DATA-DRIVEN RATE-OPTIMAL SPECIFICATION TESTING IN REGRESSION MODELS

By Emmanuel Guerre and Pascal Lavergne

LSTA Paris 6 and CREST
University of Toulouse and INRA

We propose new data-driven smooth tests for a parametric regression function. The smoothing parameter is selected through a new criterion that favors a large smoothing parameter under the null hypothesis. The resulting test is adaptive rate-optimal and consistent against Pitman local alternatives approaching the parametric model at a rate arbitrarily close to $1 / \sqrt{n}$. Asymptotic critical values come from the standard normal distribution and bootstrap can be used in small samples. A general formalization allows to consider a large class of linear smoothing methods, which can be tailored for detection of additive alternatives.

1. Introduction Consider n observations $\left(Y_{i}, X_{i}\right)$ in $\mathbb{R} \times \mathbb{R}^{p}$ and the heteroscedastic regression model with unknown mean $m(\cdot)$ and variance $\sigma^{2}(\cdot)$

$$
Y_{i}=m\left(X_{i}\right)+\varepsilon_{i}, \quad \mathbb{E}\left[\varepsilon_{i} \mid X_{i}\right]=0 \quad \text { and } \quad \operatorname{Var}\left[\varepsilon_{i} \mid X_{i}\right]=\sigma^{2}\left(X_{i}\right)
$$

We want to test that the regression belongs to some parametric family $\{\mu(\cdot ; \theta) ; \theta \in \Theta\}$, that is

$$
\begin{equation*}
H_{0}: m(\cdot)=\mu(\cdot ; \theta) \quad \text { for some } \theta \in \Theta \tag{1.1}
\end{equation*}
$$

Tests of H_{0} are called lack-of-fit tests or specification tests. Based on smoothing techniques, many consistent tests of H_{0} have been proposed, the so-called smooth tests, see Hart (1997)

We thank the editor, the associate editor and three referees for comments that were helpful to improve our paper. Financial support from LSTA and INRA is gratefully acknowledged.

AMS 2000 subject classifications. Primary 62G10 ; Secondary 62G08.
Key words and phrases. Hypothesis testing, nonparametric adaptive tests, selection methods
for a review. A fundamental issue is the choice of the smoothing parameter. Since this is a model selection problem, Eubank and Hart (1992), Ledwina (1994), Hart (1997, Chapter 7) and Aerts, Claeskens and Hart $(1999,2000)$ among others have proposed to use criteria proposed by Akaike (1973) and Schwarz (1978). However, these criteria are tailored for estimation but not for testing purposes. Hence, they do not yield adaptive rate-optimal tests, i.e. tests that detect alternatives of unknown smoothness approaching the null hypothesis at the fastest possible rate when the sample size grows, cf. Spokoiny (1996).

Many adaptive rate-optimal specification tests are based on the maximum approach, which consists in choosing as a test statistic the maximum of studentized statistics associated with a sequence of smoothing parameters. This approach is used for testing the white noise model with normal errors by Fan (1996) and for testing a linear regression model with normal errors by Fan and Huang (2001) and Baraud, Huet and Laurent (2003), who extend the maximum approach. Further work on the linear model includes Spokoiny (2001) under homoscedastic errors and Zhang (2003) under heteroscedastic errors. Finally, Horowitz and Spokoiny (2001) deal with the general case of a nonlinear model with heteroscedastic errors.

We reconsider the model selection approach to propose a new test with some distinctive features. First, our data-driven choice of the smoothing parameter relies on a specific criterion tailored for testing purposes. This yields an adaptive rate-optimal test. Second, the criterion favors a baseline statistic under the null hypothesis. This results in a simple asymptotic distribution for our statistic and in bounded critical values for our test. By contrast, in the maximum approach critical values diverge and must practically be evaluated by simulation for any sample size. The computational burden of this task can be heavy for a large sample size and a large number of statistics. Moreover, diverging critical values are expected to yield some loss of power compared to our test. In particular, from an asymptotic viewpoint, our test detects local Pitman alternatives converging to the null at a faster rate than the ones detected by a maximum test. In small samples, our simulations show that our test has better power than a maximum test against irregular alternatives.

In our work, we allow for a nonlinear parametric regression model with mutidimensional covariates, non-normal errors and heteroscedasticity of unknown form. In Section 2, we describe the specific aspects of our testing procedure. In Section 3, we detail the practical construction of the test statistic for three types of smoothing procedures. Then we give our assumptions and main results, which concern the null asymptotic behavior of the test, adaptive rate-optimality, and detection of Pitman local alternatives. In Section 4, we prove the validity of a bootstrap method and compare the small sample performances of our test with a maximum test through a simulation experiment. In Section 5, we extend our results to general linear smoothing methods. Finally, we propose a test whose power against additive alternatives is not affected by the curse of dimensionality. Proofs are given in Section 6.
2. Description of the procedure Consider a collection $\left\{\widehat{T}_{h}, h \in \mathcal{H}_{n}\right\}$ of asymptotically centered statistics which measures the lack-of-fit of the null parametric model. The index h is a smoothing parameter, chosen in a discrete grid whose cardinality grows with the sample size n, see our examples in the next section. A maximum test rejects H_{0} when $\max _{h \in \mathcal{H}_{n}} \widehat{T}_{h} / \widehat{v}_{h} \geq z_{\alpha}^{\max }$, where \widehat{v}_{h} estimates the asymptotic null standard deviation of \widehat{T}_{h}. A test in the spirit of Baraud, Huet and Laurent (2003) rejects the null if $\widehat{T}_{h} \geq \widehat{v}_{h} z_{\alpha}(h)$ for some h in \mathcal{H}_{n} or equivalently if $\max _{h \in \mathcal{H}_{n}}\left(\widehat{T}_{h} / \widehat{v}_{h}-z_{\alpha}(h)\right)>0$, where the critical values are chosen to get an asymptotic α-level test, a difficult issue in practice. Setting $z_{\alpha}(h)=z_{\alpha}^{\max }$ yields a maximum test. Because the number of h increases with $n, z_{\alpha}^{\max }$ diverges.

On an informal ground, our approach favors a baseline statistic $\widehat{T}_{h_{0}}$ with lowest variance among the \widehat{T}_{h}. In practice, $\widehat{T}_{h_{0}}$ can be designed to yield high power against parametric or regular alternatives that are of primary interest for the statistician. However, this statistic may not be powerful enough against nonparametric or irregular alternatives. We then propose to combine this baseline statistic with the other statistics \widehat{T}_{h} in the following way. Let $\widehat{v}_{h, h_{0}}$ be some positive estimators of the asymptotic null standard deviation of $\widehat{T}_{h}-\widehat{T}_{h_{0}}$. We select h as

$$
\begin{equation*}
\widetilde{h}=\arg \max _{h \in \mathcal{H}_{n}}\left\{\widehat{T}_{h}-\gamma_{n} \widehat{v}_{h, h_{0}}\right\}=\arg \max _{h \in \mathcal{H}_{n}}\left\{\widehat{T}_{h}-\widehat{T}_{h_{0}}-\gamma_{n} \widehat{v}_{h, h_{0}}\right\} \text { where } \gamma_{n}>0 . \tag{2.1}
\end{equation*}
$$

Our test is

$$
\begin{equation*}
\text { Reject } H_{0} \text { when } \widehat{T}_{\breve{h}} / \widehat{v}_{h_{0}} \geq z_{\alpha} \tag{2.2}
\end{equation*}
$$

where z_{α} is the quantile of order $(1-\alpha)$ of a standard normal.
The distinctive features of our approach are as follows. First, our criterion penalizes each statistic by a quantity proportional to its standard deviation while the criteria reviewed in Hart (1997) use a larger penalty proportional to the variance. Second, the data-driven choice of the smoothing parameter favors h_{0} under the null hypothesis. Indeed, since $\widehat{T}_{h}-\widehat{T}_{h_{0}}$ is of order $\widehat{v}_{h, h_{0}}$ under $H_{0}, \widetilde{h}=h_{0}$ asymptotically under H_{0} if γ_{n} diverges fast enough, see Theorem 1 below. Hence the null limit distribution of the test statistic is the one of $\widehat{T}_{h_{0}} / \widehat{v}_{h_{0}}$, that is the standard normal, and the resulting test has bounded critical values. Third, our selection procedure allows to choose the standardization $\widehat{v}_{h_{0}}$. We could use $\widehat{v}_{\widetilde{h}}$ instead, which also gives an asymptotic α-level test since $\tilde{h}=h_{0}$ asymptotically under H_{0}. But because $\widehat{v}_{h} \geq \widehat{v}_{h_{0}}$ asymptotically for any admissible h, our standardization gives a larger critical region under the alternative. This increases power at no cost from an asymptotic viewpoint, see Fan (1996) for a similar device in wavelet thresholding tests. Our simulation results show that this effect is already large in small samples. By contrast, the maximum approach systematically downweights the statistic \widehat{T}_{h} with its standard deviation.

Third, compared to a test using a single statistic, our test inherits the power properties of each of the \widehat{T}_{h}, up to a term $\gamma_{n} \widehat{v}_{h, h_{0}}$. Indeed, the definition of \widetilde{h} yields

$$
\widehat{T}_{\widetilde{h}}=\max _{h \in \mathcal{H}_{n}}\left(\widehat{T}_{h}-\gamma_{n} \widehat{v}_{h, h_{0}}\right)+\gamma_{n} \widehat{v}_{\tilde{h}, h_{0}} \geq \widehat{T}_{h}-\gamma_{n} \widehat{v}_{h, h_{0}} \quad \text { for any } h \in \mathcal{H}_{n} .
$$

As a consequence, a lower bound for the power of the test is

$$
\begin{equation*}
\mathbb{P}\left(\widehat{T}_{\widetilde{h}} \geq \widehat{v}_{h_{0}} z_{\alpha}\right) \geq \mathbb{P}\left(\widehat{T}_{h} \geq \widehat{v}_{h_{0}} z_{\alpha}+\gamma_{n} \widehat{v}_{h, h_{0}}\right) \quad \text { for any } h \text { in } \mathcal{H}_{n} \tag{2.3}
\end{equation*}
$$

Using a penalty proportional to a standard deviation yields a better power bound than the selection criteria reviewed in Hart (1997). A suitable choice of the smoothing parameter in the latter power bound allows to establish the adaptive rate-optimality of the test, see Theorem 2 below and the following discussion. Fourth, combining the \widehat{T}_{h} with our selection procedure gives
a more powerful test than using the baseline statistic $\widehat{T}_{h_{0}}$. Indeed, since $\widehat{v}_{h_{0}, h_{0}}=0$, a noteworthy implication of (2.3) is

$$
\begin{equation*}
\mathbb{P}\left(\widehat{T}_{\widetilde{h}} \geq \widehat{v}_{h_{0}} z_{\alpha}\right) \geq \mathbb{P}\left(\widehat{T}_{h_{0}} \geq \widehat{v}_{h_{0}} z_{\alpha}\right) \tag{2.4}
\end{equation*}
$$

Theorem 3 below uses the latter inequality to study detection of Pitman local alternatives approaching the null at a faster rate than in Horowitz and Spokoiny (2001).
3. Main results For any integer q and any $x \in \mathbb{R}^{q},|x|=\max _{1 \leq i \leq q}\left|x_{i}\right|$. For real deterministic sequences, $a_{n} \asymp b_{n}$ means that a_{n} and b_{n} have the same exact order, i.e. there is a $C>1$ with $1 / C \leq a_{n} / b_{n} \leq C$ for n large enough. For real random variables, $A_{n} \asymp_{\mathbb{P}} B_{n}$ means that $\mathbb{P}\left(1 / C \leq A_{n} / B_{n} \leq C\right)$ goes to 1 when n grows. In such statements, uniformity with respect to a variable means that C can be chosen independently of it. A sequence $\left\{m_{n}(\cdot)\right\}_{n \geq 1}$ is equicontinuous if for any $\epsilon>0$, there is a $\eta>0$ such that $\sup _{n \geq 1}\left|m_{n}(x)-m_{n}\left(x^{\prime}\right)\right| \leq \epsilon$ for all x, x^{\prime} in $[0,1]^{p}$ with $\left|x-x^{\prime}\right| \leq \eta$.
3.1. Construction of the statistics and assumptions Let $\widehat{\theta}_{n}$ be the nonlinear least-squares (NLLS) estimator of θ in Model (1.1), that is

$$
\begin{equation*}
\widehat{\theta}_{n}=\arg \min _{\theta \in \Theta} \sum_{i=1}^{n}\left(Y_{i}-\mu\left(X_{i} ; \theta\right)\right)^{2} \tag{3.1}
\end{equation*}
$$

with an appropriate convention in case of ties. A typical statistic \widehat{T}_{h} is an estimator of the mean-squared distance of the regression function from the parametric model

$$
\begin{equation*}
\min _{\theta \in \Theta} \sum_{i=1}^{n}\left(m_{n}\left(X_{i}\right)-\mu\left(X_{i} ; \theta\right)\right)^{2} \tag{3.2}
\end{equation*}
$$

From the estimated parametric residuals $\widehat{U}_{i}=Y_{i}-\mu\left(X_{i} ; \widehat{\theta}_{n}\right)=m\left(X_{i}\right)-\mu\left(X_{i} ; \widehat{\theta}_{n}\right)+\varepsilon_{i}, i=$ $1, \ldots, n$, we can estimate the departure from the parametric regression using a leave-one out linear nonparametric estimator $\widehat{\delta}_{h}\left(X_{i}\right)=\sum_{j=1, j \neq i}^{n} \nu_{i j}(h) \widehat{U}_{j}$ based on some weights $\nu_{i j}(h)$ with smoothing parameter h. Then (3.2) can be estimated as

$$
\begin{equation*}
\widehat{T}_{h}=\sum_{i=1}^{n} \widehat{U}_{i} \widehat{\delta}_{h}\left(X_{i}\right)=\sum_{1 \leq i \neq j \leq n} \frac{\nu_{i j}(h)+\nu_{j i}(h)}{2} \widehat{U}_{i} \widehat{U}_{j}=\widehat{U}^{\prime} W_{h} \widehat{U} \tag{3.3}
\end{equation*}
$$

where $\widehat{U}=\left[\widehat{U}_{1}, \ldots \widehat{U}_{n}\right]^{\prime}$ and the generic element of W_{h} is $w_{i j}(h)=\left(\nu_{i j}(h)+\nu_{j i}(h)\right) / 2$ for $i \neq j$ and $w_{i i}(h)=0$. Such a \widehat{T}_{h} is asymptotically normal under H_{0}, see e.g. de Jong (1987). Examples 1a and 1b come from projection methods while Example 2 builds on kernel smoothing.

Example 1a: Regression on multivariate polynomial functions. Let $\psi_{k}(x)=\prod_{\ell=1}^{p} x_{\ell}^{k_{\ell}}$, for $k \in \mathbb{N}^{p}$ with $|k|=\max _{l=1, \ldots, p} k_{l} \leq 1 / h$. Let $\Psi_{h}=\left[\psi_{k}\left(X_{i}\right),|k| \leq 1 / h, i=1, \ldots, n\right]$ and $P_{h}=\Psi_{h}\left(\Psi_{h}^{\prime} \Psi_{h}\right)^{-1} \Psi_{h}^{\prime}$ be the $n \times n$ orthogonal projection matrix onto the linear subspace of \mathbb{R}^{n} spanned by Ψ_{h}. The matrix W_{h} is obtained from P_{h} by setting its diagonal elements to zero.

Example 1b: Regression on piecewise polynomial functions. Under the assumption that the support of X is $[0,1]^{p}$, we consider piecewise polynomial functions of fixed order \bar{q} over bins $I_{k}(h)=\prod_{\ell=1}^{p}\left[k_{\ell} h,\left(k_{\ell}+1\right) h\right), k=\left(k_{1}, \ldots, k_{p}\right), k_{\ell}=0, \ldots(1 / h)-1$. These functions write

$$
\psi_{q k h}(x)=\prod_{\ell=1}^{p} x_{\ell}^{q_{\ell}} \mathbb{I}\left(x \in I_{k}(h)\right), 0 \leq|q|=\max _{1 \leq \ell \leq p} q_{\ell} \leq \bar{q}, 1 \leq|k|=\max _{1 \leq \ell \leq p} k_{\ell} \leq 1 / h
$$

The particular choice $\bar{q}=0$ corresponds to the regressogram. The matrix W_{h} is constructed as in Example 1a.

