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L’évaluation des actifs financiers est aujourd’hui un domaine de recherche à la fois complexe et

dynamique. Il se destine, selon J. Cochrane, à ”justifier la valeur actuelle d’une présomption for-

mulée sur des paiements futurs, pour lesquels nous n’avons aucune certitude”. En d’autres termes,

la détention d’un actif donnant lieu à une rémunération répartie dans le temps, afin d’estimer sa

valeur présente, cela suppose de prendre en compte à la fois l’incertitude des flux monétaires mais

aussi leur position relative à la date d’évaluation. Ce dernier point découlant du principe établi

qu’une unité de consommation aujourd’hui n’équivaut pas à cette même unité consommée demain.

Enfin, des deux points énoncés plus haut, l’incertitude liée à la rémunération d’un bien financier

semble être le facteur contribuant le plus à la formation du prix.

On distingue deux approches théoriques principales consistant à définir le prix d’un actif, soit de

manière absolue en se concentrant sur l’exposition de ses paiements aux risques macro-économiques,

soit de manière relative en s’appuyant sur la valeur de marché de ses constituants. Dans le cadre

de ce travail de thèse, nous ferons principalement appel à des modèles basés sur l’évolution de la

consommation et ainsi notre raisonnement relèvera d’avantage de la première approche.

Tout au long du déploiement de la théorie, plusieurs écueils ont jalonné la démarche des

chercheurs, motivant ainsi l’introduction d’hypothèses parfois irréalistes mais nécessaires à la résolution

des modèles et à leur conformité aux résultats empiriques. Nous pensons ici aux cortèges de prérequis

menant au paradigme d’équilibre général mais aussi aux modèles prônant l’existence d’un agent

représentatif afin de faciliter la détermination de l’optimum pour l’agent. D’un point de vue plus

empirique, de nombreuses études, menées notamment à partir des années 80, ont mis à jour plusieurs

incompatibilités entre les prédictions théoriques et les observations réalisées sur les marchés. Nous

faisons principalement référence ici aux célèbres travaux de Mehra et Prescott (1985) portant sur

l’equity premium puzzle. Nous soulignerons également le fait que l’échec des modèles actuels provient

en partie de la complexité en termes d’information des marchés financiers, impliquant souvent une

forte imprécision dans la mesure de certaines variables telle que la consommation. C’est ainsi qu’il

est très précieux de pouvoir parfois se référer à des économies simplifiées et en particulier, à des

cas historiques comme celui sous l’Ancien Régime que nous présenterons à l’occasion du premier

chapitre.

Afin de remédier aux difficultés techniques ainsi qu’aux défaillances prédictives des modèles

actuels, la théorie penche aujourd’hui vers l’intégration de l’hétérogénéité des agents dans le socle

de sa logique afin de se défaire définitivement de l’hypothèse d’agent représentatif. Cette démarche

s’enracine avant tout dans l’idée que des comportements ou interactions locales peuvent poten-

tiellement s’agréger sous forme de mécanismes globaux difficilement prévisibles. C’est ainsi que la

compréhension de phénomènes de marché emprunte à la théorie des systèmes complexes et suggère

l’utilisation de tout le panel d’outils dédiés à ce domaine. Lorsque l’on permet des différences en-

tre les agents, qu’elles soient informatives, préférentielles, ou même en termes de richesse, il est
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capital d’être en mesure de contrôler ces hétérogénéités et en particulier de mâıtriser le faisceau

d’interactions entre les agents. En effet en économie, à moins de considérer des marchés orga-

nisés dotés d’un planificateur externe au système qui organiserait les échanges afin d’en garantir

l’efficience, il est rare que les agents puissent interagir avec n’importe quel partenaire sans rencontrer

la moindre friction. Il est donc impératif de connâıtre la structure sous-jacente des interactions. Ce

point est d’autant plus important dans le cas de comportements stratégiques menant à d’éventuels

équilibres de Nash. C’est ainsi que certains outils tels que les graphes sont d’une utilité majeure

pour visualiser et appréhender le réseau social illustrant les connections entre les agents. Nous

verrons alors quelles implications, l’utilisation de ces nouveaux outils peut avoir au niveau de la

formation des prix, de la répartition des ressources au sein de l’économie et de la forme globale des

échanges sur un marché.

Comme nous l’avons évoqué, la théorie de l’évaluation des actifs se base entièrement sur l’hypothèse

que le prix d’un actif est égal à la somme actualisée de ses flux espérés. L’une des premières

avancées majeures dans le domaine a été réalisée par R. Lucas (1985) qui propose une structure

idéalisée de production purement exogène, c’est-à-dire qui ne dépend pas de la volonté des agents.

L’économie se caractérise par un certain nombre d’arbres dont les fruits sont parfaitement iden-

tiques et représentent l’unité de consommation. On fait également l’hypothèse que tout stockage

étant impossible, la totalité des fruits est consommée. Cette modélisation, appelée économie de

dotations repose enfin sur le concept d’agent représentatif puisque tous ses membres sont supposés

semblables. L’auteur déduit l’optimum pour chaque individu et établi la relation qui deviendra

le fondement de la théorie de l’évaluation des actifs, basée sur la consommation. Cette équation,

parfois présentée comme l’équation d’Euler s’écrit :

pt = Et (mt,t+1xt+1)

avec pt le prix à la date t de l’actif, Et l’opérateur espérance conditionnée à l’information

détenue à la date t, xt+1 le flux généré par l’actif à la date t + 1 et mt,t+1, le facteur stochastique

d’actualisation pouvant encore s’écrire sous forme d’utilité marginale mt,t+1 = β u′(ct+1)
u′(ct)

. Cette

équation peut encore s’exprimer : ptu
′(ct) = Et (βu

′(ct+1)xt+1) et s’interpréter de la manière suiv-

ante : la perte d’utilité générée par l’achat d’une unité additionnelle d’actif doit correspondre au

gain espéré et actualisé d’utilité marginale consécutive au flux additionnel xt+1.

Par la suite, Mehra et Prescott reprendront cette formulation en 1985 dans le cadre d’un modèle

avec processus de Markov à deux états, pour montrer dans le cas particulier d’une fonction d’utilité

impliquant une élasticité de substitution constante, que les prédictions du modèle de Lucas ne

s’accordent pas aux données du marché américain. En effet, celles-ci prises entre 1889 et 1978,

montrent qu’à moins de considérer une volatilité de la consommation particulièrement haute ou

bien une aversion pour le risque des agents nettement irrationnelle, la théorie ne parvient pas à
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rendre compte des réalités de marché. En effet, si l’on considère les données actuelles relatives aux

dépenses en matière de consommation, nous n’observons pas la volatilité attendue par le modèle.

Toutefois, certaines études suggèrent de nouvelles mesures de la consommation comme Savov (2011)

qui propose d’utiliser la quantité de déchets des ménages comme alternative et montre que celle-ci

s’accorderait d’avantage avec les pré requis théoriques. Par ailleurs, on observe aussi que certaines

économies comme celle que nous présentons au cours du premier chapitre, impliquent une consom-

mation bien plus volatile que nos standards actuels.

Lors de sa parution, la découverte de Mehra et Prescott s’est avérée retentissante et motiva au

cours des décennies suivantes une multitude de travaux similaires. Nous noterons par ailleurs que R.

Shiller fut probablement le premier à s’interroger sur cette inadéquation en 1982. Quelques années

plus tard, P. Weil propose en 1989 d’utiliser une nouvelle classe de préférences, d̂ıtes de Kreps-

Porteus (1978), dont la spécificité technique consiste à défaire l’interdépendance entre élasticité

de substitution et aversion pour le risque, afin de résoudre l’énigme mise à jour par Mehra et

Prescott. Il constata que non seulement cette modification ne suffisait pas à rendre les prédictions

du modèle conforment aux observations mais qu’elle impliquait aussi un nouveau questionnement

: pourquoi le taux sans risque est-il si faible compte tenu de l’aversion des agents à reporter leur

consommation dans le temps. En 1991, Hansen et Jagannathan introduisent les premiers éléments

de compréhension pour la variabilité du facteur stochastique d’actualisation. Ils établissent que le

ratio des deux premiers moments de ce facteur, plus précisément son écart-type sur son espérance

est toujours supérieur ou égal au ratio de Sharpe. Ces travaux se prolongent en 1992 par un ap-

profondissement réalisé par Cochrane et Hansen fournissant de nouvelles conditions à imposer aux

facteurs d’actualisation afin de rendre les prédictions conformes aux comportements des prix et des

flux générés par les actifs sur le marchés.

L’incapacité avérée du modèle de Lucas a rendre compte des données observées a alors mo-

tivé une phase de spécialisation des fonctions d’utilité. Plusieurs études se sont efforcées d’inclure

de nouveaux paramètres dans les préférences des agents, notamment le temps de loisir qui sem-

blerait participer pour une large part au programme décisionnel des individus. En effet, lorsque

l’on accède à certains biens, leur jouissance suppose une certaine disponibilité. Ainsi, pour une

personne allouant la majorité de son temps au travail, l’utilité d’un tel bien s’en révélerait presque

nulle. Par ailleurs, certains auteurs comme Jagannathan et Wang (1996) ou Reyfman (1997) ont

montré que l’intégration ad hoc du revenu du travail comme facteur permettrait d’expliquer les ren-

dements moyens des actions. Ils se basent en particulier sur une version conditionnelle du modèle

d’évaluation des actifs financiers (MEDAF). Dans le même esprit Lettau et Ludvingson (2001a)

s’intéressent au ratio agrégé consommation-richesse pour expliquer les rendements des actions. Ils

montrent plus précisément qu’un tel facteur détient d’avantage de pouvoir prédictif que les variables

communément utilisées, à savoir le rendement de dividendes et le taux de distribution des dividendes.
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Dans cet effort de sophistication des préférences des agents, nous retiendrons également les travaux

d’Epstein et Zin (1989) ou Hansen, Sargent et Tallarini (1999) qui développent le cas d’utilités non

séparables d’un point de vue temporel. En d’autres termes, ils envisagent que l’utilité future espérée

puisse affecter le niveau d’utilité actuel. Cette intuition se traduit d’un point de vue technique par

une forme récursive qui peut s’écrire de la manière suivante : Ut = c1−γ
t + βf

[
Et

(
f−1Ut+1

)]
, le

second élément de cette expression, appelé équivalent certain, capture la dimension liée au risque.

La propriété majeure de cette fonction réside dans le fait qu’elle permet de défaire le lien exis-

tant jusqu’alors dans les formulations standards, entre élasticité intertemporelle de substitution et

aversion pour le risque, destinés à être l’inverse l’un de l’autre. La première implémentation de

cette innovation technique dans le cadre de l’évaluation des actifs est proposée par Duffie et Epstein

(1992). Il est toutefois à noter que les propriétés de ces nouvelles préférences, ne semblent pas

révolutionner l’efficience des modèles comme le montre Kocherlakota (1990). Enfin, ces nouvelles

spécificités de la fonction d’utilité des agents liée au temps reviennent à considérer des préférences

non séparables par rapport à l’état de la nature puisque rien en l’espèce ne distingue le temps des

états de la nature. En d’autres termes, on envisage ici que l’utilité marginale associée à un niveau

de consommation dans un état donné de l’économie puisse être affectée par ce qu’il se produirait si

un autre état s’était réalisé.

Les préférences énoncées plus haut permettent entre autre, de résoudre l’énigme liée au taux

sans risque énoncée par Weil mais ne parviennent toujours pas, pour des valeurs modérées d’aversion

pour le risque, à expliquer celle mise à jour par Mehra et Prescott. Campbell et Cochrane (1999)

proposent une approche légèrement différente où l’utilité dépendrait non seulement du niveau de

consommation actuel mais aussi passé. L’intuition principale derrière cette hypothèse est que les

individus forment des habitudes de consommation et pourraient ainsi se révéler contre l’idée que leur

consommation se réduise d’une période à l’autre. Les préférences des agents peuvent s’exprimer par

exemple de la manière suivante : Ut = Et

( ∞∑

t=0
βt (ct−λct−1)1−σ

1−σ

)

avec λ un coefficient qui détermine

l’intensité des habitudes. Cette structure permet de capturer un phénomène fondamental en psy-

chologie : la répétition d’un stimulus réduit la perception que l’on en a, ainsi que la réponse qu’il

suscite. Plus précisément, elle est à même d’expliquer pourquoi le bien-être ressenti par l’agent

semble en général d’avantage lié à un niveau relatif de sa consommation - comparé à son niveau

antérieur - plutôt qu’à un niveau absolu. Il est à noter par ailleurs que le concept d’habitudes de

consommation s’oppose à celui de durabilité. En effet, si l’on achète un bien durable hier, cela réduit

l’utilité marginale d’un achat de ce bien aujourd’hui, alors que pour un bien dont la consommation

serait habituelle, nous aurions l’inverse. De plus, si l’on se place à une échelle de temps réduite, on

observe que la consommation de la plupart des biens détient une forme de persistance. Il semblerait

donc judicieux d’inclure à la fois durabilité et habitudes dans les préférences des agents.

Campbell et Cochrane considèrent toutefois des préférences légèrement différentes de celles
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évoquées plus haut. En effet, afin de simplifier le problème d’optimisation de l’agent, ils supposent

que ses habitudes interviennent de manière purement exogène. En d’autres termes, plutôt que les

habitudes d’un individu soient le simple résultat de sa consommation passée, elles dépendraient de

l’historique de la consommation agrégée. Cette approche s’inscrit dans l’esprit de travaux antérieurs,

notamment d’Abel (1990) ou encore Duesenberry (1949) qui lui, suggère l’importance du revenu

relatif. Plus précisément, Duesenberry prétend que chaque agent voit sa richesse en comparaison

de celle des autres. Nous reviendrons d’ailleurs sur cette intuition dans le cadre de notre troisième

chapitre. Enfin, pour conclure sur la contribution de Campbell et Cochrane, ils supposent par

convenance technique que les habitudes répondent avec un retard au niveau de consommation, bien

que les études empiriques semblent montrer le contraire. Ils définissent également les habitudes

comme non linéairement liées à l’historique de la consommation agrégée afin de garantir une fonc-

tion d’utilité toujours finie et positive. Ainsi, leur modèle permet de résoudre l’énigme identifiée

par Mehra et Prescott pour des valeurs rationnelles d’aversion pour le risque chez les agents.

Une autre solution aux faiblesses du modèle de Lucas pourrait être apportée par la prise en

compte de l’éventualité de désastres. Nous faisons référence ici principalement aux études de Rietz

(1988), Barro (2006), Gabaix (2008) et Gourio (2008) pour leur large contribution à cette approche.

Rietz fut quelques années après les travaux de Mehra et Prescott, le premier à invoquer le risque de

désastre comme solution à l’inadéquation entre prédictions théoriques et observations empiriques.

Toutefois, son intuition ne fut alors pas partagée par la communauté des chercheurs et il fallut at-

tendre les travaux de Barro pour remettre à jour ce mouvement de pensée. La contribution majeure

de Barro fut de mesurer empiriquement la fréquence et la taille des principaux désastres interna-

tionaux, à savoir la Grande Dépression, la première et la seconde Guerre Mondiale, pour démontrer

qu’ils suffisent à étayer les argument de Rietz. Il apporte ainsi la preuve qu’ils peuvent réconcilier les

prédictions du modèle de Lucas avec les réalités de marché. En particulier, son approche permet de

résoudre le problème soulevé par Weil sur le taux sans risque ainsi que l’excès de volatilité des prix

des actions observé par Shiller (1981). Plus précisément sur ce dernier point, Shiller remarqua qu’un

modèle supposant un taux d’actualisation constant n’implique pas une variation suffisante des prix.

Enfin, Gabaix reprend le raisonnement de Barro-Rietz tout en affinant le modèle. Il autorise les

différents désastres impactant l’économie d’être d’ampleur variable afin d’évaluer leur implication

sur les prix des actions et des obligations ainsi que la prédictibilité de leur rendement. Ses travaux

permettent de résoudre à la fois les difficultés d’ores et déjà surmontées par l’approche de Barro,

mais encore une multitude d’autres inconsistances du modèle standard que nous n’énumérerons pas

ici. Gourio lui, poursuit la généralisation des approches précédentes en abandonnant l’hypothèse

que les désastres sont permanents. Il considère également les phénomènes de reprise économique

apparaissant souvent à la suite de ces chocs et les incorpore au modèle de Barro-Rietz en mon-

trant que leur effet repose sur l’élasticité intertemporelle de substitution. Enfin, dans un même
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esprit, l’histoire des Moulins sur laquelle s’appuie toute la partie empirique de ce travail de thèse est

jalonnée de désastres totalement exogènes dont nous pouvons aisément évaluer la fréquence. Cette

économie pourrait ainsi parfaitement convenir à l’application d’un des modèles évoqués plus haut

d’autant qu’elle ne souffre pas du peso problem. Toutefois, comme nous les montrerons au cours

du premier chapitre, les propriétés statistiques des données sur la consommation nous permettent

justement d’éviter toute sophistication technique, et qu’un modèle standard avec utilité séparable

dans le temps suffit à expliquer les observations.

Une importante hypothèse réalisée dans l’approche de Mehra et Prescott est que la consomma-

tion d’un agent est égale à la consommation agrégée. Toutefois, il n’est pas vrai que la variabilité

de la consommation individuelle corresponde à celle du niveau agrégé puisque la richesse de chaque

individu peut être impactée par des chocs qui lui sont propres. Ainsi, ce constat remet fortement

en question la véracité de l’hypothèse qu’il existe un agent représentatif dans l’économie. Nous

savons que dans un marché complet, il est possible de répliquer les flux de n’importe quel actif sur

la base d’actifs élémentaires, à savoir ceux payant une unité monétaire dans un état donné de la

nature et rien dans les autres états. Ainsi, dans un tel environnement, la consommation de tous

les membres de l’économie évolue conjointement. L’intégralité de la population partage les risques,

puisque lorsqu’un choc survient, il va impacter chacun de manière équivalente. En revanche, si les

marchés sont incomplets, les individus s’exposent à des risques idiosyncratiques purement aléatoires

qui vont donc les affecter de manière asymétrique. L’incomplétude du marché implique par ailleurs

qu’ils ne pourront pas non plus se couvrir par une détention adaptée d’actifs. C’est en ce sens que

les travaux de Constantinides et Duffie (1996) apportent une contribution majeure. Ils construisent

un modèle où les risques idiosyncratiques peuvent être ajustés afin de générer n’importe quel profil

de consommation agrégée ou de prix. La difficulté principale réside ici dans le fait que lorsque ces

risques ne sont pas corrélés avec les rendements, leur implication sur les prix devient nulle ; alors que

s’ils le sont, les agents s’organisent pour se couvrir par le marché et le résultat reste le même. Ainsi,

une issue demeure d’exploiter la non linéarité de l’utilité marginale. C’est ce que développent Con-

stantinides et Duffie en considérant des chocs non corrélés avec les rendements qui vont, au travers

de l’utilité marginale non linéaire, devenir corrélés avec le marché. Par conséquent, les agents ne

pourront s’en affranchir par le biais des actifs, et l’impact sur les prix sera préservé. Cette structure

permet alors de résoudre à l’instar des modèles précédents, bon nombre d’écueils rencontrés par

les formulations standards, d’autant qu’elle ne fait appel à aucune friction particulière et l’aversion

pour le risque des agents reste dans des valeurs acceptables. Enfin nous citerons l’étude de Keim et

Stambaugh (1986) qui propose une autre approche dans laquelle, une faible quantité de volatilité

de la consommation et un haut niveau d’aversion pour le risque permettent de rendre compte de la

prédictabilité des rendements.

D’autres études ont tenté d’adapter le modèle de Lucas en invoquant des coûts de transaction ou
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en introduisant une dimension liée à la production. L’effet de ces deux nouveaux facteurs s’est révélé

non convainquant puisque le premier supposerait des frictions nettement irréalistes pour s’accorder

avec les données alors que le second dévie de l’objectif de rendre compte de la consommation et non

de la façon dont elle est produite.

Afin de compléter au mieux cet bref état de l’art, nous présentons à présent la littérature relative

aux risques de long terme. La prise en compte de ces risques dans les modèles permet avant tout de

voir certaines implications sur la valeur présente des paiements générés par un actif, puisque celle-ci

dépend étroitement de leur exposition aux risques macro-économiques futurs. Plus précisément,

il s’agit simplement de la ”distance” entre deux points du temps : la date à laquelle on évalue

lesdits paiements et l’instant où ils seront véritablement délivrés, cette distance pouvant être con-

sidérablement grande. Par ailleurs, rappelons qu’en vertu des standards de la théorie, le prix d’un

actif se définit comme la somme pondérée des paiements futurs espérés, ainsi toute information sur

ces derniers renseignera également sur l’évolution du prix de l’actif. L’intérêt majeur de ce type

d’approche est de s’inscrire dans un raisonnement plus large portant sur la manière dont les prix

incorporent l’information et en particulier sur l’impact qu’auront les flux de long terme sur la valeur

présente. De plus, cela se prête particulièrement bien au contexte historique utilisé dans ce travail

de thèse car dans le cadre des Moulins du Bazacle, les données ont révélé que les dividendes futures

contribuaient significativement au prix des parts de la compagnie. D’autant qu’en matière de risque,

les Moulins rencontrèrent au cours des siècles de nombreuses crises, d’origine parfois naturelle avec

la destruction des infrastructures, politique lors d’événements belliqueux, ou sociale marquées par

des grèves, obligeant ainsi ses gestionnaires à étudier les opportunités qui limiteraient les pertes.

Nous citerons ainsi dans ce domaine les travaux de Bansal et Yaron (2004) qui exploitent la capacité

des risques de long-terme à rendre les prédictions des modèles plus fidèles aux données observées.

Ils s’accompagnent des études de Bansal, Dittmar et Lundblad (2005), Hansen, Heaton, Li (2005)

et Lettau et Ludvingson (2005) qui montrent que ce type de risques a un fort pouvoir explicatif

pour les rendements des actifs.

Comme nous l’avons d’ores et déjà évoqué, l’hypothèse d’existence d’un agent représentatif

dans l’économie manque fortement de réalisme et se trouve potentiellement à l’origine de nombreux

échecs de la théorie. Il suffit pour s’en convaincre, de considérer simplement le fait que les acteurs de

marché diffèrent avant tout par leur croyance, leur éducation, leur richesse, leur goût et par d’autres

caractéristiques propres qui les incitent à opter pour différents comportements. Ces asymétries

génèrent en particulier des positions différentes relatives au risque, qui vont mener en s’agrégeant à

des situations économiques difficilement prévisibles par l’étude des actions d’un seul agent. L’une

des illustrations les plus frappantes reste ici l’incitation à l’échange puisqu’un des écueils majeurs

du modèle de Lucas est son incapacité à justifier les niveaux de volume observés sur les marchés.

