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Abstract

An important problem associated with two-sample surveys is estimation of nonlinear functions of finite
population totals such as ratios, correlation coefficients or measures of income inequality. Computation and
estimation of the variance of such complex statistics are made more difficultby the existence of overlapping
units. In one-sample surveys, the linearization method based on the influence function approach is a pow-
erful tool for variance estimation. We introduce a two-sample linearizationtechnique which can be viewed
as a generalization of the one-sample influence function approach. Ourtechnique is based on expressing
the parameters of interest as multivariate functionals of finite and discretemeasures and then using partial
influence functions to compute the linearized variables. Under broad assumptions, the asymptotic variance
of the substitution estimator, derived from [8], is shown to be the varianceof a weighted sum of the lin-
earized variables. The paper then focuses on a general class of composite substitution estimators, and from
this class the optimal estimator for minimizing the asymptotic variance is obtained. Finally, the efficiency
of the optimal composite estimator is demonstrated through an empirical study.

Keywords:Gini index change; Partial influence function; Substitution estimator; Two-dimensional sampling
design; Variance estimation; Variance optimization.

1 Introduction

The study and the comparison across time or space of income distribution and income inequality measures are
of increasing current interest. Most of the properties of measures such as the Lorenz curve or the Gini index
have been investigated. However, the variance estimation problem for sample survey data has only recently
been addressed. Difficulties arise because these measures are nonlinear functions of population values.

There exist two approaches to variance estimation for complex statistics: resampling methods and lin-
earization methods. Various resampling methods [24] existsuch as the jackknife, the balanced repeated
replication method and the bootstrap. The jackknife [3] is the most often used procedure and consists of
computing the estimator repeatedly leaving out one unit. These methods can be very computing intensive.
Besides and unlike linearization methods, resampling methods can only be applied to specific sampling de-
signs. For unequal probability sampling designs, they may run into great difficulties [30].

In the following, the focus is on linearization methods. Thewell-known Taylor linearization method
can be used for nonlinear but continuously differentiable functions of totals, but the method is not adapted
for the estimation of quantiles, for example. For nonregular functions of totals, [18] propose an approach
based on the estimating equations technique. A functional approach is also proposed in [8]. It uses the
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influence function concept and provides a theoretical justification for the linearization proposal of [7] that
gives practical rules for linearising complex statistics.Non-differentiable functions of totals like quantiles
or the Gini index can be handled either by the influence function approach or by the estimating equation
technique. More complex parameters such as eigenelements of functional data have been considered recently
by the influence function approach, in an unpublished University of Burgundy technical report by H. Cardot,
M. Chaouch, C. Goga and C. Labruère. All the linearization methods consist of computing the‘linearized
variable’uk associated with the parameters of interest for all the unitsk from the populationU of sizeN
and give a first-order expansion formula of the complex statistics which contains the Horvitz-Thompson
estimator

∑

k∈s uk/πk for the total ofuk. Here,πk = pr(k ∈ s) is the first-order inclusion probability of
k in the samples. We consider the influence function approach, introduced inrobust statistics by [13]. [5]
uses the influence function for estimating the variance of complex statistics and compares it with a jackknife
variance estimator. [8] uses a slightly modified definition of the influence function and provides a powerful
variance-estimation tool for complex survey statistics. He gives computing rules and applies the technique
to different examples such as quantiles, concentration indices and estimators of eigenvalues in principal
component analysis in the one-sample case.

In Deville’s approach, a population parameter of interestΦ can be written as a functionalT with respect to
a finite and discrete measureM , namelyΦ = T (M). The substitution estimator̂Φ = T (M̂) is the functional
T of a random measurêM that is associated with sampling weightswk, k ∈ U , and is ‘close’ toM . Suppose
that T is homogeneous of degreeα, so thatT (rM) = rαT (M), andlimN→∞ N−αT (M) < ∞. Under
broad assumptions, Deville shows that

√
nN−α{T (M̂) − T (M)} =

√
nN−α

∫

IT (M, z)d(M̂ − M)(z) + op(1)

=
√

nN−α
N

∑

k=1

uk(wk − 1) + op(1). (1)

The linearized variablesuk are the influence functionsIT (M, zk), wherezk is the value of the variable of
interest for thekth unit and

IT (M, z) = lim
ε→0

1

ε
{T (M + εδz) − T (M)},

whereδz is the unit mass at pointz ∈ Rp. This definition is slightly different from the one used in robust
statistics [13] which is based on a probability distribution instead of a finite measureM . A nonstandardised
measureM is used in survey sampling because the total mass may be an unknown quantity. The influence
function is a Ĝateaux differential forT (M) in the direction of the Dirac mass atz. As a consequence of (1)
and under broad assumptions, the asymptotic variance ofT (M̂) is the variance of

∑N
k=1 uk(wk −1). For the

Horvitz-Thompson weightswk = 1/πk, this variance is equal to

N
∑

k=1

N
∑

l=1

(πkl − πkπl)
uk

πk

ul

πl
,

where theπkl are the second-order probabilities. Deville estimates thevariancevar{T (M̂)} by the Horvitz-
Thompson variance estimator

∑

k∈s

∑

l∈s

πkl − πkπl

πkl

ûk

πk

ûl

πl
(2)

using the sample estimatorsûk = IT (M̂, zk) for the linearized variablesuk, k ∈ s. The main advantage of
this method is that the variance estimators can be implemented in any survey software capable of calculating
the Horvitz-Thompson variance estimator.
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All previous methods concern variance estimation for one-sample survey data, but interest may lie in
studying how statistics change over time or between different population subgroups. Estimating the change in
the Gini index between two periods of time is one particular example. Difficulties arise from the existence of
overlapping samples. Work concerning temporal change mainly deals with the estimation of simple statistics
such as the population mean or total under the hypothesis of independence of the selection procedure. The
first studies are by [16], [21] and [9]. Cochran (1977,§12.11), gives the most important ideas concerning
repeated sampling and a more thorough discussion is found in[17]. All these studies are conducted for
simple random sampling without replacement. More general sampling designs are considered in [26], [14]
and [19] but they still assume the independence of successive samples. Recent works are dedicated to
composite estimators with applications to specific types ofsurvey [1, 12, 27]. We also mention the review in
an unpublished Institut National de la Statistique et des Etudes Economiques (INSEE) working paper by N.
Caron and P. Ravalet, the paper by [6] and the recent work by [31] and [2].

We propose an extension of the influence function approach tothe two-sample case. In classical statistics,
the partial influence function is introduced for estimatorsbased on more than one sample [22] following the
analogy with derivatives and partial derivatives. In the survey-sampling context, we also propose to extend
the influence function approach to the multiple-sample caseby considering partial influence functions. In the
two-sample case, estimators are based on three disjoint samples which naturally lead us to consider three-
variate functionals and their associated partial influencefunctions. These partial influence functions equal the
linearized variables and, under broad assumptions, the asymptotic variance of the complex statistics is equal
to the variance of a weighted linear sum of the linearized variables. The proposed methodology has already
been applied to compute the precision of change estimators in the French employment survey [23].

