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Abstract

We consider quasi likelihood ratio (QLR) tests for restrictions on parameters un-
der potential model misspecification. For convex M-estimation, including quantile
regression, we propose a general and simple nonparametric bootstrap procedure that
yields asymptotically valid critical values. The method modifies the bootstrap ob-
jective function to mimic what happens under the null hypothesis. When testing for
an univariate restriction, we show how the test statistic can be made asymptotically
pivotal. Our bootstrap can then provide asymptotic refinements as illustrated for a
linear regression model. A Monte-Carlo study and an empirical application illustrate
that double bootstrap of the QLR test controls level well and is powerful.
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1 Introduction

Our main goal is to develop a consistent bootstrap procedure for quasi likelihood ratio tests

with general convex M-estimation under potential model misspecification. As a leading

example, consider the linear regression model

yi = x′iθ + εi E (εi|xi) = 0 Var(εi|xi) = σ2 i = 1, ..., n

where zi = (yi, xi), i = 1, ..., n are independent and identically distributed. Under these

assumptions, the natural estimator is least-squares. Tests of restrictions on parameters

can be entertained by a standard Wald test. Alternatively, one can built a test on the

difference between the least-squares criterion with and without the restrictions. Because

this is reminiscent of a likelihood-ratio test, we label such a test a Quasi Likelihood Ratio

(QLR) test.1

The main advantages of the QLR test are (i) it avoids estimation of the asymptotic

covariance matrix of estimators, by contrast to Wald and score tests, (ii) it is transformation

equivariant. However, under misspecification, i.e. outside model assumptions, it is generally

not asymptotically pivotal due to the potential failure of (the analog of) Bartlett’s second

identity. In our linear regression example, misspecification can occur because (i) errors

are heteroscedastic, and the conditional variance function Var (ε|x) is of unknown form,

or (ii) the conditional expectation E (y|x) is not linear in x. The study of potentially

misspecified models dates back at least to Huber (1967) and Eicker (1967). For conditional

ML, Gourieroux, Monfort, and Trognon (1984) have shown that the parameters of the

1The terminology does not seem to be settled in the literature. Some authors prefer “distance metric

test,” see Newey and McFadden (1994), others simply use “likelihood ratio test,” see Spokoiny and Zhilova

(2015).
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conditional mean can be estimated consistently whenever it is well specified even if the

likelihood itself is not. In particular, as is well known, ordinary least-squares consistently

estimate mean parameters in the presence of heteroscedasticity of unknown form. If the true

conditional expectation is nonlinear, the estimator provides the best linear approximation

to the true conditional expectation that can be of interest on its own, see White (1980).

Building on Eicker (1967), White (1980, 1982) and Royall (1986) have shown how Wald

and score statistics can be rendered robust to misspecification. The behavior of likelihood-

ratio tests under misspecification is considered by Foutz and Srivastava (1977) and Kent

(1982) for unconditional Maximum Likelihood (ML), and Vuong (1989) for conditional ML.

Marcellino and Rossi (2008) studied QLR tests in M-estimation.

In this work, we adress two questions: (i) can we design a general consistent bootstrap

method for QLR tests under misspecification? (ii) can we obtain second-order correctness?

Question (i) has received only a negative answer up to now. Indeed, the issue is intricate

because of the non pivotalness of the statistic and the fact that using model assumptions

to resample observations cannot replicate the statistic’s behavior under misspecification.

Recent work on this topic, see below, considers a bootstrap QLR statistic that shifts the

original null hypothesis to one that is fulfilled by the data. E.g. when testing θ = 0, the

bootstrap statistic is designed to test θ = θ̂, where the latter is the original estimator. As

the QLR statistic is not pivotal, the bootstrap statistic for the modified null hypothesis is

not estimating correctly the distribution of the original statistic under the null if the null

hypothesis does not hold. Our simulations shows that in moderate samples this may create

large size distorsions even when the nul hypothesis holds. This issue is related to the first

guideline for bootstrap hypothesis testing put forward by Hall and Wilson (1991) that “care

should be taken to ensure that even if the data might be drawn from a population that fails
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to satisfy H0, resampling is done in a way that reflects H0.” Therefore, to obtain bootstrap

consistency under misspecification, we use the naive bootstrap and a statistic designed to

test the original null hypothesis, but we modify the criterion to be optimized to make the

bootstrap statistic behave as if the original null hypothesis H0 were true. We label our

method bootstrapping QLR under the null hypothesis. Our method allows to follow the

first guideline of Hall and Wilson (1991) without relying on model assumptions, contrary

the intuition that “estimation of the appropriate null distribution cannot be done fully

nonparametrically, but requires some assumptions about the structure of the underlying

family of models,” see Tibshirani (1992).

To Question (ii), we provide a partial positive answer. We point out that when testing

for a single restriction, a robust QLR statistic, which is asymptotically chi-square under

misspecification, easily obtains. This was already noted by Stafford (1996) but seems to

have been overlooked. We show that our bootstrap method applied to the robust QLR

yields asymptotic second-order correctness in the linear regression model.

We consider as another leading example linear quantile regression, which is particularly

interesting because estimation of the asymptotic covariance matrix of estimators must rely

on nonparametric density estimation and a QLR test avoids such estimation. Our sim-

ulation study consider both mean and quantile regressions and illustrates that imposing

the original null hypothesis in the bootstrap world results in a good size control under

misspecification. Our study also compare the small sample performance of two competing

procedures when testing a single restriction, namely bootstrapping the robust QLR statis-

tic or double bootstrapping the non-robust QLR statistic, see Beran (1988). Our findings

suggest that the first procedure may be preferable in moderate samples, because it avoids

estimation of Hessian and score variance matrices. This appears in line with the conclu-
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sions of Stafford (1996), who states “the use of a model-robust variance estimate for the

signed square root, score or Wald statistic, while leaving bias and skewness characteristics

relatively unchanged, can increase variability considerably.”

We now review the literature on robust bootstrap procedures. Contrary to QLR statis-

tics, Wald and score statistics can be rendered asymptotically pivotal under misspecifica-

tion. However their small sample behavior are sensitive to the implementation details and

the design of the data, see Mackinnon and White (1985) and Chesher and Austin (1991)

among others. Bootstrapping robust tests under the null is not often entertained, but

can be dealt with a model-dependent method. In linear regression, resampling residuals

(possibly obtained under the null) is valid under model assumptions but fail under het-

eroscedasticity. Wild residual bootstrap has been proposed to deal with heteroscedasticity

of unknown form, see Wu (1986), Liu (1988), and Mammen (1992). But Kline and Santos

(2012) pointed out that it does not do better than the asymptotic approximation if the

conditional expectation is not linear, as linearity of the regression function is imposed when

generating bootstrap samples.

Weighted bootstrap methods have also been investigated. One method introduces

weights in the function to be optimized for estimation. Its consistency is studied by Bose

and Chatterjee (2001), Jin, Ying, and Wei (2001), and Bose and Chatterjee (2003) for

general convex M-estimation. Another method introduces weights in the estimating equa-

tions, see Chatterjee and Bose (2005). Few work establishes second-order correctness under

heteroscedasticity. Bertail and Barbe (1995) provide asymptotic refinements for a general

third-order differentiable functional, such as ones of interest in linear regression, however

they do not consider the behavior of estimators under misspecification and their results do

not apply to quantiles. Das and Lahiri (2019) show second-order correctness of weighted
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bootstrap M-estimator for the robust t-test in the heteroscedastic linear regression with a

non random design, but do not consider mean misspecification. To date, only the naive

nonparametric bootstrap of Efron (1979) has been shown to be second-order correct under

general misspecification when applied to the robust t-test, see Hall and Horowitz (1996).

