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2the population is 
aptured so that the size of the population never 
hangesabruptly although the time derivative of the population size may be dis
ontin-uous. Numerous examples of su
h poli
ies have been given in the pioneeringwork of Clark and Munro (1975) (see also Clark (1976)) for �sheries. Thewell-known harvesting poli
y of Faustmann (1849) (see also Johansson andLöfgren (1985)) for a balan
ed forest also belongs to this type: only the treeshaving rea
hed the optimal felling age are 
ut. Although for ea
h tree 
ohortthe poli
y is an abrupt one, for the forest as a whole su
h a poli
y is a smoothone.At the other extreme of the spe
trum an impulse poli
y 
onsists in har-vesting some signi�
ant part of the population at some points in time whileleaving the population to evolve in its natural environment between any two
onse
utive harvest dates. An example is again Faustmann's optimal 
uttingpoli
y but now for single, even-aged, forest stands.At an aggregate level, optimal impulse poli
ies are quite rare for two mainreasons. The �rst is that renewable resour
es are generally s
attered all overthe world with spe
i�
 
hara
teristi
s so that syn
hronized impulse harvestingof so many sour
es is unlikely. The se
ond reason is that an aggregate impulsepoli
y would indu
e hikes in the pri
e path, thus opening the door for arbi-trage opportunities when sto
kpiling 
osts are high. The arbitrage possibilitystems from the very fa
t that sto
kpiling 
osts are nil for the resour
es leftunexploited. As a result, the pri
e hikes may be arbitraged by moderately
hanging the harvest date at a low opportunity 
ost. However at a mi
ro levelsu
h impulse poli
ies may be optimal, that is, pro�t maximizing strategies.We propose in this paper a model of renewable resour
e management basedon the impulse 
ontrol framework (
f. Vind (1967), Léonard and Long (1998)or Seierstaed and Sydsaeter (1987)). This model generalizes previous dis
rete-time models and 
ontains, as a limit, the 
lassi
al 
ontinuous-time singular
ontrol model. We adopt very weak assumptions on the growth fun
tion andon the pro�t fun
tion whi
h is allowed to depend on both the 
urrent sto
k andthe size of the harvest. In parti
ular, we do not impose any type of 
on
avity.We 
hara
terize the solution to this problem by redu
ing it to two 
oupledoptimization problems with two variable ea
h. We are then able to dis
ussunder whi
h 
onditions the optimal traje
tory exhibits 
y
les or not.Cy
les in deterministi
 models may o

ur for various reasons. The pres-en
e of state variables in addition to the state of the resour
e is a well-do
umented reason, both for dis
rete-time and 
ontinuous-time models: seefor instan
e Benhabib and Nishimura (1985), Wirl (1995) and Fei
htinger andSorger (1996). The fo
us of the present paper is on one-dimensional models,where the existen
e of 
y
les results from other phenomena than �hidden�variables.In dis
rete-time, one-dimensional models, 
y
les o

ur when optimal tra-je
tories are not stationary. Benhabib and Nishimura (1985) have shown thatsu
h 
y
les o

ur under the assumption of 
on
avity and submodularity of thepro�t fun
tion, plus additional te
hni
al assumptions. Olson and Roy (1996)show that 
on
avity and supermodularity of that fun
tion implies the absen
e



3of 
y
les. On the other hand, Dawid and Kopel (1997; 1999) showed that astri
tly 
onvex gain fun
tion depending only on the 
apture may lead to op-timal 
y
li
al solutions. In the literature on one-dimensional 
ontinuous-time
ontrol models, 
y
les may also appear. Indeed, Lewis and S
hmalensee (1977;1979) found that 
y
les 
an be optimal in presen
e of in
reasing returns tos
ale, sto
k e�e
ts and modest re-entry 
osts. Liski et al. (2001) demonstratedthe o

urren
e of 
y
les in a model with in
reasing returns to s
ale and modestadjustment 
osts, in the absen
e of sto
k e�e
ts.Finally, note that in 
ontinuous-time models, the relevan
e of impulse 
on-trol has been pointed out early in the literature, see Clark (1976, p. 58) whereit is suggested that optimal poli
ies may 
onsist in one impulse followed bya 
ontinuous, smooth 
ontrol. Early empiri
al eviden
e in the �sheries se
torwas provided by Hannesson (1975). On the other hand, the 
utting poli
y ofFaustmann's is based on an impulse 
ontrol with 
y
les.We show that the 
onditions for the existen
e of 
y
li
al solutions involvea 
lose 
ombination of the growth fun
tion and the 
ost fun
tion, therebyemphasizing that the 
onvexity of the 
ost fun
tion, or its dependen
e on thesto
k level, are not the only issues worth 
onsidering. We then dis
uss howa Clark-like steady-state solution emerges as a limit of small and frequentharvest operations in our model. We also show that we 
an reprodu
e andgeneralize Dawid and Kopel's results, although the latter were obtained witha dis
rete-time model and without sto
k e�e
ts.The arti
le is stru
tured as follows. We present the impulse 
ontrol problemin se
tion 2, we 
hara
terize the type of solution in se
tion 3 and the optimal
y
le in se
tion 4. We then establish the link to Clark's 
ontinuous 
ontrolsolution and to Dawid and Kopel's dis
rete 
ontrol model in se
tion 5. Thelast se
tion is devoted to the 
on
lusion.2 The impulse 
ontrol model2.1 The ModelThe resour
e dynami
sWe 
onsider a renewable resour
e, for whi
h dynami
s, in the absen
e of anyharvest, is given by:
ẋ(t) = F (x(t)) , t ≥ 0, (1)where x(t) is the size of the population at time t and F , stationary throughtime, is the growth rate fun
tion. The fun
tion F is assumed to satisfy thefollowing 
onditions.Assumption 1 There exist numbers xsup and xs, 0 < xs < xsup ≤ +∞,su
h that the fun
tion F : (0, xsup) → R is positive over the interval (0, xs)and negative over the interval (xs, xsup), with F (0) = F (xs) = 0, where

limx↓0 F (x) = F (0), and limx↑xsup
F (x) = −∞. The fun
tion F is measurable



4and bounded above. It is assumed that the di�erential equation (1) admits aunique solution for every initial sto
k x0 ∈ (0, xsup).The population level xs is the standard long-run 
arrying 
apa
ity of theenvironment to whi
h, absent any 
at
h, the population is 
onverging for any
x0 su
h that 0 < x0 < xsup. Note that the assumptions on F are very weak,spe
ially the monotoni
ity assumptions. For instan
e, F is not ne
essarily
on
ave, and may have several lo
al maxima. Continuity over (0, xsup) is notrequired either, as long as (1) admits a unique solution.The harvesting pro
essWe are interested in the optimal exploitation of this resour
e by a dis
reteharvest pro
ess, i.e. within the framework of impulse 
ontrol models.1A

ordingly, we de�ne an impulse exploitation poli
y IP := {(ti, Ii), i =
1, 2, . . .} as a sequen
e of harvesting dates ti and instantaneous harvests Ii,one for ea
h date. The sequen
e of dates may be empty, �nite or in�nite. Itis su
h that 0 ≤ t1, and ti ≤ ti+1, i = 1, 2, . . . and limi→+∞ ti = +∞. By
onvention, we shall assume that if the sequen
e is �nite with n ≥ 0 values,then ti = +∞ for all i > n.The sequen
e of harvests must satisfy:

Ii ≥ 0 and xi − Ii ≥ 0 , (2)where
xi = lim

t↑ti

x(t) , with x1 = x0 given if t1 = 0, (3)and su
h that the following 
onstraints hold:
ẋ(t) = F (x(t)) for ti < t < ti+1 with x(ti) = xi − Ii, i = 1, 2, . . . (4)

ẋ(t) = F (x(t)) for 0 < t < t1 with x(0) = x0 if t1 > 0. (5)In other words: xi is the size of the population just before the harvesting date
ti, and xi − Ii its size just after that same date. If t1 = 0, the population x1 issupposed to be inherited from the past, and denoted by x0. Harvests 
annotbe negative nor ex
eed the population size. The 
onditions (2)�(5) de�ne theset of feasible IPs, denoted by Fx0.1 Impulse 
ontrol poli
ies in in�nite horizon 
onsist in an unbounded sequen
e of de
isions.For the dis
ussion of impulse 
ontrol models, see for example Léonard and Long (1998),Seierstaed and Sydsaeter (1987).