2 Extension of the asymptotic results to two dimensions

2.1 Partial influence functions

Consider the finite populationU of sizeN . Let Z1 andZ2 be two variables of interest measured on two
different sampless1 ands2 selected from the same populationU according to the sampling designsp1 and
p2. The objective is to estimate a nonlinear functionΦ of totals ofZ1 andZ2. The samples1, respectively
s2, is of sizen1, respectivelyn2. We consider that the matched samples3 = s1 ∩ s2 is nonempty and of size
n3. Let s1∗ = s1 − s2, respectivelys2∗ = s2 − s1, be the complementary sample ofs2 in s1, respectively
of s1 in s2, of sizen1∗, respectivelyn2∗, and letn = n1∗ + n3 + n2∗. Let D = {1∗, 3, 2∗} be the set of
the disjoint samples’ indices and letT = {1, 2, 3} be the set of the matched samples’ indices. Apart from
particular cases, we assume from now on thatd ∈ D andt ∈ T . On the matched samples3, we know both
Z1 andZ2 and we denote(Z1,Z2), byZ3.

Each unitk ∈ U is associated with a vectorzk,t ∈ Rpt , t ∈ T , wherezk,t = Zt(k) is the value of
thept-dimensional variable of interestZt for thekth unit andp3 = p1 + p2. We consider the discrete and
finite measuresMt =

∑N
k=1 δzk,t

defined onRpt to R taking the mass 1 for eachzk,t with k ∈ U and zero
elsewhere. The measuresMt are of total mass equal toN , the population size, and take into account the
unitsk in U together with the variable of interestZt. Henceforth, defining an estimator̂Mt of Mt leads to
definition of an estimator of the total ofZt since the total ofZt equals

∫

ZtdMt and is a functional ofMt.
Consideration of three different measures is justified because the variablesZt are measured on different

samplesst, t = 1, 2, 3, and the measuresMt may be estimated in different ways. In particular,M3 is useful
if one wishes to estimate covariance terms of the form

∑N
k=1 zk,1zk,2 that cannot be expressed directly from

M1 andM2. Therefore, and by analogy with the one-sample situation, we introduce the three-variate func-
tional T (M1,M2,M3) = T (M) with the vectorM = (Mt)t∈T and consider as parameters of interest any
population total functionΦ = T (M). Let us consider three illustrative examples.

Ex 2.1 Let Z1 andZ2 be the same variable of interest but measured on two occasions with totalsZt =
∑N

k=1 zk,t. The finite population total changeΦ = Z2−Z1 can be written asT (M) =
∫

Z2dM2−
∫

Z1dM1.
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Ex 2.2 Consider two bivariate variablesZt = (Xt,Yt) for t = 1, 2 that may also correspond to two occa-
sions. The functional

T (M) = ∆R = R2 − R1 =

∫

Y2dM2
∫

X2dM2
−

∫

Y1dM1
∫

X1dM1

is the ratio change. Change of more complex statistics such as the Gini index or the Lorenz curve can also be
considered.

Ex 2.3 Consider the product of two variablesZ1 andZ2, withT (M) =
∫

Z1Z2dM3/
∫

dM3. This example
illustrates the need to introduceM3.

We now introduce the partial influence functions of the functionalT (M) [25, 22].

Definition 2.1 The first partial influence functionI1T (M ; z) of T (M) is defined as the first partial Ĝateaux
derivative ofT with respect toM1 in the direction of Dirac mass atz,

I1T (M ; z) = lim
ε→0

T (M1 + εδz,M2,M3) − T (M1,M2,M3)

ε
(3)

when this limits exists. The second, respectively third, partial influence functionI2T (M ; z), respectively
I3T (M ; z), is defined in a similar way.

Definition 2.2 The linearized variablesuk,t for k ∈ U and t ∈ T are obtained by computingItT (M ; z) at
z = zk,t ∈ Rpt , namelyuk,t = ItT (M ; zk,t).

The partial influence functions ofT = ∆R = R2−R1 = R(M2)−R(M1), see Example 2, are computed
as partial derivatives of a function. SinceR2 = R(M2), respectivelyR1 = R(M1), is constant with respect to
M1, respectivelyM2, the first, respectively second, partial influence functionconsists of taking the linearized
variable of the ratioR1, respectivelyR2. To be more precise, we have

uk,1 = I1T {M ; (xk,1, yk,1)} = − 1

X1
(yk,1 − R1xk,1),

uk,2 = I2T {M ; (xk,2, yk,2)} =
1

X2
(yk,2 − R2xk,2), (4)

uk,3 = 0.

For Example 3,uk,1 = uk,2 = 0 anduk,3 = (1/N)(zk,1zk,2 − ∑N
k=1 zk,1zk,2/N). Theuk,t depend on

unknown quantities and cannot be calculated.

2.2 The substitution estimator and its asymptotic variance

By analogy with [8], we defineM̂t =
∑N

k=1 vk,tδzk,t
as an estimator ofMt which associates a weightvk,t

with each vectorzk,t, for k ∈ st, and zero elsewhere. The weightsvk,t will be derived in the next section.

Definition 2.3 The substitution estimator ofT (M) is T (M̂) whereM̂ = (M̂1, M̂2, M̂3).

The estimatorM̂ defines the estimatorT (M̂). In §3.4, we give three different estimators ofM which lead to
three different estimators of the ratio change.

In the following, we give sufficient conditions for the asymptotic expansion ofT to be valid. We need
both the population and the samples sizesN andnt to go to infinity withnt < N . As in the one-sample case
[15], we consider a sequence of populations and associated sequences of samplesst of increasing sizes with
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∫

ZtdM̂t as an estimator of
∫

ZdMt. By analogy with [8] we make the following assumptions, fort ∈ T .

Assumption1. We assume thatlimN→∞ n−1
t n3 ∈ (0, 1) andlimN→∞ N−1nt ∈ (0, 1).

Assumption2. We assume thatlimN→∞ N−1
∫

ZtdMt exists.

Assumption3. AsN → ∞, N−1(
∫

ZtdM̂t −
∫

ZtdMt) → 0 in probability.

Assumption4. AsN → ∞, {nt
1/2N−1(

∫

ZtdM̂t −
∫

ZtdMt)}3
t=1 → N(0,Σ) in distribution.

Let the functionalT also satisfy the following smoothness assumptions.

Assumption5. We assume thatT is homogeneous, in that there exists a real numberβ > 0 dependent on
T such thatT (rM) = rβT (M) for any realr > 0.

Assumption6. We assume thatlimN→∞ N−βT (M) < ∞.

Assumption7. We assume thatT is Fŕechet differentiable.

Theorem 1 is the most important result of the paper; it gives the first-order [29] expansion of the func-
tionalT atM̂/N and aroundM/N .

Theorem 1 Let Assumptions1 to 7 hold. Then

√
n

Nβ
{T (M̂) − T (M)} =

√
n

Nβ

3
∑

t=1

∫

ItT (M ; z)d(M̂t − Mt)(z) + op(1)

=

√
n

Nβ

3
∑

t=1

{
N

∑

k=1

uk,t(vk,t − 1)} + op(1)

and the asymptotic variance ofT (M̂) is equal to the variance of
3

∑

t=1

{
N

∑

k=1

uk,t(vk,t − 1)}.