Our results go in the same direction, provided that we bootstrap QLR under the null. We

further consider general QLR tests for general convex non necessarily differentiable criteria

under a large variety of misspecifications.

We now review work on bootstrapping QLR tests. Camponovo (2016) establishes

higher-order improvements of a block bootstrap test in a dependent data context, when

shifting the null hypothesis to one which holds in the bootstrap world. However he assumes

the equivalent of second Bartlett’s identity (up to an estimable scalar quantity, see his As-

sumption 3.2), which typically does not hold under misspecification. Spokoiny and Zhilova

(2015) study the multiplier bootstrap for a shifted null hypothesis, allowing for a large

number of parameters, and show that it may not be valid for misspecified models. Chen

and Pouzo (2009) apply a similar method in a semiparametric context. For quantile regres-

sion, Angrist, Chernozhukov, and Fernández-Val (2006) rely on subsampling. Lee and Yang

(2020) shows consistency of the m out of n bootstraps of QLR tests from M-estimation.

In Section 2, we present our bootstrap method and we detail implementation for linear

regression and linear quantile regression. In Section 3, we first revisit previous results on the

QLR statistic under model misspecification for a convex but potentially non-differentiable

M-estimation criterion. We also show that when testing for a single restriction, a robust

QLR statistic, which is asymptotically chi-square under misspecification, easily obtains.

We then show consistency of our bootstrapped QLR test and we establish asymptotic

higher-order refinements of the bootstrap robust QLR test in the linear regression model.
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Section 4 gathers small sample evidence on the behavior of our method compared to ex-

isting methods. We then report some empirical results for quantile regression of children

birthweight. Section 5 concludes. Section 6 gathers our technical proofs. The Appendix

gathers details about our two main examples.

2 Bootstrapping QLR Under the Null

Let z ∈ Rk be a random vector with probability distribution P . Consider q(z, θ) a convex

criterion function from Rk×Rp to R and assume Q(θ) = E q(z, θ) admits a unique minimizer

θ†, where E denotes expectation with respect to P . We consider a general M-estimation

setup where, based on a random sample {zi, i = 1, . . . n} from z, the M-estimator of θ† is

θ̂n = arg min
Θ
Qn(θ) , Qn(θ) = n−1

n∑
i=1

q(zi, θ) .

The choice of the particular function q(z, θ) is based on the considered model: it can be a

log-density for a parametric model, the squared residual for a mean regression model, or

the check function applied to the residual for a quantile regression model, see below. Hence

our framework encompasses popular models such as logistic or Poisson regression, general-

ized linear models, exponential hazard rate regression, and Cox semiparametric regression

model. While the assumed model may be misspecified, the M-estimator converges under

standard assumptions to

θ† = arg min
Θ
Q(θ) , Q(θ) = E q(z, θ) . (2.1)

We consider testing linear restrictions on the parameter of the form

H0 : d′ (θ† − h) = 0 ,
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where d is a known p×r full rank matrix, r ≤ p, and h is a known vector in Rp. Depending

on what is more convenient, we can also consider the equivalent formulation

H0 : θ† = Hγ† + h ,

where H is a p× (p− r) full rank matrix such that d′H = 0. We study tests based on the

QLR statistic

QLRn = 2n
[
Qn(θ̂0

n)−Qn(θ̂n)
]
,

where we define the estimator under the null hypothesis as θ̂0
n = arg minΘ∩H0 Qn(θ) with

Θ ∩H0 = {θ ∈ Θ, d′ (θ − h) = 0}.

We assume that our convex criterion is well approximated by a quadratic function, that

is, there exists some score function D(zi, θ) and a matrix A(θ) such that we have, for any

t in a neighborhood of 0

Qn(θ† + t)−Qn(θ†) = n−1

n∑
i=1

D′(zi, θ)t+
1

2
t′A(θ)t+Rn(t) , (2.2)

where Rn(t) is a small reminder term, see our assumptions below. We also assume a similar

approximation holds around θ0
† . Let the empirical score function be the derivative of the

quadratic approximation of Qn(·) with respect to t,

Sn(θ) = n−1

n∑
i=1

D(zi, θ) .

If Qn(θ) is differentiable in θ, this is simply its derivative. If Qn(·) is not differentiable, Sn(θ)

is a subgradient of Qn(·) at θ. To bootstrap the QLR statistic, let Q∗n(θ) be the criterion

based on observations {z∗i , i = 1, . . . n} resampled with replacement from the original data.

We then consider the modified criterion

Q̂∗n(θ) = Q∗n(θ)− S ′n(θ̂0
n)(θ − θ̂0

n) . (2.3)
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The bootstrap and constrained bootstrap estimator are defined as

θ̂∗n = arg min
Θ
Q̂∗n(θ) and θ̂0∗

n = arg min
Θ∩H0

Q̂∗n(θ) .

The bootstrap QLR statistic is

QLR∗n = 2n
[
Q̂∗n(θ̂0∗

n )− Q̂∗n(θ̂∗n)
]

= 2n
[
Q∗n(θ̂0∗

n )−Q∗n(θ̂∗n)− S ′n(θ̂0
n)(θ̂0∗

n − θ̂∗n)
]
.

We label our method bootstrapping QLR under the null because it makes the bootstrap

estimator θ̂∗n and QLR∗n behave as if the restrictions were true. Indeed the first-order

characterization of a convex function states that

Q(θ)−∇′θQ(θ0
†)(θ − θ0

†) ≥ Q(θ0
†) .

Our modified empirical criterion takes a similar form so that the bootstrap criterion should

be approximately minimized at θ̂0
n. Our method equates the derivatives of the quadratic

approximation of Q∗n(θ) at θ̂∗n to Sn(θ̂0
n). Hall and Horowitz (1996) and Andrews (2002)

study related “recentering” methods for constructing Wald statistics. The formers use it

to account for the non-nullity of the empirical moments in overidentified models estimated

by Generalized Method of Moments, the latter because the average score evaluated using

block-bootstrapped data can be different from zero. Here we use it instead to account for

the fact that the score evaluated at the constrained estimator is not zero.

Example 1 : Least-Squares Regression. Consider the (pseudo) linear model

yi = x′iθ + εi i = 1, ..., n

where zi = (yi, xi), i = 1, ..., n are independent and identically distributed from P . We

allow for conditional heteroscedasticity in the error term ε and for correlation between ε
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and x. The unique minimizer of Q(θ) = E (y − x′θ)2/2 is given by θ† = E −1(xx′)E (x′y).

The corresponding least-squares estimator is θ̂n = E −1
n (xx′)E n(x′y), where E n denotes

expectation with respect to the empirical distribution of the data Pn. θ̂n is simply the

plug-in estimator of θ† obtained by replacing P by Pn. Similarly, the constrained minimizer

of Q(θ) is

θ0
† = θ† − E −1(xx′)d

(
d′E −1(xx′)d

)−1
d′ (θ† − h) ,

and the constrained estimator is given by

θ̂0
n = θ̂n − E −1

n (xx′)d
(
d′E −1

n (xx′)d
)−1

d′
(
θ̂n − h

)
.

Moreover, as Qn(θ) is quadratic in θ and since θ̂n minimizes Qn(θ), we have

QLRn = 2n
[
Qn(θ̂0

n)−Qn(θ̂n)
]

= n
(
θ̂n − θ̂0

n

)
E n(xx′)

(
θ̂n − θ̂0

n

)′
=
(
d′
(
θ̂n − h

))′ (
d′E −1

n (xx′)d
)−1

d′
(
θ̂n − h

)
.

It is thus equal to a Wald or Score statistic for testing H0 up to the residual variance σ̂2.