5The harvester's pro�tsMonetary pro�ts generated by any harvest depend upon the size of the 
at
hand the size of the population at the 
at
hing time. We assume that the pro�tfun
tion is stationary through time so that whatever ti, Ii and xi, the 
urrentpro�ts at time ti amount to π(xi, Ii).2 The pro�t fun
tion is assumed to havethe following standard properties.Assumption 2 The fun
tion π(x, I) is de�ned on the domain D := {(x, I),
x ∈ (0, xsup), I ∈ [0, x]}. It is of 
lass C1, positive and bounded, and su
h that
π(x, 0) = 0, ∀x ∈ (0, xsup). The derivative πI(x, I) := (∂π/∂I)(x, I) admits a�nite limit when I ↓ 0 for all x ∈ (0, xsup).Pro�ts are dis
ounted using a 
onstant instantaneous dis
ount rate, de-noted by r, r > 0.The manager's problem is to 
hoose some poli
y maximizing the sum ofthe dis
ounted pro�ts, that is to solve the problem (P):(P) supIP∈Fx0

Π(IP) :=

∞
∑

i=1

e−rti π(xi, Ii) .The fun
tion Π is assumed to be well de�ned over the whole set Fx0.3Approximation of a 
ontinuous 
ontrolThe 
lassi
al modeling of a 
ontrolled renewable resour
e involves the modi�eddynami
s
ẋ(t) = F (x(t)) − h(t) ,where h(t) is the rate of harvest at time t. The harvester's pro�t is some in-stantaneous pro�t fun
tion p(x, h) depending on the 
urrent sto
k and the rateof extra
tion. It is possible to approximate the traje
tories of a 
ontinuously
ontrolled system by an impulse-
ontrolled one. For instan
e, by 
hoosing theimpulses so that the two traje
tories are periodi
ally syn
hronized, say, every

δt units of time. When the period δt tends to 0, the distan
e between traje
to-ries should go to 0. The gain of su
h a �mi
ro-impulse� poli
y 
an be estimatedas follows:4 during the interval [t0, t0 + δt], the resour
e under the dynami
s(1) goes from x to x + δtF (x) + o(δt). The 
ontrolled resour
e goes from xto x + δt(F (x) − h(t0)) + o(δt). The dis
repan
y is 
orre
ted with an impulseof I = δt × h(t0). A

ording to Assumption 2, we have π(x, 0) = 0 for all x,2 Thus we assume that the resour
e sto
k per se is not generating any surplus �ow as inHartman (1976), Smith (1977) and Ber
k (1981) to quote a few pioneering works along thisway. This e�e
t 
an be negle
ted for a wide spe
trum of renewable resour
es. For example,most �sheries do not generate su
h surplus.3 Observe that we formulate our problem with a �sup� and not a �max� be
ause we areinterested in the possibility that the maximum is not rea
hed inside the set Fx0 .4 We do not pursue here the task of formally proving these 
laims, sin
e this is not essentialfor the rest of the analysis.



6whi
h implies that πx(x, 0) = 0 also for all x. Therefore, the impulse generatesa gain of:
π(x + δt × F (x), δt × h(t0)) = (δt × h(t0)) πI(x, 0) + o(δt) .In the limit, the gain obtained by the series of impulses is the same as the
ontinuously a

umulated gain with pro�t fun
tion p(x, h) = hπI(x, 0). Thisfun
tion is of the spe
i�
 form used in the singular 
ontrol model of Clark. We
ome ba
k to this property in Se
tion 5.1.2.2 The Dynami
 Programming Prin
ipleWe use the Dynami
 Programming approa
h to solve the problem. The fol-lowing theorem insures the existen
e of a unique value for the problem.Theorem 1 The value fun
tion

v(x) = supIP∈Fx

Π(IP) (6)is the unique solution of the following variational equation:
v(x) = sup

t≥0
0≤y≤φ(t,x)

e−rt [π(φ(t, x), φ(t, x) − y) + v(y)] , (7)where φ(t, x) is the traje
tory of the system at time t, solution of the dynami
s(1) with x(0) = x.For a standard proof of this dynami
 programming result, see (Davis, 1993,Theorem (54.19), page 236).3 Redu
tion to Cy
li
al Poli
iesIn this se
tion we investigate the impulse 
ontrol model and propose an ap-proa
h for 
hara
terizing its solutions. Our approa
h is to determine the stru
-ture of solutions under the quite general assumptions of the previous se
tion.The pri
e to pay for this generality is that our results do not guarantee theuniqueness of solutions, whi
h must be examined on a 
ase-by-
ase basis.Our line of argument will be the following. First of all, the Dynami
 Pro-gramming prin
iple implies that, under any optimal poli
y for Problem (P),if the sto
k rea
hes some level already attained in the past, the a
tion 
hosenin the past (to harvest or not to harvest) should still be optimal. This merefa
t 
ombined with the positive growth of the sto
k's natural dynami
s tendsto sele
t poli
ies that are 
y
li
al in the sense that they let the sto
k growto some level, harvest it down so some other level, and repeat. However, itmay still be that under the optimal poli
y, the sto
k never rea
hes twi
e thesame level. We show that when the gain fun
tion has a 
ertain submodularity



7property, su
h traje
tories 
annot be optimal. Optimal poli
ies are thereforeessentially 
y
li
al. Moreover, joining the optimal 
y
le must be done with atmost one harvest.The optimization problem is then redu
ed to �nding: a) what is the optimal
y
le; b) what is the optimal way to rea
h the optimal 
y
le from a given initialsto
k. Finding the optimal 
y
le is a relatively simple optimization problemwhi
h we 
all the �Auxiliary Problem�. But the solution to this problem may
orrespond to degenerate 
y
les, whi
h we interpret as 
ontinuous harvestingpoli
ies à la Clark. We show in the next se
tion that the submodularity as-sumption is again the key to determine whether the optimal 
y
le is a true
y
le or a degenerate one.We pro
eed now with the de�nitions and the pre
ise statements of theseprin
iples.3.1 Cy
li
al Poli
ies and the Auxiliary ProblemCy
li
al poli
ies A 
y
li
al poli
y has two 
omponents: a 
y
le whi
h is 
har-a
terized by two values x and x̄ with x < x̄, or equivalently by an interval
[x, x̄]; and a transitory part whi
h des
ribes how the traje
tory evolves fromthe initial sto
k to the 
y
le. The transitory part 
onsists in a �nite (possiblyempty) sequen
e of harvests, su
h that, after the last harvest, the remainingpopulation is less than x̄. We �rst 
on
entrate on the 
y
le.Hen
e, a 
y
le has two main parameters, whi
h are su
h that 0 ≤ x < x̄ ≤
xs.5 When in its 
y
li
al part, a poli
y a
ts as follows: a) let the populationgrow to x̄; b) harvest x̄ − x; and repeat. Su
h a poli
y applies only to initialpopulations x0 ≤ x̄. In other words, the transitory part 
an be dispensed withonly for su
h an initial population.Gain under a 
y
li
al poli
y We will denote by G(x, x̄, x0) the value of dis-
ounted pro�ts in a poli
y without the transitory part, applied to an initialpopulation of x0. The 
omplete de�nition of the fun
tion G involves several
ases, 
orresponding to the limit 
ases for x̄ and x.It is 
onvenient to de�ne the fun
tion τ(x, y) as the time ne
essary for thedynami
s to go from value x to y, x ≤ y. It turns out that for all 0 < x ≤ y <
xs:

τ(x, y) =

∫ y

x

1

F (u)
du. (8)Sin
e, by Assumption 1, F (xs) = 0, the integral de�ning τ(x, y) is singularwhen y = xs. The limit when y → xs may therefore be �nite or in�nite,depending on the fun
tion F . Another feature of Assumption 1 is that F (0) =

0. Consequently, if x(0) = 0, a solution to the dynami
s (1) is x(t) = 0 for all
t ≥ 0. This implies the 
onvention that τ(0, y) = +∞ if y > 0, and τ(0, 0) = 0.65 Sin
e x̄ represents the population level until whi
h the resour
e grows before harvesting,there is no point in 
onsidering x̄ > xs sin
e the population 
annot grow to su
h a level.6 This 
onvention does not mean that limx↓0 τ(x, y) = +∞ in every situation.



