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Abstract

For tests based on nonparametric methods, power crucially depends on the di-

mension of the conditioning variables, and specifically decreases with this dimension.

This is known as the “curse of dimensionality”. We propose a new general approach

to nonparametric testing in high dimensional settings and we show how to imple-

ment it when testing for a parametric regression. The resulting test behaves against

directional local alternatives almost as if the dimension of the regressors was one.

It is also almost optimal against classes of one-dimensional alternatives for a suit-

able choice of the smoothing parameter. The test performs well in small samples

compared to several other tests.
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1 Introduction

The “curse of dimensionality” refers to the poor performances of local smoothing meth-

ods for multivariate data. Because of the sparsity of data in multidimensional spaces,

the behavior of nonparametric smooth estimators quickly deteriorates as the dimension

increases, see Stone (1980). This issue is a prominent reason for the study of dimension-

reduction models in nonparametric estimation. For instance, when a regression function

depends only on a single linear index of the variables, the nonparametric estimator per-

forms as in the one-dimensional case. The single-index regression model has been widely

studied in econometrics, see e.g. Stoker (1986), Härdle and Stoker (1989), Powell, Stock

and Stocker (1989), Ichimura (1993), Sherman (1994b).

Many consistent specification tests of a (semi)parametric model contrast the latter

model with a completely nonparametric one. As nonparametric estimators suffer from

the curse of dimensionality, so too do the power of the related tests. Specifically, most

specification tests of a parametric regression are consistent against directional local alter-

natives that go further away from the null hypothesis when the dimension of the regressors

increases, see for instance Härdle and Mammen (1993) and Zheng (1996). Another ap-

proach looks at the uniform consistency of the test against a class of regular alternatives,

see Spokoiny (1996), Horowitz and Spokoiny (2001), Guerre and Lavergne (2002), and es-

sentially reaches the same conclusion. The adverse effect of dimension on the tests’ power

is also found to be significant in practice, as illustrated by our simulations in Section 4.

Little research has been aimed at alleviating the curse of dimensionality in testing. Zhu

(2003) proposed a dimension-reduction type test for a parametric regression, but his null

hypothesis is actually the independence of residuals and regressors. This is too strong a

hypothesis for econometric applications, where data often exhibit conditional volatility.

After we wrote a first version of this paper, we discovered a former work on testing a

linear parametric regression by Zhu and Li (1998), who put forward a idea similar to that

we develop here, but did not study the related test. Escanciano (2006) is a closely related

work that essentially uses the same premises to improve on Stute’s (1997) test.

The purpose of this paper is to propose a general approach for nonparametric testing
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in high dimensional settings. Many testing problems consider a null hypothesis of the

form

H0 : E [U(θ0)|X] = 0 almost surely (a.s.), (1)

where θ0 is an unknown parameter to be estimated and X ∈ R
q. We thus want to

check whether a zero conditional moment restriction holds for almost any value of X.

Our proposal is to use single linear indices X ′β as a conditioning variable instead of X,

and then to look for the direction β that makes E [U(θ0)|X ′β] furthest away from zero.

Our dimension-reduction approach is thus the testing counterpart of single-index model

in estimation, with the fundamental difference that the function under test does not need

to depend on a single-index only. The key idea relies on a insight by Bierens (1982) as

recently used by Escanciano (2006). However, both papers dealt with empirical-process

based tests, while our work deal with smoothing-based tests.

Our first main finding, as stated in Section 2, is that our approach yields a test which

is consistent against any nonparametric alternative. To show the potential benefits of

our approach, we apply it to testing for a parametric regression in Section 3. Our second

main finding is that the resulting test behaves against general nonparametric directional

alternatives almost as if the dimension of the regressors was one. Hence there is a cost

to dimensionality, but this cost is low and is paid only once, as it does not increase with

the dimension of the regressors. Our third main finding is that for a suitable choice

of the smoothing parameter, the test is almost optimal against classes of single-index

alternatives. This is at odds with multidimensional tests, which have the same detection

properties irrespective of the dimension of the alternatives. Finally, our simulation study

in Section 4 shows that our test outperforms the standard “multidimensional” test of

Zheng (1996) and the tests by Bierens (1982) and Escanciano (2006). Section 5 concludes

and Section 6 gathers technical results and proofs.
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2 Dimension reduction in nonparametric testing

2.1 Testing against nonparametric alternatives

In the null hypothesis (1), the unknown parameter θ0 can be of finite or infinite dimension

and is to be estimated either before constructing the test or at the same time. Many

testing problems can be recast into this framework. We detail here some important ones.

Section 3 deals with testing for a parametric regression. In that case, U(θ) = Y −
µ(X; θ), where µ(·; ·) belongs to a parametric family and θ belongs to a subset of R

d.

Tests using smoothing methods have been proposed by Härdle and Mammen (1993),

Hong and White (1995), and Zheng (1996), among others, see Hart (1997) for a review.

For nonparametric directional alternatives of the form

E [Y |X] = µ(X; θ0) + rnδ(X) , (2)

rn should be of higher order than n−1/2h−q/4 to obtain consistency. Uniform consistency

against a class of alternatives of known smoothness s requires that the alternatives lie at

distance n−2s/4s+q from the null hypothesis, see Guerre and Lavergne (2002). When the

smoothness index s is unknown, the so-called adaptive rate is less by a small factor, see

Spokoiny (1996), Horowitz and Spokoiny (2001), and Guerre and Lavergne (2005). Other

consistent tests of a parametric regression are based on transforms of the cumulative

process of parametric residuals, see in particular Bierens (1982, 1990), Stute (1997), and

Escanciano (2006). Theoretical results are mixed: while such tests are consistent against

directional alternatives (2) whenever r2
nn diverges, they exhibit poor performances against

sets of regular alternatives, see Guerre and Lavergne (2002).

Econometricians are often interested in conditional moment restrictions beyond the

regression case, where U(θ) = ρ(Y, X, θ) with ρ(·, ·, ·) a multivariate function known up to

a finite-dimensional parameter θ. When testing for homoscedasticity in a parametric re-

gression model, ρ(Y, X, θ, σ2) = {Y − µ (X, θ)}2−σ2. Delgado, Dominguez and Lavergne

(2006) provide more examples. Stinchcombe and White (1998) and Whang (2001) study

single conditional moment restrictions, Donald, Imbens and Newey (2003) and Delgado,

Dominguez and Lavergne (2006) study multiple ones.
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When testing for additivity, U(θ) = Y −
∑q

l=1 ml(Xl), where the unknown univariate

functions ml(·) are properly normalized, see Gozalo and Linton (2001). When testing for

a single-index model, U(θ) = Y −m(X ′β), for an unknown β and an unknown univariate

function m(·), see Fan and Li (1996), Stute and Zhu (2005), and Xia and al. (2005). When

testing for the significance of some regressors Z in a nonparametric regression on X =

(X1, Z), U(θ) = Y − E (Y |X1), see Fan and Li (1996), Lavergne and Vuong (2000), Aı̈t-

Sahalia, Bickel and Stoker (2001), Delgado and Gonzalez-Manteiga (2001), and Lavergne

(2001). Chen and Fan (1999) consider other types of nonparametric restrictions.

Finally, when testing for a parametric conditional distribution function,

H0 : E [I(Y ≤ y)− F (y|X, θ0)|X] = 0 a.s. for all y ∈ Y for some θ0 ,

where F (·|X, θ) is a parametric conditional cumulative distribution function and I(·) de-

notes the indicator function, see Andrews (1997). Here, one faces a set of conditional

moment restrictions indexed not only by (the random) X, but also by (the non-random)

y. Such a pattern also appears when testing for conditional independence, see Delgado

and Gonzalez-Manteiga (2001). Though we do not pursue this issue, our approach could

be extended to these hypotheses by rewriting H0 as depending on X only through an

integral over the domain of y, as done by Hall and Yatchew (2005).

2.2 The fundamental lemma

Our approach relies on the following lemma, which shows that for checking constancy of

a conditional expectation, it is equivalent to consider expectations conditional on X and

expectations conditional on single linear indices of X.

Lemma 2.1 Let X ∈ R
q and Z ∈ R

c be random vectors, with E‖Z‖ <∞.

