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1 Introduction

Diffusions and jump diffusions have been used widely in financial economics to model time series

of various asset prices. In parallel, the statistical inference in these models has been one of the

most active research areas in econometrics and statistics, to which an extensive literature has

been devoted. For diffusion models without jumps, Bandi and Phillips (2003) and Aı̈t-Sahalia

and Park (2016) study nonparametric kernel estimation based on discrete samples, and establish

their asymptotics as δ → 0 and T → ∞, where δ and T denote respectively the sampling interval

and the time span. (See also Fan and Zhang (2003), Aı̈t-Sahalia and Mykland (2003), Aı̈t-Sahalia

and Mykland (2004), Renò (2006, 2008), Kristensen (2010), Yu et al. (2014), Kanaya (2016) and

Kanaya and Kristensen (2016) for some related works.) For jump diffusion models, Bandi and

Nguyen (2003) consider the nonparametric kernel estimation of total infinitesimal moments, and

Mancini and Renò (2011) and Park and Wang (2018) use the threshold approach to separately

identify and estimate the diffusive and jump volatilities, both relying on discrete samples. They

also obtain the relevant asymptotics as δ → 0 with T → ∞ or T being fixed. Bandi and Renò

(2018) use a threshold method to nonparametrically estimate spot diffusive volatilities in stochastic

volatility models.

In this paper, we introduce and analyze a nonparametric kernel method to estimate the volatility

functions of jump diffusion models using bipower increments of discrete samples with threshold

truncation.1 The use of truncated bipower increments makes it possible to effectively disentangle the

diffusive and jump volatilities of jump diffusions, at least asymptotically as δ → 0. We develop the

asymptotics for local constant and local linear estimators of diffusive and jump volatility functions

under T → ∞ jointly with δ → 0. They are fine enough to clearly and explicitly identify the

trade-offs between the bias and variance terms of the estimators which makes it possible to find the

theoretical optimal bandwidths.2 Our asymptotics are very general in that they are applicable for

both stationary and nonstationary processes and for diffusions with jump processes having possibly

infinite activities.

Our framework and approach are related to those of Mancini and Renò (2011) and Park and

Wang (2018), which establish the asymptotics relevant for the nonparametric kernel estimation

of volatility functions in jump diffusion models using squared increments of discrete samples with

threshold truncation, hereafter referred to as threshold estimators.3 Of the two, we follow Park

1We consider estimators using bipower increments with threshold, which will be referred to as threshold-bipower
estimators, in Sections 3 and 4. However, for the simulation and empirical studies in Section 5, we also use the
estimator using bipower increments without threshold truncation, i.e., bipower estimators. Within our framework,
threshold truncation has no asymptotic effects, and therefore, our asymptotics for threshold-bipower estimators are
also applicable for bipower estimators using bipower increments without threshold truncation. This was shown
explicitly in earlier versions of this paper.

2Though the optimal bandwidths are well defined theoretically, they are infeasible and their feasible versions are
generally not optimal.

3In terms of construction of estimators for volatility functions, our kernel estimators use truncated bipower incre-
ments, while the kernel estimators in Mancini and Renò (2011) and Park and Wang (2018) use truncated squared
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and Wang (2018) more closely. Compared with Mancini and Renò (2011), our asymptotics are

more general in several aspects. First, we let T → ∞ jointly with δ → 0, while they assume

that T is fixed. This is important, since the jump component in a jump diffusion model is fully

identified only when T → ∞. Second, they only analyze the variance term by restricting h to be

of order between δ3/8 and δ1/3, which makes the bias term negligible asymptotically. In contrast,

we impose no restriction on h and analyze the bias term as well as the variance term. As a

result, our asymptotics provide the optimal bandwidths for our estimators, which control for the

bias and variance terms. Finally, we consider the local linear estimator, in addition to the local

constant estimator they studied. The two estimators have bias terms that are of different orders of

magnitude. Strictly speaking, however, our model is not directly comparable to theirs. We specify

jump volatility as well as diffusive volatility to be state dependent, while they model intensity of

jumps as being partially state dependent.

In comparison with Park and Wang (2018), this paper considers the same jump diffusion model

setup, as well as estimands, i.e., diffusive and jump volatility functions. However, there are some

differences between this paper and Park and Wang (2018). First, the two papers consider different

estimation approaches. This paper considers kernel estimators using truncated bipower increments,

while Park and Wang (2018) uses kernel estimators with truncated squared increments. Distinct

technical arguments are required to derive the asymptotic results of our threshold bipower esti-

mators, compared to those in Park and Wang (2018).4 Second, the asymptotic properties of the

estimators of volatility functions motivated by the two different approaches are directly compara-

ble. More explicitly, in terms of asymptotic bias, the two approaches yield equivalent estimators

for both diffusive and jump volatility functions. However, only for jump volatility functions, the

estimators based on the two approaches have the same asymptotic variance. For diffusive volatility

functions, the estimator using truncated bipower increments in our paper has variance that is 1.1422

times larger than that using the threshold method in Park and Wang (2018). Third, our simulation

study shows that none of the two estimators dominates the other in finite samples. Their relative

finite sample performances vary across different models and sampling frequencies. For estimating

diffusive volatility functions of our simulation models, the estimator using truncated bipower in-

crements outperforms the threshold estimator in terms of both finite sample bias and variance. On

the other hand, for estimating jump volatility functions, the estimator using truncated bipower

increments has smaller finite sample bias, while it is largely comparable to the threshold estimator

increments.
4For instance, the leading variance term of our threshold bipower estimators for diffusive volatility functions con-

tains a non-continuous martingale difference sequence σ2(X(i−1)δ) (|∆iW∆i+1W | − 2δ/π), while the leading variance

term of the threshold estimators involves a continuous martingale difference sequence
∫ iδ
(i−1)δ

(Xc
t −Xc

(i−1)δ)σ(Xt)dWt.

Correspondingly, their asymptotic results, as well as required arguments, are rather different. Moreover, we also need
different arguments (from those in Park and Wang (2018)) to derive asymptotic orders of error terms in the threshold
bipower estimators. See, e.g, Lemmas A.2-A.4 in the Mathematical Appendix and their proofs in our supplement
Kim et al. (2020) accompanying this paper for more details.
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in terms of finite sample variance.5 Therefore, it seems that the two kernel estimation methods,

one using truncated bipower increments in this paper and the other one using truncated squared

increments in Park and Wang (2018), are similar and each has its own particular advantage.

The approaches relying on bipower increments, thresholds, and truncated bipower increments

are used widely in estimating the integrated volatilities of general semimartingales with jumps.

Our kernel estimators for the diffusive and jump volatility functions of jump diffusions are in-

deed motivated by the use of realized variance and bipower variations to estimate the integrated

volatilities of diffusive and jump components of semimartingales.6 The relative advantages and

disadvantages of the estimators for volatility functions of jump diffusions based on different ap-

proaches are largely comparable to those of the corresponding estimators for integrated volatilities

of semimartingales. For the approach relying on bipower and multipower variations, see e.g.,

Barndorff-Nielsen and Shephard (2003), Barndorff-Nielsen and Shephard (2004), Barndorff-Nielsen

et al. (2005), Barndorff-Nielsen and Shephard (2006) and Barndorff-Nielsen et al. (2006). For the

threshold approach, the reader is referred to Jacod (2008, 2012), Mancini (2009) and Jacod and

Rosenbaum (2013), among others. Corsi et al. (2010) introduce the threshold-bipower variation

approach combining the threshold and bipower variation methods to reduce the finite sample bias

of bipower variation in estimating integrated diffusive volatility. For some related discussions, see

also, Christensen et al. (2010), Boudt et al. (2011) and Andersen et al. (2012).

Our work is also related to Bandi and Nguyen (2003), which considers nonparametric kernel

estimation of infinitesimal conditional moments of increments for jump diffusions. The second

infinitesimal conditional moments are given by the sum of diffusive and jump volatilities. Their

approach requires neither the threshold method nor the bipower method. However, their model is

generally more restrictive, and their estimator requires a parametric specification of the probability

measure on jump size in order to identify diffusive and jump volatilities separately. In contrast,

our approach is fully nonparametric, and we individually identify and estimate diffusive and jump

volatility functions. Moreover, our asymptotics generally require less stringent technical conditions

on the underlying jump diffusion models. For instance, we allow for jumps with infinite activity,

whereas they restrict their jumps to be bounded with finite activity.

As expected from the earlier works cited above, our asymptotics involve the local time of

underlying jump diffusion, denoted as `(T, x), where T is the time span and x is the spatial point

at which we estimate the volatility functions. Our nonparametric kernel estimates for both the

diffusive and jump volatilities are consistent and asymptotically normal or mixed normal under

5Our simulation shows that, compared to the threshold estimator, our threshold bipower estimator reduces 54.19%
and 58.33% of finite sample biases on average (over all of our simulation models and realistic parameter values), for
estimating diffusive and jump volatility functions respectively. Moreover, our threshold bipower estimator of diffusive
volatility functions has finite sample standard errors that are on average 44.82% smaller than those of the threshold
estimator in Park and Wang (2018).

6In particular, our estimator of the jump volatility function relies on the same idea used in the jump test that
compares realized variance and bipower variation.
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mild regularity conditions, depending upon whether the underlying jump diffusion is stationary or

nonstationary, if we choose the bandwidth parameter h appropriately. However, their asymptotic

behaviors are quite different. For the estimation of diffusive volatility, we need h`(T, x) →p 0

for asymptotic normality or mixed normality, though consistency generally follows. On the other

hand, for the estimation of jump volatility, consistency requires h`(T, x) →p ∞, while asymptotic

normality or mixed normality holds in general. In particular, we should have T → ∞ for the

consistent estimation of jump volatility, whereas diffusive volatility can be consistently estimated,

even with T being fixed. Moreover, the local constant and local linear estimators have distinct

leading bias terms, though they have a common leading variance term. Especially, for the estimators

of diffusive volatility, the leading bias terms of the local constant and local linear estimators are of

different orders of magnitude, not merely distinct from each other. If h`(T, x)→p 0, the bias term

of the local linear estimator is of order smaller than that of the local constant estimator, this is

rather unusual.