8 The value of the total pro�t fun
tion G 
an be expressed as:i) If 0 ≤ x < x̄ ≤ xs:
G(x, x̄, x0) := π(x̄, x̄ − x)

e−rτ(x0,x̄)

1 − e−rτ(x,x̄)
. (9)The 
onvention is that: if x = 0, the term exp(−rτ(x, x̄)) should be repla
edby 0. Likewise, exp(−rτ(x, x̄)) and exp(−rτ(x0, x̄)) are 0 if x̄ = xs and

limy→xs
τ(x, y) = +∞.ii) For x = x̄, Assumption 2 allows to de�ne G by 
ontinuity as:

G(x, x, x0) = πI(x, 0)
F (x)

r
e−rτ(x0,x) . (10)For the 
ases x = x̄, the value G is not that of a well-de�ned impulse 
ontrolpoli
y. As we have seen in Se
tion 2.1, this value is that of a 
ontinuous har-vesting poli
y, whi
h 
an be seen as a degenerate impulse poli
y. The harvestrate of this 
ontinuous poli
y is 
onstant and equal to F (x).Finally, by using the fa
t that τ(x, y) de�ned in (8) is also de�ned for

y ≤ x, expressions (9) and (10) provide values for the fun
tion G when x0 > x̄as well. Of 
ourse, these situations do not 
orrespond to an implementableharvesting poli
y, and the fun
tion loses its e
onomi
 meaning. In subse
tion3.3 we will study the transitory part of a 
y
li
al poli
y for whi
h the 
ase
x0 > x̄ has an e
onomi
 meaning.The auxiliary problemHaving de�ned the fun
tion G(x, x̄, x0) for all 0 ≤ x ≤ x̄ ≤ xs and all 0 ≤
x0 ≤ xs, we now de�ne the auxiliary problem (AP):(AP) : max

x, x̄; 0≤x≤x̄≤xs

G(x, x̄, x0).Under Assumption 2 it turns out that G is lower semi-
ontinuous as afun
tion of (x, x̄). The problem (AP) has therefore always a solution. For thepurpose of the dis
ussion to 
ome, it is important to distinguish the 
ase wherethe solution is su
h that x = x̄, from the 
ase where x 6= x̄. We 
all the �rstsituation a �degenerate 
y
le solution�, and the se
ond one a �non-degeneratesolution�.3.2 Submodularity and Optimal Traje
toriesIn this paragraph, we introdu
e a submodularity assumption on the pro�tfun
tion π. Consider the following assumption.Assumption 3 The fun
tion π is su
h that:
π(a, a − c) + π(b, b − d) ≤ π(a, a − d) + π(b, b − c) (11)for every d ≤ c ≤ b ≤ a.



9Assumption 3 means that the pro�t generated by a big harvest in a largepopulation, π(a, a−d), augmented by the pro�t resulting from a small harvestin a medium sized population, π(b, b − c), is greater than the sum of pro�tsgenerated by twomedium sized harvests, the �rst in a large population, π(a, a−
c), and the se
ond in a medium sized population, π(b, b − d).If Assumption 2 holds as well, then in parti
ular π(b, 0) = 0 and letting
c = b in (11), we have for all d ≤ b ≤ a:

π(a, a − b) + π(b, b − d) ≤ π(a, a − d) . (12)In other words, one big harvest, π(a, a−d), is better than two medium harvests,
π(a, a − b) and π(b, b − d), redu
ing the population to the same level, i.e. d.As far as the harvest is sold in a 
ompetitive market, the pro�t fun
tionis given as π(x, I) = pI − c(x, I), where p is the pri
e and c(x, I) is the 
ostfun
tion. Then the above dis
ussion translates in terms of 
osts (however As-sumption 3 is a more general assumption linking together revenue and 
osts).Condition (11) redu
es to the following property:

c(a, a − d) + c(b, b − c) ≤ c(a, a − c) + c(b, b − d) .The 
ost of a big harvest in a large population augmented by the 
ost of asmall harvest in a medium population lower than the sum of the 
osts of twomedium-sized harvests starting from the same large population a. Likewise,(12) be
omes: c(a, a − d) ≤ c(a, a − b) + c(b, b − d). The 
ost of a big harvestis lower than the 
ost of two harvests starting and ending with the samepopulation sizes, respe
tively a and d.In some situations, we shall refer to a �stri
t� Assumption 3, meaning that:
π(a, a − c) + π(b, b − d) < π(a, a − d) + π(b, b − c) (13)for every d < c < b < a.The following properties are well-known or easy to 
he
k.Lemma 1 Assume that π satis�es Assumption 3. Then:i) Let g(x, y) = π(x, x − y) be de�ned for 0 ≤ y ≤ x ≤ xsup. Then g issubmodular on this domain.7ii) If π has se
ond-order derivatives, then inside the domain D,

πxI + πII ≥ 0 .Conversely, this 
ondition implies Assumption 3.
iii) If π(x, I) = R(I), then R is 
onvex. Conversely, if R is 
onvex, Assump-tion 3 holds.7 A fun
tion g(x, y) is submodular if for all a, b, c, d:

g(min(a, b), min(c, d)) + g(max(a, b), max(c, d)) ≤ g(a, c) + g(b, d) .



10 Assumption 3 is weaker than both 
onvexity of π with respe
t to harvest(whi
h is equivalent to πII ≥ 0) or supermodularity of π (whi
h is equivalentto πxI ≥ 0). The 
ondition πxI +πII ≥ 0 may hold if either of these propertiesholds, but does not imply them: it just implies that one of them lo
ally holds.Condition (12), with stri
t inequality, is 
lassi
ally required to insure theexisten
e of optimal impulse 
ontrol poli
ies (see for instan
e Davis (1993)).But Assumption 3 
annot be redu
ed to 
ondition (12), even under the re-quirement that π(x, 0) = 0. Indeed, 
onsider for instan
e the 
ase where
π(x, I) = R(I) for some fun
tion R. Then Assumption 3 says that R is 
onvex(Lemma 1 iii)) whereas (12) says that R should be superadditive. It is knownthat some fun
tions R with R(0) = 0 are superadditive without being 
onvex.These 
onditions are therefore not equivalent.3.3 Equivalen
e between (P) and (AP)Now we are going to show the prin
ipal relation between problems (P) and(AP). The results of this se
tion are partly based on the property that solutionsto Problem (AP) turn out not to depend on x0, as stated in Lemma 5, seeAppendix A.3. Consequently, we 
an talk of solutions (x∗, x̄∗) to the auxiliaryproblem (AP) independently of x0. We then make the following assumption:Assumption 4 The problem (AP) has a unique solution, denoted with (x∗, x̄∗),whi
h is su
h that x∗ < x̄∗.The transitory problemUnder Assumption 4, let us de�ne the following optimization problem (TP),whi
h formalizes the �Transitory Problem�. The transitory part of a 
y
li
alpoli
y 
onsists in a) letting the sto
k grow until some value x; b) harvestingfrom x down to y for y ≤ x̄∗; 
) applying the 
y
le with the harvesting interval
[x∗, x̄∗] from then on. The question is how to 
hoose the quantities x and y.The answer is given by the solutions of the following optimization problem:(TP) : max

x,y;
0≤y≤x≤xs

x0≤x; y≤x̄∗

e−rτ(x0,x) [π(x, x − y) + G(x∗, x̄∗, y)] .The following theorem 
hara
terizes the solutions to the problem (P).Theorem 2 Assume that Assumptions 1�4 hold. Let (x∗(x0), y
∗(x0)) solvethe maximization problem (TP). Then the value fun
tion of (P) is:

v(x0) =















G(x∗, x̄∗, x0) if x0 < x̄∗

e−rτ(x0,x∗(x0))
[

π(x∗(x0), x
∗(x0) − y∗(x0))

+ G(x∗, x̄∗, y∗(x0))
]

if xs ≥ x0 ≥ x̄∗.