A) E(Z | X) = E(Z) a.s. ⇐⇒ E(Z | X ′β) = E(Z) a.s. ∀β ∈ R
q : ‖β‖ = 1.

B) If X is bounded and P [E(Z | X) = E(Z)] < 1, the set

S = {β ∈ R
q : ‖β‖ = 1, E(Z | X ′β) = E(Z) a.s. }

is included in a finite union of circles and points on the unitary sphere, has Lebesgue

measure zero on the sphere and is not dense.
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As noted by Escanciano (2006), Lemma 2.1-A can be deduced from Theorem 1 of Bierens

(1982). It can also be found in Chen (1991). We provide here a short proof of this result.

Proof. A) Without loss of generality, take c = 1 and E(Z) = 0. The implication is

immediate. To prove the reverse, note that for any β 6= 0, the σ−field generated by

X ′β is the same as the σ−field generated by X ′β/‖β‖. By elementary properties of the

conditional expectation, we obtain that for any β, including β = 0,

0 = E [exp{iX ′β}E(Z | X ′β)] = E [exp{iX ′β}Z] = E [exp{iX ′β}E(Z | X)] .

From the unicity of Fourier transforms, E(Z|X)f(X) = 0 a.s., and then E(Z|X) = 0 a.s.

B) By Bierens and Ploberger (1997, Theorem 1), A = {β ∈ R
q : E [exp{iX ′β}Z] = 0}

has Lebesgue measure zero and is not dense in R
q. Since S ⊂ A, the same conclusion holds

for S. A careful inspection of the proofs of Lemma 1 of Bierens (1990) and Theorems 1

and 2 in Bierens (1982) actually shows that when P [E(Z | X) = 0] < 1,

A ⊂ B = {A1 × R
q−1} ∪ {R×A2 × R

q−2} ∪ . . . ∪ {Rq−1 × Aq}

where A1, ..., Aq ⊂ R contain only isolated points. The intersection of B with the unitary

sphere is thus a finite union of circles and points.

As Lemma 2.1 extends to any one-to-one transform of X, assuming a bounded X

entails no loss of generality. Part B then ensures that when the conditional expectation

E (Z|X) is not constant, the search for a direction β such that E (Z|X ′β) 6= E(Z) is not

vain. Our result readily yields a new formulation of H0.

Corollary 2.2 Consider random vectors U(θ) ∈ R
c depending on a parameter θ ∈ Θ,

such that E‖U(θ)‖ < ∞ for all θ, and X ∈ R
q. Then for any function ω(·) such that for

any β, ω(X ′β) > 0 on the support of E (U(θ0)|X ′β), (1) is equivalent to

max
‖β‖=1

E [U ′(θ0)E (U(θ0)|X ′β) ω(X ′β)] = 0 for some θ0 ∈ Θ . (3)

As already mentioned, our approach is closely related to Bierens (1982), who showed that

for bounded X, E [Z | X] = 0 iff E [Z exp{iX ′β}] = 0 for all β. Stinchcombe and White

extended Bierens’ result showing that E [Z | X] = 0 is equivalent to E [Zφ (X ′β)] = 0 for
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any β, whenever φ (·) is analytic non polynomial. Our approach is however different in a

key aspect. Instead of working with a particular known φ (·) at the outset, we choose for

each β a function of X ′β maximizing E
2 [Zφ (X ′β)]. This strategy enables better detection

of departures from the null hypothesis. It is easily shown that the solution is proportional

to E(Z | X ′β). Now, looking for the least favorable direction β for the null hypothesis

yields (3) with ω (·) ≡ 1. This is in the spirit of the well-known union-intersection

principle in classical multivariate analysis, cf. Roy (1953). A similar reasoning applies if

one maximizes E
2 [Zφ (X ′β) ω(X ′β)] and ω(·) is not identically one.

2.3 A general dimension-reduction approach

Our goal is thus to estimate the quantity in (3). Assume we have at our disposal a

consistent estimator θ̂n of θ0 and denote by Ui(θ) the data-dependent vector function of

θ for observation i. Let γ̂i(X
′
iβ, θ) be a consistent estimator of E (U(θ)|X ′

iβ) ω(X ′
iβ) and

Qn (θ, β) =
1

n

n∑

i=1

U ′i (θ) γ̂i (X
′
iβ; θ) , (4)

which should converge uniformly in β to Q(θ, β) = E [U ′(θ)E (U(θ)|X ′β) ω(X ′β)] under

suitable conditions. When H0 does not hold, the maximum of Qn(θ̂n, β) over β stays away

from zero almost surely and a test based on it is consistent. Under H0 however, Qn(θ̂n, β)

converges to zero for any β. Hence, we introduce a penalized criterion and define

β̂n = arg max
‖β‖=1

{
Qn(θ̂n, β)− πn(‖β − β0‖)

}
.

A normalized version of Qn(θ̂n, β̂n) is then taken as the test statistic.

The penalty πn(·) is a nonnegative function that equals zero only at zero. Provided it

is large enough with respect to max‖β‖=1 Qn(θ̂n, β), it forces the maximum to be attained

at β0 under H0. The critical value will then be the one of the test based on Qn(θ̂n, β0).

Our criterion thus yields a pivotal distribution for the test statistic under H0, which is

of foremost interest in practice. While bootstrap can be used in small and moderate

samples, one can avoid costly numerical simulations using asymptotic critical values in

large samples. When H0 does not hold, the penalty should not perturb the behavior of the
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maximum, hence πn(t) should decrease towards zero fast enough for all t as n grows. The

penalized criterion will thus select a direction different from β0 only when this direction

gives more power to the test. The choice of the penalty is then crucial to control the level

of the test and to ensure high power.

The direction β0 is theoretically irrelevant for consistency, but matters in practice.

Since

Qn(θ̂n, β̂n) ≥ max
‖β‖=1

{
Qn(θ̂n, β)− πn(‖β − β0‖)

}
≥ Qn(θ̂n, β0) ,

and as the asymptotic critical values of the tests based on β̂n and β0 are the same, our

test is at least as powerful than the test tailored for alternatives depending on the single

index X ′β0. These represent the favorite alternatives of the practitioner and thus allow

to incorporate some a priori information. As shown by Janssen (2000), any omnibus

test implicitly favors some type of alternatives. Our test makes this explicit by favoring

alternatives depending on X ′β0 or correlated with a function of X ′β0. If one suspect

possible deviations from the model due to, say, the first component of X, this is easily

accounted for in the test by choosing the first component of β0 large relative to the other

components. We illustrate this characteristic feature in our simulation study.

3 Testing for a parametric regression

3.1 The test

Let (Y, X ′)′ be a random vector in R
1+q. We consider the q-variate regression m(X) =

E(Y |X) and continuous X, as discrete regressors do not strictly speaking yield a “curse of

dimensionality.” Let the parametric regression model be {µ (·; θ) : θ ∈ Θ} with Θ ⊂ R
d.

We apply our general approach to this testing problem using kernel estimators. To avoid

handling denominators close to zero, we set the weight function ω(·) in (3) equal to the

density of X ′β, denoted by fβ(·), which is assumed to exist for any β. Let

Q(θ, β) = E{U(θ)E[U(θ) | X ′β]fβ(X ′β)} = E{E2[U(θ) | X ′β]fβ(X ′β)}.
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By Corollary 2.2, the regression model is correctly specified iff max‖β‖=1 Q(θ0, β) = 0. Let

(Yi, X
′
i)
′, i = 1, . . . n, be a random sample from the distribution of (Y, X ′)′. The parameter

θ0 can be estimated for instance by nonlinear least-squares (NLLS), i.e.

θ̂n = arg min
θ∈Θ

n∑

i=1

(Yi − µ(Xi; θ))
2 , (5)

with an appropriate convention in case of ties. In view of Equation (4), define

Qn (θ, β) =
1

n(n− 1)

∑

j 6=i

Ui (θ) Uj (θ)
1

h
Kh ((Xi −Xj)

′β)

where Ui (θ) = Yi − µ (Xi; θ) and Kh (·) = K (·/h), where K(·) is a kernel and h a

bandwidth. For a fixed β, the estimator Qn(θ̂n, β) is the statistic studied by Li and Wang

(1998) and Zheng (1996) applied to the index X ′β, and has an asymptotic centered normal

distribution with rate nh1/2 under H0.