Example 2: Kernel smoothing. Consider a continuous, nonnegative, symmetric, and bounded kernel $K(\cdot)$ from \mathbb{R}^{p} that integrates to 1 and has a positive integrable Fourier transform. These conditions hold for products of the triangular, normal, Laplace, or Cauchy kernels. Define $K_{h}(x)=K\left(x_{1} / h, \ldots, x_{p} / h\right)$. We consider

$$
\widehat{T}_{h}=\sum_{1 \leq i \neq j \leq n} \frac{1}{(n-1) h^{p}} \widehat{U}_{i} \frac{K_{h}\left(X_{i}-X_{j}\right)}{\sqrt{\widehat{f}_{h}\left(X_{i}\right) \widehat{f}_{h}\left(X_{j}\right)}} \widehat{U}_{j} \quad \text { with } \quad \widehat{f}_{h}\left(X_{i}\right)=\frac{1}{(n-1) h^{p}} \sum_{j \neq i} K_{h}\left(X_{j}-X_{i}\right) .
$$

We now turn to variance estimations. The leave-one-out construction of the \widehat{T}_{h} gives that the asymptotic conditional variance v_{h}^{2} and $v_{h, h_{0}}^{2}$ of \widehat{T}_{h} and $\widehat{T}_{h}-\widehat{T}_{h_{0}}$ under H_{0} write

$$
\begin{align*}
v_{h}^{2} & =2 \sum_{1 \leq i, j \leq n} w_{i j}^{2}(h) \sigma^{2}\left(X_{i}\right) \sigma^{2}\left(X_{j}\right), \tag{3.4}\\
v_{h, h_{0}}^{2} & =2 \sum_{1 \leq i, j \leq n}\left(w_{i j}(h)-w_{i j}\left(h_{0}\right)\right)^{2} \sigma^{2}\left(X_{i}\right) \sigma^{2}\left(X_{j}\right),
\end{align*}
$$

For our main examples, $v_{h_{0}}^{2} \asymp_{\mathbb{P}} h_{0}^{-p}$ and $v_{h, h_{0}}^{2} \asymp_{\mathbb{P}} h^{-p}-h_{0}^{-p}$, see Proposition 2 in the Proof section. Let $\sigma^{2}(\cdot)$ be a nonparametric estimator of $\widehat{\sigma}^{2}(\cdot)$ such that

$$
\begin{equation*}
\max _{1 \leq i \leq n}\left|\frac{\widehat{\sigma}_{n}^{2}\left(X_{i}\right)}{\sigma^{2}\left(X_{i}\right)}-1\right|=o_{\mathbb{P}}(1) \tag{3.5}
\end{equation*}
$$

for any equicontinuous sequence of regression functions. For instance, let

$$
\begin{equation*}
\widehat{\sigma}_{n}^{2}\left(X_{i}\right)=\frac{\sum_{j=1}^{n} Y_{j}^{2} \mathbb{I}\left(\left|X_{j}-X_{i}\right| \leq b_{n}\right)}{\sum_{j=1}^{n} \mathbb{I}\left(\left|X_{j}-X_{i}\right| \leq b_{n}\right)}-\left(\frac{\sum_{j=1}^{n} Y_{j} \mathbb{I}\left(\left|X_{j}-X_{i}\right| \leq b_{n}\right)}{\sum_{j=1}^{n} \mathbb{I}\left(\left|X_{j}-X_{i}\right| \leq b_{n}\right)}\right)^{2} \tag{3.6}
\end{equation*}
$$

where b_{n} is a bandwidth parameter chosen independently of \mathcal{H}_{n} such that $n^{1-4 / d^{\prime}} b_{n}^{p}$ diverges, see Proposition 3 in the Proof Section. Consistent estimators of the variances in (3.4) are

$$
\begin{aligned}
\widehat{v}_{h_{0}}^{2} & =2 \sum_{1 \leq i, j \leq n} w_{i j}^{2}\left(h_{0}\right) \widehat{\sigma}_{n}^{2}\left(X_{i}\right) \widehat{\sigma}_{n}^{2}\left(X_{j}\right), \\
\widehat{v}_{h, h_{0}}^{2} & =2 \sum_{1 \leq i, j \leq n}\left(w_{i j}(h)-w_{i j}\left(h_{0}\right)\right)^{2} \widehat{\sigma}_{n}^{2}\left(X_{i}\right) \widehat{\sigma}_{n}^{2}\left(X_{j}\right)
\end{aligned}
$$

Finally, for the sake of parsimony, and following Horowitz and Spokoiny (2001), Lepski, Mammen and Spokoiny (1997), and Spokoiny (2001), the set \mathcal{H}_{n} of admissible smoothing parameters is a geometric grid of $J_{n}+1$ smoothing parameters

$$
\begin{equation*}
\mathcal{H}_{n}=\left\{h_{j}=h_{0} a^{-j}, j=0, \ldots, J_{n}\right\} \quad \text { for some } a>1, J_{n} \rightarrow+\infty \tag{3.7}
\end{equation*}
$$

Note that h_{0} can depend on an empirical measure of the dispersion of the X_{i} as in Zhang (2003), and can converge to zero very slowly, say as $1 / \ln n$. We assume that

Assumption D. The i.i.d. $X_{i} \in[0,1]^{p}$ have a strictly positive continuous density over $[0,1]^{p}$.

Assumption M. The function $\mu(x ; \theta)$ is continuous with respect to x in $[0,1]^{p}$ and θ in Θ, where Θ is a compact subset of \mathbb{R}^{d}. There is a constant $\dot{\mu}$ such that for all θ, θ^{\prime} in Θ and for all x in $[0,1]^{p},\left|\mu(x ; \theta)-\mu\left(x ; \theta^{\prime}\right)\right| \leq \dot{\mu}\left|\theta-\theta^{\prime}\right|$.

Assumption E. The ε_{i} are independent given X_{1}, \ldots, X_{n}. For each i, the distribution of ε_{i} given the design depends only on $X_{i}, \mathbb{E}\left[\varepsilon_{i} \mid X_{i}\right]=0$, and $\operatorname{Var}\left[\varepsilon_{i} \mid X_{i}\right]=\sigma^{2}\left(X_{i}\right)$, where the unknown variance function $\sigma^{2}(\cdot)$ is continuous and bounded away from 0 . For some $d^{\prime}>\max (d, 4)$, $\mathbb{E}^{1 / d^{\prime}}\left[\left|\varepsilon_{i}\right|^{d^{\prime}} \mid X_{i}\right]<C_{1}$ for all i.

Assumption W. (i) For any h, the matrix W_{h} is one from Example 1a, 1b or 2. (ii) The set \mathcal{H}_{n} is as in (3.7), with $h_{J_{n}} \asymp(\ln n)^{C_{2} / p} n^{-\frac{2}{4 \underline{s}+p}}$, for some $C_{2}>1$, with $\underline{s}=5 p / 4$ in Example 1a and $\underline{s}=p / 4$ in Examples $1 b$ and 2. The number a is integer for Example $1 b$.

Under Assumption M, the value of the parameter θ may not be identified, as in mixture or multiple index models. The restriction on $h_{J_{n}}$ together with the definition of \mathcal{H}_{n} implies that the number $J_{n}+1$ of smoothing parameters is of order $\ln n$ at most. Assumption W-(i) which consider specific nonparametric methods will be relaxed in Section 5.1, allowing in particular to consider a baseline statistic $\widehat{T}_{h_{0}}$ designed for specific parametric alternatives.
3.2. Limit behavior of the test under the null hypothesis The next theorem allows for a penalty sequence γ_{n} of exact order $\sqrt{2 \ln \ln n}$, as J_{n} is of order $\ln n$.

Theorem 1. Consider a sequence $\left\{\mu\left(\cdot, \theta_{n}\right), \theta_{n} \in \Theta\right\}_{n \geq 1}$ in H_{0}. Let Assumptions D, M, E, and W hold and assume that the variance estimator fulfills (3.5). If $h_{0} \rightarrow 0$ and $\gamma_{n} \rightarrow \infty$ with

$$
\begin{equation*}
\gamma_{n} \geq(1+\eta) \sqrt{2 \ln J_{n}} \text { for some } \eta>0 \tag{3.8}
\end{equation*}
$$

the test (2.2) has level α asymptotically given the design, i.e. $\mathbb{P}\left(\widehat{T}_{\breve{h}} \geq z_{\alpha} \widehat{v}_{h_{0}} \mid X_{1}, \ldots, X_{n}\right) \xrightarrow{\mathbb{P}} \alpha$.

Theorem 1 is proved in two main steps. The first step consists in showing that

$$
\begin{equation*}
\mathbb{P}\left(\widetilde{h} \neq h_{0}\right)=\mathbb{P}\left(\max _{h \in \mathcal{H}_{n} \backslash\left\{h_{0}\right\}} \frac{\widehat{T}_{h}-\widehat{T}_{h_{0}}}{\widehat{v}_{h, h_{0}}}>\gamma_{n}\right) \tag{3.9}
\end{equation*}
$$

goes to zero. This is done by first proving that $\left(\widehat{T}_{h}-\widehat{T}_{h_{0}}\right) / \widehat{v}_{h, h_{0}}$ asymptotically behaves at first-order as $\varepsilon^{\prime}\left(W_{h}-W_{h_{0}}\right) \varepsilon / v_{h, h_{0}}$ uniformly for h in $\mathcal{H}_{n} \backslash\left\{h_{0}\right\}$, where $\varepsilon=\left[\varepsilon_{1}, \ldots \varepsilon_{n}\right]^{\prime}$, and second by bounding the distribution tails of $\max _{h \in \mathcal{H}_{n} \backslash\left\{h_{0}\right\}} \varepsilon^{\prime}\left(W_{h}-W_{h_{0}}\right) \varepsilon / v_{h, h_{0}}$. Then we show that the limit distribution of $\widehat{T}_{h_{0}} / \widehat{v}_{h_{0}}$ is the one of $\varepsilon^{\prime} W_{h_{0}} \varepsilon / v_{h_{0}}$, which converges to a standard normal when h_{0} goes to 0 .

As done by Horowitz and Spokoiny (2001), Theorem 1 imposes that h_{0} asymptotically vanishes. This condition yields a pivotal limit distribution for our test statistic. As shown by Hart (1997, p. 220) under stronger regularity conditions on the parametric model, considering a fixed h_{0} generally yields a non pivotal limit distribution because the estimation error $\mu\left(\cdot ; \widehat{\theta}_{n}\right)-\mu(\cdot ; \theta)$ cannot be neglected. Hart (1997) then recommends the use of a double bootstrap procedure to estimate the critical values of the test.
3.3. Consistency of the test Theorem 2 below considers general alternatives with unknown smoothness. Theorem 3 considers Pitman local alternatives. For any real s, let $\lfloor s\rfloor$ be the lower integer part of s, i.e. $\lfloor s\rfloor<s \leq\lfloor s\rfloor+1$. Let the Hölder class $C_{p}(L, s)$ be the set of maps $m(\cdot)$ from $[0,1]^{p}$ to \mathbb{R} with

$$
\begin{aligned}
& C_{p}(L, s)=\left\{m(\cdot) ;|m(x)-m(y)| \leq L|x-y|^{s} \text { for all } x, y \text { in }[0,1]^{p}\right\} \text { for } s \in(0,1], \\
& C_{p}(L, s)=\left\{m(\cdot) ; \text { the }\lfloor s\rfloor \text {-th partial derivatives of } m(\cdot) \text { are in } C_{p}(L, s-\lfloor s\rfloor)\right\} \text { for } s>1 .
\end{aligned}
$$

Theorem 2. Consider a sequence of equicontinuous regression functions $\left\{m_{n}(\cdot)\right\}_{n \geq 1}$ such that for some unknown $s>\underline{s}$ and $L>0, m_{n}(\cdot)-\mu(\cdot ; \theta) \in C_{p}(L, s)$ for all θ in Θ and all n. Let Assumptions D, M, E and W hold. Assume that the variance estimator fulfills (3.5), that $1 /\left(C_{0} \ln n\right) \leq h_{0} \leq C_{0}$ for some $C_{0}>0$, and that $\gamma_{n} \leq n^{\gamma}$ for some γ in $(0,1)$. If (3.10) $\min _{\theta \in \Theta}\left[\frac{1}{n} \sum_{i=1}^{n}\left(m_{n}\left(X_{i}\right)-\mu\left(X_{i} ; \theta\right)\right)^{2}\right]^{1 / 2} \geq\left(1+o_{\mathbb{P}}(1)\right) \kappa_{1} L^{\frac{p}{4 s+p}}\left(\frac{\gamma_{n} \sup _{x \in[0,1]^{p}} \sigma^{2}(x)}{n}\right)^{\frac{2 s}{4 s+p}}$ the test (2.2) is consistent given the design, i.e $\mathbb{P}\left(\widehat{T}_{\widetilde{h}} \geq \widehat{v}_{h_{0}} z_{\alpha} \mid X_{1}, \ldots, X_{n}\right) \xrightarrow{\mathbb{P}} 1$, provided $\kappa_{1}=$ $\kappa_{1}(s)>0$ is large enough.

The proof is based upon the power bound (2.3). From this inequality, the test is consistent if $\widehat{T}_{h}-z_{\alpha} \widehat{v}_{h_{0}}-\gamma_{n} \widehat{v}_{h, h_{0}}$ diverges in probability for a suitable choice of the smoothing parameter h adapted to the unknown smoothness of the departure from the parametric model. Thus combining several statistics in the procedure is crucial to detect alternatives of unknown smoothness. A sketch of the proof is as follows. For a departure from the parametric model in $C_{p}(L, s)$, \widehat{T}_{h} estimates $\min _{\theta \in \Theta} \sum_{i=1}^{n}\left(m_{n}\left(X_{i}\right)-\mu\left(X_{i} ; \theta\right)\right)^{2}$ up to a multiplicative constant with a bias of order $n L^{2} h^{2 s}$. The standard deviation of \widehat{T}_{h} is of order $h^{-p / 2}$ and the order of $\widehat{v}_{h_{0}} z_{\alpha}+\gamma_{n} \widehat{v}_{h, h_{0}}$ is $\gamma_{n} h^{-p / 2} \sup _{x \in[0,1]^{p}} \sigma^{2}(x)$. Collecting the leading terms shows that $\widehat{T}_{h}-\widehat{v}_{h_{0}} z_{\alpha}-\gamma_{n} \widehat{v}_{h, h_{0}}$ diverges if $\min _{\theta \in \Theta}\left[\frac{1}{n} \sum_{i=1}^{n}\left(m_{n}\left(X_{i}\right)-\mu\left(X_{i} ; \theta\right)\right)^{2}\right]^{1 / 2}$ is of larger order than

$$
\left[\frac{1}{n}\left(n L^{2} h^{2 s}+\gamma_{n} h^{-p / 2} \sup _{x \in[0,1]^{p}} \sigma^{2}(x)\right)\right]^{1 / 2}
$$

Finding the minimum of this quantity with respect to h gives the rate of Inequality (3.10). The rate of the optimal h is $\left(\gamma_{n} \inf _{x \in[0,1]^{p}} \sigma^{2}(x) / L^{2} n\right)^{2 /(4 s+p)}$. The parsimonious set \mathcal{H}_{n} is rich
enough to contain an h of this order. Our proof can be easily modified to study the selection procedures considered in Hart (1997), which use $\gamma_{n} \widehat{v}_{h}^{2}$ in (2.1) instead of $\gamma_{n} \widehat{v}_{h, h_{0}}$. This would give the worst detection rate $\left(\gamma_{n} / n\right)^{s /(2 s+p)}$.

For γ_{n} of order $\sqrt{\ln \ln n}$, the smallest order compatible with Theorem 1, the test detects alternatives (3.10) with rate $(\sqrt{\ln \ln n} / n)^{2 s /(4 s+p)}$ for any $s>\underline{s}$. This rate is the optimal adaptive minimax one for the idealistic white noise model, see Spokoiny (1996). Horowitz and Spokoiny (2001) obtain the same rate for their kernel-based test but with minimal smoothness index $\underline{s}=\max (2, p / 4)$, while we achieve $\underline{s}=p / 4$ for our piecewise polynomial or kernel-based tests. The value $p / 4$ is critical for the smoothness index s as previously noted by Guerre and Lavergne (2002) and Baraud, Huet and Laurent (2003).