En effet, si tout le monde à la même évaluation d’un bien, personne ne trouve d’intérêt à l’échange.
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Nous reviendrons plus loin sur ce dernier point qui motive le travail théorique présenté lors du

second chapitre. Ainsi, permettre aux agents d’être dissemblables en termes de préférences, à

défaut d’augmenter la complexité des modèles, détient l’intérêt primordial de les rendre plus à

même d’expliquer la réalité. Dumas (1989) proposa une première contribution majeure en décrivant

l’interaction entre deux investisseurs ayant des aversions pour le risque différentes et un niveau

d’impatience similaire. Il observe que cette asymétrie implique une fluctuation aléatoire de la

distribution de richesse parmi les deux agents et constitue une incertitude vis-à-vis de laquelle ces

derniers souhaitent se prémunir. Ainsi ce nouveau facteur intervient dans la composition optimale

de leur portefeuille. Bien plus tard, Coen-Pirani (2004) s’intéresse aux effets d’une population

hétérogène en termes d’aversion pour le risque sur la distribution des richesses parmi les agents

sur le long terme, dans le cadre d’une économie de dotation à la Lucas. Plus précisément, le

modèle suppose deux individus dont les préférences sont du type Epstein-Zin et délivre le résultat

surprenant que pour un certain choix de paramètres, les agents redoutant le moins le risque vont finir

par dominer le marché. Plusieurs travaux se sont ainsi intéressés à analyser de manière empirique

qu’elle était la répartition réelle de la tolérance pour le risque au sein de différents échantillons

d’individus. L’étude de Guvenen (2006) se consacre elle, a identifier comment l’hétérogénéité des

préférences couplée à différents types de participation des agents peut améliorer la performance

du modèle dans l’évaluation des actifs. Elle suppose en particulier que seuls les agents ayant

une haute élasticité intertemporelle de substitution vont détenir des actions alors que les autres

n’investiront que dans des obligations. Dans le même esprit mais cette fois sans contrainte sur

la participation des agents, nous trouvons les travaux de Bhamraet Uppal (2014), Chabakauri

(2013), Gârleanu et Panageas (2008), ainsi que Cozzi (2011) qui eux, se placent d’avantage dans

le cadre de marchés complets. En particulier Gârleanu et Panageas proposent un modèle basé

sur un continuum de générations qui se chevauchent, composées d’individus détenant différentes

dotations et différentes aversions pour le risque. Leurs travaux mènent au résultat intéressant que

l’équilibre du prix des actifs correspond à celui qui caractérise une économie peuplée par un seul

agent représentatif. La majorité de ces études se concentrent toutefois sur le cas de deux agents

en présence, et font l’hypothèse que les mécanismes observés sont directement généralisables au cas

où il y aurait plus de deux agents. Une telle généralisation n’est pourtant pas si évidente, puisque

lorsque l’on augmente la taille d’une population, les interactions deviennent bien plus complexes et

génèrent des mécanismes bien plus imprévisibles. Un exemple frappant demeure encore le niveau de

volume d’échanges sur les marchés que nous étudions dans le cadre du second chapitre. On observe

ainsi que les propriétés obtenues dans le cas simple de deux agents sont très éloignées de ce qui

se produirait si le nombre d’agents était plus élevé. Comme nous l’évoquions plus haut, certains

modèles basés sur l’hypothèse d’une population hétérogène sont dédiés à la compréhension de la

distribution des richesses. Nous relèverons en particulier les travaux de Achdou et. al. (2017) qui
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reprennent les modèles de Aiyagari (1994), Bewley (1986) et Huggett (1993) en temps continu. Au

travers de la résolution d’équations classiques d̂ıtes d’Hamilton-Jacobi-Bellmann et de Kolmogorov,

ils apportent ainsi d’importantes contributions théoriques au domaine. Il est enfin important de

noter que dans certains cas, l’hétérogénéité injectée dans un modèle à la Lucas ne suffit pas à rendre

compte du volume. En effet, comme nous l’avons évoqué, si l’on considère un marché complet ou

pouvant se compléter par la détention de portefeuilles adaptés comme dans Kreps (1982), alors les

prix évoluent comme s’il existait un agent représentatif dans l’économie et l’équilibre ne nous livre

aucune information quant au volume échangé.

Il existe également tout un pan de la littérature basée sur l’hétérogénéité des agents consacrée

à l’étude du volume sur les marchés. Varian (1985) établi assez clairement dans son étude les

raisons pouvant inciter deux agents à échanger. Il énonce ainsi que les individus interagissent sur

les marchés suite à des asymétries de dotations, de préférences ou de croyances. En matière de

dotations, nous entendrons également ici les chocs de liquidité pouvant impacter un agent. Il dis-

tingue par ailleurs deux grands groupes de croyances : celles générées par des différences d’opinions,

reliées aux probabilités-à-priori, et celles issues des déséquilibres au niveau de l’information, cap-

turée par la fonction de vraisemblance. Il montre alors que pour des préférences identiques et une

tolérance pour le risque qui ne crôıt pas trop rapidement, les actifs pour lesquels les opinions sont

plus dispersées vont avoir un prix plus bas et faire l’objet d’échanges plus importants. Ses travaux

s’inscrivent dans l’esprit d’études précédentes tel que Lintner (1969), Mayshar (1983) ou Rubinstein

(1975) qui développent elles aussi des approches basées sur des différences de croyances parmi les

individus. En ce qui concerne le cas de dotations asymétriques, nous retiendrons la contribution de

Grossman (1976).

Un point important ici est que ces nouveaux modèles intégrant l’hétérogénéité des agents ont

désormais la capacité de capturer les caractéristiques relatives au volume. Il convient donc à présent

de considérer la littérature qui lui est dédiée. Pour reprendre les arguments de Varian, nous pouvons

affirmer que les individus ont l’incitation d’interagir sur un marché dès l’instant qu’ils sont dissem-

blables. En d’autres termes, leurs différences, peu importe leur nature, impliquent qu’ils formulent

chacun une évaluation propre du même bien. Ainsi, puisque les prix respectifs qu’ils assignent

ne sont plus égaux, il en résulte immédiatement un gain potentiel à l’échange. Plusieurs auteurs

ont en ce sens proposé des structures où les agents n’attribuaient pas la même valeur à un actif.

La contribution théorique majeure dans ce domaine, est apportée par Karpoff (1986) qui propose

un modèle où les investisseurs repensent à chaque période et de manière idiosyncratique, le prix

auquel ils sont prêts à acquérir l’actif. Il montre que deux individus peuvent détenir l’incitation

d’acheter ou de vendre même en l’absence d’information. Le seul besoin de liquidités ou la volonté

de spéculer suffisent à motiver l’échange. Cette dimension s’associe étroitement aux travaux que

l’on présente au cours du second chapitre, puisqu’il s’agit également d’un modèle plongé dans une
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économie dépourvue de toute information inhérente à l’actif. Comme on le souligne d’ailleurs,

l’incorporation de l’information pourrait dans certains cas, impliquer une situation de non-échange

en vertu de certains théorèmes issus de la théorie des incitations. Toutefois, bon nombre d’études

se concentrant sur des évènements de marché déterminants, postulent l’existence d’un lien entre

information et volume. On relève par exemple Kiger (1972) qui analyse les réactions des prix et

du volume sur le marché américain à la suite de l’annonce des profits trimestriels mais aussi Morse

(1981), Pincus (1983) et Bamber (1985,1986). D’autres cependant ont un avis bien plus réservé

sur la nature de ce lien. Par exemple Verrechia (1981), montre que lorsque le niveau de volume

ne réagit pas à la divulgation de nouvelles informations, cela implique un parfait consensus entre

les investisseurs. Toutefois, il affirme également que la contraposée n’est pas vérifiée. En d’autres

termes, il peut y avoir des variations du volume même lorsque les agents interprètent l’information

de manière identique, du fait qu’ils n’aient pas nourri les mêmes espérances au préalable par exem-

ple. Tout comme l’étude d’évènements montre qu’il existe souvent une latence dans l’ajustement

du prix, Morse (1980) fourni un résultat similaire pour la dynamique du volume dans laquelle on

relève une persistance de l’information. Pfleiderer (1984) propose lui, un modèle où l’information

agrégée n’est pas entièrement révélée par le prix. Il suppose plus précisément que cette dernière est

distribuée à chaque agent sous forme de deux composants, le premier étant commun à tous alors

que le second est propre à chacun. Son modèle mène au résultat contre intuitif indiquant que le

volume est une fonction décroissante du niveau de désaccord entre les individus. Évidemment, un

tel mécanisme n’étant pas observé sur les marchés, il ne mérite pas d’être développé plus avant. Un

axe de recherche important est aussi dédié à la relation entre volume et variation du prix. En effet,

il semblerait qu’il existe une relation positive entre le nombre d’actifs échangés et l’ampleur de la

variation du prix comme le montre une étude de Copeland (1976) proposant un modèle où les in-

vestisseurs reçoivent de manière séquentielle des fragments d’information commune. Jenny, Starks

et Fellingham reprennent cette approche en autorisant certaines frictions ainsi que les ventes à

découvert. Toutefois, ces études se basent systématiquement sur une vision purement dichotomique

des investisseurs qui sont alors rangés par catégories comportementales : optimistes ou pessimistes,

bulls ou bears, fundamentalist ou chartist ou encore informés ou non informés. Une telle classi-

fication des agents étant pour le moins restrictive, nous avons ainsi choisi dans l’étude théorique

présentée au second chapitre, de ne pas la retenir. Il est enfin intéressant de citer la contribution

des modèles dits de distribution mélangées. Entre autres, Clark (1973), Tauchen et Pitts (1983)

et Harris (1983) prédisent que le volume échangé d’un actif est positivement lié à l’ampleur de la

variation de son prix au cours d’intervalles de temps fixées ou sur une transaction donnée. Enfin

plus récemment, une importante contribution a été apporté par Lo et Wang (2001) qui propose une

analyse assez générale du volume. Ils proposent entre autre un nouvel outil de mesure de l’activité

d’échange sur les marchés en justifiant sa légitimité et ses avantages vis-à-vis de la mesure classique.
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Ils déduisent en outre les nombreuses implications que peut avoir le volume dans le domaine de la

théorie actuelle du portefeuille, en particulier sur les théorèmes de séparation en deux ou plusieurs

fonds mais aussi les implications sur le modèle intertemporel d’évaluation des actifs.

Il est important de noter que l’étude théorique présentée au second chapitre est à la frontière de

trois grands axes de recherche. Le premier étant évidemment celui dédié à l’analyse du volume sur

les marchés financiers puisque le modèle a vocation de le justifier. Le second étant la grande famille

de structures intégrant une population hétérogène d’individus. Enfin, le troisième se définit comme

connexe au second puisqu’il s’agit de la littérature émergente consacrée aux échanges et interactions

sociales sur des supports de réseaux. C’est de ce dernier que nous allons traiter à présent. Faire

l’hypothèse d’une population hétérogène d’agents est une chose, mesurer comment ils interagissent

en est une autre. En effet, lorsque l’on introduit des différences, quelque soit leur nature, on motive

ainsi l’émergence d’interactions. Comme nous l’avons évoqué plus haut, ces interactions s’illustrent

en particulier par la transactions d’actifs. Prenons l’exemple d’une action évaluée à $10 par un

individu A et à $11 par un individu B. Si l’on considère un marché de gré à gré sans aucune friction

et que ces individus sont prêts à vendre ou à acheter l’action au prix qu’ils l’évaluent, en supposant

par ailleurs qu’un régulateur fixe le prix de marché à $10.5, il demeure bel est bien une incitation à

échanger dans le seul but spéculatif de réaliser le profit mutuel de $0.5. Néanmoins, aucune trans-

action ne pourra être réalisée sans la condition évidente que les agents soient mis en contact ou sans

intermédiaire pour réaliser l’opération. En effet, si chacun ignore l’existence de l’autre, bien qu’ils

soient potentiellement disposés à échanger, toute interaction demeure impossible. Évidemment, une

telle difficulté ne peut survenir sur un marché organisé où, une entité planificatrice - comme une

place boursière - se charge d’organiser les échanges. Revenons à présent à notre marché de gré à

gré et supposons que les individus A et B soient membres de deux groupes distincts d’investisseurs

- c’est-à-dire qu’ils sont en relation avec ces individus - partageant exactement leur évaluation de

l’action. Ils n’ont aucune incitation à échanger au sein de leur propre groupe malgré les connections

qu’ils y entretiennent. Le nombre d’échanges sera ainsi nul tant que A et B ne seront pas mis en

contact. Par conséquent, la structure même du réseau social sous-jacent à ce type de marché est

d’une importance capitale pour déterminer le niveau d’interaction. D’autant que lorsqu’on laisse la

liberté aux agents de négocier, en indexant par exemple leur pouvoir de négociation sur la place rel-

ative qu’ils occupent au coeur du réseau, les mécanismes d’échanges se révèlent bien plus complexes.

On peut ainsi étudier la formation des prix et tester certaines conditions largement répandues dans

la littérature classique d’évaluation des actifs, comme la loi du prix unique.

Le paradigme de l’équilibre général prévoit dans sa formulation, des économies composées de

nombreux agents sans aucun pouvoir de marché. De plus, la résolution des modèles suppose la

plupart du temps que chaque individu est en mesure d’échanger avec n’importe quel autre parte-

naire sans délai ni coût de transaction. Les biens sont enfin considérés comme infiniment divisibles
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et les agents comme des preneurs de prix. Un tel environnement idéalisé, au delà de sa capacité

à générer une allocation efficiente des ressources, demeure parfaitement illusoire. C’est ainsi qu’il

est capital d’abandonner progressivement ces hypothèses, bien qu’au risque d’augmenter la com-

plexité des modèles, afin de saisir les mécanismes sous-jacents à la formation des prix et aux autres

conséquences de l’interaction entre les agents. En particulier, l’idée que ces derniers soient preneurs

de prix est, dans la majorité des cas, non recevable puisqu’elle n’aurait de légitimité que dans le

cas extrême d’une large population d’investisseurs sans aucun pouvoir de marché. Ainsi, lorsque

l’on considère un nombre plus réduit d’individus, il n’est plus raisonnable de conserver cette hy-

pothèse. Il est à noter également que de nombreux facteurs interviennent dans l’organisation des

échanges. En effet, la distance géographique, les liens sociaux ou professionnels, et les régulations

locales vont déterminer quel lien portera effectivement une transaction ou non. Un exemple par-

ticulièrement édifiant est celui des biens agricoles dans les pays en développement. En général,

il existe plusieurs intermédiaires qui achètent auprès des producteurs et revendent aux consom-

mateurs. Toutefois, les limites du système de transport, la périssabilité des produits, la difficulté

d’accès au capital, entrâınent que producteurs et consommateurs ne peuvent s’adresser qu’à un

nombre restreint d’intermédiaires comme le montre Fafchamps et Gabre-Madhin (2006) ou Barrett

et Mutambatsere (2008). Ainsi dans un tel environnement, le mécanisme de formation des prix

demeurent bien plus complexe et des axiomes comme la loi du prix unique n’ont définitivement plus

cours.

Plusieurs études ont ainsi entrepris d’utiliser les outils de la théorie des jeux pour étudier, dans

un contexte non coopératif, comment la composition de l’économie et le processus de rencontre

entre les agents pouvaient mener à un équilibre général. Nous retiendrons par exemple les travaux

de Rubinstein (1982), Rubinstein et Wolinsky (1985, 1990) et Gale (1986, 1987) qui étudient les

mécanismes d’échanges bilatéraux sur des marchés dynamiques. Notons également que la structure

des marchés réels suppose souvent une profonde hétérogénéité dans l’offre et la demande locales, im-

pliquant des déséquilibres dans les forces de négociation de chaque individu qui vont alors émerger,

à la fois de leurs opportunités d’échanges immédiates mais aussi de l’architecture globale du marché.

Ces multiples asymétries vont également donner lieu à des allocations sous-efficientes dans le cadre

de négociations décentralisées. Afin d’être intégrés dans un modèle, tous ces traits caractéristiques

des interactions entre agents nécessitent des outils théoriques capables de les mesurer. Ces outils

sont fournis par la théorie des graphes qui permet une représentation très intuitive d’un marché

en un faisceau de points matérialisant les agents, et des liens entre ces points indiquant l’existence

d’une connection sociale. Deux individus liés par un de ces liens peuvent ainsi potentiellement

s’engager dans un échange. Il est toutefois important de remarquer que deux agents connectés ne

vont pas obligatoirement réaliser une transaction. En effet, comme nous le développons dans l’étude

théorique présentée au second chapitre, d’autres forces sont à l’oeuvre, notamment liées à la topolo-
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gie locale dans laquelle le lien entre les individus prend place. Par ailleurs, l’apport des graphes

dans la représentation en réseaux des marchés est d’autant plus précieux que, pour un modèle sup-

posant l’hétérogénéité des agents, il est souvent déterminant de connâıtre le schéma des interactions.

Prenons à ce titre, l’exemple du prix qui pourrait potentiellement varier selon chaque transaction.

On pense également aux fonctions d’utilité basées sur le revenu relatif qui intègrent comme variable,

la composition du voisinage de l’agent. Ces fonctions interviennent particulièrement dans l’étude des

statuts, qui fera d’ailleurs l’objet des travaux présentés au troisième chapitre de ce travail de thèse.

Ainsi, cette nouvelle approche basée sur les réseaux sous-jacents à l’activité de marché, soulève

d’importantes questions. Elle interroge par exemple sur la caractéristique topologique responsable

de la formation locale des prix, mais aussi sur les conditions permettant la validité de la loi du

prix unique. On peut encore se demander comment les pouvoirs de négociation émergent-ils? Pour

quel forme de réseau l’organisation des échanges devient-elle efficiente? Quelle serait l’évolution

dynamique d’un graphe si ses membres pouvaient influer sur les liens? Et bon nombre d’autres

questionnements relatifs à des phénomènes de marché aujourd’hui encore inexpliqués par la théorie

classique.

Les contributions majeures dans le domaine de l’utilisation des graphes pour la compréhension

des mécanismes de marché débutent avec Corominas-Bosch (2004) et Polanski (2007). Ces auteurs

considèrent différentes formes de graphes bipartis, fixés de manière purement exogène, dans lesquels

négocie une population d’agents. Évidemment cette population est partitionnée en vendeurs et en

acheteurs, ayant la possibilité d’échanger selon les opportunités d’interaction fournies par le réseau

et ce, jusqu’à ce que le marché s’équilibre. Ce modèle s’inscrit donc dans la famille des structures

intégrant l’hétérogénéité des agents, entièrement basées sur une vision dichotomique de l’économie.

En particulier Corominas-Bosch suppose que chaque joueur fait une série d’offres publiques qui

peuvent être acceptées par n’importe quel joueur issue de la classe opposée. Elle relie ainsi la struc-

ture du réseau à la distribution des prix à l’équilibre. De plus, et c’est un point qu’elle partage

avec Polanski, son modèle établi une relation entre les gains à l’équilibre et la décomposition de

Gallai-Edmonds, résultat classique de la théorie des graphes. Abreu et Manea (2012) étudient

aussi les mécanismes de marchés décentralisés en s’appuyant sur la richesse de leur dynamique.

Ils proposent un modèle où les joueurs sont mis en relation de manière aléatoire mais où chaque

association d’individus ne résulte pas toujours par un accord, ils peuvent en effet refuser d’échanger

une première fois pour finalement y convenir plus tard, permettant ainsi l’existence d’équilibres

multiples. Ils montrent ainsi que la décentralisation entrâıne l’inefficience des échanges bien que

celle-ci puisse toutefois être évitée dans le cadre d’une politique de sanctions et de récompenses.

Nous citerons également les études de Kranton et Minehart (2001), Rahi et Zigrand (2006), Gale et

Kariv (2007), Gofman (2011) et encore Nava (2013) comme contribuant de manière substantielle à

la littérature. La plupart de ces travaux restreignent le nombre de transactions à une unité d’actif
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à la fois, ce que nous avons également choisi par commodité dans le modèle présenté au second

chapitre de ce mémoire. Babus et Kondor (2018) proposent quant à eux, un cadre où les agents

peuvent au contraire fixer des quantités arbitraires. Comme nous l’avons évoqué, les modèles basés

sur les structures de réseaux décrivent avant tout le cas de marchés de gré à gré. Ils font ainsi

appel également à la littérature consacrée aux mécanismes de recherche de liens, développée entre

autres par Duffie et. al. (2005), Vayanos et Weill (2008) ou encore Afonso et Lagos (2012). Au

cours de l’évolution de la théorie, les modèles ont donc délaissé progressivement l’hypothèse d’agent

représentatif pour intégrer les différences entre les individus dans la détermination de l’optimum.

Puis, convenant qu’il était nécessaire de comprendre comment ces différences étaient mises en jeu,

c’est-à-dire comment allaient-elles interagir, on a introduit la structure décrivant les liens entre les

agents comme fondement des mécanismes de marché. Toutefois, une dimension reste encore par-

tialement ignorée, il s’agit de la manière dont ces réseaux se forment. Bien que certains modèles

endogénéisent cette formation, la plupart se basent encore sur des structures déterminées de manière

exogène. Pourtant, la réalité sociologique nous montre sans cesse le contraire, les connections entre

les individus n’apparaissent pas de manière purement aléatoire. Des groupes sociaux émergent dans

toute société et se composent de membres, aux caractéristiques communes, d’avantage connectés

entre eux qu’avec le reste de la population. C’est ainsi que le modèle présenté au second chapitre de

ce mémoire utilise un processus de graphes aléatoires dont la topologie respecte l’intuition que les

individus se regroupent sur la base de leur préférences en matière de risque. A notre connaissance,

une telle structure n’a encore jamais été traitée.

Il nous reste enfin à évoquer la littérature consacrée aux statuts sociaux. Les économistes se

sont longtemps cantonnés à étudier la dimension monétaire qu’ils considéraient être le seul système

de récompenses existant alors que les sociologues eux, se sont également intéressés au concept de

statut comme nouvel objet du bien-être des agents. Ce concept a été introduit par Max Weber qui

le voyait intimement lié à la richesse de la manière suivante : l’argent apporte le statut qui à son

tour, apporte la puissance économique. Il est d’avantage compris aujourd’hui comme la position rel-

ative occupée par une personne au sein d’un groupe d’individus selon un ordre social communément

établi. Par ailleurs, le statut social confère à celui qui le porte le privilège de bénéficier de rap-

ports plus avantageux avec les autres membres de la société. Ainsi un individu possédant une

place sociale élevée espère être traité plus favorablement lorsqu’il s’engage dans des interactions

sociales ou économiques. Ces avantages peuvent être de différentes natures, soit de purs biens de

marché ou services, soit être l’accès à certains biens non échangeables, soit encore correspondre à

un transfert d’autorité pour accéder à un rôle prédominant. Ainsi, l’acquisition du statut revêt

un véritable intérêt pour les agents qui sont ainsi prêts à réallouer leurs ressources et diminuer la

part jusqu’alors consacrée à leur consommation. Il est également à rappeler que lorsqu’un indi-

vidu accède à un titre particulier, ce dernier n’a de légitimité qu’au sein du groupe le reconnaissant
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comme tel. De plus, cette reconnaissance sociale n’est en général pas irrévocable puisqu’elle suppose

que l’agent observe par la suite un comportement conforme aux honneurs qui lui ont été rendus sous

peine d’être destitué. Un exemple particulièrement édifiant est fourni par les hiérarchies simples des

corps militaire, professionnel ou encore civil. Le premier attribue des grades sur la base de critères

comme l’ancienneté, la bravoure et les risques encourus alors que le second lui, met d’avantage

l’accent sur les compétences et l’expérience. Les statuts qu’ils délivrent tous deux impliquent à la

fois un gain substantiel d’autorité mais aussi l’accès à certains cercles. Nous reviendrons d’ailleurs

sur cette dimension liée aux réseaux par la suite. Enfin, dans le civil, un agencement existe aussi

puisqu’un individu peut recevoir une décoration ou un ordre lorsque de par ses actes, il se distingue

positivement des membres de la société. Toutefois, chaque membre de ces trois corps accédant à

une position particulière, peut faire l’objet d’un limogeage, d’une dégradation ou d’une disgrâce si

son comportement s’oppose aux normes associées à l’attribution de leur statut. Plus précisément,

il est important de remarquer qu’il existe des pré-requis sociaux sur la base desquels les critères

de sélection vont être portés. Prenons pour exemple certaines distinctions exigeant que l’individu

pressenti pour les recevoir n’ait jamais fait l’objet de condamnation judiciaire par le passé puisqu’en

réalité, la personne honorée par le titre n’est pas le résultat d’un ordre effectué sur l’intégralité de la

population mais plutôt sur une sous-population d’ores et déjà constituée par un pré-ordre. Pour s’en

convaincre, nous invoquerons le fait que par le passé, la discrimination présente dans de nombreuses

sociétés écartait d’emblée les femmes mais aussi les hommes issus de certaines ethnies, de l’accès

aux titres honorifiques ou à des positions sociales privilégiées. Il est important de voir également

que l’acquisition d’un statut, au même titre que n’importe quel autre critère d’appartenance so-

ciale, garantit l’accès au sous-groupe dont les membres partagent ce même statut. En effet, il est

largement accepté en sociologie que les individus ont tendance a se regrouper lorsqu’ils ont des

éléments en commun et ce, quelque soit leur nature. Les membres d’un groupe deviennent alors par

définition plus liés, plus inter-connectés qu’avec le reste de la population. C’est cet aspect que nous

exploitons d’ailleurs dans le second et le troisième chapitre de ce travail de thèse. Nous mettons

ainsi l’accent dans notre modélisation sur le fait que deux agents appartenant au même groupe ont

potentiellement plus de chance de se connâıtre que s’ils proviennent de deux groupes différents. Ce

mécanisme est également à l’oeuvre pour les statuts puisqu’un individu honoré d’un titre complète

son identité d’un élément qu’il partage désormais avec un nouvel ensemble d’individus. Il va ainsi

développer les connections sociales associées à ce nouveau groupe. Par ailleurs, il est à noter que

tout agent n’a pas la capacité matérielle ou temporelle d’entretenir simultanément un grand nom-

bre de liens au sein d’une population. Certains de leurs liens connaissent alors des dégradations

successives jusqu’au point d’être définitivement rompus. C’est pourquoi, il est commun de voir une

migration des agents d’un groupe à un autre plutôt qu’une appartenance simultanée à de multiples

structures.
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Revenons à présent aux principaux travaux composant cette littérature. En économie, Adam

Smith (1776) reconnaissait déjà l’importance de l’honneur et de l’estime comme autant de motiva-

tions aux actions des agents. Marshall (1890) affirmait lui, que le désire d’obtenir l’approbation et

surtout d’éviter le mépris de ses pairs constituait un moteur d’uniformisation des classes sociales.