(14)



11Moreover there exists a solution of (P) whi
h is 
y
li
al and given by:
t1 = τ(x0, x̄

∗), and ti = t1+(i−1)τ(x∗, x̄∗), xi = x̄∗, Ii = x̄∗−x∗, i ≥ 1,if x0 < x̄∗, and
t1 = τ(x0, x

∗(x0)), t2 = τ(y∗(x0), x̄
∗), ti = t2 + (i − 2)τ(x∗, x̄∗), i ≥ 2,

x1 = x∗(x0), I1 = x∗(x0) − y∗(x0), xi = x̄∗, Ii = x̄∗ − x∗, i ≥ 2,if x0 ≥ x̄∗.The proof of this result is given in Appendix A.3. The theorem states that anyoptimal 
y
li
al poli
y has a 
y
le part with an harvesting interval [x∗, x̄∗].It also des
ribes the nature of the transitory part of optimal 
y
li
al poli
ies.In the 
ase x0 < x̄∗, there is no transitory part, and the 
y
le is joined fromthe start. In the 
ase x0 ≥ x̄∗, the transitory part 
onsists in letting the sto
kgrow until x∗(x0), harvest it down to y∗(x0), then join the 
y
le. The typi
alform of optimal traje
tories is illustrated in Figure 1.sto
k
time

(A)

(B)x̄∗

x
(B)
0

x∗

x∗(x0)

x
(A)
0

y∗(x0)Fig. 1 Shape of the optimal traje
tory, for x0 > x̄∗ (
ase (A)), and x0 ≤ x̄∗ (
ase (B))We 
an now state the following relation between problems (P) and (AP),the proof of whi
h is provided in Appendix A.4.Theorem 3 Let Assumptions 1�3 hold. Then:
i) If Assumption 4 holds as well, then (P) has a solution whi
h is 
y
li
al.

ii) If (P) has a solution, then (P) has a solution whi
h is 
y
li
al, and thereexists a solution to problem (AP) when 0 ≤ x < x̄ ≤ xs.
iii) If the solution of (AP) is on the boundary x = x̄ = x∗, then (P) has nosolution.



12 We have therefore shown that there exists a 
y
li
al solution to our prob-lem (P) if, and only if, the solution to the auxiliary problem (AP) is non-degenerate. In other words, the existen
e or not of 
y
li
al solutions to (P)hinges on the fa
t that Assumption 4 holds or not. This question is addressedin the next se
tion. Statement iii) of Theorem 3 results from the fa
t that, inthis 
ase, there is no poli
y in the set Fx0 whi
h realizes the �sup� in Problem(P). However, the supremum does exist, and it 
an be shown that this value
an be approa
hed by a sequen
e of 
y
li
al solutions.We 
an 
ome ba
k to the interpretation of our 
entral Assumption 3, inrelation with the presen
e of 
y
les. Initiating the harvesting pro
ess is 
ostly.Hen
e, 
y
les are optimal if resour
e managers 
an take advantage of someform of e
onomies of s
ale: 
ondition (12). This is the 
ase, for instan
e, if therevenue fun
tion is 
onvex, whi
h is a 
onsequen
e of Assumption 3 (Lemma 1
iii)) in the 
ase of sto
k-independent 
osts. In addition, when π is linear in
I, harvests and resour
e sto
ks are 
omplementary (Lemma 1 ii)) and hen
e,any additional harvest, and resulting pro�ts, 
an only be obtained by waitingand letting the resour
e re
over, whi
h 
omes at a 
ost.In 
ontrast to usual assumptions on the stri
t 
onvexity of the pro�t fun
-tion, Assumption 3 is more general as it 
overs the 
ase of obje
tive fun
tionswith multiple variables. It applies to 
onvex-
on
ave pro�t fun
tions and isindependent of any parti
ular form of the dynami
s F (·).4 Optimal Cy
lesWe investigate now the problem of lo
ating the solutions to Problem (AP). Wehave seen that solutions always exist, but they may be lo
ated in the interior,or on any of the boundaries x = 0, x̄ = xs or the set x = x̄.It turns out that ensuring the uniqueness of the solution is not an easy task,even with restri
tive yet standard assumptions, as we argue in se
tion 4.4. Wetherefore limit our dis
ussion to 
onditions related to the submodularity As-sumption 3. We begin in se
tion 4.1 with ne
essary 
onditions for the existen
eof interior solutions and their interpretation. We study the 
ase of stri
tly sub-modular fun
tions in se
tion 4.2, and the 
ase of fun
tions both submodularand supermodular in se
tion 4.3.4.1 Interior solutionsNe
essary 
onditions for interior solutions to exist are given by the �rst order
onditions of the auxiliary problem, whi
h we provide as:Lemma 2 If (x, x̄) is a solution to the auxiliary problem (AP) with 0 < x <
x̄ < xs (interior solution), then the �rst order 
onditions are given by:

πI =
r

F (x)

e−rτ(x,x̄)

1 − e−rτ(x,x̄)
π(x̄, x̄ − x) , (15)
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πx + πI =

r

F (x̄)

1

1 − e−rτ(x,x̄)
π(x̄, x̄ − x) . (16)By rearranging these 
onditions, we obtain the equivalent:

πI

F (x)

r
=

e−rτ(x,x̄)

1 − e−rτ(x,x̄)
π(x̄, x̄ − x) , (17)

dπ

dx
= πx + πI = πI

F (x)

F (x̄)e−rτ(x,x̄)
. (18)The �rst 
ondition states that, at the optimum, the marginal gain from har-vesting the resour
e, weighted with the growth potential at the new resour
esto
k as 
ompared to the dis
ount rate, should equal the value of the remain-ing resour
e,8 out
ome of a maximized rotational harvest stream. The se
ond
ondition states that the marginal gain derived from the sto
k e�e
t is equal tothe marginal gain from harvesting augmented by a 
orre
ting fa
tor, whi
h de-pends on the growth di�erential at the lower and upper limit of the rotational
y
les, the latter being dis
ounted over time. More pre
isely, the greater thisgrowth di�erential, the greater the marginal gain due to the resour
e sto
k.4.2 Stri
t submodularity of the gain fun
tionIn this se
tion, we show that Assumption 3 in the stri
t sense, together withsome te
hni
al assumptions, is su�
ient to ex
lude degenerate 
y
le solutionsto Problem (AP).Going ba
k to the de�nitions of Se
tion 3.1, we have (see (10)):

Gd(x) := G(x, x, x0) =
1

r
πI(x, 0)F (x)e−rτ(x0,x) ,where the 
hoi
e of x0 has no impa
t on the solution of the optimizationproblem, as we have seen. We 
an now state the result:Proposition 1 Assume that all maxima xm of the fun
tion Gd(x) are su
hthat 0 < xm < xs. If the fun
tion π has se
ond-order derivatives and satis�esAssumption 3 in the stri
t sense (13), then all solutions to Problem (AP) arenon-degenerate.The proof is deferred to Appendix A.5.8 Whi
h is 
alled the site value in the forest e
onomi
s literature.



144.3 Exa
t modularityWe now turn to the 
ase where Assumption 3 holds with equality in Equa-tion (11), whi
h amounts to require that the fun
tion π(x, x− y) be both sub-and supermodular. Using Lemma 1, it is not di�
ult to see that if π admitsse
ond-order derivatives, and given that π(x, 0) = 0, then it must be of theform:
π(x̄, x̄ − x) =

∫ x̄

x

γ(x) dx (19)for some integrable fun
tion γ(·) whi
h is a
tually: γ(x) = πI(x, 0). We shallprove that, under moderate 
onditions, the problem (AP) does not admitnon-degenerate solutions for su
h 
ost fun
tions. In other words, solutions
orrespond ne
essarily to degenerate 
y
les.In order to state this result formally, it is 
onvenient to be sure that thereis only one solution to the problem. For this reason, we add here several as-sumptions. We do not express them in terms of the primitives of the model,in order to keep them weaker than assumptions that would be put dire
tlyon the primitives. Indeed, although apparently restri
tive, these assumptionsappear to be satis�ed in the examples we have studied using primitives fromthe literature.Proposition 2 Assume that the fun
tion Gd(·) is of 
lass C1, and is in
reas-ing, then de
reasing for x ∈ (0, xs), with an unique maximum at xm. Assumethat G does not have a maximum at x = 0, nor at x̄ = xs. Then the solutionof Problem (AP) is unique and given by x = x̄ = xm.The proof is deferred to Appendix A.6.4.4 An example of multiple interior solutions to Problem (AP)We provide in this se
tion an example in whi
h the data of the optimizationproblem satisfy usual assumptions (multipli
ative separability, monotoni
ity,
onvexity), in whi
h Property 3 holds, and yet Problem (AP) has two distin
tinterior solutions. It is 
onstru
ted as follows. The standard logisti
 fun
tion
F (x) = x(1 − x) is 
hosen as the growth fun
tion. It is 
on
ave. The gainfun
tion is 
hosen as π(x, I) = a(x̄) × I, with, for some 
onstant A > 0,

a(x) = 1 + min

{

x

100
, A × (x −

2

3
)