Theorem 3. Let θ_{0} be an inner point of Θ and consider a sequence of local alternatives $m_{n}(\cdot)=\mu\left(\cdot ; \theta_{0}\right)+r_{n} \delta_{n}(\cdot)$, where $\left\{\delta_{n}(\cdot)\right\}_{n \geq 1}$ is an equicontinuous sequence from $C_{p}(L, s)$ for some unknown $s>\underline{s}$ and $L>0$, with

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} \delta_{n}^{2}\left(X_{i}\right)=1+o_{\mathbb{P}}(1) \quad \text { and } \quad \frac{1}{n} \sum_{i=1}^{n} \delta_{n}\left(X_{i}\right) \frac{\partial \mu\left(X_{i} ; \theta_{0}\right)}{\partial \theta}=o_{\mathbb{P}}(1) \tag{3.11}
\end{equation*}
$$

Assume that for each x in $[0,1]^{p}, \mu(x ; \theta)$ is twice differentiable with respect to θ in Θ with second-order derivatives continuous in x and θ and that for some $C_{3}>0$

$$
\begin{equation*}
\left(C_{3}+o_{\mathbb{P}}(1)\right)\left|\theta-\theta^{\prime}\right|^{2} \leq \frac{1}{n} \sum_{i=1}^{n}\left(\mu\left(X_{i} ; \theta\right)-\mu\left(X_{i} ; \theta^{\prime}\right)\right)^{2} \text { for any } \theta, \theta^{\prime} \text { in } \Theta . \tag{3.12}
\end{equation*}
$$

Let Assumptions D, M, E, and W hold and assume that the variance estimator fulfills (3.5). If $h_{0} \rightarrow 0, r_{n} \rightarrow 0$, and $\sqrt{n h_{0}^{p / 2}} r_{n} \rightarrow \infty$, the test is consistent given the design.

The rate r_{n} of Theorem 3 can be made arbitrarily close to $1 / \sqrt{n}$ by a proper choice of h_{0}. This improves upon Horowitz and Spokoiny (2001) who obtain the rate $\sqrt{\ln \ln n} / \sqrt{n}$.

As stated in Lemma 5 of the Proof Section, Conditions (3.11) and the identification condition (3.12) ensures that

$$
\begin{equation*}
\min _{\theta \in \Theta}\left[\frac{1}{n} \sum_{i=1}^{n}\left(m_{n}\left(X_{i}\right)-\mu\left(X_{i} ; \theta\right)\right)^{2}\right]^{1 / 2}=r_{n}-o_{\mathbb{P}}\left(r_{n}\right) . \tag{3.13}
\end{equation*}
$$

As the minimum of (3.13) is achieved for $\theta=\theta_{0}$ at first-order, $r_{n} \delta_{n}(\cdot)$ is asymptotically the departure from $\mu\left(\cdot ; \theta_{0}\right)$. When r_{n} converges to zero, this departure becomes smoother as it belongs to the smoothness class $C_{p}\left(L r_{n}, s\right)$. This sharply contrasts with the departures from the parametric model in Theorem 2, which can be much more irregular. The proof of Theorem 3 follows from (2.4). The test is consistent as soon as $\widehat{T}_{h_{0}}-\widehat{v}_{h_{0}} z_{\alpha}$ diverges in probability. We show that $\widehat{T}_{h_{0}}$ is, up to a multiplicative constant, an estimate of $r_{n}^{2} \sum_{i=1}^{n} \delta_{n}^{2}\left(X_{i}\right)$ with a negligible bias and a standard deviation of order $h_{0}^{-p / 2}$. As $\widehat{v}_{h_{0}}$ is of order $h_{0}^{-p / 2}, \widehat{T}_{h_{0}}-\widehat{v}_{h_{0}} z_{\alpha}$ diverges to infinity as soon as $n r_{n}^{2}$ diverges faster than $h_{0}^{-p / 2}$ as required.

4. Bootstrap implementation and small sample behavior

4.1. Bootstrap critical values The wild bootstrap, initially proposed by $\mathrm{Wu}(1986)$, is often used in smooth lack-of-fit tests to compute small sample critical values, see e.g. Härdle and Mammen (1993). Here we use a generalization of this method, the smooth conditional moments bootstrap introduced by Gozalo (1997). It consists in drawing n i.i.d. random variables ω_{i} independent from the original sample with $\mathbb{E} \omega_{i}=0, \mathbb{E} \omega_{i}^{2}=1$, and $\mathbb{E}\left|\omega_{i}\right|^{d^{\prime}}<\infty$, and to generate bootstrap observations of Y_{i} as $Y_{i}^{*}=\mu\left(X_{i}, \widehat{\theta}_{n}\right)+\widehat{\sigma}_{n}\left(X_{i}\right) \omega_{i}, i=1, \ldots, n$. A bootstrap test statistic $\widehat{T}_{\widehat{h}^{*}}^{*} / \widehat{v}_{h_{0}}^{*}$ is built from the bootstrap sample as was the original test statistic. When this scheme is repeated many times, the bootstrap critical value $z_{\alpha, n}^{*}$ at level α is the empirical $1-\alpha$ quantile of the bootstrapped test statistics. This critical value is then compared to the initial test statistic. The following theorem establishes the first-order consistency of this procedure.

Theorem 4. Let $Y_{i}=m_{n}\left(X_{i}\right)+\varepsilon_{i}, i=1, \ldots, n$ be the initial model, where $\left\{m_{n}(\cdot)\right\}_{n \geq 1}$ is any equicontinuous sequence of functions. Under the assumptions of Theorem 1 and for the variance estimator $\widehat{\sigma}_{n}^{2}\left(X_{i}\right)$ of (3.6),

$$
\sup _{z \in \mathbb{R}}\left|\mathbb{P}\left(\widehat{T}_{\hat{h}^{*}}^{*} / \widehat{v}_{h_{0}}^{*} \leq z \mid X_{1}, Y_{1}, \ldots, X_{n}, Y_{n}\right)-\mathbb{P}(N(0,1) \leq z)\right| \xrightarrow{\mathbb{P}} 0
$$

4.2. Small sample behavior We investigated the small sample behavior of our bootstrap test. We generated samples of 150 observations through the model

$$
\begin{equation*}
Y=\theta_{1}+\theta_{2} X+r \cos (2 \pi t X)+\varepsilon, r \in\left\{0, \sqrt{\frac{2}{3}}\right\}, t \in\{2,5,10\} \tag{4.1}
\end{equation*}
$$

where X is distributed as $U[-1,1]$. The null hypothesis corresponds to $r=0$, while under the alternatives $r^{2}=2 / 3$ and $\mathbb{E}\left[r^{2} \cos ^{2}(2 \pi t X)\right] / \mathbb{E} \varepsilon^{2}=1 / 3$ for any integer t, a quite small signal-to-noise ratio. When t increases, the deviation from the linear model becomes more oscillating and irregular, and then more difficult to detect.

To compute our test statistic, we used the regressogram method of Example 1b with binwidths in $\mathcal{H}_{n}=\left\{h_{0}=2^{-2}, h_{1}=2^{-3}, \ldots, h_{5}=2^{-7}\right\}$. The smallest bandwidth thus defines 128 cells, which is sufficient for 150 observations. The γ_{n} was set to $c \sqrt{2 \ln J_{n}}$ where $c=1,1.5,2$. For each experiment, we run 5000 replications under the null and 1000 under the alternative. For each replication, the bootstrap critical values were computed from 199 bootstrap samples. For ω_{i}, we used the two-points distribution

$$
\mathbb{P}\left(\omega_{i}=\frac{1-\sqrt{5}}{2}\right)=\frac{5+\sqrt{5}}{10}, \mathbb{P}\left(\omega_{i}=\frac{1+\sqrt{5}}{2}\right)=\frac{5-\sqrt{5}}{10},
$$

which verifies the required conditions.
In a first stage we set $\left(\theta_{1}, \theta_{2}\right)=(0,0)$ and performed a test for white-noise, i.e. $H_{0}: m(\cdot)=0$, with homoscedastic errors following a standard normal distribution (Table 1). We estimated the variance under homoscedasticity by

$$
\widehat{\sigma}_{n}^{2}=\frac{1}{2(n-1)} \sum_{i=1}^{n-1}\left(Y_{(i+1)}-Y_{(i)}\right)^{2},
$$

where $Y_{(i)}$ denote observations ordered according to the order of the X_{i}. This estimate is consistent under the null and the alternative, see Rice (1984). In each cell of the tables, the first and second rows give empirical percentages of rejections at 2% and 5% nominal levels. We compare our test to (i) simple benchmark tests based on fixed bandwidths h_{0} and h_{5}, to evaluate the effect of a data-driven bandwidth (ii) the maximum test based on $\operatorname{MAX}=\max _{h \in \mathcal{H}_{n}} \widehat{T}_{h} / \widehat{v}_{h}$, to evaluate the gain of our approach (iii) a test based on $\widehat{T}_{\tilde{h}} / \widehat{v}_{\tilde{h}}$, to evaluate the effect of our standardization. For each test, we computed bootstrap critical values as for our test.

Under the null hypothesis, bootstrap leads to accurate rejection probabilities for all tests. Under the considered alternatives, empirical power decreases for all tests when the frequency increases from $t=2$ to $t=10$. The data-driven tests always dominate the tests based on the fixed parameter h_{0} which poorly behaves. For the low frequency alternative data-driven tests perform very well with power greater than 90% and 95% at a 2% and 5% nominal level respectively, and there is no significant differences between them. For higher frequency alternatives, differences are significant. Our test has quite high power and rejects the null hypothesis at more than 85% and 60% at a 5% level when $t=5$ and 10 respectively. It performs better than or as well as does the test based on h_{5} designed for irregular alternatives, except for $c=2$ and $t=10$. It always dominates Max with differences ranging from 7.1% to 18.3% depending on the level. The test based on $\widehat{T}_{\tilde{h}} / \widehat{v}_{\tilde{h}}$ behaves as the Max test. This suggests that the high performances of our test are mainly explained by our standardization choice, which is made possible by our selection procedure.

To check whether these conclusions are affected by the details of the experiments, we consider errors following a centered and standardized exponential (Table 2), a standardized Student with five degrees of freedom (Table 3), a normal distribution with conditional variance $\sigma^{2}(X)=(1+$ $\left.3 X^{2}\right) / 3$ using our estimator (3.6) with $b_{n}=1 / 8$ (Table 4), and a linear model with homoscedastic normal errors and $\left(\theta_{1}, \theta_{2}\right)=(1,3)$. As results for $\widehat{T}_{\tilde{h}} / \widehat{v}_{\tilde{h}}$ are very similar to the ones for MAX, we do not report them. For exponential errors, there is a slight tendency to overrejection. It is likely that matching third-order moments in the bootstrap samples generation as proposed by Gozalo (1997) would lead to more accurate critical values. Heteroscedasticity does not adversely affect the behavior of the tests. For the linear model, there is some gain in power for the Max test compared with Table 1, but differences with our test remain significant for the two highfrequency alternatives.

5. Extensions to general nonparametric methods and additive alternatives

5.1. General nonparametric methods We give here some general sufficient conditions ensuring the validity of our results. These conditions could be checked for other smoothing methods
or other designs than the ones considered here. Indeed, different smoothing methods can be used for specification testing, see e.g. Chen (1994) for spline smoothing, Fan, Zhang and Zhang (2001) for local polynomials, and Spokoiny (1996) for wavelets. Also our conditions allow for various constructions of the quadratic forms \widehat{T}_{h}, see e.g. Dette (1999) and Härdle and Mammen (1993).

For a $n \times n$ matrix W, let $\operatorname{Sp}_{n}[W]$ be its spectral radius and $\mathrm{N}_{n}^{2}[W]=\operatorname{Tr}\left[W^{\prime} W\right]=\sum_{i, j} w_{i j}^{2}$. For W symmetric, the former is its largest eigenvalue in absolute value and the latter is the sum of its squared eigenvalues.

Assumption W0. Let \mathcal{H}_{n} be as in (3.7) with $h_{J_{n}} \asymp(\ln n)^{C_{2} / p} / n^{2 /(4 \underline{s}+p)}$ for some $\underline{s}>0$, $C_{2}>1$, and $h_{0} \rightarrow 0$. The collection of $n \times n$ matrices $\left\{W_{h}, h \in \mathcal{H}_{n}\right\}$ is such that (i) For all h, $W_{h}=\left[w_{i j}(h), 1 \leq i, j \leq n\right]$ depends only upon X_{1}, \ldots, X_{n} and is real symmetric with $w_{i i}(h)=0$ for all i. (ii) $\max _{h \in \mathcal{H}_{n}} \operatorname{Sp}_{n}\left[W_{h}\right]=O_{\mathbb{P}}$ (1). (iii) $\mathrm{N}_{n}^{2}\left[W_{h}\right] \asymp_{\mathbb{P}} h^{-p}$ for all $h \in \mathcal{H}_{n}$ and uniformly in $h \in \mathcal{H}_{n} \backslash\left\{h_{0}\right\} \mathrm{N}_{n}^{2}\left[W_{h}-W_{h_{0}}\right] \asymp_{\mathbb{P}} h^{-p}-h_{0}^{-p}$.

Assumption W1. Let \mathcal{H}_{n}, \underline{s}, and $h_{J_{n}}$ be as in Assumption W0. For any sequence $h_{n}=h_{j_{n}}$ from \mathcal{H}_{n} (i) There are some symmetric positive semi-definite matrices $P_{h_{n}}$ with $\operatorname{Sp}_{n}\left[W_{h_{n}}-P_{h_{n}}\right]=o_{\mathbb{P}}(1)$. (ii) For any $s>\underline{s}$ there is a set $\Pi_{s, n}$ of functions from $[0,1]^{p}$ to \mathbb{R} such that for any $L>0$ and any $\delta(\cdot)$ in $C_{p}(L, s)$, there is a $\pi(\cdot)$ in $\Pi_{s, n}$ with $\sup _{x \in[0,1]^{p}}|\delta(x)-\pi(x)| \leq C_{4} L h_{n}^{s} \quad$ for some $C_{4}=C_{4}(s)>0$. (iii) Let $\Lambda_{n}^{2}=\Lambda_{n}^{2}\left(s, h_{n}\right)=$ $\inf _{\pi \in \Pi_{s, n}} \sum_{1 \leq i, j \leq n} \pi\left(X_{i}\right) p_{i j}\left(h_{n}\right) \pi\left(X_{j}\right) / \sum_{i=1}^{n} \pi\left(X_{i}\right)^{2}$ where $p_{i j}\left(h_{n}\right)$ is the generic element of $P_{h_{n}}$. For any $s>\underline{s}$ there is a constant $C_{5}=C_{5}(s)>0$ such that $\mathbb{P}\left(\Lambda_{n}>C_{5}\right) \rightarrow 1$.

Assumption W1 describes the approximation properties of the nonparametric method used to build the W_{h} and allows to extend a result of Ingster (1993, pp. 253 and following), see Lemma 6 in the Proof Section. The next proposition shows that our main examples fulfill Assumptions W0 and W1 under a regular i.i.d. random design.

Proposition 1. Assume that Assumption D holds, and let \underline{s} be as in Assumption W. Then Examples $1 a, 1 b$ and 2 satisfy Assumptions W0 and W1.

The next theorem extends our main results under Assumptions W0 and W1. In the Proof Section, we actually show Theorems $1-4$ by proving Theorem 5 and Proposition 1.

Theorem 5. Theorems 1 and 4 hold under Assumption W0 in place of Assumptions D and W. Theorems 2 and 3 hold under Assumptions W0 and W1 in place of Assumptions D and W.
5.2. Additive alternatives Our general framework easily adapts to detection of specific alternatives. We focus here on additive nonparametric regressions $m(x)=m_{1}\left(x_{1}\right)+\cdots+m_{p}\left(x_{p}\right)$. The null hypothesis is

$$
H_{0}: m(\cdot)=\mu(\cdot ; \theta) \quad \text { for some } \theta \in \Theta, \quad \text { where } \mu(x ; \theta)=\mu_{1}\left(x_{1} ; \theta\right)+\cdots+\mu_{p}\left(x_{p} ; \theta\right) .
$$

For ease of notations we consider a modification of Example 1a where we remove crossproduct of polynomial functions. Let $X_{i}=\left[X_{1 i}, \ldots, X_{p i}\right]^{\prime}$ and consider the $(p / h) \times n$ $\operatorname{matrix} \Psi_{h}=\left[X_{1 i}^{k}, \ldots, X_{p i}^{k}, i=1, \ldots, n, k=0, \ldots, 1 / h\right]$. Let W_{h} be the matrix obtained from $\Psi_{h}\left(\Psi_{h}^{\prime} \Psi_{h}\right)^{-1} \Psi_{h}^{\prime}$ by setting the diagonal entries to 0 and \widehat{T}_{h} defined as in (3.3).