Néanmoins, la théorie a dû, au cours de son développement, justifier avant tout la manière dont

les statuts étaient obtenus. Elle a ainsi fait la distinction entre ceux émanant des caractéristiques

intrinsèques des individus de ceux générés uniquement par leurs actions. Ensuite, il a fallu définir

sous quelle forme un agent bénéficie du statut, à savoir faut-il l’intégrer directement dans sa fonc-

tion d’utilité ou bien établir un nouveau mécanisme par lequel le statut améliore l’ensemble de ses

opportunités. Veblen (1899) lui, introduit l’idée que le bien-être d’un agent pourrait intimement

dépendre de celui des autres. Il affirme en outre que pour susciter l’estime et le respect des hommes,

il convient non seulement de détenir richesse et pouvoir mais aussi de les mettre en évidence. Il

parle alors de consommation ou de loisir ostentatoires. A ce titre, Hirsch (1977) proposera plus tard

la distinction entre deux types de biens, les positionnels dont la consommation signalent un niveau

élevé de statut, et les non positionnels qui n’influent en rien sur la position sociale. Le concept

de consommation relative développé par Veblen constitue par ailleurs une solution au paradoxe

d’Easterlin (1974) que le bonheur apparent des individus est positivement corrélé en tout point du

temps au revenu alors que l’augmentation de ce dernier ne semble avoir aucun effet sur le bonheur

des agents. Plusieurs travaux ont alors intégré ce concept dans différents modèles. On retient ainsi

les études de Hopkins et Kornienko (2004), Layard (2005), Blanchflower et Oswald (2004), Arrow

et Dasgupta (2009). Plus proche de l’analyse que nous présentons au troisième chapitre en termes

de modélisation, nous trouvons Ghiglino et. al. (2010) ainsi que Immorlica et. al. (2017). En

effet, les premiers proposent un modèle où l’utilité des agents est affectée par la consommation de

leur voisins. Ils utilisent ainsi une structure de réseau afin de capturer la composition de ce voisi-

nage et démontre qu’à l’équilibre, les prix et les niveaux de consommation sont des fonctions d’un

simple paramètre topologique qui est la centralité du graphe sous-jacent. Les derniers se basent

quant à eux aussi sur une représentation de l’économie sous forme de réseau où les agents effectuent

des actions pour lesquelles est associé un coût. Ces actions engendrent un bénéfice et confère un

statut. Ils introduisent ainsi une nouvelle mesure de la connectivité du réseau, appelée cohésion,

destinée à rendre compte des incitations des individus à rechercher un statut. Le modèle présenté

au second chapitre de ce mémoire se distingue toutefois de ces approches sur l’utilité de l’agent

dans laquelle nous incluons un élément capturant le gain (ou la perte) psychologique d’échanger

avec une personne dont le statut est supérieur (ou inférieur) au nôtre. Ainsi, cette structure permet

de considérer l’existence d’une menace tacite d’exclusion lorsqu’un membre dévie du comportement

standard de son groupe. A ce titre, nous pouvons citer les travaux de Cole et. al. (1996) qui

s’intéressent à des biens non échangeables sur un marché : les mariages. Ils montrent au travers
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d’un modèle inter-générationnel qu’à l’équilibre, le mariage par classe est maintenu du simple fait

de la menace d’être rétrogradé en cas de non respect de la norme sociale établie par le groupe.

Le contexte historique des Moulins de Toulouse est ainsi parfaitement adapté à l’étude de ces

phénomènes puisque cette période de l’histoire se caractérise par une délimitation des classes so-

ciales, et en particulier celles liées au statut, bien plus nette qu’aujourd’hui. Nous avions en effet

d’un côté, les nobles et les gens d’église dont la position sociale privilégiée demeure indéniable, puis

le reste de la population. Il existait également une classe sociale charnière, celle des bourgeois,

se trouvant à la frontière entre ceux qui détenaient un statut et ceux qui en étaient dépourvus.

Ainsi, il n’est pas rare d’observer une migration de certains membres de la bourgeoisie vers la classe

supérieure. Comme nous le décrivons d’ailleurs dans le second chapitre de ce mémoire, il existait

une institution à Toulouse servant à anoblir les riches par l’achat d’un certain bien. Ce dernier

point convient donc parfaitement aux théories de Veblen et Hirsch évoquées plus haut.

Ce mémoire de thèse, dont le thème global est l’évaluation des actifs et le volume d’échanges

sur les marchés financiers, s’organise de la manière suivante. Chaque chapitre contient un article

consacré à un objet de recherche différent. Le premier examine le cas de deux des plus anciennes

sociétés par actions connues à ce jour en Europe, à savoir l’histoire des Moulins de Toulouse, dont

nous avons pu retrouver les données financières dans les archives de la ville. Sur la base de ce support

empirique, unique à l’égard de son contexte historique mais aussi de ses propriétés statistiques, nous

nous proposons d’utiliser une méthode économétrique basée sur la minimisation de l’entropie pour

montrer qu’un modèle à la Lucas avec une fonction d’utilité de type CRRA n’est pas rejeté compte

tenu des données. Nous expliquons comment la volatilité de la consommation mesurée pour cette

économie nous permet d’arriver à ce résultat pour des niveaux d’aversion pour le risque faibles.

Le second chapitre est une étude théorique visant à justifier le niveau des échanges sur les

marchés financiers sur la base de leur composition en termes de groupes sociaux. Plus précisément,

on propose un modèle intégrant l’hétérogénéité des agents en regard à leur aversion pour le risque

et supposons en outre que ces derniers forment naturellement des groupes sociaux sur la base de

cette caractéristique. On utilise ainsi des processus aléatoires intégrant ce mode de rapprochement

des individus pour former le réseau sous-jacent à l’économie. Nous introduisons alors le concept de

canal désirable comme le lien entre deux agents pouvant potentiellement faire l’objet d’un échange

et déduisons le nombre espéré de ces canaux ainsi que le niveau espéré d’échanges avérés. Nous

proposons ainsi une caractérisation systématique des graphes des connections sociales en termes

d’optimalité des échanges qu’ils permettent. Enfin, nous utilisons certains résultats de la théorie

des graphes pour traiter la question de taux de participation des agents aux activités de marché

dans un tel environnement.

Le dernier chapitre est une étude mixte portant sur l’impact des statuts sociaux sur l’intensité

des échanges. Plus précisément, nous proposons un modèle inspiré de la littérature dédiée à la
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consommation relative ainsi qu’à la volonté des individus de s’élever socialement. On considère ainsi

qu’il existe deux biens dans l’économie pouvant être échangés, l’un échappant à tout mécanisme

de comparaison sociale et l’autre, permettant de situer chaque individu dans la population. En

partitionnant cette dernière selon deux groupes, ceux ayant un statut et ceux qui n’en ont pas, nous

incluons en outre les phénomènes de gains et pertes psychologiques associés à chaque interaction

et dépendant des statuts relatifs des deux partenaires. Nous montrons dans quel cas les échanges

inter groupes prédominent et au contraire sous quelles conditions y a-t-il plus de transactions intra

groupes. Puis, nous analysons empiriquement le profil des échanges dans le contexte historique des

Moulins de Toulouse selon une stratification sociale bipartite et décrivons leur évolution au cours

des siècles. Enfin, nous nous intéressons aux chocs de liquidité éprouvés par chaque membre de

l’économie pour montrer comment complétent-ils la justification des échanges observés.
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Part II

On Asset Pricing
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Asset Pricing in Old Regime France1

1 Introduction

In asset pricing theory, the consumption-based models should in principle provide a complete

description of the valuation reality and be verified for any form of cash flow (securities, bonds,

stocks and derivatives). Of course, this is difficult to test and many of these models work poorly

in practice. Over the decades, as the models failed to explain the real data, researchers started to

make them more sophisticated by adding new variables of interest and by disentangling others to

enhance their capabilities. Extensive literature, from Pratt (1964) and Arrow (1965), Kreps and

Porteus (1978), Rietz (1988), Epstein and Zin (1991), Constantinides-Duffie (1996), and Campbell

and Cochrane (1999) to Bansal et al. (2004) and Gabaix (2012), has continuously worked to improve

the models’ validity.

As the theory has developed, many puzzles have arisen; we mostly retain the well-known equity

premium puzzle (Mehra and Prescott 1985), the excess volatility puzzle (Shiller 1981), the risk-free

rate puzzle (Weil 1989), and the long-run equity premium puzzle (Cochrane 2005). As pointed out by

Mehra and Prescott (1985), over the period 1889-1978 in the United States, a risk aversion level of

48 is required to reconcile the equity risk premium with the observed one, if we use a CRRA model.

Thus, a simple consumption-based model with a power utility function is not able to explain the

modern U.S. market with rational parameters. Note that the risk-free rate and the mean growth rate

of consumption were both approximately equal to one, and the standard deviation of consumption

to 0.063. These empirical results generate the high value of the risk aversion coefficient. Even with

the refinement of models, we can still make a similar comment: the measured real consumption is

too smooth.

However, in our study, we do not face this kind of issue since the economic conditions of the

time were much more volatile, making the use of this class of model more realistic, especially since

the volatility of consumption is equal to 0.32. Hence, the purpose of this study was to examine the

case of a century-old economy, the Toulouse Mill companies, which share many aspects with our

modern structures and have the great advantage of covering a very long time series. This empirical

case can be viewed as an ideal laboratory for testing certain fundamentals of the asset pricing

theory. This paper aims to explain how a very simple consumption-based model, usually rejected

with contemporary data, can be verified on a simple real economy. We also assessed whether the

general puzzles we mentioned above still exist with our data.

1Co-authors D. Le Bris (Toulouse Business School), W. Goetzmann (Yale university) and S. Pouget (Toulouse
School of Economics)
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The mill companies were very long-lived structures that operated on the banks of the Garonne

river in Toulouse, a city in southwest France. The Bazacle was mentioned for the first time in

1177 in an official document from a local ecclesiastic institution: the Priory of Notre-Dame-de-la-

Daurade. A few years later, the Narbonnais Castle was created in 1183 on the land of the Comte

of Toulouse Raymond IV. These mills were organized in two corporations at the end of the 14th

century. They milled grains for four centuries under this governance structure. The Honor del

Bazacle was converted into a hydroelectricity generation company in 1888 and nationalized in 1946.

The Castle was acquired by the municipality around 1900 and definitively destroyed in 1910.

One might wonder whether such an empirical case is relevant for testing asset pricing theory or

what these new data could bring to the current analysis.

As we mentioned above, the mill companies exhibit similar characteristics to modern corpora-

tions with shareholders, limited liabilities, and transferability of shares and dividends (Sicard 1953).

They were administered by a rotating board of directors and the governance remained stable over

the centuries. In the same vein, we observe strong stability in the business context with no real

change in regulations or legal constraints in the commercial trades.

Le Bris, Goetzmann and Pouget 2017 have already used data from one of these two mills to test

the present-value relationship. Here, we complete the data with those from the main competitor of

this duopoly to bring new empirical support to the analysis. The primary motivation behind this

study involves the following four points.

First, a great advantage of studying the Toulouse mill companies during the Old Regime period

is the political and business stability of the time. In spite of significant tensions in Europe with the

Thirty Year’s war (1618-1648), and the War of the Spanish Succession (1702-1714), there were no

major invasions or alterations of the French territory. The political regime was the monarchy, which

kept roughly the same business vision. In particular, we observe that during the 14th century, the

relationship between the government and private companies was clearly more equitable than what

is commonly thought. For instance during this period, the King became a majority shareholder

in the Castle’s capital and owned 1/7 of the entire company2. He was in conflict with the other

shareholders’ interests because he refused to contribute to the general expenses of the mills. We

could easily imagine the King using his supreme authority to reject the shareholders’ request.

However, a trial was held and a few years later, in 1390, the company finally won against the King.

Similar legal solutions are observed in the subsequent centuries (see le Bris, Goetzmann and Pouget

working paper July 2015 The Development of Corporate Governance in Toulouse: 1372-1946)

Second, over their lifespan, the mills experienced several dramatic events, among which multiple

natural disasters such as the major river floods of 1638 for the Castle and of 1709 for the Bazacle.

2The royal share of 17 uchaux3 was called the ”septième portion”.
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We could also mention other exogenous events such as episodic plagues that ravaged Toulouse,

different military campaigns, religious wars and unusual climatic conditions, such as the Little Ice

Age, that marked their history. Thus, the mill economy provides an empirical case that is strong

suited to testing the Barro (2006) and Reitz (1988) theory, which insists on the impact of rare

disasters.

Third, despite all these rare events that strongly impacted the mills, there was no Peso problem

in this economy. Indeed, the forecasts of the investors do not seem to be significantly biased over the

centuries. In particular, during the Old Regime period, we can reasonably state that the political

context was rather stable and shareholders could confidently extrapolate information extracted from

the past to the future. As regards the other periods, the relative high frequency of wars, outbreaks

and natural disasters renders these events likely to occur but such threats do not appear to generate

persistent forecasting errors.

Fourth, from the statistical point of view, we have very suitable empirical support in this context,

because we detect stationarity in our data. Therefore, we can benefit from real power in statistical

tests. More precisely, we find dividends and prices to be stationary for each mill company and for

the consumption proxy. Moreover, during the Old Regime period, we have plenty of data and the

time series are almost complete.

For each mill, we found records of more than seven hundred transaction prices, sometimes with

almost one price per month. We collected data on the grain quantity redistributed to the sharehold-

ers and on the annual contributions to the general expenses of the company. Then, by subtracting

these time series, we obtained a dividends value. We also benefit from the very meticulous notarial

documentation about transaction records to build trading volume time series. Thus, the archives4

provide us with a large amount of data for share prices and dividends during the Old Regime pe-

riod, and allow us to rebuild almost complete time series for the period 1590 to 1790. We also take

advantage of the fact that we have information about the two main mills in Toulouse that broadly

define the market.

By using all recorded data, we can consider a hypothetical portfolio including shares from the

two firms. Thus, a hypothetical investor managing such a portfolio was potentially able to diversify

the idiosyncratic risk. This assumption is clearly not an artifact since, over the centuries, we found

shareholders who indeed held shares in both mill companies (Sicard 1953). We also highlight the

fact that during the Old Regime period, the shareholders belong to different social classes. We

observe investors from the upper classes, Noble or Bourgeois, but also from the middle classes such

as bakers, tailors and other merchants. Of course, we also find some of the richest people living

in Toulouse or elsewhere in France, for instance in Paris or Bordeaux. In particular, from the end

4Both Haute-Garonne and Toulouse city archives.
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of the Middle Ages, a social class composed of rich merchants and ”money-makers” is explicitly

present in the companies’ shareholdings. According to Sicard (1953), this fact reinforces the idea

of burgeoning speculative behavior by the investors.

When we use consumption-based models in empirical asset pricing theory, an important aspect

is to find a good proxy for consumption. This is more difficult in modern times, where consumption

is very diverse and hard to measure. Some progress was made recently by using garbage to assess

the consumption level (Savov 2011). Of course in the mill case, such an approach cannot work.

However, until the end of the 19th century in France, bread consumption was strongly inelastic

and wheat was the basic ingredient of bread production. As a result, wheat was an essential

commodity and by using the total milled grain quantity for both mills, we can generate a proxy for

local consumption in Toulouse. Importantly, since flour is not a storable good, the milling activity

implies local consumption.

In order to avoid the administrative chaos and the consecutive wave of inaccuracies generated

by the French Revolution at the end of the 18th century, we chose here to restrict the study to the

Old Regime period, more precisely from 1591 to 1788. This choice is also motivated by the fact

that during this period, there was no currency changeover or major political upheavals.

In this paper, we use a methodology recently developed in asset pricing by several authors such

as Julliard et al. (2015) or Almeida and Garcia (2009). Broadly speaking, it consists in choosing

the closest stochastic discount factor (SDF) to a proxy asset pricing model by assessing the distance

between them with different classes of measures. More precisely, this approach exploits the fact that

we can factorize the SDF into an observable component and an unobservable one. Then, the latter

can be estimated by using a relative entropy minimization approach. In particular, the relative

entropy measure is chosen because it generates a strictly positive SDF estimate. The primary

interest of this methodology is that we assess the SDF non-parametrically directly from prices,

dividends and consumption data.

More precisely, if we make covariance appear in the fundamental Euler equation, we split the

right hand side into two parts: a first term that evaluates the price in a risk-neutral world, and

a second term that captures risk adjustment (Cochrane 2005). According to the theory, it is very

challenging to estimate these terms because, on the one hand, the expectations process is quite

complex and must include all the future states of nature, and on the other, we need to know a great

deal about the investors’ preferences to understand the risk compensation. Therefore, if we come

back to the reduced form of the Euler equation5, it would be much more appropriate to assess the

SDF as a whole, rather than making a hypothesis about its structure. The entropy approach allows

us to do this. It is a highly reliable way of estimating the SDF because in addition to evaluating

5p = E(mx).
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model-specific unobservable components, we are also able to estimate the entire SDF as an unknown

variable.

The remainder of this paper is organized as follows. The first section aims at providing broad

insight into the history of the mills. We also discuss the market structure in more detail. We present

our data in the second section with a justification of our choice of the consumption proxy, and we

explain the dividends calculation. In the third section, we describe the SDF inference methodology,

and in the fourth, we analyze the results for a CRRA model. The final section provides a conclusion.

2 Historical Background

Lebris, Goetzmann and Pouget (2014) have already provided a description of the Bazacle mill

company and justified with Goetzmann and Pouget (2010) why it can be seen as a corporation.

Here, we review only the most important historical facts and shed more light on the Narbonnais

Castel, its main competitor, and how the two firms interacted on the market. Our study is broadly

based on Mot’s thesis (1910), which provides some information on the history of the Castle Company

and its organization, and Sicard (1953), which constitutes a detailed source of information about

both firms during the Middle Ages in Toulouse. In this section, we first introduce the local mill

economy. Next, we examine the duopoly structure of the local market. Third, we briefly describe

the history of the Castle Company.

2.1 The Mill Economy in Toulouse

At the end of the 12th century, there were three different mill companies in Toulouse: the

Narbonnais Castle, the Honor del Bazacle, and the Daurade. The two first were larger and the

third was located upstream of the Castle and downstream of the Bazacle. As it was located between

the other two mills, its activity suffered from reduced river height of fall. This was probably one

of the main causes behind its bankruptcy during the 14th century. Thus, as early as the 15th

century, the Castle and the Bazacle shared the market. From the second half of the 14th century,

both companies had a very modern structure. They divided their capital and issued shares called

”uchaux” to shareholders called ”pariers”. The shares were fully transferable and shareholders

received dividends. Very early, the companies rigorously kept accounting registers by reporting

their main activity indicators. First, we determined raw mill production with the total milled grain

quantity, the yield from fishery activities, and the other industries. Then, we found the expenses

relative to maintenance repairs and workers’ salaries (ordinary expenses), and relative to partial

or total destruction of the production tool (extraordinary expenses). As we will see further, these

expenses were either directly charged in cash or indirectly charged by absorbing the shareholders

returns.
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2.2 A True Duopoly Structure

Starting from the 14th century, we observe the gradual establishment of a perfect duopoly

structure6 in the mill market in Toulouse. After the disappearance of the Daurade mill, the Bazacle

and the Castle remain the two biggest ones located precisely at each end of the city. According

to a 12th century municipal rule, any Toulouse mill could not charge more than 1/16 for milling

fees. This fee appears to be among the lowest observed in European history. It was thus highly

improbable than someone living in Toulouse would be interested in milling grain outside the city.

Thus, there were some outside mills that were far smaller and that tried to penetrate the internal

market7, but during the 17th century, a legal statement denied the right to cross the walls for

collecting wheat and definitively sealed the duopoly structure. The market power of each company

was based on several factors. First, the number of available millstones. Obviously the greater the

production capacity, the larger the demand that can be satisfied. There were also mill workers

riding donkeys who were specialized in wheat collection. They had to bring the grain from the

client to the mills and take back the flour8 and they did not have the right to sell the collected

grain9.

Many times, this duopoly structure could have become a monopoly. For example, we found in

1374 (Sicard 1953) an attempt to create a kind of trust between the two companies. The terms

of this agreement were to share the gains and the expenses. We do not know whether this trust

really worked during the 14th century, but more than four hundred years later, in 1829, a similar

attempt is recorded in the shareholders register. This time, the contract states that the firms share

the turnover but not the expenses and we know that the agreement was honored for a while at

least. Thus, just one year later in 1830, it appears in the accounting registers that each company

has dividends of the other. Again in 1843, we find a sheet agreement signed by both firms for a

new attempt to establish a trust. These observations show the real desire of both firms to reconcile

their economic interests.

2.3 The Narbonnais Castle Company

Although slightly smaller than the Bazacle, the Narbonnais Castle was a very large company

located in the south of the city. Like the Bazacle, its main source of revenue was a fee of 1/16 of the

grain brought to the mills and its activity was not only dedicated to flour production but also to

other industries. The Narbonnais Castle leased unoccupied milling spaces and fishing rights as an

6Sicard 1953 (p. 130).
7The internal market was located inside the city walls.
8The maximum distance reachable for the wheat collection was 15km (Sicard 1953).
9Apparently, many workers who collected the grain also played the role of brokers and the companies prohibited

the sale of grain outside the mills (Sicard 1953).
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additional source of income to pay for part of the operating expenses. It also removed the millstones

of some mills to adapt their technology. Thus, we encounter mills working on sheets with two large

hammers that hit the textile, mills working on wood with a vertical saw, mills working on iron, and

mills producing paper.

The Castle was organized according to the same legal structure as the Bazacle. It had a rotating

board of directors, it issued shares, and ensured limited liability to the shareholders. It also paid

dividends each year, first through a redistributed portion of the total grain milled and an individual

contribution to the general expenses, then directly with dividends. Like the Bazacle, the Castle

faced several exogenous risk sources including flood, fire, and crops yield shortages.

The Castle records provide very useful information about its history, but they are not as complete

as those concerning the Bazacle. However, we were able to recover the main events occurring along

its lifespan. As we already highlighted, the relationship between the company investors and the

highest authorities, i.e. the King, was not a subservient one. Instead, we observe that they operated

with an equal legal treatment as the King’s 1390 sentence shows, as repeated in the 1417 status.

Even before investing heavily in the firm, the royalty was already interested in the Castle business

as land-lord; a property inherited from the Count of Toulouse after the annexation of the county by

the King. For instance, in 1346 a huge river flood affected the plant, destroying the dam and all the

mills. As France was in the midst of the One Hundred Years War, the King designated new investors

to finance plant reconstruction. The aim was to avoid too large a reduction of supply in Toulouse.

