic heterogeneity is described by the matrix of genetic distances between nations
as calculated by scholars in population genetics.

The family of landscape games belongs to the class of hedonic games studied by
Banerjee, Konishi and Sönmez (2001) and Bogomonalia and Jackson (2002), where the
payoff of every player solely depends on the composition of the coalition she belongs
to. In fact, landscape games are strategically equivalent to the additively separable
hedonic games. In their study of hedonic games, both Banerjee, Konishi and Sönmez
(2001) and Bogomonalia and Jackson (2002) have shown that various requirements
of stability may yield the nonexistence of stable profiles. Banerjee, Konishi and
Sönmez (2001) also derive sufficient conditions for a hedonic game to be core stable.
Bogomolnaia and Jackson (2001) derive the existence results with regard to two other
notions of coalitional stability. Both notions they examine, that of individual stability
and contractual stability, are weaker than Nash stability.2 Milchtaich and Winter
(2002) demonstrate that a coalition formation game in which each player is identified
by a one dimensional characteristic (status) and player’s payoff is a decreasing function
of the average distance between her status and that of other players in the group,
may fail to admit a strongly stable configuration. A possibility of the nonexistence
of a strong Nash equilibrium has been reinforced by Kukushkin (2019) for a different
variant of the status game.

Nash equilibria and its refinements have also been investigated for various families
of congestion games. When all non-diagonal entries pij are negative, our game is a
non-anonymous congestion game a la Milchtaich (1996), where all individuals are
adversly impacted by the presence of others in their coalition3. Any such congestion
game belongs to the class of games considered by Quint and Shubik (1994), Milchtaich
(1996) and Konishi, Le Breton and Weber (1997a,b), who prove the existence of a
Nash equilibrium in pure strategies for anonymous congestion games. For the latter
class of games Konishi, Le Breton and Weber (1997a), in fact, show the existence of
a strong Nash equilibrium. Our game is also stragically equivalent to a congestion
game a la Rosenthal (1973)4, where players do not possess an a priori defined set of
strategies (actually, a strategy is a path on network). The payoff of a player is defined

2In this setting, Nash and core stability are logically independent. An equivalent notion of strong
Nash equilibrium in the context of hedonic games, called strong stability in Milchtaich and Winter
(2002), allows deviating players to join existing blocs. At the same time, the core stability requires
that all deviating players select an empty slot, i.e., a previously unused alternative.

3Obviously, if all off-diagonal entries of the matrix P are positive, the grand coalition represents
a unique Pareto efficient Nash equilibrium, as well as a strong Nash equilibrium of our game. We
are grateful to an anonymous referee for pointing out the correct statement in this regard.

4The congestion games considered in Rosenthal (1973) differ from those considered by Milchtaich
(1996).
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as the sum of her payoffs on each segment of the path that she ultimately selects.
Assuming that on any given segment the payoffs of the players who have access to that
segment are identical, the seminal contribution of Rosenthal (1973) shows that any
game in his class is a potential game, and, thus, admits a Nash equilibrium in pure
strategies. This linkage was later systematically explored by Monderer and Shapley
(1996).

Note that Nash equilibria in these types of games do not need to be strong. To
address this point, Holzman and Law-Yone (1997) introduce the notion of strong
potential and obtain conditions on the network that guarantee the existence of a
strong Nash equilibria. This topic is further explored in Voorneveld et al. (1999) and
Harks, Klimm and Möhring (2013). Finally, we would like to point out that strong
Nash equilibria has recently received a lot of attention in algorithmic game theory.5

3 The Model and Definitions

The landscape game Γ0 is defined as follows. Let N = {1, 2, . . . , n} be a finite set
of players. Each player i is associated with the positive value si which represents
her influence, or in the case of countries, the population size or military power. For
every pair of players i and j from N there is a value p0ij (positive or negative) that
represents the strength of ties between i and j and their benefit of being members of
the same coalition. It is assumed that this value is symmetric for every pair i and
j, i.e., p0ij = p0ji with p0ii = 0 for every player i. The data on pairwise propensities is
therefore represented by the symmetric n× n matrix P .