The proof is given in the Appendix. The strong assumption of Fréchet differentiability forT ensures that the
remainder of the first-order von Mises expansion is negligible. Moreover, when they exist, the Fréchet partial
derivatives equal the Ĝateaux partial derivatives, which are the partial influencefunctions. However, the result
can be obtained ifT is only Gâteaux or compact differentiable [10] but with some additional assumptions
[22]. For particular functionalsT , one may study the remainder term directly and prove that it is of order
op(n

−1/2); see the unpublished report of H. Cardot and others for the one-sample case.

3 A general class of composite estimators

3.1 Preamble

In this section, we derive the weightsvk,t defining the measureŝMt. Thevk,t are expected to satisfy the
unbiasedness conditionsE(M̂t) = Mt, so that

E{
3

∑

t=1

N
∑

k=1

uk,t(vk,t − 1)} = 0. (5)
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The variables of interest are known on different samples. Consequently, we propose unbiased composite
estimators ofMt that combine information froms1 ands2 considering the interaction between them through
the matched samples3. First we introduce the two-dimensional sampling design described in an unpublished
INSEE working paper of F. Cotton and C. Hesse, and its corresponding inclusion probabilities. Next, we
determine the weightsvk,t which satisfy the unbiasedness conditions through a kind oftwo-sample Horvitz-
Thompson estimation method.

3.2 Two-dimensional sampling design

Definition 3.1 A two-dimensional sampling design is a probability measurep{s = (s1, s2)} of selecting a
two-samples = (s1, s2) ∈ {P(U)}2. We havep(s) ≥ 0 and

∑

s∈{P(U)}2 p(s) = 1.

As described in detail in C. Goga’s unpublished 2003 Ph. D. thesis from the University of Rennes 2, marginal
sampling designs and the distribution of any algebraic combination ofs1 ands2 can be deduced fromp(s).
Each unitk ∈ U may belong to one of the disjointed samplessd for d ∈ D = {1∗, 3, 2∗} or in the comple-
mentary set ofs1∪s2. The sample membership dummy variablesId

k = 1{k∈sd} form a basisB in the algebra
spanned byI1

k andI2
k and the following definition gives the inclusion probabilities with respect toB.

Definition 3.2 Letp(s) be a two-dimensional sampling design. For allk, l ∈ U andd, d′ ∈ D, we define the
first- and second-order two-dimensional inclusion probabilities computed with respect toB as

πd
k = pr(k ∈ sd) = E(Id

k ), πd,d′

kl = pr(k ∈ sd & l ∈ sd′) = E(Id
kId′

l ),

where the expectation is considered with respect top(s).

There are therefore three, respectively six, sets of first-order, respectively second-order two-dimensional
inclusion probabilities. We mention now some of the properties ofπd,d′

kl . First of all, ford 6= d′, the commu-
tative property with respect to two unitsk andl no longer holds as in the one-sample selection case. Thus,
πd,d′

kl 6= πd,d′

lk but we haveπd,d′

kl = πd′,d
lk . Whend = d′, πd,d

kl = πd
kl, the usual one-sample second-order

inclusion probabilities, and there are six different sets of πd,d′

kl . Finally, for k = l andd 6= d′, we have

πd,d′

kl = 0.
Differently from the one-sample case, the algebra spanned by I1

k andI2
k contains 7 elements and we have

29 ways of choosing a basis with its corresponding inclusionprobabilities; see C. Goga’s thesis for more
details. Note that changing from one basis to another is possible by linear transformations. By analogy with
the one-sample case, let us define the size of a two-dimensional sample.

Definition 3.3 The size of a two-dimensional samples = (s1, s2) is defined byns = (n1∗, n3, n2∗) with
nd =

∑N
k=1 Id

k the size ofsd, for d ∈ D.

The sizens may be random if at least one of the three components is randomand fixed if all the components
are fixed. In§4, we define the two-dimensional simple random sampling without replacement, which is a
fixed-size design whereas the Bernoulli or the Poisson two-dimensional sampling designs in Goga’s thesis
are random size designs.

3.3 General composite estimation

The construction of the measurêM3 depends only on the matched samples3 and so, by using the unbiased-
ness conditionE(M̂3) = M3, we have

vk,3 = I3
k/π3

k, M̂3 =

N
∑

k=1

I3
kδzk,3

π3
k

. (6)
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Since the disjoint sampless1∗, s3 and s2∗ can be composed in different ways, there are several ways of
defining the estimatorŝMt, for t = 1, 2, which entail different substitution estimatorsT (M̂). A general class
of composite estimators is proposed if we define the weightsvk,t, t = 1, 2, as linear combinations of the basis
elementsI1∗

k , I3
k andI2∗

k . To be more precise, sincevk,t is zero outside the samplest, t = 1, 2, we takevk,1,
respectivelyvk,2, as a linear combination ofI1∗

k andI3
k , respectively ofI2∗

k andI3
k , as follows:

vk,1 = v1∗
k,1I

1∗
k + v3

k,1I
3
k , vk,2 = v2∗

k,2I
2∗
k + v3

k,2I
3
k ,

for some real numbersvd
k,t, whered ∈ {1∗, 3} for t = 1 andd ∈ {2∗, 3} for t = 2. We propose to use the

following weight sets where theπd
k, for d ∈ D, are given in Definition 3.2, and which satisfy the following

unbiasedness conditions:

v1∗
k,1 =

ak

π1∗
k

, v3
k,1 =

1 − ak

π3
k

, v2∗
k,2 =

bk

π2∗
k

, v3
k,2 =

1 − bk

π3
k

for real numbersak, bk andk ∈ U . We now apply Theorem 1 to the abovêMt.

Theorem 2 Let the double samples = (s1, s2) be selected according to a two-dimensional sampling design
p(s). DefineM̂ = (M̂t)t∈T by

M̂1 =
N

∑

k=1

(

ak

π1∗
k

I1∗
k +

1 − ak

π3
k

I3
k

)

δzk,1
, M̂2 =

N
∑

k=1

(

bk

π2∗
k

I2∗
k +

1 − bk

π3
k

I3
k

)

δzk,2
,

M̂3 =

N
∑

k=1

I3
k

π3
k

δzk,3
,

for some real numbersak andbk , and consider the general composite estimatorT (M̂).
Let Assumptions1 to7hold. Then

√
nN−β{T (M̂)−T (M)} is approximated by

√
nN−β(Ẑ{(ak,bk)k∈U}−

Z) with Z =
∑N

k=1(uk,1 + uk,2 + uk,3) and

Ẑ{(ak,bk)k∈U} =

N
∑

k=1

akuk,1

(

I1∗
k

π1∗
k

− I3
k

π3
k

)

+

N
∑

k=1

bkuk,2

(

I2∗
k

π2∗
k

− I3
k

π3
k

)

+

N
∑

k=1

(uk,1 + uk,2 + uk,3)
I3
k

π3
k

.

The asymptotic variance ofT (M̂) is the variance of̂Z{(ak,bk)k∈U}.