The rest of the paper is organized as follows. Section 2 introduces the model and other prelim-

inaries such as our asymptotic setup, main assumptions and motivations. In Sections 3 and 4, the

local constant and local linear estimators of diffusive and jump volatility functions are respectively

defined and their asymptotics are developed. The simulation results and some simple empirical

illustrations are provided in Section 5. Section 6 concludes the paper, and all mathematical proofs

are in the Mathematical Appendix.

A word on notation. Standard notations such as →p and →d are used frequently, and =d

signifies equality in distribution. Moreover, we use various functional notations to simplify the

exposition. For function f defined on R, we let f0 = f , fk(x) = 1{x ≥ 0}
∫∞
x fk−1(u)du − 1{x <

0}
∫ x
−∞ fk−1(u)du for k = 1, 2, 3, whenever they are well defined. Moreover, ιk denotes the function

ιk(x) = xk, so that we have in particular ιkf(x) = xkf(x) for k = 1, 2. By convention, we write ιfk

and f2k to signify respectively (ιf)k and (fk)
2 for k = 1, 2, 3. We use ı to denote the integral with

respect to the Lebesgue measure, and we let ı(f) =
∫
f(x)dx and define ık(f) =

∫
ιkf(x)dx for

k = 1, 2. Finally, f ′ and f ′′ denote the first and second derivatives of f , and we write (ιf)′ and (ιf)′′

as ιf ′ and ιf ′′ for simplicity. The notations introduced here will be used repeatedly throughout the

paper without further reference.

2 The Model and Preliminaries

We consider the jump diffusion model defined as

dXt = µ(Xt)dt+ σ(Xt)dWt + τ(Xt−)dJt, (2.1)

where µ, σ and τ are functions defined on the domain D of X, W is the standard Brownian

motion, and J is a jump process. We suppose that µ, σ and τ are completely unknown, in

4



contrast to the parametric models studied in Aı̈t-Sahalia (2002), Chen et al. (2008), Jeong and

Park (2016) and Chang and Chen (2011), among many others, which assume that they are known

up to some unknown parameters. In financial modeling, X typically represents an interest rate, or

the logarithmic price of a financial asset or exchange rate, with D = (0,∞) or (−∞,∞).

The jump process J is specified as

Jt =

∫ t

0

∫
R
zΛ(ds, dz),

where Λ is a Poisson random measure on [0,∞)×R. For t > 0 and A ⊂ R given, Λ
(
[0, t], A

)
defines

a Poisson process representing the number of jumps with size in a set A that occurs before time

t. Throughout the paper, we assume that Poisson random measure Λ is independent of Brownian

motion W and the initial value of process X. We let

EΛ(dt, dz) = λ(dz)dt,

where λ is the Lévy measure associated with Λ, and denote the compensated Poisson random

measure as Γ(dt, dz) = Λ(dt, dz) − λ(dz)dt. We assume that λ(dz) is absolutely continuous with

respect to the Lebesgue measure, and we write λ(dz) = λ(z)dz.7 Note that λ(A) for A ⊂ R
counts the expected number of jumps with sizes in A during any time interval of unit length.

Our formulation of the Poisson random measure Λ being homogeneous, λ will not change with

respect to t. This is actually not restrictive since we can always have an equivalent homogeneous

representation of a non-homogeneous Poisson random measure via thinning, as illustrated in Jacod

(2008) and Bollerslev and Todorov (2011).

In the development of our theory, we let the jump diffusion X be observed at intervals of length

δ over time [0, T ] with the sample size n given by n = T/δ. In what follows, we suppose that

Xδ, X2δ, . . . , Xnδ

are observed, and we let

∆iX = Xiδ −X(i−1)δ

and define ∆iW and ∆iJ from W and J similarly for i = 1, . . . , n. For the development of our

asymptotics, we assume that δ → 0 sufficiently fast relative to T , which we allow to be fixed, T = T ,

or to increase up to infinity, T → ∞. Furthermore, for the bandwidth parameter h used in our

kernel estimators, we set h → 0. In sum, our asymptotics are developed under h → 0 and δ → 0

jointly with either T = T fixed or T →∞.

In all our asymptotics requiring T → ∞, we assume the jump diffusion process in (2.1) to be

7We follow the usual convention and use λ to denote both the Lévy measure itself and its density with respect to
the Lebesgue measure.
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recurrent. Therefore, we have a unique (up to constant multiples) invariant measure m on the

domain D of X, and X is positive recurrent if m(D) < ∞ and null recurrent if m(D) = ∞. See,

e.g., Höpfner and Löcherbach (2003). If X is positive recurrent with finite m, X becomes stationary

with invariant distribution given by m/m(D).

Assumption 2.1. (a) σ > 0 and τ > 0 on D, (b) µ, σ and τ are twice continuously differ-

entiable on D, (c) α = inf
{
r :
∫
|z|≤1 |z|

rλ(z)dz <∞
}
∈ [0, 1), (d)

∫
|z|>1 |z|

4+ελ(z)dz < ∞ for

some ε > 0, (e)
∫
λ1
(
z/τ(z)

)
m(dz) < ∞, (f) both λ and m admit continuous densities re-

spectively, and (g) the Darling-Kac condition holds: for some ρ ∈ (0, 1], there exists a function

κ : R+ 7→ R+ which is regularly varying of index ρ at infinity, such that for every m-integrable

function g, 1
κ(η)

∫∞
0 exp(−t/η)Ex [g(Xt)] dt→ m(g) for m-almost all x ∈ D as η →∞.

Assumption 2.1 (c) and (d) concern the vibrancy of small jumps, as well as the tail behavior of

the Lévy measure λ related to large jumps in J . Note that the latter, along with τ , determines the

tail behavior of the jumps in X. Under the local boundedness of τ , the value of α as defined in (c)

coincides with the Blumenthal-Getoor index. The condition α < 1 implies that the jump process

J has finite variation and allows for a wide range of jump processes including compound Poisson

process. However, our assumption excludes jump processes of unbounded variation, which is implied

by either α ∈ (1, 2], or α = 1 with zλ(dz) having a sub-polynomial divergence rate near zero. A

jump process with α = 0 may have either finite activity or infinite activity with a sub-polynomial

divergence rate of λ(dz) around zero. However, if combined with
∫
|z|≤1 λ(z)dz <∞, α = 0 ensures

the process to be finitely active. In (d), we require that large jumps have finite moments up to

the fourth order. We introduce the technical condition in (e) to regulate the behavior of X around

the boundaries. It does not seem to be stringent, though it greatly simplifies the derivation of our

asymptotics in the paper. Assumption 2.1 (f) and (g) are essentially the same as Assumptions

2.4 and 3.2 in Ueltzhöfer (2013), and they are introduced to ensure a central limit theorem holds

for general recurrent jump diffusions. For positive recurrent jump diffusions with m(D) < ∞, (g)

holds with ρ = 1 and κ(t) = t/m(D). See also, Touati (1987) and Höpfner and Löcherbach (2003),

among others.

For the identification of our model, we need to assume

Assumption 2.2. ∫
R
zλ(dz) = 0 and

∫
R
z2λ(dz) = 1.

Clearly, we may redefine, if necessary, the drift and jump volatility to make any jump diffusion

satisfy Assumption 2.2 after compensating and normalizing its jump and jump size.

The asymptotics developed in our paper heavily rely on the local time `(t, x) of X defined in

(2.1). See, e.g., Section 6.1 of Bosq (1998) for the definition of local time. We may interpret it as
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an occupation density of X at point x ∈ D, which yields the so-called occupation time formula∫ T

0
f(Xt)dt =

∫
D
f(x)`(T, x)dx

for any positive Borelian function f . Given J has finite variation, X admits a version of local time

`(t, x) jointly continuous in (t, x). Throughout this paper, we will always refer to this bicontinuous

version of local time. See, e.g., Theorem 76 and its corollaries in Chapter IV of Protter (2005).

Assumption 2.3. ¯̀
h(T, x) = sup|u|≤1 `(T, x+ hu) = Op(`(T, x)2).

Assumption 2.3 regulates the divergence of local time in the neighborhood of a spatial point. It is

not essential and is introduced mainly to simplify our exposition by representing the asymptotic

orders of error terms only as functions of `(T, x).

We assume that the kernel function K satisfies

Assumption 2.4. (a) K is nonnegative, bounded, twice continuously differentiable and has support

[−1, 1], (b)
∫
K(x)dx = 1 and

∫
xK(x)dx = 0.

The above conditions for the kernel function K are standard, except for the boundedness of sup-

port. Though it seems non-essential, the boundedness condition greatly simplifies the proofs of our

theorems in the paper.

Assumption 2.5. (a) For f = µ, µ′, µ′′, ιµ, ιµ′, ιµ′′, σ2, σ2′, σ2′′, τ2, τ2′, τ2′′, we have |f(x)| ≤ g(x),

where g is locally bounded and g(x) ≤ c|x|p at boundaries ±∞ and g(x) ≤ c|x|−p at boundary 0 for

some c > 0 and p ∈ R, (b) sup0≤t≤T |Xt| = Op(T
q) if boundaries are ±∞ and

(
inf0≤t≤T |Xt|

)−1
=

Op(T
q) if 0 is one of the boundaries for some q ≥ 0.

Assumption 2.5 (a) is not stringent and holds for all jump diffusions commonly used in practice,

typically with p > 0 not so large. Likewise, Assumption 2.5 (b) is also mild and satisfied widely. It

holds for Brownian motion with q = 1/2, and also for a large class of null recurrent jump diffusions.