Zhu and Li (1998) first proposed to use the maximum over β of a statistic close to

Qn(θ̂n, β) for checking a linear regression model. However, their test is based on the

maximum plus a term of the form (1/n)
∑n

i=1 Ui(θ̂n)φ (‖Xi‖), where φ(·) is the standard

normal univariate density (or any other known function). Hence, they combine a consis-

tent test based on nonparametric methods with an inconsistent M-type test, so that the

asymptotic behavior under H0 is completely driven by the M-test statistic. Instead, we

apply our penalization method and we choose β as

β̂n = arg max
‖β‖=1

{
nh1/2Qn(θ̂n, β)− αnI [β 6= β0]

}
, (6)

where β0 is user-chosen and αn, n ≥ 1, is a sequence of positive real numbers decreasing

to zero at an appropriate rate. Note that, with respect to Section 2.3, we have introduced

the rate of convergence of Qn(θ, β) in our criterion, as it yields more transparent results.

Our choice for the penalty function corresponds to the one of Bierens (1990) and is made

for simplicity. We will prove that β̂n = β0 with probability tending to 1 under H0. Since

Qn(θ̂n, β̂n) behaves like Qn(θ̂n, β0), a test is easily constructed. With at hand a consistent

estimator v̂2
n(β) of the variance of nh1/2Qn(θ̂n, β), let

Tn = nh1/2Qn(θ̂n, β̂n)

v̂n(β0)
.
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An asymptotic α-level test is given by I (Tn ≥ z1−α), where zα is the (1 − α)-th quantile

of the standard normal distribution. As both v̂2
n(β̂n) and v̂2

n(β0) estimate the variance of

Qn(θ̂n, β̂n) under H0, we can also take the minimum of the two variance estimators to

improve the small sample power of our test and consider I (T ′n ≥ z1−α), where

T ′n = nh1/2 Qn(θ̂n, β̂n)

min
(
v̂n(β0), v̂n(β̂n)

) .

3.2 Assumptions

Assumption D (a) The random vectors (ε1, X
′
1)
′, . . . , (εn, X

′
n)′ are independent draws

from the random vector (ε, X ′)′ from R
1+q with E(ε | X) = 0 and E|ε|11 <∞.

(b) ∃ σ2 and σ2 such that 0 < σ2 ≤ σ2(x) := E(ε2 | X = x) ≤ σ2 <∞ ∀x.

(c) For any β of norm one, X ′β admits a density fβ(·) that is bounded uniformly in β.

We now introduce assumptions on the regression model. For any matrix A of generic

element akl, let ‖A‖ denote the matrix norm [
∑

kl a
2
kl]

1/2
.

Assumption M (a) Let Θ ⊂ R
d be a compact set. For any θ1, θ2 ∈ Θ,

µ(·; θ1)− µ(·; θ2) = (θ1 − θ2)
′ µ̇(·; θ2) + (θ1 − θ2)

′ µ̈(·; θ1, θ2)(θ1 − θ2) ,

where (i) µ̇(·; θ) is such that supθ∈Θ ‖µ̇(X; θ)‖ ≤ Φ1 (X) with E [Φ4
1(X)] <∞;

(ii) µ̈(·; θ1, θ2) is such that supθ1,θ2∈Θ ‖µ̈(X; θ1, θ2)‖ ≤ Φ2 (X) with E [Φ2
2(X)] < ∞; and

(iii) ∀ε > 0, there is a η > 0 such that E sup‖θ1−θ2‖≤η ‖µ̈(X; θ1, θ2)− µ̈(X; θ2, θ2)‖ < ε.

(b) (Identification condition) There exists a real valued function Φ3 (·) that is not

almost surely zero such that for any θ ∈ Θ and X, |µ(X; θ)−µ(X; θ0)| ≥ Φ3 (X) ‖θ−θ0‖.

A large range of parametric models satisfies Assumption M. Together with our assump-

tions on the design, it ensures the
√

n-consistency of the NLLS estimator (5) as stated in

Lemma 6.1. We make the following assumptions on the kernel and bandwidth.

Assumption K (a) The kernel K(·) is a bounded symmetric density of bounded varia-

tion. (b) h→ 0 and (nh2)
α
/ ln n →∞ for some α ∈ (0, 1).
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We need to estimate the asymptotic conditional variance of nh1/2Qn(θ̂n, β), which writes

v2
n (β) =

2

n(n− 1)

∑

j 6=i

σ2(Xi)σ
2(Xj)h

−1K2
h ((Xi −Xj)

′β) .

With at hand a nonparametric estimator of the conditional variance such that

sup
1≤i≤n

∣∣∣∣
σ̂2(Xi)

σ2(Xi)
− 1

∣∣∣∣ = oP(1) , (7)

v̂2
n (β) =

2

n(n− 1)

∑

j 6=i

σ̂2(Xi)σ̂
2(Xj)h

−1K2
h ((Xi −Xj)

′β) = v2
n(β) (1 + oP(1)) . (8)

Different estimators can be used. For instance, one can consider

σ̂2(x) =

∑n
i=1 Y 2

i I {‖x−Xi‖ ≤ b}∑n
i=1 I {‖x−Xi‖ ≤ b} −

(∑n
i=1 YiI {‖x−Xi‖ ≤ b}∑n
i=1 I {‖x−Xi‖ ≤ b}

)2

,

where b is a bandwidth parameter chosen independently of h. Guerre and Lavergne (2005)

provide some primitive conditions for (7). Given our focus, we shall proceed under (8).

3.3 Behavior under the null hypothesis

Our first task is to study the behavior of the process Qn(θ̂n, β) as indexed by β under H0.

It has the following decomposition

Qn(θ̂n, β) = Q0n(β)− 2Q1n(θ̂n, β) + Q2n(θ̂n, β) =
1

n(n− 1)

∑

j 6=i

εiεj
1

h
Kh ((Xi −Xj)

′β)

− 2

n(n− 1)

∑

j 6=i

εi

{
µ(Xj; θ̂n)− µ(Xj; θ0)

} 1

h
Kh ((Xi −Xj)

′β)

+
1

n(n− 1)

∑

j 6=i

{
µ(Xi; θ̂n)− µ(Xi; θ0)

}{
µ(Xj; θ̂n)− µ(Xj; θ0)

} 1

h
Kh ((Xi −Xj)

′β) .

Lemma 3.1 Under Assumptions D and K (i) sup‖β‖=1 |Q0n(β)| = OP(n
−1h−1/2 ln n) un-

der H0. (ii) sup‖β‖=1 |Qn(θ̂n, β) − Q0n(β)| = oP(n
−1h−1/2) if M holds and ‖θ̂n − θ0‖ =

OP(n
−1/2).

The proof is given in Section 5. We now describe the behavior of β̂n under H0.
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Lemma 3.2 Under Assumptions D, M, and K, for αn ≥ 0 such that αn/ ln n → ∞,

P(β̂n = β0) → 1 under H0.

Proof. By definition, for all n ≥ 1, nh1/2Qn(θ̂n, β0) ≤ nh1/2Qn(θ̂n, β̂n) − αnI(β̂n 6= β0).

This implies that 0 ≤ I(β̂n 6= β0) ≤ nh1/2α−1
n

{
Qn(θ̂n, β̂n)−Qn(θ̂n, β0)

}
. From Lemma

6.1, ‖θ̂n − θ0‖ = OP(n
−1/2) under H0 and then from Lemma 3.1, Qn(θ̂n,β̂n)−Qn(θ̂n,β0)=

OP(n
−1h−1/2 ln n). Then αn/ ln n → ∞ yields I(β̂n 6= β0) = oP(1). Use the boundedness

of I(·) to conclude that P(β̂n 6= β0) = E

[
I(β̂n 6= β0)

]
→ 0.

Theorem 3.3 Under Assumptions D, M, K, (8), and αn/ ln n → ∞, the tests based on

Tn or T ′n have asymptotic level α given the design.