Indeed, it was too risky to feed the city with only one production establishment. Moreover, the

dam at the Castle elevated the river level and thus generated a natural barrier that was difficult to

cross for an army.

Finally at the beginning of the 20th century, another major flood destroyed the main dam of the

plant and the Narbonnais Castle firm was quickly sold to the municipality. In 1910, a fire ultimately

ended the history of the mill.

3 Data

In this section, we describe data recorded in the various registers available for the Castle Com-

pany. Le Bris, Goetzmann and Pouget (2014) have already provided a complete description in the

Bazacle case. More precisely, we discuss the share prices, the milled grain quantity redistributed

to the shareholders (the ”partisons”) and the individual contribution to the general expenses (the

”talhas”). We also justify the net dividend calculation and the use of the firms’ production to build

a proxy for consumption.
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3.1 Shares

During their lifespan, the mill’s activity was reported in official registers. The collection consists

of more than 50 registers sorted in two different kinds of documents: the accounting registers and

the meeting minutes. We also use notarial records of public sales and a tax register (on notary

recorded transactions) called ”centième denier”. We find information about the share transactions,

the annual balance sheets, the daily activity of the mill with the quantity of milled grain, the

deliberation of the shareholder’s council, the reports of maintenance works for machinery, and even

legal actions between the mill and its stakeholders. More specifically, we are able to collect the

number of shares and the number of shareholders, their names, their profession, and their location,

as well as the prices of the shares over the centuries.

As pointed out by Sicard (1953), we observe that the prices of the Bazacle moved roughly to-

gether with the prices of the Castle during the Medieval period. Thus, we can reasonably consider

these prices as pure market prices. We also found in the contract registers some sales with redemp-

tion rights over 2, 4, and 30 years, or even perpetual rights. It was an obscure form of contract

that allowed the repurchase of the sold share by its last owner at the same price within a set time

period. Perhaps this kind of contract, frequently observed for Toulouse real estate since the Middle

Ages, can be viewed as a first step towards what we call ”derivatives” today.

For the shares price collection, we essentially used notarial registers of the company, recording

transactions available in the municipal archives. They provide us with continuous yearly data

from 1590 to 1817. We sometimes have up to 10 recorded transactions for a single year. For

each transaction, these registers report the entire agreement sheet that includes all the information

about the stakeholders. We also find in this kind of register other notarial acts concerning the mill

stocks, such as ”inheritance acts”, ”donation acts”, or ”wedding acts”. Unfortunately, we have a

small quantity of data available during the 19th century. At that time, a tax on the value of all

notarial transactions was applied. We mostly rely on the registers of this tax which are available

in the archives of Haute-Garonne and provide us with prices from 1801 to 1845. These registers

indicate the date, contracting parties, nature, object and price. We also tried to find data in local

newspapers, as was the case for the Bazacle after 1887, this was not successful. Finally, unlike the

Bazacle Company, the Castle was not listed on the Paris Stock Exchange.

The oldest share price of the Narbonnais Castle is given by the archives of Haute-Garonne

in 1379 and for the Bazacle by its foundation charter in 1372. During the Old Regime period,

the prices were expressed in livres tournois (lt), which was the official account currency until the

creation in 1795 of the franc germinal. From 1590 to 1845, we collected a nearly continuous series

of approximately 700 prices for the Castle Company. As we mentioned above, it is not unusual for

some years to find several transactions irregularly distributed over the year. Thus, we can either
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take the average price or the last recorded value. We will see further that we need to rely on

partisons and talhas to determine the dividends. The partisons were also irregular over the years

and in order to obtain a single cash value, we must use the average annual wheat price. Therefore

in this study, we only use the average annual price of shares.

Both companies faced the risk of being partially or totally destroyed by a flood or fire. In

particular, the dam was a very sensitive part of the plant and was strongly impacted by the vagaries

of the river. Usually, this kind of rare event is followed either by a holdback of the usual quantity

of grain redistributed to the shareholders and/or by a high talha or even by a number of forfeited

shares. They can also be followed by strong variations in the trading volume or by the issue of new

shares if the activity does not disappear totally. For instance, after the 1643 river flood and the

resulting company destruction, many shareholders could not afford to pay for the repairs and lost

their shares which were auctioned off to new investors.

Like the Bazacle, the capital structure of the Castle remained relatively stable during the lifespan

of the firm and can be entirely reconstructed. During the second half of the 16th century, the

company proposed 109.5 uchaux, then the number of shares was reduced to 70.3 in 1644, following

the 1643 mill destruction. One hundred and fifty years later (1795), the shareholders decided to

introduce a new nomenclature with the commonly-known term of ”actions” rather than uchaux.

We have to highlight the fact that this change is made according to the following conversion rule :

one half of uchaux is equivalent to one unit of stock. During the 19th century, we observe that the

capital was slightly downsized by 6 shares, and from 1815 to 1900, remained constant and equal

to 140 shares. We also notice that both companies allowed fractional ownership of uchaux and the

most common recorded quantity was 1/2 uchaux for the Castle.

As pointed out by Sicard (1953) or Mot (1910), there was a tax for each new shareholder entering

the company’s shareholding. A new parier had to host a dinner for the board of directors and paid

the notarial fees. Thus, this tax, which does not exceed 5% of the value of a share, could contribute

to the low rate of turnover.

Like the Bazacle, the trading volume of the Castle varies considerably. In particular, the first

half of the 17th century and the 18th centuries were marked by high volatility in volumes traded.

We sometimes record up to 14 transactions over the year, as in 1638. The average trading volume

during the Old Regime period is equal to 2.77.

Finally, we observe during the Middle Ages that there is no real correlation between the wealth

of a shareholder and the number of shares he owns. One explanation would be that investing in

a mill allows an investor to hedge a fundamental risk which is the risk of famine. Once he owns

the required number of shares to ensure his consumption, he does not need to invest further. In

this sense, we could say that the investors’ behavior deviates from the current concept of capitalist

36



investor. Obviously, this is not always the case. We saw for instance in 1350 that the King owned

1/7 of the whole Castle capital and in 1709 the engineer Abeille brought out half of the Bazacle

shares, demonstrating that buying mill shares was clearly not only a hedging transaction.

3.2 Partisons and Talhas

As already mentioned in the previous section, the quantity of grain redistributed to the share-

holders was called the partisons. More precisely, the term ”partisons” refers to the events occurring

several times over the year where the mill redistributed the turnover to the pariers. There are

around 15 registers for the partisons for the Castle. These registers were organized as follows: dur-

ing the period 1583-1598, the registers gather the partisons by shareholders and display for each of

them the allocated quantity, there is one chapter per year. For the period 1598-1770, the registers

gather the distribution to each parier by partison, each chapter corresponds to one partison, and

we can have up to 18 partisons over a year. From 1687 onward, we no longer use the term partisons

but rather ”sharing”. From 1662 to 1770, the registers include the employees’ income and the value

of the talhas. Between 1770 and 1793, the registers quality suddenly deteriorates since we find only

separate sheets. As they were not gathered into a book, we are unable to ensure that there is no

loss of data. During the 18th century, the Castle Company gradually developed real accounting

books by displaying more information, like the annual balance sheets. Until the end of the 18th

century, the partisons were distributed in wheat quantity, then in 1793 both companies decided to

deliver them directly in cash.

The talha is the contribution to the general expenses of the mills and it was charged to the share-

holders at each partisons or once a year. We collected from accounting registers named ”Comptes

et recettes du Trésorier”, which display the Castle firm’s results. Each year, we find a chapter ded-

icated to the talhas. The accounting officer distinguishes two kinds of values: the ”ordinary talha”

and the ”extraordinary” one. The former essentially refers to the cost of the current maintenance

works, and the latter to unexpected expenses often due to partial destruction of the production

tool. The extraordinary talha is usually huge and the mill companies are used to absorbing a part

of it into a holdback of partisons. These partisons were sold for cash and said to be ”brûlées”10.

When a shareholder could not afford to pay the talha for more than two weeks, the uchaux was

auctioned off and the balance came back to the parier.

Usually, we observe several amounts for partisons or talhas over the year, so we chose to aggregate

them to obtain an annual value. However, from 1830 for the Castle and 1843 for the Bazacle,

partisons and talhas disappeared to be replaced by standard dividends.

10This literally means ”burned”.
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3.3 Dividends Calculation

Before 1830, we use the same formula as in the case of the Bazacle: the net dividend is the

annual partison valued at the prevailing wheat price minus the corresponding annual talha. As

pointed out by le Bris, Goetzmann and Pouget (2014), the Bazacle did not pay a real dividend from

1816 to 1843, but just a payment made after deduction of operating costs. For the Castle, we are

not able to determine this; the term ”dividends” is introduced for the first time in the accounting

registers in 1837. Then in 1838, we come back to the less clear term ”sharing payment” before

finally using the concept of ”dividends” in the subsequent years.

Our time series of dividends does not suffer from a lack of data except for the end of the 18th

where we have two three-year-blanks during the periods 1775-1778 and 1782-1784. We linearly

interpolated the missing values to rebuild the time series. Of course, as the first partisons register

is from 1583 and the last one covers the period 1813-1817, we have no dividend values before 1583

and after 1817. Finally, we are able to build a time series from 1583 to 1817.

As in the Bazacle, dividends are sometimes negative. This usually occurs during periods where

the mills are partially destroyed. As we mentioned above, the governance policy starting from the

15th century and before the creation of real dividends was to hold back the portion of revenues

normally redistributed (in nature or in cash) to the shareholders to pay a part of the extraordinary

expenses. However, this policy was seldom sufficient. During these periods, the talhas frequently

exceeded the partisons and we obtain a negative value for the dividends.

In the time series, we observe far more negative dividends for the Castle than for the Bazacle.

During the Old Regime period, we record 10 negative values for the Bazacle and 46 for the Castle.

This could be due to the fact that the latter was far more exposed to river floods than the former,

but this cannot be established formally. Indeed, as we mentioned above, we do not benefit from the

same information quality as for the Bazacle.

We should highlight the very interesting fact that before the introduction of real dividends, the

”payments” method of the shareholders provided them with more wealth than a standard dividends

payment. As we mentioned above, until 1793 the shareholders received the partisons in wheat and

paid the talhas in cash. Thus, they had the choice to immediately convert the wheat quantity

into a currency value by selling it, or to postpone this conversion by keeping the grain for shortage

periods. They could also directly consume the grain. Therefore, the shareholders can benefit from

the variation of the wheat prices and this type of flexibility grants the parier broader power than a

modern shareholder.

We also used two additional sources of data : the wheat prices from Wolff (1967) and Frêche

and Frêche (1971), and silver prices. The former allows us to convert the wheat quantities into a
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single cash unit, and the latter allows us to convert data into real terms. In the remainder of this

study, share prices, dividends and consumption are expressed in grams of silver in order to adjust

for inflation.

3.4 A Proxy for Consumption

Until the end of the 19th century, bread played a leading role in overall consumption in France.

In particular, during the Old Regime period, in addition to standard wheat-based bread, people

consumed other kinds of bread such as rye-based, oat-based, or corn-based bread. Although used in

bakeries, these other cereals were lower quality products and were mostly consumed by the poor11.

Indeed, we usually refer to rye bread as ”famine bread” because it was essentially produced during

famine periods or food shortages when the wheat price was very high. Therefore, we mostly find

wheat, rye, oats and corn in the aggregated consumption of all social classes.

Of course in this study, only the shareholders’ consumption is of interest. We have seen that

they belong to a social class that mostly consumes wheat and is not particularly interested in other

cereals. So, it seems logical to take into account only the aggregated wheat quantity brought to

the mills in order to build our proxy. It may also be objected that in this quantity, we also have

a share of the non-stockholders’ consumption. This is absolutely true, but before we justify this

approximation, let us return to asset pricing concepts.

In asset pricing theory, we know that an asset whose payoff covaries positively (negatively) with

the consumption will have a lower (higher) price. This is related to the fact that investors fear

uncertainty about consumption, so they attempt to smooth it out. They prefer an asset that pays

off during a difficult period to an asset that pays off during good times, when their consumption is

already high. Therefore, it is the variable component of the consumption that matters the most.

This component is captured by the expenditures on nondurable goods. Therefore, during the Old

Regime period, we can easily reduce this category to food products.

More precisely, we want to find the component of the shareholders consumption that covaries the

most with the assets’ payoffs in order to generate the observed prices. Although the shareholders

had many other sources of consumption, the one that seems to fulfill this property remains wheat-

based bread. Thus, we can reasonably assume that most consumption volatility was driven by this

product.

We also assume that this entire quantity was consumed and not exported. Although we observe,

as early as the Middle Ages that wheat was exported to Bordeaux, to the region called ”Bas-

Languedoc” (in the South of France) and to Spain (Gandilhon 1941 and Larenaudie 1950), this

11As pointed out by Le Bris, Goetzmann and Pouget (2014), the wheat/rye price ratio is a good measure of difficult
periods because in bad times, consumption switches more to rye.
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concerned unprocessed grain. In fact, milled grain or flour are far more sensitive products that are

very difficult to store. Therefore, it seems reasonable to assume that this perishable good (the flour)

was consumed exclusively in the local economy.

In empirical asset pricing, we also want to determine whether non-stockholder consumption

matters in the determination of the overall level of consumption. In modern markets, for instance,

we observed that volatility of non-stockholder consumption differs from the volatility of stockholder

consumption (Mankiw and Zeldes 1991). But what about the Old Regime period? This difference

is obviously much more marked because the stockholders essentially come from an upper class

(Sicard 1953); they were elected representatives of Toulouse12, rich merchants, bourgeois, judges

and lawyers, physicians and nobles. Moreover, the shareholders also had other kinds of consumption

goods such as meat, fish, wine, and vegetables, as well as all the non-perishable and real estate goods.

As we mentioned above, we have registers that provide us with the exact quantity of milled

grain redistributed to the shareholders by year, the partisons. We also know the ratio between

this share and the total milled grain quantity because it was an official fee stated by the local

authorities. Moreover, we also take into account the fact that only 9/10 is really redistributed to

the shareholders because 1/10 of the fee was usually paid to the employees of the mills. Thus, we

are able to reconstruct the time series of the quantity of grain brought to each mill. Thanks to the

wheat prices collected by Wolff (1967) and Frêche and Frêche (1971) we can give a cash value to

our quantitative data. Therefore, we estimated the aggregated consumption in our economy on the

basis of the partisons data aggregated from the two mills.

To use dividends rather than partisons as a consumption proxy would be inconsistent because

the shareholders definitely had other sources of income. It is also likely that a share of the received

dividends was saved or reinvested into another industry, so it does not seem reasonable to assume

that the dividends were entirely consumed as a single income. Another issue concerns the fact

that during the lifespan of the firms, we encounter shareholders who own large proportions of the

capital. The most significant cases are for the Bazacle, the engineer M. Abeille, who bought half of

the uchaux, and for the Castle, the merchant Pierre Romestas who held 13 and a half uchaux and

the famous royal share of 1/7 of the capital. This is why we chose to work directly on consumed

quantity rather than on shareholders’ wealth.

4 Descriptive Statistics

In this section, we compare all available data about the two companies. We compare the time

series of the prices and the dividends. We also test the structural features of the time series and the

12Capitouls.
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potential links between them. As mentioned above, all the values are inflation-adjusted by silver

prices.

[Insert Figure 1 here]

The Figure 2 and Figure 1 shows the dividends and the prices, respectively for both mill

companies. Over the Old Regime period, the average share price for the Castle was equal to 19,968

lt. This is consistent with the value found for the Bazacle (16,397 lt). Starting from the second

half of the 17th century, the share value was higher for the Castle than for the Bazacle. The price

volatilities are fairly close for both firms during the Old Regime Period. The average paid dividend

was 309 lt for the Castle and 774 lt for the Bazacle in real terms. This is obviously due to the

extreme values recorded in 1637 and 1638, and from 1642 to 1647 for the Castle. In particular, we

find the extreme value of -9330 in 1637. This period is somewhat obscure for us because we do not

know what exactly happened at the Castle. We know simply that a major event also impacted the

Bazacle since both firms were inoperable in 1637. We are fairly sure that the plant was significantly

damaged and unlike the Bazacle, the Castle did not recover rapidly. We also observe during this

period that the volume of transactions increases critically and the share prices drop at the same

time. It is no surprise that dividend volatility is higher for the Castle (1314.1) than for the Bazacle

(896.1) during the Old Regime period.

The prices are strongly autocorrelated until a lag of 5 years for the two companies. The dividends

are much less autocorrelated and display only significant persistence until a lag of 1 year.

[Insert Figure 2 here]

The number of outstanding shares was roughly constant between the 16th and the 18th centuries

for both mill companies. As we mentioned above, a major reduction of shares is recorded for the

Narbonnais Castle in 1644 (from 109.5 to 70.3). For the Bazacle, we find a similar gap with its dam

destruction in 1709 and the issue of 28 new shares 12 years later (from 100 to 128 shares). Given the

average shares price for both mills and the average share numbers, we compute the market value of

the two firms and obtain 1 795 201 lt for the Castle and 1 869 259 lt for the Bazacle, in real terms.

Therefore, it seems that the two structures were closely valuated.

[Insert Table 12 here]

For the capital gains, we compute the first difference between the prices at date t and t + 1,

i.e. (Pt+1 − Pt)/Pt. Table 12 shows for the Castle an average real capital gains equal to 12.2%

during the period 1590-1845 and 4.97% during the Old Regime period (1591-1788). Although these

results are lower than those for the Bazacle (16% and 11.5% respectively), they remain consistent
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with them. During the Old Regime period, we also observe that the capital gains are much more

volatile for the Bazacle (93.4%) than for the Castle (33.4%). We explain this by the dramatic drop

in price recorded for the Bazacle between 1709 and 1710 followed by a huge rebound in 1711. Over

the year 1711, the prices jumped from 1482.3 to 18,299 lt, i.e. a growth of 1134.5% in real terms

and this is not due to the variation of silver values, which remained constant during this period.

Historically, the price drop in 1709-1710 is due to the dam destruction that occurred in 1709.

Le Bris, Goetzmann and Pouget (2014) report an average dividend yield for the Bazacle that

is close to 5% over the period 1372-1946. For the Castle, we are not able to study the same time

horizon since we only have values between 1590 and 1845. During the Old Regime period, we find

a dividend yield very close to zero or even negative, while for the Bazacle, the value is still above

4%. This result is consistent with the fact that we observe many more negative dividends during

this period for the Castle than for the Bazacle. The negative values strongly push the average down

towards zero. The Table 12 also shows that the standard deviation of the dividend yields is higher

for the Castle (22.2%) than for the Bazacle (10.7%). Like for the Bazacle, the prices of the Castle

shares seem to adjust to different levels of expected dividends. We observe for example in 1622 a

real dividend of 1397.7 and one hundred years later in 1723 a dividend of 601.61, while the dividend

yield remains the same (5.6%).

All these results are consistent with the dividend policy of both firms to pay out all earnings. We

chose to perform a Phillips-Perron test in order to check time series stationarity. We used this test

rather than the standard augmented Dickey-Fuller test because it is non-parametric and works well

in the case of large samples. Like for the Bazacle, we found that dividends, prices and consumption

are stationary13.

We find a very low correlation between the dividends in level of the two companies (4.6%),

but the prices in level recorded for the two mills are highly correlated (30%). Indeed we can

see in Figure 1 that the prices move roughly together. Despite a low correlation between the

dividends, Figure 2 shows that values from both time series are consistent. We also find a positive

correlation (by considering an immediate conversion of the partisons into cash) between the returns

and consumption (10.5% for the Bazacle and 4.5% for the Castle). To hold a share in one mill thus

increases the consumption volatility and according to the theory, the mill would have to offer higher

expected returns to motivate investors to hold them.

13Note that when we perform the augmented Dickey-Fuller test, we find that the prices are slightly (with a lag of
5 years) non-stationary for both mills; this issue can easily be solved by choosing to work on the period 1591-1798.
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5 Methodology

In order to use aggregate consumption data in the SDF specifications we assume in this study

the existence of a representative agent.

We also assume that the model-implied SDF is generated by a CRRA model. Thus the repre-

sentative consumer maximizes the following utility program

Et

∑

βj

(
Ct+j

Ct

)γ

(1)

where β is called the subjective discount factor and captures the impatience of investors (e.g.

Cochrane 2005), Ct is the consumption level at time t and Et is the conditional expectation operator.

Obviously in our empirical case, the market is not complete, so the SDF is not unique.

In this section we describe the general methodology we use to extract parametrically and non-

parametrically the SDF from our time series. We first present a general view of the theory before

to explain how we apply it in the case of our data. Then, we show how this approach can be also

used to build reliable bounds for the SDF estimators.

5.1 The relative entropy minimization approach

In asset pricing, the theory states that if the law of one price holds and if there is no arbitrage

opportunities in the economy, there exists a strictly positive SDF Mt,t+1 such that the following

Euler equation is verified for each asset i = 0, ..N

P i
t = EP

t (Mt,t+1X
i
t+1) (2)

where P is the empirical probability of our sample, Et the expectation operator conditional on the

information available at time t, P i
t is the price of the asset i at time t, Mt,t+1 is the pricing kernel

for the period [t, t+ 1] and Xi
t+1 the payoff of the asset i at time t+ 1.

By taking the unconditional expectation, the previous equation becomes

EP(P i
t ) = EP(Mt,t+1X

i
t+1)

We can also express (2) with respect to the returns

1 = EP(Mt,t+1R
i
t,t+1) (3)

or with respect to the excess returns by assuming that a risk-free asset does exist
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0 = EP(Mt,t+1R
ei
t,t+1) (4)

where Rei
t,t+1 = Ri

t,t+1 − Rf
t,t+1 =

Xi
t+1

P i
t

− Rf
t,t+1 is the excess return and Ri

t,t+1 the gross return

of the asset i between the dates t and t + 1. Here we removed the time subscripts in (3) and (4)

because the unconditional expectation is equal to the conditional one. That is definitely not the

case when we consider the Euler equation written directly on the payoffs because the left hand side

P i
t is time-varying. We discuss further how this characteristic could explain a part of our empirical

results.

We consider a decomposition (Julliard et al. 2015) of the SDF into an observable time-varying

component m(θ, t), strictly positive and depending on the parameter vector θ ∈ Θ ⊆ Rk and an

unobservable one πt also time-varying. Thus, the SDF can be rewritten as

Mt,t+1 = m(θ, t)× πt (5)

In this study, the considered model (CRRA) restricts the vector θ to be a one-dimensional

parameter and m(θ, t) is just a function of the consumption growth Ct+1

Ct
. At the equilibrium the

expected price is

E(P i
t ) =

∫

m(θ, t)πtX
i
t+1dP

so we can obtain the following pricing restriction

E(P i
t )π

−1 =

∫

m(θ, t)
πt
π
Xi

t+1dP =

∫

m(θ, t)Xi
t+1dΠ = EΠ(m(θ, t)Xi

t+1)

where πt
π = dΠ

dP is the Radon-Nikodym derivative of Π with respect to P. Because dΠ is a probability

and dP = 1/T is the observation frequencies in the sample, we need to normalize by π in order to

obtain
∫
dΠ = 1.

Here, we are tackling the heart of the method. We make a change of measure in our Euler

equation in order to get rid off the unobservable component πt. Then, we measure the distance

between the empirical probability P and every probability Π for which the pricing restriction holds

and we choose the closest one. That is called aminimum discrepancy problem. Thus, for determining

this distance, we use the relative entropy also called the Kullback-Leibler Information Criterion

(KLIC) Divergence

D(A||B) =

∫

ln
dA

dB
dA for two measures A and B (6)

and D(A||A) = 0. The existence of the logarithm function in the relative entropy ensures a strictly
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positive SDF. In the case of our probabilities, we have

Π∗(θ) = argmin
Π

D(P||Π) = argmin
Π

∫

ln
dP

dΠ
dP s.t. EΠ

[
m(θ, t)Xi

t+1

]
= E(P i

t )π
−1 (7)

Thus as pointed out by Julliard et al. (2015), Π∗ is just the probability that adds the minimum of

new information relative to P such that the pricing restriction holds. However, the KLIC divergence

is just a special case of a more general class of functions called the Cressie Read functions (Almeida

Garcia 2011) which provides with a large range of distance measures. The probability Π∗ captures

what is missed for the asset pricing conditions being satisfied. From the probability point of view, we

could say that the relative entropy measures how much we need to distort the empirical probability

(Π is the distorted probability) in order to verify the minimization constraint EΠ
[
m(θ, t)Xi

t+1

]
=

E(P i
t )π

−1. Note that in (7) we identify Π∗ up to a positive scale constant and we will see further

how we can recover it thanks to the risk-free asset.