See, e.g., Jeong and Park (2016). In Assumption 2.6 below, we require that δ be sufficiently small

relative to the bandwidth h we use in our kernel estimation, as well as to T .

Assumption 2.6. δ = o(h3 ∧ T−6pq), where p, q are as defined in Assumption 2.5.

Assumption 2.7. For every x ∈ D, there exist ε > 0 and η > 0 such that

sup
|y−x|≤ε

sup
0<t<η

E [|f |r(Xt)|X0 = y] <∞

with any r ≥ 1 for f = µ, σ, and with any α < r < 1 for f = τ .
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Our asymptotics include

ξ(T, x) =

∫ T

0
λ1((x−Xt)/τ(Xt))dt and φ(x) =

∫
λ1((x− u)/τ(u))m(u)du.

Under Assumption 2.1 (e), ξ(T, x) is an additive functional of X, and so is `(T, x) with the Dirac

measure at x (see Revuz and Yor (1998), Proposition 2.4 in p410). Hence, by the ratio limit theorem

(Höpfner and Löcherbach (2003), Corollary 1.8 in p12), it follows that

ξ(T, x)/`(T, x)→a.s. φ(x)/m(x)

as T → ∞. The functional ξ(T, x) represents the bias term originated from the jump component

of our model.

Subsequently, we introduce our estimators and develop their asymptotics. In the paper, we

focus on the estimation of diffusive volatility function σ and jump volatility function τ based on

truncated bipower increments. In particular, we do not consider the estimation of the Lévy density

λ. A consistent estimator of λ can be obtained from our estimate of jump volatility τ analogous

to Park and Wang (2018), where the reader is referred for more details.8 For the nonparametric

estimation and relevant asymptotics of local time `(T, x), drift µ(x), as well as total volatility ω(x),

where ω2(x) = σ2(x)+τ2(x), in jump diffusion models, the reader is also referred to Park and Wang

(2018). Although our asymptotics in Theorems 3.1, 3.2, 4.1 and 4.2 are obtained for threshold-

bipower estimators, they are applicable also for bipower estimators using bipower variations without

threshold truncation.

3 Estimation of Diffusive Volatility

For the estimation of diffusive volatility σ(x), we write

|∆iX||∆i+1X|1{|∆iX| ≤ δβ, |∆i+1X| ≤ δβ}

=
2δ

π
σ2(X(i−1)δ) +

(
σ2(X(i−1)δ)|∆iW ||∆i+1W | −

2δ

π
σ2(X(i−1)δ)

)
+
(
|∆iX||∆i+1X|1{|∆iX| ≤ δβ, |∆i+1X| ≤ δβ} − σ2(X(i−1)δ)|∆iW ||∆i+1W |

)
(3.1)

for some β > 0. Note that the second term in (3.1) has a martingale difference sequence, since in

particular

E|∆iW ||∆i+1W | =
2δ

π
.

8We may readily establish consistency of the resulting estimator under suitable regularity conditions, as shown in
earlier versions of this paper.
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Moreover, we will show that the third term in (3.1) becomes asymptotically negligible under ap-

propriate conditions. Therefore, the diffusive variance σ2(x) may be obtained from the standard

nonparametric kernel regression of scaled truncated bipower increments

(π/2δ)|∆iX||∆i+1X|1{|∆iX| ≤ δβ, |∆i+1X| ≤ δβ}

on (X(i−1)δ) for i = 1, . . . , n.9

Assumption 3.1. 0 < β < 1/2.

In (3.1) we consider bipower increments with threshold truncation instead of bipower increments

themselves, and use only the increments ∆iX that do not contain a jump larger than the threshold

level δβ for β > 0. As we will later show by simulation, threshold truncation generally and

unambiguously has a positive effect on the finite sample performance of our estimator. Intuitively,

it is clear that the truncation level δβ has to decrease more slowly than the modulus of continuity

of Brownian motion as δ → 0 to avoid truncating out continuous increments of X, and this requires

β < 1/2.10

3.1 Local Constant Estimator

Our local constant estimator for σ2(x) is defined as

σ̂2(x) =
PT (K,σ2)

QT (K)
,

where

PT (K,σ2) =
π

2

1

h

n−1∑
i=1

K
(X(i−1)δ − x

h

)
|∆iX||∆i+1X|1{|∆iX| ≤ δβ, |∆i+1X| ≤ δβ},

QT (K) =
δ

h

n−1∑
i=1

K
(X(i−1)δ − x

h

)
,

for some β > 0, which yields the estimation error that can be decomposed as

σ̂2(x)− σ2(x) = σ̂2p(x) + σ̂2q (x) + σ̂2r (x),

9In comparison, Park and Wang (2018) consider the standard nonparametric kernel regression of scaled truncated
squared increments ((1/δ)(∆iX)21{|∆iX| ≤ δβ}) on (X(i−1)δ) for i = 1, ..., n.

10As discussed, for our simulation and empirical illustration, we also consider the estimators of diffusive and jump
volatility functions based on bipower increments without threshold truncation. They are defined exactly in the same
way as the estimators with threshold truncation that we introduce explicitly in the paper. They only use bipower
increments themselves without threshold truncation.
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where

σ̂2p(x) =
NT (K,σ2)

QT (K)
, σ̂2q (x) =

MT (K,σ2)

QT (K)

with

NT (K,σ2) =
δ

h

n−1∑
i=1

K
(X(i−1)δ − x

h

)[
σ2(X(i−1)δ)− σ2(x)

]
,

MT (K,σ2) =
π

2

1

h

n−1∑
i=1

K
(X(i−1)δ − x

h

)[
σ2(X(i−1)δ)

(
|∆iW ||∆i+1W | − (2/π)δ

)]
,

and

σ̂2r (x) =
RT (K,σ2)

QT (K)

with

RT (K,σ2) =
π

2

1

h

n−1∑
i=1

K
(X(i−1)δ − x

h

)[
|∆iX||∆i+1X|1{|∆iX| ≤ δβ, |∆i+1X| ≤ δβ}

− σ2(X(i−1)δ)|∆iW ||∆i+1W |
]
.

Following the usual convention, we call σ̂2p(x), σ̂2q (x) and σ̂2r (x) respectively the bias, variance and

error terms of σ̂2(x).

Theorem 3.1. Let Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 and 3.1 hold. Then

σ̂2p(x) =d
h2ı2(K)

2

[(
4σ2′

(
µ

σ2
− σ′

σ

)
+ σ2′′

)
(x) +

8σ′(x)ξ(T, x)

σ(x)`(T, x)

]
+ 4ı(ιK2

1 )1/2σ′(x)h3/2`(T, x)−1/2Zp + op(h
2) + op(h

3/2`(T, x)−1/2),

and

(h`(T, x)/δ)1/2σ̂2q (x)→d c(π)ı(K2)1/2σ2(x)Zq,

where c(π) = (π2/4 + π − 3)1/2, Zp and Zq are two independent standard normal random variates

both of which are independent of `(T, x). Moreover,

σ̂2r (x) = Op(δ
1/2),

which becomes asymptotically negligible if h is chosen appropriately.

Remark 3.1. (a) The consistency of σ̂2(x) requires no additional assumption. In particular, it is

not required to have T →∞.

(b) The asymptotic mixed normality of σ̂2(x) holds if h`(T, x) →p 0. If this condition holds,
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the bias term σ̂2p(x) becomes

σ̂2p(x) =d 4ı(ιK2
1 )1/2σ′(x)h3/2`(T, x)−1/2Zp + op(h

3/2`(T, x)−1/2),

and the variance term σ̂2q (x) dominates the error term σ̂2r (x) asymptotically. In this case, therefore,

both the bias and variance terms are asymptotically mixed normal, and become normal if X is

stationary.

(c) The leading term of σ̂2p(x) does not represent the asymptotic bias of σ̂2(x) if h`(T, x)→p 0.

Instead, it provides a variance term additional to σ̂2q (x). If h`(T, x) →p ∞, σ̂2p(x) has the leading

term representing the asymptotic bias of σ̂2(x). However, in this case, σ̂2q (x) is dominated by σ̂2r (x),

and therefore, the variance term becomes asymptotically negligible.

(d) In case h`(T, x) →p 0, the optimal bandwidth h∗(σ̂2) for σ̂2(x) that balances off the bias

and variance terms is well defined and given by

h∗(σ̂2) =
[
c(π)2ı(K2)/(48ı(ιK2

1 ))
]1/4

(σ2/|σ′|)1/2(x)δ1/4.

The asymptotics of σ̂2(x) are given by the term including Zp or Zq, respectively in σ̂2p(x) or σ̂2q (x),

depending upon whether h� δ1/4 or h� δ1/4.11

(e) It is very informative to compare the asymptotics of our estimator σ̂2(x) in Theorem 3.1

with those of the local constant threshold estimator proposed by Mancini and Renò (2011). Our

asymptotics here are more comparable to those in Theorem 5.1 of Park and Wang (2018). The

asymptotics in Mancini and Renò (2011) do not include the bias term, since they set δ3/8 �
h � δ1/3 with T fixed, in which case the bias term is dominated by the variance term, which

is shown in Park and Wang (2018). Our estimator has the same leading bias terms as the local

constant threshold estimator. Moreover, the variance term of our estimator is just the constant

c(π) multiple of that of the local constant threshold estimator. The variance of our estimator is

therefore c(π)2-times bigger than the local constant threshold estimator.

3.2 Local Linear Estimator

Our local linear estimator for σ2(x) is given by

σ̃2(x) =
PT (K,σ2)QT (ι2K)− PT (ιK, σ2)QT (ιK)

QT (K)QT (ι2K)−QT (ιK)2
,

where PT (·, σ2) and QT (·) are defined similarly as PT (K,σ2) and QT (K) introduced in the definition

of the local constant estimator σ̂2(x) in the previous section withK substituted by various functions.