Theorem 6. Let the matrices W_{h} be as above and \mathcal{H}_{n} be as in (3.7) with $h_{J_{n}} \asymp(\ln n)^{C_{6}} / n^{1 / 3}$ for some $C_{6}>1$. Let Assumptions D, E, M hold. Consider a sequence of additive equicontinuous regression functions $\left\{m_{n}(\cdot)\right\}_{n \geq 1}$ and assume that the variance estimator fulfills (3.5).
i. For h_{0} and γ_{n} as in Theorem 1, the test is asymptotically of level α given the design.
ii. Assume that for some unknown $s>5 / 4$ and $L>0, m_{n}(\cdot)-\mu(\cdot ; \theta)$ is in $C_{p}(L, s)$ for all θ in Θ and all n. For h_{0} and γ_{n} as in Theorem 2 and

$$
\min _{\theta \in \Theta}\left[\frac{1}{n} \sum_{i=1}^{n}\left(m_{n}\left(X_{i}\right)-\mu\left(X_{i} ; \theta\right)\right)^{2}\right]^{1 / 2} \geq\left(1+o_{\mathbb{P}}(1)\right) \kappa_{2} L^{\frac{1}{4 s+1}}\left(\frac{\gamma_{n} \sup _{x \in[0,1]} \sigma^{2}(x)}{n}\right)^{\frac{2 s}{4 s+1}}
$$

the test is consistent given the design provided $\kappa_{2}=\kappa_{2}(s)$ is large enough.
Proof of Theorem 6 repeats the ones of Theorems 1 and 2 with $v_{h, h_{0}}^{2}$ of order $\left(h^{-1}-h_{0}^{-1}\right)$ instead of $\left(h^{-p}-h_{0}^{-p}\right)$ and is therefore omitted. One can also show consistency of the test against Pitman additive alternatives that approaches the parametric model at rate $o\left(1 / \sqrt{n h_{0}^{1 / 2}}\right)$. The bootstrap procedure described in Section 4.1 also remains valid.
6. Proofs This section is organized as follows. In Section 6.1, we study the quadratic forms $\varepsilon^{\prime}\left(W_{h}-W_{h_{0}}\right) \varepsilon$ and $\varepsilon^{\prime} W_{h} \varepsilon$ under H_{0}. Section 6.2 recalls some results related to variance estimation. In Section 6.3, we gather preliminary results on the parametric estimation error $m_{n}(\cdot)-\mu\left(\cdot ; \hat{\theta}_{n}\right)$. In Sections 6.4 and 6.5, we establish Theorems 1 and 4 under Assumption W0. In Sections 6.6 and 6.7, we establish Theorems 2 and 3 under Assumptions W0-W1. Thus Theorem 5 is a direct consequence of Sections 6.4 to 6.7. Section 6.8 deals with Proposition 1.

We denote $Y=\left[Y_{1}, \ldots, Y_{n}\right]^{\prime}$ and $\varepsilon=\left[\varepsilon_{1}, \ldots, \varepsilon_{n}\right]^{\prime}$. For any $\delta(\cdot)$ from \mathbb{R}^{p} to $\mathbb{R}, \delta=\delta(X)=$ $\left[\delta\left(X_{1}\right), \ldots, \delta\left(X_{n}\right)\right]^{\prime}$ and $\mathrm{D}_{n}(\delta)$ is the $n \times n$ diagonal matrix with entries $\delta\left(X_{i}\right)$. Let $\|\cdot\|_{n}^{2}$ and $(\cdot, \cdot)_{n}$ be the Euclidean norm and inner product on \mathbb{R}^{n} divided by n respectively, that is

$$
\|\delta\|_{n}^{2}=\|\delta(X)\|_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n} \delta^{2}\left(X_{i}\right) \quad \text { and } \quad(\varepsilon, \delta)_{n}=(\varepsilon, \delta(X))_{n}=\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \delta\left(X_{i}\right)
$$

This gives that $\operatorname{Sp}_{n}[W]=\max _{\|u\|_{n}=1}\|W u\|_{n}=\max _{\|u\|_{n}=1}\left|u^{\prime} W u\right| / n$ for a symmetric W. Recall that $\operatorname{Sp}_{n}[A B] \leq \operatorname{Sp}_{n}[A] \operatorname{Sp}_{n}[B]$. Let $\theta_{n}=\theta_{n, m}$ be such that

$$
\begin{equation*}
\min _{\theta \in \Theta}\|m(X)-\mu(X ; \theta)\|_{n}=\left\|m(X)-\mu\left(X ; \theta_{n}\right)\right\|_{n} \tag{6.1}
\end{equation*}
$$

We use the notations $\mathbb{P}_{n}(A)$ for $\mathbb{P}\left(A \mid X_{1}, \ldots, X_{n}\right), \mathbb{E}_{n}[\cdot]$ and $\operatorname{Var}_{n}[\cdot]$ being the associated conditional mean and variance. In what follows, C and C^{\prime} are positive constants that may vary from line to line. An absolute constant depends neither on the design nor on the distribution of the ε_{i} given the design.

6.1. Study of quadratic forms The proof of Lemma 1 is omitted.

Lemma 1. Let W be a $n \times n$ symmetric matrix with zeros on the diagonal. Under Assumption E, $\mathbb{E}_{n}\left[\varepsilon^{\prime} W \varepsilon\right]=0$ and $\operatorname{Var}_{n}\left[\varepsilon^{\prime} W \varepsilon\right]=2 \sum_{1 \leq i, j \leq n} w_{i j}^{2} \sigma^{2}\left(X_{i}\right) \sigma^{2}\left(X_{j}\right)=2 \mathrm{~N}_{n}^{2}\left[\mathrm{D}_{n}(\sigma) W \mathrm{D}_{n}(\sigma)\right] \asymp \mathrm{N}_{n}^{2}[W]$.

Lemma 2. Let $\underline{\sigma}=\inf _{x \in[0,1]^{p}} \sigma(x)>0, \bar{\sigma}=\sup _{x \in[0,1]^{p}} \sigma(x)<\infty$, and $\nu \in(0,1 / 2)$. Under Assumption E, there is an absolute constant $C=C_{\nu}>0$ such that
i. If $\left(\bar{\sigma}^{4} \mathrm{Sp}_{n}^{2}\left[W_{h}\right]\right) /\left(\underline{\sigma}^{4} \mathrm{~N}_{n}^{2}\left[W_{h}\right]\right) \leq \nu$,

$$
\sup _{z \in \mathbb{R}}\left|\mathbb{P}_{n}\left(\varepsilon^{\prime} W_{h} \varepsilon \leq v_{h} z\right)-\mathbb{P}(N(0,1) \leq z)\right| \leq C\left(\frac{\bar{\sigma} \mathrm{Sp}_{n}\left[W_{h}\right]}{\underline{\sigma} \mathrm{N}_{n}\left[W_{h}\right]}\right)^{1 / 4}
$$

ii. For all $h \in \mathcal{H}_{n} \backslash\left\{h_{0}\right\}$ and any $z>0$, if $\left(\bar{\sigma}^{4} \operatorname{Sp}_{n}^{2}\left[W_{h}-W_{h_{0}}\right]\right) /\left(\underline{\sigma}^{4} \mathrm{~N}_{n}^{2}\left[W_{h}-W_{h_{0}}\right]\right)<\nu$,

$$
\mathbb{P}_{n}\left(\left|\frac{\varepsilon^{\prime}\left(W_{h}-W_{h_{0}}\right) \varepsilon}{v_{h, h_{0}}}\right| \geq z\right) \leq \frac{\sqrt{2}}{\sqrt{\pi} z} \exp \left(-\frac{z^{2}}{2}\right)+C\left(\frac{\bar{\sigma} \mathrm{Sp}_{n}\left[W_{h}-W_{h_{0}}\right]}{\underline{\sigma} \mathrm{N}_{n}\left[W_{h}-W_{h_{0}}\right]}\right)^{1 / 4}
$$

Proof of Lemma 2. Let $\widetilde{\varepsilon}=D_{n}^{-1}(\sigma) \varepsilon$, so that $\mathbb{E}_{n}\left[\widetilde{\varepsilon}_{i}\right]=0$ and $\operatorname{Var}_{n}\left[\widetilde{\varepsilon}_{i}\right]=1$ for all i, and let $W=$ $\left[w_{i j}\right]_{1 \leq i, j \leq n}$ be $D_{n}(\sigma) W_{h} D_{n}(\sigma)$ or $D_{n}(\sigma)\left(W_{h}-W_{h_{0}}\right) D_{n}(\sigma)$, so that for $v^{2}=N_{n}^{2}[W]=\sum_{1 \leq i, j \leq n} w_{i j}^{2}$, $\widetilde{\varepsilon}^{\prime} W \widetilde{\varepsilon} / v$ is $\varepsilon^{\prime} W_{h} \varepsilon / v_{h}$ or $\varepsilon^{\prime}\left(W_{h}-W_{h_{0}}\right) \varepsilon / v_{h, h_{0}}$ respectively. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the real eigenvalues of W,

$$
\mathcal{L}_{n}=\frac{1}{v^{3}}\left[6 \sum_{i=1}^{n}\left(\sum_{j=1}^{n} w_{i j}^{2}\right)^{3 / 2}+36 \sum_{i=1}^{n} \sum_{j=1}^{n}\left|w_{i j}\right|^{3}\right], \quad \text { and } \quad \Delta_{n}=\frac{1}{v^{4}} \sum_{i=1}^{n} \lambda_{i}^{4} .
$$

Consider a vector g of n independent $N(0,1)$ variables, independent of the X_{i}. Theorem 3 of Rotar' and Shervashidze (1985) says that there is an absolute constant $C>0$ such that

$$
\sup _{z \in \mathbb{R}}\left|\mathbb{P}_{n}\left(\frac{\widetilde{\varepsilon}^{\prime} W \widetilde{\varepsilon}}{v} \leq z\right)-\mathbb{P}_{n}\left(\frac{g^{\prime} W g}{v} \leq z\right)\right| \leq C\left[1-\ln \left(1-2 \Delta_{n}\right)\right]^{3 / 4} \mathcal{L}_{n}^{1 / 4} \quad \text { if } \Delta_{n}<1 / 2 .
$$

Let $\left\{b_{i} \in \mathbb{R}^{n}\right\}_{1 \leq i \leq n}$ be an orthonormal system of eigenvectors of W associated with the eigenvalues λ_{i}. As $\mathbb{E}_{n}\left[g^{\prime} W g\right]=0$ by Lemma $1, g^{\prime} W g=\sum_{i=1}^{n} \lambda_{i}\left(b_{i}^{\prime} g\right)^{2}=\sum_{i=1}^{n} \lambda_{i}\left[\left(b_{i}^{\prime} g\right)^{2}-\mathbb{E}_{n}\left[\left(b_{i}^{\prime} g\right)^{2}\right]\right]$. Hence $g^{\prime} W g$ has the same conditional distribution than $\sum_{i=1}^{n} \lambda_{i} \zeta_{i}$ where the ζ_{i} are centered Chi-squared variables with one degree of freedom, independent among them and of the X_{i}. The Berry-Esseen bound of Chow and Teicher (1988, Theorem 3, p. 304) yields that there is an absolute constant $C>0$ such that

$$
\sup _{z \in \mathbb{R}}\left|\mathbb{P}_{n}\left(\frac{g^{\prime} W g}{v} \leq z\right)-\mathbb{P}(N(0,1) \leq z)\right| \leq C \frac{\sum_{i=1}^{n}\left|\lambda_{i}\right|^{3}}{v^{3}}
$$

The two above inequalities together imply that if $\Delta_{n}<1 / 2$

$$
\begin{equation*}
\sup _{z \in \mathbb{R}}\left|\mathbb{P}_{n}\left(\frac{\widetilde{\varepsilon}^{\prime} W \widetilde{\varepsilon}}{v} \leq z\right)-\mathbb{P}(N(0,1) \leq z)\right| \leq C\left[\left(1-\ln \left(1-2 \Delta_{n}\right)\right)^{3 / 4} \mathcal{L}_{n}^{1 / 4}+\frac{\sum_{i=1}^{n}\left|\lambda_{i}\right|^{3}}{v^{3}}\right] \tag{6.2}
\end{equation*}
$$

Let $\left\{e_{i}, i=1, \ldots, n\right\}$ be the canonical basis of \mathbb{R}^{n}, so that $\left\|e_{i}\right\|_{n}=1 / \sqrt{n}$. Then

$$
\begin{aligned}
\sum_{i=1}^{n}\left(\sum_{j=1}^{n} w_{i j}^{2}\right)^{3 / 2} & =\sum_{i=1}^{n} \frac{\left\|W e_{i}\right\|_{n}}{\left\|e_{i}\right\|_{n}} n\left\|W e_{i}\right\|_{n}^{2} \leq \operatorname{Sp}_{n}[W] \times \sum_{1 \leq i, j \leq n} w_{i j}^{2}=\operatorname{Sp}_{n}[W] \mathrm{N}_{n}^{2}[W] \\
\sum_{1 \leq i, j \leq n}\left|w_{i j}\right|^{3} & =\sum_{1 \leq i, j \leq n} w_{i j}^{2} \frac{\left|\left(e_{i}, W e_{j}\right)_{n}\right|}{\left\|e_{i}\right\|_{n}\left\|e_{j}\right\|_{n}} \leq \sum_{1 \leq i, j \leq n} w_{i j}^{2} \frac{\left\|W e_{j}\right\|_{n}}{\left\|e_{j}\right\|_{n}} \leq \operatorname{Sp}_{n}[W] \mathrm{N}_{n}^{2}[W]
\end{aligned}
$$

Hence, using $v^{2}=\sum_{i=1}^{n} \lambda_{i}^{2}=N_{n}^{2}[W]$ and $\left|\lambda_{i}\right| \leq \operatorname{Sp}_{n}[W]$ for all i, we obtain

$$
\Delta_{n} \leq \frac{\operatorname{Sp}_{n}^{2}[W]}{\mathrm{N}_{n}^{2}[W]}, \quad \mathcal{L}_{n} \leq 42 \frac{\mathrm{Sp}_{n}[W]}{\mathrm{N}_{n}[W]}, \quad \text { and } \quad \sum_{i=1}^{n} \frac{\left|\lambda_{i}\right|^{3}}{v^{3}} \leq \frac{\mathrm{Sp}_{n}[W]}{\mathrm{N}_{n}[W]} \leq\left(\frac{\mathrm{Sp}_{n}[W]}{\mathrm{N}_{n}[W]}\right)^{1 / 4}
$$

since $\mathrm{Sp}_{n}[W] / \mathrm{N}_{n}[W] \leq 1$ for any symmetric W. The above inequalities and (6.2) give

$$
\begin{equation*}
\sup _{z \in \mathbb{R}}\left|\mathbb{P}_{n}\left(\frac{\widetilde{\varepsilon}^{\prime} W \widetilde{\varepsilon}}{v} \leq z\right)-\mathbb{P}(N(0,1) \leq z)\right| \leq C\left(\frac{\operatorname{Sp}_{n}[W]}{\mathrm{N}_{n}[W]}\right)^{1 / 4} \tag{6.3}
\end{equation*}
$$

provided $\left(\operatorname{Sp}_{n}[W] / \mathrm{N}_{n}[W]\right)^{2} \leq \nu$, for an absolute constant $C=C_{\nu}>0$
Part i follows by setting $W=D_{n}(\sigma) W_{h} D_{n}(\sigma)$ in (6.3) and noting that

$$
\left(\frac{\mathrm{Sp}_{n}[W]}{\mathrm{N}_{n}[W]}\right)^{2} \leq\left(\frac{\bar{\sigma}}{\underline{\sigma}}\right)^{4}\left(\frac{\mathrm{Sp}_{n}\left[W_{h}\right]}{\mathrm{N}_{n}\left[W_{h}\right]}\right)^{2} \leq \nu<1 / 2 .
$$

Part $i i$ follows from (6.3) with $W=D_{n}(\sigma)\left(W_{h}-W_{h_{0}}\right) D_{n}(\sigma)$ and the Mill's ratio inequality.
6.2. Variance estimation The following results are proven in Guerre and Lavergne (2003).