Proof. From Lemma 3.2, P

[
Qn(θ̂n, β̂n) = Qn(θ̂n, β0)

]
and P

[
v̂2

n(β̂n) = v̂2
n(β0)

]
both con-

verge to one. By Condition (8), v̂2
n(β0) = v2

n(β0)(1 + op(1)). From Lemmas 6.1 and 3.1,

nh1/2Qn(θ̂n, β0) = nh1/2Q0n(β0) + op(1). From Lemma 2-(i) by Guerre and Lavergne

(2005), nh1/2Q0n(β0)/vn(β0) converges to a standard normal conditionally upon the Xi if

Sp (Wβ0
)

‖Wβ0
‖

p−→ 0 , where Wβ0
= [I (i 6= j) Kh ((Xi −Xj)

′β0) /(h n(n− 1)), i, j = 1, . . . n]

and Sp(Wβ) is the spectral radius of the matrix Wβ. Lemma 6.2 allows to conclude.

3.4 Consistency

A simple inequality is at the heart of the consistency of our test. Indeed, we have

T ′n ≥ Tn =
nh1/2Qn(θ̂n, β̂n)

v̂n(β0)

=
1

v̂n(β0)

[
max
‖β‖=1

{
nh1/2Qn(θ̂n, β)− αnI(β 6= β0)

}
+ αnI(β̂n 6= β0)

]

≥ 1

v̂n(β0)

[
max
‖β‖=1

nh1/2Qn(θ̂n, β)− αn

]
≥ nh1/2Qn(θ̂n, β)− αn

vn(β0)(1 + oP(1))
∀β . (9)

Hence, the test based on Tn (or T ′n) is consistent if the last minorant stays away from zero

with probability going to one for some β. When the parametric model is misspecified, our

test is consistent under the assumptions of Theorem 3.3 provided θ̂n converges to some

pseudo-true value θ∗, since there exists at least one β for which Q(θ∗, β) > 0.

12



3.4.1 Behavior against nonparametric directional alternatives

Consider a real-valued function δ(X) such that

E[δ(X)µ̇(X; θ0)] = 0 and 0 < E[δ4(X)] <∞ , (10)

and the sequence of alternatives defined as

H1n : mn(X) = µ(X; θ0) + rnδ(X), n ≥ 1 . (11)

We show below that such directional alternatives can be detected as soon as r2
nnh1/2/αn

tends to infinity. The conditions of Theorem 3.2 yield that αn is of the form an ln n with

an diverging at an arbitrary slow rate. Hence to obtain consistency against (11), we

should have r2
nnh1/2/ (an ln n) →∞ where h applies to the univariate variable defined by

a single linear index in X. By comparison, when one uses a standard multidimensional

smooth test, r2
nnhq/2 →∞ is needed for consistency. In other words, from the theoretical

point of view, our test does not suffer from the curse of dimensionality against directional

alternatives, that is, whatever the number of regressors, the power remains close to the

power obtained in the unidimensional case. Note that we do not impose any smoothness

restriction on δ(·), as is frequent in this kind of analysis, see e.g. Zheng (1996).

Theorem 3.4 Under Assumptions D, M, K, (8), and r2
nnh1/2/αn → ∞, the tests based

on Tn and T ′n are consistent given the design against the sequence of alternatives H1n with

δ(X) satisfying (10).

3.4.2 Behavior against classes of low-dimensional alternatives

For nonparametric multidimensional tests, Guerre and Lavergne (2002) showed that a

suitable choice of the smoothing parameter yields an optimal test against nonparametric

alternatives of known smoothness s. Specifically, the smoothing parameter h should

balance the bias in estimating the L2 -norm of the regression function, which is of order h2s,

with the variance of the basic statistic given by nhq/2. Unfortunately, such an optimal test

will have the same power properties against classes of low-dimensional alternatives. Here

we show that our tests are almost optimal against classes of one-dimensional alternatives.

13



Define a class of regular functions as follows. For any real s, let ⌊s⌋ be the lower

integer part of s, i.e. ⌊s⌋ < s ≤ ⌊s⌋+ 1. Define the Hölder class C(L, s) as

C(L, s) = {m(·); |m(x)−m(y)| ≤ L|x− y|s for all x, y } for s ∈ (0, 1],

C(L, s) = {m(·); the ⌊s⌋-th derivative of m(·) are in C(L, s− ⌊s⌋) } for s > 1 .

Consider a sequence of functions δn(X ′β) of a single-index such that

∀n, E[δn(X ′β)µ̇(X; θ0)] = 0 and 0 < E[δ4
n(X ′β)] < C <∞ , (12)

and the sequence of alternatives defined as

H ′
1n : mn(X) = µ(X; θ0) + δn(X ′β), n ≥ 1 . (13)

For such alternatives, a specific inference problem arises. As a high-dimensional design is

projected onto a lower dimension space, the density of the low dimension vector generally

goes to zero at the endpoints of its support. For instance, even if the density of X is

bounded away from zero on (0, 1)p, the density of X ′β behaves as xq−1 around zero if β is

not parallel to a side. This issue has been investigated for nonparametric curve estimation

by Hall et al. (1997). In nonparametric testing, it is impossible to detect any alternative

that concentrates in a low density area, see Guerre and Lavergne (2002, Prop. 2). This

explains why these authors, as well as Horowitz and Spokoiny (2001), assume a design

whose density is bounded away from zero. In our setting, such an assumption is clearly

not generally relevant, and explains our following assumptions.

Assumption N (a) X is bounded. (b) K(·) has a nonnegative Fourier transform and
∫
|u|K(u) du <∞. (c) For any β, either (i) ∃C > 0 and a > 0 such that |fβ(t)−fβ(t′)| ≤

C|t− t′|a for any t, t′ and ∃c0 > 0 and an integer k0 such that for each β and 0 < c ≤ c0,

Aβ,c = {u : fβ(u) ≥ c} is a union of at most k0 intervals on the real line, or (ii) fβ(·) is

bounded away from zero.

Theorem 3.5 Let κn → ∞ and consider the class of alternatives (13) with unknown θ0

and β, δn(·) ∈ C(L, s) for some s > 3/4 and L > 0, Eδ2
n = o(1),

[
n−1

n∑

i=1

δ2
n(X ′

iβ)

]1/2

≥ κn(1 + oP(1))
(αn

n

) 2s
4s+1

. (14)
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In case of Assumption N-(c)(i), let an → 0 such that an

√
nh →∞, anh

−a →∞, and

[
n−1

n∑

i=1

δ2
n(X ′

iβ)I(X ′
iβ /∈ Aβ,an

)

]
= oP(1)

[
n−1

n∑

i=1

δ2
n(X ′

iβ)

]
. (15)

In case of Assumption N-(c)(ii), let an = 1. Under Assumptions D, M, K, N, and (8), if

h is of order (αn/n)
2

4s+1 , the tests based on Tn and T ′n are consistent given the design if

κ2
nan →∞.

To justify Condition (15), note that outside Aβ,an
the density is O(an) by definition,

and the volume of the complement of Aβ,an
is typically an o(1) when X is bounded. What

our condition excludes is thus alternatives that concentrate on low density areas. Aside

this technicality, the rate obtained in Theorem 3.5 is almost optimal, and differs from

the optimal rate only because αn enters in its formula. This is a low price to pay that is

independent of the dimension of X. Note that we have to impose s > 3/4 because of our

Assumption K-(b).

If we pursue further the investigation of our test against low-dimensional alternatives,

we can show using similar arguments that our test is not optimal against m-dimensional

alternatives, but can be more powerful than a multidimensional test. Specifically the

rate would be close to n−(2s+1−m)/(4s+1). This can be better than the usual rate for

a multidimensional test, that is n−2s/(4s+q). For instance, for s = 2, our test is more

powerful against classes of double-indices alternatives whenever q > 4.

4 Implementation

4.1 Bootstrap critical values

We use the smooth conditional moments bootstrap introduced by Gozalo (1997). It

consists in drawing n i.i.d. random variables ωi independent from the original sam-

ple with Eωi = 0, Eω2
i = 1, and Eω4

i < ∞, to obtain bootstrap observations of Yi as

Y ∗
i = µ(Xi, θ̂n) + σ̂(Xi)ωi, i = 1, . . . n. A bootstrap test statistic is built from the boot-

strap sample as was the original test statistic. When this scheme is repeated many times,

15



the bootstrap critical value z∗1−α,n at level α is the empirical (1−α)-th quantile of the boot-

strapped test statistics. This critical value is then compared to the initial test statistic.

The validity of this procedure follows from our results and its proof is thus omitted.