11Here and elsewhere in the paper, p� q signifies p = o(q), i.e., p is negligible asymptotically relative to q.
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Its estimation error can be decomposed as

σ̃2(x)− σ2(x) = σ̃2p(x) + σ̃2q (x) + σ̃2r (x),

where σ̃2p(x), σ̃2q (x) and σ̃2r (x) are respectively the bias, variance and error terms of σ̃2(x) that are

given by

σ̃2p(x) =
NT (K,σ2)QT (ι2K)−NT (ιK, σ2)QT (ιK)

QT (K)QT (ι2K)−QT (ιK)2
,

σ̃2q (x) =
MT (K,σ2)QT (ι2K)−MT (ιK, σ2)QT (ιK)

QT (K)QT (ι2K)−QT (ιK)2
,

where NT (ιK, σ2) and MT (ιK, σ2) are defined similarly as NT (K,σ2) and MT (K,σ2) respectively

with K replaced by ιK, and

σ̃2r (x) =
RT (K,σ2)QT (ι2K)−RT (ιK, σ2)QT (ιK)

QT (K)QT (ι2K)−QT (ιK)2
,

where RT (ιK, σ2) is defined as RT (K,σ2) using ιK instead of K.

Theorem 3.2. Let Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 and 3.1 hold. Then

σ̃2p(x) = ı2(K)σ2′′(x)h2/2 + op(h
2),

and

(h`(T, x)/δ)1/2σ̃2q (x)→d c(π)ı(K2)1/2σ2(x)Z,

where c(π) = (π2/4 + π − 3)1/2, Z is a standard normal random variate independent of `(T, x).

Moreover,

σ̃2r (x) = Op(δ
1/2),

which becomes asymptotically negligible if h is chosen appropriately.

Remark 3.2. (a) The consistency of σ̃2(x) requires no additional assumption as for the consistency

of σ̂2(x).

(b) For the asymptotic (mixed) normality of σ̃2(x), it is necessary to choose h so that h`(T, x)→p

0. Otherwise, the variance term σ̃2q (x) is dominated by the error term σ̃2r (x), which is the same as

in the case of σ̂2(x).

(c) If h`(T, x) →p 0, the optimal bandwidth that balances off the bias and variance terms is

well defined and given by

h∗(σ̃2) =
[
c(π)2ı(K2)/ı2(K)2

]1/5
(σ2/σ2′′)2/5(x)(δ/`(T, x))1/5.
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Though h∗(σ̃2) involves `(T, x), we may still interpret it as the bandwidth minimizing the asymp-

totic mean squared error as in the standard case, which is because the limit random variable Z is

independent of `(T, x). If X is stationary, we have `(T, x)/T →a.s. w(x), where w is the invariant

density of X, the optimal bandwidth h∗(σ̃2) may be defined as

h∗(σ̃2) =
[
c(π)2ı(K2)/ı2(K)2

]1/5
(σ2/σ2′′)2/5(x)w(x)−1/5n−1/5,

which can be written as h∗(σ̃2) = cn−1/5 with some constant c, similarly as in the standard case.

(d) The bias term of σ̃2(x) is drastically different from that of σ̂2(x). In particular, if h`(T, x)→p

0, they become of different orders of magnitude: It is of order h2 for σ̃2(x), while of order

h3/2`(T, x)−1/2 for σ̂2(x). Therefore, the bias term of σ̃2(x) is of a smaller order compared with

that of σ̂2(x). This is unusual.

(e) The asymptotics of our estimator σ̃2(x) are largely comparable to those for the local linear

threshold estimator in Park and Wang (2018). The two estimators have the same leading bias term.

Also, as for σ̂2(x), the variance of our estimator is the constant c(π)2 multiple of that of the local

linear threshold estimator.

4 Estimation of Jump Volatility

For the estimation of jump volatility τ(x), we deduce from Ito’s formula that

(∆iX)2 = 2

∫ iδ

(i−1)δ
(Xt−−X(i−1)δ)dXt +

∫ iδ

(i−1)δ
d[X]t

=

∫ iδ

(i−1)δ
σ2(Xt)dt+

∫ iδ

(i−1)δ

∫
R
τ2(Xt−)z2Λ(dt, dz) + 2

∫ iδ

(i−1)δ
(Xt−−X(i−1)δ)dXt

= δσ2(X(i−1)δ) + δτ2(X(i−1)δ) +

∫ iδ

(i−1)δ

∫
R
τ2(Xt−)z2Γ(dt, dz) + 2

∫ iδ

(i−1)δ
(Xt−−X(i−1)δ)dXt

+

∫ iδ

(i−1)δ

[
σ2(Xt)− σ2(X(i−1)δ)

]
dt+

∫ iδ

(i−1)δ

[
τ2(Xt)− τ2(X(i−1)δ)

]
dt,

from which it follows that

(∆iX)2 − π

2
|∆iX||∆i+1X|1{|∆iX| ≤ δβ, |∆i+1X| ≤ δβ}

= δτ2(X(i−1)δ) +

∫ iδ

(i−1)δ

∫
R
τ2(Xt−)z2Γ(dt, dz) + 2

∫ iδ

(i−1)δ
(Xt−−X(i−1)δ)dXt

− π

2

[
|∆iX||∆i+1X|1{|∆iX| ≤ δβ, |∆i+1X| ≤ δβ} −

2δ

π
σ2(X(i−1)δ)

]
+

∫ iδ

(i−1)δ

[
σ2(Xt)− σ2(X(i−1)δ)

]
dt+

∫ iδ

(i−1)δ

[
τ2(Xt)− τ2(X(i−1)δ)

]
dt. (4.1)
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We may only consider the first two terms on the righthand side of (4.1). As will be shown, all other

terms are asymptotically negligible under appropriate conditions. Furthermore, since the second

term is a martingale difference sequence, we may estimate the jump variance τ2(x) by the standard

nonparametric kernel regression of
(
(1/δ)[(∆iX)2 − (π/2)|∆iX||∆i+1X|1{|∆iX| ≤ δβ, |∆i+1X| ≤

δβ}]
)

on (X(i−1)δ) for i = 1, . . . , n.12

4.1 Local Constant Estimator

Our local constant estimator for τ2(x) is given by

τ̂2(x) =
PT (K, τ2)

QT (K)
,

where

PT (K, τ2) =
1

h

n−1∑
i=1

K
(X(i−1)δ − x

h

)[
(∆iX)2 − (π/2)|∆iX||∆i+1X|1{|∆iX| ≤ δβ, |∆i+1X| ≤ δβ}

]
,

and QT (K) is as defined previously in Section 3. It yields the estimation error we decompose as

τ̂2(x)− τ2(x) = τ̂2p (x) + τ̂2q (x) + τ̂2r (x),

where τ̂2p (x), τ̂2q (x) and τ̂2r (x) are respectively the bias, variance and error terms of τ̂2(x) defined

as

τ̂2p (x) =
NT (K, τ2)

QT (K)
, τ̂2q (x) =

MT (K, τ2)

QT (K)

with

NT (K, τ2) =
1

h

n−1∑
i=1

K
(X(i−1)δ − x

h

)∫ iδ

(i−1)δ

[
τ2(Xt)− τ2(x)

]
dt,

MT (K, τ2) =
1

h

n−1∑
i=1

K
(X(i−1)δ − x

h

)∫ iδ

(i−1)δ

∫
R
τ2(Xt−)z2Γ(dt, dz),

and

τ̂2r (x) =
RT (K, τ2)

QT (K)
=
AT (K) +BT (K) + CT (K)

QT (K)

12For estimating jump volatility function τ2(·), Park and Wang (2018) consider the standard nonparametric kernel
regression of ((1/δ)(∆iX)21{|∆iX| > δβ}) on (X(i−1)δ) for i = 1, ..., n.
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with

AT (K) =2
1

h

n−1∑
i=1

K
(X(i−1)δ − x

h

)∫ iδ

(i−1)δ
(Xt−−X(i−1)δ)dXt,

BT (K) =
1

h

n−1∑
i=1

K
(X(i−1)δ − x

h

)∫ iδ

(i−1)δ

[
σ2(Xt)− σ2(X(i−1)δ)

]
dt,

CT (K) =− π

2

1

h

n−1∑
i=1

K
(X(i−1)δ − x

h

)[
|∆iX||∆i+1X|1{|∆iX| ≤ δβ, |∆i+1X| ≤ δβ} −

2δ

π
σ2(X(i−1)δ)

]
.

The decomposition can be readily obtained from (4.1).

Theorem 4.1. Let Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 and 3.1 hold. Then

τ̂2p (x) =
h2ı2(K)

2

[(
4τ2′

(
µ

σ2
− σ′

σ

)
+ τ2′′

)
(x) +

4τ2′(x)ξ(T, x)

σ2(x)`(T, x)

]
+ op(h

2) +Op(h
3/2`(T, x)−1/2),

and

[h`(T, x)]1/2τ̂2q (x)→d ı(K
2)1/2κ2τ2(x)Z,

where κ4 =
∫
R z

4λ(dz) and Z is a standard normal random variate independent of `(T, x). More-

over,

τ̂2r (x) = Op(δ
1/2) +Op(δ

1/2(h`(T, x))−1/2) + op(h
2) + op(h

1/2`(T, x)−1/2),

which becomes asymptotically negligible if h is chosen appropriately.

Remark 4.1. (a) The consistency of τ̂2(x) requires h`(T, x) →p ∞, for which it is necessary to

have T → ∞. This is in sharp contrast to the estimators of diffusive volatility, which become

consistent even if T is fixed. To estimate jump volatility consistently, the number of jumps should

increase to infinity and the information on jumps needs to be fully revealed in the limit.