As the estimator Π∗ depends on the parameter θ, we can proceed to a new minimization program

over the set of parameters Θ in order to find the θ value for which we obtain the closest probability

to the empirical one in the set {Π∗(θ), θ ∈ Θ}

θ∗ = argmin
θ

D(P||Π∗) (8)

this estimator belongs to the broader class of the Generalized Minimum Contrast (GMC) estimators.

The KLIC divergence in (6) is asymmetric, so usually we have D(A||B) 6= D(B||A). We exploit

this mathematical property to benefit from another distance measure for estimating Π∗. Thus, we

can invert the roles of Π and P in (7) and estimate the probabilities Π∗ through another minimization

procedure

Π∗(θ) = argmin
Π

D(Π||P) = argmin
Π

∫

ln
dΠ

dP
dΠ s.t. EΠ

[
m(θ, t)Xi

t+1

]
= E(P i

t )π
−1 (9)

We could also chose not to factorize the SDF by assuming that we don’t observe any component.

We consider the whole SDF as an unobservable variable Mt,t+1. Thus, the Euler equation (2)

becomes

E(P i
t )M

−1
= EQ(Xi

t+1)

with the Radon-Nikodym derivative Mt

M
= dQ

dP and the minimum discrepancy problem
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Q∗ = argmin
Q

D(P||Q) = argmin
Q

∫

ln
dP

dQ
dP s.t. EQ

[
Xi

t+1

]
= E(P i

t )M
−1

(10)

the new probability is named Q in reference to the risk-neutral probability.

Indeed, we know that the price of an asset in a risk-neutral world can be written

p =
E∗(x)
Rf

(11)

with E∗ the unconditional expectation operator under the risk neutral probability ∗. Thus, when

T → ∞ we have M = E(Mt,t+1) = E
(

1
Rf

)

and by taking the unconditional expectation under the

probability P of the equation (11) we find E(p) = E∗(x)E
(

1
Rf

)

which is equivalent to E(p)M
−1

=

E∗(x), so Q is the risk neutral probability ∗.

Thanks to equation (10), we are able to extract non-parametrically the SDF of the economy

from the prices and the payoffs. This is a very valuable way to estimate it because we don’t need

to make any hypothesis about the structure of the SDF and in particular about the preferences of

the representative agent, it’s a model-free estimation.

Solving the minimum discrepancy problem (7) leads to the empirical likelihood (EL) estimator

of the unknown part of the SDF

π̂t =
1

T
(

1 + λ∗(θ)′
(

m(θ, t)Xi
t,t+1 − π−1E(P i

t )
)) (12)

where λ∗(θ) ∈ RN is the solution of

λ∗(θ) = argmin
λ

−
T∑

t=1

log
(
1 + λ∗(θ)′

(
m(θ, t)Xi

t,t+1 − π−1E(P i
t )
))

(13)

And the solution of the exponential titling (ET) discrepancy problem (9) is

π̂t =
eλ

∗(θ)′m(θ,t)Xi
t,t+1

∑T
t=1 e

λ∗(θ)′m(θ,t)Xi
t,t+1

(14)

where λ∗(θ) ∈ RN is the solution of

λ∗(θ) = argmin
λ

1

T

T∑

t=1

eλ
∗(θ)′[m(θ,t)Xi

t,t+1−π−1E(P i
t ] (15)

In particular when we consider the risk neutral probability, the solution of the problem (10) is

the following EL estimator
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Q̂t =
1

T
(

1 + λ∗(θ)′
(

Xi
t,t+1 −M

−1
E(P i

t )
)) (16)

where λ∗(θ) ∈ RN is the solution of

λ∗(θ) = argmin
λ

−
T∑

t=1

log
(

1 + λ∗(θ)′
(

Xi
t,t+1 −M

−1
E(P i

t )
))

(17)

Of course we can also estimate Qt through the exponential titling form of the minimization

problem and obtain another estimator. To make this section easier to read, we don’t report this

result here.

The formulae show that the variables π and M must now be estimated. To assess M we just

use the fact that M ≃ E(Mt,t+1) = E
(

1
Rf

)

and in Appendix we present an iterative procedure

developed by Julliard et al. (2015) to recover π.

5.2 Entropy bounds

The minimization of the relative entropy also provide bounds beyond which a potential SDF

cannot be eligible. Thus we use the theoretic approach presented above to built constraints for the

estimators.

In asset pricing a large literature is dedicated to developing tools to assess the plausibility of any

potential SDF. For instance Hansen and Jagannathan (HJ) develop in 1997 a canonical bound for

measuring the degree of misspecification of asset pricing models. It’s a benchmark which states a

lower bound for the variance of every admissible SDF. In the case where the minimization constraint

is written on the payoffs, the HJ bound is the following

M∗
t,t+1 = min

Mt,t+1

V ar(Mt,t+1) s.t. E(P i
t ) = E

[
Mt,t+1X

i
t+1

]
(18)

for any SDF Mt,t+1. Therefore the variance of any SDF must be higher or equal to the variance of

M∗
t,t+1.

As pointed out by Almeida and Garcia (2009) the HJ-bound is just a special case of estimators

obtained from a minimization procedure based on a quadratic norm. However this distance measure

does not ensure that the estimator will be strictly positive. As we assume a no-arbitrage setting we

need this property, so we rely more on the entropy-bounds described in this section for which the

logarithmic form imposes the non-negativity of the SDF. It should also be noted that the HJ-bound

mirrors the quality of the bound obtained from a risk-neutral constraint (Q-bound) to provide a

model-free estimator.
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Thus, we use the relative entropy measure to build bounds using the same principle that for

the HJ bound and we obtain benchmarks from the solution of the problem (10) with risk-neutral

constraints

1. Q-bounds (EL) :

D

(

P||
Mt

M

)

≥ D(P||Q∗)

Q-bounds (ET) :

D

(
Mt

M
||P

)

≥ D(Q∗||P)

Remember that Q∗ is the closest probability (by definition) to the empirical one from which we non-

parametrically extract the whole SDF. Consequently any probability built from a SDF must have a

relative entropy higher than D(P||Q∗). Roughly speaking Q∗ is the ”best SDF” in the probability

distortion sense and any eligible SDF cannot do better.

From the solution of the problem (7) with asset pricing constraints based on the payoffs we form

the following bounds

2. M -bounds (EL) :

D

(

P||
m(γ, t)πt

m(γ, t)πt

)

≥ D

(

P||
m(γ, t)π∗

t

m(γ, t)π∗
t

)

M -bounds (ET) :

D

(

m(γ, t)πt

m(γ, t)πt
||P

)

≥ D

(

m(γ, t)π∗
t

m(γ, t)π∗
t

||P

)

Here given the SDF decomposition mentioned above any SDF cannot do better than m(γ, t)π∗
t

since by definition π∗
t is the unobservable component estimate that brings the minimum of addi-

tional information needed to price assets. The next bound just follows from the definition of the

minimization procedure.

3. Π-bounds (EL) :

D

(

P||
πt
πt

)

≥ D

(

P||
π∗
t

π∗
t

)

Π-bounds (ET) :

D

(
πt
πt

||P

)

≥ D

(
π∗
t

π∗
t

||P

)

Here we develop successively a model-free bound (Q-bounds) for the SDF as a whole and para-

metric bounds (M -bounds and Π-bounds) for the decomposed SDF and its unobservable component.
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As showed in Julliard et al (2005) to a second order approximation of the relative entropy measure,

the HJ-bound and the Q-bounds structures are equivalent. These bounds just need information

about the payoffs and the prices, we don’t make any assumption about the structure of the SDF

and we don’t use consumption data. Instead, the M -bounds and the Π-bounds depend on the

underlying model that determines the form of the SDF. Although in this study we only consider a

CRRA model with a power utility function, this approach allows to test a more sophisticated class

of asset pricing models which includes habit formation models (Campbell and Cochrane 1999),

long-run risk models (Bansal et al. 2004), etc..

It’s also important to note that by definition, the M -bounds are tighter than the Q-bounds since

D(P||Q∗) determines the minimum distance for the SDF as a whole without any condition on its

structure. Thus, these bounds verify the following condition

D(P||Q∗) ≤ D

(

P||
m(γ, t)π∗

t

m(γ, t)π∗
t

)

and D(Q∗||P) ≤ D

(

m(γ, t)π∗
t

m(γ, t)π∗
t

||P

)

the M -bound is also more informative since it depends on consumption data and on the structure

of the SDF.

As pointed out by Julliard et al. (2005) the main interest of the Π-bounds is to provide a

way to test the entropy contribution of each component of the SDF. Indeed we can compare the

distances D
(

P||πt
πt

)

and D
(

P||
m(γ,t)π∗

t

m(γ,t)π∗
t

)

in order to check the informative power of the unobservable

component in the whole SDF. We also could compare the individual contribution of each component

with the distance D(P||Q∗).

By using the relative entropy approach when the SDF is taken as a single unobservable variable

(no decomposition), we are able to extract the SDF of the economy from the prices and the payoffs

non-parametrically. This is a highly valuable way to estimate it because there is no need to make

a hypothesis about the structure of the SDF and, in particular, about the preferences of the repre-

sentative agent; it is a model-free estimation. Finally, the theory also provides bounds (see Julliard

et al. 2015) beyond which a potential SDF cannot be eligible, we use them in our analysis.

6 Empirical Results

In this section, we describe the results of the entropy analysis based on the pricing restriction

(2). We focus here on the Old Regime period, more precisely on the period 1591-1788. First,

we discuss the results obtained about γ∗ for both companies considered separately and jointly in

the same economy. Second, we study the different bounds for each mill. Third, we compare the

time series of the filtered SDF with those of the model-free SDF and we check the links between

consumption data and the non-parametrically extracted SDFs.
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We use here the nomenclature developed in Julliard et al. (2016) by naming filtered SDFs the

SDF m(γ, t)π∗
t , where m(γ, t) is the observable component and π∗

t is the solution of the problem (7).

The choice of the consumption-based asset pricing model decides the form of m(γ, t) and uses the

local curvature of the utility function (γ in the CRRA case) as a parameter. So, at the equilibrium,

the unobservable component π∗
t is strongly related to the structure of m(γ, t) and of course to γ

since both of them intervene in the constraint of the minimization problem. In the following entropy

analysis, we assume both the subjective discount factor δ and the risk-free rate14 are constant and

equal to one.

6.1 The Absolute Risk Aversion Estimate

We performed the relative entropy methodology for different values of the risk aversion coef-

ficient, usually within a range from 0 to 20 and for each value of γ, we estimated π∗
t . Then we

selected the γ that solves the problem (8). Table 6 show the optimum value γ∗ obtained for the

Bazacle, the Castle, and the overall economy for the pricing restriction (6).

When each company is considered separately or when both of them interact on a same market,

we find low values of γ∗, namely lower than 10. In fact, we have in Table 6 for the Bazacle γ∗ = 6,

for the Castle γ∗ = 8.8 and for the overall economy γ∗ = 6.2. Thus, the risk aversion coefficient is

lower for the Bazacle than for the Castle, and in the case of a portfolio including both firms, the

overall risk aversion level is closer to the risk aversion displayed for the Bazacle. So, it seems that

the Castle’s shareholders were more risk averse than those of the Bazacle. This could be explained

by the fact that during the Old Regime period, the former was far more affected by rare events

than the latter. This is also demonstrated by the number of strictly negative dividends recorded for

the Castle. If we consider the overall economy, the trust of investors in the Bazacle firm appears to

offset the risk related to the Castle’s activity.

We also compute the standard deviation of the γ∗ estimate and we find σγ∗ = 0.41 for the

Bazacle, σγ∗ = 0.51 for the Castle, and σγ∗ = 0.4 for the overall economy. We also computed

confidence intervals and we observed that the risk aversion coefficient for the Bazacle lies in a range

between 5 and 7, for the Castle the range is between 7 and 10, and for the overall economy between

5 and 7. Consequently, we can state that the companies do not generate the same perceived risk

even though the coefficients are close. Once again, we observe that the overall economy inherits the

risk aversion coefficient more from the Bazacle than from the Castle.

14This assumption is supported by the empirical results obtained in Le Bris, Goetzmann and Pouget (2014) but
will be released in further research.
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6.2 The Entropy Bounds

As we explained above, we perform three different kinds of bounds: the Q-bound, the M -bound,

and the Π-bound. The Q-bound is obtained by performing the difference between the relative

entropy of the SDF candidate (in our case the CRRA-implied SDF) and the relative entropy of

Q∗. Then, we pick up the lowest value of γ for which this difference is positive and we obtain the

minimum risk aversion coefficient for which the SDF is eligible. We find a bound γQ = 1 for the

Bazacle, γQ = 0.4 for the Castle and γQ = 1 for the overall economy. As the bound is lower for the

Castle, its set of candidate SDFs is broader. This can be explained by the number of strictly negative

returns recorded for the Castle compared to the Bazacle, which reduce the required distortion of

the empirical probability to price assets.

The M -bound is obtained by computing the difference between the relative entropy of the

observable part of our SDF candidate and the relative entropy of m(γ, t)π∗
t . The value of γ for

which this difference is positive provided us with a new condition for the model-implied SDF to be

eligible. When we use the pricing restriction (??), we find that this difference is strictly positive

on the following intervals [1.1, 6] for the Bazacle, [0.6, 8.8] for the Castle, and [1, 6.2] for the overall

economy. We thus deduce the M -bounds in each case γM = 1.1, γM = 0.6 and γM = 1 and we find

that the result is fairly close to the Q-bounds. We notice that the upper bounds of these intervals

are exactly equal to γ∗. This is easy to understand if we consider the values of π∗(γ∗). We observe

that π∗(γ∗) is very close to the unit vector so the relative entropy of the product m(γ, t) × π∗(γ)

is almost equal to the relative entropy of m(γ, t) at the point γ∗. Therefore, it is clear that the

difference between these two quantities is close to zero at these points and γ∗ coincides with the

upper bounds of the M -bound intervals. In accordance with the theory presented in section IV, we

also observed that the M -bound is tighter than the Q-bound.

For the Π-bound, we noted that in the case of a CRRA model with constant subjective discount

factor (δ = πt in the SDF decomposition), the relative entropy D
(

P||πt
πt

)

is equal to zero. This is

due to the ratio dΠ
dP in the entropy formula. Consequently, to compute the Π-bound, we only have

to examine whether the value of D
(

P||
π∗
t

π∗
t

)

is significantly different from zero. This is never the

case, so the bound is always fixed to zero.

6.3 The SDF Time Series

As we mentioned above, we are able to generate two kind of SDF time series. We alternatively

extracted the model-free SDF (Q∗) by solving the problem based on the pricing restriction (10) (if

we consider the SDF as a single unobservable variable) and the filtered SDF by solving (7). The

former uses no information about consumption or inner structure; it only needs price and dividend

time series. This approach is particularly powerful since it generates a very general pricing kernel.
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Table 3 shows the correlation between the model-free SDF and different consumption growth

levels. We observed that the free-model SDF Q∗ is always negatively correlated with consumption or

consumption growth. We found for example a correlation of -20% when we consider the firms jointly.

This makes perfect sense if we rely on a CRRA structure for the SDF. It also makes sense in a more

general context. If we consider the fundamental pricing equation pu′(ct) = E(δu′(ct+1)xt+1) from

which the consumption-based asset pricing theory derives, we observe that the SDF m = δ u′(ct+1)
u′(ct)

is negatively correlated with consumption because of the concavity of the utility function u(.). This

result is perhaps the largest contribution of this article since it validates a fundamental intuition of

asset pricing theory.

Table 4 shows a very low correlation between the model-free SDFs of the two companies for

each kind of constraint. This correlation is also negative, so we have some difficult periods for the

Bazacle investors that could be interpreted as good ones for the Castle investors. This is logical if

we refer to the dividends dynamic displayed in Figure 2, where the curves vary exactly in opposite

directions for some years. In fact, over the centuries we observe a principle of communicating

vessels between the firms since when an event shuts down the activity of one company, the other

suddenly benefits from a monopoly situation and all the demand spills over to one production

facility. We also find that the Bazacle covaries more with the overall economy than the Castle does,

i.e. ρ(Q∗
b , Q

∗
bc) > ρ(Q∗

c , Q
∗
bc) . This is consistent with the observations made previously about the

risk aversion coefficient. For the filtered SDFs, we can see that the results are extremely sensitive to

the risk aversion level. Unlike the case of a non-parametric SDF extraction, the Castle covaries more

with the overall economy than the Bazacle does. We also find a negative correlation between the

filtered SDFs of the two companies, equal to -0.69. Finally, we find that the model-free SDFs covary

with the model-implied ones. This is due to the fact that Q∗ already covaries with consumption

and by definition the model-implied SDF depends on the consumption growth. This can also be

explained by the fact that there is a correlation between Q∗ and the unobservable component πt.

7 Conclusion

We tested the reliability of a CRRA model on this economy. Our main contributions are summa-

rized as follows. We built the longest time series of both accounting and market data for a modern

corporation structure in Europe. We used this unique empirical field as a simplified version of mod-

ern markets. The proxy we used for recovering local consumption is much more volatile than any

modern consumption level. By performing a relative entropy minimization, we extracted the SDF

of the economy non-parametrically and parametrically. We observed that a standard consumption-

based asset pricing model with a power utility function is not rejected for a very low risk aversion

coefficient.
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8 Appendix

8.1 Descriptive Statistics

Capital Gain Dividend Yield Price Change

1591-1788 Mean St. Dev. Mean St. Dev. Mean St. Dev.

Castle 4.9% 33.4% -0.5% 22.2% 86.5 4412.4

Bazacle 11.5% 93.4% 4.45% 10.7% -37.2 4795.7

1590-1845

Castle 12.2% 140.2% - - -40.8 4542.8

Bazacle 16% 129.2% 4.6% 9.6% -61.3 5610.8

1591-1798

Castle 14.3% 155.1% 1.6% 21.6% -39.8 4618.2

Bazacle 18.6% 142.3% 4.5% 10.5% -68.5 5548

Table 1: : Descriptive Statistics (all data are inflation adjusted by silver prices)
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8.2 Entropy analysis

EL

Bazacle Castle Baz.-Cas.

γ∗ 6 8.8 6.2

Q-bound 1 0.4 1

M-bound 6 8.8 6.2

Π-bound (< 0.1%) 0 0 0

σ(γ∗) 0.41 0.51 0.4

C.I. [5.20;6.80] [7.78;9.81] [5.40;6.99]

Table 2: : The table reports the different values of γ which ensure the model reliability in the case
we consider the Euler equation π−1E(P i

t ) = EΠ[m(γ, t)Xi
t+1)]. These values include γ∗, i.e. the

minimization (8), the Q-bound, the M-bound and the Π-bound. We also indicate the standard
error of γ∗ and a confidence interval for this optimum value.

ET

Correlation Bazacle Castle Bazacle-Castle

ρ (Q∗, Ct+1) -0.06 -0.08 -0.10

ρ (Q∗, Ct) -0.10 -0.007 -0.10

ρ
(

Q∗, Ct+1

Ct

)

-0.21 -0.03 -0.20

ρ
(

Q∗, (Ct+1

Ct
)−γ∗

)

0.12 0.02 0.12

ρ
(

Q∗, (Ct+1

Ct
)−γQB

)

0.16 0.04 0.17

ρ
(

Q∗, (Ct+1

Ct
)−γMB

)

0.16 0.04 0.17

Table 3: : The table reports the correlation values between the non-parametrically extracted SDF
and the CRRA-implied SDF for different values of γ, i.e. consumption growth taken at different
exponent. These results include the cases where the exponent is 1, γ∗, the Q-bound and the
M-bound.
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Correlation EL

ρ(Q∗
c , Q

∗
b) -0.020

ρ(Q∗
c , Q

∗
bc) 0.30

ρ(Q∗
b , Q

∗
bc) 0.93

ρ(Π∗
c(γ

∗
c ),Π

∗
b(γ

∗
b )) -0.69

ρ(Π∗
c(γ

∗
c ),Π

∗
bc(γ

∗
bc)) -0.68

ρ(Π∗
b(γ

∗
b ),Π

∗
bc(γ

∗
bc)) 0.01

ρ(Q∗
c ,Π

∗
c(γ

∗
c )) -0.05

ρ(Q∗
b ,Π

∗
b(γ

∗
b )) 0.06

ρ(Q∗
bc,Π

∗
bc(γ

∗
bc)) -0.08

Table 4: : The table reports the correlation between the different extracted SDFs. These values
include the correlation between non-parametrically extracted SDF and filtered SDFs.

55





8.3 One-period Model

We assume the Gaussian vector

(

XB

XC

)

∼ N

(

µB

µC

,

(

σ2
B ρ

ρ σ2
C

))

and each agent maximizes :

max
qB ,qC

E
[

U(W̃ )
]

= max
qB ,qC

E
[

−e−AW̃
]

where W̃ is the wealth of the agent and qB, qC the number of share from he firm B and C respectively

with the convention
∑

i∈I q
i
k = 1, k = A,B.

We assume there exists a Pareto equilibrium ⇒ representative agent. We have :

W̃ = qBXB + qCXC − [qBPB + qCPC ] (1 +Rf )

W̃ ∼ N
(

E(W̃ ), V ar(W̃ )
)

, so

E
(

−e−AW̃ )
)

= −e−AE(W̃ )+A2

2 V ar(W̃ )

= −e−A(E(W̃ )−A
2
V ar(W̃ ))

As

max
qB ,qC

−e−A(E(W̃ )−A
2
V ar(W̃ ))

min
qB ,qC

e−A(E(W̃ )−A
2
V ar(W̃ ))

M = max
qB ,qC

E(W̃ )−
A

2
V ar(W̃ )

And {

E(W̃ ) = qBµB + qCµC − [qBPB + qCPC ] (1 +Rf )

V ar(W̃ ) = q2Bσ
2
B + q2Cσ

2
C + 2qCqBρ

So {
∂E(W̃ )
∂qB

= µB − PB(1 +Rf )
∂V ar(W̃ )

∂qB
= 2qBσ

2
B + 2qCρ

And symetrically

{
∂E(W̃ )
∂qC

= µC − PC(1 +Rf )
∂V ar(W̃ )

∂qC
= 2qCσ

2
C + 2qBρ
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The FOC is {

0 = µB − PB(1 +Rf )− A
2

(
2qBσ

2
B + 2qCρ

)

0 = µC − PC(1 +Rf )− A
2

(
2qCσ

2
C + 2qBρ

)

⇔







qB = µB−PB(1+Rf )
Aσ2

B
− qCρ

σ2
B

qC = µC−PC(1+Rf )
Aσ2

C
− qBρ

σ2
C

⇔

{

PB =
µB−A(qBσ2

B+qCρ)

1+Rf

PC =
µC−A(qCσ2

C+qBρ)

1+Rf

The quantity of interest are

E(Ri) = E
(
Xi−Pi

Pi

)

= µi−Pi

Pi

V ar(Ri) = V ar
(
Xi−Pi

Pi

)

=
σ2
i

P 2
i

and the clearing condition qmk =
∑

i∈I q
i
k = 1, k = A,B leads to

E(Rm) = E
(
XB+XC−PB−PC

PB+PC

)

= µB+µC−PB−PC
PB+PC

V ar(Rm) = V ar
(
XB+XC−PB−PC

PB+PC

)

=
σ2
B+σ2

C+2ρ

(PB+PC)2

Cov(Ri, Rm) = Cov(XB+XC ,Xi)
Pi(PB+PC) =

ρ+σ2
i

Pi(PB+PC)

Thus we have

βi,m =
Cov(Ri, Rm)

V ar(Rm)
=

ρ+ σ2
i

Pi(PB + PC)
×

(PB + PC)
2

σ2
B + σ2

C + 2ρ

=
Cov(Ri, Rm)

V ar(Rm)
=

(ρ+ σ2
i )(PB + PC)

Pi(σ2
B + σ2

C + 2ρ)

and

Pm = PB + PC =
µB + µC −A(σ2

B + σ2
C + 2ρ)

1 +Rf

⇔ Rf =
µB + µC −A(σ2

B + σ2
C + 2ρ)

PB + PC
− 1

or equivalently in the case qB = qC = 1, Rf =
µi−A(σ2

i +ρ)
Pi

− 1.