The set of alternatives X = {x1, . . . , xm} is common for all players. Each player
i ∈ N chooses an alternative xi ∈ X.6 Two players i and j belong to the same
bloc if xi = xj. A vector of players’ choices x = (x1, . . . , xn) generates the partition
π(x) of the set N , which consists of no more than m non-empty blocs. We denote
Gi(x) ∈ π(x) the bloc that contains player i.

The payoff U0
i (x), i ∈ N , of each player solely depends upon the bloc to which

she belongs7. More specifically we assume that

U0
i (x) =

∑
j∈Gi(x)

p0ijsj. (1)

We shall analyze the stability of emerging bloc formations. To do so, we need
to examine a threat of feasible deviations. For a given strategy profile x, a group of

5See, e.g., Andelman, Feldman and Mansour (2009), Chien and Sinclair (2009), Epstein, Feldman
and Mansour (2009) who compute strong versions of the price of anarchy for various classes of games.

6The lower and upper indices indicate players and alternatives, respectively. The expression
xi ∈ X means that there is xk ∈ X such that xi = xk.

7Note that in our paper, we use a more common notion of utility rather than frustation. The
utility maximization and the frustration minimization are, obviously, equivalent objectives.
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players S would deviate if each member i of S would switch to another bloc, while
raising her utility. Formally,

Definition 1: Deviation: Let a strategy profile x = (x1, . . . , xn) be given. A (feasi-
ble) deviation from x by a group of players S is a profile x′ =

(
{x′i}i∈S, {xi}i 6∈S

)
consisting of “new” choices for players in S and unaltered choices for the rest
of the players. It is profitable if:

U0
i (x′) > U0

i (x) for all i ∈ S.

However, in our setting, as in many others, one needs to impose some restrictions
on feasible deviations. The coordination challenges, switching costs and other factors
may limit the size and the composition of deviating groups. In fact, AB argued for
need for incrementalism and allowed only for one single actor to switch bloc. Thus,
we first consider the case where the only feasible deviating coalitions are singletones.
It immediately yields the notion of Nash equilibrium.

Definition 2: Nash equilibrium: A strategic profile x = (x1, . . . , xn) is a Nash
equilibrium if for all i ∈ N , there is no profitable deviation from x by an
individual i in N .

Following AB, we limit the range of feasible deviations while allowing for a wider
set of deviations than mere singletons. In our view, the main bulk of bloc formation
costs in the landscape theory boils down to bloc costs incurred by the absorption of
new members. To mitigate these costs, any bloc A is allowed to absorb members from
only one other bloc. Thus, we rule out the situation where members from two other
different blocs switch to A. It is important to point out that no country should be
prevented from switching to a bloc of its choice. What we examine here is the first
stage of a possible realignment process.

Definition 3: Gradualism and Landscape Equilibrium: Let strategy profile x =
(x1, . . . , xn) be given. Assume that the strategy profile x′ represents a deviation
from x by a group of players S. The deviation is called gradual if the following
condition is satisfied for every of two players i and j in S:

(GR) If i, j ∈ S and x′i = x′j then xi = xj.

A profile x is called a landscape equilibrium if it does not allow a profitable
gradual deviation.

It would be useful to recall the notion of a strong Nash equilibrium (Aumann
(1959)), which is immune against the unrestricted set of coalitional deviations.
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Definition 4: Strong Nash Equilibrium: A strategy profile x = (x1, . . . , xn) is a
strong Nash equilibrium if there is no S ⊆ N that profitably deviates from x.

Finally, we use the standard notion of strong Pareto optimality:

Definition 5: Strong Pareto Optimality: A profile x is strongly Pareto optimal
if there is no other strategy profile x′ such that U0

i (x′) ≥ U0
i (x) for all i ∈ N

with a strict inequality for at least one i.

4 The Main Result

Our main result is:

Theorem: The game Γ0 admits a strongly Pareto optimal landscape equilibrium.

Proof of Theorem: We proceed in three steps.