}

.It 
an be easily veri�ed that π satis�es Assumption 3, sin
e the fun
tion a isstri
tly in
reasing. Finally, set r = 0.01. Numeri
al investigation then revealsthat the fun
tion G(x, x̄, x0) 
orresponding to this data has two lo
al maxima:one with x̄ < 2/3 and one with x̄ > 2/3. The lo
al optimality of the �rst oneresults from the 
ombination of a large growth rate with a small gain per 
y
le.Cy
les are short for this solution. The se
ond lo
al optimum results from the



15
ombination of a smaller growth rate with a larger gain at ea
h harvest. Thetwo lo
al maxima 
an be given the same value by setting the 
onstant A toapproximately 1.23.5 Links between Impulse Control Models and Other ControlModels5.1 Comparison with Clark's ModelWe may now establish a �rst link between our general impulse 
ontrol modeland the 
ontinuous 
ontrol model, as proposed by Clark (1976).Consider a solution of problem (AP) on the boundary x = x̄. The maxi-mization problem be
omes:
max

0≤x≤xs

G(x, x, x0),where G is given by (10). The �rst order 
ondition for this problem is:
πIx(x, 0)F (x) + πI(x, 0)[F ′(x) − r] = 0 . (20)This 
ondition 
oin
ides with the well-known marginal produ
tivity rule ofresour
e exploitation when πI(x, 0) is the instantaneous pro�t fun
tion (see forexample Clark (1976) or Clark and Munro (1975)). A solution to Equation (20)determines the steady state of the following Clark-like singular optimal 
ontrolproblem: (CP) max

h(·)

∫ ∞

0

e−rt πI(x(t), 0) h(t) dt ,

ẋ = F (x) − h,for x0 given and 0 ≤ h(t) ≤ hmax for all t. This means that the 
onditions ofa Clark-like steady state solution 
an also be triggered by the impulse 
ontrolmodel that we propose.5.2 Comparison with Dawid and Kopel's modelIn this se
tion, we show that Dawid and Kopel's model (1997) 
an be embeddedwithin ours, through a judi
ious 
hoi
e of the dynami
s, the 
ost fun
tion andthe dis
ount rate. Then, we explain the 
orresponden
e between the results ofDawid and Kopel (1997) and ours.



165.2.1 Growth fun
tion and time span asso
iated to the growthThe model of Dawid and Kopel is in dis
rete time. The population dynami
shas the form:
xt+1 = f(xt) − ut = min[1, (1 + λ)xt] − utwith xt, ut ≥ 0 ∀t ≥ 0. We pro
eed by reprodu
ing this behavior for our model.When no harvesting takes pla
e, we must have: ẋ(t) = F (x(t)). Suppose:

F (x) = Ax if x < xs = 1 and F (x) = 1 − x if x ≥ 1.It 
an be veri�ed that this fun
tion satis�es Assumption 1.9 Integrating thedi�erential equation, we �nd that the sto
k evolves a

ording to the followingfun
tion:
x(t) = φ(t, x0) = min(x0e

At, 1) .In order to reprodu
e the dynami
s of Dawid and Kopel's dis
rete-time model,we �x a time duration ∆, and set: xt+1 = φ(∆, xt). The dynami
s are equiva-lent when f(xt) = φ(∆, xt) for all xt, whi
h is the 
ase when:
(1 + λ)xt = xte

A∆.We dedu
e how the marginal growth fa
tor A must be de�ned in terms ofDawid and Kopel's fa
tor 1 + λ:
A =

log(1 + λ)

∆
.5.2.2 Dis
ounted bene�tsFor the undis
ounted gains π, the 
orresponden
e with Dawid and Kopel'smodel is made by setting π(x, I) = R(I). Note that for this parti
ular form ofthe gain fun
tion, Condition (11) is equivalent to the 
onvexity of R, a

ordingto Lemma 1 iii).Next, the 
orresponden
e for dis
ounting rates in both models is establishedas follows. The dis
rete-time dis
ount fa
tor being δ and the 
ontinuous-timedis
ount rate being r, we should have: δt = e−rt∆, that is: log δ = −r∆.Finally, Dawid and Kopel's introdu
e a threshold quantity a de�ned as:

a = −
log δ

log(1 + λ)
=

r∆

A∆
=

r

A
.We pro
eed with the de�nition of the fun
tion G whi
h is the basis of theauxiliary problem (AP). Two 
ases must be 
onsidered: degenerate 
y
les ornon-degenerate solutions.9 The value of F (x) for x > 1 is arbitrarily 
hosen to that end.



17Non-Degenerate: where x < x̄. In this 
ase,
G(x, x̄, x0) =

R(x̄ − x)(x0

x̄
)

r
A

1 − (x

x̄
)

r
A

=
R(x̄ − x)(x0

x̄
)a

1 − (x

x̄
)a

.This expression holds even when x̄ = xs = 1 and x = 0.Degenerate 
y
les: where x = x̄. Given that π(x, I) = R(I), we have limI→0 πI(x, I) =
R′(0), when
e:

G(x, x, x0) = R′(0)
Ax

r

(x0

x

)
r
A

= R′(0)
xa

0

a
x1−a.5.2.3 Relations with the Results by Dawid and KopelDawid and Kopel de�ne the elasti
ity of gains as the fun
tion:

ε(x) =
R′(x)x

R(x)
.Through the analysis of the fun
tion G, the results of Dawid and Kopel 
anbe reprodu
ed, modulo the fa
t that de
ision instants are 
onstrained in theseresults, and not for our model. For instan
e, if the elasti
ity of gains ε(x) islarger than a for all x, it is optimal to defer harvesting until the resour
erea
hes its maximal value. Dawid and Kopel obtain the same 
on
lusion withthe elasti
ity of gains averaged over the evolution of the population during oneperiod. Inversely, when ε is smaller than a, immediate harvesting is optimal.Other results of Dawid and Kopel address the question of whether immedi-ate extin
tion is optimal or not. These results are reprodu
ed by our analysisas well.6 Con
lusionWe have proposed an impulse 
ontrol framework for the management of re-newable resour
es whi
h is general enough to in
lude 
on
ave and 
onvex gainfun
tions, as well as sto
k dependent 
ost fun
tions. The optimal managementof the resour
e is expressed as optimization problem (P), the solution of whi
his shown to satisfy the dynami
 programming prin
iple. By introdu
ing the
lass of �
y
li
al poli
ies�, we have redu
ed the solution of Problem (P) tothe sequential solution of two stati
 optimization problems with two variablesea
h, whi
h we 
an solve. With the help of the Auxiliary Problem, we 
ande�ne the optimal 
y
le. With the Transitory Problem, we 
an des
ribe theevolution from the initial sto
k to the 
y
le.Central to our solution framework is the submodularity 
ondition, whi
h isne
essary for the existen
e of 
y
les. This 
ondition is more general than thestri
t 
onvexity of the pro�t fun
tion, as it also 
overs the 
ase of obje
tivefun
tions with multiple variables. Thus, the existen
e of e
onomies of s
ale isonly one possible 
ondition for the o

urren
e of 
y
les, whi
h depends on the



18more 
omplex intera
tion between dis
ounted gains, (sto
k dependent) 
ostfun
tions and the population growth dynami
s.We have shown that our impulse 
ontrol model 
an generate 
y
li
al solu-tions and �degenerate� 
y
li
al solutions whi
h 
orrespond to a smooth steadystate solution. The e
onomi
 and biologi
al 
onsequen
es of these two typesof equilibria might be very di�erent, espe
ially if threshold values exist. Forexample, the 
y
li
al solution may temporarily deplete the population under-neath the level that would be desirable for the maintenan
e of the food-
hain.These 
onsequen
es are not taken into a