Theorem 4.1 Under the assumptions of Theorem 3.3 and (7), the bootstrap critical val-

ues yield a test based on Tn or T ′n with asymptotic level α given the design.

4.2 Practical choices in the procedure

For the construction of our basic statistics Qn(θ̂n, β), choices of a kernel and a bandwidth

are required. The kernel is not expected to have much influence, though the bandwidth

choice may be important. Note that the same bandwidth is used for all directions X ′β.

Since our fundamental lemma applies to any one-to-one transform of X, one can transform

X so that its covariance matrix is identity or its support is (0, 1)p. A data-driven choice

of the bandwidth in the spirit of Guerre and Lavergne (2005) should be investigated, but

this is outside the scope of our paper.

Maximizing our penalized criterion can be done on a fine enough grid on the hyper-

sphere. Lemma 2.1-B ensures that under the alternative any direction yields a consistent

test but a set of measure zero. The specific choices for our procedure are β0 and αn.

As explained before, β0 corresponds to a class of favored alternatives to be determined

in each particular case depending on a priori information. We investigate in the next

section how its choice affects the small sample performances of our test. The choice of

αn is crucial and reflects the weight given to the favored alternatives. It should be of

an slightly higher order than nh1/2Qn(θ̂n, β0) times ln n under the null hypothesis. In

practice, one can always simulate this statistic under H0 and obtain an estimate of its

standard deviation to calibrate αn. We implemented this device in our simulations with

success.
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4.3 Simulation study

Our first aim was to study the sensitivity of our test to the penalty αn, the direction

defined by β0 and the bandwidth h. Our second aim was to compare the small sample

power of our test to the multivariate test of Zheng (1996) and Li and Wang (1998),

to the Integrated Conditional Moment (ICM) test of Bierens (1982), and to the test

recently proposed by Escanciano (2006). We chose the version of the ICM test studied

by Escanciano (2006), which is based on

n

∫

Rq

∣∣∣∣∣
1

n

n∑

i=1

Ui(θ) exp(iX ′
iβ)

∣∣∣∣∣

2

φ(β)dβ =
1

n

∑

i,j

Ui(θ)Uj(θ) exp

(
−‖Xi −Xj‖2

2

)
,

where φ(β) is the standard normal density on R
q, see Bierens (1982, p. 111). Though

the asymptotic theory developed by Bierens and Ploberger (1997) applies for a measure

with compact support, it makes no practical difference to consider the standard normal

or a version of it truncated at an arbitrarily large value. Dominguez (2004) shows that

the wild bootstrap is valid and preserves admissibility of the test, so we used this method

to obtain critical values. Escanciano’s test is based on the statistic

1

n2

∑

i,j

Ui(θ)Uj(θ)

(
1

n

∑

k

∫

{β∈Rq :‖β‖=1}

I(X ′
iβ ≤ X ′

kβ)I(X ′
jβ ≤ X ′

kβ) dβ

)
.

Computation of the statistic was performed using Escanciano’s (2006) analytic results,

see his Appendix B, and the wild bootstrap was used to obtain critical values.

We considered as the null hypothesis a linear model

H0 : E(Y |X) = θ0 +
3∑

j=1

θjXj .

We generated samples of 50 observations from independent uniformly distributed variables

X1, X2, X3. The support of each variable was chosen as
[
−
√

3,
√

3
]

to get unit variance.

We sampled independent N(0, 1) errors and constructed the response variable as

Yi = 0.5X1 −X2 + 0.5X3 + d cos
(
πX ′β∗/

√
3
)

+ εi i = 1, . . . 50 ,

with varying d and different vectors β∗.
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For the nonparametric-based tests, we considered (i) Zheng’s test when the index

(X1 +2X2 +3X3)/
√

14 is considered as the only regressor; (ii) Zheng’s test when all three

regressors are taken into account; (iii) our test based on T ′n (results for Tn differed little

and are not reported). To compute the test statistics, we used the normal kernel and we

selected the bandwidth as h = b n−2/(8+q), with q = 3 in Case (ii) and q = 1 in the other

cases, and b varies in {0.5, 1, 1.5, ..., 4}. The errors’ conditional variance was estimated by

a kernel estimator with normal kernel and bandwidth 2n−1/6. For our test, optimization

was carried out on a grid of 2000 points uniformly sampled on the three-dimensional

hypersphere of unit radius. To set αn, we computed v0, the mean of vn(β0), which was

found to vary little with β0. We then chose αn = a ln(50)v0n
−1h−1/2, with v0 = 0.3 in our

case, and we let a = 1, 2, 4. For each considered test, we used 199 bootstrap samples for

each replication to compute the critical value.

Insert Figure 1 here

We first set β∗ = (1, 2, 3)′/
√

14 and β0 = (1, 1, 1)′/
√

3, a natural choice if one does not

favor any regressor at the outset. We then drew the power curves of the different tests

based on 399 samples for each point of the grid d = 0.2, 0.4, . . . 1.2 for the smooth tests

and 1000 samples for the other tests. Figure 1 compares the power curves of the tests

when the bandwidth constant b is set to 1.5. Clearly there is a large loss in power for

Zheng’s test when going from dimension one to three. In practice however, the test based

on the unknown single linear index is infeasible. Our test outperforms Zheng’s test in

dimension 3, as well as Bierens’ and Escanciano’s ones. The power curves become closer

as αn increases, as expected. Still the gain in power with respect to Zheng’s test is large

even for a = 4. To get a more precise idea, for d = 0.6 the power is 30.2% for Escanciano’s

test, around 37% for Bierens’ and Zheng’s test, and 51.6% for our test. It is not surprising

that the ICM test has good performances against a cosine alternative, since the test is

based on the correlation between the parametric residuals and trigonometric functions.

Figure 2 corresponds to the case where b = 1. The same patterns appear, but the level

of our test is not well calibrated. We thus recommend that a large number of bootstrap

samples should be used in practice.

18



Insert Figure 2 here

We then set β∗ = (0, 0, 1) and β0 = β∗. This corresponds to the situation where we

favor alternatives depending upon one particular variable and the deviation depends on

this variable only. The power curves when b = 1.5 are drawn in Figure 3. Irrespective of

the value of αn, our test performs almost as well as the the infeasible test.

Insert Figure 3 here

Additional simulations results reported in Lavergne and Patilea (2006) show that our

test exhibit good performances against other forms of alternatives even if they do not

depend on a single-index only.

5 Conclusion

Our general approach to testing conditional moment restrictions in high dimensions relies

on the equivalence of testing E(Z|X) = 0 or E(ZE(Z|X ′β)) = 0 for all β of norm 1. In

practice, an index is selected by maximizing an estimator of the previous quantity minus a

penalty function. Our approach potentially applies to many testing problems as explained

in Section 2.1. We have studied testing for a parametric regression function. The test has

known asymptotic critical values. It behaves against directional alternatives and against

a class of low-dimensional regular alternatives almost as if the dimension of X was one.

Our simulations results illustrate the good behavior of the test in small samples.

From our fundamental lemma, other testing procedures could be constructed such

as an integrated conditional moment test in the spirit of Bierens (1982). An automatic

bandwidth choice should be proposed, in the line of Horowitz and Spokoiny (2001) or

Guerre and Lavergne (2005). We are currently investigating these issues. Finally, future

work will be devoted to applying our approach to other testing problems.

19



6 Technicalities

Lemma 6.1 Under Assumptions D–(a) and M and for a sequence of alternatives mn(X) =

µ(X; θ0) + δn(X) with E[δn(X)µ̇(X; θ0)] = 0, E[δ2
n(X)] = o(1), and 0 < E[δ4

n(X)] < C < ∞,

‖θ̂n − θ0‖ = OP(n−1/2).

The proof is based on a uniform law of large numbers, see e.g. Pakes and Pollard (1989) and

standard arguments, and is omitted, see Lavergne and Patilea (2006) for details.