Theorem 2 is an immediate consequence of Theorem 1, given that
∑3

t=1

∑N
k=1 uk,t(vk,t−1) = Ẑ{(ak,bk)k∈U}−

Z. The estimator̂Z{(ak,bk)k∈U} can be interpreted as a Horvitz-Thompson estimator of the linearized vari-
ables total, based on the matched sample, added to weighted unbiased estimators of zero means, based on the
unmatched samples. This addition improves the estimation by making use of the correlation of the units from
the matched and unmatched samples. Goga’s thesis determinesak andbk, k ∈ U , that minimize the variance
of Ẑ{(ak,bk)k∈U}. These optimal values,aopt

k andbopt
k , have rather complicated expressions and depend on

the unknownuk,t for all k ∈ U andt ∈ T . In the following, we consider three particular cases ofak andbk,
k ∈ U .

3.4 Some particular cases

Let t̂dut
=

∑

k∈sd
uk,t/πd

k, for t ∈ T andd ∈ D ∪ T , the Horvitz-Thompson estimators of the population

total
∑N

k=1 uk,t using the samplesd. For example, ifd = 1∗, t̂1∗u1
=

∑

k∈s1∗
uk,1/π1∗

k and, if d = 1,
t̂1u1

=
∑

k∈s1
uk,1/π1

k.
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Case1: The ‘union’ estimator. Let us considerak = π1∗
k /π1

k andbk = π2∗
k /π2

k for all k ∈ U. In this case,

M̂uni
t =

N
∑

k=1

It
k

πt
k

δzk,t
, t = 1, 2,

are the Horvitz-Thompson estimators ofMt based on the whole samplesst, andT (M̂uni) is called the union
substitution estimator. From Theorem 2, the asymptotic variance ofT (M̂uni) is the variance of

Ẑ{(π1∗
k

/π1
k
,π2∗

k
/π2

k
)k∈U} =

∑

k∈s1

uk,1

π1
k

+
∑

k∈s2

uk,2

π2
k

+
∑

k∈s3

uk,3

π3
k

= t̂1u1
+ t̂2u2

+ t̂3u3
. (7)

Consider the ratio change∆R = R2 −R1 from Example 2 in§2.1. We haveRt =
(∫

YtdMt

)

/
(∫

XtdMt

)

and we estimateMt by M̂uni
t , t = 1, 2. We obtain∆̂Runi = R̂uni

2 − R̂uni
1 with

R̂uni
t =

∫

YtdM̂uni
t

∫

XtdM̂uni
t

=

∑

k∈st
yk,t/πt

k
∑

k∈st
xk,t/πt

k

, t = 1, 2,

and the asymptotic variance of∆̂Runi equals the variance of̂t1u1
+ t̂2u2

where the linearized variablesuk,t are
given by (4).

Case2: The ‘intersection’ estimator. Letak = bk = 0 for all k ∈ U. ThenM̂ int
t is the Horvitz-Thompson

estimator ofMt based ons3:

M̂ int
t =

N
∑

k=1

I3
k

π3
k

δzk,t
, t = 1, 2,

From Theorem 2, the asymptotic variance of the intersectionsubstitution estimatorT (M̂ int) is equal to
the variance of

Ẑ(0,0) =
∑

k∈s3

uk,1 + uk,2 + uk,3

π3
k

=
3

∑

t=1

t̂3ut
. (8)

The ratio change∆R is estimated bŷ∆Rint = R̂int
2 − R̂int

1 with R̂int
t =

(

∑

k∈s3

yk,t

π3
k

)

/
(

∑

k∈s3

xk,t

π3
k

)

and

its asymptotic variance equalsvar
∑

k∈s3
{(uk,1 + uk,2)/π3

k} with uk,1 anduk,2 given by (4).

Case3: The ‘composite’ estimator. If we considerak = a ∈ R andbk = b ∈ R, then

vk,1 =
a

π1∗
k

I1∗
k +

1 − a

π3
k

I3
k and vk,2 =

b

π2∗
k

I2∗
k +

1 − b

π3
k

I3
k .

The measuresMt are estimated by the composite estimators,

M̂ co
1 =

N
∑

k=1

(

a
I1∗
k

π1∗
k

+ (1 − a)
I3
k

π3
k

)

δzk,1
, M̂ co

2 =
N

∑

k=1

(

b
I2∗
k

π2∗
k

+ (1 − b)
I3
k

π3
k

)

δzk,2
. (9)

From Theorem 2, the asymptotic variance of the composite substitution estimatorT (M̂ co) is given by the
variance of

Ẑ(a,b) = a
(

t̂1∗u1
− t̂3u1

)

+ b
(

t̂2∗u2
− t̂3u2

)

+

3
∑

t=1

t̂3ut
. (10)

8



By takinga = b = 0 in (10), we obtainẐ(0,0) given by (8) andT (M̂ co) = T (M̂ int). The union estimator,
defined by (7), belongs to the class defined by (10) if and only if the sampling design is an equal-probability
two-dimensional design with constant weightsπ1∗

k , π3
k andπ2∗

k for all k ∈ U . Section 4 provides an example
of such a design.

Consider again the ratio change of Example 2. ReplaceMt with M̂ co
t and obtain the composite estimator

∆̂Rco = R̂co
2 − R̂co

1 with R̂co
t =

∫

RtdM̂ co
t . To be more precise,

R̂co
1 =

a
∑

k∈s1∗
yk,1/π1∗

k + (1 − a)
∑

k∈s3
yk,1/π3

k

a
∑

k∈s1∗
xk,1/π1∗

k + (1 − a)
∑

k∈s3
xk,1/π3

k

,

R̂co
2 =

b
∑

k∈s2∗
yk,2/π2∗

k + (1 − b)
∑

k∈s3
yk,2/π3

k

b
∑

k∈s2∗
xk,2/π2∗

k + (1 − b)
∑

k∈s3
xk,2/π3

k

.

The asymptotic variance of̂∆Rco is the variance of̂Z(a,b) = a
(

t̂1∗u1
− t̂3u1

)

+ b
(

t̂2∗u2
− t̂3u2

)

+
∑2

t=1 t̂3ut
with

uk,1, uk,2 given by (4).
In an unpublished University of Burgundy technical report by C. Goga, J.-C. Deville and A. Ruiz-Gazen,

composite estimators are developed for other parameters ofinterest such as the changes of the population
total and of the Gini index.
To calculatevar(Ẑ(a,b)), each estimator̂tdut

is written as a function of the sample membershipId
k , namely

t̂dut
=

N
∑

k=1

uk,tI
d
k/πd

k. We havecov(Id
k , Id′

l ) = πd,d′

kl − πd
kπd′

l = ∆d,d′

kl . For example,

var(t̂1∗u1
) =

N
∑

k=1

N
∑

l=1

∆1∗
kl

uk,1

π1∗
k

ul,1

π1∗
l

, cov(t̂1∗u1
, t̂3u1

) =

N
∑

k=1

N
∑

l=1

∆1∗,3
kl

uk,1

π1∗
k

ul,1

π3
l

.

The variance ofẐ(a,b) may be considered as a two-sample Horvitz-Thompson variance formula. It is the
sum of variance terms computed according to a one-sample Horvitz-Thompson variance formula and of
covariance terms which contain the covariance betweenId

k andId′

l for d 6= d′ and are not common in survey
sampling theory.