ount in our model.Our impulse 
ontrol model 
an generate the steady state solution thatClark des
ribed for his one state variable model with a 
on
ave growth fun
-tion. We 
an also repli
ate the 
y
li
al poli
ies des
ribed by Dawid and Kopelin a dis
rete-time framework with a quasi-linear growth fun
tion. This allowsus to 
laim that our model is a �meta-model�. The link between these models
an be expressed through their responsiveness to the submodularity 
ondition.Re
ent bioe
onomi
 models have strengthened the importan
e of un
er-tainty, for example linked to weather 
onditions or to the availability of sto
ks.Further resear
h 
ould in
lude su
h un
ertainty and also 
onsider the man-ager's risk aversion in a similar impulse 
ontrol framework. E
onometri
 ap-pli
ations 
ould help to 
he
k whether 
ontinuous or impulsive representationsof the harvest de
isions are more appropriate in pra
ti
e, and how to spe
ifygrowth and 
ost fun
tions. Depending on the fun
tional forms 
hosen, theoptimal harvesting poli
ies 
an then be de�ned within the above framework.Referen
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on. Manage., 29:252�261, 1995.A AppendixA.1 Submodularity and Traje
toriesWe prove here traje
tory 
omparison results whi
h are a 
onsequen
e of the submodularityAssumption 3. Before stating the results, we need some preliminary explanations.Consider an impulse 
ontrol poli
y ICP whi
h is su
h that there exists i and j with
i < j and: xj − Ij ≤ xi − Ii ≤ xj ≤ xi, that is, overlapping harvests. Denote with a = xi,
b = xj , c = xi − Ii and d = xj − Ij . Let ℓ = j − i and δt = tj − ti. Consider the followingtwo modi�
ations of the referen
e poli
y ICP:Poli
y A (
opy a pie
e of traje
tory from c to b):for k < j, tA

k
= tk , IA

k
= Ik;for k = j, tAj = tj , IA

j = b − c;for k > j, tA
k

= tk−ℓ + δt, IA
k

= Ik−ℓ.Poli
y B (remove the pie
e of traje
tory from c to b):for k < i, tB
k

= tk , IB
k

= Ik;for k = i, tB
k

= tk , IB
k

= a − d;for k > i, tB
k

= tk+ℓ − δt, IB
k

= Ik+ℓ.



20These poli
ies 
an be visualized in Figure 2, whi
h represents the evolution of the populationunder ea
h of the three poli
ies. The triangle represents the rest of the traje
tory, whi
his the same for all three poli
ies, ex
ept for a shift in time. The re
tangle represents anarbitrary pie
e of traje
tory, whi
h 
an possibly exit the range [b, c].10The result is:Lemma 3 Consider an impulse 
ontrol poli
y ICP whi
h is su
h that there exists i and jwith i < j and: xj − Ij ≤ xi − Ii ≤ xj ≤ xi. Then:
i) If Assumption 3 holds in the stri
t sense (13), then one of poli
ies A or B 
onstru
tedabove yields stri
tly larger pro�ts than ICP.

ii) If Assumption 3 holds with equality in (11) and if ICP is optimal, then poli
ies A andB are optimal as well.Proof The dis
ounted pro�ts G asso
iated with the original poli
y ICP 
an be written as:
G = V0 + Ri π(a, a − c) + Ri V1 + Rj π(b, b − d) + Rj Vdwhere Ri and Rj are the dis
ounts:

Ri = e−rti Rj = e−rtj ,and where V0, V1 and Vd are the 
urrent-value gains asso
iated with the �rst part of thetraje
tory, and the pie
es of the traje
tory, respe
tively, in the intervals (ti, tj) and (tj , +∞):
V0 =

i−1
X

k=1

e−rtk π(xk, Ik) V1 =

j−1
X

k=i+1

e−r(tk−ti) π(xk, Ik)

Vd =
∞

X

k=j+1

e−r(tk−tj) π(xk , Ik) .The total dis
ounted gains asso
iated with poli
ies A and B are:
GA = V0 + Ri π(a, a − c) + Ri V1 + Rj π(b, b − c) + Rj V1

+ Rj ρ π(b, b − d) + Rj ρ Vd

GB = V0 + Ri π(a, a − d) + Ri Vd ,with ρ = Rj/Ri = exp(−r(tj − ti)). A

ordingly, modi�
ations in pro�ts implied by swit
h-ing from the original poli
y to either A or B are:
G − GA = Rj (π(b, b − d) − π(b, b − c) + Vd − ρπ(b, b − d) − V1 − ρVd)

G − GB = Ri (π(a, a − c) − π(a, a − d) + V1 + ρπ(b, b − d) + ρVd − Vd) .As a 
onsequen
e, we have the following identity:
π(a, a − c) + π(b, b − d) − π(a, a − d) − π(b, b − c) =

1

Rj

(G − GA) +
1

Ri

(G − GB) .Under Assumption 3, the left-hand side is negative. If the inequality in (11) is stri
t, it iseven stri
tly negative. This implies that one at least of GA or GB is stri
tly larger than G.If equality holds (11) and the poli
y ICP is assumed to be optimal, then GA = GB = Gand poli
ies A and B are optimal as well.Consequen
es of Lemma 3 on the optimality of poli
ies 
an be stated as:Corollary 1 Consider an impulse 
ontrol poli
y ICP whi
h is su
h that there exists i and
j with i < j and: xj − Ij ≤ xi − Ii ≤ xj ≤ xi. If Assumption 3 holds in the stri
t sense(13), then ICP 
annot be optimal.10 The situation where b = c is allowed, in whi
h 
ase the pie
e of traje
tory may be empty.In that 
ase, there is a double harvest at the same instant in time.
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tAj

ti
tAi
tBi

tj tAj+ℓ

(A)
d

c

b

(B) (A)
a

Fig. 2 The original poli
y and its modi�
ations A and BA.2 Dynami
 Programming and Traje
toriesIn this appendix, we propose a te
hni
al result whi
h is useful in a variety of situations.This 
omparison of traje
tories is similar to Lemma 3 but it is provided by the appli
ationof the Dynami
 Programming prin
iple of Theorem 1.Before stating the result, we need some preliminary explanations. Assume that a poli
y
P is su
h that xi+1 ≥ xi. Let δt = τ(xi − Ii, xi). Consider the following modi�
ations ofthe referen
e poli
y P :Poli
y A (remove the harvesting at ti)for k < i, tA

k
= tk, IA

k
= Ik;for k ≥ i, tA

k
= tk−1 − δt, IA

k
= Ik−1.Poli
y B (
opy on
e the harvesting o

urring at ti)for k ≤ i, tB

k
= tk , IB

k
= Ik;for k > i, tB

k
= tk+1 + δt, IB

k
= Ik+1.Poli
y C (reprodu
e in�nitely the harvesting o

urring at ti)for k < i, tC

k
= tk , IC

k
= Ik;for k ≥ i, tC

k
= ti + (k − i)δt, IC

k
= Ii.Assume now that the poli
y P is su
h that xi+1 ∈ (x(t+i−1), xi], where by 
onvention,

t−1 = 0 in the 
ase i = 1. In that 
ase, there exists a time T = ti − τ(xi+1, xi) su
h that
x(T ) = xi+1. As above, let δt = τ(xi − Ii, xi) and de�ne the poli
ies A, B and C exa
tly asabove.These poli
ies are illustrated in Figure 3 a) in the �rst 
ase, and b) in the se
ond one.We 
an now state the result:Lemma 4 Consider an impulse 
ontrol poli
y P whi
h is su
h that either xi ∈ (x(t+i ), xi+1]or xi+1 ∈ (x(t+i−1), xi] for some i. Then, the gain of poli
y P is smaller than that of poli
ies
A or C 
onstru
ted above.Proof Assume �rst that poli
y P is su
h that xi ∈ (x(t+i ), xi+1], whi
h implies xi+1 ≥ xi.Let GP , GA, GB and GC be the total pro�ts for poli
ies P, A, B and C. Denote with V0 the
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(C)(P)(A) (C)(B)(P) (B)a) b)

(B)
(C)
(C)(A) (B)

(B)
(B)

(P) (C)
(P)

xi

xi+1

xi+1

xi

Fig. 3 The original poli
y ICP and its modi�
ations A, B and C. The triangle representsthe remainder of the traje
tory, whi
h is 
ommon to ICP, A and B, up to a shift in time.
urrent-value gains asso
iated with the part of the traje
tory before ti (whi
h is 
ommonto all these poli
ies) and let Gπ = V0 + e−rtiG̃π for poli
ies π ∈ { P, A, B, C }. It is easyto see that
G̃P = π(xi, xi − Ii) + e−rδtG̃A

G̃B = π(xi, xi − Ii) + e−rδtG̃P

G̃C = π(xi, xi − Ii) + e−rδtG̃C .Consequently, we have the identity: G̃P − G̃B = e−rδt(G̃A − G̃P ). This implies that G̃P ≤
max(G̃A, G̃B). Next, if we have G̃P ≤ G̃B , then we have G̃B ≤ π(xi, xi − Ii) + e−rδtG̃B sothat:

G̃B ≤
π(xi, xi − Ii)

1 − e−rδt
= G̃C .This proves the statement.Consider now the 
ase xi+1 ∈ (x(t+i−1), xi]. As argued above, the time T = ti −

τ(xi+1, xi) is su
h that x(T ) = xi+1. Let G̃i be the 
urrent-value gains of the di�erentpoli
ies at time t = T . It is 
lear that:
G̃P = e−r(ti−T )π(xi, xi − Ii) + e−rδtG̃A

G̃B = e−r(ti−T )π(xi, xi − Ii) + e−rδtG̃P

G̃C = e−r(ti−T )π(xi, xi − Ii) + e−rδtG̃C .As a result, we have the same identity: G̃P − G̃B = e−rδt(G̃A − G̃P ), and the rest of theprevious reasoning applies.A.3 Proof of Theorem 2The proof is separated into two 
ases. If x0 is �small enough�, the proof is provided bytraje
tory 
omparison arguments. For the 
ase of �large� x0, the proof 
onsists in embeddingthe optimization problems (AP) and (TP) into a more general optimization problem, thensolving this more general problem. The solution turns out to be provided by (AP) and (TP),and satisfy the dynami
 programming equation.Throughout the rest of this se
tion, Assumptions 1 and 2 hold, so that the fun
tion Gis well de�ned, and Assumption 4 is assumed to hold as well, so that the optimal values for(AP), x∗ and x̄∗, are well de�ned.