Now, we have Pi =
µi

1+
µi − Pi

Pi
︸ ︷︷ ︸

E(Ri)

so according to the CAPM we could write
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Pi =
µi

1 +Rf + βi,m(E(Rm)−Rf )

We show that E(Ri)−Rf = βi,m(E(Rm)−Rf ) :

E(Ri)−Rf =
µi

Pi
− 1−

(
µi −A(σ2

i + ρ)

Pi
− 1

)

=
µi

Pi
− 1−

µi

Pi
+

A(σ2
B + ρ)

Pi
+ 1

=
A(σ2

B + ρ)

Pi

and

E(Rm)−Rf =
µB + µC

PB + PC
− 1−

(
µB + µC

PB + PC
−

A(σ2
B + σ2

C + 2ρ)

PB + PC
− 1

)

=
A(σ2

B + σ2
C + 2ρ)

PB + PC

⇒ βi,m(E(Rm)−Rf ) =
(ρ+ σ2

i )(PB + PC)

Pi(σ2
B + σ2

C + 2ρ)
×

A(σ2
B + σ2

C + 2ρ)

PB + PC

=
A(σ2

B + ρ)

Pi

Finally we just have to replicate the average payoff µC , we form a portfolio P such that XP =

XB+δ with δ = µC−µB and δ bonds. We have µP = E(XB+δ) = µC (Do we have to add this bond

to the market portfolio?). The law of one price gives us the price of P : PP = P (XP+δ) = PB+
δ

1+Rf .

So according to the equation (19) PP < PC should implies that βP,m > βC,m.

8.4 Multi-period Model

The framework

We consider here an overlapping generation model. Each generation lives only one period. At

t = 0, N individuals (Young) are born, there is no consumption but they borrow at the interest

rate Rf to invest into two different trees at the prices PB
t and PC

t . At t = 1, these N individuals

(Old) use the payoff of the trees to reimburse their loan and to consume before to died. At the same

time, a new generation of N individuals born and we repeat the sequence over and over again. As

only Old individuals consume, there is no tradeoff between consuming today or tomorrow and the
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risk-free rate is assumed to be constant.

N young born

0

N old died

1

N young born
N old died

2

N young born
N old died

3

N young born
N old died

T

N young born

Each period, a new generation has the opportunity to invest (qBt , q
C
t ) into the two different trees.

t t+1

Young borrow qBt P
B
t + qCt P

C
t borrow qBt P

B
t + qCt P

C
t

buy (qBt , q
C
t ) tree buy (qBt , q

C
t ) tree

Old ∅ earn (DB
t+1 + PB

t+1, D
C
t+1 + PC

t+1)

per tree and reimburse loan

We also assume the following dynamic for the dividends

{

DB
t+1 = αB + γBDB

t + ǫBt+1

DC
t+1 = αC + γCDC

t + ǫCt+1

where ǫCt+1|t ∼ N (0, σ2
ǫC
) and ǫBt+1|t ∼ N (0, σ2

ǫB
) and covt(ǫ

B
t+1, ǫ

C
t+1) = ρ. We make the following

conjecture for the price :

{

PB
t = aB + bBDB

t

PC
t = aC + bCDC

t

The payoff each period is equal to Xi
t+1 = P i

t+1 + Di
t+1 and the Young solve the following

program15 :

max
qBt ,qCt

Et

[

U(W̃t+1)
]

= max
qB ,qC

Et

[

−e−AW̃t+1

]

15Because for each new generation at time t, Wt = 0

60



The equilibrium prices

We have :

W̃t+1 = qBt X
B
t+1 + qCt X

C
t+1 −

[
qBt P

B
t + qCt P

C
t

]
(1 +Rf )

= qBt (P
B
t+1 +DB

t+1) + qCt (P
C
t+1 +DC

t+1)−
[
qBt P

B
t + qCt P

C
t

]
(1 +Rf )

= qBt
[
aB + (bB + 1)DB

t+1

]
+ qCt

[
aC + (bC + 1)DC

t+1

]
−
[
qBt P

B
t + qCt P

C
t )
]
(1 +Rf )

= qBt
[
aB + (bB + 1)(αB + γBDB

t + ǫBt+1)
]
+ qCt

[
aC + (bC + 1)(αC + γCDC

t + ǫCt+1)
]

−
[
qBt P

B
t + qCt P

C
t

]
(1 +Rf )

And at the end of each period W̃t+1 = Ct+1. So the two first conditional moments are







Et(W̃t+1) = qBt
[
aB + (bB + 1)(αB + γBDB

t )
]
+ qCt

[
aC + (bC + 1)(αC + γCDC

t )
]

−
[
qBt P

B
t + qCt P

C
t )
]
(1 +Rf )

V art(W̃t+1) = qB
2

t (bB + 1)2σ2
ǫB

+ qC
2

t (bC + 1)2σ2
ǫC

+ 2qBt q
C
t (b

B + 1)(bC + 1)ρ

So







∂Et(W̃t+1)

∂qBt
= aB + (bB + 1)(αB + γBDB

t )− PB
t (1 +Rf )

∂V art(W̃t+1)

∂qBt
= 2qBt (b

B + 1)2σ2
ǫB

+ 2qCt (b
B + 1)(bC + 1)ρ

and







∂Et(W̃t+1)

∂qCt
= aC + (bC + 1)(αC + γCDC

t )− PC
t (1 +Rf )

∂V art(W̃t+1)

∂qCt
= 2qCt (b

C + 1)2σ2
ǫC

+ 2qBt (b
B + 1)(bC + 1)ρ

The FOC is

{

0 = aB + (bB + 1)(αB + γBDB
t )− PB

t (1 +Rf )− A
2

(
2qBt (b

B + 1)2σ2
ǫB

+ 2qCt (b
B + 1)(bC + 1)ρ

)

0 = aC + (bC + 1)(αC + γCDC
t )− PC

t (1 +Rf )− A
2

(
2qCt (b

C + 1)2σ2
ǫC

+ 2qBt (b
B + 1)(bC + 1)ρ

)

Since each period, the last generation must resell all the trees to the new one, the market clearing

condition is qBt = qCt = 1, so

⇔







PB
t =

aB−(bB+1)
[

A
(

(bB+1)σ2
ǫB

+(bC+1)ρ
)

−αB
]

1+Rf +
(bB+1)γBDB

t

1+Rf

PC
t =

aC−(bC+1)
[

A
(

(bC+1)σ2
ǫC

+(bB+1)ρ
)

−αC
]

1+Rf +
(bC+1)γCDC

t

1+Rf
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By identification we obtain

⇔







aB = − (bB+1)
Rf

[
A
(
(bB + 1)σ2

ǫB
+ (bC + 1)ρ

)
− αB

]

bB = γB

1+Rf−γB

aC = − (bC+1)
Rf

[
A
(
(bC + 1)σ2

ǫC
+ (bB + 1)ρ

)
− αC

]

bC = γC

1+Rf−γC

As bi + 1 = γi

1+Rf−γi + 1 = 1+Rf

1+Rf−γi we can rewrite the prices as







PB
t = −1+Rf

Rf

[

A
(

1+Rf

(1+Rf−γB)2
σ2
ǫB

+ 1+Rf

(1+Rf−γB)(1+Rf−γC)
ρ
)

− αB

1+Rf−γB

]

+
γBDB

t

1+Rf−γB

PC
t = −1+Rf

Rf

[

A
(

1+Rf

(1+Rf−γC)2
σ2
ǫC

+ 1+Rf

(1+Rf−γC)(1+Rf−γB)
ρ
)

− αC

1+Rf−γC

]

+
γCDC

t

1+Rf−γC







PB
t = αB(1+Rf )

TBRf +
γBDB

t
TB

− 1+Rf

Rf

[

A
(
1+Rf

T 2
B

σ2
ǫB

+ 1+Rf

TBTC
ρ
)]

PC
t = αC(1+Rf )

TCRf +
γCDC

t
TC

− 1+Rf

Rf

[

A
(
1+Rf

T 2
C

σ2
ǫC

+ 1+Rf

TBTC
ρ
)]

where Ti = 1 + Rf − γi. Notice that in the case γi = 1 we have Ti = Rf . Here we don’t have

the p = E(x)
1+Rf + cov(m,x) formula yet.

The returns

The quantity of interest are

Ri =
P i
t+1 +Di

t+1 − P i
t

P i
t

=
1

P i
t

(

−
1 +Rf

Rf

[

A

(
1 +Rf

T 2
i

σ2
ǫi +

1 +Rf

TBTC
ρ

)

−
αi

Ti

]

+
1 +Rf

Ti
Di

t+1

)

+
1

P i
t

(
1 +Rf

Rf

[

A

(
1 +Rf

T 2
i

σ2
ǫi +

1 +Rf

TBTC
ρ

)

−
αi

Ti

]

−
γi

Ti
Di

t

)

=

(
1 +Rf

)
Di

t+1 − γiDi
t

P i
tTi

=

(
1 +Rf

)
(αi + γiDi

t + ǫit+1)− γiDi
t

P i
tTi

=

(
1 +Rf

)
αi + γiRfDi

t +
(
1 +Rf

)
ǫit+1

P i
tTi
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And in particular by using the fact that qkm =
∑

i∈I q
k
i = 1, k = A,B

Rm =
PB
t+1 + PC

t+1 +DB
t+1 +DC

t+1 − PB
t − PC

t

PB
t + PC

t

=
PB
t+1 +DB

t+1 − PB
t

PB
t + PC

t

+
PC
t+1 +DC

t+1 − PC
t

PB
t + PC

t

=

(
1 +Rf

)
DB

t+1 − γBDB
t

(PB
t + PC

t )TB
+

(
1 +Rf

)
DC

t+1 − γCDC
t

(PB
t + PC

t )TC

The betas

As Et(D
i
t+1) = αi + γiDi

t, we have

Et(R
i) =

(1+Rf )αi+RfγiDi
t

P i
t Ti

V art(R
i) =

(1+Rf)
2
σ2
ǫi

P i2
t T 2

i

Et(R
m) = Rf

PB
t +PC

t

[
γBDB

t
TB

+
γCDC

t
TC

]

+ 1+Rf

PB
t +PC

t

[
αB

TB
+ αC

TC

]

V art(R
m) =

(
1+Rf

PB
t +PC

t

)2
[
σ2
ǫB

T 2
B

+
σ2
ǫC

T 2
C

+ 2ρ
TBTC

]

=
(

1+Rf

PB
t +PC

t

)2
[
σ2
ǫB

T 2
C+σ2

ǫC
T 2
B+2ρTBTC

T 2
BT 2

C

]

And for the covariance

Covt(R
i, Rm) =

Covt
(
XB

t+1 +XC
t+1, X

i
t+1

)

P i
t (P

B
t + PC

t )

=
Covt

(
PB
t+1 +DB

t+1 + PC
t+1 +DC

t+1, P
i
t+1 +Di

t+1

)

P i
t (P

B
t + PC

t )

=
Covt

(
(bB + 1)ǫBt+1 + (bC + 1)ǫCt+1, (b

i + 1)ǫit+1

)

P i
t (P

B
t + PC

t )

=
(bi + 1)2σ2

ǫi
+ (bC + 1)(bB + 1)ρ

P i
t (P

B
t + PC

t )

=
(1+Rf

Ti
)2σ2

ǫi
+ (1+Rf

TC
)(1+Rf

TB
)ρ

P i
t (P

B
t + PC

t )

=
(1 +Rf )2

P i
t (P

B
t + PC

t )

[

σ2
ǫi

T 2
i

+
ρ

TBTC

]

=
(1 +Rf )2

P i
t (P

B
t + PC

t )

[

σ2
ǫi
T 2
−i + ρTCTB

T 2
BT

2
C

]
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Thus

βi,m
t =

Covt(R
i, Rm)

V art(Rm)

=
(1 +Rf )2

P i
t (P

B
t + PC

t )

[

σ2
ǫi
T 2
−i + ρTCTB

T 2
BT

2
C

](
PB
t + PC

t

1 +Rf

)2
[

T 2
BT

2
C

σ2
ǫB
T 2
C + σ2

ǫC
T 2
B + 2ρTBTC

]

=
PB
t + PC

t

P i
t

[

σ2
ǫi
T 2
−i + ρTCTB

σ2
ǫB
T 2
C + σ2

ǫC
T 2
B + 2ρTBTC

]

=

(
P−i
t

P i
t

+ 1

)[

σ2
ǫi
T 2
−i + ρTCTB

σ2
ǫB
T 2
C + σ2

ǫC
T 2
B + 2ρTBTC

]

Finally we can compare the betas

βB,m
t − βC,m

t =

(
PC
t

PB
t

+ 1

)[

σ2
ǫB
T 2
C + ρTCTB

σ2
ǫB
T 2
C + σ2

ǫC
T 2
B + 2ρTBTC

]

−

(
PB
t

PC
t

+ 1

)[

σ2
ǫC
T 2
B + ρTCTB

σ2
ǫB
T 2
C + σ2

ǫC
T 2
B + 2ρTBTC

]

=
1

σ2
ǫB
T 2
C + σ2

ǫC
T 2
B + 2ρTBTC

[(
PC
t

PB
t

+ 1

)
(
σ2
ǫBT

2
C + ρTCTB

)
−

(
PB
t

PC
t

+ 1

)
(
σ2
ǫCT

2
B + ρTCTB

)
]

=
1

σ2
ǫB
T 2
C + σ2

ǫC
T 2
B + 2ρTBTC

[(
PC
t

PB
t

+ 1

)

σ2
ǫBT

2
C −

(
PB
t

PC
t

+ 1

)

σ2
ǫCT

2
B +

(
PC
t

PB
t

−
PB
t

PC
t

)

ρTCTB

]

=
1

σ2
ǫB
T 2
C + σ2

ǫC
T 2
B + 2ρTBTC

[

(r + 1)σ2
ǫBT

2
C −

(
1

r
+ 1

)

σ2
ǫCT

2
B +

(

r −
1

r

)

ρTCTB

]

with r the price ratio
PC
t

PB
t
.
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The CAPM

We have

βi,m
t (Et(R

m)−Rf ) =
PB
t + PC

t

P i
t

[

σ2
ǫi
T 2
−i + ρTCTB

σ2
ǫB
T 2
C + σ2

ǫC
T 2
B + 2ρTBTC

]

×
1

PB
t + PC

t

(
γBRfDB

t

TB
+

γCRfDC
t

TC
−Rf (PB

t + PC
t ) +

1 +Rf

PB
t + PC

t

[
αB

TB
+

αC

TC

])

=
Rf

P i
t

[

σ2
ǫi
T 2
−i + ρTCTB

σ2
ǫB
T 2
C + σ2

ǫC
T 2
B + 2ρTBTC

] [
γBDB

t

TB
+

γCDC
t

TC
− (PB

t + PC
t )

]

+
Rf

P i
t

[

σ2
ǫi
T 2
−i + ρTCTB

σ2
ǫB
T 2
C + σ2

ǫC
T 2
B + 2ρTBTC

]

1 +Rf

Rf

[
αB

TB
+

αC

TC

]

From







PB
t = −1+Rf

Rf

[

A
(
1+Rf

T 2
B

σ2
ǫB

+ 1+Rf

TBTC
ρ
)

− αB

TB

]

+
γBDB

t
TB

PC
t = −1+Rf

Rf

[

A
(
1+Rf

T 2
C

σ2
ǫC

+ 1+Rf

TBTC
ρ
)

− αC

TC

]

+
γCDC

t
TC
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We have

A(1 +Rf )2

Rf

(

σ2
ǫB

T 2
B

+
σ2
ǫC

T 2
C

+
2ρ

TBTC

)

=
γBDB

t

TB
+

γCDC
t

TC
+

1 +Rf

Rf

(
αB

TB
+

αC

TC

)

− (PB
t + PC

t )

⇔ σ2
ǫBT

2
C + σ2

ǫCT
2
B + 2ρTBTC =

Rf (TBTC)
2

A(1 +Rf )2

[
γBDB

t

TB
+

γCDC
t

TC
+

1 +Rf

Rf

(
αB

TB
+

αC

TC

)]

−
Rf (TBTC)

2

A(1 +Rf )2
(
PB
t + PC

t

)

So

βi,m
t (Et(R

m)−Rf ) =
Rf

P i
t

[

σ2
ǫi
T 2
−i + ρTCTB

σ2
ǫB
T 2
C + σ2

ǫC
T 2
B + 2ρTBTC

] [
γBDB

t

TB
+

γCDC
t

TC
− (PB

t + PC
t )

]

+
Rf

P i
t

[

σ2
ǫi
T 2
−i + ρTCTB

σ2
ǫB
T 2
C + σ2

ǫC
T 2
B + 2ρTBTC

]

1 +Rf

Rf

[
αB

TB
+

αC

TC

]

=
Rf

P i
t




σ2
ǫi
T 2
−i + ρTCTB

Rf (TBTC)2

A(1+Rf )2

[
γBDB

t
TB

+
γCDC

t
TC

+ 1+Rf

Rf

(
αB

TB
+ αC

TC

)

− PB
t − PC

t

]





×

[
γBDB

t

TB
+

γCDC
t

TC
− (PB

t + PC
t ) +

1 +Rf

Rf

(
αB

TB
+

αC

TC

)]

=
Rf

P i
t

(
σ2
ǫiT

2
−i + ρTCTB

) A(1 +Rf )2

Rf (TBTC)2

=

(

σ2
ǫi

T 2
i

+
ρ

TCTB

)

A(1 +Rf )2

P i
t

Given that

Et(R
i)−Rf =

(1 +Rf )αi +RfγiDi
t

P i
tTi

−Rf

=
Rf

P i
t

(
1 +Rf

Rf

αi

T i
+

γiDi
t

T i
− P i

)

=
Rf

P i
t

(
1 +Rf

Rf

)

A

(
1 +Rf

T 2
B

σ2
ǫB +

1 +Rf

TBTC
ρ

)

=
A(1 +Rf )2

P i
t

(

σ2
ǫB

T 2
B

+
ρ

TBTC

)
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we have shown that βi,m
t (Et(R

m)−Rf ) = Et(R
i)−Rf

Finally, we have P i
t =

1
Ti

[(1+Rf )αi+RfγiDi
t]

(1+Rf )αi+RfγiDi
t

PiTi

=
(1+Rf )αi+RfγiDi

t

TiE(Ri)
. So, according to the CAPM we

can write :

P i
t =

(1 +Rf )αi +RfγiDi
t

TiEt(Ri)

=
(1 +Rf )αi +RfγiDi

t

Ti(Rf + βi,m
t (Et(Rm)−Rf ))

Fundamental Euler Equation

Now, we want to rewrite the price as p = E(x)
Rf + cov(m,x). We have

Et(D
i
t+1 + P i

t+1) = Et

[
ai + (bi + 1)(αi + γiDi

t + ǫit+1)
]

= Et

[
ai + biDi

t + (bi + 1)αi + (bi + 1)γiDi
t − biDi

t + (bi + 1)ǫit+1)
]

= P i
t + (bi + 1)αi + (bi + 1)γiDi

t − biDi
t

= P i
t + (bi + 1)αi +

[
(bi + 1)γi − bi

]
Di

t

= P i
t + (bi + 1)αi +

[
(γi − 1)bi + γi

]
Di

t

As (γi − 1)bi + γi = (γi − 1)γ
i

Ti
+ γi = γi

Ti

(
γi − 1 + Ti

)
, we have

P i
t = −

1 +Rf

Rf

[

A

(
1 +Rf

T 2
i

σ2
ǫi +

1 +Rf

TiT−i
ρ

)

−
αi

Ti

]

+
γiDi

t

Ti

⇔
[
γi − 1 + Ti

]
P i
t = −

[
γi − 1 + Ti

] 1 +Rf

Rf

[

A

(
1 +Rf

T 2
i

σ2
ǫi +

1 +Rf

TiT−i
ρ

)

−
αi

Ti

]

+
[
γi − 1 + Ti

] γiDi
t

Ti
︸ ︷︷ ︸

[(γi−1)bi+γi]Di
t

Therefore
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Et(D
i
t+1 + P i

t+1) = P i
t + (bi + 1)αi +

[
γi − 1 + Ti

] 1 +Rf

Rf

[

A

(
1 +Rf

T 2
i

σ2
ǫi +

1 +Rf

TiT−i
ρ

)

−
αi

Ti

]

+
[
γi − 1 + Ti

]
P i
t

⇔ (γi + Ti)P
i
t = Et(D

i
t+1 + P i

t+1)− (bi + 1)αi

︸ ︷︷ ︸

1+Rf

Ti
αi

−(1 +Rf )

[

A

(
1 +Rf

T 2
i

σ2
ǫi +

1 +Rf

TiT−i
ρ

)

−
αi

Ti

]

⇔ (γi + Ti)P
i
t = Et(D

i
t+1 + P i

t+1)−
1 +Rf

Ti

[

A

(
1 +Rf

Ti
σ2
ǫi +

1 +Rf

T−i
ρ

)]

⇔ P i
t =

Et(D
i
t+1 + P i

t+1)

1 +Rf
−

A

Ti

(
1 +Rf

Ti
σ2
ǫi +

1 +Rf

T−i
ρ

)

Asset’s payoff replication

We observe that the first term on the right hand side of the equation (14.1) determine the price

of the tree in a risk-neutral world (or standard discounted PV formula) and the last term is a risk

adjustment which depends on the risk aversion coefficient A, the dividend risk σ2
ǫi
and the covariance

between the dividend shocks ρ.

As we have E(XB
t+1) = aB + (bB + 1)αB + (bB + 1)γBE(DB

t ), we form a portfolio

P =







γC(bC + 1)E(DC
t )

γB(bB + 1)E(DB
t )

︸ ︷︷ ︸

W1

; −
γC(bC + 1)E(DC

t )

γB(bB + 1)E(DB
t )

(aB + (bB + 1)αB) + aC + (bC + 1)αC

︸ ︷︷ ︸

W2







on the Bazacle’s asset and the risk-free asset such that

E(XP
t+1) = E

(
W1X

B
t+1 +W2

)

= W1E(XB
t+1) +W2

=
γC(bC + 1)E(DC

t )

γB(bB + 1)E(DB
t )

[
aB + (bB + 1)αB + (bB + 1)γBE(DB

t )
]

−
γC(bC + 1)E(DC

t )

γB(bB + 1)E(DB
t )

(aB + (bB + 1)αB) + aC + (bC + 1)αC

= aC + (bC + 1)αC + γC(bC + 1)E(DC
t )

= E(XC
t+1)

So we just replicated the payoff of the Castle. Because of the Law of One Price we have

68



E(PP
t ) = E(W1P

B
t +W2Bt(1, t+ 1))

= W1E

[

Et(X
B
t+1)

1 +Rf
−

A

TB

(
1 +Rf

TB
σ2
ǫB +

1 +Rf

T−B
ρ

)]

+
W2

1 +Rf

=
E
(
W1X

B
t+1 +W2

)

1 +Rf
−

W1A

TB

(
1 +Rf

TB
σ2
ǫB +

1 +Rf

T−B
ρ

)

=
E(XC

t+1)

1 +Rf
−

W1A

TB

(
1 +Rf

TB
σ2
ǫB +

1 +Rf

T−B
ρ

)

with Bt(1, t + 1)) the price of the risk-free asset that pays 1 unit of consumption next period.

