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Abstract

Nowadays, a common method to forecast integrated variance is to use the fitted

value of a simple OLS autoregression of the realized variance. However, non-parametric

estimates of the tail index of this realized variance process reveal that its second mo-

ment is possibly unbounded. In this case, the behavior of the OLS estimators and the

corresponding statistics are unclear. We prove that when the second moment of the

spot variance is unbounded, the slope of the spot variance’s autoregression converges to

a random variable as the sample size diverges. The same result holds when one uses the

integrated or realized variance instead of the spot variance. We then consider the class

of diffusion variance models with an affine drift, a class which includes GARCH and

CEV processes, and we prove that IV estimation with adequate instruments provide

consistent estimators of the drift parameters as long as the variance process has a finite

first moment regardless of the existence of the second moment. In particular, for the

GARCH diffusion model with fat tails, an IV estimation where the instrument equals

the sign of the centered lagged value of the variable of interest provides consistent

estimators. Simulation results corroborate the theoretical findings of the paper.
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1. Introduction

In this paper, we are interested in using high-frequency data based measures to fore-

cast future variance. A common practice is to approximate the latent daily integrated

variance by realized measures like realized variance (Andersen et al. (2001)) or robust-

to-noise measures (Zhang et al. (2005); Barndorff-Nielsen et al. (2008); Jacod et al.

(2009)), and then to estimate a simple autoregressive regression of these realized

measures by OLS to get a forecast of the integrated variance. This autoregressive re-

gression is often misspecified because the dynamics of an integrated variance is more

complex than a simple autoregressive process. For instance, if the true instantaneous

(or spot) variance is a square-root process, then the integrated and realized vari-

ances are ARMA (1,1) processes (Barndorff-Nielsen and Shephard (2002); Meddahi

(2003)). Even if the autoregression model is misspecified, it still provides a very accu-

rate forecast because integrated variance as well as high-frequency realized measures

are persistent and therefore, few lags suffice to predict well future volatility (Andersen

et al. (2003); Andersen et al. (2004)).

On the other hand, the GARCH approach (Engle (1982); Bollerslev (1986)) based

on parametric models of daily data provides very useful information about the vari-

ance process. One of them, which is a primary interest in this paper, is fat tails. When

one estimates a daily GARCH model on stock returns or exchange rates, one often

finds that the returns’ fourth moment is not bounded or close to being unbounded. If

the fourth moment of the returns is unbounded, then the second moment of the daily

realized variance defined as the sum of intra-daily squared returns is also unbounded.

Consequently, the interpretation of the autoregressive regression and the OLS esti-

mation, based on L2 projections, is questionable. Likewise, relying on Gaussian limit

theory, the delivered forecast and all the statistical tools, used to assess the quality

of the forecast, could be invalid.

The doubt about the finiteness of the returns’ fourth moment is based on a para-

metric model of the volatility. In contrast, an important contribution of the high-

frequency volatility literature is that the availability of a lot of data allows one to get

non-parametric measures of the variance without relying on parametric models for

the volatility. It is therefore necessary to assess the finiteness of the second moment of

realized measures in a non-parametric way. The solution hinges on a non-parametric
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estimation of tail indexes. We use Hill’s (1975) estimator for our data, and we get the

same result. More precisely, we find that the Hill estimator of the tail index of the

daily returns is close to four, while it is close to two for the daily realized variance, and

two other popular measures which are robust in the presence of jumps, namely the

bipower variance of Barndorff-Nielsen and Shephard (2004b, 2006) and the threshold

variance estimator of Jacod (2008, 2012) and Mancini (2009).

In this paper, we revisit the results of the autoregressive regression of the variance

process like Andersen et al. (2004) when the second moment of the spot variance is

possibly unbounded, which implies that the second moment of integrated and real-

ized variances are unbounded.1 When the instantaneous variance has an unbounded

second moment, then the results in Andersen et al. (2004) are no longer valid because

one cannot compute the population autoregression parameters.

We study empirical regressions instead of population regressions. More precisely,

we analyze the asymptotic behavior of the OLS estimator of the autoregressions. We

consider autoregressions of three variables: the spot variance, the integrated variance

and the realized variance. Of course, the first two autoregressions are not feasible

because the variables are not observed, but still the two autoregressions provide good

benchmarks. In particular, the third autoregression will try to mimic the second one.

The asymptotic behavior of an OLS estimator under fat tails is ambiguous; it

could be deterministic or random. For instance, when one considers an autoregres-

sive process of order one with i.i.d. errors and unbounded variance, the OLS estimator

is consistent whether the autoregressive parameter is smaller than one (Hannan and

Kanter (1977); Knight (1987)) or equals one (Chan and Tran (1989); Phillips (1990)).

Likewise, when one considers an infinite MA process with i.i.d. errors and unbounded

variance and assumes some summability restrictions, the empirical autocorrelation pa-

rameters converge to deterministic values; see (Brockwell and Davis, 1991, p. 538).

In contrast, when one considers an ARCH or GARCH process, the empirical auto-

correlation parameters of the squared process converge to random variables when the

fourth moment of the process is unbounded (Davis and Mikosch (1998); Mikosch and

Starica (2000)).

1When one considers a continuous time model without jumps and without market microstructure
noise, the fourth moment of the intra-day returns is unbounded if and only if the second moment of
the instantaneous variance is infinite.
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When we study the autoregressions, we consider two types of asymptotic ap-

proaches. Two time-dimension parameters will play a role in these asymptotic anal-

yses: ∆ which is the length of sub-periods and the time span denoted T . In the

first asymptotic approach, we assume that ∆→ 0 while T is fixed or diverges to ∞.

We consider this type of asymptotic approach because we want to characterize the

behavior of the OLS estimators without making a parametric model assumption as

in Andersen et al. (2004). In the second asymptotic approach, we keep ∆ fixed and

allow T →∞ at the cost of making a parametric assumption of the variance diffusion

process.

In the first asymptotic analysis with ∆ → 0, we characterize the behavior of

the OLS estimators of the three regressions’ slopes. When the spot variance process

has a bounded second moment, we prove that the OLS estimators converge to finite

quantities, which are the same ones as the population parameters derived in Andersen

et al. (2004). In contrast, when the spot variance has an unbounded second moment,

we prove that the OLS estimators converge to random variables. Both the simulations

and the comparison with the results in Andersen et al. (2004), when the spot variance

has a finite second moment, corroborate the good quality of our approach.

These results are obviously negative. Providing positive results in a general con-

text is not easy because one needs to specify the object of interest. We therefore con-

sider a class of variance models based on diffusion processes having an affine form of

drift, where the class includes GARCH and CEV processes, with possibly unbounded

second moment. For this semiparametric class of models, we follow the literature on

regressions with fat tails like Blattberg and Sargent (1971) and Samorodnitsky et al.

(2007) by considering instrumental variable (IV) estimations. We prove that the IV

estimators become consistent estimators of the drift parameters when instruments

are chosen appropriately.

Samorodnitsky et al. (2007) studied the estimation of linear regression models

where the explanatory and the noise variables have fat tails. It considered estimators

that have an instrumental variable interpretation where the instrument is a signed

power of the explanatory variable, with the OLS being a particular case. The choice

of the power is selected for either efficiency purposes or for getting an estimator with

a normal asymptotic distribution, which is often not the case of the OLS estimator

when it is consistent. However, in this paper, we select the instruments for consistency
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purposes of the drift parameters. The asymptotic distribution of the estimator as well

as the efficiency question are not studied and left for future research.

When ∆ is fixed, unlike the asymptotics with ∆ → 0, we need a conditional

moment restriction for the asymptotics of IV estimators. It is well known that for

a stationary diffusion with affine drift, the conditional mean is affine as long as the

diffusion has a bounded second moment (see Meddahi and Renault (2004)). We

prove that for a GARCH diffusion, the result is still valid when the second moment is

unbounded. We then show that the IV estimation with adequate instruments leads to

consistent estimators of the drift parameters, and we provide a feasible inference under

additional restrictions. A particular instrument we study is the sign of the lagged

value of the centered spot variance, corresponding to power zero of the signed power

instrument mentioned above. This estimator was first proposed by Cauchy (1836),

and is often referred to as the “Cauchy estimator” (see, e.g., So and Shin (1999);

Phillips et al. (2004); Choi et al. (2016) for recent uses of the Cauchy estimator).

Interestingly, Jean-Marie Dufour used the sign-based methods in several studies

for inference purposes, especially for exact inference in a finite sample. In particular,

he used such an approach in Coudin and Dufour (2009, 2017) in order to provide

inferences about the slope parameter in a linear regression model without making

moment restrictions on the disturbance errors and therefore allowing for fat tails. The

assumption made in these papers is a median restriction on the errors conditional on

the explanatory variables. In other words, we are using the same approach with a

slightly different framework because we assume that the (conditional) first moment of

the errors exists and equals zero, but we do not make assumptions on higher moments.

The paper is organized as follows. The next section provides the setup, an em-

pirical motivation for fat tails, and various regressions. In Section 3, we analyze the

asymptotic behavior of the OLS estimators when ∆ → 0. Section 4 studies the IV

estimation. In Section 5, we analyze the volatility regressions under a fixed ∆, and

provide a feasible inference based on instrumental variables. Section 6 provides sim-

ulations to assess the finite sample properties of the estimators, while the last section

concludes. All the proofs are provided in an Online Appendix.

Throughout the paper we use “PT ∼ QT” to denote PT = QT (1+o(1)). Similarly,

“PT ∼p QT” and “PT ∼d QT” mean PT = QT (1 + op(1)) and PT =d QT (1 + op(1)),

respectively. These notations, as well as other standard notations used in asymptotics,
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will be used frequently throughout the paper without further references.

2. Model and Preliminaries

2.1. Spot, Integrated and Realized Variances

We consider a price process (Pt, 0 ≤ t ≤ T ) defined on a filtered probability space

(Ω,F , (Ft)t≥0,P). Our basic assumption is that Pt is a Brownian semimartingale with

the following form:

d log(Pt) = Dtdt+ V
1/2
t dW P

t ,

where W P
t is a Brownian motion, Dt and Vt are adapted processes with càdlàg paths.

For a ∆-interval, we define the spot variance (vi), integrated variance (xi) and realized

variance (yi) of the price process (Pt) as

vi = Vi∆, xi =
1

∆

∫ i∆

(i−1)∆

Vtdt, yi =
1

∆

n∑
j=1

(
r

(δ)
(i−1)∆+jδ

)2

, (2.1)

for i = 1, · · · , N withN∆ = T , where r(δ) is the δ-period return defined as r
(δ)
(i−1)∆+jδ =

log(P(i−1)∆+jδ) − log(P(i−1)∆+(j−1)δ) for j = 1, · · · , n with nδ = ∆. It is well known

that the realized variance y is a noisy measure of the integrated variance x, and

satisfies

(n/2)1/2(yi − xi)→d ηiN(0, 1), (2.2)

where η2
i = ∆−1

∫ i∆
(i−1)∆

V 2
t dt, as n → ∞ for fixed ∆ and for each i = 1, · · · , N . See,

e.g., Barndorff-Nielsen and Shephard (2004a). Moreover, the convergence (2.2) holds

jointly for i = 1, · · · , N if T = N∆ is fixed (see, e.g., Jacod and Protter (1998)).