Proposition 2. Under Assumptions D and $W, v_{h_{0}}^{2} \asymp_{\mathbb{P}} h_{0}^{-p}$ and uniformly in $h \in \mathcal{H}_{n} \backslash\left\{h_{0}\right\}$ $v_{h, h_{0}}^{2} \asymp_{\mathbb{P}} h^{-p}-h_{0}^{-p}$.

Proposition 3. Let $\left\{m_{n}(\cdot)\right\}_{n \geq 1}$ be an equicontinuous sequence of regression functions.
i. Under Assumptions D and E, if $b_{n} \rightarrow 0$ and $n^{1-4 / d^{\prime}} b_{n}^{p} \rightarrow \infty$ then (3.5) holds.
ii. Let $\left\{W_{h}, h \in \mathcal{H}_{n}\right\}$ be any collection of non-zero $n \times n$ symmetric matrices with zeros on the diagonal. Under (3.5), $\frac{\hat{v}_{h_{0}}^{2}}{v_{h_{0}}^{2}} \xrightarrow{\mathbb{P}} 1$ and $\max _{h \in \mathcal{H}_{n} \backslash\left\{h_{0}\right\}}\left|\frac{\widehat{v}_{h, h_{0}}^{2}}{v_{h, h_{0}}^{2}}-1\right|=o_{\mathbb{P}}(1)$.

6.3. The parametric estimation error

Lemma 3. Let W be a $n \times n$ symmetric matrix depending upon $X_{1}, \ldots, X_{n}, \theta_{n}$ be as in (6.1), and $B_{n}(R)=\left\{\theta \in \Theta ; \frac{1}{n} \sum_{i=1}^{n}\left(\mu\left(X_{i} ; \theta\right)-\mu\left(X_{i} ; \theta_{n}\right)\right)^{2} \leq R^{2}\right\}$. Under Assumptions E and M, there is an absolute constant $C=C_{d^{\prime}}>0$ such that for any $m_{n}(\cdot)$, any n and any $R>0$

$$
\mathbb{E}_{n}\left[\sup _{\theta \in B_{n}(R)}\left|\sqrt{n}\left(W\left(\mu(X ; \theta)-\mu\left(X ; \theta_{n}\right)\right), \varepsilon\right)_{n}\right|\right] \leq C \dot{\mu} \operatorname{Sp}_{n}[W] R \max _{1 \leq i \leq n} \mathbb{E}_{n}^{1 / d^{\prime}}\left[\left|\varepsilon_{i}\right|^{d^{\prime}}\right]
$$

Proof of Lemma 3. Without loss of generality, we can assume that $\max _{1 \leq i \leq n} \mathbb{E}^{1 / d^{\prime}}\left[\left|\varepsilon_{i}\right|^{d^{\prime}} \mid X_{i}\right]=\dot{\mu}=$ $\mathrm{Sp}_{n}[W]=1$. Let $\delta_{W}(\cdot ; \theta)=W\left(\mu(\cdot ; \theta)-\mu\left(\cdot ; \theta_{n}\right)\right)$. The Marcinkiewicz-Zygmund inequality, see Chow and Teicher (1988), yields, under Assumption E and for any θ, θ^{\prime} in Θ, that there is an absolute constant C such that

$$
\begin{aligned}
& \mathbb{E}_{n}^{1 / d^{\prime}}\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(\delta_{W}\left(X_{i} ; \theta\right)-\delta_{W}\left(X_{i} ; \theta^{\prime}\right)\right) \varepsilon_{i}\right|^{d^{\prime}} \leq C\left[\frac{1}{n} \sum_{i=1}^{n}\left(\delta_{W}\left(X_{i} ; \theta\right)-\delta_{W}\left(X_{i} ; \theta^{\prime}\right)\right)^{2} \mathbb{E}_{n}^{2 / d^{\prime}}\left|\varepsilon_{i}\right|^{d^{\prime}}\right]^{1 / 2} \\
& \leq C\left\|W\left(\mu(X ; \theta)-\mu\left(X ; \theta^{\prime}\right)\right)\right\|_{n} \leq C\left\|\mu(X ; \theta)-\mu\left(X ; \theta^{\prime}\right)\right\|_{n} .
\end{aligned}
$$

Let $\mathcal{N}_{n}(t, R)$ be the smallest number of $\left\|\mu(X ; \theta)-\mu\left(X ; \theta^{\prime}\right)\right\|_{n}$-balls of radius t covering $B_{n}(R)$. It follows from van der Vaart (1998, Example 19.7) and Assumption M that, for some absolute constant $C^{\prime}>0, \mathcal{N}_{n}(t, R) \leq C^{\prime}(R / t)^{d}$. The Hölder inequality and Corollary 2.2.5 from van der Vaart and Wellner (1996) give, as $d / d^{\prime}<1$,
$\mathbb{E}_{n} \sup _{\theta \in B_{n}(R)}\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \delta_{W}\left(X_{i} ; \theta\right) \varepsilon_{i}\right| \leq \mathbb{E}_{n}^{1 / d^{\prime}} \sup _{\theta \in B_{n}(R)}\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \delta_{W}\left(X_{i} ; \theta\right) \varepsilon_{i}\right|^{d^{\prime}} \leq C^{\prime} \int_{0}^{R}\left(\frac{R}{t}\right)^{d / d^{\prime}} d t=C_{d^{\prime}} R$

Lemma 4. Under Assumptions E and M, there is an absolute constant $C=C_{d^{\prime}}>0$, such that for any ρ large enough, any $m_{n}(\cdot)$ and any n,

$$
\mathbb{P}_{n}\left[\left\|m_{n}(X)-\mu\left(X ; \widehat{\theta}_{n}\right)\right\|_{n}>\sqrt{3}\left\|m_{n}(X)-\mu\left(X ; \theta_{n}\right)\right\|_{n}+\frac{\sqrt{2} \rho}{\sqrt{n}}\right] \leq \frac{C \max _{1 \leq i \leq n} \mathbb{E}_{n}^{1 / d^{\prime}}\left[\left|\varepsilon_{i}\right|^{d^{\prime}}\right]}{\rho}
$$

Proof of Lemma 4. The definition (3.1) of $\widehat{\theta}_{n}$ yields, see van de Geer (2000),

$$
\begin{gather*}
\left\|m_{n}(X)-\mu\left(X ; \widehat{\theta}_{n}\right)\right\|_{n}^{2} \leq 2\left(\mu\left(X ; \widehat{\theta}_{n}\right)-\mu\left(X ; \theta_{n}\right), \varepsilon\right)_{n}+\left\|m_{n}(X)-\mu\left(X ; \theta_{n}\right)\right\|_{n}^{2} \tag{6.4}\\
\left\|\mu\left(X ; \widehat{\theta}_{n}\right)-\mu\left(X ; \theta_{n}\right)\right\|_{n}^{2} \leq 4\left(\mu\left(X ; \widehat{\theta}_{n}\right)-\mu\left(X ; \theta_{n}\right), \varepsilon\right)_{n}+4\left\|m_{n}(X)-\mu\left(X ; \theta_{n}\right)\right\|_{n}^{2}
\end{gather*}
$$

Consider a fixed $r>1$ and any $\rho \geq r$. Let $\mathcal{E}_{n}=\left\{\left\|m_{n}(X)-\mu\left(X ; \theta_{n}\right)\right\|_{n}^{2}<\left(\mu\left(X ; \hat{\theta}_{n}\right)-\mu\left(X ; \theta_{n}\right), \varepsilon\right)_{n}\right\}$, so that on the complementary of this event $\left\|m_{n}(X)-\mu\left(X ; \widehat{\theta}_{n}\right)\right\|_{n} \leq \sqrt{3}\left\|m_{n}(X)-\mu\left(X ; \theta_{n}\right)\right\|_{n}$ by (6.4). Lemma 4 follows by bounding

$$
\begin{aligned}
& \mathbb{P}_{n}\left(\left(\sqrt{3}\left\|m_{n}(X)-\mu\left(X ; \theta_{n}\right)\right\|_{n}+\frac{\sqrt{2} r^{J}}{\sqrt{n}}\right)^{2} \leq\left\|m_{n}(X)-\mu\left(X ; \widehat{\theta}_{n}\right)\right\|_{n}^{2} \text { and } \mathcal{E}_{n}\right) \\
& \leq \mathbb{P}_{n}\left(2\left\|m_{n}(X)-\mu\left(X ; \theta_{n}\right)\right\|_{n}^{2}+\frac{2 r^{2 J}}{n} \leq 2\left\|m_{n}(X)-\mu\left(X ; \theta_{n}\right)\right\|_{n}^{2}+2\left\|\mu\left(X ; \theta_{n}\right)-\mu\left(X ; \hat{\theta}_{n}\right)\right\|_{n}^{2} \text { and } \mathcal{E}_{n}\right) \\
& =\mathbb{P}_{n}\left(\frac{r^{2 J}}{n} \leq\left\|\mu\left(X ; \widehat{\theta}_{n}\right)-\mu\left(X ; \theta_{n}\right)\right\|_{n}^{2} \text { and } \mathcal{E}_{n}\right)
\end{aligned}
$$

Let $S_{j}=S_{j, n}=\left\{\theta \in \Theta ; r^{j} / \sqrt{n} \leq\left\|\mu(X ; \theta)-\mu\left(X ; \theta_{n}\right)\right\|_{n}<r^{j+1} / \sqrt{n}\right\} \subset B_{n}\left(r^{j+1} / \sqrt{n}\right)$ with $B_{n}(\cdot)$ as in Lemma 3. Then (6.5), the definition of \mathcal{E}_{n}, the Markov inequality, and Lemma 3 with $W=\operatorname{Id}_{n}$ yield

$$
\begin{aligned}
& \mathbb{P}_{n}\left(\frac{r^{2 J}}{n} \leq\left\|\mu\left(X ; \hat{\theta}_{n}\right)-\mu\left(X ; \theta_{n}\right)\right\|_{n}^{2} \text { and } \mathcal{E}_{n}\right) \leq \sum_{j=J}^{+\infty} \mathbb{P}_{n}\left(\widehat{\theta}_{n} \in S_{j} \text { and } \frac{r^{2 j}}{8 n} \leq\left(\mu\left(X ; \hat{\theta}_{n}\right)-\mu\left(X ; \theta_{n}\right), \varepsilon\right)_{n}\right) \\
& \leq \sum_{j=J}^{+\infty} \mathbb{P}_{n}\left(\frac{r^{2 j}}{8 \sqrt{n}} \leq \sup _{\theta \in B_{n}\left(r^{j+1} / \sqrt{n}\right)}\left|\sqrt{n}\left(\mu(X ; \theta)-\mu\left(X ; \theta_{n}\right), \varepsilon\right)_{n}\right|\right) \\
& \leq \sum_{j=J}^{+\infty} \frac{8 \sqrt{n}}{r^{2 j}} \mathbb{E}_{n}\left[\sup _{\theta \in B_{n}\left(r^{j+1} / \sqrt{n}\right)}\left|\sqrt{n}\left(\mu(X ; \theta)-\mu\left(X ; \theta_{n}\right), \varepsilon\right)_{n}\right|\right] \\
& \leq C \max _{1 \leq i \leq n} \mathbb{E}_{n}^{1 / d^{\prime}}\left[\left|\varepsilon_{i}\right|^{d^{\prime}}\right] \sum_{j=J}^{+\infty} \frac{r^{j+1} \sqrt{n}}{r^{2 j} \sqrt{n}}=\frac{r^{2}}{r-1} \frac{C \max _{1 \leq i \leq n} \mathbb{E}_{n}^{1 / d^{\prime}}\left[\left|\varepsilon_{i}\right|^{d^{\prime}}\right]}{r^{J}} . \square
\end{aligned}
$$

Lemma 5 is proven in Guerre and Lavergne (2003).

Lemma 5. Consider the local alternatives of Theorem 3 and let the conditions of Theorem 3 on $\mu(\cdot ; \cdot)$ hold. Under Assumptions E and M and if $\lim _{n \rightarrow+\infty} \sqrt{n} r_{n}=+\infty$,

$$
\left\|m_{n}(X)-\mu\left(X ; \theta_{n}\right)\right\|_{n}=r_{n}-o_{\mathbb{P}}\left(r_{n}\right) \quad \text { and } \quad\left\|\mu\left(X ; \hat{\theta}_{n}\right)-\mu\left(X ; \theta_{0}\right)\right\|_{n}=o_{\mathbb{P}}\left(r_{n}\right)
$$

Proposition 4. Under Assumptions E, M and $W 0$-(ii), if $h_{0} \rightarrow 0$ then for any $\left\{m_{n}(\cdot)\right\}_{n \geq 1} \subset H_{0}$

$$
\max _{h \in \mathcal{H}_{n} \backslash\left\{h_{0}\right\}}\left|\frac{\widehat{T}_{h}-\widehat{T}_{h_{0}}-\varepsilon^{\prime}\left(W_{h}-W_{h_{0}}\right) \varepsilon}{\left(h^{-p}-h_{0}^{-p}\right)^{1 / 2}}\right|=o_{\mathbb{P}}(1), h_{0}^{p / 2}\left(\widehat{T}_{h_{0}}-\varepsilon^{\prime} W_{h_{0}} \varepsilon\right)=o_{\mathbb{P}}(1) .
$$

Let $h_{n} \in \mathcal{H}_{n}$ be an arbitrary sequence of smoothing parameters. Then under H_{0} or H_{1}

$$
\left(m_{n}(X)-\mu\left(X, \widehat{\theta}_{n}\right)\right)^{\prime} W_{h} \varepsilon=O_{\mathbb{P}}(1)\left[\sqrt{n}\left\|m_{n}(X)-\mu\left(X, \theta_{n}\right)\right\|_{n}+1\right]
$$

Proof of Proposition 4. We have
(6.5) $\widehat{T}_{h}=\left(m_{n}(X)-\mu\left(X ; \widehat{\theta}_{n}\right)\right)^{\prime} W_{h}\left(m_{n}(X)-\mu\left(X ; \widehat{\theta}_{n}\right)\right)+2\left(m_{n}(X)-\mu\left(X ; \widehat{\theta}_{n}\right)\right)^{\prime} W_{h} \varepsilon+\varepsilon^{\prime} W_{h} \varepsilon$.