Finally, given that the equation (14.1) also holds for Castle’s price, we have

E(PP
t )− E(PC

t ) =
A

TC

(
1 +Rf

TC
σ2
ǫC +

1 +Rf

T−C
ρ

)

−
W1A

TB

(
1 +Rf

TB
σ2
ǫB +

1 +Rf

T−B
ρ

)

= A(1 +Rf )

(

σ2
ǫC

T 2
C

+
ρ

TCT−C
−W1

[

σ2
ǫB

T 2
B

+
ρ

TBT−B

])

= A(1 +Rf )

(

σ2
ǫC

T 2
C

+
ρ

TCTB
−

γC(bC + 1)E(DC
t )

γB(bB + 1)E(DB
t )

[

σ2
ǫB

T 2
B

+
ρ

TBTC

])

The spread between these two prices should be only due to differences in the risk adjustments.

The issue of Rf

We could also consider a time-varying risk-free rate Rf
t and at the equilibrium we would obtain

the following parameters :

⇔







aBt+1 = −
(bBt+1+1)

Rf
t

[
A
(
(bBt+1 + 1)σ2

ǫB
+ (bCt+1 + 1)ρ

)
− αB

]

bBt+1 = γB

1+Rf
t −γB

aCt+1 = −
(bCt+1+1)

Rf
t

[
A
(
(bCt+1 + 1)σ2

ǫC
+ (bBt+1 + 1)ρ

)
− αC

]

bCt+1 = γC

1+Rf
t −γC

with the following conjecture on prices :

{

PB
t = aBt + bBt D

B
t

PC
t = aCt + bCt D

C
t
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Now, we need an estimate for Rf
t . We know that Rf

t = 1
Et(mt,t+1)

with mt,t+1 = β u′(ct+1)
u′(ct)

the

pricing kernel of the economy.

Here, we have u(ct) = −e−Act , so

mt,t+1 = βe−A(ct+1−ct)

and usually for each generation as ct = 0 and ct+1 = W̃t+1, we obtain mt,t+1 = βe−AW̃t+1 .

As {ct} is normally distributed we can write : Et(mt,t+1) = βe−AEt(ct+1−ct)+
A2

2
V art(ct+1−ct) or for

each generation Et(mt,t+1) = βe−AEt(W̃t+1)+
A2

2
V art(W̃t+1). So, we need to deal with the conditional

moments Et and V art.

Mathematically, the conditional expectation of a variable xt+1 given an information set It,

E(xt+1|It) is equal to a regression forecast of xt+1 using every variable zt ∈ It and their nonlinear

transformations. We can choose to restrict the set of forecasting variables zt ∈ It to their linear

transformations by only considering proj(xt+1|zt) and we could also assume in our case that this set

is only composed by all the observed state variables at time t, i.e. the talhas Tt, the partisons At,

the prices Pt, the volume Vt and consumption Ct. And finally, on the basis of all the information

available at time t, we use the projection theorem to determine the conditional moments in the

multidimensional case.

Consider a n-dimensional random variable (X,Z) ∼ N (µ, σ), with x a vector of nX random

variables and z is a vector of nZ = n− nX random variables. The projection theorem gives us :

{

Et(xt+1|It) ≈ Et(xt+1|zt) = µX +ΣX,ZΣ
−1
Z,Z(zt − µZ)

V art(xt+1|It) ≈ V art(xt+1|zt) = ΣX,X − ΣX,ZΣ
−1
Z,ZΣZ,X

And in the particular case of a single random variable X, i.e. X = C, given 5 signals {Zi}i=1..5 =

{Pt, At, Tt, Vt, Ct}.







Et(xt+1|It) ≈ Et(xt+1|z
1
t , z

2
t , ..., z

N
t ) = µX + 1

τX+
∑N

i=1 τzi

∑N
i=1 τzi(z

i
t − µZ)

V art(xt+1|It) ≈ V art(xt+1|zt) =
1

τX+
∑N

i=1 τzi

with τY = 1
V ar(Y ) is the precision of the variable Y .
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Trading Volume and Networks

9 Introduction

“there is nothing that living things do that cannot be

understood from the point of view that they are

made of atoms acting according to the laws of

physics”

— R. P. Feynman, Lectures on Physics

Volume information is of critical importance on markets. This why it is regularly associated to

price data in the financial media. So far, the literature cannot fully explain the mechanism behind

the observed trading activity. Several empirical works shed some light on the relationships between

volume and other financial variable but few theoretical studies are dedicated to this topic. The

main reason for this, is the difficulty to account for heterogeneity among market players. In this

paper, we use graph theory to make the differences between agents more tractable. Our approach

also allows us to rely volume to exogenous shock and to capture local dependencies of individual

preferences. Hence, we take a cross-disciplinary approach mixing networks and incentives theory.

It is common knowledge that interactions are at the roots of any system evolution and governs the

physical world. Once we bring at least two elements together, a two-way causality can potentially

occur between them, thereby modifying their current steady state. For instance, in the case of

stable elementary particles, they are not altered if they remain isolated but could interact when

they are embedded within the same field. By making them more dissimilar, we can even magnify

the interaction that will become more complex. Such stylized fact can be also observed in other

disciplines as Finance.

Thus, we could analogize with what happens in social science by depicting market interactions as

a corpuscular system of point-like objects connected by causality channels. We could for instance,

extend the physical metaphor to the Newton’s law of gravitation by interpreting the differences

of taste among the agents as a product of two masses and use the geographical distance between

them for assessing the probability they know each other. Thus, the more dissimilar they are, the

stronger the force - the further apart they are, the less likely they are socially connected. The

mutual incentives to exchange would be described by an attractive force proportional to asymmetry

of preferences and inversely proportionate to the distance. Thus, if we consider people acting on

a Market, we can see their trades as the output of pure social interactions, which are ruled by

their relative individual preferences. Of course, this description is somewhat caricatural and would

require more financial insight, this is precisely what our study is about.
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In our model, we randomly generate the social connections between the agents, which amount

to distributing them in space. That leads us to address a first question : how trading take place on

a Market? In asset pricing, a long-established tradition of canonical models is entirely based on the

assumption that there exists a representative agent in the economy (see for instance Lucas (1978)).

Obviously, that leads to the following conclusion : as everyone is the same in terms of preferences,

endowment and information, every agent will have the same valuation and consequently, there will

not be any incentives to trade on the Market. Despite many model refinements as Epstein and

Zin (1989) or Campbell and Cochrane (1999) for explaining a cortege of puzzles generated by this

classical approach, the representative agent assumption still seems unrealistic. Moreover, it does

not allow to properly describe market trading since it predicts volume is always equal to zero.

It is almost trivial to say that an exchange occurs only if agents have an incentive to do it. More

precisely, people are willing to buy or sell a specific asset if they have different valuations of it.

By definition, a representative agent assumption does not allow any difference among the market

players since they are supposed to behave in the same way. Thus, if we want to understand trading

volume on Markets, we have to relax this strong assumption. One way to address this challenge is

to consider instead some recent theory developments which embed heterogeneity accross economy

players. We are thinking here in terms of a new class of models that is of growing interest in the

current macro-economy and finance literature, the heterogeneous agents models (HAM).

There are several kinds of heterogeneity sources that can be potentially accounted for by this

new class of models. First, we can suppose differences in endowment by setting asymmetric wealth

or income. In our paper for instance, we assume that every social group experiences a liquidity

shock with a given probability that pushes its members to become pure sellers to the non-impacted

part of the Market. As we shall develop further, even if this shock cannot be tracked in the static

case resolution, we can fairly assume that it does happen and has consequences for the trading

pattern. We can also assume heterogeneity in beliefs due either to different opinions or different

information. In order to describe these beliefs, we can use either prior probabilities or likelihood.

Finally, we can also assume differences in terms of preferences by considering for instance that the

agents have different risk aversions. In the literature, some progress has already been made on beliefs

by Lintner (1969), Mayshar (1983), Rubinstein (1975) and Milgrom-Stokey (1982). Endowments

and preferences has been addressed by Grossman’s work (1976), (1978), extended by Varian (1990)

but without focusing on volume formation.

Another strand of the literature using HAM also sorts agents with respect to their behavior. For

instance, some frameworks state that agents are of two types : fundamentalists and chartists as in

Zeeman (1974), Frankel and Froot (1986), or noise traders and informed traders as in Kyle (1985),

Black (1986) or DeLong et al. (1990). We shall see that a substantial advantage of our approach is

to not impose a exogenous partition of the population.
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Some HAM has been also dedicated to stochastic interactions accross agents. This literature,

which refers to the related field of complex system theory, highlights the fact that even weak local

interactions can generate strong dependencies and large deviations at the macroeconomic level.

The main references are Kirman (1991), (1993) for his work on local interactions and Brock and

Durlauf (2001) for their work on social interactions. Also under this heading, an interesting model

that shares a similar vision with our paper, has been introduced by Föllmer (1974). In his model,

the author assumes random preferences whose randomness is governed by a probability law that

depends upon the agents’ environment. This last intuition is very much in line with our theoretical

framework. Indeed, as we shall highlight later, we are concerned by the impact of the Market

composition on the global trades pattern by allowing people to band together within social groups.

Thus, we must account for theses different subsets by distinguishing the social group of each agent.

One way to do this would consist of allowing the individual preferences to depend on the local

topology to which the agents belong. More precisely, we assume that people from the same social

group share on average the same preferences and the heterogeneity within a group is proportional

to its size. Föllmer’s paper essentially aims to describe imitation and herding behavior while here,

our ultimate purpose is to address the trading volume formation.

Although we can easily deal with an ”homogeneous” heterogeneity without any dedicated sup-

port, it is more difficult to handle the case where we allow local variations in randomness to happen.

This difficulty has prompted us to seek tools for capturing the underlying framework of our econ-

omy.

A growing number of studies dedicated to trades in networks could potentially remedy the fol-

lowing pitfalls. First of all, it is common knowledge that the old paradigm of general equilibrium is

not suitable to describe real Market mechanisms. The asymmetries among traders position within

a Market clearly lead to differences in bargaining powers and thereby to strong deviations from the

law of one price. Moreover, in the case of small Market size, we cannot reasonably consider that

investors have a price-taking behavior. Finally, the assumption that the Market is perfectly liquid,

that is agents can freely trade with every partners without any friction is not reliable either. Thus,

a appropriate way to describe all these asymmetries in the context of social interactions is to use

network structures and more precisely, the underlying graph theory. Let us first distinguish two

kind of models. Those that ex ante assign a type to every trader, for instance pure buyers and pure

sellers, and those that consider a stochastic assignment. For the former, we think about the Kran-

ton and Minehart (2001) or Corominas-Bosch (2004) studies that consider bipartite networks with

only buyers and sellers to derive the equilibrium of the bargaining game. Kranton and Minehart

propose a model where buyers and sellers can act strategically to form a network that maximizes

the total welfare. In turn, the main result of Corominas-Bosch is that given the Gallai-Edmonds de-

composition, there exists for every discount factor a subgame perfect equilibrium which is efficient.
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The author’s predictions are tested through an experimental setting in Charness, Corominas-Bosch

and Frechette (2007).

Let us now take a look on what has been done so far in the literature on trading volume. Several

studies support the idea that a price-volume relation exists. For instance, Osborne proposes a model

where the price follows a diffusion process with variance depending on the trading volume. Clark,

Tauchen and Pitts, and Harris show that the volume is positively correlated to the absolute price

changes in models where transaction time intervals are variable. Empirical findings also show that

volume is negatively related to the bid-ask spread. On the theoretical side, Epps (1976) proposes a

model where the agents are sorted into two groups, ”potential buyers” and ”potential sellers”. He

found that the expected volume from an exogenous shock is a decreasing function of transaction

costs, and in particular of the bid-ask spread. Another important strand of the literature is also

dedicated to the ”mixture of distributions” models which address the leptokurtosis in the empirical

distribution of speculative prices. The volume can also be studied through its relation to information

as in Copeland where a common part of information arrives sequentially to agents. In Pfleiderer,

the author considers that every agent receives information about the true value of an asset which

has a common and an individual component. The major drawback of this model is that it predicts

a negative relationship between the volume and the investors disagreement. Another approach

proposed by Varian consists to say that trading volume is only due to differences of opinions which

is also inconsistent with most empirical evidence. Karpoff (1986) derives a model where people

frequently revise their valuations of an asset and are randomly paired with potential partners.

Finally Wang and Lo (2006) introduce turnover as a new measure of trading volume, derive volume

implications of basic portfolio theory and propose a model where volume is endogenously generated

by liquidity needs and risk-sharing motives. All these papers do not take into account for explaining

volume, the local frictions due to social connections in the Market and the resulting asymmetries

in investor positions.

As we mentioned above, we consider in this paper that the agents are heterogeneous in terms of

preferences. In order to understand how exchanges can emerge on the Market, let us proceed step

by step by focusing on the different conditions that led to it. First of all, the agents must know

each other, that is a social link must exist between them to allow a trade. Then, they must have an

incentive to buy or to sell, that is their preferences must be such that they have a mutual advantage

to exchange. These two conditions only ensure that the interaction is desirable but do not warrant

that trade will do occur. To let it really happen, an additional condition is required. Indeed, given

their feasible action sets, two agents will do trade if they are the best choice of each other. In other

terms, they look at their neighborhood and select among all the available partners, the one that

maximizes their gain. We think here in terms of best price comparing to their own valuation of

the asset. Thus, a player will always choose the neighbor with the furthest preferences. Finally,
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we claim that the volume is the combination of these three conditions : a social link must exists,

agents must have an incentive to trade in terms of their mutual preferences and they have to be the

optimal choice of each other regarding their feasible action set. Notice that in our model, agents

that reach an arrangement exit the market and the game is over when no more trade is feasible on

the Market.

Here, a question arises : why does graph theory has a critical contribution in this study ? As

one preliminary condition to let an exchange happen, a social link must exist between the potential

partners - the most natural way to model social links in a population remains vertices and edges.

We have made the choice here to use graphs to describe the fundamental structure on which the

interactions take place. Moreover, our model also accounts for liquidity shocks experienced by the

different social groups. These shocks fundamentally alter the social connections within the Market

and we need an underlying framework for tracking it. As we shall highlight in the model resolution,

it is not an easy task to derive closed formulas for the volume in general networks. Thus, we have

to control for randomness on which the graph is based to obtain a tractable topology.

The main advantage of our setting is to do not specify ex ante any bipartite structure. Once

the preferences are randomly determined for the entire economy, only two agents will be of a single

type, the ones with the highest and the lowest risk aversion. The others are both buyers and sellers,

their type being defined relatively to their neighbors preferences. The key is that the agents’ type

is endogenously determined. Moreover, we assume pure random pairing as we generate random

graph rather than given topology on which the trades would take place. Our setting includes the

idea that the agent preferences depend on his environment in order to capture the impact of groups

heterogeneity on volume and price formation. Finally, the model also captures pure exogenous

motivations to trade by specifying a shock probability for each group of investors.

Our main findings are that a link exists between the Market composition and the number

of desirability channels, which are the combination of the conditions based on social connection

and incentive to trade. More precisely, when the number of groups increases - their size being

equal - the incentives to trade decreases and the same applies for the volume. However, when the

relative differences between the groups sizes increases - the number of them remained equal - new

desirability channels appear and the volume potentially increases. We also establish a nonlinear

relationship between the number of incentives and the shock probability. We derive closed formula

for the expected volume in the case where the Market is composed by a single group that cannot

experience a liquidity shock. Finally, from a social planner perspective, we propose to characterize

any networked Market regarding to his efficiency. In other terms, given the individual preferences,

we measure how the graph of social connections maximizes the number of trades.

The remainder of this paper is organized as follows. The first section is dedicated to a general
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presentation of the model and its main assumptions. We establish a necessary condition for trading

to occur based on the risk aversions ratio of the agents enrolled in the exchange. Then, we extend

this condition by adding the social connections. We also describe how the graph and the individual

preferences are randomly generated. In the second section, we introduce the concept of desirability

channels before looking at how it is related to the graph topology. We present in the third section

some important results from Graph theory that are a very useful material for the discussion of the

volume in section four. In the light of what we found concerning desirability channels, we are able to

determine the expected number of trades in the Market. Then, we assess how this quantity evolves

when the main parameters of the model that drive the graph architecture are altered. In section

five, we address the pricing dimension of our economy by emphasizing how our results support the

standards of the literature dedicated to the price-volume relation. We also examine the contribution

of individual preferences to the average market price through the agents participation to trading.

Finally, we provide some results about the price formation when a shock occurs. The section six

concludes.

10 The Model

10.1 Assumptions

(H1) We consider a static exchange Market composed by n rational agents where social groups or

communities are ex ante determined. Each agent is allowed to trade a unique asset but can

only buy or sell a fixed quantity of share per transaction.

(H2) Agents are heterogeneous in terms of preferences, more precisely they don’t share the same

risk aversion which is randomly determined. Moreover, this randomness depends on the agents

environment, that is the social group to which they belong.

Thus, they don’t have the same valuation of the asset and we can state a condition based on their

respective preferences that allows a trade to occur.

(H3) Each agent belongs to exactly one social group and is more likely connected to compatriots

than to members of other groups. A connection represents a social link in the Market.

There is no explicit transaction cost in this Economy although assumption (1) could suggest a huge

constraint that limits the number of tradable shares per transaction. Moreover, the combination of

assumptions (2) and (3) can also be viewed as a real friction that does not permit to freely trade

with every partner.
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(H4) Each community randomly and independently experiences a liquidity shock. In this case, all

the members suddenly have the same preferences and get pure sellers for the non impacted

part of the Market.

10.2 Trade condition

Let us consider a non-informational static economy with n agents heterogeneous in terms of risk

aversion who can exchange a single asset. We don’t pay attention here to differences in endowments

by considering that all the agents begin with one unit of share. They have CARA preferences and

maximize their wealth according to the alternative to buy, to sale or to don’t trade a fixed quantity

ǫ ∈ [0, 1] of share at once. We argue that the constraint on the number of tradable shares per

transaction could come from the fact that takes time to make a trade or equivalently that there are

huge transaction costs in the Market.

Notice that in the case of a dynamic setting with information, we would face a no trade situation

here. Indeed, as pointed out by Tirole (1982), if we consider rational players with the common

knowledge that to have an incentive to trade each of them should expect a positive gain given his

information, no one should be willing to trade. Thus, in our case, after a round based on hedging and

speculative desires there would not be any reason that new information motivates further exchanges.

That why we don’t take into account information here, we only consider a snapshot of the Market

after each investor revised his preferences to look at the volume that could be generated by the

potential interactions.

We denote p the price of the asset and we assume its real value ṽ, whose the distribution is

common knowledge, is normally distributed with mean µ and variance σ2. Thus, the wealth16 of

an agent can be written as

W =







WB = (ṽ − p)ǫ+ ṽ = (1 + ǫ)ṽ − pǫ if he buys ǫ share

WS = (p− ṽ)ǫ+ ṽ = (1− ǫ)ṽ + pǫ if he sells ǫ share

WNT = ṽ if he does not trade

Therefore, the maximization program for every agent i is here

max
ι∈{−1,0,1}

− E(e−Ai(ι(ṽ−p)ǫ+ṽ))

where Ai is the risk aversion coefficient. Thus, an agent will be willing to buy ǫ share when

E(U(WB)) > E(U(WNT )) and E(U(WB)) > E(U(WS)). Similarly, he will be willing to sell the

same quantity when E(U(WS)) > E(U(WNT )) and E(U(WS)) > E(U(WB)). By using the moment

16We propose in Appendix a dynamic version of this model where we endogenize the probability that a shock occurs.
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properties of a log-normally distributed random variable, we can state the following proposition.

Proposition : There is an incentive between agent i and agent j to trade ǫ share if and only

if
Ai

Aj
6∈

[
1− ǫ

2

1 + ǫ
2

,
1 + ǫ

2

1− ǫ
2

]

→
ǫ→0

{1}

with Ai and Aj the risk aversion coefficients of agents i and j.

Notice that this proposition describes a necessary condition for a trade to occur but it is not a

sufficient one. We will detail this point in section (13). In the case17 the ratio Ai
Aj

would be drawn

from a continuous distribution of probabilities, we would have whatever the law that governs the

randomness, P
(

Ai
Aj

6= 1
)

= 1 when ǫ tends towards zero by definition. In the next of this paper,

we will consider that the agents can only trade one share at once, that is ǫ = 1 and we have the

following trade rule.

Corollary : There is an incentive between agent i and agent j to trade one unit of share if and

only if Ai
Aj

6∈
[
1
3 , 3
]
. More precisely, i will sale to j if and only if Ai

Aj
> 3 and i will buy from j if

and only if Ai
Aj

< 1
3 .

One drawback of our model is that it does not allow heterogeneity in terms of endowment since

this quantity disappears within the resolution. Our purpose is now to determine the probability

that two agents are willing to trade or not18 but first, let us introduce the underlying framework

that describes the social connections in the Market.

10.3 An underlying network

In this economy, we consider that agents are gathered intoK social groups which are ex ante cho-

sen19. Thus, we consider aK-partition of the players set as {1, ..., n} = {i1, ..., in1}∪{in1+1, ..., in2}∪

... ∪ {in(K−1)
, ..., in}. Then, to describe how these players interact, we base our framework on the

sociological definition of a group by stating that two members of a social group are more likely to

know each other than if they come from different areas. This hypothesis, which is strongly supported

by most of studies on social connections, leads to the following interpretation : the group to which

an agent belongs, can be viewed here as his primary social circle composed by those he frequently

meet and those he can easily reach.

17See section (10.4).
18We will see how we can decompose this probability in section (11)
19We will see further how we use group belonging to draw the risk aversion parameter of each agent.
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We also assume that people tend to come together in affinity groups, that is they share on aver-

age the same preferences in accordance with the old adage that ”Birds of a feather flock together”.

However, there exists another important feature of real networks we want to capture here, it is the

small-world phenomenon20. This phenomenon states that the World seems generally ”small” when

you count the number of intermediate acquaintances it takes from any individual to reach anyone

else. In other terms, individuals can have long-range connection with people who have very little

in common with them in terms of culture, status, geographical environment, consumption habits,

investment behaviour etc... Notice here that we are not claiming they mostly differ in their prefer-

ences since two people from different groups could have close preferences but these preferences could

evolve in a very different way. Thus, in the dynamic version of our model we propose in Appendix,

we consider a law of motion for the risk aversion coefficient of every agent which is contingent to

his neighborhood. Indeed, when an individual has been involved in a trade, we just replace his risk

aversion by the average one resulting from the preferences of his partner. Thus, it is possible to

assess the speed at which the market reach a unique price.

In order to represent the social connections which are not known with certainty but should

be based on (H3), we need to set up an underlying random framework. As we argued above, we

consider that two agents are randomly paired but the group belonging must play an important role

in the randomness. Thus, we propose to use a random graph representation with vertices and edges

to describe the pairing process in the Market. Every vertex represents an agent and every edge a

social connection. As some individuals know each other but others don’t, our framework intuitively

describes the shape of an OTC Market and we will see how we can make progressively tend this

setting towards an Organized Market. In this version of the model, we don’t specify the weights of

the links but we could reasonably think about this additional parameter as a mean to introduce the

concept of trust or other bargaining features in the economy. Let us now introduce a first definition

from Graph theory to formalize in mathematical terms our Market structure.

Definition : In Graph theory, the two main models for describing random graphs are : G(n,M)

which consists of all graphs with vertex set V = {1, 2, .., n} having M edges, and G(n, (pij)) for all

graphs with the same vertex set where the edges xixj are chosen independently with probability pij.

In G(n,M), all the graphs have the same probability
(
M
N

)−1
.