In this paper, we analyze the asymptotic properties of various estimators for the

volatility regression. Specifically, we consider the autoregression

zi+1 = αz + β(k)
z zi−k + ui+1 with k ≥ 0 (2.3)

for z = v, x, y, and estimate the slope coefficient β
(k)
z using OLS or IV method.

Our asymptotics for z = v, x involve two parameters, the sampling interval ∆ and

the time span T , and it is developed under the assumption that ∆ → 0 and T →
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∞ simultaneously. On the other hand, the asymptotics for z = y involve three

parameters, the sampling interval ∆ at low-frequency, the sampling interval δ at

high-frequency, and the time span T . In this case, the asymptotics are developed

under the assumption that δ/∆→ 0, ∆→ 0 and T →∞ simultaneously.

To effectively analyze the large T asymptotics, we assume that the underlying

variance process V is a diffusion process on D = (v, v) ⊂ R driven by

dVt = µ(Vt)dt+ σ(Vt)dWt, (2.4)

where W is a Brownian motion, and µ and σ are respectively drift and diffusion

functions of V . To obtain more explicit asymptotic results, we mainly consider a

pure diffusion V without having leverage effects, i.e., each of V and D is independent

of W P , unless we mention that they are dependent. We believe that the implications

of our results under no leverage effect remain valid for the model with leverage effects.

We let s be the scale function defined as

s(v) =

∫ v

y

exp

(
−
∫ x

y

2µ(z)

σ2(z)
dz

)
dx, (2.5)

where the lower limits of the integrals can be arbitrarily chosen to be any point y ∈ D.

Defined as such, the scale function s is uniquely identified up to any increasing affine

transformation, i.e., if s is a scale function, then so is as+ b for any constants a > 0

and −∞ < b <∞. We also define the speed density

m(v) =
1

(σ2s′)(v)
(2.6)

on D, where s′ is the derivative of s, often called the scale density, which is assumed

to exist. The speed density is defined to be the measure on D given by the speed

density with respect to the Lebesgue measure.

Throughout this paper, we assume

Assumption 2.1. (a) σ2(v) > 0 for all v ∈ D, and (b) µ(v)/σ2(v) and 1/σ2(v) are

locally integrable at every v ∈ D.

Assumption 2.1 provides a simple sufficient set of conditions to ensure that a

weak solution to the stochastic differential equation (2.4) exists uniquely up to an
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explosion time. See, e.g., Theorem 5.5.15 in Karatzas and Shreve (1991). Note,

under Assumption 2.1, that both the scale function s and speed density m are well

defined, and that the scale function is strictly increasing, on D. Consequently, the

natural scale diffusion V s of V , where V s = s(V ), is well defined with speed density

ms = (m/s′) ◦ s−1. It follows immedaitely from Ito’s lemma that the natural scale

diffusion V s has no drift term. Following Kim and Park (2017), we use the natural

scale representation in the development of our long span asymptotics.

2.2. Population Regressions with GARCH Diffusions

In this section, we study the volatility regressions in population when E(V 2
t ) <∞ as

did Andersen et al. (2004). These authors considered the Eigenfunction Stochastic

Volatility (ESV) model of Meddahi (2001) to derive analytical forecast results. Exam-

ples of ESV include the square-root model, the log-normal stochastic volatility model

and the GARCH diffusion model. We focus here on the GARCH diffusion model of

Nelson (1990) because it allows for unbounded second moments while the two other

examples do not. More precisely, we assume that the spot variance Vt, defined on

(0,∞), is given by

dVt = κ(µ− Vt)dt+ σVtdWt. (2.7)

When Vt is assumed to be stationary, one can easily prove that the second moment

of Vt is bounded if and only if σ2 < 2κ.

2.2.1 GARCH Diffusions with E(V 2
t ) <∞

Andersen et al. (2004) computed the population values of the autocovariances of

spot (v), integrated (x) and realized variances (y) under E(V 2
t ) < ∞. From these

quantities, one gets the corresponding autoregressive coefficients βv, βx and βy. In

particular, one has

βv = exp(−κ∆), βx =
1

2

(1− exp(−κ∆))2

exp(−κ∆) + κ∆− 1
, βy =

a2
1

∆2κ2

(1− exp(−κ∆))2

V ar(y)
,
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where

V ar(y) = 2
a2

1

∆2κ2
(exp(−κ∆) + κ∆− 1) +

4

δ∆

(
a2

0δ
2

2
+
a2

1

κ2
(exp(−κδ) + κδ − 1)

)
,

with a0 = E(Vt) = µ and a2
1 = V ar(Vt) = µ2σ2/(2κ− σ2).

One should notice that in this example, the spot variance is an AR(1) process

while both integrated and realized variances are ARMA(1,1) processes. In addition,

the three processes have the same autoregressive root which equals exp(−κ∆).

When ∆ is small, one gets

βv = 1− κ∆ + o(∆), βx = 1− 2

3
κ∆ + o(∆).

Likewise, when both ∆ and δ/∆ are small, one gets

βy = 1− 2

3
κ∆− 2

δ

∆

E(V 2
t )

V ar(Vt)
+ o(∆) + o(δ/∆)

with V ar(Vt) = µ2σ2/(2κ − σ2) and E(V 2
t ) = 2κµ2/(2κ − σ2). It is interesting to

notice that, as δ/∆,∆→ 0, we have

βv − 1 ∼ −∆κ, βx − 1 ∼ −∆
2

3
κ, βy − 1 ∼ −∆

2

3
κ− 4

δ

∆

κ

σ2
, (2.8)

that is, integrated variance has a larger first order autocorrelation than the spot and

realized variances.

2.2.2 GARCH Diffusions with E(Vt) <∞

One can easily prove that

Vt+∆ = µ+ exp(−κ∆)(Vt − µ) + εt+∆, εt+∆ = σ

∫ t+∆

t

exp(−κ(t+ ∆− u))Vudu.

When E(V 2
t ) < ∞, εt+∆ is a martingale-difference-sequence (m.d.s.), which implies

that

E[Vt+∆ | Vt] = µ+ exp(−κ∆)(Vt − µ). (2.9)
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However, the m.d.s. result is not valid when E(V 2
t ) =∞ because

∫ t+∆

0
exp(−κ(t+∆−

u))Vudu is not a martingale but a local martingale. Interestingly, we are able to prove

that (2.9) is still valid when Vt is a stationary GARCH diffusion with E(Vt) < ∞,

whether E(V 2
t ) is finite or not.2

Lemma 2.1. For any ∆ > 0, we have

E[(vi+1 − µ)− exp(−κ∆)(vi − µ)|vi] = 0. (2.10)

When E(V 2
t ) <∞, the previous result implies that Vt is an AR(1), from which one

can estimate exp(−κ∆) by using an autoregression of order one of the spot variance.

However, both the integrated and realized variances are ARMA(1,1) processes, which

implies that first order autoregressions of these variables will not deliver a consis-

tent estimator of the autoregressive parameter exp(−κ∆). However, Meddahi (2003)

derived multi-period moment restrictions fulfilled by the integrated and realized vari-

ances when E(V 2
t ) <∞. The following result proves that these multi-period moment

restrictions are still valid when E(V 2
t ) =∞.

Proposition 2.2. Let ∆ > 0. (a) For z = v, x, we have

E[(zi+1 − µ)− exp(−κ∆)(zi − µ)|zi−1] = 0. (2.11)

(b) If Dt = 0 almost surely for all t ≥ 0, then the result in Part (a) holds for z = y.

Proposition 2.2 will allow us to estimate consistently the coefficient exp(−κ∆)

even when E(V 2
t ) =∞ by using the following corollary:

Corollary 2.3. Let r : R→ R be bounded such that E[(zi − µ)r(zi−1 − µ)] 6= 0 for a

given ∆ > 0. If Dt = 0 almost surely for all t ≥ 0, we have for z = v, x, y that

E[(zi+1 − µ)r(zi−1 − µ)]

E[(zi − µ)r(zi−1 − µ)]
= exp(−κ∆).

2.3. Empirical Evidence of Fat Tails

We now assess the magnitude of tails of empirical data. We use trade data on the

SPDR S&P 500 ETF (SPY), which is an exchange traded fund (ETF) that tracks

2We are very grateful to Jean Jacod for providing us the proof of the result.
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the S&P 500 index. Our primary sample comprises 10 years of trade data on SPY

starting from June 15, 2004 through June 13, 2014 as available in the New York

Stock Exchange Trade and Quote (TAQ) database. This tick-by-tick dataset has

been cleaned according to the procedure outlined by Barndorff-Nielsen et al. (2008).

We also remove short trading days leaving us with 2,497 days of trade data. In

addition, we consider three subperiods: Before Crisis, from June 15, 2004 through

August 29, 2008 (1,053 trading days); During Crisis, from September 2, 2008 through

May 29, 2009 (185 trading days), and After Crisis, from June 1, 2009 through June

13, 2014 (1,259 trading days).

We estimate the tail index of the daily open-to-close returns and daily realized

variance based on five minutes intra-day returns. Because we could have jumps

that may affect the tail of the realized variance data, we also consider daily bipower

variation which is a consistent estimator of integrated variance under the presence of

jumps (see Barndorff-Nielsen and Shephard (2003, 2004b, 2006); Barndorff-Nielsen

et al. (2005); Barndorff-Nielsen et al. (2006)) as well as the threshold estimator of

integrated variance (see Jacod (2008, 2012); Mancini (2009); Jacod and Rosenbaum

(2013)).

We estimate the tail index by using Hill’s (1975) estimator. Let (Xi)
n
i=1 be a

stationary time series with

P[Xi > x] ∼ x−α`(x), x→∞,

for some slowly varying function `. The Hill’s estimator for α−1 which arose in the

i.i.d. context as a conditional MLE is defined as

h =
1

kn

kn∑
i=1

log(X(i)/X(kn)),

where (X(i))
n
i=1 is the order statistics X(n) ≤ · · · ≤ X(kn) ≤ · · · ≤ X(1) for some kn ≤ n

such that kn →∞ and kn/n→ 0 as n→∞.

The results by Hsing (1991) and Resnick and Stărică (1995) indicate that the Hill

estimator is asymptotically quite robust with respect to deviations from independence;

Resnick and Stărică (1998) prove consistency under ARCH-type dependence. See

also Hill (2010) for some other processes including ARFIMA, FIGARCH, explosive
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GARCH, nonlinear ARMA-GARCH and etc.

Valid standard errors of the Hill estimator are available only for some specific

models with serial correlation. Therefore, we will not provide any of them. Instead,

we follow the literature by providing Hill’s plots, that is by varying the integer kn. A

flat area is viewed as a good estimator of the tail index. As usual, we truncate kn. In

practice we start with k = 25.