3.5 Variance estimator of the composite substitution estimator

Consider the composite substitution estimatorT (M̂ co) with M̂ co = (M̂ co
1 , M̂ co

2 , M̂3) given by (6) and (9)
and assume thata and b are fixed real numbers. We propose to estimate the variance ofT (M̂ co) by an
estimator,v̂arẐ(a,b). In order to derive such an estimator, we write

var(Ẑ(a,b)) = var(A) + var(B) + var(C) + 2 cov(A,B) + 2 cov(A,C) + 2 cov(B,C), (11)

with Ẑ(a,b) = A + B + C,where A = t̂1∗u1
+ (1 − a) t̂3u1

, B = t̂2∗u2
+ (1 − b) t̂3u2

, C = t̂3u3
.

The linearized variablesuk,t and the variance and covariance terms are to be estimated. The linearized
variables depend on the unknown variables of interestZt and several estimators are possible. Furthermore,
explicit expressions foruk,t cannot be derived so long as the functionalT is not given precisely. In these
conditions, finding the most suitable estimators ofuk,t is not a simple issue. In the following, we simply
estimateuk,t based on the matched samples3 by

ûint
k,t = ItT (M̂ int, zk,t),

but other estimators may be advisable, in particular if the sample sizesn∗
1 andn∗

2 are much larger thann3.
Consider Example 2 of§2.1. We have

ûint
k,1 = −

(

1/
∑

k∈s3

xk,1

π3
k

)

(yk,1 − R̂int
1 xk,1), ûint

k,2 =

(

1/
∑

k∈s3

xk,2

π3
k

)

(yk,2 − R̂int
2 xk,2),

9



for R̂int
1 , R̂int

2 as given in§3.4. However, other possible estimators are

ûuni
k,1 = −

(

1/
∑

k∈s1

xk,1

π1
k

)

(yk,1 − R̂uni
1 xk,1), ûuni

k,2 =

(

1/
∑

k∈s2

xk,2

π2
k

)

(yk,2 − R̂uni
2 xk,2),

for R̂uni
1 andR̂uni

2 given in§3.4. We estimatevar(C), respectivelyvar(A) andvar(B), by Horvitz-Thompson
variance estimators (2) based on the matched samples3, respectively ons1 ands2, with uk,t replaced bŷuint

k,t,
t ∈ T . To be more precise, we have

v̂ar(C) =
∑

k∈s3

∑

l∈s3

∆3
kl

π3
kl

ûint
k,3

π3
k

ûint
l,3

π3
l

,

v̂ar(A) =
∑

k∈s1

∑

l∈s1

ûint
k,1û

int
l,1

1

π1
kl

{

a2 ∆1∗
kl

π1∗
k π1∗

l

+ 2a(1 − a)
∆1∗,3

kl

π1∗
k π3

l

+ (1 − a)2
∆3

kl

π3
kπ3

l

}

,

v̂ar(B) =
∑

k∈s2

∑

l∈s2

ûint
k,2û

int
l,2

1

π2
kl

{

b2 ∆2∗
kl

π2∗
k π2∗

l

+ 2b(1 − b)
∆2∗,3

kl

π2∗
k π3

l

+ (1 − b)2
∆3

kl

π3
kπ3

l

}

.

The covariance term

cov(A,C) =

N
∑

k=1

N
∑

l=1

uk,1ul,3

{

a
∆1∗,3

kl

π1∗
k π3

l

+ (1 − a)
∆3

kl

π3
kπ3

l

}

is estimated by

ˆcov(A,C) =
∑

k∈s3

∑

l∈s3

ûint
k,1û

int
l,3

1

π3
kl

{

a
∆1∗,3

kl

π1∗
k π3

l

+ (1 − a)
∆3

kl

π3
kπ3

l

}

,

and cov(A,C) and cov(B,C) are estimated in a similar way. Note that the proposed variance estimator
v̂arẐ(a,b) is no longer unbiased forvarẐ(a,b) since ûint

k,t is generally biased foruk,t. However,ûint
k,t is a

function of Horvitz-Thompson estimators and is consistentfor uk,t asN tends to infinity, implyingn3 → ∞
by Assumption 1.

Theorem 3 Under the Assumptions1 to 7 andA1 andA2 given in the Appendix,̂var(Ẑ(a,b)) is a consistent

estimator ofAV{T (M̂ co)} = var(Ẑ(a,b)).

For the proof, see the Appendix. In§5, a small simulation study confirms that the variance estimator
v̂ar{T (M̂ co)} = v̂ar(Ẑ(a,b)) does not differ very much from the asymptotic varianceAV{T (M̂ co)} in large
samples.

3.6 Optimal asymptotic variance composite estimator

In this section, we derive real numbersa andb such that the asymptotic variance of the composite substitution
estimatorT (M̂ co) is minimum. Letθ = (a, b)′ ∈ R2 and rewrite (10) as

Ẑ(a,b) = θ′
(

t̂1∗u1
− t̂3u1

t̂2∗u2
− t̂3u2

)

+

3
∑

t=1

t̂3ut
. (12)

The asymptotic variance ofT (M̂ co) is

AV{T (M̂ co)} = var(Ẑ(a,b)) = θ′Γθ + 2θ′γ + var

(

3
∑

t=1

t̂3ut

)

(13)
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with

Γ = var

(

t̂1∗u1
− t̂3u1

t̂2∗u2
− t̂3u2

)

, γ = cov

( (

t̂1∗u1
− t̂3u1

t̂2∗u2
− t̂3u2

)

,
∑3

t=1 t̂3ut

)

. (14)

Theorem 4 Consider a general two-dimensional sampling designp(s) and suppose that Assumptions1 to 7
hold. The asymptotic variance ofT (M̂ co) is minimum forθopt = (aopt, bopt)

′ = −Γ−1γ with Γ andγ given
by (14) and if Γ is assumed nonsingular. This minimum asymptotic variance is the variance of̂Z(aopt,bopt)

and is equal to

AVopt{T (M̂ co
opt)} = var(Ẑ(aopt,bopt)) = var

(

3
∑

t=1

t̂3ut

)

− γ′Γ−1γ. (15)

The proof is given together with the proof of Corollary 5 in the Appendix. The optimal variance is
obtained whatever the two-dimensional sampling design is.Explicit expressions for the optimalθ and the
asymptotic variance are given in C. Goga’s thesis for several two-dimensional sampling designs. Expression
(8) leads toAV{T (M̂ int)} = var(Ẑ(0,0)) = var(

∑3
t=1 t̂3ut

), which means that, whatever the sampling design

may be,T (M̂ co
opt) has a smaller asymptotic variance thanT (M̂ int).

Unfortunately, the optimal variance (15) depends on unknown population variances and covariances and can-
not be calculated. We propose to estimate all the unknown quantities in (13) using the estimators described
in the above section.

Corollary 5 (i) The variance estimator̂AV{T (M̂ co)} = θ′Γ̂θ + 2θ′γ̂ + v̂ar(
∑3

t=1 t̂3ut
) is minimum for

θ̂opt = −Γ̂−1γ̂, if Γ̂ is assumed nonsingular.
For (ii) and(iii) , let Assumptions1 to 7 hold. Suppose also that̂θopt is a consistent estimator ofθopt, that

is, for any fixedε > 0, limN→∞ pr(||θ̂opt − θopt|| > ε) = 0, where|| · || is the Euclidian norm.
(ii) Consider the estimator̂Z(âopt,b̂opt)

given by (12) for θ̂opt = (âopt, b̂opt). The asymptotic variance of

Ẑ(âopt,b̂opt)
is equal to the variance of̂Z(aopt,bopt).