23Let w(·) be de�ned, as in (14), as:
w(x) =

8

<

:

G(x∗, x̄∗, x) if x < x̄∗

e−rτ(x,x∗(x)) [π(x∗(x), x∗(x) − y∗(x)) + G(x∗, x̄∗, y∗(x))] if xsup ≥ x ≥ x̄∗(21)where (x∗(x), y∗(x)) is any solution of the problem (TP) with initial population x0 = x.The following result will be useful for the proof. Consider problem (AP). Its solutiondoes not depend on the initial sto
k value x0:Lemma 5 Assume that (x∗, x̄∗) solves (AP) for some value of xs > x0 > 0. Then it solves(AP) for every value of x0.Proof The result follows from the fa
t that for all x0, x1:
G(x, x̄, x0) = e−rτ(x0,x1) G(x, x̄, x1) .Therefore the two fun
tions are proportional, with a proportionality fa
tor whi
h is stri
tlypositive if 0 < x0 < xs and 0 < x1 < xs. The problems (AP) for x0 and (AP) for x1 havetherefore the same solutions. If x1 = 0, or if x1 = xs and limy↑xs

τ(x, y) = +∞, then G = 0and any (x∗, x̄∗) maximizes it.A.3.1 Proof for x0 < x̄∗Lemma 6 If Assumptions 3 and 4 hold, then the fun
tion w(x0) solves the dynami
programming equation (7) for all x0 < x̄∗.A

ording to Theorem 1, the value fun
tion of problem (P) veri�es:
v(x) = max

t≥0
0≤y≤φ(t,x)

e−rt [π(φ(t, x), φ(t, x) − y) + v(y)] (22)
= max



max
0≤y≤x

[π(x, x − y) + v(y)] , (23)
max
x̄,y;

x<x̄≤xs
0≤y≤x̄

e−rτ(x,x̄) [π(x̄, x̄ − y) + v(y)]

ff

. (24)This breakdown is obtained by separating the 
ase t = 0 (expression (23)) from the 
ase
t > 0, and performing the 
hange of variable t = τ(x, x̄) in (24). This 
hange of variablemaps the time interval t ∈ (0, +∞) to the interval on populations x̄ ∈ (x, xs) or x̄ ∈ (x, xs],depending on whether τ(x, y) diverges or not when x ↓ 0.We must show that the fun
tion w(x), de�ned in (21), is a solution of Equation (22).By assumption, x < x̄∗. Repla
ing v(y) by its value in (22), the right-hand side 
an bewritten as M = max{M1, M2, M3} where:

M1 = max
0≤y≤x

[π(x, x − y) + G(x∗, x̄∗, y)] , (25)
M2 = max

x<x̄≤xs
0≤y<x̄∗

e−rτ(x,x̄) [π(x̄, x̄ − y) + G(x∗, x̄∗, y)] , (26)
M3 = max

x<x̄≤xs
x̄∗≤y≤x̄

e−rτ(x,x̄)

»

π(x̄, x̄ − y) (27)
+e−rτ(y,x∗(y)) [π(x∗(y), x∗(y) − y∗(y)) + G(x∗, x̄∗, y∗(y))]

–

.We re
ognize in the term (26) the problem (TP). We prove �rst that this is the largest ofthe three. Consider, for some y = y0, the value in bra
kets in (27). It 
orresponds to a poli
y



24P with two harvests x̄ → y0 and x∗(y0) → y∗(y0). Two 
ases may happen, a

ording towhi
h of x̄ and x∗(y0) is the largest.Case x̄ ≥ x∗(y0): in this 
ase, these two harvests are overlapping (sin
e y∗(y0) < x̄∗ ≤ y0), inwhi
h 
ase Lemma 3 applies. The poli
y P is dominated by at least one of two modi�
ations.If the dominating poli
y is the one ex
luding the se
ond harvest, then its value is presentin (26) when y has the value y∗(y0). If the dominating poli
y is the one with an additionalharvest, then it is obvious (see for instan
e the proof of Lemma 4) that the poli
y witha 
y
li
al harvesting with interval [x̄∗, y] is even better. But this poli
y provides a gainequal to π(x̄, x̄− y) + e−τ(y,x̄∗)G(y, x̄∗, y) ≤ π(x̄, x̄− y) + e−τ(y,x̄∗)G(x∗, x̄∗, y). Poli
y P istherefore again dominated by some poli
y represented in (26).Case x̄ < x∗(y0): in this 
ase, Lemma 4 applies, and poli
y P is dominated by at leastone of two modi�
ations. Either the dominating poli
y is the modi�
ation �A� without ase
ond harvest: its gain is one of the values in (26). Or the dominating poli
y is the one witha 
y
li
al harvesting. The reasoning above then applies and there is a value in (26) whi
hdominates the value in (27). We have shown that (27) is smaller than (26).Next, we show that (25) is dominated by (26). Ea
h y in (25) 
orresponds to some poli
y
Py for whi
h the two �rst harvests are x → y and x̄∗ → x. Sin
e x is smaller than x̄∗, weare on
e more in the situation of Lemma 4. The poli
y Py is therefore dominated: either bythe poli
y A whi
h 
onsists in dire
tly applying the 
y
le with interval [x∗, x̄∗], or by the
y
li
al poli
y with interval [y, x]. This one is in turn dominated by the 
y
li
al poli
y Aa

ording to Assumption 4. In both 
ases, Py is dominated by C. Sin
e the gain asso
iatedwith C is present in (26) (with x̄ = x̄∗ and y = x∗), the term in (25) is dominated by theterm in (26).At this stage, we have proved that (26) dominates the two other terms, so that:

M = max
x<x̄≤xs
0≤y<x̄∗

e−rτ(x,x̄) [π(x̄, x̄ − y) + G(x∗, x̄∗, y)] .It now remains to be proved that the maximum in the right-hand side is rea
hed at x̄ = x̄∗and y = x∗. Ea
h value of the right-hand side is the gain of some poli
y P for whi
h the two�rst harvests are x1 = x̄ and x2 = x̄∗. Whether x̄ < x̄∗ or x̄ > x̄∗, the appli
ation of Lemma 4implies that P is dominated: either by poli
y �A� whi
h has the value G(x∗, x̄∗, x), or bypoli
y �C� whi
h has the value G(y, x̄, x) < G(x∗, x̄∗, x) by Assumption 4 and Lemma 5.The value of M is readily seen to be e−rτ(x,x̄∗)G(x∗, x̄∗, x̄∗) = G(x∗, x̄∗, x) = w(x).The fun
tion w solves the Bellman equation for x < x̄∗.
A.3.2 Proof for x0 ≥ x̄∗Lemma 7 If Assumptions 3 and 4 hold, then the fun
tion w(x0) solves the dynami
programming equation for all xs ≥ x0 ≥ x̄∗.