Figure 1 (a) depicts the Hill index of the returns and three volatility measures over

the whole period for kn between 25 and 500. The left panel provides the estimator for

the returns, which is clearly below four. The right panel depicts the tail index of the

three volatility measures. The plots suggest that the tail of these measures is below

two. Observe that the three plots have flat areas, with a tail index between 1.2 and

1.4. One should notice that the plots for the three volatility measures are quite close.

The period considered in the previous figure includes the financial crisis. A natural

question is whether the strong empirical evidence of fat tails is driven by the crisis’

period. We therefore carry the Hill estimators for the periods before, during, and

after crisis, as explained above. Given the length of the crisis period (185 trading

days), we vary kn from 25 to 150. Figure 1 (b) depicts the Hill index of the returns

on the left panel and the realized volatility on the right panel for the three periods,

while Figure 1 (c) depicts those of the bipower (left panel) and threshold (right panel)

measures. Clearly, the crisis period exhibits fatter tails than the other two periods for

the four variables. However, both the periods before and after the crisis suggest very

fat tails with a tail index slightly below four for the returns and around two for the

three volatility measures. Therefore, the evidence of fat tails and unbounded second

moment for the volatility measures is quite strong.

3. Least Square Estimates

In this section, we consider the OLS estimator β̂
(k)
z for β

(k)
z in (2.3) given by

β̂(k)
z =

∑N−1
i=k+1(zi−k − zN)zi+1∑N−1
i=k+1(zi−k − zN)2
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where zN is the sample mean of (zi−k : i = k + 1, · · · , N − 1). For k = 0, we simply

write β
(0)
z = βz and β̂

(0)
z = β̂z.

3.1. Primary Asymptotics

Recall that T = N∆ and ∆ = nδ. For our asymptotics here we let δ/∆,∆→ 0, with

T being fixed or T →∞ simultaneously as δ/∆,∆→ 0. In case we have δ/∆,∆→ 0

and T → ∞ simultaneously, we assume that δ/∆,∆ → 0 sufficiently fast relative to

T →∞. It is indeed more relevant in a majority of practical applications, which rely

on observations collected at small sampling intervals over moderately long span.

In our asymptotics, we frequently deal with various functional transforms of D

and V over time interval [0, T ]. To effectively handle such functional transforms, we

define

TD = max
0≤t≤T

|Dt| and TV (f) = max
0≤t≤T

|f(Vt)|

for some function f : D → R. We also denote by ι the identity function on D, and

ι(v) = v for all v ∈ D. Consequently, we have TV (ι) = max0≤t≤T |Vt| for the identity

function. Obviously, TD and TV (ι) are the asymptotic orders of extremal process of

D and V , respectively. The order of the extremal process is known for a wide class

of diffusions. For instance, under some regularity conditions, the extremal process of

a stationary diffusion V is of order Op(s
−1(T )), where s is the scale function of V , to

which the reader is referred, e.g., Davis (1982). More generally, we may obtain the

exact rate of TV (f) from the asymptotic behavior of extremal process. In particular, if

f is regularly varying and cT is the order of the extremal process, then the asymptotic

order of TV (f) is given by Op(f(cT )).

Assumption 3.1. (a) σ2 is twice continuously differentiable on D, and (b) for f = µ,

σ2, σ2′, σ2′′ and ι, there is a locally bounded function ω : D → R such that |f(v)| ≤
ω(v) for all v ∈ D.

The differentiability condition of σ2 in Assumption 3.1 (a) is routinely assumed

in the study of diffusion models. Under Assumption 3.1 (a), the majorizing function

ω in Assumption 3.1 (b) always exists as long as µ is locally bounded.

Assumption 3.2. For ω in Assumption 3.1, ∆TV (ω8)T 2 log(T/∆)→p 0.
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Assumption 3.3. For ω in Assumption 3.1, (δ/∆)TV (ω8)T 2 log3(T/δ)→p 0.

Assumption 3.4. (δ/∆)T 4
DT →p 0.

Assumption 3.5. (δ/∆2) = O(1).

Assumption 3.2 is similar to Assumption 5.1 in Kim and Park (2017), and pro-

vides a sufficient condition for our primary asymptotics of spot variance (vi) and

integrated variance (xi). On the other hand, the asymptotics of realized variance (yi)

involve three parameters, δ, ∆ and T , and require Assumptions 3.3-3.5 in addition

to Assumption 3.2. The role of Assumption 3.3 is to analyze the asymptotic effect

of the errors (xi − yi) in the OLS estimates. On the other hand, Assumption 3.4 is

a condition to control the effects from the drift part (Dt) in (Pt) so that (Dt) has

no asymptotic impact in the asymptotics of the OLS estimates with (yi). Lastly,

Assumption 3.5 is to exclude less interesting cases where the errors (xi−yi) dominate

the signals (xi) in the OLS estimates with (yi). In particular, if δ/∆2 →∞, then the

error components may have bigger stochastic order than the signals.

Assumptions 3.2-3.4 make it necessary to have ∆→ 0 and δ/∆→ 0. For a fixed

T , a set of necessary and sufficient conditions for Assumptions 3.2-3.4 is ∆→ 0 and

(δ/∆) log3(1/δ)→ 0. Our asymptotics in the paper are derived under the conditions

∆ → 0, δ/∆ → 0 and T → ∞ jointly. For Assumptions 3.2-3.4 to hold, it requires

∆ → 0 and δ/∆ → 0 sufficiently fastly as T → ∞. For instance, (i) Assumption

3.2 holds as long as ∆ = O(T−2−ε), and (ii) Assumptions 3.3-3.4 hold as long as

(δ1−ε/∆)T 2+ε for some ε > 0, if V and D are bounded with TV (ω8) = Op(1) and

TD = Op(1). For example, if daily realized variances (yi) are obtained using 5 minutes

returns over five years, then δ/∆ = 1/288, ∆ = 1/250 and T = 5. In this case, both

∆T 2 and (δ/∆)T 2 are small (∆T 2 = 1/10 and (δ/∆)T 2 = 25/288). Our asymptotics

in this section hold jointly in δ, ∆ and T under Assumptions 3.1-3.5, and we do not

use sequential asymptotics, requiring δ/∆→ 0, ∆→ 0 and T →∞ sequentially.

To effectively explain our asymptotics, we apply the summation by parts to the
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numerator of β̂
(k)
z , and rewrite it as

β̂(k)
z − 1 =

1

2

∑k
j=0

(
(z2
N−j − z2

1+j)− zN(zN−j − z1+j)
)∑N−1

i=k+1(zi−k − zN)2

− 1

2

∑N−1
i=k+1(zi+1 − zi−k)2∑N−1
i=k+1(zi−k − zN)2

. (3.1)

For each term in (3.1), we have the following continuous time approximations when

∆→ 0 and δ/∆→ 0 such that Assumptions 3.1 and 3.2 holds.

Lemma 3.1. Let Assumptions 3.1-3.5 hold.

(a) For k ≥ 0, we have

k∑
j=0

(
(z2
N+j − z2

1+j)− zN(zN+j − z1+j)
)
∼p (1 + k)

(
V 2
T − V 2

0 − V T (VT − V0)
)
,

N−1∑
i=k+1

(zi−k − zN)2∆ ∼p
∫ T

0

(Vt − V T )2dt,

where V T = T−1
∫ T

0
Vtdt, for z = v, x, y.

(b) For k ≥ 0, we have

N−1∑
i=k+1

(zi+1 − zi−k)2 ∼p
N−1∑
i=1

(zi+1 − zi)2 + k
N−1∑
i=1

(vi+1 − vi)2

for z = v, x, y, and

N−1∑
i=1

(zi+1 − zi)2 ∼p


[V ]T , for z = v

(2/3)[V ]T , for z = x

(2/3)[V ]T + (4δ/∆2)
∫ T

0
V 2
t dt, for z = y.

(3.2)

Remark 3.1. (a) The continuous time approximations of the sum of squared incre-

ments (SSI),
∑N−1

i=k+1(zi+1− zi)2, in Lemma 3.1 (b) are depending upon z.3 In partic-

3Note that (3.2) is an extension of the “integral-to-spot device” in Mykland and Zhang (2017)
to the large T setting.
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ular, we have

N−1∑
i=k+1

(xi+1 − xi)2 <

N−1∑
i=k+1

(vi+1 − vi)2, (3.3)

N−1∑
i=k+1

(xi+1 − xi)2 <

N−1∑
i=k+1

(yi+1 − yi)2 (3.4)

with probability approaching one as δ/∆,∆ → 0 under Assumptions 3.1-3.5. An

intuitive explanation for the inequalities in (3.3) and (3.4) are as follow. We can nat-

urally expect that the integrated variance (xi) has a smoother sample path compare

to that of the spot variance (vi). As a result, the SSI of (xi) tends to be smaller than

that of (vi), and we have the first inequality in (3.3). This downward bias is often

referred to as smoothing bias. For the use of this terminology, see Stoker (1993) in

nonparametric density estimations, and Aı̈t-Sahalia et al. (2013) and Mykland and

Zhang (2017) in the high frequency setting. On the other hand, the realized variance

(yi) is a noisy measure of the integrated variance (xi), and the error component in (yi)

generates additional variations. Consequently, a sample path of (yi) becomes rougher

compare to that of (xi), and hence, (3.4) holds.

(b) Unlike Lemma 3.1 (b), the continuous time approximations in Lemma 3.1 (a)

are identical for all z = v, x, y. The results in Lemma 3.1 (a) are well expected since

|zi − V(i−1)∆| →p 0 for all z as long as δ/∆ and ∆ are sufficiently small relative to T .

(c) It follows from Lemma 3.1 with k = 0 that

N−1∑
i=1

(zi − zN)(zi+1 − zi) =
1

2
{z2

N − z2
1 − zN(zN − z1)} − 1

2

N−1∑
i=1

(zi+1 − zi)2

∼p
1

2
{V 2

T − V 2
0 − V T (VT − V0)} −


(1/2)[V ]T , for z = v

(1/3)[V ]T , for z = x

(1/3)[V ]T + (2δ/∆2)
∫ T

0
V 2
t dt, for z = y

=


∫ T

0
(Vt − V T )dVt, for z = v∫ T

0
(Vt − V T )dVt + (1/6)[V ]T , for z = x∫ T

0
(Vt − V T )dVt + (1/6)[V ]T − (2δ/∆2)

∫ T
0
V 2
t dt, for z = y,

(3.5)

where the last equality follows from Ito’s lemma, as δ/∆,∆→ 0 under Assumptions
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3.1-3.5. The result (3.5) for z = v is quite natural and expected by the asymptotic

negligibility of discretization errors when ∆ → 0. In a similar argument, one may

expect

N−1∑
i=1

(zi − zN)(zi+1 − zi) ∼p
∫ T

0

(Vt − V T )dVt for z = x, y (3.6)

since sup0≤i≤N |zi− vi| →p 0 as δ/∆,∆→ 0. However, we have (3.5), and the conjec-

ture (3.6) is not true. This is not surprising at all since the convergence of stochastic

process does not necessarily imply the convergence of stochastic integral associated

with the stochastic process (see, e.g., Kurtz and Protter (1991)). In particular, the

different asymptotics depending on z in (3.5) are caused by the fact that the SSIs of

x and y are biased estimators for the quadratic variation [V ] of V , whereas the SSI

of v is unbiased.