Proof of Lemma 3.1. (i) Let M = Mn depend on n in a way that will be specified later,

define ηM
i = εiI (|εi| ≤M)− E (εiI (|εi| ≤M) | Xi) and consider the degenerate U -process

Ung̃ =
1

n(n− 1)

∑

j 6=i

ηM
i ηM

j Kh

(
(Xi −Xj)

′β
)

=
1

n(n− 1)

∑

j 6=i

g̃((ηM
i , Xi), (η

M
j , Xj);h, β)

defined by the functions g̃(·) indexed by h and β with ‖β‖ = 1. By Assumption D and K–(a),

Lemma 22(ii) of Nolan and Pollard (1987) and Lemma 2.14(ii) of Pakes and Pollard (1989), the

family {g̃ : ‖β‖ = 1, h > 0} is Euclidean for a constant envelope. By Theorem 2 of Major (2006)

and its corollary, where we assume without loss of generality that 0 ≤ K(·) ≤ 1,

P

(
sup

β
|Ung̃| ≥ th1/2 lnn

n− 1

)
= P


sup

β

∣∣∣∣∣∣
1

n

∑

j 6=i

ηM
i

M

ηM
j

M
Kh

(
(Xi −Xj)

′ β
)
∣∣∣∣∣∣
≥ th1/2 lnn

M2




≤ C1C2 exp

{
−C3

(
th1/2 lnn

M2σM

)}
for any t > 0 , (16)

provided nσ2
M ≥ th1/2 lnn

M2σM
≥ C4 [C5 + max (lnC2/ lnn, 0)]3/2 ln

2

σM
(17)

where C1, . . . C5 > 0 are some constants independent on n, h and M and

σ2
M = E



(

ηM
i

M

)2
(

ηM
j

M

)2

K2
h

(
X ′

iβ −X ′
jβ
)

 .

From Assumption D and the Lebesgue dominated convergence theorem, there is a constant

C > 0 independent of n such that C−1 ≤ σ2
MM4/h ≤ C. Take M4 = nh(lnn)−(1+δ) with δ > 0

arbitrarily small. Hence σ2
M is of order n−1 ln1+δ n and for any t

nσ2
M ≥ nh

CM4
= C−1 ln1+δ n ≥ th1/2 lnn

M2σM
(18)
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provided n is large enough. On the other hand, for any constant C ′ > 0

th1/2 lnn

M2σM
≥ C−1/2t lnn ≥ C ′ lnn (19)

for any sufficiently large t. Since (lnn)−1 ln(2/σM ) tends to a nonnegative constant as n goes

to ∞, Equations (18) and (19) show that (17) is satisfied for our M , with n and t large enough.

Hence (16) yields Ung̃ = OP

(
n−1h1/2 lnn

)
. Now, it remains to study the tails of εi, that is we

have to derive the orders of the remainder terms

2R1n + R2n = 2
n(n−1)

∑
j 6=i

ηM
i ξjKh

(
(Xi −Xj)

′ β
)

+ 1
n(n−1)

∑
j 6=i

ξiξjKh

(
(Xi −Xj)

′ β
)

where ξi = εi − ηM
i = εiI (|εi| > M)− E [εiI (|εi| > M) | Xi] .

First, E
[
supβ |R1n|

]
≤ CE

(∣∣ηM
i

∣∣ |ξj |
)
≤ 2CE (|εi|) E (|ξj |) ≤ C ′E (|ξj |), and thus by Hölder’s

and Chebyshev’s inequalities

E (|ξi|) ≤ 2E [|εi| I (|εi| > M)] ≤ 2E
1/11

[
|εi|11

]
P

10/11 [|εi| > M ] ≤ 2E

[
|εi|11

]
M−10.

By Assumption K-(b) and our choice of M , M−10 = o
(
n−1h1/2 lnn

)
. Also it is clear that

supβ |R2n| is of smaller order than supβ |R1n|.
(ii) For Vn,M ′(θ0) =

{
θ ∈ Θ : ‖θ − θ0‖ ≤M ′/n1/2

}
, lim infM ′→∞ limn P

[
θ̂n ∈ Vn,M ′(θ0)

]
= 1

by Lemma 6.1. Let W = (ε, X ′)′ and

gθ,h,β(Wi, Wj) = εi {µ(Xj ; θ)− µ(Xj ; θ0)}Kh

(
(Xi −Xj)

′β
)

,

which is such that E[gθ,h,β(Wi, Wj) | Wj ] = 0. From our assumptions, the class of functions

gθ,h,β(·, ·), θ ∈ Θ, h ∈ (0, 1], ‖β‖ = 1, is Euclidean for a squared-integrable envelope F (Wi, Wj) =

|εi| Φ̃(Xj) where Φ̃(·) = C
∑2

i=1 Φi(·), for some suitable constant C, cf. Nolan and Pollard

(1987, Lemma 22(ii)) and Pakes and Pollard (1989, Lemma 2.13 and Lemma 2.14 (ii)). Apply

Hoeffding’s decomposition to hQ1n(θ, β) and consider the second order degenerate U -process in

this decomposition Ungθ,h,β, with gθ,h,β(Wi, Wj) = gθ,h,β(Wi, Wj) − E[gθ,h,β(Wi, Wj) | Wi]. By

Lemma 5 of Sherman (1994a), the family gθ,h,β, θ ∈ Θ, h ∈ (0, 1], ‖β‖ = 1, is Euclidean for a

squared-integrable envelope. By the Main Corollary of Sherman (1994a) with p = 1 and k = 2,

E

[
sup

θ∈Vn(θ0),h,β

∣∣nUngθ,h,β

∣∣
]
≤ Λ

[
E sup

θ∈Vn(θ0),h,β

{
U2ng2

θ,h,β

}α

]1/2

(20)

where Λ is a universal constant and any α such that 0 < α < 1. We have

∣∣gθ,h,β(Wi, Wj)
∣∣ ≤ C ‖θ−θ0‖ |εi|

{
Φ̃ (Xj) + E[Φ̃ (Xj) | Wi]

}
≤ C ′ ‖θ−θ0‖ |εi| {Φ̃ (Xj)+1}
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for some constants C and C ′. Hence from Inequality (20) and Chebyshev’s inequality,

sup
‖β‖=1

|nh−1/2Ungθn,h,β | = OP

(
(nh1/α)−α/2

)
. (21)

Next, let Png̃ denote the empirical process in Hoeffding’s decomposition of hQ1n(θ, β), where

g̃(Wi) = g̃θ,h,β(Wi) = E[gθ,h,β(Wi, Wj) | Wi]

= εiE
[
{µ(Xj ; θ)− µ(Xj ; θ0)}Kh

(
(Xi −Xj)

′β
)
| Xi

]

= (θ − θ0)
′g̃1(Wi) + (θ − θ0)

′g̃2(Wi)(θ − θ0) ,

g̃1(Wi) = E [µ̇(Xj ; θ0)Kh ((Xi−Xj)
′β) | Xi] εi and g̃2(Wi) = E [µ̈(Xj ; θ, θ0)Kh ((Xi−Xj)

′β) |Xi].

Reasoning as above and using Assumption M-(a), it can be shown that

sup
θ∈Vn(θ0),β

∣∣∣nh−1/2(θ − θ0)
′
Png̃1

∣∣∣ = OP

(
h(3α/4)−1/2

)
(22)

and sup
θ∈Vn(θ0),β

∣∣∣nh−1/2(θ − θ0)
′
Png̃2(θ − θ0)

∣∣∣ = OP

(
n−1/2h(3α/4)−1/2

)
. (23)

From Equations (21), (22), and (23) with α > 2/3,

sup
‖β‖=1

|nh1/2Q1n(θ̂n, β)| = oP(1) .

For Q2n(θ̂n, β), use the expansion of µ(·; θ) and similar arguments to show that

sup
θ∈Vn(θ0),‖β‖=1

nh1/2 [Q2n(θ, β)− EQ2n(θ, β)] = oP(1) .

Last, for θ ∈ Vn(θ0),

|EQ2n(θ, β)| ≤ ‖θ − θ0‖2E1/2
[
Φ̃4(X)

]
E

3/4
[
h−4/3K

4/3
h

(
(Xi −Xj)

′β
)]

= OP(n−1h−1/4) = oP(n−1h−1/2) .

For random variables, An ≍P Bn means that P(C−1 ≤ An/Bn ≤ C) goes to 1 when n ↑ ∞.

Lemma 6.2 Let Wβ be the matrix with generic element I (i 6= j)Kh ((Xi −Xj)
′β) /(h n(n−1)).

Under Assumptions D–(c) and K, Sp(Wβ) = OP(n−1) and nh1/2‖Wβ‖ ≍P 1 for any β.