The Cauchy-Schwartz inequality, Assumptions E, W0-(ii) and Lemma 4 yield uniformly in $h \in \mathcal{H}_{n}$,

$$
\begin{aligned}
& \left|\left(m_{n}(X)-\mu\left(X ; \widehat{\theta}_{n}\right)\right)^{\prime} W_{h}\left(m_{n}(X)-\mu\left(X ; \widehat{\theta}_{n}\right)\right)\right| \leq n \max _{h \in \mathcal{H}_{n}} \operatorname{Sp}_{n}\left[W_{h}\right]\left\|m_{n}(X)-\mu\left(X ; \hat{\theta}_{n}\right)\right\|_{n}^{2} \\
& =O_{\mathbb{P}}\left[\left(1+\sqrt{n}\left\|m_{n}(X)-\mu\left(X ; \theta_{n}\right)\right\|_{n}\right)^{2}\right]=O_{\mathbb{P}}(1) \quad \text { under } H_{0}, \text { as }\left\|m_{n}(X)-\mu\left(X ; \theta_{n}\right)\right\|_{n}=0
\end{aligned}
$$

Since for any $h \in \mathcal{H}_{n}, h^{-p}-h_{0}^{-p} \geq h_{1}^{-p}-h_{0}^{-p}=h_{0}^{-p}\left(a^{p}-1\right) \rightarrow+\infty$, we obtain that under H_{0}

$$
\begin{gather*}
\max _{h \in \mathcal{H}_{n} \backslash\left\{h_{0}\right\}}\left|\frac{\left(m_{n}(X)-\mu\left(X ; \widehat{\theta}_{n}\right)\right)^{\prime}\left(W_{h}-W_{h_{0}}\right)\left(m_{n}(X)-\mu\left(X ; \hat{\theta}_{n}\right)\right)}{\left(h^{-p}-h_{0}^{-p}\right)^{1 / 2}}\right|=o_{\mathbb{P}}(1), \tag{6.6}\\
h_{0}^{p / 2}\left(m_{n}(X)-\mu\left(X ; \hat{\theta}_{n}\right)\right)^{\prime} W_{h_{0}}\left(m_{n}(X)-\mu\left(X ; \widehat{\theta}_{n}\right)\right)=o_{\mathbb{P}}(1)
\end{gather*}
$$

Since $\left\|\mu\left(X ; \widehat{\theta}_{n}\right)-\mu\left(X ; \theta_{n}\right)\right\|_{n} \leq\left\|\mu\left(X ; \widehat{\theta}_{n}\right)-m_{n}(X)\right\|_{n}+\left\|m_{n}(X)-\mu\left(X ; \theta_{n}\right)\right\|_{n}$, Lemma 4 and Assumption E yield $\mathbb{P}_{n}\left(\widehat{\theta}_{n} \notin B_{\rho, n}\right) \leq C / \rho$ for any ρ large enough, any $m_{n}(\cdot)$ and any n, where

$$
B_{\rho, n}=\left\{\theta \in \Theta ;\left\|\mu(X ; \theta)-\mu\left(X ; \theta_{n}\right)\right\|_{n} \leq(\sqrt{3}+1)\left\|m_{n}(X)-\mu\left(X ; \theta_{n}\right)\right\|_{n}+\frac{\sqrt{2} \rho}{\sqrt{n}}\right\}
$$

Lemma 3 yields

$$
\begin{equation*}
\mathbb{E}_{n}\left[\sup _{\theta \in B_{\rho, n}}\left|\left(\mu(X, \theta)-\mu\left(X ; \theta_{n}\right)\right)^{\prime} W \varepsilon\right|\right] \leq C \rho \operatorname{Sp}_{n}[W]\left(\sqrt{n}\left\|m_{n}(X)-\mu\left(X ; \theta_{n}\right)\right\|_{n}+1\right) \tag{6.7}
\end{equation*}
$$

Taking $W=W_{h_{0}}$ and using the Markov inequality, (6.5), (6.6), $m_{n}(X)-\mu\left(X ; \theta_{n}\right)=0$, Assumption W0-(ii), and $h_{0} \rightarrow 0$ then show that $h_{0}^{p / 2}\left(\widehat{T}_{h_{0}}-\varepsilon^{\prime} W_{h_{0}} \varepsilon\right)=o_{\mathbb{P}}(1)$ under H_{0}. Taking $W=W_{h}-W_{h_{0}}$ in (6.7) and using $h=h_{0} a^{-j}$ for some $j=0, \ldots, J_{n}$ yields under H_{0}

$$
\begin{aligned}
& \mathbb{P}_{n}\left(\max _{h \in \mathcal{H}_{n} \backslash\left\{h_{0}\right\}}\left|\frac{\left(\mu\left(X, \hat{\theta}_{n}\right)-\mu\left(X ; \theta_{n}\right)\right)^{\prime}\left(W_{h}-W_{h_{0}}\right) \varepsilon}{\left(h^{-p}-h_{0}^{-p}\right)^{1 / 2}}\right| \geq \epsilon\right) \\
& \leq \mathbb{P}_{n}\left(\widehat{\theta}_{n} \notin B_{\rho, n}\right)+\frac{1}{\epsilon} \sum_{h \in \mathcal{H}_{n} \backslash\left\{h_{0}\right\}} \mathbb{E}_{n} \sup _{\theta \in B \rho, n}\left|\frac{\left(\mu(X, \theta)-\mu\left(X ; \theta_{n}\right)\right)^{\prime}\left(W_{h}-W_{h_{0}}\right) \varepsilon}{\left(h^{-p}-h_{0}^{-p}\right)^{1 / 2}}\right|
\end{aligned}
$$

$$
\leq \frac{C}{\rho}+\frac{\rho}{\epsilon} O_{\mathbb{P}}\left(h_{0}^{p / 2}\right) \sum_{j=1}^{\infty} \frac{1}{\left(a^{p j}-1\right)^{1 / 2}}=\frac{C}{\rho}+\frac{\rho}{\epsilon} O_{\mathbb{P}}\left(h_{0}^{p / 2}\right),
$$

for all $\epsilon>0$. The last result follows from (6.7) with $W=W_{h}$ and

$$
\mathbb{E}_{n}\left[\left(\left(m_{n}(X)-\mu\left(X ; \theta_{n}\right)\right)^{\prime} W_{h} \varepsilon\right)^{2}\right] \leq n \mathrm{Sp}_{n}^{2}\left(W_{h}\right) \bar{\sigma}^{2}\left\|m_{n}(X)-\mu\left(X ; \theta_{n}\right)\right\|_{n}^{2} . \square
$$

6.4. Proof of Theorem 1 under Assumption W0 Under Assumptions W0-(iii) and E, $v_{h, h_{0}} \asymp$ $\mathrm{N}_{n}\left[W_{h}-W_{h_{0}}\right] \asymp_{\mathbb{P}}\left(h^{-p}-h_{0}^{-p}\right)^{1 / 2}$ uniformly in $h \in \mathcal{H}_{n} \backslash\left\{h_{0}\right\}$, see Lemma 1. Therefore Propositions 3 -(ii) and 4 yield

$$
\max _{h \in \mathcal{H}_{n} \backslash\left\{h_{0}\right\}}\left|\frac{\widehat{T}_{h}-\widehat{T}_{h_{0}}}{\widehat{v}_{h, h_{0}}}\right|=\left(1+o_{\mathbb{P}}(1)\right) \times \max _{h \in \mathcal{H}_{n} \backslash\left\{h_{0}\right\}}\left|\frac{\varepsilon^{\prime}\left(W_{h}-W_{h_{0}}\right) \varepsilon}{v_{h, h_{0}}}\right|+o_{\mathbb{P}}(1) .
$$

Let η be as in Condition (3.8) of Theorem 1. Observe that
$\mathbb{P}_{n}\left(\widetilde{h} \neq h_{0}\right) \leq \mathbb{P}_{n}\left(\max _{h \in \mathcal{H}_{n} \backslash\left\{h_{0}\right\}}\left|\frac{\widehat{T}_{h}-\widehat{T}_{h_{0}}}{\widehat{v}_{h, h_{0}}}\right| \geq \gamma_{n}\right) \leq \mathbb{P}_{n}\left(\max _{h \in \mathcal{H}_{n} \backslash\left\{h_{0}\right\}}\left|\frac{\varepsilon^{\prime}\left(W_{h}-W_{h_{0}}\right) \varepsilon}{v_{h, h_{0}}}\right| \geq \frac{\gamma_{n}}{1+\eta / 2}\right)+o_{\mathbb{P}}(1)$.
Applying Lemma 2-(ii) using Assumption W0-(iii) and $h_{j}=h_{0} a^{-j}$ for $j=0, \ldots, J_{n}$, we obtain

$$
\begin{aligned}
& \mathbb{P}_{n}\left(\widetilde{h} \neq h_{0}\right) \leq \sum_{h \in \mathcal{H}_{n} \backslash\left\{h_{0}\right\}} \mathbb{P}_{n}\left(\left|\frac{\varepsilon^{\prime}\left(W_{h}-W_{h_{0}}\right) \varepsilon}{v_{h, h_{0}}}\right| \geq \frac{\gamma_{n}}{1+\eta / 2}\right)+o_{\mathbb{P}}(1) \\
& \leq \frac{\sqrt{2}(1+\eta / 2)}{\sqrt{\pi} \gamma_{n}} \exp \left(-\frac{1}{2}\left(\frac{\gamma_{n}}{1+\eta / 2}\right)^{2}+\ln J_{n}\right)+O_{\mathbb{P}}\left(h_{0}^{p / 8}\right) \sum_{j=1}^{+\infty} \frac{1}{\left(a^{p j}-1\right)^{1 / 8}}+o_{\mathbb{P}}(1)=o_{\mathbb{P}}(1),
\end{aligned}
$$

using (3.8), $h_{0} \rightarrow 0$, and $\gamma_{n} \rightarrow \infty$. Thus $\mathbb{P}_{n}\left(\widehat{T}_{\tilde{h}} \geq \widehat{v}_{h_{0}} z_{\alpha}\right)=\mathbb{P}_{n}\left(\widehat{T}_{h_{0}} \geq \widehat{v}_{h_{0}} z_{\alpha}\right)+o_{\mathbb{P}}(1)$. Theorem 1 then follows from Propositions 3-(ii) and 4, Lemma 2-(i) and Assumption W0.
6.5. Proof of Theorem 4 under Assumptions D and W0 Let $\varepsilon^{*}=\left[\varepsilon_{1}^{*}, \ldots \varepsilon_{n}^{*}\right]$. We first establish a moment bound that plays the role of Assumption E. As $\varepsilon_{i}^{*}=\widehat{\sigma}_{n}\left(X_{i}\right) \omega_{i}$ where the ω_{i} are independent of the initial sample, $\mathbb{E}\left[\left|\varepsilon_{i}^{*}\right|^{d^{\prime}} \mid X_{1}, Y_{1}, \ldots, X_{n}, Y_{n}\right]=\mathbb{E}\left[\left|\omega_{1}\right|^{d^{\prime}}\right]\left|\widehat{\sigma}_{n}\left(X_{i}\right)\right|^{d^{\prime}}$ and

$$
\begin{equation*}
\max _{1 \leq i \leq n} \mathbb{E}\left[\left|\varepsilon_{i}^{*}\right|^{d^{\prime}} \mid X_{1}, Y_{1}, \ldots, X_{n}, Y_{n}\right] \leq \mathbb{E}\left[\left|\omega_{1}\right|^{d^{\prime}}\right]\left(\sup _{x \in[0,1]^{p}} \sigma^{d^{\prime}}(x)+o_{\mathbb{P}}(1)\right) \tag{6.8}
\end{equation*}
$$

This is sufficient to establish Theorem 4, see Guerre and Lavergne (2003).

6.6. Proof of Theorem 2 under Assumptions W0-W1

Lemma 6. Consider a function $\widehat{\delta}(\cdot) \in C_{p}(L, s)$ with $s>\underline{s}$ and $L>0$. Consider any sequence h_{n} from \mathcal{H}_{n} and let $\Lambda_{n}=\Lambda_{n}\left(s, h_{n}\right)$ be as in Assumption W1-(iii). Under Assumption W1, we have

$$
\widehat{\delta}(X)^{\prime} W_{h_{n}} \widehat{\delta}(X) \geq n\left[\left(\Lambda_{n}-\operatorname{Sp}_{n}^{1 / 2}\left[W_{h_{n}}-P_{h_{n}}\right]\right)\left\|\widehat{\delta}\left(X_{i}\right)\right\|_{n}-\left(\Lambda_{n}+\operatorname{Sp}_{n}^{1 / 2}\left[P_{h_{n}}\right]\right) C_{4} L h_{n}^{s}\right]^{2}
$$

where $C_{4}=C_{4}(s)$ is from W1-(ii) provided

$$
\begin{equation*}
\left\|\widehat{\delta}\left(X_{i}\right)\right\|_{n} \geq \frac{\Lambda_{n}+\operatorname{Sp}_{n}^{1 / 2}\left[P_{h_{n}}\right]}{\Lambda_{n}-\operatorname{Sp}_{n}^{1 / 2}\left[W_{h_{n}}-P_{h_{n}}\right]} C_{4} L h_{n}^{s} \geq 0 \tag{6.9}
\end{equation*}
$$

Proof of Lemma 6. We have $\widehat{\delta}^{\prime} W_{h_{n}} \widehat{\delta}=\widehat{\delta}^{\prime} P_{h_{n}} \widehat{\delta}+\widehat{\delta}^{\prime}\left(W_{h_{n}}-P_{h_{n}}\right) \widehat{\delta} \geq \widehat{\delta}^{\prime} P_{h_{n}} \widehat{\delta}-n \operatorname{Sp} p_{n}\left[W_{h_{n}}-P_{h_{n}}\right]\|\widehat{\delta}\|_{n}^{2}$. Let $\pi(\cdot)$ be such that $\sup _{x \in[0,1]^{p}}|\widehat{\delta}(x)-\pi(x)| \leq C_{4} L h_{n}^{s}$, see Assumption W1-(ii). Because $P_{h_{n}}$ is positive by W1-(i), the triangular inequality and the definition of Λ_{n} yield

$$
\begin{gathered}
\left(\frac{\widehat{\delta}^{\prime} P_{h_{n}} \widehat{\delta}}{n}\right)^{1 / 2} \geq\left(\frac{\pi^{\prime} P_{h_{n}} \pi}{n}\right)^{1 / 2}-\left(\frac{1}{n}(\widehat{\delta}-\pi)^{\prime} P_{h_{n}}(\widehat{\delta}-\pi)\right)^{1 / 2} \geq\left(\frac{\pi^{\prime} P_{h_{n}} \pi}{n}\right)^{1 / 2}-\operatorname{Sp}_{n}^{1 / 2}\left[P_{h_{n}}\right]\left\|^{2}-\pi\right\|_{n} \\
\geq \Lambda_{n}\|\widehat{\delta}+\pi-\widehat{\delta}\|_{n}-\operatorname{Sp}_{n}^{1 / 2}\left[P_{h_{n}}\right]\|\widehat{\delta}-\pi\|_{n} \geq \Lambda_{n}\|\widehat{\delta}\|_{n}-\left(\Lambda_{n}+\operatorname{Sp}_{n}^{1 / 2}\left[P_{h_{n}}\right]\right)\|\widehat{\delta}-\pi\|_{n} \\
\geq \Lambda_{n}\|\widehat{\delta}\|_{n}-\left(\Lambda_{n}+\operatorname{Sp}_{n}^{1 / 2}\left[P_{h_{n}}\right]\right) C_{4} L h_{n}^{s} \\
\text { As }\left(\Lambda_{n}-\operatorname{Sp}_{n}^{1 / 2}\left[W_{h_{n}}-P_{h_{n}}\right]\right)\|\widehat{\delta}\|_{n}-\left(\Lambda_{n}+\operatorname{Sp}_{n}^{1 / 2}\left[P_{h_{n}}\right]\right) C_{4} L h_{n}^{s} \geq 0 \text { from }(6.9) \\
\frac{\widehat{\delta}^{\prime} W_{h_{n}} \widehat{\delta}}{n} \geq \\
\geq\left[\Lambda_{n}\|\widehat{\delta}\|_{n}-\left(\Lambda_{n}+\operatorname{Sp}_{n}^{1 / 2}\left[P_{h_{n}}\right]\right) C_{4} L h_{n}^{s}\right]^{2}-\operatorname{Sp}_{n}\left[W_{h_{n}}-P_{h_{n}}\right]\|\widehat{\delta}\|_{n}^{2} \\
= \\
\\
\quad\left[\left(\Lambda_{n}-\operatorname{Sp}_{n}^{1 / 2}\left[W_{h_{n}}-P_{h_{n}}\right]\right)\|\widehat{\delta}\|_{n}-\left(\Lambda_{n}+\operatorname{Sp}_{n}^{1 / 2}\left[P_{h_{n}}\right]\right) C_{4} L h_{n}^{s}\right] \\
\\
\times\left[\left(\Lambda_{n}+\operatorname{Sp}_{n}^{1 / 2}\left[W_{h_{n}}-P_{h_{n}}\right]\right)\|\widehat{\delta}\|_{n}-\left(\Lambda_{n}+\operatorname{Sp}_{n}^{1 / 2}\left[P_{h_{n}}\right]\right) C_{4} L h_{n}^{s}\right] \\
\geq
\end{gathered}
$$

We now prove Theorem 2 under Assumptions W0-W1, using the power bound (2.3). Take $h_{n}=h_{0} a^{-j_{n}}$, where j_{n} is the integer part of

$$
\frac{1}{\ln a}\left[\frac{2}{4 s+p} \ln \left(\frac{L^{2} n}{\gamma_{n} \inf _{x \in[0,1]^{p}} \sigma^{2}(x)}\right)+\ln h_{0}\right] \asymp \frac{1}{\ln a} \frac{2}{4 s+p} \ln \left(\frac{L^{2} n}{\gamma_{n} \inf _{x \in[0,1]^{p}} \sigma^{2}(x)}\right)
$$

using $\ln h_{0}=O(\ln \ln n)$ and $\ln \left(n / \gamma_{n}\right) \geq(1-\gamma) \ln n$ for some $\gamma \in(0,1)$. Note that h_{n} is in \mathcal{H}_{n} for all $s>\underline{s}$ and $L>0$ since $h_{J_{n}} \asymp(\ln n)^{C_{2} / p} / n^{2 /(4 \underline{s}+p)}$ for some $C_{2}>1$ and $\gamma_{n} \leq n^{\gamma}$ for some $\gamma \in(0,1)$.