In the bootstrap world, the modified criterion makes θ̂∗n converging to θ̂0
n as

θ̂∗n = E ∗−1

n (xx′)
(
E ∗n(xy) + Sn(θ̂0

n)
)

= E ∗−1

n (xx′)E ∗n(xy)− E ∗−1

n (xx′)E n(xx′)
(
θ̂n − θ̂0

n

)
,

where E ∗n denotes expectation with respect to the bootstrap distribution P ∗n . The bootstrap

QLR statistic is

QLR∗n = 2n
[
Q̂∗n(θ̂0∗

n )− Q̂∗n(θ̂∗n)
]

= n
(
θ̂∗n − θ̂0∗

n

)
E ∗n(xx′)

(
θ̂∗n − θ̂0∗

n

)′
=
(
d′
(
θ̂∗n − h

))′ (
d′E ∗−1

n (xx′)d
)−1

d′
(
θ̂∗n − h

)
.

It is similar to a Wald statistic, but based on an estimator θ̂∗n that behaves as if H0 was

true.
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Example 2 : Quantile Regression. Our assumptions allow for a non-differentiable

criterion. For quantile regression of order τ , see Koenker and Bassett (1978), q(y, x, θ) =

ρτ (y − x′θ), with

ρτ (u) = |u| [(1− τ)I (u < 0) + τI (u > 0)] = u (τ − I (u < 0)) .

For the median, τ = 1/2 and ρτ (u) = |u|
2
. In practice, estimation is performed solving the

dual problem

max
t
{y′t| −X ′t = 0, t ∈ [τ − 1, τ ]n} ,

where X is the matrix of observations on covariates, see Koenker (2005). At the optimum,

ti(θ̂n) = τ if yi − x′iθ̂n is positive, ti(θ̂n) = τ − 1 if it is negative, and the remaining

components are determined so that −X ′t(θ̂n) = 0. Theses value are, up to a constant, the

rank scores of the quantile regression, see Gutenbrunner and Jureckova (1992). The dual

of the restricted quantile regression writes

max
t
{(y −XH)′t| −H ′X ′t = 0, t ∈ [τ − 1, τ ]n} ,

where H is a p× (p− r) full rank matrix such that d′H = 0.

One issue with quantile regression is that the subgradient of the function ρτ (·) can be

arbitrarily defined at 0, yielding some indeterminacy. Asymptotically this should be ir-

relevant, however we have found that in practice, using the rank scores to define Sn(·)

gives better empirical results. Namely, we used Sn(θ̂n) = −X ′t(θ̂n)/n and Sn(θ̂0
n) =

−X ′t(θ̂0
n)/n. These fulfill the usual properties encountered for a differentiable criterion,

namely Sn(θ̂n) = 0 and H ′Sn(θ̂0
n) = 0. That is, the empirical score is zero for compo-

nents of the parameter space that are unconstrained. The modified optimization program

minθ
∑n

i=1 ρτ
(
y∗i − x∗

′
i θ
)
− S ′n(θ̂0

n)θ writes in dual form

max
t

{
y∗
′
t| −X∗′t = nSn(θ̂0

n), t ∈ [τ − 1, τ ]n
}
.
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Our bootstrap modified criterion can thus be easily computed in practice, even in this

non-differentiable case. Generalized linear models may be treated similarly.

3 QLR Test under Misspecification

3.1 Asymptotic Test

We here state results under misspecification with i.i.d. data without imposing differentiabil-

ity of the criterion. We also study the behavior of the test statistic under local alternatives.

We consider the following assumptions.

Assumption A. (a) q(z, θ) is convex in θ.

(b) Q(θ) = E q(z, θ) is twice differentiable, the parameter space Θ is an open convex of

Rp, and θ† = arg minΘ∩H0 Q(θ) is unique.

(c) d is full rank and θ0
† = arg minΘ∩H0 Q(θ) is unique.

Assumption B. (a) There exists a vector function D(z, θ) in Rp with

� ED(z, θ†) = 0.

� B(θ) = VarD(z, θ) is uniformly bounded and positive definite for θ in a neighborhood

of θ†.

� Let A(θ) = ∇θ,θ′Q(θ) and Rn(θ, t) = Qn(θ + t) − Qn(θ) − n−1
∑n

i=1 D
′(zi, θ)t. For

any θ in a neighborhood of θ†, A(θ) is positive definite, and as t→ 0

ERn(θ, t) =
1

2
t′A(θ)t+ o(‖t‖2) , n VarRn(θ, t) = o(‖t‖2) .

(b) A(θ) and B(θ) are continuous for θ in a neighborhood of θ†.
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We now comment on our assumptions. Assumption A ensures convexity and uniqueness

of restricted and unrestricted optima. Convexity ensures that Qn(·) does not have multiple

optima such that Sn(θ) = op(1), which could invalidate our approach, and in particular

make the bootstrap test not consistent. Similar phenomenon can yield inconsistency of

the score test, see e.g. Freedman (2007). Convexity can be checked in many instances,

including linear mean and quantile regression. Twice differentiability of Q(·) holds under

standard conditions, for instance in quantile regression when the error term has a density.

Condition (c) ensures that our restrictions are not redundant.

The quadratic approximation of Qn(θ + t) follows from the following arguments: (i)

D(·, θ) is a (not necessarily unique) subgradient of q(·, θ), (ii) E q(Z, θ + t) − E q(Z, θ) −

ED(z, θ)′t is, by a standard Taylor expansion 1
2
t′A(θ)t+o(‖t‖2) as t→ 0, (iii) the remaining

centered sample average based on the function is of a small order for t → 0. Assumption

B-(a) is true pointwise in t in a neighborhood of 0, and together with convexity will be

used to obtain an uniform expansion in our proofs. Our supplementary appendix contains

details on how our assumptions can be checked for the regression and quantile models.

Theorem 3.1. For a random sample {zi, i = 1, . . . n}, under Assumptions A and B,

(a) Under H0, QLRn
d−→
∑r

j=1 λjU
2
j , where U = (U1, . . . Ur)

′ is a vector of r independent

standard normal variables and λ is the vector of r eigenvalues of(
d′A−1

† d
)−1

d′A−1
† B†A

−1
† d , where A† = A (θ†) and B† = B (θ†) . (3.4)

(b) Under HA, QLRn /n
p−→ c > 0.

(c) Under HA,n : θ†,n = Hγ† + h + c/
√
n with d′c 6= 0, QLRn

d−→
∑r

j=1 λj(Uj + c̃j)
2,

where λ is the vector of eigenvalues of (3.4) with θ† = Hγ† + h and at least one c̃j is

not zero.
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When the second Bartlett’s identity holds, that is B† = A†, λ is a vector of ones and the

QLR statistic asymptotically follows a centered chi-square distribution with r degrees of

freedom. In a correctly specified linear regression, B† = σ2A† for homoscedastic errors with

variance σ2, and we can easily render QLR asymptotically pivotal. In general however, the

QLR statistic has a more involved asymptotic distribution under H0. Our characterization

of λ as the eigenvalues of the matrix (3.4) appears to be new, see Lien and Vuong (1987,

Lemma 2) for an alternative one in the linear regression model.

3.2 Robust QLR Test

We here focus on an univariate restriction for which one can generally build a robust

QLR statistic since λ is scalar. This is of particular empirical relevance for testing the

significance of a specific parameter component. Given a consistent estimator λ̂n, the robust

QLR statistic is

RQLRn =
QLRn

λ̂n

d−→χ2
1 under H0 ,

and a test can be entertained using standard critical values. Estimating λ requires con-

sistent estimation of A† and B†. One can use empirical analogs of the above matrices

evaluated at a consistent estimator of θ†. The quantity A−1
† B†A

−1
† happens to be the

asymptotic variance of θ̂n, which should be estimated to build the robust Wald and Score

statistics. Hence it is as easy (or as difficult) to build the robust QLR statistic than it is

to obtain robust Wald or Score statistics.