Proof. By definition, Sp(Wβ) = supu 6=0 ‖Wβu‖/‖u‖ and for any u ∈ R
n,

‖Wβu‖2 ≤ ‖u‖2

max

1≤i≤n




n∑

j=1,j 6=i

Kh ((Xi −Xj)
′β)

h n(n− 1)






2

.
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From Assumption K, the Bernstein inequality yields for any t > 0

P


max

1≤i≤n

(
(nh2)α

lnn

)1/2
∣∣∣∣∣∣

∑

j 6=i

1

(n− 1)
h−1Kh

(
(Xi −Xj)

′β
)
− E

[
h−1Kh

(
(Xi −Xj)

′β
)
|Xi

]
∣∣∣∣∣∣
≥ t





≤
∑

1≤i≤n

E



P





∣∣∣∣∣∣
1

(n− 1)

∑

j 6=i

Kh

(
(Xi −Xj)

′β
)

−E
[
Kh

(
(Xi −Xj)

′β
)
|Xi

]
∣∣∣∣∣≥ th

(
lnn

(nh2)α

)1/2

| Xi

]]

≤ 2n exp

(
− t2

2

(nh2)(lnn)

C((nh2)α + th(nh2)α/2(lnn)1/2)

)
≤ 2 exp

[
ln(n)− t2

C ′
(lnn)(nh2)1−α

]
→ 0 ,

since nh2 → ∞. Moreover, E
[
h−1Kh ((Xi −Xj)

′β) |Xi

]
≤ C uniformly in i by Assumptions

D-(c), K-(a), and a change of variables. This gives the first result. Next,

n2h‖Wβ‖2 =
1

(n− 1)2

∑

i6=j

1

h
K2

h

(
(Xi −Xj)

′β
) p−→ E

[
fβ(X ′β)

] ∫
K2(u) du

follows like in the proof of (26) below with δ(X) ≡ 1 and K(·) replaced by K2(·)/
∫

K2(u)du.

The last quantity is bounded from above and below by Assumptions D-(c) and K-(a).

Proof of Theorems 3.4 and 3.5. By Assumption D-(b), v2
n(β) ≤ σ4n2h‖Wβ‖2, and by

Lemma 6.2, v2
n(β) and nh1/2Q0n(β) are bounded in probability for any β. Under H1n, Ui(θ̂n) =

µ(Xi; θ0) + δn(Xi) + εi − µ(Xi; θ̂n), with δn(·) = rnδ(·) for Theorem 3.4. By simple algebra,

Qn(θ̂n, β) writes for any β as

Q0n(β)− 2Q1n(θ̂n, β) + Q2n(θ̂n, β)− 2Q3n(θ̂n, β) + 2Q4n(β) + Q5n(β) ,

where Q3n(θ̂n, β) =
1

n(n− 1)

∑

j 6=i

δn(Xi)
{

µ(Xj ; θ̂n)− µ(Xj ; θ0)
} 1

h
Kh

(
(Xi −Xj)

′β
)

,

Q4n(β) =
1

n(n− 1)

∑

j 6=i

εiδn(Xj)
1

h
Kh

(
(Xi −Xj)

′β
)

,

Q5n(β) =
1

n(n− 1)

∑

j 6=i

δ(Xi)δn(Xj)
1

h
Kh

(
(Xi −Xj)

′β
)

.

Lemma 3.1-(ii) deals with Q1n(θ̂n, β) and Q2n(θ̂n, β).
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For Theorem 3.4, it is shown below that for any β

Q3n(θ̂n, β) = OP(rnn−1/2) (24)

Q4n(β) = OP(rnn−1/2) (25)

Q5n(β) = r2
nE

[
E

2[δ(X)|X ′β]fβ(X ′β)
]
+ oP(r2

n) . (26)

Collecting results, it follows that for any β

nh1/2Qn(θ̂n, β)− αn

vn(β0)(1 + oP(1))
≥ Cnh1/2r2

n

[
E
[
E

2[δ(X)|X ′β]fβ(X ′β)
]
+ oP(1)

]
.

Choose β such that E
[
E

2[δ(X)|X ′β]fβ(X ′β)
]

> 0, which is possible from Lemma 2.1. The

conclusion then follows from Inequality (9).

For Theorem 3.5, it is shown below that for any β

Q3n(θ̂n, β) = OP(n−1/2)

[
n−1

n∑

i=1

δ2
n(X ′

iβ)

]1/2

(27)

Q4n(β) = OP(n−1/2)

[
n−1

n∑

i=1

δ2
n(X ′

iβ)

]1/2

(28)

Q5n(β) ≥ C (1 + oP(1))



√an

(
n−1

n∑

i=1

δ2
n(X ′

iβ)

)1/2

− hs




2

, (29)

where (29) holds with probability going to one. Collecting results, it follows that

nh1/2Qn(θ̂n, β)− αn

vn(β0)(1 + oP(1))
≥ C (1 + oP(1))nh1/2+2sanκ2

n − αn = C (1 + oP(1))αnanκ2
n − αn

diverges with probability going to one as anκ2
n diverges.

Proof of (24) and (27). Since |u′Wβv| ≤ ‖u‖‖v‖Sp(Wβ), then for any β,
∣∣∣∣∣∣

1

n(n− 1)

∑

j 6=i

δn(Xi)
{

µ(Xj ; θ̂n)− µ(Xj ; θ0)
} 1

h
Kh

(
(Xi −Xj)

′β
)
∣∣∣∣∣∣

≤ n

[
n−1

n∑

i=1

δ2
n(Xi)

]1/2 [
n−1

n∑

i=1

(
µ(Xi; θ̂n)− µ(Xi; θ0)

)2
]1/2

Sp(Wβ).

By Lemma 6.2, nSp(Wβ)=OP(1). By Assumption M, [µ(Xi; θ̂n)−µ(Xi; θ0)]
2≤ Φ̃2(Xi)‖θ̂n−θ0‖2

for some Φ̃(·) with E[Φ̃4(X)] < ∞ and from Lemma 6.1,
∑n

i=1 [µ(Xi; θ̂n)− µ(Xi; θ0)]
2 = OP(1).

Hence the initial quantity is bounded by OP(n−1/2)
[
n−1

∑n
i=1 δ2

n(Xi)
]1/2

.
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Proof of (25) and (28). Denote by En the conditional expectation given the Xi and let

δn(Xi) =
1

n(n− 1)

n∑

j=1,j 6=i

δn(Xj)
1

h
Kh

(
(Xi −Xj)

′β
)

.

Then Marcinkiewicz-Zygmund’s and Jensen’s inequalities implies that for any β, there is some

constant C independent of n such that

En

∣∣∣∣∣

n∑

i=1

εiδn(Xi)

∣∣∣∣∣ ≤ CEn

∣∣∣∣∣

n∑

i=1

ε2
i δ

2
n(Xi)

∣∣∣∣∣

1/2

≤ C

{
n∑

i=1

δ
2
n(Xi)En(ε2

i )

}1/2

≤ C

{
n∑

i=1

δ
2
n(Xi)

}1/2

≤ Cn1/2

{
n−1

n∑

i=1

δ2
n(Xi)

}1/2

Sp(Wβ) = OP(n−1/2)

{
n−1

n∑

i=1

δ2
n(Xi)

}1/2

,

using Lemma 6.2 and the weak law of large numbers.

Proof of (26). Consider Un = r−2
n Q5n(β). By straightforward computations,

Var (Un) ≤ C

n
E
[
δ4(X)

]
E

1/2
[
h−4K4

h

(
(Xi −Xj)

′β
)]

= O(n−1h−3/2) = o(1) .

Now, denoting by K̂(·) the Fourier transform of K(·),

E (Un) =
1

2π

∫ ∣∣E
[
E[δ(X)|X ′β] exp(itX ′β)

]∣∣2 K̂(ht) dt .

As E [δ(X)|X ′β] fβ(X ′β) ∈ L1(R) ∩ L2(R), we obtain by the Plancherel theorem that

1

2π

∫ ∣∣E
[
E[δ(X)|X ′β] exp(itX ′β)

]∣∣2 dt = E
[
E

2[δ(X)|X ′β]fβ(X ′β)
]

,

see Rudin (1987). Since
∣∣∣K̂(·)

∣∣∣ ≤ 1 and K̂(0) = 1, the Lebesgue dominated convergence theorem

yields E (Un) → E
[
E

2[δ(X)|X ′β]fβ(X ′β)
]
.