We have

$$
L h_{n}^{s} \asymp L^{\frac{p}{4 s+p}}\left(\frac{\bar{\sigma}^{2} \gamma_{n}}{n}\right)^{\frac{2 s}{4 s+p}} \text { and } n L^{2} h_{n}^{2 s} \asymp \gamma_{n} \bar{\sigma}^{2} h_{n}^{-p / 2} \asymp L^{\frac{2 p}{4 s+p}}\left(\bar{\sigma}^{2} \gamma_{n}\right)^{\frac{4 s}{4 s+p}} n^{\frac{p}{4 s+p}} \rightarrow \infty
$$

Take now $\widehat{\delta}(\cdot)=m_{n}(\cdot)-\mu\left(\cdot ; \widehat{\theta}_{n}\right)$ in Lemma 6 , which belongs to $C_{p}(L, s)$ by the assumptions of Theorem 2. The lower bound (3.10) of Theorem 2 yields

$$
\|\widehat{\delta}(X)\|_{n} \geq\left\|m_{n}(X)-\mu\left(X ; \theta_{n}\right)\right\|_{n} \geq C \kappa_{1} L h_{n}^{s}\left(1+o_{\mathbb{P}}(1)\right)
$$

implying in particular that $n\left\|m_{n}(X)-\mu\left(X ; \theta_{n}\right)\right\|_{n}^{2}$ diverges in probability. Under W0-(ii) and W1-(i,iii)

$$
\mathbb{P}\left(C \kappa_{1} L h_{n}^{s} \geq \frac{\Lambda_{n}\left(s, h_{n}\right)+\operatorname{Sp}_{n}^{1 / 2}\left[P_{h_{n}}\right]}{\Lambda_{n}\left(s, h_{n}\right)-\operatorname{Sp}_{n}^{1 / 2}\left[W_{h_{n}}-P_{h_{n}}\right]} C_{4} L h_{n}^{s} \geq 0\right) \rightarrow 1 \text { for } \kappa_{1} \text { large enough, }
$$

showing that $\widehat{\delta}(\cdot)$ verifies Inequality (6.9) of Lemma 6 with probability tending to 1 . Therefore Lemma 6 and W1-(iii) yield

$$
\begin{aligned}
& \left(m_{n}(X)-\mu\left(X ; \widehat{\theta}_{n}\right)\right)^{\prime} W_{h_{n}}\left(m_{n}(X)-\mu\left(X ; \widehat{\theta}_{n}\right)\right)=\widehat{\delta}^{\prime}(X) W_{h_{n}} \widehat{\delta}(X) \\
& \geq n\left[\left(\Lambda_{n}-\operatorname{Sp}_{n}^{1 / 2}\left[W_{h_{n}}-P_{h_{n}}\right]\right)\left\|m_{n}(X)-\mu\left(X ; \theta_{n}\right)\right\|_{n}-\left(\Lambda_{n}+\operatorname{Sp}_{n}^{1 / 2}\left[P_{h_{n}}\right]\right) C_{4} L h_{n}^{s}\right]^{2}\left(1+o_{\mathbb{P}}(1)\right) \\
& \geq C\left(1+o_{\mathbb{P}}(1)\right) n\left\|m_{n}(X)-\mu\left(X ; \theta_{n}\right)\right\|_{n}^{2} \geq C\left(1+o_{\mathbb{P}}(1)\right) n \kappa_{1}^{2} L^{2} h_{n}^{2 s}
\end{aligned}
$$

Moreover, by Proposition 4

$$
\left(m_{n}(X)-\mu\left(X ; \widehat{\theta}_{n}\right)\right)^{\prime} W_{h_{n}} \varepsilon=O_{\mathbb{P}}\left(\sqrt{n}\left\|m_{n}(X)-\mu\left(X ; \theta_{n}\right)\right\|_{n}\right)=o_{\mathbb{P}}\left(n\left\|m_{n}(X)-\mu\left(X ; \theta_{n}\right)\right\|_{n}^{2}\right) .
$$

From $\varepsilon^{\prime} W_{h_{n}} \varepsilon=O_{\mathbb{P}}\left(v_{h_{n}}\right)=O_{\mathbb{P}}\left(h_{n}^{-p / 2}\right)=o_{\mathbb{P}}\left(n L^{2} h_{n}^{2 s}\right)$ and (6.5)

$$
\widehat{T}_{h_{n}} \geq C\left(1+o_{\mathbb{P}}(1)\right) n\left\|m_{n}(X)-\mu\left(X ; \theta_{n}\right)\right\|_{n}^{2} \geq C\left(1+o_{\mathbb{P}}(1)\right) n \kappa_{1}^{2} L^{2} h_{n}^{2 s}
$$

Proposition 3-(ii), Lemma 1, and W0-(iii) yield $z_{\alpha} \widehat{v}_{h_{0}}+\gamma_{n} \widehat{v}_{h_{n}, h_{0}} \asymp_{\mathbb{P}} \gamma_{n} \widehat{v}_{h_{n}, h_{0}} \asymp_{\mathbb{P}} \gamma_{n} \bar{\sigma}^{2} h_{n}^{-p / 2} \asymp n L^{2} h_{n}^{2 s}$. Collecting the leading terms implies that for κ_{1} large enough

$$
\widehat{T}_{h_{n}}-z_{\alpha} \widehat{v}_{h_{0}}-\gamma_{n} \widehat{v}_{h_{n}, h_{0}} \geq C n L^{2} h_{n}^{2 s}\left(\kappa_{1}^{2}-C^{\prime}\right)\left(1+o_{\mathbb{P}}(1)\right) \xrightarrow{\mathbb{P}}+\infty .
$$

6.7. Proof of Theorem 3 under Assumptions W0-W1 The proof follows the lines of the one of Theorem 2 using now (2.4). Since $m_{n}(X)-\mu\left(X ; \widehat{\theta}_{n}\right)=r_{n} \delta_{n}(X)+\mu\left(X ; \theta_{0}\right)-\mu\left(X ; \widehat{\theta}_{n}\right)$,

$$
\begin{aligned}
\left(m_{n}(X)\right. & \left.-\mu\left(X ; \widehat{\theta}_{n}\right)\right)^{\prime} W_{h_{0}}\left(m_{n}(X)-\mu\left(X ; \widehat{\theta}_{n}\right)\right)=r_{n}^{2} \delta_{n}(X)^{\prime} W_{h_{0}} \delta_{n}(X) \\
& +2 r_{n} \delta_{n}(X) W_{h_{0}}\left(\mu\left(X ; \theta_{0}\right)-\mu\left(X ; \widehat{\theta}_{n}\right)\right)+\left(\mu\left(X ; \theta_{0}\right)-\mu\left(X ; \widehat{\theta}_{n}\right)\right)^{\prime} W_{h_{0}}\left(\mu\left(X ; \theta_{0}\right)-\mu\left(X ; \widehat{\theta}_{n}\right)\right) .
\end{aligned}
$$

By Lemma 5,

$$
\begin{array}{r}
\left|r_{n} \delta_{n}(X) W_{h_{0}}\left(\mu\left(X ; \theta_{0}\right)-\mu\left(X ; \widehat{\theta}_{n}\right)\right)\right| \leq n r_{n} \operatorname{Sp}_{n}\left[W_{h_{0}}\right]\left\|\delta_{n}(X)\right\|_{n}\left\|\mu\left(X ; \theta_{0}\right)-\mu\left(X ; \widehat{\theta}_{n}\right)\right\|_{n}=o_{\mathbb{P}}\left(n r_{n}^{2}\right), \\
\left|\left(\mu\left(X ; \theta_{0}\right)-\mu\left(X ; \widehat{\theta}_{n}\right)\right)^{\prime} W_{h_{0}}\left(\mu\left(X ; \theta_{0}\right)-\mu\left(X ; \widehat{\theta}_{n}\right)\right)\right| \leq n \operatorname{Sp}_{n}\left[W_{h_{0}}\right]\left\|\mu\left(X ; \theta_{0}\right)-\mu\left(X ; \widehat{\theta}_{n}\right)\right\|_{n}^{2}=o_{\mathbb{P}}\left(n r_{n}^{2}\right) .
\end{array}
$$

Because $\left\{\delta_{n}(\cdot)\right\}_{n \geq 1} \subset C(L, s)$ with $s>\underline{s}$, Lemma 6 yields under (3.11) and $h_{0} \rightarrow 0$

$$
\begin{aligned}
\delta_{n}(X)^{\prime} W_{h_{0}} \delta_{n}(X) & \geq\left(1+o_{\mathbb{P}}(1)\right) n\left[\left(\Lambda_{n}-\mathrm{Sp}_{n}^{1 / 2}\left[W_{h_{0}}-P_{h_{0}}\right]\right)\left\|\delta_{n}(X)\right\|_{n}-C_{4}\left(\Lambda_{n}+\mathrm{Sp}_{n}^{1 / 2}\left[P_{h_{0}}\right]\right) L h_{0}^{s}\right]^{2} \\
& \geq C n\left(1+o_{\mathbb{P}}(1)\right) .
\end{aligned}
$$

Equation (6.5), Proposition 4, and Lemma 5 give, since $z_{\alpha} \widehat{v}_{h_{0}}+\varepsilon^{\prime} W_{h_{0}} \varepsilon=O_{\mathbb{P}}\left(h_{0}^{-p / 2}\right), n r_{n}^{2} h_{0}^{p / 2} \rightarrow+\infty$ and $h_{0} \rightarrow 0$,

$$
\widehat{T}_{h_{0}}-z_{\alpha} \widehat{v}_{h_{0}}-\gamma_{n} \widehat{v}_{h_{0}, h_{0}} \geq\left(1+o_{\mathbb{P}}(1)\right) C n r_{n}^{2}+O_{\mathbb{P}}\left(h_{0}^{-p / 2}\right) \xrightarrow{\mathbb{P}}+\infty
$$

6.8. Proof of Proposition 1 We only detail the case of Examples 1a and 1b. The proof of Proposition 1 for Example 2 can be found in Guerre and Lavergne (2003).

The functions $\psi_{k}(\cdot)$ can be changed into any system generating the same linear subspace of \mathbb{R}^{n}. Consider the following orthonormal basis of $L_{2}\left([0,1]^{p}, d x\right)$

$$
\begin{gather*}
\phi_{k}(x)=\prod_{\ell=1}^{p} \sqrt{2 k_{\ell}+1} Q_{k_{\ell}}\left(x_{\ell}\right) \mathbb{I}\left(x \in[0,1]^{p}\right) \tag{6.10}\\
\phi_{q k h}(x)=h^{-p / 2} \prod_{\ell=1}^{p} \sqrt{2 k_{\ell}+1} Q_{q_{\ell}}\left(k_{\ell} h-x_{\ell}\right) \mathbb{I}\left(x \in I_{k}(h)\right) \quad \text { for Example 1a, Example 1b, }
\end{gather*}
$$

where the $Q_{k}(\cdot)$ are the Legendre polynomials of degree k on $[0,1]$, with $\sup _{t \in[0,1]}\left|Q_{k}(t)\right| \leq 1$, $\int_{0}^{1} Q_{k}^{2}(t) d t=1 /(2 k+1), \int_{0}^{1} Q_{k}(t) Q_{k^{\prime}}(t) d t=0$ for $k \neq k^{\prime}$, see e.g. Davis (1975). Let $\Phi_{h}=\left[\phi_{k}(X), 1 \leq\right.$ $|k| \leq 1 / h]$ for Example 1a and $\Phi_{h}=\left[\phi_{q k h}(X), 1 \leq|q| \leq \bar{q}, 1 \leq|k| \leq 1 / h\right]$ for Example 1b. Define d_{h} as the number of columns of Φ_{h} and note that in both examples d_{h} is of order h^{-p}.

Lemma 7. If $f(\cdot)$ is bounded away from 0 and infinity on $[0,1]^{p}$, there is a $C>0$ such that

$$
\max _{h \in \mathcal{H}_{n}} \operatorname{Sp}_{d_{h}}\left[\left(n^{-1} \Phi_{h}^{\prime} \Phi_{h}\right)^{-1}\right] \leq C \quad \text { and } \quad \max _{h \in \mathcal{H}_{n}} \operatorname{Sp}_{d_{h}}\left[n^{-1} \Phi_{h}^{\prime} \Phi_{h}\right] \leq C \text { with probability tending to } 1,
$$ provided $h_{J_{n}}^{-p}=o(n / \ln n)^{1 / 3}$ in Example 1a and $h_{J_{n}}^{-p}=o(n / \ln)$ in Example $1 b$.

Proof of Lemma 7. Consider first Example 1a. As the $n^{-1} \Phi_{h}^{\prime} \Phi_{h}, h \in \mathcal{H}_{n}$, are nested Gram matrices it is sufficient to consider the spectral radii of $n^{-1} \Phi_{h_{J_{n}}}^{\prime} \Phi_{h_{J_{n}}}$ and its inverse. We have

$$
\begin{aligned}
\left|\phi_{k}\left(X_{i}\right) \phi_{k^{\prime}}\left(X_{i}\right)\right| & \leq \prod_{\ell=1}^{p} \sqrt{2 k_{\ell}+1} \sqrt{2 k_{\ell}^{\prime}+1} \leq C h_{J_{n}}^{-p}, \\
\operatorname{Var}\left(\phi_{k}\left(X_{i}\right) \phi_{k^{\prime}}\left(X_{i}\right)\right) & \leq \mathbb{E} \phi_{k}^{2}\left(X_{i}\right) \phi_{k^{\prime}}^{2}\left(X_{i}\right) \leq \mathbb{E}^{1 / 2} \phi_{k}^{4}\left(X_{i}\right) \mathbb{E}^{1 / 2} \phi_{k^{\prime}}^{4}\left(X_{i}\right) \\
& \leq \sup _{x \in[0,1]^{p}}\left|\phi_{k}(x)\right| \sup _{x \in[0,1]^{p}}\left|\phi_{k^{\prime}}(x)\right| \mathbb{E}^{1 / 2} \phi_{k}^{2}\left(X_{i}\right) \mathbb{E}^{1 / 2} \phi_{k^{\prime}}^{2}\left(X_{i}\right) \leq C h_{J_{n}}^{-p},
\end{aligned}
$$

as $\mathbb{E} \phi_{k}^{2}(X) \leq \sup _{x \in[0,1]^{p}} f(x) \int \phi_{k}^{2}(x) d x=\sup _{x \in[0,1]^{p}} f(x)$. The Bernstein inequality then yields

$$
\sqrt{\frac{n h_{J_{n}}^{p}}{\ln n}} \sup _{0 \leq|k|,\left|k^{\prime}\right| \leq 1 / h_{J_{n}}}\left|\frac{1}{n} \sum_{i=1}^{n} \phi_{k}\left(X_{i}\right) \phi_{k^{\prime}}\left(X_{i}\right)-\mathbb{E} \phi_{k}(X) \phi_{k^{\prime}}(X)\right|=O_{\mathbb{P}}(1) .
$$

This gives $n^{-1} \Phi_{h_{J_{n}}}^{\prime} \Phi_{h_{J_{n}}}=n^{-1} \mathbb{E} \Phi_{h_{J_{n}}}^{\prime} \Phi_{h_{J_{n}}}+R_{h_{J_{n}}}$, where $R_{h_{J_{n}}}$ is a $d_{h_{J_{n}}} \times d_{h_{J_{n}}}$ matrix whose elements are uniformly $O_{\mathbb{P}}\left(\sqrt{\ln n / n h_{J_{n}}^{p}}\right)$. Thus

$$
\operatorname{Sp}_{d_{h_{J_{n}}}}\left[R_{h_{J_{n}}}\right] \leq \mathrm{N}_{d_{h_{J_{n}}}}\left[R_{h_{J_{n}}}\right]=O_{\mathbb{P}}\left(\frac{1}{h_{J_{n}}^{p}} \sqrt{\frac{\ln n}{n h_{J_{n}}^{p}}}\right)=o_{\mathbb{P}}(1)
$$

as $h_{J_{n}}^{-p}=o(n / \ln n)^{1 / 3}$. Hence the eigenvalues of $n^{-1} \Phi_{h_{J_{n}}}^{\prime} \Phi_{h_{J_{n}}}$ are between the smallest and largest eigenvalues of $n^{-1} \mathbb{E} \Phi_{h_{J_{n}}}^{\prime} \Phi_{h_{J_{n}}}$ with probability tending to one. But for any $a \in \mathbb{R}^{d_{h}}{ }_{J_{n}}$,

$$
n^{-1} a^{\prime} \mathbb{E} \Phi_{h_{J_{n}}}^{\prime} \Phi_{h_{J_{n}}} a=\mathbb{E}\left(\sum_{0 \leq|k| \leq 1 / h_{J_{n}}} a_{k} \phi_{k}(X)\right)^{2} \asymp \int_{[0,1]^{p}}\left(\sum_{0 \leq|k| \leq 1 / h_{J_{n}}} a_{k} \phi_{k}(x)\right)^{2} d x=a^{\prime} a
$$

since the $\phi_{k}(\cdot)$ are orthonormal in $L_{2}\left([0,1]^{p}, d x\right)$. Therefore the eigenvalues of the symmetric matrix $n^{-1} \mathbb{E} \Phi_{h_{J_{n}}}^{\prime} \Phi_{h_{J_{n}}}$ are bounded away from 0 and infinity when n grows. Example 1 b is studied in Baraud (2002) and follows from similar arguments.