(b) The bias term τ̂2p (x) includes a random term ξ(T, x)/`(T, x). However, the term converges

a.s. to φ(x)/m(x) as T → ∞. We may therefore replace ξ(T, x)/`(T, x) with φ(x)/m(x), if we

set T → ∞. The variance term is asymptotically mixed normal, which becomes normal if X is

stationary.

(c) If h`(T, x) →p ∞, the optimal bandwidth that balances off the bias and variance terms is

well defined and given by

h∗(τ̂2) = c(K)(κτ(x))4/5
[
τ2′′ + 4τ ′(µ− σσ′ + φ/m)/σ2

]−2/5
(x)`(T, x)−1/5

with c(K) = ı(K2)1/5/ı2(K)2/5. As discussed, we may interpret h∗(τ̂2) as the bandwidth minimiz-

ing the asymptotic mean squared error even for nonstationary X, since `(T, x) is independent of

15



the limit normal random variate Z. For stationary X with invariant density w, we have

h∗(τ̂2) = c(K)(κτ(x))4/5
[
τ2′′ + 4τ ′(µ− σσ′ + φ/m)/σ2

]−2/5
(x)w(x)−1/5T−1/5,

which can be written as h∗(τ̂2) = cT−1/5 with some constant c, similar to discrete samples of size

T .

(d) The asymptotics of both the bias and variance terms of τ̂2(x) are exactly the same as

those of the local constant jump volatility threshold estimator in Theorem 5.3 of Park and Wang

(2018). We only have some additional terms in the error term, which are asymptotically negligible

compared to the asymptotic leading bias and variance terms.

4.2 Local Linear Estimator

Our local linear estimator of τ2(x) is given by

τ̃2(x) =
PT (K, τ2)QT (ι2K)− PT (ιK, τ2)QT (ιK)

QT (K)QT (ι2K)−QT (ιK)2
,

where PT (ιK, τ2) is defined as PT (K, τ2) with K substituted by ιK. Similarly as before, we may

decompose its estimation error as

τ̃2(x)− τ2(x) = τ̃2p (x) + τ̃2q (x) + τ̃2r (x),

where

τ̃2p (x) =
NT (K, τ2)QT (ι2K)−NT (ιK, τ2)QT (ιK)

QT (K)QT (ι2K)−QT (ιK)2
,

τ̃2q (x) =
MT (K, τ2)QT (ι2K)−MT (ιK, τ2)QT (ιK)

QT (K)QT (ι2K)−QT (ιK)2
,

τ̃2r (x) =
RT (K, τ2)QT (ι2K)−RT (ιK, τ2)QT (ιK)

QT (K)QT (ι2K)−QT (ιK)2

with NT (ιK, τ2), MT (ιK, τ2) and RT (ιK, τ2) defined respectively as NT (K, τ2), MT (K, τ2) and

RT (K, τ2) using ιK instead of K.

Theorem 4.2. Let Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 and 3.1 hold. Then

τ̃2p (x) = ı2(K)τ2′′(x)h2/2 + op(h
2),

and

[h`(T, x)]1/2τ̃2q (x)→d ı(K
2)1/2κ2τ2(x)Z,

where κ4 =
∫
R z

4λ(dz) and Z is a standard normal random variate independent of `(T, x). More-
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over,

τ̃2r (x) = Op(δ
1/2) +Op(δ

1/2(h`(T, x))−1/2) + op(h
2) + op(h

1/2`(T, x)−1/2),

which becomes asymptotically negligible if h is chosen appropriately.

Remark 4.2. (a) As for τ̂2(x), the consistency of τ̃2(x) also requires h`(T, x) →p ∞ and it is

necessary to let T →∞.

(b) In contrast with τ̂2(x), the bias term τ̃2p (x) of τ̃2(x) does not include any random term.

Unlike in the estimation of diffusive volatility, however, the bias terms of τ̂2(x) and τ̃2(x) have

leading terms of the same order.

(c) If h`(T, x) →p ∞, the optimal bandwidth that balances off the bias and variance terms is

well defined and given by

h∗(τ̃2) = c(K)(κ2τ2/τ2′′)2/5(x)`(T, x)−1/5

with c(K) = ı(K2)1/5/ı2(K)2/5. As discussed, it minimizes the asymptotic mean squared error for

nonstationary as well as stationary X. As for τ̂2(x), the optimal bandwidth of τ̃2(x) can be written

as h∗(τ̃2) = cT−1/5 with some c, if X is stationary.

(d) The asymptotic leading bias and variance terms of τ̃2(x) are the same as those of the local

linear jump volatility threshold estimator in Theorem 5.4 of Park and Wang (2018). We have a

few additional error terms that are of smaller magnitude, compared to the asymptotic leading bias

and variance terms.

5 Simulation and Empirical Illustration

For our simulations and empirical studies, we consider our estimators for the diffusive and jump

volatility functions in jump diffusions. In particular, the performances of our estimators are

compared with those of the threshold estimators studied in Mancini and Renò (2011) and Park

and Wang (2018), and also with those of the estimators using bipower increments, which sim-

ply use |∆iX||∆i+1X| and |∆iX|2 − (π/2)|∆iX||∆i+1X|, in place of |∆iX||∆i+1X|1
{
|∆iX| ≤

$(δ), |∆i+1X| ≤ $(δ)
}

and |∆iX|2 − (π/2)|∆iX||∆i+1X|1
{
|∆iX| ≤ $(δ), |∆i+1X| ≤ $(δ)

}
,

respectively for the estimation of diffusive and jump volatilities, with an appropriate choice of

threshold level $(δ).

To choose the threshold level $(δ) for the threshold-bipower estimators and the threshold

estimators, we use the approaches in Aı̈t-Sahalia and Jacod (2009) and Mancini and Renò (2011).

For the first approach, we let $a,b(δ) = a
√
BVT /Tδ

b with tuning parameters a > 0 and 0 < b < 1/2,

where BVT = (π/2)
∑n−1

i=1 |∆iX||∆i+1X| is the bipower variation of X on the time span [0, T ], as

suggested by Aı̈t-Sahalia and Jacod (2009). The parameters, a and b, have no impact on the

limiting behavior of the threshold estimators as long as a > 0 and 1/(4 − 2α) < b < 1/2, see e.g.,
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Park and Wang (2018). In finite samples, however, the performance of the truncation estimators is

expected to be dependent upon the choice of a and b. For the second approach, we use $c(i) = cυ̂i

with tuning parameter c for each ∆iX, i = 1, . . . , n, where (υ̂i) is the square root of the estimated

filtered volatility based on an auxiliary GARCH(1,1) model.13

5.1 Simulation

Our simulations are based on three different jump diffusion models. The first model, Model 1, is

given by

dXt =
[
α1(α2 −Xt)− (µθν)Xt

]
dt+ β

√
XtdWt +Xt− (exp(θZt)− 1) dNt(ν),

where Z is i.i.d. standard normal process, N(ν) is Poisson process with intensity ν, and µθ =

E (exp(θZt)− 1) = exp(θ2/2)− 1, with parameter values given by

(α1, α2, β, ν, θ) = (0.2338, 0.0508, exp(−7.1707/2), 5.3967, 0.0263) .

As usual, we set Z and N(ν) to be independent of W . Model 1 is a modified version of the SV1J

model estimated in Andersen et al. (2004) using weekly 3-month Treasury Bills rate data for the

sample period 01/06/1954 to 06/28/2000. We set β to be the estimated mean of the volatility

process of the SV1J model.14

The second and third models, referred to as Models 2 and 3, are specified as

dXt = αXt(β +X2
t )κ/2−1dt+

√
γ
(
β +X2

t−
)κ/4

(dWt + θZtdNt(ν)) ,

where Z and N(ν) are specified as in Model 1, and the parameter values for (α, β, γ, κ, ν, θ) are

given by

(
−1.6289× 10−5, 3.1809× 10−4, 4.518× 10−3, 0.1188, 47134.8, 6.986× 10−3,

)
,(

−5.5511× 10−3, 0.1678, 8.235× 10−5,−5.3722, 12676.6, 0.0101
)

for Models 2 and 3 respectively. Models 2 and 3 are the generalized Höpfner-Kutoyants (HK)

model considered in Kim and Park (2017b), with the parameter values estimated by approximated

13The auxiliary GARCH(1,1) model used in Mancini and Renò (2011) is given by ∆iX = α +
√
υ2
i εi with υ2

i =
β0 + β1(∆i−1X)2 + β2υ

2
i−1, where (εi) are standardized i.i.d. innovations, and α, β0, β1, β2 are constants. The

estimated filtered volatility υ̂2
i is set to be β̂0 + β̂1(∆i−1X)2 + β̂2υ̂

2
i−1 with initial value υ̂2

0 as the unconditional sample

variance of (Xiδ), and β̂0, β̂1 and β̂2 as the averages of estimates for β0, β1 and β2 respectively over a number of long
simulations.

14For the simulation study in the Web Appendix, Mancini and Renò (2011) use a modified version of the SV1J-SD
model in Andersen et al. (2004). In the modified SV1J-SD model, the parameter α2 is set to follow a diffusion process
instead of a constant as in our Model 1.
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MLE using the demedianed logarithm of exchange rates of GBP/USD and JPY/USD respectively

at 1-minute frequency from 01/01/2004 to 06/30/2015.