The primary asymptotics for β̂
(k)
z can be easily obtained by successively applying

Lemma 3.1 and Ito’s lemma to (3.1).

Proposition 3.2. Under Assumptions 3.1-3.5, we have

β̂v − 1 ∼p ∆

∫ T
0

(Vt − V T )dVt∫ T
0

(Vt − V T )2dt
,

β̂x − 1 ∼p ∆

∫ T
0

(Vt − V T )dVt + (1/6)[V ]T∫ T
0

(Vt − V T )2dt
,

β̂y − 1 ∼p ∆

∫ T
0

(Vt − V T )dVt + (1/6)[V ]T − (2δ/∆2)
∫ T

0
V 2
t dt∫ T

0
(Vt − V T )2dt

and β̂
(k)
z − 1 ∼p (β̂z − 1) + k(β̂v − 1).

Remark 3.2. (a) As explained in Remark 3.1 (a), (xi) has smoother sample paths

than (vi), and hence, we have (3.3). In Proposition 3.2, we have β̂v < β̂x which

implies that (xi) tends to have more persistent sample paths than (vi). This result

is a consequence of (3.3). Moreover, β̂y is downward biased with β̂y < β̂x which is

induced by the errors in (yi).
4

4A similar downward bias in volatility regressions, but for a discrete time ARMA process, can
be found in Hansen and Lunde (2014).
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(b) Note that Assumptions 3.3-3.5 do not necessarily imply δ/∆2 → 0. Therefore,

the speeds of δ → 0 and ∆ → 0 are important in the asymptotic negligibility of the

estimation errors of (yi). In particular, if δ/∆2 → 0 sufficiently quickly, then the errors

of (yi) become asymptotically negligible, and hence, we may have β̂y−1 ∼p β̂x−1. In

Section 4.3, we analyze the asymptotics negligibility of the estimation errors of (yi)

for more general class of estimators, including the OLS and IV estimators, under the

presence of leverage effects.

3.2. Long Span Asymptotics

The primary asymptotics in Proposition 3.2 do not require T → ∞. In particular,

if T is fixed, then (N/T )(β̂z − 1) = (1/∆)(β̂z − 1) is random for all z = v, x, y,

and is determined by a particular realization of the underlying variance process V .

Under the fixed T asymptotic scheme, the law of motion of V is less important. In

particular, the results in Proposition 3.2 require neither certain moment conditions

nor stationarity. However, the underlying probabilistic structure of V is crucial in

the development of the large T asymptotics.

In our long span asymptotics, we only consider a stationary diffusion V to effec-

tively analyze consequences of fat tails in the volatility regressions. Throughout the

paper we assume that the scale function s in (2.5) and the speed density m in (2.6)

satisfy the following conditions:

Assumption 3.6. (a) s(v) = −∞ and s(v) =∞, and (b)
∫
Dm(v)dv <∞.

Under Assumption 3.6 (a), V becomes recurrent. Moreover, Assumption 3.6 im-

plies that V is positive recurrent. Positive recurrent diffusions have time invariant

distributions, and if they are started from the time invariant distributions they be-

come stationary. The time invariant density of the positive recurrent diffusion V

is given by π(v) = m(v)/
∫
Dm(v)dv. Therefore, conditions on unconditional mo-

ments are characterized by corresponding m-integrability conditions. For instance,

E(f(Vt)) < ∞ if and only if f is m-integrable, since E(f(Vt)) =
∫
D f(v)π(v)dv and

π(v) = m(v)/
∫
Dm(v)dv with

∫
Dm(v)dv <∞.

Since we allow fat tails, we consider not only integrable functions but also noninte-

grable functions with respect to the speed density m of V . We will not require any reg-

ularity conditions for m-integrable functions. To effectively analyze m-nonintegrable



19

functions, however, we need some regularity conditions. Following Kim and Park

(2017), it will be maintained throughout the paper that all m-nonintegrable functions

f are m-regularly varying, i.e., mf is regularly varying on D. For a m-nonintegrable

function f , we say that f is m-strongly nonintegrable if f` is not m-integrable for

any slowly varying function ` on D. On the other hand, we say that f is m-nearly

integrable if f` is m-integrable for some slowly varying function ` on D.

We assume that

Assumption 3.7. (a) s′ is regularly varying or rapidly varying with index c 6= −1,

(b) σ2 is regularly varying, and (c) f = σ2, ι2 is either m-integrable or m-strongly

nonintegrable.

Assumption 3.7 (a) and (b) appear in Kim and Park (2018), and are mild enough

to include most diffusion processes used in practice. The reader is also referred to

Bingham et al. (1993) for more discussions about the regularly and rapidly varying

functions. In Assumption 3.7 (c), we assume that σ2 and ι2 are m-strongly noninte-

grable as long as they are not m-integrable. This assumption is a technical condition

to simplify our discussions below. Our subsequent theory can also be developed un-

der the m-near integrablility at the cost of more involved analysis (see Kim and Park

(2017, 2018) for the related discussions).

In the following, we let fs = f ◦ s−1 for any function f on D other than m.5

Moreover, for a regularly varying function f on R, we define its limit homogeneous

function f as f(λv)/f(λ)→ f(v) as λ→∞ for all v 6= 0.

We define numerical sequences pT and qT as

pT =

{
T

T 2(msσ
2
s)(T )

if σ2 is m-integrable

if σ2 is m-strongly nonintegrable

qT =

{
T

T 2(msι
2
s)(T )

if ι2 is m-integrable

if ι2 is m-strongly nonintegrable,

5In Section 2.1, ms is defined as ms = (m/s′) ◦ s−1 which is the speed density of natural scale
diffusion V s = s(V ) of the underlying diffusion V .
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and let

P =

{
E(σ2(Vt))∫ τ

0
msσ2

s(Bt)dt

if σ2 is m-integrable

if σ2 is m-strongly nonintegrable

Q =

{
E(V 2

t )∫ τ
0
msι2s(Bt)dt

if ι2 is m-integrable

if ι2 is m-strongly nonintegrable

S =

{
E(V 2

t )− (E(Vt))
2∫ τ

0
msι2s(Bt)dt

if ι2 is m-integrable

if ι2 is m-strongly nonintegrable,

where B is Brownian motion and τ = inf{t
∣∣L(t, 0) > 1/

∫
Dm(v)dv} with Brownian

local time L(·, 0) of B at the origin (i.e., L(t, 0) = limε→0(2ε)−1
∫ t

0
1{|Bs| < ε}ds).

Under Assumption 3.7, both (pT , qT ) and (P,Q, S) are well defined (see Kim and

Park (2017)).

Lemma 3.3. Let Assumption 3.7 hold. As T →∞, we have TpT/qT →∞ and

1

pT
[V ]T →d P,

1

pT

∫ T

0

(Vt − V T )dVt →d −
P

2
,

1

qT

∫ T

0

V 2
t dt→d Q,

1

qT

∫ T

0

(Vt − V T )2dt→d S.

Under the m-integrability of f = ι2, σ2, Lemma 3.3 becomes a standard law of

large numbers of stationary diffusions. However, if f = ι2, σ2 is not m-integrable,

the standard limit theory is not applicable and we have completely different limit

theory. In particular, the limit distribution
∫ τ

0
msfs(Bt)dt is not Gaussian and is

highly nonstandard. Moreover, the normalizing sequence T 2(msfs)(T ) diverges faster

than T since the function msfs becomes a regularly varying function with index

c > −1 as long as f is not m-integrable and Assumption 3.7 holds. The reader is

referred to Kim and Park (2017) for more detailed discussions about the asymptotics

of diffusion functionals.

The long span asymptotics for β̂z follow immediately from Proposition 3.2 with

Lemma 3.3.
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Theorem 3.4. Let Assumptions 3.1-3.7 hold. As δ/∆,∆→ 0 and T →∞, we have

β̂v − 1 ∼d −∆
pT
qT

P

2S
, β̂x − 1 ∼d −∆

pT
qT

P

3S
, β̂y − 1 ∼d −∆

pT
qT

P

3S
− δ

∆

2Q

S
.

As shown in Lemma 3.3 that P , Q and S become constants only when both ι2

and σ2 are m-integrable. The relation ∼d in Theorem 3.4 becomes ∼p if P , Q and S

are all constants. On the other hand, if ι2 and σ2 are not m-integrable, then P , Q

and S remain random. In this case, Theorem 3.4 implies that β̂z − 1 is random for

all small ∆.

Remark 3.3. The results in Theorem 3.4 can be applied to a broad class of volatility

processes used in the literature.

(a) If both σ2 and ι2 are m-integrable, then pT = qT = T and

β̂v − 1 ∼p −∆
E(σ2(Vt))

2V ar(Vt)
, β̂x − 1 ∼p

2

3
(β̂v − 1), β̂y − 1 ∼p (β̂x − 1)− δ

∆

2E(V 2
t )

V ar(Vt)
.

(b) For a stationary Ornstein-Uhlenbeck process V , given as

dVt = κ(µ− Vt)dt+ σdWt,

we have E(σ2(Vt)) = σ2, V ar(Vt) = σ2/(2κ) and E(V 2
t ) = σ2/(2κ) + µ2. Therefore,

β̂v − 1 ∼p −∆κ, β̂x − 1 ∼p −∆
2

3
κ, β̂y − 1 ∼p −∆

2

3
κ− 2

δ

∆

(
1 +

2κµ2

σ2

)
. (3.7)

(c) Let V be a stationary GARCH diffusion (2.7) with σ2 < 2κ so that E(V 2
t ) <

∞. In this case, we have E(σ2(Vt)) = σ2E(V 2
t ), V ar(Vt) = µ2σ2/(2κ − σ2) and

E(V 2
t ) = 2κµ2/(2κ− σ2), and hence, Theorem 3.4 implies

β̂v − 1 ∼p −∆κ, β̂x − 1 ∼p −∆
2

3
κ, β̂y − 1 ∼p −∆

2

3
κ− 4

δ

∆

κ

σ2
. (3.8)

It is interesting to note that the results (3.8) are the same as (2.8) for population

regressions derived by Andersen et al. (2004).

(d) Let V be a stationary GARCH diffusion (2.7) with 2κ < σ2 so that E(V 2
t ) =
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E(σ2(Vt)) =∞. In this case, pT = σ2qT and P = Q = S, and therefore, we have

β̂v − 1 ∼p −∆
1

2
σ2, β̂x − 1 ∼p −∆

1

3
σ2, β̂y − 1 ∼p −∆

1

3
σ2 − 2

δ

∆
. (3.9)

Under E(V 2
t ) <∞, as shown in Remark 3.3 (c), the limits of (β̂z − 1)/∆ are mainly

determined by the mean reversion parameter κ in the drift function µ(v). Under

E(V 2
t ) =∞, the limits (β̂z − 1)/∆ are still constant, but they are determined by the

diffusion parameter σ2 in the diffusion function σ2(v).