We now return to the proof of Proposition 1 for Example 1 . Lemma 7 implies that for some $C>1$,

$$
\frac{1}{C \cdot n} \Phi_{h} \Phi_{h}^{\prime} \prec P_{h}=\frac{1}{n} \Phi_{h}\left(\frac{1}{n} \Phi_{h}^{\prime} \Phi_{h}\right)^{-1} \Phi_{h}^{\prime} \prec \frac{C}{n} \Phi_{h} \Phi_{h}^{\prime}
$$

with probability tending to 1 , where \prec is the ordering of symmetric matrices. Because $p_{i i}(h)=e_{i}^{\prime} P_{h} e_{i}$ where $\left\{e_{i}\right\}_{1 \leq i \leq n}$ is the canonical basis of \mathbb{R}^{n}, this gives

$$
\left|p_{i i}(h)\right| \leq \begin{cases}\frac{C}{n} \sum_{|k| \leq 1 / h} \phi_{k}^{2}\left(X_{i}\right) \leq C /\left(n h^{2 p}\right) & \text { for Example 1a } \tag{6.11}\\ \frac{C}{n} \sum_{|k| \leq 1 / h, q \leq \bar{q}} \phi_{q k h}^{2}\left(X_{i}\right) \leq C /\left(n h^{p}\right) & \text { for Example 1b }\end{cases}
$$

with probability going to 1 and uniformly in $i=1, \ldots, n$ and $h \in \mathcal{H}_{n}$. Indeed, $\phi_{k}^{2}(\cdot) \leq C h^{-p}$ for all $k \leq 1 / h$ for Example 1a while $\phi_{q k h}^{2}\left(X_{i}\right)$ vanishes except for exactly one index k with $\phi_{q k h}^{2}\left(X_{i}\right) \leq C h^{-p}$ for Example 1b.

To prove W0-(ii), note that $\mathrm{Sp}_{n}\left[P_{h}\right]=1$ since P_{h} is an orthogonal projection. The triangular inequality gives $\max _{h \in \mathcal{H}_{n}} \operatorname{Sp}_{n}\left[W_{h}\right] \leq 1+\max _{h \in \mathcal{H}_{n}} \max _{1 \leq i \leq n}\left|p_{i i}(h)\right|=O_{\mathbb{P}}(1)$ by (6.11) and the restriction on $h_{J_{n}}$ which gives $h_{J_{n}}^{-2 p}=o(n)$ for Example 1a and $h_{J_{n}}^{-p}=o(n)$ for Example 1b. For W0-(iii), we have $\mathrm{N}_{n}^{2}\left[W_{h}\right]=N_{n}^{2}\left[P_{h}\right]-\mathrm{N}_{n}^{2}\left[W_{h}-P_{h}\right], \mathrm{N}_{n}^{2}\left[W_{h}-W_{h_{0}}\right]=N_{n}^{2}\left[P_{h}-P_{h_{0}}\right]-\mathrm{N}_{n}^{2}\left[\left(W_{h}-P_{h}\right)-\left(W_{h_{0}}-P_{h_{0}}\right)\right]$. Now $N_{n}^{2}\left[P_{h}\right]=\operatorname{Rank}\left[P_{h}\right]$ and $N_{n}^{2}\left[P_{h}-P_{h_{0}}\right]=\operatorname{Rank}\left[P_{h}-P_{h_{0}}\right]$ since P_{h} and $P_{h}-P_{h_{0}}$ are orthogonal projections. This gives $N_{n}^{2}\left[P_{h}\right] \asymp h^{-p}$ and $N_{n}^{2}\left[P_{h}-P_{h_{0}}\right] \asymp_{\mathbb{P}} h^{-p}-h_{0}^{-p}$ almost surely for Example 1a, and for Example 1 b using the Bernstein inequality with $h_{J_{n}}^{-p}=o(n / \ln n)$, ensuring that the number of
X_{i} in each bin $I_{k}(h)$ diverge. Then, since $\mathrm{N}_{n}^{2}\left[W_{h}-P_{h}\right]=\sum_{i=1}^{n} p_{i i}^{2}(h)$, W0-(iii) holds if

$$
\max _{h \in \mathcal{H}_{n}} h^{p} \sum_{i=1}^{n} p_{i i}^{2}(h)=o_{\mathbb{P}}(1) \text { and } \max _{h \in \mathcal{H}_{n} \backslash h_{0}}\left(h^{-p}-h_{0}^{-p}\right)^{-1} \sum_{i=1}^{n}\left(p_{i i}(h)-p_{i i}\left(h_{0}\right)\right)^{2}=o_{\mathbb{P}}(1),
$$

which is a consequence of (6.11) together with $h_{J_{n}}^{-3 p}=o(n / \ln n)$ for Example 1a and $h_{J_{n}}^{-p}=o(n / \ln n)$ for Example 1b. To show W1-(i), note that the P_{h} are symmetric semidefinite positive with $\max _{h \in \mathcal{H}_{n}} \mathrm{Sp}_{n}\left[W_{h}-P_{h}\right]=o_{\mathbb{P}}(1)$ as shown when establishing W0-(ii). For W1-(ii,iii), consider first Example 1a. Let $\Pi_{s, h}$ be the set of polynomial functions with order $1 / h$ which are such that W1-(ii) holds by the multivariate Jackson Theorem, see e.g. Lorentz (1966). This choice of $\Pi_{s, h}$ gives $\Lambda_{n}^{2}=1$ almost surely by definition of the P_{h} with $h_{J_{n}}^{-p}=o(n)$ and Assumption D. For Example 1b, the proof of W1-(ii) uses the same Taylor expansion than in Guerre and Lavergne (2002) to build the $\Pi_{s, h}$. Assumption W1-(iii) for any given \bar{q} is a consequence of W1-(iii) for $\bar{q}=1$. This can be shown using Guerre and Lavergne (2002) and establishing convergence of local empirical moments with repeated applications of the Bernstein Inequality.

REFERENCES

AERTS, M., G. CLAESKENS and J.D. HART (1999). Testing the fit of a parametric function. J. Amer. Statist. Assoc. 94 869-879.

AERTS, M., G. CLAESKENS and J.D. HART (2000). Testing lack of fit in multiple regression. Biometrika 87 (2) 405-4242.

AKAIKE, H. (1973). Information theory and an extension of the maximum likelihood principle. Proceedings of the Second International Symposium on Information Theory B.N. Petrov and F. Csaki eds. Akademiai Kiodo: Budapest 267-281.

BARAUD, Y. (2002). Model selection for regression on a random design. ESAIM Probab. Statist. 6 127-146.
BARAUD, Y., S. HUET and B. LAURENT (2003). Adaptive tests of linear hypotheses by model selection. Ann. Statist. 31(1) 225-251.

CHEN, J.C. (1994). Testing goodness-of-fit of polynomial models via spline smoothing techniques. Statist. Probab. Lett. 19 65-76.

CHOW, S.C. and H. TEICHER (1988). Probability Theory. Independence, Interchangeability, Martingales. Second edition, Springer-Verlag, New-York.

DAVIS, P.J (1975). Interpolation and approximation. Dover: New-York.

DETTE, H. (1999). A consistent test for the functional form of a regression based on a difference of variance estimators. Ann. Statist. 27(3) 1012-1040.

EUBANK, R.L. and J.D. HART (1992). Testing goodness-of-fit in regression via order selection criteria. Ann. Statist. 20 (3) 1412-1425.

FAN, J. (1996). Test of significance based on wavelet thresholding and Neyman's truncation. J. Amer. Statist. Assoc. 91 674-688.

FAN, J. and L.S. HUANG (2001). Goodness-of-fit tests for parametric regression models. J. Amer. Statist. Assoc. 96 640-652..

FAN, J., C. ZHANG and J. ZHANG (2001). Generalized lihelihood ratio statistics and Wilks phenomenon. Ann. Statist. 29 (1) 153-193.

GOZALO, P.L. (1997). Nonparametric bootstrap analysis with applicatins to demographic effects in demand functions. J. of Econometrics 81 357-393.

GUERRE, E. and P. LAVERGNE (2002). Optimal minimax rates for nonparametric specification testing in regression models. Econometric Theory 18 1139-1171.

GUERRE, E. and P. LAVERGNE (2003). Data-driven rate-optimal specification testing in regression models. Working paper, Université Paris 6. hhtp://www.ccr.jussieu.fr/lsta/R2001_3b.pdf

HÄRDLE, W. and E. MAMMEN (1993). Comparing nonparametric versus parametric regression fits. Ann. Statist. 21 (4) 1926-1947.

HART, J.D. (1997). Nonparametric Smoothing and Lack-of-Fit Tests. Springer Verlag, New-York.
HOROWITZ, J.L. and V.G. SPOKOINY (2001). An adaptive, rate-optimal test of a parametric model against a nonparametric alternative. Econometrica 69(3) 599-631.

INGSTER, Y. I. (1993). Asymptotically minimax hypothesis testing for nonparametric alternatives. (Part I, II and III) Math. Methods Statist. 2 85-114 171-189 and 249-268.

JONG, P. de (1987). A central limit theorem for generalized quadratic forms. Probab. Theory Related Fields 75 261-277.

LEDWINA, T. (1994). Data-driven version of a Neyman's smooth test of fit. J. Amer. Statist. Assoc. 89 1000-1005.

LORENTZ, G.G. (1966). Approximation of functions. Holt, Rinehart, and Winston: New-York.
LEPSKI, O. V., E. MAMMEN and V.G. SPOKOINY (1997). Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors. Ann. Statist. 25 (3) 929-947.

RICE, J. (1984). Bandwidth choice for nonparametric regression. Ann. Statist. 12 1215-1230.
ROTAR', V.I. and T.L. SHERVASHIDZE (1985). Some estimates of distibutions of quadratic forms. Theory of Probability and its Applications 30 585-591.

SCHWARZ, G. (1978). Estimating the dimension of a model. Ann. Statist. 6(2) 461-464.
SPOKOINY, V.G. (1996). Adaptive hypothesis testing using wavelets. Ann. Statist. 24 2477-2498.
SPOKOINY, V.G. (2001). Data-driven testing the fit of linear models. Math. Methods Statist. 10 465-497

VAN DE GEER, S. (2000). Empirical Processes in M-Estimation. Cambridge University Press, Cambridge.

VAN DER VAART, A.W. (1998). Asymptotic Statistics. Cambridge University Press, Cambridge.
VAN DER VAART, A.W. and J.A. WELLNER (1996). Weak Convergence and Empirical Processes. With Applications to Statistics. Springer-Verlag, New-York.

WU, C. F. J. (1986). Jacknife, Bootstrap and other Resampling Methods in Regression Analysis (with discussion). Ann. Statist. 14 1261-1350.

ZHANG, C.M. (2003). Adaptive tests of regression functions via multiscale generalized likelihood ratios. The Canadian Journal of Statistics 31 151-171.

Table 1:
White-noise model - Gaussian errors

	$\frac{\widehat{T}_{h_{0}}}{\hat{v}_{h_{0}}}$	$\frac{\widehat{T}_{h_{J_{n}}}}{\widehat{v}_{h_{J_{n}}}}$	Max	$\frac{\widehat{T}_{\tilde{h}}}{\widehat{v}_{\tilde{h}}}$			Our test		
				$c=1$	1.5	2	$c=1$	1.5	2
H_{0}	1.9	2.1	2.0	2.0	2.0	2.0	1.8	1.8	1.7
	5.3	5.1	4.2	4.3	4.2	4.4	4.4	4.3	4.4
$t=2$	5.1	60.6	90.5	90.7	90.0	90.5	91.7	91.3	91.9
	9.0	72.5	96.0	96.3	95.9	96.2	95.4	95.7	97.3
$t=5$	3.0	59.2	66.3	66.9	66.3	66.3	77.3	78.5	78.8
	7.7	73.3	79.2	79.8	79.4	79.5	88.7	88.5	87.8
$t=10$	3.4	50.5	32.8	32.5	32.5	32.7	48.4	49.2	49.2
	7.0	66.0	49.3	50.2	49.3	48.8	65.6	65.5	59.9

Percentages of rejection at 2% and 5% nominal levels.

Table 2:
White-noise model - Exponential errors

	$\widehat{T}_{h_{0}}$	$\widehat{T}_{h_{J_{n}}}$	MAX	Our test		
		$\widehat{v}_{h_{0}}$	$\widehat{v}_{h_{J_{n}}}$			$c=1$
		1.5	2			
H_{0}	2.9	2.9	3.3	3.3	3.2	3.4
	6.1	6.2	6.7	6.3	5.9	6.5
$t=2$	4.5	65.4	91.9	92.2	92.4	92.6
	9.0	77.7	95.9	96.1	96.3	97.2
$t=5$	5.6	61.4	66.5	76.7	77.0	78.6
	9.6	71.7	78.9	86.1	87.0	86.0
$t=10$	3.6	50.6	35.4	51.3	52.8	53.7
	7.6	64.5	52.3	65.5	65.6	62.0

Percentages of rejection at 2% and 5% nominal levels.

Table 3:
White-noise model - Student errors

	$\widehat{T}_{h_{0}}$	$\widehat{T}_{h_{J_{n}}}$	MAX	Our test		
	$\widehat{v}_{h_{0}}$	$\widehat{v}_{h_{J_{n}}}$		$c=1$	1.5	2
H_{0}	2.3	2.1	2.0	1.8	1.7	1.9
	5.0	4.8	4.4	4.5	4.3	4.4
$t=2$	5.2	60.4	91.8	91.9	92.2	92.1
	9.2	73.3	95.7	95.5	95.8	96.2
$t=5$	3.4	60.6	66.6	77.6	77.7	79.0
	8.4	74.6	79.3	88.2	88.2	86.9
$t=10$	3.6	48.8	32.2	48.1	48.5	49.4
	7.8	65.1	48.1	63.1	64.2	60.0

Percentages of rejection at 2% and 5% nominal levels.

Table 4:
White-noise model - Heteroscedastic errors

	$\widehat{T}_{h_{0}}$	$\widehat{T}_{h_{J_{n}}}$	Max	Our test		
	$\widehat{v}_{h_{0}}$	$\widehat{v}_{h_{J_{n}}}$		$c=1$	1.5	2
H_{0}	2.2	2.2	1.8	1.7	1.5	1.6
	5.1	5.0	4.7	4.2	4.1	4.2
$t=2$	3.0	62.3	92.6	94.1	93.9	94.9
	5.9	76.3	98.0	97.9	98.4	98.7
$t=5$	1.6	64.4	62.9	82.9	83.5	83.9
	4.2	78.9	81.9	91.9	92.8	91.6
$t=10$	2.2	57.8	26.8	53.3	53.7	53.2
	5.6	72.8	50.3	69.5	71.3	63.5

[^0]
[^0]: Percentages of rejection at 2% and 5% nominal levels.