(iii) Consider now the estimatorT (M̃ co
opt) with M̃ co

t,opt, t = 1, 2, obtained from (9) for a = âopt andb = b̂opt.

The asymptotic variance ofT (M̃ co
opt) is equal to the variance of̂Z(aopt,bopt).

The proof is given in the Appendix. Part (i) gives the estimator θ̂opt that minimizes the asymptotic
variance estimator for a constantθ. [20] and [11] obtained a similar result concerning the optimality of
the regression coefficient. The drawback of Theorem 4 is thatθopt is assumed to be known but in practice
it has to be estimated. Corollary 5 (iii) takes the estimation of θopt into account and states that, ifθopt is
estimated consistently, the asymptotic variance of the substitution estimatorT (M̃ co

opt) with estimatedθopt is

the minimum variance var(Ẑ(aopt,bopt)) given by (15).

4 Two-dimensional simple random sampling without replacement

Let us focus now on a particular two-dimensional sampling design, namely two-dimensional simple random
sampling without replacement defined in the working paper byF. Cotton and C. Hesse and used for two-
sample coordination. In what follows, we consider functionals Φ not depending onM3 and we assume
the two-dimensional simple random sampling without replacement design for estimatingΦ = T (M). This
design can be described as follows.

Definition 4.1 A two-dimensional simple random sampling without replacement of fixed size(n1∗, n3, n2∗) is
a two-dimensional sampling designp(s) which assigns equal selection probability to all sampless = (s1, s2)
for whichs1∗, respectivelys3 ands2∗, have the fixed sizesn1∗, respectivelyn3 andn2∗.
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In this case, the designp(s) is a discrete uniform probability distribution on the set of
(

N

n1∗ + n3 + n2∗

)(

n1∗ + n3 + n2∗

n1∗

)(

n3 + n2∗

n3

)(

n2∗

n2∗

)

possible samples of fixed size(n1∗, n3, n2∗), which implies that

p{s = (s1, s2)} =
n1∗!n3!n2∗!(N − n1∗ − n3 − n2∗)!

N !
.

In their working paper, Cotton and Hesse study this design and give some of its properties. The most impor-
tant of them is the fact that the marginal sampling designs are simple random sampling without replacement
from U . This property makes the design very attractive. The first-order two-dimensional inclusion probabili-
ties areπd

k = nd/N and the second-order probabilities are

πd
kl =

nd(nd − 1)

N(N − 1)
, πd,d′

kl =
ndnd′

N(N − 1)
,

for d 6= d′. From a practical point of view, this design can be implemented by selecting the simple random
sampless1 ⊂ U ands3 ⊂ s1 and next by selectings2∗ from U − s1 also according to a simple random
design. Such a sampling design can be found in repeated sampling [28] when a matched sample of fixed size
is desired in order to improve the estimation of the absolutechange of the parameter of interest. Another
way of implementing the two-dimensional simple random design is by selecting three nonoverlapping simple
random samples. We selects1∗ from U , s3 from U−s1∗ ands2∗ from U−s1, each time using simple random
designs. Such a design is also of interest for reducing the response burden (S̈arndal et al., 1992, p. 67). Note
that the selection of two, not necessarily independent, simple random samples fromU cannot be considered
as a two-dimensional simple random design since the matchedsample is of random size. Nevertheless,
conditioning onn3, we obtain a two-dimensional simple random design.

We consider a functionalΦ = T (M) estimated by the composite substitution estimatorT (M̂ co) with
asymptotic variance equal to the variance of

Ẑ(a,b) = a
(

t̂1∗u1
− t̂3u1

)

+ b
(

t̂2∗u2
− t̂3u2

)

+

2
∑

t=1

t̂3ut
. (16)

We compute the optimal values ofa andb by using Theorem 4. Leth1 = n1∗/n1 andh2 = n2∗/n2

be the nonoverlapping rates andρ the correlation coefficient of the linearized variablesuk,1 anduk,2. We
denote bym(ut) the population mean ofut and byS2

ut
=

∑N
k=1{uk,t − m(ut)}2/(N − 1) the popula-

tion variances ofut, for t = 1, 2, estimated bŷS2
ût

=
∑

k∈st
{ûk,t − m̂(ut)}2/(nt − 1) and bySu1u2

=
∑N

k=1{uk,1 − m(u1)}{uk,2 − m(u2)}/(N − 1) the population covariance betweenu1 andu2 estimated by
Ŝû1û2

=
∑

k∈s3
{ûk,1 − m̂(u1)}{ûk,2 − m̂(u2)}/(n3 − 1), whereûk,t = ûint

k,t. Let S = Su2
/Su1

and let
f3 = n3/N be the overlapping sampling fraction. We have the followingresult.

Theorem 6 For a two-dimensional simple random design and under Assumptions 1 to 7, the asymptotic
variance ofT (M̂ co) is given by(13)with var(t̂3u1

+ t̂3u2
) = N(1 − f3)f

−1
3 Su1

Su2
(S + 2ρ + 1/S),

Γ =
N

f3
Su1

Su2

(

S−1h−1
1 ρ

ρ Sh−1
2

)

, γ = −N

f3
Su1

Su2

(

ρ + S−1

ρ + S

)

.

The optimal composite substitution estimatorT (M̂ co
opt) is given by Theorem4 with

θopt = (aopt, bopt)
′ =

−h1h2

1 − ρ2h1h2

(

ρ2 + ρ(1 − 1/h2)S − 1/h2

ρ2 + ρ(1 − 1/h1)S
−1 − 1/h1

)

(17)

and has the minimum asymptotic variance calculated according to(15).
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The proof is given in the Appendix. The vectorθopt is unknown and, according to Corollary 5, we obtain
the expression for̂θopt by replacing the unknownρ andS with their estimatorŝρ andŜ in (17).

In §3.6, we proved that the substitution estimatorT (M̂ int) is always less competitive thanT (M̂ co
opt),

whatever the sampling design is. For a two-dimensional simple random design, both estimators have the
same asymptotic variance forρ = −1 andS = 1.
The second natural competitor ofT (M̂ co

opt) is T (M̂uni) with asymptotic varianceAV{T (M̂uni)} = var(t̂1u1
+

t̂2u2
). If a = h1 andb = h2 in (16), we have

Ẑ(h1,h2) = h1

(

t̂1∗u1
− t̂3u1

)

+ h2

(

t̂2∗u2
− t̂3u2

)

+ (t̂3u1
+ t̂3u2

) = t̂1u1
+ t̂2u2

which means that̂t1u1
+ t̂2u2

belongs to the class of composite estimators defined by (16).It follows that
AV{T (M̂ co

opt)} ≤ AV{T (M̂uni)} = var(t̂1u1
+ t̂2u2

) with equality forρ = 0. In particular, one may obtain

AV{T (M̂uni)} using (13) forθ = (h1, h2)
′ andΓ, andγ given by Theorem 6.