We also note that GARCH diffusion is a special example that (β̂z − 1)/∆ has a

degenerated constant limit even under E(V 2
t ) =∞, which is induced by the relation-

ship v2 ∝ σ2(v) between the quadratic function v2 and the diffusion function σ2(v).

For any other models which do not satisfy ι2(v) ∝ σ2(v) asymptotically, (β̂z − 1) has

a random limit, after proper normalization, as long as E(V 2
t ) =∞ or E(σ2(Vt)) =∞.

This is the case for the CEV process considered below.

(e) Let V be a stationary CEV process

dVt = κ(µ− Vt)dt+ σV γ
t dWt.

If κ, µ, σ > 0 and 1 < γ < 3/2, then E(V 2
t ) = ∞ and E(σ2(Vt)) = ∞ since m(v) ∼

v−2γ as v →∞. For the CEV process, we have

pT = σT 2(msι
2γ
s )(T ), qT = T 2(msι

2
s)(T ),

P =

∫ τ

0

msι
2γ
s (Bt)dt, Q = S =

∫ τ

0

msι2s(Bt)dt,

where pT/qT = σι2γ−2
s (T )→∞ as T →∞, since γ > 1 and ιs = s−1 is monotonically

increasing by the recurrence property. Clearly, P 6= S for any γ ∈ (1, 3/2), and hence,

P/S remains random unlike the GARCH diffusion. Therefore, β̂z−1 has random limit

for all sufficiently small ∆.

(f) Our example in Remark 3.3 (d) should be contrasted to the limit theory for the

sample autocorrelations of GARCH(1,1) processes with fat tails obtained in Mikosch

and Starica (2000). Let

Xi = σiZi with σ2
i = α0 + β1σ

2
i−1 + α1X

2
i−1 for i = 1, 2, · · · , N,



23

where (Zi) is a sequence of i.i.d. symmetric random variables with EZ2
i = 1. Under

some assumptions, which imply that the vector (Xi, σi) is regularly varying with index

p > 0, it is shown that for p ∈ (0, 4) the variance process (σ2
i ) has unbounded variance

and satisfies, for any k ≥ 1,(∑N−k
i=1 X2

iX
2
i+k∑N

i=1X
4
i

− 1,

∑N−k
i=1 σ2

i σ
2
i+k∑N

i=1 σ
4
i

− 1

)
∼d
(

Σ1,X2 − Σ0,X2

Σ0,X2

,
Σ1,σ2 − Σ0,σ2

Σ0,σ2

)
,

where the limit distribution is nondegenerated since the vector (Σm,X2 ,Σm,σ2)m=0,1 is

p/2-stable. This contrasts with our result for a GARCH diffusion with unbounded

variance (see Remark 3.3 (d)), in which (β̂z − 1)/∆ has a constant limit for z = v, x.

We think that the difference between our results and those of Mikosch and Starica

(2000) is due to the fact that we allow ∆ → 0. We conjecture that the result would

be the same when ∆ is fixed.

4. Instrumental Variable Estimations

In this section we will study various IV estimators of β
(k)
z in (2.3). When one has a

model like

zi+1 = α + βzi + ui+1, |β| ≤ 1

where (ui) is i.i.d. with possible fat tails, it is well known that in general the OLS

estimator of β is consistent (see Hannan and Kanter (1977); Knight (1987) for |β| <
1, and Chan and Tran (1989); Phillips (1990) for β = 1). However, the OLS is

not necessarily efficient and its asymptotic distribution could be non-Gaussian. An

alternative method that could lead to more efficient estimators or asymptotically

Gaussian ones is to consider a signed power estimator defined as6

β̃ =

∑
sign(zi) | zi |c (zi+1 − z̄N)∑
sign(zi) | zi |c (zi − z̄N)

.

The reader is referred to Samorodnitsky et al. (2007) for the asymptotics of OLS and

the signed power estimator. One can easily prove that this estimator is indeed the

6The signed power estimator can be modified by replacing sign(zi)|zi|c with sign(zi−z̄N )|zi−z̄N |c
so that the resulting estimator can adjust its sample mean.
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empirical counterpart of the IV estimator defined by

E

[(
1

sign(zi)|zi|c

)
(zi+1 − α− βzi)

]
= 0.

Typically, the power c is smaller than one in order to reduce the tails of the moments

involved in the estimation method. An extreme case is the Cauchy estimator which

corresponds to c = 0, that is when the instrument equals the sign of zi.

In the following subsection, we will study IV estimators of β
(k)
z in (2.3) which have

the form

β̃(k)
z =

∑N−1
i=k+1 r(zi−k)(zi+1 − zN)∑N−1
i=k+1 r(zi−k)(zi−k − zN)

,

where we use a functional transformation r(zi−k) of zi−k as an instrument. We prove

below that the IV estimator, with a proper choice of instrument, is robust to fat tails.

Interestingly, Jean-Marie Dufour used the sign-based methods in several studies

for inference purposes, especially for exact inference in finite sample. In particular,

he used such an approach in Coudin and Dufour (2009, 2017) in order to provide

inference about the slope parameter in a linear regression model without making

moment restrictions on the disturbance errors and therefore allowing for fat tails. The

assumption made in these papers is a median restriction on the errors conditional on

the explanatory variables. In other words, we are using the same approach with a

slightly different framework because we assume that the conditional first moment of

the errors exists and equals zero, but we do not make assumptions on higher moments.

4.1. IV Estimator β̃
(k)
z with a Current Instrument

Let r be continuously differentiable, and define r1(z) =
∫ z
z0
r(x)dx for some z0 ∈ D.

Then, by Taylor expansion, we have

k∑
j=0

(r1(zN−j)− r1(z1+j)) =
N−1∑
i=k+1

(r1(zi+1)− r1(zi−k))

=
N−1∑
i=k+1

r(zi−k)(zi+1 − zi−k) +
1

2

N−1∑
i=k+1

r′(z∗i−k)(zi+1 − zi−k)2
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for (z∗i )
N−1
i=1 such that z∗i ∈ [zi−k, zi+1]. Using the expansion, we may rewrite β̃

(k)
z as

β̃(k)
z − 1 =

∑k
j=0(r1(zN−j)− r1(z1+j))∑N−1
i=k+1 r(zi−k)(zi−k − zN)

− 1

2

∑N−1
i=k+1 r

′(z∗i−k)(zi+1 − zi−k)2∑N−1
i=k+1 r(zi−k)(zi−k − zN)

. (4.1)

As in Lemma 3.1, we may obtain the continuous time approximation for each term

in (4.1). For the approximation, we require

Assumption 4.1. (a) r is three times continuously differentiable on R with r′(z) > 0

for all z ∈ R, and (b) r and its derivatives are all majorized by the function ω in

Assumption 3.1.

The role of Assumption 4.1 is similar to Assumption 3.1, and make it convenient

to develop the continuous time approximations if combined with the conditions on δ,

∆ and T in Assumptions 3.2-3.5.

Proposition 4.1. Let Assumptions 3.1-3.5 and 4.1 hold.

(a) For k ≥ 0, we have

k∑
j=0

(r1(zN−j)− r1(z1+j)) ∼p (1 + k)(r1(VT )− r1(V0)),

N−1∑
i=k+1

r(zi−k)(zi−k − zN)∆ ∼p
∫ T

0

r(Vt)(Vt − V T )dt

for z = v, x, y.

(b) For k ≥ 0, we have

N−1∑
i=k+1

r′(z∗i−k)(zi+1 − zi−k)2 ∼p
N−1∑
i=1

r′(zi)(zi+1 − zi)2 + k
N−1∑
i=1

r′(vi)(vi+1 − vi)2

for z = v, x, y, and

N−1∑
i=1

r′(zi)(zi+1 − zi)2 ∼p


∫ T

0
r′(Vt)d[V ]t, for z = v

(2/3)
∫ T

0
r′(Vt)d[V ]t, for z = x

(2/3)
∫ T

0
r′(Vt)d[V ]t + (4δ/∆2)

∫ T
0
r′(Vt)V

2
t dt, for z = y
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(c) We have

β̃v − 1 ∼p ∆

∫ T
0
r(Vt)dVt∫ T

0
r(Vt)(Vt − V T )dt

,

β̃x − 1 ∼p ∆

∫ T
0
r(Vt)dVt + (1/6)

∫ T
0
r′(Vt)d[V ]t∫ T

0
r(Vt)(Vt − V T )dt

,

β̃y − 1 ∼p ∆

∫ T
0
r(Vt)dVt + (1/6)

∫ T
0
r′(Vt)d[V ]t − (2δ/∆2)

∫ T
0
r′(Vt)V

2
t dt∫ T

0
r(Vt)(Vt − V T )dt

and

β̃(k)
z − 1 ∼p (β̃z − 1) + k(β̃v − 1).

We note that if r(z) = z, then β̃
(k)
z becomes the OLS estimator β̂

(k)
z in Section 3.

Proposition 4.1 (a) and (b) are generalizations of Lemma 3.1 (a) and (b), respectively.

Similarly, Proposition 4.1 (c) is a generalization of Proposition 3.2. Moreover, one

may want to adjust the sample mean of zi in the IV estimation by using r(zi−k− zN)

as an instrument for β̃
(k)
z instead of r(zi−k). The following corollary provides the

corresponding asymptotic approximations of the IV estimators β̃
(k)
z .

Corollary 4.2. Let the conditions in Proposition 4.1 holds. If r(zi−k − zN) is used

as an instrument for β̃
(k)
z instead of r(zi−k), then the results in Proposition 4.1 (c)

hold with r(Vt − V T ) and r′(Vt − V T ) in place of r(Vt) and r′(Vt), respectively.

Now we develop the large T asymptotics of β̃z. To effectively control the fat tails

in V , we impose the following conditions on r.

Assumption 4.2. The function r : D → R satisfies that E[r(Vt)],E[r(Vt)Vt],E[r′(Vt)V
2
t ],

and E[r′(Vt)σ
2(Vt)] are all bounded, and E[r(Vt)Vt]− E[r(Vt)]E[Vt] 6= 0.

Assumption 4.2 provides simple sufficient conditions to ensure that the IV esti-

mator β̃z has a constant limit involving parameters in µ and σ2. An example of r

satisfying Assumption 4.2 is r(v) = arctan(v). Clearly, r is monotonically increas-

ing, bounded and continuously differentiable with r′(v) = 1/(1 + v2). Therefore,

Assumption 4.2 holds if E|Vt| < ∞ and E[r′(Vt)σ
2(Vt)] < ∞. When D = (0,∞) and

r(v) = arctan(v), we have E[r′(Vt)σ
2(Vt)] <∞ as long as σ2(v)/v3 = O(vε) as v →∞

for some ε > 0.
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Theorem 4.3. Let Assumptions 3.1-3.5 and 4.1-4.2 hold. If E|Vt| <∞, then

β̃v − 1 ∼p −∆
1

2

E[r′(Vt)σ
2(Vt)]

E[r(Vt)Vt]− E[r(Vt)]E[Vt]
,

β̃x − 1 ∼p −∆
1

3

E[r′(Vt)σ
2(Vt)]

E[r(Vt)Vt]− E[r(Vt)]E[Vt]
,

β̃y − 1 ∼p −∆
1

3

E[r′(Vt)σ
2(Vt)]

E[r(Vt)Vt]− E[r(Vt)]E[Vt]
− δ

∆

2E[r′(Vt)V
2
t ]

E[r(Vt)Vt]− E[r(Vt)]E[Vt]
.