25Proof Repla
ing v(y) by its value in (22), the right-hand side, say M ′, 
an be written asthe maximum of the four terms:
max

0≤y<x̄∗
[π(x0, x0 − y) + G(x∗, x̄∗, y)] , (28)

max
x̄∗≤y≤x0

»

π(x0, x0 − y) (29)
+ e−rτ(y,x∗(y)) [π(x∗(y), x∗(y) − y∗(y)) + G(x∗, x̄∗, y∗(y))]

–

,

max
x0<x̄≤xs
0≤y<x̄∗

e−rτ(x0,x̄) [π(x̄, x̄ − y) + G(x∗, x̄∗, y)] , (30)
max

x0<x̄≤xs
x̄∗≤y≤x̄

e−rτ(x0,x̄)

»

π(x̄, x̄ − y) (31)
+ e−rτ(y,x∗(y)) [π(x∗(y), x∗(y) − y∗(y)) + G(x∗, x̄∗, y∗(y))]

–

.Following the reasoning in proof of Lemma 6, the terms (29) and (31) are respe
tivelydominated by (28) and (30). There remains:
M ′ = max



max
0≤y≤x̄∗

[π(x0, x0 − y) + G(x∗, x̄∗, y)] ,

max
x0<x̄≤xs
0≤y≤x̄∗

e−rτ(x0,x̄) [π(x̄, x̄ − y) + G(x∗, x̄∗, y)]

ff

= max
x0≤x̄≤xs
0≤y≤x̄∗

e−rτ(x0,x̄) [π(x̄, x̄ − y) + G(x∗, x̄∗, y)] .This is the de�nition of Problem (TP). The solution is therefore (x∗(x0), y∗(x0)), whi
h
on
ludes the proof.A.4 Proof of Theorem 3The statement i) of Theorem 3 is a dire
t 
onsequen
e of Theorem 2.For statement ii), we need the following result, whi
h is a 
orollary of Assumption 3and Lemma 3.Lemma 8 If Assumption 3 holds, then for every solution to problem (P) whi
h is not
y
li
al, there exists a 
y
li
al solution with the same value.Proof It is �rst ne
essary to 
hara
terize what a non-
y
li
al solution may be. From thede�nition of 
y
li
al poli
ies in Se
tion 3.1, it 
an be seen by inspe
tion (see also Figure 1)that the set of possible values for the population x(t) is made of at most two intervalsin
luded in [0, xs], and that every single value a) is either rea
hed on
e only, b) or is rea
hedan in�nite number of times a

ording to a periodi
 sequen
e s1, s1 +T, s1 +2T, . . . for some
T > 0, 
) or is 0. A solution whi
h is not 
y
li
al would therefore: i) either rea
h populationvalues in more than three disjoint intervals, ii) or rea
h some value v 6= 0 a number of timeswhi
h is neither 1 nor in�nity, iii) or rea
h some value v 6= 0 a

ording to a sequen
e ofinstants whi
h is not periodi
.The �rst step is to ex
lude non-
y
li
al solutions to (P) whi
h are su
h that x(s) = x(t)for some s < t. For su
h a poli
y (A), 
onsider the smallest su
h t. Let (B) be the poli
ywhi
h 
onsists in performing the same harvests as (A) up to time t, next applying theoptimal 
y
li
al poli
y with initial population x(t) but shifted in time by t units. The values



26rea
hed by poli
y (B) are rea
hed either on
e or an in�nite number of times at periodi
intervals. As a 
onsequen
e of Theorem 1, the value fun
tion of poli
y (B) is the same as(A). Therefore, a poli
y whi
h is su
h that ii) or iii) 
an be repla
ed by a 
y
li
al one.The se
ond step is to eliminate poli
ies of type i). For su
h poli
ies, there exists some
i < j and a sequen
e of values a > b ≥ c > d, su
h that for some i, xi = a, Ii = a − c, and
xj = b, Ij = b− d. A

ording to Lemma 3, su
h a poli
y 
annot be optimal if Assumption 3stri
tly holds. In the other 
ase, the poli
y 
an be repla
ed with another poli
y with thesame total pro�t but with one less harvest. If this poli
y is not 
y
li
al, an indu
tion isapplied to 
onstru
t a 
y
li
al poli
y whi
h produ
es the same pro�t as the original one.A

ording to this lemma, we know that we 
an restri
t our attention to 
y
li
al solutionsof (P). Su
h solutions are 
hara
terized by Theorem 2. Their 
y
li
al part is given by anharvesting interval [x∗, x̄∗] whi
h is ne
essarily an interior solution of (AP).Finally, statement iii) is a 
onsequen
e of statement ii): if (P) had a solution, thesolution of (AP) would be a non-degenerate solution.A.5 Proof of Proposition 1Proof First, observe that the identity π(x, 0) = 0 implies that for all x, πx(x, 0) = 0 and
πxx(x, 0) = 0. Taking this into a

ount and developing G in a neighborhood of the point
x = x̄ = x using a Taylor series, we obtain:

G(x + h, x + k, x0) ∼= G(x, x, x0) +
F (x)

r
e−rτ(x0,x)B(x, h, k), (32)where, introdu
ing ǫ = h − k,

B(x, h, k) =
ǫ

2

»

πII(x, 0) −
r − F ′(x)

F (x)
πI(x, 0)

–

+ h

»

r − F ′(x)

F (x)
πI(x, 0) + πxI(x, 0)

–

.Any maximum xm of the fun
tion G(x, x, x0) satis�es the �st-order 
ondition B(xm, h, h) =
0 for su�
iently small values of h. Therefore,

0 =
r − F ′(xm)

F (xm)
πI(xm, 0) + πxI(xm, 0) .Consequently,

B(xm, h, k) =
ǫ

2

»

πII(xm, 0) −
r − F ′(xm)

F (xm)
πI(xm, 0)

–

=
ǫ

2
(πII + πxI)(xm, 0) .From Lemma 1 ii), adapted to the stri
t inequality in (13), we know that (πII+πxI)(xm, 0) >

0. Therefore, for any small deviations h and ǫ > 0 towards the interior of the domain,
B(xm, h, h − ε) > 0, and we 
on
lude that there are values of G(x, x̄, x0) whi
h are largerthan G(xm, xm, x0). The solution to (AP) thus 
annot be su
h that x = x̄, so that theoptimal 
y
le is non-degenerate.A.6 Proof of Proposition 2First of all, we 
an rule out solutions of (AP) with x = 0, or x̄ = xs, by assumption.



27Next, we rule out interior solutions. A

ording to Lemma 2, spe
ialized to integral gainfun
tions, an interior solution 0 < x < x̄ < xs should satisfy the system of equations:
γ(x) =

r

F (x)

e−rτ(x,x̄)

1 − e−rτ(x,x̄)

Z x̄

x

γ(u) du (33)
γ(x̄) =

r

F (x̄)

1

1 − e−rτ(x,x̄)

Z x̄

x

γ(u) du . (34)Here, the 
onstant x0 is still arbitrary. It is easily seen that the system of equations (33)�(34)is equivalent to (35)�(36), where:
γ(x)F (x)e−rτ(x0,x) = γ(x̄)F (x̄)e−rτ(x0,x̄) (35)

γ(x)F (x) − r

Z x

x0

γ(u) du = γ(x̄)F (x̄) − r

Z x̄

x0

γ(u) du . (36)Condition (35) is in turn equivalent to Gd(x) = Gd(x̄), while (36) 
an be written as ϕ(x) =
ϕ(x̄), with the de�nition:

ϕ(x) =
1

r
γ(x)F (x) −

Z x

x0

γ(u) du .It is 
onvenient here to pi
k as x0 the value xm provided by the hypothesis. For this 
hoi
e, wehave Gd(xm) = ϕ(xm) = γ(xm)F (xm)/r. We now prove that x < xm, then ϕ(x) < Gd(x)and if x > xm, then ϕ(x) > Gd(x). Indeed, di�erentiation of ϕ readily gives:
ϕ′(x) = G′

d(x) erτ(xm,x) .The value of e−rτ(xm,x) is positive and larger than 1 if xm > x, and is smaller than 1 if
xm < x. But a

ording to the hypothesis, G′

d
(x) ≥ 0 if xm > x and G′

d
(x) ≤ 0 if xm < x.All these fa
ts �nally imply that ϕ′(x) ≤ G′

d
(x) for all x. This in turn implies the propertystated above.But then for any x < x̄ su
h that Gd(x) = Gd(x̄), the hypothesis implies x < xm < x̄.Therefore, we have:

ϕ(x) > Gd(x) = Gd(x̄) > ϕ(x̄) ,whi
h ex
ludes the possibility that ϕ(x) = ϕ(x̄). We have therefore proved that no interiorsolution exists.There remain the solutions on the boundary x = x̄. Again appealing to the hypothesis,the maximum on this boundary, and therefore the global maximum, is x = x̄ = xm. This
on
ludes the proof.