First, we modify the game Γ0 by multiplying the utility function U0
i for each player

i ∈ N by i’s influence parameter si:

siU
0
i (x) =

∑
j∈Gi(x)

p0ijsisj.

While this modification does not alter the equilibrium structure of the game8, it makes
the summation term p0ijsisj symmetric in i and j: p0ijsisj = p0jisjsi.We therefore define
the game Γ that differs from Γ0 only with respect to individual utility functions where
for each i ∈ N

Ui(x) =
∑

j∈Gi(x)

pij, (2)

with
pij = p0ijsisj

for every pair of players i and j.

Second, we demonstrate that if a profile y is subject to a profitable gradual coali-
tional deviation by coalition C, satisfying (GR), then there exists a coalition C ′ ⊂ C
(possibly, C itself), that profitably deviates from y via profile y′, and in the same
time, in addition to (GR), also satisfies the following condition (G):

(G) for any i, j ∈ C ′ the equality yi = yj implies y′i = y′j.

8As pointed out by an anonymous referee and indicated in the introduction, the game Γ0 is not
necessarily a potential game, while Γ is. Thus, the game Γ0 admits a weighted potential (Monderer
and Shapley (1996)).
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(G) means that deviating members of the same bloc should stay in the same bloc
after the deviation as well. Formally,

Lemma: Let strategy profile y be given. Assume that there is a profitable gradual
deviation by coalition C from y, that satisfies (GR). Then there is a coalition
C ′ ⊂ C that allows a profitable deviation from y that satisfies both (GR) and
(G).

Proof of Lemma: Take a strategy profile y. Assume that there is a profitable
gradual deviation by coalition C from y via profile y′ =

(
{y′i}i∈C , {yj}j 6∈C

)
that

satisfies (GR).
For every alternative j = 1, . . . ,m, denote by Cj the set of players who chose

alternative xj at y and switched to a different alternative (bloc) at y′. Denote by
J ⊂ M the list of blocs j for which Cj is nonempty. (There is, at least, one such
bloc). For every j ∈ J denote by K(j) the list of blocs which are joined at y′ by, at
least, one nember of Cj. There are two cases to consider.

Case 1.
⋃

j∈J Kj ⊂ J . If for some j ∈ J , Kj contains more than one element, then
according to the pigeonhole principle, players from two different blocs at y join the
same bloc at y′, contradicting (GR). Thus, every K(j) consists of one bloc for every
j ∈ J . That is, the deviating coalition C satisfies (G).

Case 2. For at least one j ∈ J , Kj contains a bloc k, which is not in J . Thus,
the set C ′

j = {i ∈ Cj : y′i = xk} is nonempty. Consider the shift of all members of
C ′

j from xj to xk. The condition (GR) guarantees that no other players join xk at y′.
Note that bloc k at y is either empty or consists of players who stayed put under the
original deviation of coalition C. In both cases the payoffs of members of C ′

j are the

same under y′ and y′′, where y′′ =
(
{y′i}i∈C′

j
, {yj}j 6∈C′

j

)
. Thus, the deviation of C ′

j via

y′′ is profitable and obviously satisfies (GR) and (G). Q.E.D.

Third, we introduce the utilitarian social welfare function

P(x) ≡
∑
i∈N

Ui (x) ,

and show that it is a strong landscape potential in the following sense: If there is
a profitable deviation of group S from x via x′ satisfying (GR) and (G) in game Γ,
then P(x′) > P(x).

Let x̃ be the maximum of the function P(x) over the finite set of all strategy
profiles. Obviously, x̃ is strongly Pareto optimal. We shall now demonstrate that x
is immune against coalitional deviations satisfying (GR) and (G). This will complete
the proof of our theorem, as by the lemma, any profitable deviation from x satisfying
(GR) induces a profitable deviation satisfying both (GR) and (G).
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Suppose, in negation, that there is a coalition S that profitably deviates from x̃ via
x′, while satisfying (GR) and (G). We shall show this deviation results in the change
in the potential, which is equal to the total change in the utilities of the deviated
players multiplied by two:

P(x̃)−P(x′) = 2
∑
i∈S

(Ui(x̃)− Ui(x
′)). (3)

In fact, equation (3) holds for arbitrary x̃ and x′ such that x′ is obtained from x̃
by deviation of coalition S, which satisfies both (GR) and (G). However, to prove
the Theorem, we utilize (3) only for the maximum of the potential x̃ from which the
coalition S profitably deviates via the strategy profile x′. Indeed, the gain for all
i ∈ S implies that the right hand side of (3) is negative. The latter would contradict
the fact that x̃ is the maximum of the potential. The rest of the proof is focused on
deriving equation (3).