For testing a single restriction d′ (θ† − h) = 0 in linear regression, an estimator of λ is

easily obtained as

λ̂n =
d′E −1

n (xx′)ΣnE −1
n (xx′)d

d′E −1
n (xx′)d

with Σn = E n(xx′(y−x′θ̂n)2) = n−1

n∑
i=1

xix
′
i(yi − x′iθ̂n)2 ,
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see Eicker (1967) and White (1982). The numerator is the heteroscedasticity-robust vari-

ance estimator provided by most statistical software.

For quantile regression, A† = E (fε(0|x)xx′) depends on the conditional density of the

error term ε = y − x′θ† at 0. Powell (1991) proposes to use the estimator

1

nh

n∑
i=1

K

(
yi − x′iθ̂n

h

)
xix
′
i (3.5)

where K(·) is a density and h a bandwidth. Also B† = E
(
(τ − I(ε ≤ 0))2 xx′

)
can be

estimated by the Eicker-type estimator

1

n

n∑
i=1

(
τ − I(yi − x′iθ̂n ≤ 0)

)2

xix
′
i ,

see Kim and White (2003).

3.3 Bootstrap Test

For our bootstrap test, we need to make two supplementary assumptions. First we need a

linear approximation of Sn(·) around θ0
† . Second, our quadratic approximation should hold

around θ0
† when the original observations are replaced by z∗i , which are i.i.d from Pn.

We say that Hn(t) = op(1/
√
n) uniformly over op(1) neighborhoods of t to mean that

for each sequence of random variables un of order op(1) there exists a sequence of random

variables bn of order op(1) such that sup‖t‖≤un |Hn(t)| ≤ bn/
√
n.

Assumption C. R1n(t) = n−1
∑n

i=1 D(zi, θ
0
† + t)− n−1

∑n
i=1D(zi, θ

0
†) is such that

ER1n(t) = A(θ0
†)t+ o(‖t‖) as t→ 0 ,

R1n(t)− ER1n(t) = op(n
−1/2) uniformly in t over op(1) neighborhoods of 0 .

Moreover A(θ) is positive definite in a neighborhood of θ0
† .
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Assumption D. Let E|Z and Var|Z be expectation and variance conditional upon the orig-

inal sample and R∗n(θ, t) = Q∗n(θ + t)−Q∗n(θ)− n−1
∑n

i=1D
′(z∗i , θ)t. For any θ in a neigh-

borhood of θ0
† and as t→ 0

E |ZR∗n(θ, t) =
1

2
t′A(θ)t+ op(‖t‖2) , nVar|Z R

∗
n(θ, t) = op(‖t‖2) .

Moreover, A(θ) and B(θ) are continuous for θ in a neighborhood of θ0
† .

The linear approximation in Assumption C follows from the following arguments: (i) the

reminder term from a Taylor expansion yields ED(Z, θ0
†+t)−ED(Z, θ0

†)−A
(
θ0
†
)
t = o(‖t‖),

and (ii) what is left is a centered empirical process, which under mild conditions is an

op(n
−1/2) uniformly in t in a op(1) neighborhood of 0, see e.g. Sherman (1994). Assumption

D may be easily checked by using conditional arguments similar to the ones used to check

Assumption B, but replacing P by Pn. For instance, A(θ) will be replaced by a matrix

An(θ) that converges in P-probability to A(θ).

Our bootstrap test rejects H0 if QLRn > q∗1−α, where q∗1−α is the 1−α quantile of QLR∗n.

We first establish consistency of our bootstrap procedure.

Theorem 3.2. For a random sample {zi, i = 1, . . . n}, under Assumptions A, B, C, and

D,

(a) Under H0, supx

∣∣∣Pr
(

QLR∗n ≤ x
∣∣∣(yi, xi)i=1,...,n

)
− Pr (QLRn ≤ x)

∣∣∣ = op(1).

(b) Let q∗1−α be the conditional quantile of order (1 − α) of QLR∗n. Then under HA,

Pr
(
QLRn > q∗1−α

)
→ 1.

(c) Under HA,n, limn→∞ Pr
(
QLRn > q∗1−α

)
> α.
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For an univariate restriction, we can obtain an asymptotically pivotal statistic, so we

can hope to obtain asymptotic refinements. The next result confirms this holds for linear

regression, irrespective of whether the model is well specified.2 To our knowledge, the only

competing method that has been shown to yield asymptotic refinements under misspec-

ification is the nonparametric bootstrap t-test, see Hall and Horowitz (1996). From our

previous results,

RQLRn =
QLRn

λ̂n
= n

(
θ̂n − h

)′
d
(
d′E −1

n (xx′)ΣnE −1
n (xx′)d

)−1
d′
(
θ̂n − h

)
,

and similarly

RQLR∗n =
QLR∗n

λ̂∗n
=
(
θ̂∗n − h

)′
d
(
d′E ∗−1

n (xx′)Σ∗nE ∗−1
n (xx)d

)−1
d′
(
θ̂∗n − h

)
,

where Σ∗n = E ∗n(xx′(y − x′θ̂∗n)2) = n−1
∑n

i=1 x
∗
ix
∗′
i (y∗i − x∗

′
i θ̂
∗
n)2.

Theorem 3.3. Under the assumptions of Theorem 3.2 and

(a) the Cramer condition limt→∞ |E exp (i t d′E −1(xx′)x (y − x′θ†))| < 1,

(b) E (d′E −1(xx′)xy)
12
<∞ and E (d′E −1(xx′)xx′θ†)

12
<∞ ,

sup
x

∣∣∣Pr
(

RQLR∗n ≤ x
∣∣∣(yi, xi)i=1,...,n

)
− Pr (RQLRn ≤ x)

∣∣∣ = Op(n
−3/2) under H0 .

Moreover if q∗R,1−α is the 1− α quantile of the bootstrap distribution of RQLR∗n,

Pr
(
RQLRn ≤ q∗R,1−α

)
= 1− α +O(n−2) under H0 .

2We focus on least-squares regression, as the Edgeworth expansion for quantiles is typically non-standard

due to the lattice nature of the subgradient, see e.g. Falk and Janas (1992).
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The behavior of the bootstrap robust test under local and global alternatives is similar

to the one of the QLR test studied in Theorem 3.2. The Cramer condition automatically

holds if some components of x have an absolutely continuous part. It is minimal to ensure,

that the influence function of the functional appearing in the quadratic form of QLRn is non

lattice. The condition could be replaced by the sufficient multivariate Cramer condition

lim||u||→∞|E exp(iu′x(y−x′θ†)| < 1, which is however stronger. Moment conditions of order

12 ensure that the terms in the Edgeworth expansion of RQLRn depending on moments

of order up to 6 match the empirical ones in the bootstrap distribution up to Op(n
−1/2)

by a standard CLT argument. Such conditions are automatically implied by the existence

of higher moments for both y and x. Our results are similar to Hall and Horowitz (1996).

With Efron’s bootstrap, we believe that the obtained rates cannot be improved as can be

inferred from Hall and Mammen (1994).

4 Small Sample Evidence and Application

4.1 Simulations

We focused on inference on the coefficient β2 in the assumed linear model

yi = β0 + β1x1i + β2x2i + εi .