5 Empirical study

5.1 General framework

We consider the estimation of a nonlinear functionalΦ = T (M1,M2) based ons = (s1, s2) selected ac-
cording to a two-dimensional simple random sampling design. The empirical studies presented below intend
to give the gain of the optimal composite estimatorT (M̂ co

opt) defined in Theorem 6 overT (M̂uni), respec-

tively T (M̂ int). The gain is defined as the ratio between the asymptotic variance ofT (M̂uni), respectively
T (M̂ int), and the asymptotic variance ofT (M̂ co

opt).
In this subsection, we consider a general functionalΦ. Let u1 andu2 be the linearized variables of a

functionalΦ = T (M1,M2). We consider a populationU of sizeN = 3000 and a two-dimensional simple
random sample design such thatn = n1 + n2 − n3 = 300 andn1∗ = 100. We assume that the variance ratio
S = Su2

/Su1
is equal to 1 and we consider different values of the correlation coefficientρ betweenu1 and

u2, namelyρ = −0.8, −0.5, 0, 0.5, 0.8. This correlation coefficientρ depends on the form of the functional
Φ and on the correlation coefficient between the variables of interest but we cannot give a general expression.

We plot in Fig. 1 (a) and (b) respectively the gain ofT (M̂ co
opt) overT (M̂ int) andT (M̂uni) as a function

of the overlapping raten3/n. Each curve corresponds to a different correlation coefficient.
As can be expected, concerningT (M̂ int), the ratio of variances decreases to 1 when the overlapping rate

increases and this ratio is small if the correlation coefficient is low. When the original variables are highly
negatively correlated,ρ ≤ −0.8, and as soon as the overlapping rate is greater than 10%, we donot gain
anything by using the optimal estimator instead of using theestimator based on the intersection sample. In
§4, we obtained thatT (M̂uni) = T (M̂ co

opt) for ρ = −1 andS = 1 and this is confirmed by the empirical
study. When the correlation is greater than -0.5, the gain canbe substantial at least when the overlapping rate
is smaller than 30%.

With regard to comparison of the asymptotic variances ofT (M̂uni) and T (M̂ co
opt), Fig. 1 (b) shows

that there is no great difference when the correlation coefficient between the linearized variables is low in
absolute value,|ρ| < 0.5, and, forρ = 0, the variance ratio is equal to unity; this confirms the theoretical
result. However, for high values of|ρ|, the gain of the optimal estimator over the union estimator is more
important especially whenρ < 0; the ratios increase as soon as the overlapping rate is less than say 30% and
decrease when the rate is larger than 30%. For very low or veryhigh overlapping rates the two estimators are
not very different but, when the overlapping rate is, say,30%, the optimal estimator is much superior.

5.2 Estimating the change of a Gini index

We consider data from the French employment surveys of 1999 and 2000, namely the wages ofN = 22 741
wage-earners who have been sampled in both years. We are interested in estimating the variance of the change
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Figure 1: Simulation study for the general case. The ratio ofthe asymptotic variances of (a) the intersection
estimator and the optimal estimator and (b) the union estimator and the optimal estimator, as functions of the
overlapping rate and for different correlation coefficientsρ (heavy solid line forρ = −0.8, dotted dashed line
for ρ = −0.5, dotted line forρ = 0, dashed line forρ = 0.5, light solid line forρ = 0.8).

in the Gini index between the two years,∆G = G2 − G1, where

Gt =

∫ ∞

0
{2Ft(y) − 1}ydMt(y)

∫ ∞

0
ydMt(y)

=
1

NȲt

N
∑

k=1

yk,t{2Ft(yk,t) − 1}

is the Gini index andFt(y) = (1/N)
∫ ∞

0
1{ξ≤y}dMt(ξ) is the distribution function in yeart = 1, 2. Since

Gt involves the step-functionFt, we cannot apply the Taylor linearization approach. In the one-sample case,
the influence function approach [8] and the estimating equations approach [18] are two possible methodolo-
gies. In the two-sample situation, we propose to use the partial influence function approach. The linearized
variables of∆G are

uk,1 = −{2F (yk,1)
yk,1 − ȳk,1<

Y1
− yk,1

G1 + 1

Y1
+

1 − G1

N
},

uk,2 = 2F (yk,2)
yk,2 − ȳk,2<

Y2
− yk,2

G2 + 1

Y2
+

1 − G2

N
,

whereȳk,t< denotes the mean of theyj,t lower thanyk,t. The correlation of the linearized variables of∆G
between 1999 and 2000 isρ = −0.87 and the population variance ratio isS = 0.97.
We consider a two-dimensional simple random sampling design of sizen = 1000 and three different com-
posite estimators: the ‘intersection’∆̂Gint, the ‘union’∆̂Guni and the ‘optimal composite’ estimator̂∆Gco

opt

given by Theorem 6. We calculate the asymptotic variances ofthese estimators using (13) withθ = (0, 0)′ for
the ‘intersection’,θ = (h1, h2)

′ for the ‘union’ andθ given by 17 for the ‘optimal composite’ estimator. We
give in Fig. 2 the gain of the optimal composite estimator∆̂Gco

opt = Ĝco
2,opt−Ĝco

1,opt over the two competitors

∆̂Gint and∆̂Guni as a function of the ration3/n and for different sample sizesn1∗.
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The approximate variance of the intersection estimator is quite similar to that of the optimal estimator
when the overlapping rate is larger than 30% but can be largerfor small overlapping rates. Except for very
small or very large overlapping rates, the approximate variance of the union estimator is much higher than
that of the optimal estimator.

In all the above examples we assume that the population variances and covariances are known. In order
to verify the quality of the corresponding estimators, we carried out a small simulation study for the Gini
example. We estimated the change in the Gini index using the ‘optimal composite’ estimator as defined
in Corollary 5 (iii). Since we can compute the true change in the Gini index from the original sample of
22 741 earners, we calculated, as percentages, the relative bias and the relative root mean squared error of the
change estimator using10 000 simulations. We also calculated the relative difference between the asymptotic
variance given by (15) and the empirical variance, and the relative bias of the asymptotic variance estimator,
considering the empirical variance as the true variance. For the asymptotic variance estimation, the linearized
variables are estimated on the overlapping samples3. Different values forn3 andn1∗ with n1∗ = n2∗ are
considered. Table 1 shows that the relative biases, the rootmean squared errors and the relative differences
are quite low in general and very low for large sample sizes.
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Figure 2: Gini example. (a) Ratio of the asymptotic variances of the intersection estimator and the optimal
estimator and (b) ratio of the asymptotic variances of the union estimator and the optimal estimator as func-
tions of the overlapping rate, for different sample sizesn1∗ (heavy solid line forn1∗ = 10, dotted dashed line
for n1∗ = 210, dotted line forn1∗ = 410, dashed line forn1∗ = 610, light solid line forn1∗ = 810).
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RB (%) for ∆̂Gco
opt RRMSE(%) for ∆̂Gco

opt RD (%) for AV(∆̂Gco
opt) RB (%) for ÂV(∆̂Gco

opt)
n3 n3 n3 n3

n1∗ 500 1000 3000 500 1000 3000 500 1000 3000 500 1000 3000

100 3.01 1.38 -0.55 0.61 0.42 0.23 -3.27 -0.25 0.18 -5.27 -1.02 -0.63
300 -4.23 -1.57 0.40 0.58 0.42 0.23 1.39 -0.25 -0.75 -4.37 -2.35 -0.79

Table 1: Gini example. Relative biases (RB), relative root mean squared errors (RRMSE) and relative differ-
ences (RD), as percentages, for different values ofn1∗ = n2∗ andn3.