Players’ choices at the maximum x̃ induce the partition of the set N onto m (not
necessarily nonempty) coalitions. Denote by Hj(x̃), j = 1, . . . ,m the set of players
i ∈ N who choose the strategy x̃i = xj in X.

For every pair of alternatives xk 6= xl in X let T kl ⊂ S be the set of players who
changed their choice from xk to xl. Then there are (at most) m(m− 1) such groups.
For every xk ∈ X denote three sets of players :

Qk — those who left the bloc that chose xk at x̃: Qk = ∪l 6=kT
kl,

Rk — those who choose xk at x′ but not at x̃: Rk = ∪l 6=kT
lk,

Ψk — those who choose xk at both x′ and x̃.
Note that Ψk = Gk(x̃) \Qk. (Recall that Gk(x̃) is the set of players whose choice

coincides with that of player k at x̃). Since each player from T kl ⊂ S increases her
payoff by switching from xk to xl, it follows that

Ui(x
′)− Ui(x̃) > 0 (4)

for all i ∈ T kl.
To simplify the notation, we introduce the mapping σ(·, ·) : N ×N −→ < which

assigns a real number to any two subsets N1 and N2 of N as follows:

σ(N1, N2) =
∑
i∈N1

∑
j∈N2

pij.

In particular, for every i ∈ N and a strategy profile x we have

σ({i}, Gi(x)) =
∑

j∈Gi(x)

pij = Ui(x). (5)

Moreover, the symmetry of P induces the symmetry of σ:

σ(N1, N2) = σ(N2, N1). (6)
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In addition, for every triple N1, N2, N3 ⊂ N , we have

σ(N1, N2 ∪N3) = σ(N1, N2) + σ(N1, N3) (7)

We extend the notation σ(N1, N2) to the case of N1 = ∅ or/and N2 = ∅ by assigning
σ(∅, N2) = σ(N1, ∅) = σ(∅, ∅) = 0.

Suppose that player i switches from xk to xl. Then combining observation (5)
with the decompositions

Gk(x̃) = Ψk ∪mr=1,r 6=k T
kr and Gl(x′) = Ψl ∪mq=1,q 6=l T

ql,

we rewrite inequality (4) in the following way:

σ({i},Ψl ∪mq=1,q 6=l T
ql)− σ({i},Ψk ∪mr=1,r 6=k T

kr) > 0 for all i ∈ T kl. (8)

Summing up inequalities (8) over all i ∈ T kl, we have

σ(T kl,Ψl ∪mq=1,q 6=l T
ql) > σ(T kl,Ψk ∪mr=1,r 6=k T

kr). (9)

Let us use the symmetry condition (6) and the decomposition property (7) of σ and
apply them to equation (9):

σ(T kl,Ψl) +
m∑

q=1,q 6=l

σ(T kl, T ql) > σ(T kl,Ψk) +
m∑

r=1,r 6=k

σ(T kl, T kr). (10)

Condition (GR) does not allow players from two different blocs at x̃ to join the same
bloc at x′, i. e., either T kl or T ql is empty set for each pair (T kl, T ql), q = 1, . . . ,m,
q 6= l, q 6= k. The corresponding terms σ(T kl, T ql) are equal to zero. In the same
way, according to (G), σ(T kl, T kr) = 0, r = 1, . . . ,m, r 6= l, r 6= k. Therefore, (10) is
simplified to

σ(T kl,Ψl) > σ(T kl,Ψk). (11)