We generated the variable y according to the model

yi = β1x1i + β2x2i + ψx1ix2i + (1 + l|x2i|) ηi ,

where (β1, β2) = (0, 0). The variable x1 is standard Gaussian, x2 is independent lognormal

with mean 0 and variance 1, and η is independently distributed as a Student law. This
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specification provides us with an asymmetric covariate and generates observations with

high leverage, which can create serious obstacles to heteroscedasticity robust inference as

shown by Chesher and Austin (1991). The parameter l controls heteroscedasticity. When

ψ 6= 0, the linear conditional mean (or quantile) is misspecified. Due to the regressors’

independence, β2 is unchanged under misspecification of the conditional mean or median,

which is convenient when studying the tests’ behavior for ψ 6= 0. We considered values

of l = 0.5 and ψ = 0.5, which corresponds to moderate misspecifications that could go

unnoticed.

We ran 20000 simulations with n = 200. To speed up computations, we use the warp-

speed method proposed by Davidson and MacKinnon (2007) and studied by Giacomini,

Politis, and White (2013). Specifically, for each considered hypothesis, we drew one boot-

strap and double bootstrap sample for each simulated data, and we used the whole set

of bootstrap statistics to compute the bootstrap and double bootstrap p-values associated

with each original statistic. We report our results using graphs. The first type of graph

draws the errors in rejection probability (ERP), that is the difference between nominal size

and the empirical rejection proportion under the null hypothesis H0 : β2 = 0. A perfect test

would exhibit an ERP of zero for any nominal size. This gives us a visual way to evaluate

whether the null distribution of the test statistic is well approximated by its asymptotic

or bootstrap approximation. The second type of graph draws the power curves of each

test, where power is evaluated using the same data generating process but testing the null

hypothesis β2 = β0
2 and varying β0

2 .

Mean Regression We set η ∼ t5. The QLR statistic was bootstrapped under the null

(denoted by QLR0-b) and we used double bootstrap to obtain improvements (denoted by
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QLR0-db). We compared them to testing β2 = β̂2 in the bootstrap world with nonpara-

metric resampling (QLR-b and QLR-db). We also considered the asymptotic test based on

RQLR, the robust QLR statistic equal to the Wald one. We applied bootstrapping under

the null (RQLR0-b) as well as the usual nonparametric bootstrap (RQLR-b), see Hall and

Horowitz (1996). When using robust statistics, we estimated the correction factor λ by the

HC3 method, as recommended by Long and Ervin (2000) and Cribari-Neto, Ferrari, and

Oliveira (2005).

Figure 1 gathers our results for size control. The robust asymptotic test is always un-

dersized at usual nominal sizes, and bootstrap very imperfectly corrects this phenomenon.

The bootstrap test QLR-b is always oversized at usual nominal sizes and double bootstrap

is moderately helpful. Double bootstrap under the null always yields the best size control.

Figure 2 gathers our results in terms of power. Tests that are systematically oversized have

a slightly better power, as could be expected, while other tests have similar performances.

Quantile Regression Since most existing bootstrap methods for inference in quantile

regression assume a correct model, see Kocherginsky, He, and Mu (2005) for a review, we

only compared five tests. The first two are based on robust asymptotic and bootstrap Wald

tests, denoted as W and W-b. For standard errors, we used the formula detailed in Section

3.2, and specifically we chose K(·) as the standard normal density and h = 0.79n−1/5 IQR

in (3.5). We also considered the percentile bootstrap, denoted as P-b, which was found

to be the best performing method by Tarr (2012). We compared these to our bootstrap

under the null QLR test, denoted as QLR0-b, and its double bootstrap version, QLR0-db.

We did not look at bootstrap with naive resampling for testing β2 = β̂2 in the bootstrap

world, given its poor performances in our previous experiments. We considered several
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Figure 1: Errors in Rejection Probabilities for mean regression with η ∼ t5.
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Figure 2: Power curves for mean regression with η ∼ t5.
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setups corresponding to median regression and quantile regression of order τ = 0.25, and

η distributed as t5 or t1. We report a selection of our results.

Figures 3 and 5 gather our results for size control in median regression, while Figure 7

consider quantile regression of order 0.25. Under misspecification, the asymptotic robust

Wald test does not perform well, and bootstrap is not very successful at correcting this

phenomenon. The percentile bootstrap performs better, but double bootstrap under the

null of the QLR test provides the best size control.

Figures 4, 6, and 7 reports power curves. Misspecification, and in particular het-

eroscedasticity, has very adverse effects on the tests’ performances. Under misspecification,

Wald tests can have an erratic behavior, leading to a sometimes non-monotone power. Be-

sides the Wald test, QLR-0db has always highest power under misspecification.

4.2 Empirical Application

We considered some parametric quantile models for children birthweight using data ana-

lyzed by Abrevaya (2001) and Koenker (2005), who also gave a detailed data description.

We focused on median regression and lower quantiles regression on a subsample of 1089

smoking college graduate white mothers. We considered a model linear in (i) weight gain

during pregnancy, (ii) average number of cigarettes per day (denoted as CIGAR), and (iii)

dummies indicating whether the child is male and whether the mother is married, and

quadratic in mother’s age as suggested by Koenker (2005). Maistre, Lavergne, and Patilea

(2017) reported that there may be misspecification for lower quantiles, but did not find

evidence of misspecification in median regression. In Table 1, we report 90% confidence

intervals for the CIGAR parameter using the same methods as in our simulations. We

considered 999 bootstrap samples for each potential value of the parameter.
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Figure 3: Errors in rejection probabilities for median regression with η ∼ t5.
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Figure 4: Power curves for median regression with η ∼ t5.
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Figure 5: Errors in rejection probabilities for median regression with η ∼ t1.
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Figure 6: Power curves for median regression with η ∼ t1.
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Figure 7: Errors in rejection probabilities and power curves for quantile regression with

τ = .25 and η ∼ t5.
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Table 1: 90% Confidence Intervals for CIGAR parameter

τ = 0.1 τ = 0.25 τ = 0.5

Wald [-13.83 , 1.49] [-9.65 , -0.54] [-9.46 , -1.31]

Wald-b [-17.09 , 4.67] [-10.14 , -0.07] [-9.93 , -0.86]

P-b [-15.60 , 3.15] [-10.00 , -0.03] [ -9.83 , -0.94]

QLR0-b [-15.72 , 1.73] [-9.86 , 0.23] [- 8.95 , -0.93]

QLR0-db [-16.06 , 1.73] [-9.87 , 0.41] [-8.95 , -0.74]

For median regression, there are little differences between the outcomes of different

methods, but confidence intervals from QLR0-b and QLRO-db are among the shortest,

while the bootstrap Wald and percentile intervals are largest. For lower quantiles, the

asymptotic Wald-based confidence interval is mostly shortest, while the bootstrap one is

much larger. This is coherent with our simulation findings: Wald test does not control size

well and can be severely oversized, and the bootstrap makes it more conservative. The

difference between confidence intervals can be so large that for τ = 0.25 the Wald and

percentile bootstrap signals a significant effect of cigarettes consumption on birthweight,

while the confidence intervals based on QLR indicates a non-significant effect. For τ = 0.1,

our bootstrap method delivers tighter intervals than competing bootstrap methods, which

is likely related to its superior power performances under misspecification as observed in

simulations.
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5 Conclusion

We have proposed a simple bootstrap method for quasi likelihood-ratio tests that is con-

sistent even under misspecification. A key advantage of QLR tests is that they do not

necessitate to estimate a robust-covariance matrix: this can be difficult, as in quantile re-

gression, and can severely affect size control and power performances. We found that our

method yield in practice rejection probabilities that are close to nominal levels in small

samples, and double bootstrapping under the null the non-robust QLR is preferable to

relying on a robust version for size control as well as power.

6 Proofs

We first recall two useful results.

Theorem 6.1 (Andersen and Gill (1982, Theorem II.1)). Let Qn(·) be a sequence of random

convex functions defined on an open convex Θ such that Qn(θ)
p−→Q(θ) for any θ ∈ Θ. Then

for any compact subset K of Θ, supθ∈K |Qn(θ)−Q(θ)| p−→ 0.