The simulation models, Model 1 and Models 2 and 3, may be rewritten as our jump diffusion

model in (2.1) with

τ(x) = x/w, dJt = w(exp(θZt)− 1)dNt(ν)

and

τ(x) = θ
√
γ(β + x2)κ/4/w, dJt = wZtdNt(ν),

where w > 0 is a constant we set 1/w2 = νE(exp(θZt) − 1)2 = ν(e2θ
2 − 2eθ

2/2 + 1) for given ν

and θ and 1/w2 = ν for given ν, respectively, to normalize the corresponding Lévy measure as in

Assumption 2.2. Under the required normalization, the Lévy measure has densities

λ(z) = ν/(θz + θw)φ
([

log(z/w + 1)
]
/θ
)

and

λ(z) = (ν/w)φ(z/w),

where φ is the standard normal density, respectively for Model 1 and Models 2 and 3.

In the simulation, we set the time span T = 50 with the sampling interval δ = 1/250 for Model

1, and T = 5 with δ = 1/(250 × 24 × 60) for Models 2 and 3. These sampling intervals for Model

1 and Models 2 and 3 correspond to the daily and 1-minute observations. We use the standard

normal kernel function and the optimal bandwidths as given in our paper and Park and Wang

(2018), assuming the knowledge of the full specification of our simulation models. This is to focus

on the relative evaluation of our approach and the threshold approach, net of the effect from the

bandwidth choice on their performance. For the threshold-bipower and threshold estimators, we set

the threshold level given by Aı̈t-Sahalia and Jacod (2009) with a = 5 and b = 0.49, i.e., $5,0.49(δ).

Moreover, for estimation of diffusive volatility function, we also consider the threshold estimator

with the threshold level given by an auxiliary GARCH(1,1) model with c = 3, i.e., $3(i), and the

bandwidth h = 3ςn−1/5 with the sample standard deviation ς of (Xiδ), as in Mancini and Renò

(2011).15

For the comparison between our estimators using truncated bipower increments and the existing

threshold estimators, as well as the bipower estimators, we consider the relative biases and standard

errors of diffusive and jump volatilities averaged over their ordinates xj ’s for 1 ≤ j ≤ M equal-

spaced within x ≤ xj ≤ x for appropriately chosen lower and upper boundaries x and x with the

number of iterations N = 2, 000.16 More precisely, if v̂2i (x) is an estimate for the diffusive or jump

15Mancini and Renò (2011) consider the threshold estimator for the state dependent jump intensity function instead
of jump volatility function. Therefore, for the purpose of comparison, we only consider their estimate of diffusive
volatility function.

16The bounds are set to be [0.03, 0.06] for Model 1, and [0.005, 0.04] for Models 2 and 3.
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Figure 5.1: Biases and Standard Errors of Diffusive Volatility Function Estimators
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Notes: The relative biases (upper panel) and standard errors (lower panel) of diffusive volatility function estimators are
presented as functions of θ. The left, middle, right panels are for Models 1, 2 and 3 respectively. The dotted, dashed,
solid and dash-dot lines are respectively for the bipower estimator (BP), the threshold estimator with threshold given
by Aı̈t-Sahalia and Jacod (2009) (TH), our threshold-bipower estimator (TBP), and the threshold estimator with
threshold given by Mancini and Renò (2011) (TH MR).

volatility v2 at x in iteration i for 1 ≤ i ≤ N , then the averaged relative bias and standard error

are obtained as

1

M

M∑
j=1

(
v̂
2
(xj)

/
v2(xj)− 1

)
and

1

M

M∑
j=1


√√√√ 1

N

N∑
i=1

(
v̂2i (xj)− v̂

2
(xj)

)2/
v2(xj)

 ,

where v̂
2
(xj) is the simulated mean of v̂2i (xj) at point xj , i.e., v̂

2
(xj) = N−1

∑N
i=1 v̂

2
i (xj).

Figures 5.1 and 5.2 present the biases and standard errors of diffusive and jump volatility

function estimators for various values of θ. The parameter θ determines the size of jumps and also

the magnitude of jump volatility relative to that of diffusive volatility in our simulation models:

As θ increases, both the jump size and the relative magnitude of jump volatility increase. In our

simulations, we consider the ranges of values for θ, which appear to be realistic and relevant in

practical applications. Overall, the relative performances of the three estimators - including the

estimator using truncated bipower increments, threshold estimator and bipower estimator - vary

across different models and different ranges of values for θ. None of the three estimators uniformly
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Figure 5.2: Biases and Standard Errors of Jump Volatility Function Estimators
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Notes: The relative biases (upper panel) and standard errors (lower panel) of jump volatility function estimators
are presented as functions of θ. The left, middle, right panels are for Models 1, 2 and 3 respectively. The dotted,
dashed, and solid lines are respectively for the bipower estimator (BP), the threshold estimator with threshold given
by Aı̈t-Sahalia and Jacod (2009) (TH), and our threshold-bipower estimator (TBP).

dominates the other two. The relative performance of the threshold estimator depends crucially on

the threshold level. With the threshold level given by Aı̈t-Sahalia and Jacod (2009), the threshold

estimator generally performs reasonably well. However, if the threshold level given by Mancini and

Renò (2011) is used, the threshold estimator is less satisfactory, as shown in Figure 5.1.

For large values of θ, the relative biases of the threshold estimator are in general smaller than

those of the estimator using bipower increments in most cases. This is well expected since, as

θ increases, the size of jumps increases and the threshold approach becomes more effective in

detecting jump increments than the approach based on the bipower increments. Conversely, for

small values of θ, the threshold approach does not work well in discriminating diffusive and jump

increments, which makes the biases of the estimators using bipower increments smaller than those

of the threshold estimators in most cases. On the other hand, in terms of standard errors, the

estimator using bipower increments generally outperforms the threshold estimator. This can be

more clearly seen in Figure 5.2, where we only consider the threshold estimator with threshold level

given by Aı̈t-Sahalia and Jacod (2009).

Our threshold-bipower estimator performs very well. It tends to behave more like the estimator
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using bipower increments, in case θ is small and the threshold approach is not supposed to work

properly, whereas it performs similar to the threshold estimator in case θ is large in which case

the threshold approach becomes more effective and performs well. This is expected from our

construction of the threshold-bipower estimator. For our simulation models with practically relevant

values of θ, the threshold-bipower estimator for diffusive volatility performs best both in terms of

relative biases and standard errors. The threshold-bipower estimator yields the smallest biases

also for jump volatility, though its relative standard errors are generally larger than those of the

estimator using bipower increments.

5.2 Empirical Illustration

For our empirical illustrations, we use the same data set as that used in Mancini and Renò (2011),

which includes two interest rate time series, the 7-day Eurodollar deposit rate and 3-month Trea-

sury Bill rate, at daily frequency from June 1, 1973 to February 24, 1995, with a total of 5505

observations. Both of the interest rates have been used widely as proxies for the unobserved short

rate or instantaneous rate. The reader is referred to Mancini and Renò (2011) and the references

cited there for more discussions. Though they move very close to each other, the two interest rates

show distinct time series characteristics. The 7-day Eurodollar deposit rate frequently contains

large spikes, which are believed to be induced by calendar and liquidity effects typical for interest

rate instruments with very short maturities. On the other hand, the 3-month Treasury Bill rate

has not shown any frequent occurrence of sizeable jumps.

The estimated diffusive and jump volatility functions of the two interest rate time series are

presented in Figure 5.3. The estimates of volatility functions are obtained at each of 100 equispaced

points over the range [0.03, 0.17], which contains 96.2% and 96.86% of the observations of the 7-day

Eurodollar deposit rate and 3-month Treasury Bill rate time series respectively.17 For compar-

isons, we consider five different estimators: our estimator using truncated bipower increments with

$5,0.49(δ), the two threshold estimators relying on the threshold levels $3,0.49(δ) and $5,0.49(δ),

the bipower estimator, as well as the threshold estimator with the threshold levels given by $3(i).

For the first four estimators, we use their respective optimal bandwidths at each of 100 equispaced

points, obtained assuming that Model 1 in our simulation study is the true underlying model. For

the last estimator, we employ the same bandwidth as the one used in Mancini and Renò (2011).

Figure 5.3 shows that the five estimators we consider here provide quite distinctive volatilities,

especially as the level of interest rate increases. In general, threshold estimators are sensitive to the

choice of a threshold. For diffusive volatilities, the estimator using bipower increments yields the

largest value of all five estimators, especially when the level of interest rate is high. In particular, for

the 7-day Eurodollar deposit rate, all other estimators, including the threshold-bipower estimator,

produce volatilities that are significantly smaller than the estimator using bipower increments. We

17For their empirical study, Mancini and Renò (2011) consider the range [0.0175, 0.1625], which is similar to ours.
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Figure 5.3: Estimated Volatility Functions
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Notes: Presented are the estimates of diffusive (upper panel) and jump (lower panel) volatility functions. The left and
right panels are for the 7-day Eurodollar deposit rate and the 3-month Treasury Bill rate respectively. The solid lines
are the estimators using truncated bipower increments with threshold level $5,0.49(δ) (TBP), whereas the dashed,
dash-dot and circle-marker lines are the threshold estimators with threshold levels $5,0.49(δ) (TH1), $3,0.49(δ) (TH2),
and $3(i) (TH MR) respectively, and the dotted lines are the bipower estimators (BP).

believe that this is due to a positive bias existing in the estimator using bipower increments, which

we observed from our simulations and identified as an adverse effect from the presence of large

jumps in underlying jump diffusion models. For the volatility estimates of the 3-month Treasury

Bill rate, in contrast, all other estimates based on the threshold approach are more or less evenly

spread, though the estimates using bipower increments are largest at all levels of interest rate. For

the diffusive volatility function, the estimator proposed by Mancini and Renò (2011) yields the

values closest to those from the estimator using bipower increments. Note that jump and diffusive

volatilities may be regarded as mirror images of each other, since the former is obtained as the

residual from the total volatility net of the latter. The comparison among different estimates of

jump volatility is thus essentially identical to those of diffusive volatility. Finally, as expected, the

magnitudes of volatilities for the 7-day Eurodollar deposit rate are significantly larger than those

for the 3-month Treasury Bill rate.
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Figure 5.4: Proportion of Jump Volatility
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Notes: Presented are estimated proportions of total volatility contributed by jumps, i.e., (τ̂2/ω̂2)(x) × 100%, using
threshold-bipower estimators. The left and right panels are for the 7-day Eurodollar deposit rate and the 3-month
Treasury Bill rate respectively.