As well expected, β̃z − 1 has a well defined constant limit under the moment con-

ditions in Assumption 4.2. For a given parametric diffusion model, we may explicitly

compute the limit of β̃z − 1. As an example, we consider a stationary diffusion V

defined on D = (0,∞) having a linear drift

dVt = κ(µ− Vt)dt+ σ(Vt)dWt (4.2)

with E(Vt) = µ and σ2(v)/v2 = O(1) as v →∞.

Corollary 4.4. Let Assumptions 3.1-3.5 and 4.1-4.2 hold for V in (4.2). Then

E[r′(Vt)σ
2(Vt)]

E[r(Vt)Vt]− E[r(Vt)]E[Vt]
= 2κ and

1

∆
(β̃v − 1)→p −κ.

regardless of the finiteness of E(V 2
t ). Moreover, if V in (4.2) is a GARCH diffusion

with σ2(v) = σ2v2, then

E[r′(Vt)V
2
t ]

E[r(Vt)Vt]− E[r(Vt)]E[Vt]
= 2

κ

σ2

and

β̃x − 1 ∼p −∆
2

3
κ, β̃y − 1 ∼p −∆

2

3
κ− 4

δ

∆

κ

σ2

regardless of the finiteness of E(V 2
t ).

Corollary 4.4 implies that the IV estimates β̃z do not depend on the finiteness

of E(V 2
t ), and are equivalent to those of the OLS estimates β̂z in (3.7), which are

obtained under E(V 2
t ) < ∞. In contrast, the OLS estimates β̂z have different limits
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depending upon E(V 2
t ) <∞ holds or not (see the discussions in Remark 3.3 (c) and

(d)). Therefore, we may say that the instrumental variable approach can effectively

control the fat tails as long as r is appropriately chosen.

If the transformation r satisfies some additional integrability conditions, we may

obtain the asymptotic normality of the IV estimator. For the asymptotic normality,

we may use the asymptotics of the centered additive functionals (see, e.g., Mandl

(1968); van der Vaart and van Zanten (2005)) so that we have

√
T

(
1

T

∫ T

0

(r′σ2)(Vt)dt− E[r′(Vt)σ
2(Vt)]

)
→d N(0,Σr), (4.3)

provided that the asymptotic variance

Σr = 4

(∫
D
m(v)dv

)[∫
D

(∫ v

v

{
(r′σ2)(v)− E[r′(Vt)σ

2(Vt)]
}
π(u)du

)2

ds(v)

]

is finite, where m, π and s are the speed density, time invariant distribution and scale

function, respectively. Therefore, if r is appropriately chosen such that Σr < ∞, we

may deduce from Proposition 4.1 (c), Assumption 4.2 and (4.3) that

√
T

(
β̃v−1+

∆

2

E[r′(Vt)σ
2(Vt)]

E[r(Vt)Vt]−E[r(Vt)]E[Vt]

)
→d (2E[r(Vt)Vt]−E[r(Vt)]E[Vt])

−1 N(0,Σr),

√
T

(
β̃x−1+

∆

3

E[r′(Vt)σ
2(Vt)]

E[r(Vt)Vt]−E[r(Vt)]E[Vt]

)
→d (3E[r(Vt)Vt]−E[r(Vt)]E[Vt])

−1 N(0,Σr),

and β̃y − 1 has the same asymptotic distribution as β̃x − 1 if δ/∆2 → 0. On the

other hand, if r does not satisfy Σr < ∞, then (4.3) does not hold, and the limit

distributions of β̃z − 1 are not Gaussian (see Theorem 3.6 of Kim and Park (2017)).

Heuristically, we may consider the Cauchy estimator by using r(z − zN), where

r(z) = sign(z), as an instrument in β̃z. Clearly, r is not differentiable, and hence,

our results Proposition 4.1 and Theorem 4.3 are not directly applicable. By the

standard approximation method with Tanaka’s formula, however, we may obtain the



29

asymptotics of the Cauchy estimator. Given Proposition 4.1 (c), we conjecture that

β̃v − 1 ∼p ∆

∫ T
0

sign(Vt − V T )dVt∫ T
0
|Vt − V T |dt

,

β̃x − 1 ∼p
(
β̃v − 1

)
+

∆

3

σ2(V T )LV (T, V T )∫ T
0
|Vt − V T |dt

,

β̃y − 1 ∼p
(
β̃x − 1

)
− 4δ

∆

(V T )2LV (T, V T )∫ T
0
|Vt − V T |dt

,

where LV (·, v) is the local time of V at v ∈ D, defined as LV (T, v) = limε→0(2ε)−1
∫ T

0
1{|Vt−

v| < ε}dt. The large T asymptotics then follow immediately from the law of large

numbers, and they are given by

β̃v−1∼p−∆
σ2(µ)π(µ)

E|Vt − µ|
, β̃x−1∼p−∆

2σ2(µ)π(µ)

3E|Vt − µ|
, β̃y−1∼p (β̃x−1)− 4δ

∆

µ2π(µ)

E|Vt − µ|
,

since V T →p E[Vt] = µ, T−1LV (T, V T )→p π(µ), T−1
∫ T

0
|Vt−V T |dt→p E|Vt−µ| and

1

T

∫ T

0

sign(Vt − V T )dVt →p −σ2(µ)π(µ).

If V is a GARCH diffusion, it can be shown as in Corollary 4.4 that

σ2(µ)π(µ)

E|Vt − µ|
= κ,

µ2π(µ)

E|Vt − µ|
=

κ

σ2
.

Therefore, we conjecture that Corollary 4.4 holds even when the Cauchy estimator

is used. We will formally analyze the asymptotics, under a fixed ∆, of the Cauchy

estimator in Section 5.2.

4.2. IV Estimator β̌
(k)
z with a Lagged Instrument

In the GARCH diffusion case, Corollary 4.4 means that the proposed IV estimator

converges to the object of interest when one uses the spot variance while one gets

a bias estimation when one uses integrated or realized variance. The reason is that

the integrated and realized variances are ARMA(1,1) processes and therefore this IV
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estimator converges to the first order autocorrelation (when the second moment of

these variables are bounded). As mentionned above, a solution to this problem is

to consider the multi-period moment restriction (2.11), which in turn corresponds to

consider a lagged instrument in the estimation of β
(k)
z in (2.3). More precisely, in this

subsection we study the estimator β̌
(k)
z defined as

β̌(k)
z =

∑N−1
i=k+2 r(zi−k−1)(zi+1 − zN)∑N−1
i=k+2 r(zi−k−1)(zi−k − zN)

.

In other words, the IV estimator β̃
(k)
z studied in the previous subsection uses r(zi−k)

as an instrument for (zi−k− zN), whereas β̌
(k)
z employs r(zi−k−1) as an instrument for

the same object (zi−k − zN).

For the asymptotics, we write

β̌(k)
z − 1 =

∑N−1
i=k+2 r(zi−k−1)(zi+1 − zi−k)∑N−1
i=k+2 r(zi−k−1)(zi−k − zN)

=

∑N−1
i=k+2 r(zi−k−1)(zi+1 − zi−k−1)∑N−1
i=k+2 r(zi−k−1)(zi−k − zN)

−
∑N−1

i=k+2 r(zi−k−1)(zi−k − zi−k−1)∑N−1
i=k+2 r(zi−k−1)(zi−k − zN)

≡ φ(k)
z − ψ(k)

z . (4.4)

For the denominator of φ
(k)
z and ψ

(k)
z with a fixed k ≥ 0, we may show that

N−1∑
i=k+2

r(zi−k−1)(zi−k − zN)∆ ∼p
N−1∑
i=k+2

r(zi−k)(zi−k − zN)∆ ∼p
∫ T

0

r(Vt)(Vt − V T )dt

as long as δ/∆ and ∆ are sufficiently small. We then may deduce from Proposition

4.1 with (4.1) that

φ(k)
z ∼p ∆

∑N−1
i=k+2 r(zi−k−1)(zi+1 − zi−k−1)∑N−1
i=k+2 r(zi−k−1)(zi−k−1 − zN)∆

∼p β̃(1+k)
z − 1,

ψ(k)
z ∼p ∆

∑N−1
i=k+2 r(zi−k−1)(zi−k − zi−k−1)∑N−1
i=k+2 r(zi−k−1)(zi−k−1 − zN)∆

∼p β̃(0)
z − 1

as long as δ/∆ and ∆ are sufficiently small. We formally have
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Theorem 4.5. Let Assumptions 3.1-3.5 and 4.1 hold. For z = v, x, y, we have

β̌(k)
z − 1 ∼p (β̃(1+k)

z − 1)− (β̃(0)
z − 1) ∼p (1 + k)(β̃v − 1).

Unlike β̂z and β̃z, the limits of β̌z − 1 are given by β̃v − 1 regardless of z = v, x, y.

Consequently, if V is a linear drift diffusion in (4.2), then (β̌z − 1)/∆ →p −κ for all

z = v, x, y, rather than the limits of β̃z in Corollary 4.4. Therefore, we may say that

the IV estimator β̌z is a consistent estimator for the mean reversion parameter κ of

linear drift diffusions, and is robust to not only fat tails in V but also errors (vi− xi)
and (vi − yi) in, respectively, the integrated variance and realized variance.

For the linear transformation r(z) = z, we may easily see that β̃z = β̂z. In this

case, the IV estimator β̌z becomes a simple IV estimator with an instrument zi−1 for

(zi − zN), and it follows from Theorem 4.5 that

β̌(k)
z − 1 ∼p (1 + k)(β̂v − 1) (4.5)

for z = v, x, y. If Assumption 3.7 holds in addition to the conditions in Theorem 4.5,

then (4.5) becomes β̌z−1 ∼d −∆(pT/qT )(P/(2S)) for z = v, x, y by Theorem 3.4. On

the other hand, Assumption 4.2 holds for r(z) = z if and only if E(V 2
t ) and E(σ2(Vt))

are finite. Consequently, when r(z) = z, we have (β̌z − 1)/∆ 6→p −κ for a linear

drift diffusion (4.2) satisfying either E(V 2
t ) = ∞ or E(σ2(Vt)) = ∞. For instance, a

GARCH diffusion satisfies (β̌z − 1)/∆ →p −κ if E(V 2
t ) < ∞ with σ2 < 2κ, whereas

(β̌z − 1)/∆→p −σ2/2 if E(V 2
t ) =∞ with 2κ < σ2.