Theorem 6.2 (Hjort and Pollard (1993, Basic Corollary)). Suppose An(s) is convex and

can be represented as 1
2
s′V s+U ′ns+Cn+rn(s), where V is symmetric and positive definite,

Un is stochastically bounded, Cn is arbitrary, and rn(s) = op(1) as n→∞ for each s. Then

αn, the argmin of An(s), is only op(1) away from βn = −V −1Un, the argmin of 1
2
s′V s+U ′ns.

If also Un
d−→U then αn

d−→ − V −1U .

Corollary 6.3. Under the previous assumptions, we have as n→∞,

min
s
An(s) = −1

2
U ′nV

−1Un + Cn + op(1)
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.

Proof. The function An(s) − U ′ns − Cn is convex and converges in probability to 1
2
s′V s

for each s. By Theorem 6.1, the convergence is uniform on bounded sets. Hence, using

αn = βn + op(1) and Un = Op(1),

min
s
An(s) = An(αn) =

1

2
α′nV αn + U ′nαn + Cn + op(1)

=
1

2
β′nV βn + U ′nβn + Cn + op(1) = −1

2
U ′nV

−1Un + Cn + op(1) .

Proof of Theorem 3.1. Theorem 6.1 together with our i.i.d. assumption and A yield that

QLRn /n = Qn(θ̂0
n)−Qn(θ̂n) converges to Q(θ0

†)−Qn(θ†). Under HA, this is a positive real

constant.

We now deal with Parts (a) and (c) of the Theorem. Consider now the local alternatives

HA,n : θ†,n = Hγ† + h+ c n−1/2 .

and let A†,n = A(θ†,n). Let θ0
†,n = arg minΘ∩H0 E q(z, θ), which depends on n since the

expectation is taken under the sequence θ†,n. The function Q(θ) = E q(z, θ) is convex,

and the convex function C0(u) = C(Hu − c) = n [Q(θ†,n + (Hu− c)/
√
n)−Q(θ†,n)] is

minimized at Hu− c =
√
n(θ0

†,n − θ†,n). For each fixed u, as n→∞, we have

C0(u) =
1

2
(Hu− c)′A†,n(Hu− c) + o(1)

= −c′A′†,nHu+
1

2
u′H ′A†,nHu+

1

2
c′A†,nc+ o(1) .

By Corollary 6.3, the minimum is reached at u∗ = −H(H ′A†,nH)−1H ′A†,nc+ o(1), and

√
n(θ0

†,n − θ†,n) = Hu∗ − c = −A−1/2
†,n MHA

1/2
†,n c+ o(1) ,
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with MH = I − A
1/2
†,nH(H ′A†,nH)−1H ′A

1/2
†,n . Hence ‖θ0

†,n − θ†,n‖ = O(n−1/2). Since θ̂0
n

converges to θ0
†,n by convexity of Qn(·) and Theorem 6.1, θ̂0

n belongs to any sufficiently

small fixed neighborhood of θ†,n with probability tending to 1 as n grows to infinity.

Consider the convex function Cn(s) = n [Qn(θ†,n + s/
√
n)−Qn(θ†,n)], which is mini-

mized at
√
n(θ̂n− θ†,n). Let ∆n = n−1/2

∑n
i=1 D(zi, θ†,n), which is Op(1) by Assumption B.

Then

Cn(s) = ∆′ns+ nRn(s/
√
n) .

From Assumption B, for each s, as n→∞ we get

EnRn(s/
√
n) =

1

2
s′A†,ns+ o(1), VarnRn(s/

√
n) = o(1) .

Hence for each s

Cn(s) = ∆′ns+
1

2
s′A†,ns+ op(1) .

By Corollary 6.3, minsCn(s) = −1
2
∆′nA

−1
†,n∆n + op(1).

The convex function C0
n(u) = Cn(Hu − c) = n [Qn(θ†,n + (Hu− c)/

√
n)−Qn(θ†,n)] is

minimized at Hu − c =
√
n(θ̂0

n − θ†,n). By arguments similar to the ones used above, for

each fixed u, we obtain as n→∞,

C0
n(u) = ∆′n(Hu− c) +

1

2
(Hu− c)′A†,n(Hu− c) + op(1)

= (∆n − A†,nc)′Hu+
1

2
u′H ′A†,nHu−∆′nc+

1

2
c′A†,nc+ op(1) .
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By Corollary 6.3, we have

min
u
C0
n(u) = −1

2
(∆n − A†,nc)′H(H ′A†,nH)−1H ′(∆n − A†,nc)−∆′nc+

1

2
c′A†,nc+ op(1)

= −1

2
(∆n − A†,nc)′H(H ′A†,nH)−1H ′(∆n − A†,nc)

+
1

2
(∆n − A†,nc)′A−1

†,n (∆n − A†,nc)−
1

2
∆′nA

−1
†,n∆n + op(1)

=
1

2
(∆n − A†,nc)′A−1/2

†,n MHA
−1/2
†,n (∆n − A†,nc)−

1

2
∆′nA

−1
†,n∆n + op(1) .

Therefore we obtain

QLRn = min
u
C0
n(u)−min

s
Cn(s) =

1

2
(∆n − A†,nc)′A−1/2

†,n MHA
−1/2
†,n (∆n − A†,nc) + op(1)

=
(
B
−1/2
†,n (∆n − A†,nc)

)′
B

1/2
†,nA

−1/2
†,n MHA

−1/2
†,n B

1/2
†,n

(
B
−1/2
†,n (∆n − A†,nc)

)
+ op(1) .

Let θ† = limn θ†,n = Hγ† + h = θ0
† . By Assumption B-(b), B†,n → B† = B(θ0

†) and

A†,n → A† = A(θ0
†). Hence B

−1/2
†,n (∆n − A

1/2
†,n c)

d−→N(−B−1/2
† A†c, I). QLRn is thus

asymptotically distributed as
∑p

j=1 λj (Uj + c̃j)
2, where the λj are the eigenvalues of G =

B
1/2
† A

−1/2
† MHA

−1/2
† B

1/2
† , Uj are independent standard normal, and the c̃j are the scalar

products of −B−1/2
† A†c with the corresponding eigenvectors of G. G has rank r, which is the

rank of MH . Moreover, MH = Pd = A
−1/2
† d

(
d′A−1

† d
)−1

d′A
−1/2
† , since Pd and PH = I−MH

are orthogonal projection matrices that annihilate each other and rank(Pd)+rank(PH) = p.

The eigenvalues of G are thus the ones of PdA
−1/2
† B†A

−1/2
† , which are also the ones of(

d′A−1
† d
)−1

dA−1
† B

1
†A
−1
† d.

Under H0, we have c = 0 and Part (a) follows. Under HA,n, we want to show that at

least one of the c̃j corresponding to a non-zero eigenvalue is not zero. But

GB
−1/2
† A†c = B

1/2
† A

−1/2
† PdA

1/2
† c 6= 0

as soon as d′c 6= 0.
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Proof of Theorem 3.2. We first study Sn(θ̂0
n). The convex function C0

n(u) = Cn(Hu) =

n
[
Qn(θ0

† +Hu/
√
n)−Qn(θ0

†)
]

is minimized at Hu =
√
n(θ̂0

n − θ0
†). For each fixed u,

C0
n(u) = ∆0′

nHu+
1

2
u′H ′A0

†Hu+ op(1) ,

where A0
† = A(θ0

†) and ∆0
n = n−1/2

∑n
i=1D(zi, θ

0
†). By Theorem 6.2,

√
n(θ̂0

n − θ0
†) =

−H(H ′A0
†H)−1H ′∆0

n + op(1). From Assumption C,

√
nSn(θ̂0

n)−∆0
n =
√
nA0
†(θ̂

0
n − θ0

†) + op(1)

= −A0
†H(H ′A0

†H)−1H ′∆0
n + op(1) = Op(1).