6 Conclusion

This paper proposes nonparametric estimations of volatility functions of jump diffusion models

using truncated bipower increments. We establish asymptotics for the local constant and local

linear estimators of diffusive and jump volatility functions. Our asymptotics are applicable for

nonstationary, as well as stationary, jump diffusions, and are fine enough to derive the optimal

bandwidths minimizing the asymptotic mean squared errors of all estimators considered in the

paper.

Our threshold bipower estimators and their asymptotics are comparable to the threshold es-

timators using truncated squared increments proposed by Mancini and Renò (2011) and their

asymptotics developed in Park and Wang (2018). For estimating diffusive volatility functions, our

threshold bipower estimators share the same asymptotic biases as, while have asymptotic variances

that are 1.1422 times larger than, the corresponding threshold estimators using truncated squared

increments. On the other hand, for estimating jump volatility functions, our threshold bipower

estimators have the same asymptotic biases and variances as those corresponding threshold estima-

tors using truncated squared increments. The simulation study shows that our threshold bipower

estimators outperform the threshold estimators using truncated squared increments in terms of

finite sample biases and variances for estimating diffusive volatility functions, as well as finite

sample biases for estimating jump volatility functions, across all of the three simulation models

and realistic ranges of parameter values. In terms of finite sample variances for estimating jump

volatility functions, the relative performance results of our threshold bipower estimator are mixed

across different simulation models and parameter values, compared to the threshold estimator using

truncated squared increments.
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Supplementary Material

Supplement to “Estimation of Volatility Functions in Jump Diffusions Using Truncated Bipower

Increments”. This supplement, Kim et al. (2020), provides the proofs of Lemmas A.1-A.4 in the

Mathematical Appendix, as well as some preliminary lemmas that are useful for the proofs in

Lemmas A.1-A.4.
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Mathematical Appendix

The proofs of subsequential lemmas and theorems rely heavily on Park and Wang (2018), which

will be referred to simply as PW. We use ‖·‖ to denote the Euclidean norm, and ‖·‖∞ to signify the

supremum norm of functions. For the process X specified in (2.1), we let T (f) = sup0≤t≤T |f |(Xt)

for any function f : D → R. Moreover, we let X = Xc + Xd, where Xc and Xd represent

respectively the continuous and jump parts of X. Subsequently, we write Xc = Xc
1 + Xc

2 with

dXc
1t = µ(Xt)dt and Xc

2t = σ(Xt)dWt, and define J(ε) and Xd(ε) as dJt(ε) =
∫
|z|<ε zΛ(dt, dz) and

dXd
t =

∫
|z|<ε zτ(Xt−)Λ(dt, dz) for any ε > 0, with the convention Jt = Jt(∞) and Xd = Xd(∞).

We define `[T, x] = σ2(x)`(T, x) as the sojourn time measured by the continuous part of quadratic

variation of X around x over the time interval [0, T ]. For any stochastic process Z, we write

∆iZ = Ziδ −Z(i−1)δ for i = 1, . . . , n, and ∆Zt = Zt−Zt− for t > 0. The notations introduced here

will be used repeatedly without any further reference.

In the sequel, we let f : [−1, 1]→ R be nonnegative, bounded and twice continuously differen-

tiable, and define fx,h(y) = f((y− x)/h). We denote by (Ft) the natural filtration of X, and write

Et(·) to be E(·|Ft). We write κT for κ(T ) (in Assumption 2.1 (g)) for notational brevity. For a ∈ R,

we use bac (dae) to denote the biggest (smallest) integer b such that b ≤ a (b ≥ a). Moreover, we

use “AT ≤p BT ” to denote AT = Op(BT ). We often use the notion of L-domination and Lenglart

inequality in Definition 1.3.29 and Lemma 1.3.30 in page 35 of Jacod and Shiryaev (2003). Note

in particular that if AT is L-dominated by BT and BT is predictable, then we have AT ≤p BT due

to Lenglart inequality. This will simply be referred to as Lenglart domination property. Finally,

some of our subsequent asymptotics rely on the modulus of continuity of diffusion given by

sup
0≤s,t≤T

sup
|t−s|≤δ

∣∣∣∣∫ t

s
g(Xu)dWu

∣∣∣∣ = Op

(
δ1/2T (g)

√
log(T/δ)

)
as δ → 0, which is established in Lemma B2 of Kim and Park (2017a).
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A Useful Lemmas

Lemma A.1. Let (i) ı1(f) = 0, (ii) g : D 7→ R be twice continuously differentiable, and (iii)
Assumptions 2.1 and 2.3 hold. Then

1

h3

∫ T

0
fx,h(Xt)[g(Xt)− g(x)]dt =

ı2(f)

2

[
4g′
(
µ

σ2
− σ′

σ

)
+ g′′

]
(x)`(T, x) +

2ı2(f)g′(x)ξ(T, x)

σ2(x)

+
2g′(x)

hσ2(x)

(∫ T

0

∫
R

∫ Xt−+zτ(Xt−)

Xt−

(ιf1)x,h(u)duΓ(dt, dz)

+

∫ T

0
[(ιf1)x,hσ](Xt)dWt

)
+ op(`(T, x)).

Lemma A.2. Let (i) f, χ : [−1, 1] 7→ R and g, ϕ : D 7→ R be twice continuously differentiable, (ii)
Assumptions 2.1, 2.3, 2.5 and 2.6 hold. If we let

MT =
1√
h

n−1∑
i=1

(
χx,hϕ

)
(X(i−1)δ)∆iW

NT =
1√
δh

n−1∑
i=1

(fx,hg)(X(i−1)δ)
(
|∆iW ||∆i+1W | − ωδ

)
with ω = 2/π, then

(MT , NT ) =d `(T, x)1/2Z(1 + op(1)),

where Z is a bivariate normal random vector independent of `(T, x), and has covariance matrix
Σ = diag (ı(χ2)ϕ2(x), c(π)ı(f2)g2(x)) with c(π) = 1 + 2ω − 3ω2.

Lemma A.3. Let Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 and 3.1 hold. Then

RT (K,σ2) = Op

(
δ1/2`(T, x)

)
,

with RT (K,σ2) defined in Section 3.1.

Lemma A.4. Let Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 and 3.1 hold. Then

RT (K, τ2) = Op

(
δ1/2`(T, x) + δ1/2h−1/2`(T, x)1/2

)
+ op

(
h2`(T, x) + h1/2`(T, x)1/2

)
,

with RT (K, τ2) defined in Section 4.1.
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B Proofs of Theorems

Proof of Theorem 3.1. For σ̂2p(x), we rewrite NT (K,σ2) as

NT (K,σ2) =
1

h

∫ T

0
Kx,h(Xt)

[
σ2(Xt)− σ2(x)

]
dt

− 1

h

n∑
i=1

Kx,h(X(i−1)δ)

∫ iδ

(i−1)δ

[
σ2(Xt)− σ2(X(i−1)δ)

]
dt

+
1

h

n∑
i=1

∫ iδ

(i−1)δ

[
Kx,h(X(i−1)δ)−Kx,h(Xt)

] [
σ2(Xt)− σ2(x)

]
dt. (B.1)

We may apply Lemmas A.16 and A.17 respectively in PW to the second and third terms in (B.1) and
show that they are both of order op(h

2`(T, x)) under δ = o(h3∧T−6pq), and therefore asymptotically
negligible.

By Lemma A.1 (with f = K and g = σ2), we may write the first term in (B.1) as

h2ı2(K)

2

[(
4σ2′

(
µ

σ2
− σ′

σ

)
+ σ2′′

)
(x) +

8σ′(x)ξ(T, x)

σ(x)`(T, x)

]
`(T, x)

+ 4h(σ′/σ)(x) (AT +BT + CT ) + op(h
2`(T, x)), (B.2)

where

AT =

n−1∑
i=1

[(ιK1)x,hσ](X(i−1)δ)∆iW, BT =

∫ T

0

∫
R

∫ Xt−+zτ(Xt−)

Xt−

(ιK1)x,h(u)duΓ(dt, dz)

CT =

n−1∑
i=1

∫ iδ

(i−1)δ

(
[(ιK1)x,hσ](Xt)− [(ιK1)x,hσ](X(i−1)δ)

)
dWt.