Appendix

Technical details

Proof 7 (of Theorem1) Lett ∈ T . From Assumptions 5 and 6, we have thatN−βT (M) = T (M/N) < ∞.
Following [8], let us provide the spaces(Rpt ,Mt) with metricsdt, satisfyingdt (Qt/N,Mt/N) → 0 if and
only if N−1{

∫

ZtdQt(z)−
∫

ZtdMt(z)} → 0 for any variable of interestZt, defined onRpt . In this way,
studying the distancedt between the Horvitz-Thompson measureM̂t and the true unknownMt is equivalent
to studying the distance between the Horvitz-Thompson estimator for the population total of a variable of
interest,

∑

k∈s zk,t/πt
k =

∫

ZtdM̂t(z), and the true unknown total,
∑N

k=1 zk,t =
∫

ZtdMt(z). We also

consider a metric̃d for the vectors(M̂/N,M/N) associated with the distancesdt. From Assumption 4, we

have thatdt(M̂t/N,Mt/N) = Op(n
−1/2
t ) and Assumption 1 gives us thatd̃(M̂/N,M/N) = Op(n

−1/2).
Using a three-variate [29] expansion and the fact thatT is Fréchet differentiable, see Huber (1981, p. 35),
we have

N−β{T (M̂) − T (M)} =

3
∑

t=1

∫

ItT

(

M

N
; z

)

d

(

M̂t

N
− Mt

N

)

(z) + o{d̃(M̂/N,M/N)},

whereItT (M ; z) are the partial influence functions defined by (3). Finally, because the remainder term
is op(n

−1/2) and the partial Fŕechet derivatives are linear, Assumption 5 implies thatItT (M/N ; z) =
N−β+1ItT (M ; z).

Proof 8 (of Theorem3) The variance var̂Z(a,b), given by (11), is estimated unbiasedly by the Horvitz-
Thompson variance estimator,

v̂arHTẐ(a,b) =
∑

t,t′∈T

N
∑

k=1

N
∑

l=1

ct,t′

kl uk,tul,t′ .

Since the linearized variables are unknown, the proposed estimator is

v̂arẐ(a,b) =
∑

t,t′∈T

N
∑

k=1

N
∑

l=1

ct,t′

kl ûk,tûl,t′

where ûk,t = ûint
k,t and ct,t′

kl depends on inclusion probabilities and sample membership indicators for
t, t′ ∈ T = {1, 2, 3}. For anyt, t′ ∈ T , we make the following assumptions.

Assumption A1. We assume thatN1−β(ûk,t − uk,t) = op(1) andN1−βuk,t = O(1) uniformly ink,
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Assumption A2. We assume thatct,t′

kl = O(n−1) if k 6= l and ct,t′

kl = O(1) if k = l uniformly ink, l.
We assume also that the Horvitz-Thompson variance estimators with true linearized variables are design-
consistent for the Horvitz-Thompson variance terms.

We show thatnN−2β{v̂ar(Ẑ(a,b)) − var(Ẑ(a,b))} = op(1), since v̂ar{T (M̂ co)} = v̂ar(Z(a,b)) and,

from Assumptions 1 to 7,AV(T{M̂ co}) = var(Ẑ(a,b)) with var(Ẑ(a,b)) given by (11). The proofs of con-
vergence are similar for the different variance and covariance terms of the sum in (11) and we concen-
trate on the first term, proving thatnN−2β{v̂ar(A) − var(A)} = op(1). We havev̂ar(A) − var(A) =

v̂ar(A) − v̂arHT(A) + v̂arHT(A) − var(A) with v̂arHT(A) =
∑N

k=1

∑N
l=1 c1,1

kl uk,1ul,1. By Assumption A2,
we havenN−2β{v̂arHT(A) − var(A)} = op(1). As a result,

v̂ar(A) − v̂arHT(A) =

N
∑

k=1

N
∑

l=1

c1,1
kl (ûk,1 − uk,1)(ûl,1 − ul,1) + 2

N
∑

k=1

N
∑

l=1

c1,1
kl (ûk,1 − uk,1)ul,1

and we have thatnN−2β{v̂ar(A) − v̂arHT(A)} = op(1) by Assumptions A1 and A2. The reader is referred
to [4] for conditions under which Assumption A2 is available.

Proof 9 (of Corollary 1) Part (i). The derivative ofÂV{T (M̂ co)} with respect toθ is equal to2Γ̂θ + 2γ̂,
which vanishes forθ = −Γ̂−1γ̂ assuming that̂Γ is non-singular.

Part (ii). Following the same reasoning as in [11], we have that

Ẑ(âopt,b̂opt)
= (θ̂opt − θopt)

′

(

t̂1∗u1
− t̂3u1

t̂2∗u2
− t̂3u2

)

+ θ′opt

(

t̂1∗u1
− t̂3u1

t̂2∗u2
− t̂3u2

)

+

3
∑

t=1

t̂3ut
.

Thus,
√

nN−β(Ẑ(âopt,b̂opt)
− Z) =

√
nN−β(Ẑ(aopt,bopt) − Z) + op(1) sinceθ̂opt is consistent forθopt and

√
nN−β(t̂1∗u1

− t̂3u1
, t̂2∗u2

− t̂3u2
)′ is bounded in probability by Assumption 4 and the fact that

∑N
k=1 uk,t is of

degreeβ. This completes the proof.
Part (iii). From the proof of Theorem 1, we have that the reminder of the von-Mises expansion ofT (M̃ co

opt)

is o{d̃(M̃ co
opt/N,M/N)}. Assumptions 1 and 4 and the consistency ofθ̂opt imply that the remainder is of

orderop(n
−1/2). Following the proof of (ii), we have

√
n

Nβ
{T (M̃ co

opt) − T (M)} =

√
n

Nβ
(Ẑ(âopt,b̂opt)

− Z) + op(1) =

√
n

Nβ
(Ẑ(aopt,bopt) − Z) + op(1)

and, as a consequence, the asymptotic variance ofT (M̃ co
opt) is equal to the variance of̂Z(aopt,bopt).

Proof 10 (of Theorem5) We have var(t̂dut
) = N2n−1

d (1 − nd/N)S2
ut

for d ∈ {1∗, 3} if t = 1 and
d ∈ {2∗, 3} if t = 2. The covariance terms become cov(t̂1∗u1

, t̂3u1
) = −NS2

u1
, cov(t̂2∗u2

, t̂3u2
) = −NS2

u2
,

cov(t̂3u1
, t̂3u2

) = Nf−1
3 (1 − f3)Su1u2

and cov(t̂1∗u1
, t̂2∗u2

) = cov(t̂1∗u1
, t̂3u2

) = cov(t̂3u1
, t̂2∗u2

) = −NSu1u2
. To

conclude, we introduce these values in the expressions ofΓ andγ given in Theorem 4.
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