Let ∆0∗
n = n−1/2

∑n
i=1 Di(z

∗
i , θ

0
†). From Gine and Zinn (1990), ∆0∗

n −∆0
n has conditionally

on the initial sample the same asymptotic distribution in probability as ∆0
n−n1/2ED(z, θ0

†),

which is gaussian by Assumption B. It is thus bounded in probability, and it is also the

case for

∆0∗
n −
√
nSn(θ̂0

n) = ∆0∗
n −∆0

n + ∆0
n −
√
nSn(θ̂0

n) .

Consider the convex function Ĉn(s) = n
[
Q̂n(θ0

† + s/
√
n)− Q̂n(θ0

†)
]
, which is minimized

at
√
n(θ̂∗n − θ0

†). From Assumption D, for each fixed s,

Ĉn(s) =
(

∆0∗
n −
√
nSn(θ̂0

n)
)′
s+

1

2
s′A0

†s+ op(1) .

By Corollary 6.3,

min
s
Ĉn(s) = −1

2

(
∆0∗
n −
√
nSn(θ̂0

n)
)′

(A0
†)
−1
(

∆0∗
n −
√
nSn(θ̂0

n)
)

+ op(1) .

The convex function Ĉ0
n(u) = Ĉn(Hu) = n

[
Q̂n(θ0

† +Hu/
√
n)− Q̂n(θ0

†)
]

is minimized at

Hu =
√
n(θ̂0∗

n − θ0
†). From Assumption D, for each fixed u,

Ĉ0
n(u) =

(
∆0∗
n −
√
nSn(θ̂0

n)
)
Hu+

1

2
u′H ′A0

†Hu+ op(1) .
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By Corollary 6.3,

min
u
Ĉ0
n(u) = −1

2

(
∆0∗
n −
√
nSn(θ̂0

n)
)′
H ′
(
H ′A0

†H
)−1

H
(

∆0∗
n −
√
nSn(θ̂0

n)
)

+ op(1) .

Let M0
H = I−

(
A0
†
)1/2

H(H ′A0
†H)−1H ′

(
A0
†
)1/2

. Then

QLRn = min
u
Ĉ0
n(u)−min

s
Ĉn(s)

=
1

2

(
∆0∗
n −
√
nSn(θ̂0

n)
)′ (

A0
†
)−1/2

M0
H

(
A0
†
)−1/2

(
∆0∗
n −
√
nSn(θ̂0

n)
)

+ op(1) .

Now

M0
H

(
A0
†
)−1/2

[√
nSn(θ̂0

n)−∆0
n

]
= −M0

H

(
A0
†
)1/2

H(H ′A0
†H)−1H ′∆0

n + op(1) = op(1) ,

as M0
H annihilates

(
A0
†
)1/2

H(H ′A0
†H)−1H ′. This yields

QLRn =
1

2

(
∆0∗
n −∆0

n

)′ (
A0
†
)−1/2

M0
H

(
A0
†
)−1/2 (

∆0∗
n −∆0

n

)
+ op(1) .

Under H0, θ0
† = θ†, and ∆∗n − ∆n has conditionally on the initial sample the same

asymptotic distribution in probability as ∆n, so QLR∗n has conditionally on the initial

sample the same asymptotic distribution in probability as QLRn.

Under HA, QLR∗n stays conditionally bounded in probability, and so does its conditional

(1− α) quantile. Since QLRn diverges, asymptotic power converges to one.

Under HA,n, ‖θ0
†,n − θ†,n‖ = O(n−1/2). Using the continuity of A(θ) and B(θ), QLR∗n is

asymptotically, conditional on the initial sample, distributed as
∑p

j=1 λjU
2
j from Theorem

3.1-(a), where λ is the vector of r eigenvalues of(
d′(A0

†)
−1d
)−1

d′(A0
†)
−1B0

† (A
0
†)
−1d , where B0

† = B
(
θ0
†
)

θ0
† = Hγ† + h .

The asymptotic distribution of QLRn is the one of
∑p

j=1 λj (Uj + c̃j)
2, with at least one

non-zero c̃j. It first-order stochastically dominates the conditional distribution of QLR∗n,

and the asymptotic test’s power is thus non-trivial.
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Proof of Theorem 3.3. We adopt a functional view of the regression parameters, which al-

lows to compute the influence functions of the parameters and to prove the asymptotic

validity of the method when standardizing by the correct variance. We then derive the

Edgeworth expansions of the bootstrap and original statistics and show that their coeffi-

cients coincide up to terms of order Op(n
−1/2). Define

γ(P ) ≡ γ =
(
d′E −1(xx′)d

)−1
d′ (θ† − h) and Σ = E

(
xx′(y − x′θ†)2

)
,

where expectations at taken at P Let γ(Pn) ≡ γn and γ(P ∗n) ≡ γ∗n be similar quantities

defined by replacing E by E n or E ∗n. Then

RQLRn =
n γ2

n (d′E −1
n (xx′)d)

2

d′E −1
n (xx′)ΣnE −1

n (xx′)d

RQLR∗n =
n (γ∗n − γn)2 (d′E ∗−1

n (xx′)d)
2

d′E ∗−1
n (xx′)Σ∗nE ∗−1

n (xx′)d
.

Since γ(P ) is a smooth functional of moments, its influence function is given by

γ(1)(y, x) =
(
d′E −1(xx′)d

)−1
d′E −1(xx′)x(y − x′θ†)

− d′ (θ† − h)
d′E −1(xx′) (xx′ − Exx′)E −1(xx′)d

(d′E −1(xx′)d)2 .

Under H0, the asymptotic variance of γn is

Var
(
γ(1)(y, x)

)
=
d′E −1(xx′) ΣE −1(xx′)d

(d′E −1(xx′)d)2 = ω2 .

Define the empirical counterpart and its bootstrap version as

ω2
n =

d′E −1
n (xx′) Σn E −1

n (xx′)d

(d′E −1
n (xx′)d)2 and ω2∗

n =
d′E ∗−1

n (xx′)Σ∗n E ∗−1
n (xx′)d

(d′E ∗−1
n (xx′)d)2 .

Provided ω2 exists and is different from zero, n1/2ω−1
n (γn − γ)

d−→N(0, 1), since this is the

ratio of two continuously Hadamard differentiable functionals from van der Vaart (1998,
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Theorem 20.8). Similarly, n1/2ω∗−1
n (γ∗n − γn)

d−→N(0, 1) conditionally on the original sam-

ple from Gill (1989). As RQLRn =
(
n1/2ω−1

n (γn − γ)
)2

and γ is a smooth functional of

moments with regular gradients (influence functions), n1/2ω−1
n (γn − γ) admits an Edge-

worth expansion up to O(n−2), under moments of order 6 of the gradients and the Cramer

condition of Theorem 3.3, see Bhattacharya and Ghosh (1978). Moreover, by symmetry,

we have that uniformly in x ≥ 0

Pr

(
n1/2

∣∣∣∣γn − γωn

∣∣∣∣ ≤ x

)
= Pr

(
n1/2γn − γ

ωn
≤ x

)
− Pr

(
n1/2γn − γ

ωn
≤ −x

)
= Φ(x)− Φ(−x) − 2

n

(
k2

2
+
k4

24
(x3 − 3x)

+
k6

72
(x5 − 10x3 + 15x)

)
φ(x) +O(n−2) .