There are m(m − 1) − 1 (not necessarily nonempty) other groups of players from S
that alter their strategies and raise their payoff by shifting from x̃ to x′. Summing
up all inequalities (11) obtained for different pairs (k, l) we end up with

∑
i∈S

(
Ui(x

′)− Ui(x̃)
)

=
m∑
q=1

(
σ(Rq,Ψq)− σ(Qq,Ψq)

)
> 0. (12)

Now we evaluate the difference of the potential at the two points that represent the
players’ choices before and after the deviation:

P(x̃)−P(x′) =
m∑
q=1

σ(Ψq ∪Qq,Ψq ∪Qq)−
m∑
q=1

σ(Ψq ∪Rq,Ψq ∪Rq).
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Once again, the symmetry property (6) is applied and the terms σ(Ψq,Ψq) are can-
celled out. Then

P(x̃)−P(x′) =
m∑
q=1

(
2σ(Qq,Ψq) + σ(Qq, Qq)

)
−

m∑
q=1

(
2σ(Rq,Ψq) + σ(Rq, Rq)

)
. (13)

The conditions (GR) and (G) allow us to conclude that

m∑
q=1

σ(Qq, Qq)−
m∑
q=1

σ(Rq, Rq) = 0. (14)

Indeed, each (non-empty) Rq consists of a single sub-group T kq: for any q = 1, . . . ,m
there is k = k(q): Rq = T kq (the existence of the second sub-group would violate
condition (GR)). According to (G), each Qq also consists of a single sub-group T ql:
for any q = 1, . . . ,m there is l = l(q): Qq = T ql. Thus, the both sums in (14) consist
of the same terms. From (13) and (14) we have

P(x̃)−P(x′) = 2
m∑
q=1

(
σ(Qq,Ψq)− σ(Rq,Ψq)

)
. (15)

Combining (12) and (15), we obtain (3) to complete the proof of Theorem. Q.E.D.

5 Comments

Let us first offer some comments on the connection between landscape equilibria
and the two other equilibrium notions introduced above. First, the notion of gradual
deviation in Definition 3 is stronger than individual deviations, and, therefore, the set
of landscape equilibria is smaller than the set of Nash equilibria. Thus, Theorem yields
the existence of a Nash equilibrium in pure strategies as well. The following example
shows that, in general, the sets of landscape and Nash equilibria do not coincide, and
a Nash equilibrium does not necessarily constitute a landscape equilibrium.

Example: Consider the game Γ0 with four players and two alternatives (n = 4,m =
2). The influence parameter si is assumed to be equal to 1 for all players, and
the propensity matrix P is given by:

P =


0 1000 −100 −50

1000 0 −100 −50
−100 −100 0 −400
−50 −50 −400 0


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It is easy to see that the strategy profile (a, a, a, b) is a Nash equilibrium. How-
ever, players 1 and 2 would benefit by switching to b and joining player 4.
By Definition 3, it is a profitable gradual deviation, and this profile is not a
landscape equilibrium. Notice that in this example the profile (a, a, b, a) is a
landscape equilibrium.

Similarly, the notion of gradual deviation is weaker than the unrestricted notion
of deviation that yields strong Nash equilibrium. Thus, the set of landscape equilibria
is larger than the set of strong Nash equilibria, and natural question is whether our
assumptions yield the existence of strong Nash equilibria. A negative answer to this
question follows from the result in Banerjee, by Konishi and Sönmez (2001) which
asserts that a symmetric additively separable hedonic game may fail to admit a core
stable configuration. Indeed, if the number of alternatives m exceeds the number of
players n, a strong Nash equilibrium is necessarily core stable.9 Thus, their example
of nonexistence of a core stable configuration implies that the set of strong Nash
equilibria in our model could be empty. This observation reinforces the importance
of examination of a weaker concept of landscape equilibria.

Finally, let us point out that in the case of two blocs (m = 2) considered by
AB, all profitable deviations are gradual. Thus, the sets of landscape equilibria and
strong Nash equilibria coincide and our Theorem can be used to show the existence
of a strong Nash equilibria in the case of two blocs (see Dower at al. (2020)).
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