As a conclusion of this section, let us remark that there is a large literature

considering autoregressions in discrete time models and allowing for heavy tails. In

particular, Hill (2015) and Hill and Prokhorov (2016) propose a robust generalized

empirical likelihood (GEL) method for estimation and inference of an autoregression

that may have a heavy tailed heteroscedastic error. We expect that the GEL estimator

can also be robust to fat tails in continuous time models. However, it is questionable

whether the GEL estimator can be robust to the non-Markovianity of (xi) and (yi)

in our framework. We leave the asymptotic properties of GEL methods in volatility

regression for future research.
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4.3. Asymptotic Negligibility of Errors in Realized Variance

In the previous subsections, we analyze the asymptotic behaviors of the IV estimators

under the assumption that each of V and D is independent of W P . In reality, however,

it is widely believed that there exists the leverage effect, which corresponds to a

negative correlation between past returns and future volatility. As an extension of

our previous results, we allow arbitrary dependences among V , D and W P , and

analyze the asymptotic negligibility of the errors in the realized variance.

Assumption 4.3. (a) For ω in Assumption 3.1, (δ/∆2)TV (ω6)T log3(T/δ) →p 0,

and (b) ∆T 2
D →p 0.

It can be seen from the primary asymptotics in Proposition 4.1 (c) that the impact

of errors in (yi) may become asymptotically negligible as long as δ/∆2 → 0 sufficiently

quickly. Assumption 4.3 (a) is a sufficient condition for the asymptotic negligibility of

the error, and requires faster rate of convergence δ → 0 than Assumption 3.3. On the

other hand, Assumption 4.3 (b) has a similar role to Assumption 3.4, and provides

a sufficient condition for the asymptotic negligibility of the drift part (Dt) in the IV

estimation with (yi).

Proposition 4.6. Under Assumptions 3.1-3.2, 4.1, and 4.3,

β̃(k)
y − 1 ∼p β̃(k)

x − 1 and β̌(k)
y − 1 ∼p β̌(k)

x − 1.

Unlike Proposition 4.1 (c), β̃
(k)
y becomes asymptotically equivalent to β̃

(k)
x regard-

less of the presence of leverage effects, especially, when δ/∆2 → 0 sufficiently quickly.

It is also true that, under the conditions in Proposition 4.6, β̂
(k)
y − 1 ∼p β̂(k)

x − 1 since

β̂
(k)
z is a special case of β̃

(k)
z with r(z) = z.

5. Volatility Regressions Under Fixed ∆

In this section, we consider a volatility regression under fixed ∆, and provide an IV

based inference procedure.
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5.1. IV Based Inference

Motivated by the multi-period moment restriction (2.11) for GARCH diffusions, we

consider a stationary time series (zi), defined on Dz = (z, z), satisfy E|zi| <∞ and

E[(zi+1 − µz)− βz(zi − µz)|Gi−1] = 0, (5.1)

where Gi−1 is the sigma-field generated by (zi−k, k = 1, 2, · · · ). For a GARCH diffusion

(2.7), µz = µ and βz = exp(−κ∆) for z = v, x as well as for z = y if Dt = 0 almost

surely.

An equivalent representation of (zi) satisfying the multi-period moment restriction

(5.1) is that

zi+1 = αz + βzzi + ui+1 with αz = µz(1− βz), E(ui+1|Gi−1) = 0. (5.2)

Clearly, (zi) can be non-autoregressive since we allow E(ui+1|zi) 6= 0.

Now we propose an IV based inference procedure for βz in (5.2). We consider a

measurable function r : Dlz → R for some 1 ≤ l <∞, and construct the IV estimator

as

β̌z =

∑N−1
i=l+1 r(Zi−1,i−l)(zi+1 − zN)∑N−1
i=l+1 r(Zi−1,i−l)(zi − zN)

, where Zi−1,i−l = (zi−1, zi−2, · · · , zi−l)′.

Assumption 5.1. There exists a measurable function r : Dlz → R for some 1 ≤ l <

∞ such that (a) E|r(Zi−1,i−l)(zi − µz)| <∞ with E[r(Zi−1,i−l)(zi − µz)] 6= 0, and (b)

E(r2(Zi−1,i−l)z
2
i+1),E(r2(Zi−1,i−l)z

2
i ) <∞.

Assumption 5.1 is quite general and includes the situations where E(z2
i ) = ∞.

If r is bounded, then E[r(Zi−1,i−l)(zi − µz)] is well defined since E|zi| < ∞, and

hence, Assumption 5.1 (a) is always satisfied as long as r is bounded such that the

identification condition E[r(Zi−1,i−l)(zi − µz)] 6= 0 is met. However, Assumption 5.1

(b) imposes more restrictions on the tail behaviors of the function r.
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Under Assumption 5.1 with some regularity conditions, we have

1

N

N−1∑
i=l+1

r(Zi−1,i−l)ui+1 →p E[r(Zi−1,i−l)ui+1] = 0, (5.3)

1

N

N−1∑
i=l+1

r(Zi−1,i−l)(zi − µz)→p E[r(Zi−1,i−l)(zi − µz)], (5.4)

1

N

N−1∑
i=l+1

r2(Zi−1,i−l)u
2
i+1 →p E[r2(Zi−1,i−l)u

2
i+1], (5.5)

1

N1/2

N−1∑
i=l+1

r(Zi−1,i−l)ui+1 →d N(0,E[r2(Zi−1,i−l)u
2
i+1]) (5.6)

due to the LLN and the martingale CLT.

Theorem 5.1. (a) If Assumption 5.1 (a) and (5.3)-(5.4) hold, then β̌z →p βz. (b) If

Assumption 5.1 and (5.3)-(5.6) hold, then

√
N(β̌z − βz)→d N(0,Σl(r)), where Σl(r) =

E[r2(Zi−1,i−l)u
2
i+1]

E[r(Zi−1,i−l)(zi − µz)]2
,

and Σ̌l(r)→p Σl(r), where

Σ̌l(r) = N

∑N−1
l+1 r2(Zi−1,i−l)ǔ

2
i+1(∑N−1

l+1 r(Zi−1,i−l)(zi − z̄N)
)2 with ǔi+1 = (zi+1 − z̄N)− β̌z(zi − z̄N).

Theorem 5.1 (a) implies that β̌z →p βz as long as r is bounded. For a GARCH

diffusion, in particular, βz = exp(−κ∆) for z = v, x, y, and hence, the IV estimator

β̌z for z = v, x, y with instrument r(zi−1 − zN) has the same limit exp(−κ∆) as long

as r is bounded. So the Cauchy estimator with r(z) = sign(z) becomes consistent for

exp(−κ∆).

If we further impose some restrictions on the tail behaviors of r, then the IV

estimator β̌z is asymptotically normal as shown in Theorem 5.1 (b). In GARCH

diffusion example, Assumption 5.1 (b) holds for z = v, x if r(z) ∼ sign(z)|z|c with

c < −1/2. Clearly, r(z) = sign(z) does not satisfy Assumption 5.1 (b) unless z has

finite variance, and hence, the Cauchy estimator is not asymptotically normal, though
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it is consistent, under E(V 2
t ) =∞.

5.2. Fixed ∆ and Small ∆ Asymptotics for GARCH Diffusion

In Section 4.2, we obtained general asymptotics of the IV estimator β̌z, which is robust

to fat tails as well as errors in observed variance measures, in particular, under the

assumption that ∆ → 0. In our asymptotics, the main motivation of introducing

the small ∆ assumption is to effectively handle general variance processes V having

potentially unbounded moments. In practice, however, the volatility measure, (xi) or

(yi), is often computed on a daily basis, and ∆ is commonly fixed to a length of day.

Under the fixed ∆, one may be interested in the quality of our approximation based

on ∆→ 0.

To see the usefulness of our asymptotics under ∆ → 0, we again consider a

GARCH diffusion (2.7). It then follows from Theorem 5.1 that the fixed ∆ asymp-

totics are approximately equivalent to the asymptotics obtained under ∆ → 0 since

exp(−κ∆) = 1−κ∆ + o(∆), and the leading term 1−κ∆ is equivalent to the limit of

β̌z obtained under ∆→ 0 in Theorem 4.5. We also note that our asymptotics of β̂z in

Section 3 provide the same results as those derived by Andersen et al. (2004) when the

required moments are satisfied. Therefore, we may conclude that our asymptotics,

obtained under ∆→ 0, provide a useful asymptotic approximation at least for some

popular models.

Given the asymptotic assumption of ∆ → 0 as well as continuity of the sample

path of V , two consecutive measures zi+1 and zi are supposed to be very close for

z = v, x, y. Consequently, we always have unit roots in z = v, x, y, and β̂z, β̃z, β̌z →p 1

as long as ∆→ 0 sufficiently quickly, as derived in the previous sections. Indeed, there

are many evidences supporting the unit-root like behavior in volatility regressions. In

the empirical studies in Hansen and Lunde (2014), for instance, volatility regressions

at daily frequency are considered for 29 assets in the Dow Jones industrial average.

The range of parameter estimates for the coefficient of the first order autoregression

with realized variances are [0.611, 0.887] for the OLS and [0.895, 1.037] for the IV with

a lagged realized variance as instrument. They also find that the volatility processes

are highly persistent, and they fail to reject the unit root hypothesis at the 1% level

for some volatility processes.
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6. Simulations

In this section, we study by simulation the behavior of the Hill tail index estima-

tor as well as the OLS and some IV estimators. For our simulations, we use the

GARCH diffusion (2.7) with three sets of parameters. The first one is (κ0, µ0, σ
2
0) =

(0.0350, 0.6360, 0.0207) which implies that the corresponding Vt has a finite second

moment since ψ0 = σ2
0/(2κ0) = 0.296 < 1. This set of parameters was used by An-

dersen and Bollerslev (1998) as implied from the (weak) daily GARCH(1,1) model

estimates for the DM/dollar from 1987 through 1992 using the temporal aggrega-

tion results of Drost and Nijman (1993) and Drost and Werker (1996); the same

parameters were used by Andersen et al. (2004).

To consider a process with an unbounded variance, we consider two other sets of

parameters by keeping the same κ0 and µ0, while we multiply σ2
0 by 4 and 16, corre-

sponding to ψ0 = 1.183 and ψ0 = 4.732, that is (κ0, µ0, σ
2
0) = (0.0350, 0.6360, 0.0828)

and (0.0350, 0.6360, 0.3312). Clearly, the third model has thicker tails than the second

one.

The simulation samples are generated by the Euler discretization at 10 seconds

for T = 250, 500, 1000 days corresponding to 1, 2 and 4 years. We assume that the

market is open 24 hours. For each day (∆ = 1), we set the daily spot variance as

the spot variance at the end of the day, while we compute the integrated variance

by the numerical integration of the simulated spot variance process at 10 seconds.

As for the realized variance, we analyze the frequency effects by considering three

different frequencies: 10 minutes (δ/∆ = 1/144), 5 minutes (δ/∆ = 1/288) and 1

minute (δ/∆ = 1/1440). For each sample, we get rid of the first five days to reduce

the effect of the initial value, and we do 10,000 replications.