Explicit expressions of the cumulants k2, k4 and k6 are given in Bertail and Barbe (1995,

Appendix 2), where the coefficients involve both the influence function γ(1)(y, x) of γ and

the one of ω2, see also Withers (1983, 1984) and Hall (1992). The bootstrap distribution

of n1/2ω∗−1
n (γ∗n − γn) has the same functional form and thus admits the same Edgeworth

expansion with true cumulants replaced by the empirical ones k2,n, k4,n and k6,n. The result

then follows from the fact that kj,n − kj = OP (n−1/2), for j = 2, 4, 6, which is ensured by

the moment conditions of order 12 (since k6 contains moments of order 6 of the gradient,

we need moments of order 12 to ensure that a CLT holds). The result about coverage

probability follows from Hall (1986).
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Appendix

We here briefly check our approximations of Assumptions B, C, and D for our two main examples.

Linear Regression

B We have q(z, θ) = (y − x′θ)2/2 and D(z, θ) = ∂q(z, θ)/∂θ = −x(y − x′θ). Then

ED(z, θ†) = −Ex(y − x′θ†) = 0 , B(θ) = VarD(z, θ) = E
(
x(y − x′θ)2x

)
.

We can write

Qn(θ + t)−Qn(θ)− n−1
n∑
i=1

D′(zi, θ)t = Rn(θ, t) = n−1
n∑
i=1

1

2
t′xix

′
it

ERn(θ, t) =
1

2
t′E (xx′)t

n VarRn(θ, t) =
1

4
Var(t′xx′t) = o(‖t‖2)

when x has moments of order at least 4, since we have

V ar(t′xx′t) = E(t′(xx′ − E(xx′)t)2 ≤ ||t||2E(||xx′ − E(xx′)||2)||t||2 ≤ 2||t||4E||x||4 .

C AsD(z, θ+t)−D(z, θ) = xx′t, ED(z, θ+t)−D(z, θ) = E (xx′) t. The process R1n(t)−ER1n(t)

is a degenerate U-process of order 1 based on the class of vector functions {f(x, t) = xx′t, t ∈ Rp}

which is Euclidean, see Nolan and Pollard (1987). Each function is such that E |f(x, t)| → 0

as t → 0. For bounded t, these functions have a squared-integrable envelope as soon as E (xx′)

exists. From Sherman (1994, Corollary 8), R1n(θ, t) − ER1n(θ, t) = op(n
−1/2) uniformly over

op(1) neighborhoods of 0.

D We have

Q∗n(θ + t)−Q∗n(θ)− n−1
n∑
i=1

D′(z∗i , θ)t = Rn(θ, t) = n−1
n∑
i=1

1

2
wit
′xixit ,
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where (w1, . . . wn) ∼ Multn(n, (n−1, . . . n−1)). Hence

E |ZRn(θ, t) = n−1
n∑
i=1

1

2
t′xix

′
it =

1

2
t′E (xx′)t+ op(1)

n Var|Z Rn(θ, t) ≤ 15

4
n−1

n∑
i=1

[t′xix
′
it]

2 = op(‖t‖2)

using that multinomial weights are negatively correlated and with fourth moments bounded by

15, see Praestgaard and Wellner (1993).

Quantile Regression

B For quantile regression of order τ , q(y, x, θ) = ρτ (y − x′θ), with ρτ (u) = u (τ − I (u < 0)).

Without loss of generality, we focus on median regression, i.e. τ = 1/2, and rescale ρτ to obtain

q(y, x, θ) = |y − x′θ| and D(z, θ) = −x sign(y − x′θ). Then

ED(z, θ†) =
∂Q(θ†)

∂θ
= −E

[
x sign(y − x′θ†)

]
= 0

B(θ) = VarD(z, θ) = E
(
xx′ sign(y − x′θ†)

)
.

We have

Qn(θ + t)−Qn(θ)− n−1
n∑
i=1

D′(zi, θ)t = Rn(θ, t) = n−1
n∑
i=1

rn(zi, θ, t)

where rn(zi, θ, t) = 2
(
yi − x′i(θ + t)

)
×
[
I(x′it ≤ yi − x′iθ ≤ 0)− I(0 ≤ yi − x′iθ ≤ x′it)

]
.

Consider

E (rn(z, θ, t)|x) =

∫ x′θ

x′(θ+t)
2
(
y − x′(θ + t)

)
fy|x(y|x) dy .
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Deriving with respect to x′t, we obtain

∂

∂(x′t)
E (rn(z, θ, t)|x) = 2

[
Fy|x(x′(θ + t)|x)− Fy|x(x′θ)

]
= 0 at t = 0

∂2

∂(x′t)2
E (rn(z, θ, t)|x) = 2fy|x(x′(θ + t)|x)

so that E rn(z, θ, t) = 2 t′E
[
x′xfy|x(x′θ|x)

]
t+ o(‖t‖2)

as t→ 0 if fy|x is bounded continuous at x′θ for all x and the above expectation exists.

Consider now

E
(
r2
n(z, θ, t)|x

)
= 4 sign(x′t)

∫ x′(θ+t)

x′θ

(
yi − x′i(θ + t)

)2
fy|x(y|x) dy .

Assume that x′t ≥ 0, the case of x′t < 0 would be dealt with similarly. Deriving with respect to

x′t,

∂

∂(x′t)
E
(
r2
n(z, θ, t)|x

)
= −8

∫ x′(θ+t)

x′θ

(
yi − x′i(θ + t)

)
fy|x(y|x) dy = 0 at t = 0

∂2

∂(x′t)2
E
(
r2
n(z, θ, t)|x

)
= 8

[
Fy|x(x′(θ + t)|x)− Fy|x(x′θ)

]
= 0 at t = 0

∂3

∂(x′t)3
E
(
r2
n(z, θ, t)|x

)
= 8fy|x(x′(θ + t)|x) .

This yields E r2
n(z, θ, t) = O(‖t‖3) for any fixed t. Now use

n VarRn(θ, t) ≤ E r2
n(z, θ, t) = o(‖t‖2) .

C We have

D(z, θ + t)−D(z, θ) = −2x
[
I
(
x′t ≤ y − x′θ ≤ 0

)
− I
(
0 ≤ y − x′θ ≤ x′t

)]
ED(z, θ + t)−D(z, θ) = 2Ex

[
Fy|x

(
x′(θ + t)

)
− Fy|x

(
x′θ
)]

= 2E
[
xx′fy|x(x′θ|x)

]
t+ o(‖t‖)
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as t→ 0 . The process R1n(t)− ER1n(t) is a degenerate U-process of order 1 based on the class

of vector functions
{
f(x, t) = −2x

[
I
(
x′t ≤ y − x′θ0

† ≤ 0
)
− I
(

0 ≤ y − x′θ0
† ≤ x′t

)]}
, which is

Euclidean. We have E |f(x, t)| → 0 as t → 0. For bounded t, these functions have a squared-

integrable envelope as soon as Exx′ exists. From Sherman (1994, Corollary 8), R1n(t)−ER1n(t) =

op(n
−1/2) uniformly over op(1) neighborhoods of 0.

D We have

Q∗n(θ + t)−Q∗n(θ)− n−1
n∑
i=1

D′(z∗i , θ)t = R∗n(θ, t) = n−1
n∑
i=1

wirn(zi, θ, t) ,

where (w1, . . . wn) ∼ Multn(n, (n−1, . . . n−1)). Hence

E |ZRn(θ, t) = n−1
n∑
i=1

rn(zi, θ, t) = 2 t′E
[
x′xfy|x(x′θ|x)

]
t+ op(‖t‖2)

n Var|Z Rn(θ, t) ≤ 15

4
n−1

n∑
i=1

r2
n(zi, θ, t) = op(‖t‖2) .
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