Proof of (29). We treat the case of Assumption N(c)(i), the proof for case (ii) follows the

same lines but is much simpler since the density of fβ(·) is bounded away from zero.

Let W β be the matrix with generic element

I(X ′
iβ,X ′

jβ ∈ Aβ,an
)I (i 6= j) Kh

(
(Xi −Xj)

′β
)
/(hn(n− 1)) .

Let δn = (δn(X ′
1β), . . . δn(X ′

nβ))′, and define δnIAβ,an
and δnIAc

β,an
similarly, where Ac stands

for the complementary set of A. We have

δ′n(Wβ −W β)δn = δ′n(Wβ −W β)δnIAc
β,an

+ δ′nIAc
β,an

(Wβ −W β)δnIAβ,an

and |δ′n(Wβ −W β)δn| ≤ 2 Sp(Wβ −W β)‖δnIAc
β,an
‖‖δn‖ .
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As in Lemma 6.2, nSp(Wβ −W β) has the same order as

max
i

E
[
h−1Kh

(
(Xi −Xj)

′β
) (

1− I(X ′
iβ,X ′

jβ ∈ Aβ,an
)
)
|Xi

]
.

Since 1− I(x, y ∈ Aβ,an
) ≤ I(y ∈ Ac

β,an
) + I(x ∈ Ac

β,an
),

E
[
h−1Kh

(
(Xi −Xj)

′β
) (

1− I(X ′
iβ,X ′

jβ ∈ Aβ,an
)
)
|Xi

]

=

∫
K(u)fβ(X ′

iβ − hu)
(
1− I(X ′

iβ,X ′
iβ − hu ∈ Aβ,an

)
)

du

≤ 2an

∫
K(u) du + C

∫
|hu|aK(u) du = O(an)

uniformly in i, using Assumptions N-(b), (c)(i), and anh−a →∞. Hence, from Condition (15),

|δ′n(Wβ −W β)δn| ≤ oP(an)

[
n−1

n∑

i=1

δ2
n(X ′

iβ)

]
.

Without loss of generality, assume that the bounded support of X ′β is [0, 1] and that k = h−1

is an integer number strictly larger than 1. For k = 0, . . . k − 1, let tk = tk(h) = (k + 1/2)h,

and Jk = Jk(h) = tk(h) + h[1/2, 1/2), so that ∪k=0,...k−1Jk = [0, 1). We can assume that

tk ∈ Aβ,an
iff Jk ⊂ Aβ,an

. If not, by Assumption N-(c)(i) we need to redefine at most 4k0 sets

Jk as Jk = tk(h) + h(−a, b) with 0 ≤ a, b ≤ 1. Let Πs,h be the set of piecewise polynomial

functions over the Jk with degree smaller than or equal to ⌊s⌋. The definition of C(L, s) yields

supx |δn(x′β)− πn(x′β)| ≤ Chs for some πn(·) ∈ Πs,h. Denote by P β the matrix with the same

elements than W β but with generic element I(X ′
iβ ∈ Aβ,an

)K(0)/(n(n − 1)h) on the diagonal.

Then Sp(W β − P β) = OP(n−2h−1) and

u′P βu =
1

n(n− 1)

∑

i,j

uiuj I
(
X ′

iβ ∈ Aβ,an

)
I
(
X ′

jβ ∈ Aβ,an

)
h−1Kh

(
(Xi −Xj)

′β
)

=
n

2π(n− 1)h

∫
∣∣∣∣∣∣
n−1

∑

j

uj exp

(
it X ′

jβ

h

)
I
(
X ′

jβ ∈ Aβ,an

)
∣∣∣∣∣∣

2

K̂(t) dt (30)

is nonnegative and vanishes iff ujI

(
X ′

jβ ∈ Aβ,an

)
= 0 for all j. For π(·) ∈ Πs,h, let π denote

the column vector (π(X ′
1β), ..., π(X ′

nβ))′ and let

Λ2
n = inf

π(·)∈Πs,h

π′P βπ

n−1
∑n

i=1 π2(Xiβ)I( Xiβ ∈ Aβ,an
)

,

where 0/0 = 1. Consider the polynomial functions πb,k(·) of degree ⌊s⌋ on Jk(h), i.e.

πb,k(t) = πb

(
t− tk

h

)
=

∑

0≤q≤⌊s⌋

bq

(
t− tk

h

)q

I (t ∈ Jk) .
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Then

Λ2
n ≥ inf

b,Jk⊂Aβ,an

π′b,kP βπb,k

n−1
∑n

i=1 π2
b,k(X

′
iβ)I(X ′

iβ ∈ Aβ,an
)

, (31)

and we restrict to b in the unit hypersphere by homogeneity. The Main Corollary of Sherman

(1994a) implies that uniformly in b and k such that Jk ⊂ Aβ,an

1

nh

n∑

i=1

π2
b

(
X ′

iβ − tk
h

)
I(X ′

iβ ∈ Aβ,an
) =

1

h
E

[
π2

b

(
X ′β − tk

h

)
I(X ′β ∈ Aβ,an

)

]
+ OP

(
1√
nh

)

=

∫

(−1/2,1/2)
π2

b (u)fβ(tk + hu) du + oP(an) = fβ(tk)

∫

(−1/2,1/2)
π2

b (u) du + oP(an) ,

from Assumption N and a−1
n ha → 0. Similarly, uniformly in b, t and k such that Jk ⊂ Aβ,an

1√
2πnh

n∑

j=1

πb

(
X ′

jβ − tk

h

)
exp

(
it

X ′
jβ − tk

h

)
I(X ′

jβ ∈ Aβ,an
)

=
1√
2πh

E

[
πb

(
X ′β − tk

h

)
exp

(
it

X ′β − tk
h

)
I(X ′β ∈ Aβ,an

)

]
+ OP

(
1√
nh

)

=
1√
2π

∫

(−1/2,1/2)
π2

b (u) exp(itu)fβ(tk + hu) du + oP(an) = fβ( tk)π̂b(t) + oP(an) .

Using (30) and tk ∈ Aβ,an
implies that with probability going to one

1

an

π′b,kP βπb,k

n−1
∑n

i=1 π2
b,k( X ′

iβ)I( X ′
iβ ∈ Aβ,an

)
≥

∫
|π̂b(t)|2 K̂(t) dt∫

(−1/2,1/2) π2
b (u) du

, (32)

which stays away from zero for b in the unit sphere. Hence Λ2
n ≥ C an for some C > 0 with

probability going to one. Now, from the triangular inequality,

(
δ′nP βδn

)1/2 ≥
(
π′nP βπn

)1/2 −
(
(δn − πn)′ P β (δn − πn)

)1/2

≥ Λnn−1/2‖πnIAβ,an
‖ − Sp1/2(P β) ‖δn − πn‖

≥ Λnn−1/2
∥∥δnIAβ,an

∥∥−
(
Λn + n1/2Sp1/2(P β)

)
Chs . (33)

From Conditions (14), (15), and Sp1/2(P β) ≤ Sp1/2(W β) + Sp1/2(W β − P β) = OP(n−1/2), the

above quantity is positive with probability going to one. Since Λ−2
n nSp(W h − P h) = oP(1),

deduce that with probability going to one

δ′nW βδn ≥
[

Λnn−1/2
∥∥δnIAβ,an

∥∥−
(
Λn + n1/2Sp1/2(P β)

)
Chs

]2
− Sp(W h − P h)

∥∥δnIAβ,an

∥∥2

≥
[(

Λn − n1/2Sp1/2(W h − P h)
)

n−1/2
∥∥δnIAβ,an

∥∥−
(
Λn + n1/2Sp1/2(P β)

)
Chs

]2

≥ C (1 + oP(1))



√an

(
n−1

n∑

i=1

δ2
n(X ′

iβ)

)1/2

− hs




2

.
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Figure 1: β0 = (1, 1, 1)/
√

3 and b = 1.5
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Figure 3: β0 = (0, 0, 1)
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Figure 2: β0 = (1, 1, 1)/
√

3 and b = 1
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