For AT , it follows from Lemma A.2 that√
1

h`(T, x)
AT →d ı(ιK

2
1 )1/2σ(x)Zp, (B.3)

where Zp is a standard normal random variate independent of `(T, x).
Next, the predictable quadratic variation of BT is given by

〈B〉T =

∫ T

0

∫
R

[∫ Xt+zτ(Xt)

Xt

(ιK1)x,h(v)dv

]2
λ(dz)dt

≤ 2‖ιK1‖h
∫ ∞
−∞

∫ ∞
−∞

∣∣∣∣∣
∫ u+zτ(u)

u
(ιK1)x,h(v)dv

∣∣∣∣∣λ(dz)`(T, u)du

≤ 2‖ιK1‖h2
∫ ∞
−∞

∫ ∞
−∞
|λ1|

(
x− u+ hv

τ(u)

)
|ιK1|(v)dv`(T, u)du = Op(h

2`(T, x)),
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where the last equality follows from Lemma A.2 in PW. We therefore have

BT = Op(h`(T, x)1/2), (B.4)

since B2
T = Op(h

2`(T, x)) by Lenglart domination property. For CT , we have

[C]T =

n−1∑
i=1

∫ iδ

(i−1)δ

(
[(ιK1)x,hσ](Xt)− [(ιK1)x,hσ](X(i−1)δ)

)2
dt

≤
n−1∑
i=1

∫ iδ

(i−1)δ

(
[(ιK1)x,hσ]2(Xt)− [(ιK1)x,hσ]2(X(i−1)δ)

)
dt

− 2
n−1∑
i=1

[(ιK1)x,hσ](X(i−1)δ)

∫ iδ

(i−1)δ

(
[(ιK1)x,hσ](Xt)− [(ιK1)x,hσ](X(i−1)δ)

)
dt

= op(h`(T, x)),

where the last equality follows from Lemma A.14 in PW with fx,h replaced by [(ιK1)x,hσ]2, and
Lemma A.16 in PW with both fx,h and g replaced by [(ιK1)x,hσ], under δ = o(h2 ∧ T−2pq).
Therefore,

BT = op(h
1/2`(T, x)1/2). (B.5)

Moreover, As shown in Lemma A.9 and A.14 in PW, we have

QT (K) = `(T, x)(1 + op(1)) (B.6)

under δ = op(h
2). Then, the stated results for σ̂2p(x) follows immediately from (B.1)-(B.6). More-

over, we may apply Lemmas A.2, A.3 and (B.6) to deduce the stated results for σ̂2q (x) and σ̂2r (x),
which completes the proof.

Proof of Theorem 3.2. Let AT , BT and CT be defined as in the proof of Theorem 3.1. For σ̃2p(x),
we may deduce similarly as QT (K) that

QT (ι2K) = ι2(K)`(T, x)(1 + op(1)), (B.7)

which, together with (B.1) and (B.2), implies that

NT (K,σ2)QT (ι2K) = FT +GT + op(h
2`(T, x)2), (B.8)

where

FT =
h2ı22(K)

2

[(
4σ2′

(
µ

σ2
− σ′

σ

)
+ σ2′′

)
(x) +

8σ′(x)ξ(T, x)

σ(x)`(T, x)

]
`(T, x)2,

GT = 4h(σ′/σ)(x)(AT +BT + CT )QT (ι2K),

and AT +BT + CT = Op(h
1/2`(T, x)1/2) as shown in the proof of Theorem 3.1.
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We may decompose NT (ιK, σ2) similarly as NT (K,σ2) in (B.1) and (B.2) and deduce that

NT (ιK, σ2) =
1

h

∫ T

0
(ιK)x,h(Xt)

[
σ2(Xt)− σ2(x)

]
dt+ op(h

2`(T, x))

= ı2(K)σ2′(x)h`(T, x) + op(h`(T, x)) (B.9)

under the condition of δ = o(h3 ∧ T−6pq). Moreover, by (C.2)-(C.5) in the proof of Lemma A.1,

QT (ιK) =

∫ ∞
−∞

(ιK)(u)`(T, x+ hu) +Op
(
δh−2`(T, x)

)
= 2ı2(K)h

[(
µ

σ2
− σ′

σ

)
(x) +

ξ(T, x)

σ2(x)`(T, x)

]
`(T, x)

+ 2σ−2(x)(AT +BT + CT ) + op(h`(T, x)), (B.10)

under δ = o(h3 ∧ T−6pq). Therefore, we have

NT (ιK, σ2)QT (ιK) = UT + VT + op(h
2`(T, x)2), (B.11)

where

UT =
h2ı22(K)

2

[(
4σ2′

(
µ

σ2
− σ′

σ

))
(x) +

8σ′(x)ξ(T, x)

σ(x)`(T, x)

]
`(T, x)2

VT = 2σ−2(x)(AT +BT + CT )NT (ιK, σ2).

As shown below, from (B.8) and (B.11), we may identify the bias terms and additional variance
terms of NT (K,σ2)QT (ι2K) and NT (ιK, σ2)QT (ιK).

For the bias terms, we have

FT − UT = ı22(K)(σ2′′/2)(x)h2`(T, x)2. (B.12)

For the additional variance terms, we write GT − VT = (2/σ2)(x)(AT +BT + CT )DT , where

DT = σ2′(x)δ
n∑
i=1

(ι2K)x,h(X(i−1)δ)−
δ

h

n∑
i=1

(ιK)x,h(X(i−1)δ)
(
σ2(X(i−1)δ)− σ2(x)

)
.

However, using analogous arguments as for (B.6), we have

δ

n∑
i=1

(ι2K)x,h(X(i−1)δ) =

∫ T

0
(ι2K)x,h(Xt)dt+ op(h

2`(T, x)).

Moreover, similar to NT (K,σ2), we have

δ

h

n∑
i=1

(ιK)x,h(X(i−1)δ)
(
σ2(X(i−1)δ)−σ2(x)

)
=

1

h

∫ T

0
(ιK)x,h(Xt)

(
σ2(Xt)−σ2(x)

)
dt+op(h

2`(T, x))
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under δ = o(h3 ∧ T−6pq), from which it follows that

DT ≤
∣∣∣∣1h
∫ T

0
(ιK)x,h(Xt)

(
σ2(Xt)− σ2(x)− σ2′(x)(Xt − x)

)
dt+ op(h

2`(T, x))

∣∣∣∣
≤

(
sup
|u−x|≤h

∣∣∣∣σ2′′2

∣∣∣∣ (u)

)
1

h

∫ T

0
|ιK|x,h (Xt)(Xt − x)2dt+ op(h

2`(T, x))

≤p h
∫ T

0

∣∣ι3K∣∣
x,h

(Xt)dt+ op(h
2`(T, x)) = Op(h

2`(T, x)),

and we have

GT − VT = (2/σ2)(x)(AT +BT + CT )Op(h
2`(T, x)) = Op

(
h5/2`(T, x)3/2

)
. (B.13)

Therefore, it follows immediately from (B.8), (B.11), (B.12) and (B.13) that

NT (K,σ2)QT (ι2K)−NT (ιK, σ2)QT (ιK) = ı22(K)(σ2′′/2)(x)h2`(T, x)2(1 + op(1)), (B.14)

and we may deduce from (B.6), (B.7) and (B.10) that

QT (ι2K)QT (K)−QT (ιK)2 = ı2(K)`(T, x)2(1 + op(1)). (B.15)

The stated result for σ̃2p(x) easily follows from (B.14) and (B.15).

For σ̃2q (x), we note that MT (ιK, σ2) = Op
(√

δ`(T, x)/h
)
, which follows exactly as for MT (K,σ2)

in the proof of Theorem 3.1, and deduce that√
h`(T, x)

δ

MT (K,σ2)QT (ι2K)−MT (ιK, σ2)QT (ιK)

QT (K)QT (ι2K)−QT (ιK)2
=

√
h

δ`(T, x)
MT (K,σ2)(1 + op(1)),

from (B.7), (B.10) and (B.15), from which and Lemma A.2, the stated result follows immediately.
For σ̃2r (x), in an analogous way as for RT (K,σ2) in Lemma A.3, we may readily show that

RT (ιK, σ2) = Op(δ
1/2`(T, x)), from which, together with (B.7), (B.10), (B.15) and Lemma A.3, the

stated result for σ̃2r (x) follows immediately.

Proof of Theorem 4.1. The arguments for τ̂2p (x) are analogous to those of σ̂2p(x) and therefore
omitted. For τ̂2q (x), we write MT (K, τ2) = UT + VT , where

UT =
1

h

n∑
i=1

(
Kx,hτ

2
)

(X(i−1)δ)

∫ iδ

(i−1)δ

∫
R
z2Γ(dt, dz)

VT =
1

h

n∑
i=1

Kx,h(X(i−1)δ)

∫ iδ

(i−1)δ

∫
R
z2
(
τ2(Xt−)− τ2(X(i−1)δ)

)
Γ(dt, dz).
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For VT , we may readily deduce that

V 2
T ≤p

ı4(λ)

h2

n∑
i=1

K2
x,h(X(i−1)δ)

∫ iδ

(i−1)δ

(
τ2(Xt)− τ2(X(i−1)δ)

)2
dt

≤pT ([τ2′]2)
ı4(λ)

h2

n∑
i=1

K2
x,h(X(i−1)δ)

∫ iδ

(i−1)δ

∫ t

(i−1)δ
(σ2 + τ2)(Xs)dsdt

≤ δT ([τ2′]2)
ı4(λ)

h

(
1

h

n∑
i=1

K2
x,h(X(i−1)δ)

∫ iδ

(i−1)δ

(
σ2 + τ2

)
(Xt)dt

)
= Op

(
δT 2pqh−1`(T, x)

)
,

where the first inequality in probability follows from Lenglart domination property, the second
inequality from Mean value theorem and Lenglart domination property, and the last equality from
Lemmas A.16, A.14 and A.9 in PW under δ = o(h2 ∧ T−6pq). Therefore, we have

VT = Op

(
δ1/2T pqh−1/2`(T, x)1/2

)
. (B.16)

For UT , we note that

〈U〉T =
ı4(λ)δ

h2

n∑
i=1

(
Kx,hτ

2
)2

(X(i−1)δ) = ı4(λ)ı(K2)τ4(x)h−1`(T, x)(1 + op(1)).

Then we may apply analogous arguments as for Lemma A.2 to show that√
h

`(T, x)
UT →d

[
ı(K2)ı4(λ)

]1/2
τ2(x)Z, (B.17)

where Z is a standard normal random variate independent of `(T, x). The stated result for τ̂2r (x)
then follows from (B.6), (B.16) and (B.17). Finally, the stated result for τ̂2r (x) readily follows from
Lemma A.4 and (B.6).

Proof of Theorem 4.2. The derivations of the stated results for τ̃2p (x), τ̃2q (x) and τ̃2r (x) are com-
pletely analogously to those for σ̃2p(x), σ̃2q (x) and σ̃2r (x) respectively, and therefore, omitted.
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