6.1. Tail Index

We start by studying the properties of the Hill estimator by estimating the tail index

of the returns, spot and integrated volatility of the GARCH diffusion model. In an

important contribution, Nelson (1990) proved that when the length of time between

observations goes to zero, the returns follow (up to a scaling factor) a Student dis-

tribution with degree of freedom ν0 = 2 + 4κ0/σ
2
0 = 2 + 2/ψ0. Consequently, the tail

index of the return is ν0 which equals 8.75 for Model 1, 3.69 for Model 2 and 2.43 for
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Model 3.

Likewise, the stationary distribution of any stationary scalar diffusion process is

well known and proportional to the speed density function m(·) defined in (2.6). One

can easily show that m(v) ∼ v−2−1/ψ0 when v → ∞, implying that the tail index

of the spot variance Vt equals 1 + 1/ψ0. Consequently, the tail index of the returns

equals the double of the spot variance’s tail index when the length of time between

observations goes to zero.

Unfortunately we do not know the tail indexes of the integrated and realized

variances. There is no general result connecting the tail of a process with the tail of

the temporal aggregation version of it.

Figure 2 depicts the average estimator of the tail index of the returns, the spot

variance, the integrated variance and the three realized volatility measures of the

three models. The averages are computed over 10,000 replications of samples with

1,000 observations each. The top-left panel in Figure 2 depicts the tail index of daily

returns. If Nelson’s approximation is good, the true tail index should be 8.75 for

Model 1, 3.69 for Model 2, and 2.43 for Model 3. The simulations suggest that there

is negative bias in the Hill estimator, which is quite small for low values of k (we

do not use the subscript n) and increases when k increases. However the order of

the tails is coherent across models. The bias is maybe genuine, or because Nelson’s

approximation is not good for our sample frequency. The middle-left panel in Figure

2 depicts the tail index of the spot variance. The tail index should be 4.38 for Model

1, 1.85 for Model 2, and 1.22 for Model 3. There is clearly a positive bias when k is

small and the bias decreases when k is moderately large. Again, the order of the tails

is coherent across models with the right magnitudes. The bottom-left panel in Figure

2 depicts the tail index of the integrated variance for which we do not know the true

tail index. The plots are quite similar to those of the spot variance. The right panels

in Figure 2 depict the tail index of the three realized volatility measures for which we

do not know the true index. The graphs are close to those of the integrated variance,

especially for the bottom-right panel that corresponds to realized variance computed

with 1-minute returns.
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6.2. OLS and IV Estimations

We now turn to study the empirical distributions of the OLS and IV estimators. We

keep the three models of the GARCH diffusion (2.7), with three sample sizes, 250,

500, and 1,000.

We start by considering the regression

vi+1 = α + βvi + ui+1, with vi = Vi∆.

We will focus on the slope parameter β. It is well known that β equals exp(−κ∆)

when the spot variance has a finite second moment. However, we proved in (2.10) that

the same result holds when Vt is stationary and has a finite first moment. Therefore,

the slope of interest is exp(−κ∆) for the three models considered in this section.

When ∆ is fixed and the second moment of Vt is bounded, the OLS estimator of β

is consistent. Characterizing the fixed ∆ asymptotics of the OLS is difficult when the

second moment of Vt is not finite. However, we may deduce from Theorem 3.4 (see

also Remark 3.3 (d)) that the OLS is inconsistent. However, IV method is consistent

when the Cauchy estimator is used.

The left column in Figure 3 depicts the empirical distribution of the OLS and

IV estimators of the slope coefficient. The top panel deals with Model 1 for which

the second moment is bounded, while the middle and bottom panels deal respectively

with Models 2 and 3 for which the second moment of Vt is unbounded. The figures are

coherent with the theory. For Model 1 (top-left panel), both OLS and IV estimators

look consistent with better properties when the sample size increases. However, the

OLS estimator presents a bias and looks inconsistent, as expected by our theory, for

Model 2 (middle-left panel) and especially Model 3 (bottom-left panel) which present

very fat tails. In contrast, the Cauchy estimator looks consistent for the two models,

even though there is some bias that decreases when the sample sizes increases.

In practice, the spot variance process is not observed. It is therefore important to

focus on feasible methods based on the observed realized variance processes. Accord-

ingly, we consider the multi-period moment restriction (2.11) which is always valid for

the spot and integrated variances, and is valid for the realized variance when the drift
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Dt is zero as in our simulations.7 Consequently, we consider the moment condition

E[r(zi−2)(zi − α− βzi−1)] = 0,

where zi is either the spot, the integrated or one of the three realized variance mea-

sures. We consider two IV estimators: the first one is r(zi−2) = zi−2 while the second

one is the sign of zi−2 minus its empirical mean, that is the Cauchy estimator. For the

second and third models, the first IV estimator with r(zi−2) = zi−2 does not fulfill the

restriction E[| r(zi−2)(zi − α − βzi−1) |] < ∞, and hence, we may deduce from (3.9)

and (4.5) that it is not consistent for exp(−κ∆), even when ∆ → 0. However, the

corresponding estimator is consistent for the first model. The second IV estimator is

the Cauchy one and leads to a consistent estimator for the three models.

The right column of Figure 3 and Figures 4-5 depict respectively the empirical

distribution of the slope’s estimator for the five volatility measures listed above. For

all figures, the Cauchy instrument based estimator looks consistent whether E(V 2
t ) <

∞ (top panels) or not (middle and bottom panels), which is coherent with the theory.

Importantly, the estimator based on observed volatility measures is consistent, which

is practically more relevant. As expected, the IV estimator with r(zi−2) = zi−2 looks

consistent only for Model 1 (top panels), but it looks inconsistent for Models 2 and 3

(middle and bottom panels), with a larger bias for Model 3 (bottom panels).

7. Conclusion

Fat tails are a well-known empirical fact of financial returns. Surprisingly, the realized

volatility literature has ignored this fact. After showing empirically that the second

moment of several realized variance measures is probably unbounded, we theoretically

studied the limiting behavior of the OLS estimator of simple autoregressions of a spot,

integrated and realized variances. We proved that when the second moment of the

spot variance is unbounded, the OLS estimators converge to random variables. Our

theory is also valid when the second moment of the spot variance is bounded. In

this case, the OLS estimates converge to finite and deterministic quantities which

7The presence of a drift will introduce a small bias that will disappear when the length of the
intra-day returns δ goes to zero.
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are the same ones derived by Andersen et al. (2004) in population regressions. Our

theoretical results are based on asymptotic approximations. Both the simulations

and the comparison with the results in Andersen et al. (2004) when the spot variance

has a finite second moment corroborate the good quality of our approach.

In order to derive more positive results, we considered a GARCH diffusion process

with an unbounded second moment for the variance process and then we provided a

consistent estimation method based on an instrumental variable approach where the

instrument is the sign of the lagged value of the variable of interest.

There is an important question that should be addressed. It concerns the fore-

cast that one should compute under fat tails in a non-parametric setting. Various

approaches could be considered like different loss functions or nonlinear transforms

of the variable of interest. This question is currently under investigation.
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Fig. 1. Estimation of Tail Indexes

(a) Returns and volatility measures

k

25 100 200 300 400 500

T
a
il
 E

s
ti
m

a
te

s

2

2.5

3

3.5

4

k

25 100 200 300 400 500

T
a
il 

E
s
ti
m

a
te

s

1

1.2

1.4

1.6

1.8

2

2.2

Realized Volatility
Bipower Measure
Threshold Method

(b) Returns and realized volatility over sub-periods
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(c) Bipower and threshold volatilities over sub-periods
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Figure 1 depicts the Hill estimator of the tail index for returns and various volatility measures of the
SPDR S&P 500 ETF (SPY), from June 15, 2004 through June 13, 2014. Figure 1 (a) is based on
the entire period of the SPY, whereas the full period is divided in three sub-periods: Before Crisis
(June 15, 2004 through August 29, 2008), During Crisis (September 2, 2008 through May 29, 2009)
and After Crisis (June 1, 2009 through June 13, 2014) in Figure 1 (b) and (c).

Figure 1 (a): The first panel depicts the tail index of the daily return (open-to-close), and the
second panel depicts the tail index of the realized volatility, the bipower and the threshold volatility
measure.

Figure 1 (b): The first panel depicts the tail index of the daily return (open-to-close), and the second
panel depicts the tail index of the realized volatility.

Figure 1 (c): The first panel depicts the tail index of the bipower volatility measure (open-to-close),
and the second panel depicts the tail index of the threshold volatility measure.
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Fig. 2. Tail indexes for returns and volatility measures of GARCH diffusions
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Figure 2 depicts the average estimator of the tail indexes over 10,000 simulations of a sample with
1,000 observations of the GARCH diffusion model. Three designs are considered: Model 1 corre-
sponds to (κ0, µ0, σ

2
0) = (0.0350, 0.6360, 0.0207), while Models 2 and 3 correspond respectively to

(0.0350, 0.6360, 0.0828) and (0.0350, 0.6360, 0.3312).

Left Column: The first panel depicts the tail index of daily returns; the second panel depicts the tail
index of the daily spot volatility while the third one depicts the tail of the daily integrated volatility.

Right Column: The three panels depict the tail index of the daily realized volatility (RV) with
different frequencies: the first panel with 10 minute-returns RV; the second panel with 5 minute-
returns RV; the last panel with 1 minute-returns RV.



48

Fig. 3. OLS and IV estimations with spot volatility
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Figure 3 depicts the empirical distribution of the OLS and IV estimators for daily spot volatility of
the GARCH diffusion model. The figures are based on 10,000 simulations for three different sample
sizes (250, 500 and 1,000).

Left Column: The OLS and IV estimators of the autoregression of order one. The instrument of the
IV estimator is the sign of the centered lagged value of the spot volatility.

Right Column: Two IV estimators are considered for the multi-period-moment restrictions. The
first instrument is the two lags of spot volatility, while the second instrument is the sign of the
centered value of the first instrument.
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Fig. 4. IV estimations with integrated and 1-minute realized volatilities
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(c) Model 3 (κ0, µ0, σ
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Figure 4 depicts the empirical distribution of the IV estimators for the multi-period-moment re-
strictions of daily spot volatility of the GARCH diffusion model. The figures are based on 10,000
simulations for three different sample sizes (250, 500 and 1,000). Two IV estimators are considered
for the multi-period-moment restrictions. The first instrument is the two lags of spot volatility, while
the second instrument is the sign of the centered value of the first instrument. The left and right
columns are for the integrated and 1-minute realized volatilities, respectively.
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Fig. 5. IV estimations with 5-minutes and 10-minutes realized volatilities
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(b) Model 2 (κ0, µ0, σ
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(c) Model 3 (κ0, µ0, σ
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Figure 5 depicts the empirical distribution of the IV estimators for the multi-period-moment re-
strictions of daily spot volatility of the GARCH diffusion model. The figures are based on 10,000
simulations for three different sample sizes (250, 500 and 1,000). Two IV estimators are considered
for the multi-period-moment restrictions. The first instrument is the two lags of spot volatility, while
the second instrument is the sign of the centered value of the first instrument. The left and right
columns are for the 5-minutes and 10-minutes realized volatilities, respectively.
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