In this paper, we only consider the model G(n, (pij)) where pii = 0, that is loops are not allowed

since an agent cannot trade with himself. The simplest random graph formulation is the case where

20A very famous experiment of this phenomenon has been carried out by Milgram in the 1960s. He picked up
randomly 296 individuals to try forwarding a letter to a target people who was leaving very far from the other ones.
Thus, each people who received the letter had to forward it to someone they knew on a first-name basis, then the
recipient had to proceed according to the same instructions until the letter finally reaches the target. Milgram observed
that the median length of the required paths to reach the final destination was six and deduced that there exists very
short paths in the social networks.
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all the vertices pairs have the same probability to be linked by an edge, that is when ∀i, j, pij = p.

This special case is known as the Erdös-Rényi standard model G(n, p) and will be regularly invoked

in the next sections. Instead, when we allow different pairing probabilities, we say that the resulting

structure belongs to the class of inhomogeneous random graphs. Moreover, when we consider a K-

partition of the vertex set V (G) as a collection of disjoint subsets {H1, H2, ..., HK} with the property

that pij depends on the subsets the vertices i and j belong, we obtain the subclass of the stochastic

block models. Thus, given that every vertex belongs to exactly one group and that the probability

of a link between two vertices depends on which groups the vertices lie in, these models are perfectly

fitted to describe our market interactions. The subsets here can be viewed as communities or social

groups and in regards to the assumptions we made on the connections between agents, it is coherent

to set that the probability is higher within a group than across them. Therefore, we consider that

∀i 6= j

pij =







p if xi, xj belong to the same group

1 if only xi or xj belongs to a group impacted by a shock
p
c otherwise

with c a constant. In the next of the paper and unless otherwise specified, we will take c = 2 to

get the computations more tractable. Nevertheless, we are aware that from the sociological point

of view, c should be much more higher than 2. Notice that if c = 1, the model would describe the

case of an organized Market where a regulatory body would match players regardless of their group

belonging. As we mentioned above, in the case where ∀i, j, pij = p or equivalently when K = 1, if

the shock probability is zero, we would obtain the Erdös-Rényi standard model G(n, p).

We propose here a slight refinement of the stochastic block model by introducing an additional

dimension to capture the shocks that can be independently experienced by each group. Let Sk

be the event ”the group composed by the vertices in V (Hk) is impacted by a shock”. We assume

∀k ∈ J1,KK, P({Sk}) = q and ∀k 6= l P({Sk}|Sl) = P({Sk}), that is each shock occurs inde-

pendently but with the same probability for every group. Thus, regarding the probabilities pij we

introduced above, when a such event does happen, all the members of the impacted group become

fully connected with the rest of the graph.

Intuitively, we could interpret this phenomenon as any kind of shock that potentially pushes an

impacted segment of the market to suddenly spend a lot of money for searching the best partner

to trade. That could be for instance a local liquidity shock which makes the agents very impatient

as they need cash. In line with this idea, a growing literature is dedicated to contagion in financial

networks as in Acemoglu et al. (2015) or Gai and Kapadia (2010). We could also think about

market regulations which would suddenly impose a sharp reduction of the risk exposure for a type

of investors, let say the banks. Thus, all of them must quickly re-balanced their portfolios by selling
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their most risky asset. Finally, that could also simply suggest herding behaviours, that is when

the members of a group mimic the moves of some leader or when the number of sellers reaches a

threshold which triggers a local panic.

We are now able to combine these results to what we stated in section (10.2) to introduce the

following definitions :

Definition : Let δ(x) be the degree of the vertex x, that is the number of its adjacent vertices,

and N(x) his neighborhood21. Any agent in our economy belongs exactly to one of the following

categories :

• An agent who has no social connection in the graph is said isolated. Formally x is isolated if

and only if δ(x) = 0.

• An agent who has only buyers in its neighborhood is called pure buyer. Formally, x is a pure

a buyer if and only if ∄y ∈ N(x) : Ax
Ay

> 3.

• An agent who has only sellers in its neighborhood is called pure seller. Formally, x is a pure

a seller if and only if ∄y ∈ N(x) : Ax
Ay

< 1
3 .

• An agent who has at least one buyer and one seller in its neighborhood is called a trader.

Formally, x is a trader if and only if ∃y, z ∈ N(x) : Ax
Ay

> 3 and Ax
Az

< 1
3 .

[INSERT FIGURE HERE OF A GRAPH WITH COMMUNITIES]

Notice that the connectivity of a graph G ∈ G(n, p), and so the neighborhood of its vertices, will

strongly depend on the value of p. We will further develop this point in section (14.4). Now, let us

address how we are dealing with the randomly determined preferences of every agent.

10.4 The preferences of the agents

In section (10.2), we have seen that one condition to observe a trade between two agents is that

the ratio of their risk aversion does not belong to the interval [13 , 3]. However, we did not mention

how these coefficients are chosen.

Let us assume now that they are drawn from uniform distributions whose the support depends

on the size of the group to which each agent belongs. As we mentioned above, this choice is in line

with some previous work as in Föllmer (1973) where the state of each agent, that is his preferences,

is affected by his environment. For instance, if an agent (or a vertex x) belongs to a group V (Hk)

of size nk, his risk aversion Ax would be a random variable with density of probability U[a,b] and

the size of the interval [a, b] would be proportional to nk. Formally, we write λ([a, b]) = f(nk) with

21These notions are detailed in section (12).
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f a strictly increasing function of nk and λ the classical Lebesgue measure. Notice that generates

one drawback of our model, if we consider two equally sized groups, they are necessarily similar in

terms of risk aversion distribution22.

This setting has been motivated by several reasons. First, we want to emphasize the fact that in

large groups, we expect to find more heterogeneity or a higher dispersion than in smaller groups in

terms of preferences. Thus, the most natural way to formally describe this heterogeneity, is to allow

the support of the uniform distribution to depend on the size of each group since ∀xi ∈ V (Hk), we

would have V ar(Ai) =
(bk−ak)

2

12 . Moreover, we want to avoid the case where a group is composed by

two agents with risk aversions located at the two bounds of the preferences set. It is also rational

to guess that two people from a small community are more likely to have closer preferences than if

they come from a big one.

Second, we want to make a distinction among the different groups and rely the randomness

of the agent risk aversion to his environment. More precisely, we claim that social pressure is

stronger in small structures than in big ones, so the members of a small group would be more

influenced by their entourage, implying that their preferences would be more closely located around

a central value. Instead in large group, people are less constrained and could behave more freely.

This idea is supported by several sociological works, in particular on electoral participation as in

Funk (forthcoming). In this paper, the author claims that social pressure is the main ingredient in

charge of the positive relationship between community size and civic involvement since in smaller

community the ability of each member to monitor his neighbors behavior is higher than in larger

structures, leading to higher social pressure. One good example can be found in the cities analogy23

as it is more likely to find lifestyles released from the social norm in big agglomerations than in

small town. We also assume that all the agents of this economy have on average the same risk

aversion24, denoted Ā. Thus we construct the bounds of our intervals centered on Ā as follows.

0
]

Ā
6 ak al

[

Ā
2

Ā
]

3Ā
2 bkbl

[

11Ā
6

2Ā
{}
6Ā

Thus when there is no shock, the lower bounds can only be located in the set ] Ā6 ,
Ā
2 [ and the

upper bounds must belong to the interval ]3Ā2 , 11Ā6 [. Let Nk denote the size of the interval from

which are drawn the risk aversion parameter of every agent who lies in the group V (Hk). We impose

the following form

22Regarding to this issue, we paid attention in the simulations to only generate random heterogeneous sizes for the
groups.

23See also Oliver (2000).
24Instead, if we consider intervals centered on growing risk aversion levels, we would have some groups that always

are seller or buyer with respect to others. As we do not observe this pattern on real Markets, we avoid to set up the
model on this way.
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∀k ∈ J1,KK, Nk = Ā

(

1 +
2

3n

(

nk −
1

n

))(

1− 1{Sk}
)

with 1{Sk}(.) an indicator function. Clearly here, Nk is a random variable which entirely depends

on the occurrence of the event Sk. We observe that the length of any interval is an increasing function

of its associated group size nk and is bounded by Nk ∈ {0} ∪
]
Ā, 53Ā

[
. The choice of the form of

Nk has been motivated by technical concerns for solving the model, as detailed in next section

and Appendix, but does not diminish the scope of the results. The bounds of any interval can be

expressed as

ak = Ā
(

1 + 51{Sk}
)

−
Nk

2
and bk = Ā

(

1 + 51{Sk}
)

+
Nk

2

Thus, when a group Hk is impacted by a shock, we observe that the interval [ak, bk] is both

contracted and shifted to the singleton {6Ā}. Therefore, all the risk aversion parameters of the

impacted members will be equal to 6Ā. Consequently, no agents from this group will be willing to

trade anymore since in regards to section (10.2) results, as ∀xi, xj ∈ V (Hk),
Ai
Aj

= 1 ∈
[
1
3 , 3
]
, there

is no incentive to exchange locally in this group. Moreover, they become pure sellers for the rest of

the graph since ∀y ∈ V (G\Hk) and x ∈ V (Hk), we have Ax
Ay

> 3. These properties of our setting

are perfectly coherent with the economic and financial insights we presented in previous section.

By construction of our intervals, we can easily derive a first result

Proposition : A necessary and sufficient condition for an agent x to be a trader is given by

the following intersection :

{

Ax ∈

[
Ā

2
,
11Ā

18

]}
⋂
{

∃y, z ∈ N(x) :
Ax

Ay
> 3,

Ax

Az
<

1

3

}

where Ax is the risk aversion parameter of the agent and P
(

Ax ∈
[
Ā
2 ,

11Ā
18

])

= Ā
9Nx

.

Let Ay, Ax and Az be the risk aversions of agents x, y and z with Ay < Ax < Az. The condition
Az
Ax

> 3 implies that there exists a seller z from who x would be willing to buy if and only if Ax is

strictly lower than 11Ā
18 . Similarly, Ax

Ay
> 3 implies that Ax must be higher than Ā

2 to provide an

incentive to sell. Notice here that the probability is a decreasing function of the size of the group

the agent lie in. However, people must be connected to partners that belong to a big group to have

incentives to trade with them. Thus, we expect to find traders only in well-connected small groups

or in big ones. We also notice that our setting implies that two traders cannot exchange in the

economy, they don’t have ”space enough in terms of preferences. We will see in section (13) a direct

implication of this proposition.
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Now that we have set up the support on which the preferences will be randomly chosen, let us

go further in the computation of the no trade probability.

10.5 The probability of no trade

Regarding to the results of section (10.2), the probability of no trade is given by the quantity

P
(

Ai
Aj

∈
[
1
3 , 3
])

. Here, both Ai and Aj are random variables uniformly distributed, so we must first

define the cumulative density function of the ratio of two uniformly distributed variables. Let xi

and xj be two vertices from the group V (Hk), we denote Zkk = Ai
Aj

the ratio of their risk aversion

parameters. Notice that Zkk is only indexed with respect to the group to which these vertices

belong since its distribution will be the same whatever the pair of vertices considered in V (Hk).

For instance, if xi and xj come from the sugraphs V (Hk) and V (Hl) respectively, we would write

the ratio Zkl. Hence, the probability that xi and xj do not trade can be written P
(
Zk ∈

[
1
3 , 3
])
.

Clearly, the ratio distribution will depend both on the size of the group the vertices lie in and if

they belong two different groups or not. As shown in Appendix, Zk is a random variable with the

following density functions.

∀(xi, xj) ∈ V (Hk)
2, we have

fZ(z)kk =
b2k−(

ak
z )

2

2(bk−ak)
21z∈

[

ak
bk

,1
] +

(

bk
z

)2
−a2k

2(bk−ak)
2 1z∈

[

1,
bk
ak

]

∀(xi, xj) ∈ V (Hk)× V (Hl) with |V (Hl)| 6= |V (Hk)|, we have

• For Nk < Nl,

fZ(z)k<l =
b2l −(

ak
z )

2

2NkNl
1{z∈

[

ak
bl

,
bk
bl

]

} +

(

bk
z

)2
−(ak

z )
2

2NkNl
1{z∈

[

bk
bl

,
ak
al

]

} +

(

bk
z

)2
−a2l

2NkNl
1{z∈

[

ak
al

,
bk
al

]

}

• For Nk > Nl,

fZ(z)k>l =
b2l −(

ak
z )

2

2NkNl
1{z∈

[

ak
bl

,
ak
al

]

} +
b2l −a2l
2NkNl

1{z∈
[

ak
al

,
bk
bl

]

} +

(

bk
z

)2
−a2l

2NkNl
1{z∈

[

bk
bl

,
bk
al

]

}

As we need the cumulative distribution function of Zk to find the probability of no trade, we

must take the integral of these functions over the set [13 , 3]. Obviously, we don’t know a priori the

intersection of this set with the support of the density function, that is with the support of the

different indicators functions.
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Thus, we require that the condition ak
bk

< 1
3 holds since if it doesn’t, we can easily show that no

one has an incentive to trade and the probability is equal to one. We can show25 that this inequality

implies for all k, l, ak
bl

< 1
3 . Moreover, it is also straightforward26 to prove that regardless of this

condition, we always have for all k, l, bk
bl

> 1
3 .

That leads to different constraints on the intervals set that will shape the structure of Nk we

introduced in previous section. Indeed, we can intuitively set an upper bound for Nk since the risk

aversion parameter cannot be negative, that is Nk < 2Ā. However, this condition is not sufficient as

the ratio ak
al

becomes arbitrarily large when al tends to zero. Therefore, to refine this upper bound

and to keep the model in a tractable way, we further assume for all that k, l, ak
al

< 3. Finally, that

implies the minimum and maximum size27 of Nk we mentioned above.

In light of these results, we are now able to define the probability of no trade in the case both

when vertices belong to the same group and when they belong to different groups.

10.5.1 The Intragroup and Intergroup Probabilities

Let us first introduce the intragroup probability, that is the case where we consider vertices from

the same subgraph.

Proposition : Let xi and xj be two agents from the group V (Hk), their probability of no trade

is given by

25Indeed, if Nk > Nl we have ak

bl
=

al

bl
︸︷︷︸

<1/3

ak

al
︸︷︷︸

<1

< 1
3
and if Nk < Nl we have ak

bl
=

ak

bk
︸︷︷︸

<1/3

bk

bl
︸︷︷︸

<1

< 1
3
.

26Let us assume that bk
bl

< 1
3
. If ak

al
> 3 that implies

bk <
1

3
bl

2Ā− ak <
1

3
(2Ā− al)

6Ā− 3ak < 2Ā− al

4Ā− 4ak < −4al

Ā < ak − al

which is not possible by construction. And similarly if ak

al
< 3 we would have

4Ā < 3ak − al

4Ā+ ak < 3ak + 2al

4Ā < 2ak + 2al

2Ā < ak + al

which is not possible by construction.
27Indeed, we have Nk = bk −ak > bk −

1
3
bk ⇔ Nk > 2

3
(Ā+ Nk

2
) ⇔ Nk > Ā. But also a maximum size since we have

Nk > Ā ⇒ ak < Ā
2
and as ak

al
< 3, that implies ak > Ā

6
. By symmetry, we obtain bk <

¯11A
6

and finally Ā < Nk < 5
3
Ā.

88



Pkk =







1− 4
3

(
Ā
Nk

− 1
)2

no shock

1 otherwise

where Nk is the size of the interval associated to the group V (Hk).

Here in the probability, we distinguish the case where a shock occurs from the case nothing

happens. We have already seen in sections (10.2) and (10.4) that by construction, when a segment

of the Market is impacted, every preference is shifted in the singleton 6Ā such that no one is willing

to trade anymore in the group. Hence, the resulting probability of no trade is equal to one. Notice

we can easily check that the quantity presented in this proposition does fulfill the properties of a

probability measure28.

As we have29 ∀k ∈ J1,KK, Ā
Nk

∈ [12 , 1] and Nk is a increasing function of nk, smaller the size of

the group, greater the probability Pkk. This result is coherent with the intuition with mentioned

in section (10.4). Indeed, we claimed there is potentially less heterogeneity in small groups than in

large ones and consequently, it is more likely to find two agents with close preferences, that is with

roughly the same asset valuation, who are not willing to trade in a small community. Notice here

that this probability only depends on the parameters n and nk.

Let us now introduce the intergroup probability, that is the case where we consider vertices from

different subgraphs.

Proposition : Let xi and xj be two agents from the groups V (Hk) and V (Hl) respectively with

nk 6= nl, their probability of no trade is given by

Pkl =







4
3 − 1

6NkNl

(
8
5Ā

2 + 5
2

(
Nk +Nl −

8
5Ā
)2
)

no shock

0 one shock

1 two shocks

where Nk and Nl the sizes of the intervals associated to the groups V (Hk) and V (Hl) respectively.

Again, it is straightforward30 to show that this quantity does belong to the interval [0, 1]. Notice

that31 P
(
1
3 < Zkl < 3 — Sk, Sl

)
= P

(
1
3 < Zkk < 3 — Sk

)
= 1. Here, we consider separately the

case where no shock happens, only one group is impacted, and both groups are impacted. As we

28Indeed, P( 1
3
< Zkk < 3) ∈ [0, 1] since 2

3
b2k − 2a2

k − (bk − ak)
2 = − 1

3
b2k − 3a2

k + 2akbk = − 1
3
(bk − 3ak)

2 < 0 and
ak

bk
< 1

3
⇒ 2

3
b2k − 2a2

k > 0.
29See Appendix.
30We have P( 1

3
< Zkl < 3) =

2(bkbl+akal)−3(a2

k+a2

l )− 1

3
(b2k+b2l )

2NkNl
and 2(bkbl + akal)− 3(a2

k + a2
l )−

1
3
(b2k + b2l )− 2(bkbl −

bkal − akbl + akal) = − 1
3

[
(3ak − bl)

2 + (3al − bk)
2
]
< 0 which implies P( 1

3
< Zkl < 3) < 1 and by definition of the

integral, we also have P( 1
3
< Zkl < 3) > 0.

31If Hk and Hl are impacted, Nk = Nl = 0 and if Hk is impacted but Hl doesn’t, we have 3 <
bk
bl

<
bk
al

and the
integral is equal to zero.
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mentioned above, the singleton 6Ā has been chosen such that when one segment is in distress, all

of his member become pure sellers for the rest of the Market. Consequently, the probability of no

trade between two agents when only one of them belongs to an impacted group is equal to zero.

In this proposition, we observe that the probability is clearly a decreasing function of the ag-

gregated size Nk + Nl and only depends on the parameters n and nk. We show in appendix that

Nk < Nl implies Pkl < Pkk, that is each member of a group is more likely to be willing to trade with

someone who belongs to a larger group rather than with a member of his own community. But no-

tice that the reverse is not always true, Nk > Nl ⇒ Pkl > Pkk if and only if Nk−Nl <
16Ā
5

(

1− Ā
Nk

)

.

Finally, we can also state the following results32 : Nk < Nl < Nm implies Pkm < Pkl and for any

triple (nk, nl, nm) such that nk < nl < nm and 1
3n(nm − nk) > 8

5

(

1− 1
1+ 2

3n(nm− 1
n)

)

, we have

Pmk < Pmm.

Thus, we are now able to state with which probability two agents are willing to trade or not,

according to their group belonging. In next section, we highlight how that can help to define the

expected volume in the Market.

11 Desirability Channel

Let us sum up what we did so far for developing the model. First, we have endogenously

generated the social links between the agents and then, we have deduced their preferences by

drawing the risk aversion parameters from uniform distributions whose the support depend on each

group size. Finally, we have determined the probability that two agents are willing to trade with

respect to their relative position in the graph, that is if they lie into the same community or not.

We now introduce the concept of desirability channel between two agents as the case where they

know each other and their preferences are such that a trade is desirable (even if it finally does not

occur). Here, we are just reasoning in terms of social connections and risk aversions to state that

two individuals must be linked to interact on the Market and their respective preferences must be

sufficiently distinct to generate an incentive to exchange. However, we didn’t address so far the

optimization program of each agent according to his budget constraint, we will deepen this point

in section (13).

Let consider DCij the binary variable that takes one if a desirability channels exists between xi

and xj and zero otherwise. We denote {xi ∼ xj} the event ”there exists an edge between xi and

xj” or equivalently, ”agents i and j know each other”. Thus, ∀xi, xj ∈ V (G), the probability that

a desirability channel exists is given by the following expression

32See Appendix for the proof.
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P(DCij = 1) = E(DCij) = P

({
Ai

Aj
6∈

[
1

3
, 3

]}
⋂

{xi ∼ xj}

)

Notice here that the events
{

Ai
Aj

6∈
[
1
3 , 3
]}

and {xi ∼ xj} are independent. If we assume q = 0,

this probability becomes

P(DCij = 1) =

{

(1− Pkk)p ∀(xi, xj) ∈ V (Hk)
2

(1− Pkl)
p
2 ∀(xi, xj) ∈ V (Hk)× V (Hl)}

Thus, we are able to compute the expected number of desirability channels for the whole Market

by considering separately the incentives to trade intragroup and intergroup as E(DC)
∑K

k=1 E(DCk)+
1
2

∑

k,l
k 6=l

E(DCkl).

Proposition : An exchange Market with n agents gathered into K unequally sized groups exhibits

the following expected number of desirability channels

E(DC)|K =
p(1− q)

2

(

1

2

[(

1− q +
4q

p

)

n2 − 2n+

(

1 + q −
4q

p

) K∑

k=1

n2
k

]

−Q1 −
(1− q)

2
Q2

)

where Q1 and Q2 are functions of K and (ni)i∈J1,KK.

As detailed in Appendix, this quantity depends on the parameters p, q, K and (ni)i∈J1,KK.

Obviously, E(DC)|K is an increasing function of p and n. Indeed, if the probability p increases,

the size of every neighborhood gets larger and each agent is more likely to find someone to trade

with. Similarly, if the size of the population increases, the expected number of desirability channels

increases too. As the probabilities Pkl and Pkk do not depend on Ā, it is the same for E(DC).

Notice that this proposition is only verified for unequally sized groups. Moreover, there is of course

a maximal number of unequally sized groups for a given population. Let Kmax be this optimum,

by considering n agents in the Market, to ensure there is no two groups with the same size the

condition33 Kmax = ⌊
√
1+8n−1

2 ⌋ has to hold. Regarding to the interpretation of hypothesis (H3), p

could also contribute to transaction costs. More precisely, if we consider search costs, when it is

more costly to create social connections - due to geographical or cultural concerns for instance - the

probability p diminishes and the same applies for the expected number of desirability channels.

Let us now examine how the shock probability alters the expected number of desirability chan-

nels.

33Indeed, notice that Kmax verifies n = 1+2+ ...+Kmax, that is we cannot increase the size of any group without
changing the number of groups of without obtaining two groups with the same size. We can rewrite this equality as
n = k(k+1)

2
⇔ k2 + k − 2n = 0 and by solving this polynomial function, we obtain Kmax = ⌊

√
1+8n−1

2
⌋.
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11.1 Desirability channels and shock probability

First, we consider the simple case of K unequally sized groups where only one of them, let say

with size nk, is impacted by a shock. The global size of the graph being n, we denote (ni)i ∈
i 6=k

J1,K−1K

the size of the other groups and we have

E(DC/{S̄k})− E(DC/{Sk}) =
(
nk
2

)
p(1− Pkk) + nk

K∑

j=1
j 6=k

nj

(p
2(1− Pkj)− 1

)

Thus, depending on how large the quantity nk

K∑

j=1
nj

(p
2(1− Pkj)− 1

)
is, the shock increases the

number of desirability channels or not. It is clear that if nk = 1, the expected number of desirability

channels increases since
(
nk
2

)
p(1−Pkk) becomes zero and the initial number of intergroups channels

was necessarily lower than n−1. As we raise the size of the impacted group, we lose a growing number

of intragroup channels to the point where E(DC/{Sk}) < E(DC/{S̄k}). For instance, if we consider

the case where a giant component of size n−1 is impacted, we swap
(
n−1
2

)
p(1−P11)+(n−1)p2(1−P12)

initial channels against n − 1 new ones and the resulting value of E(DC/{Sk}) could be lower.

Therefore, smaller the size of the impacted group, more likely the shock will increase the number

of desirability channels.

As the relationship between E(DC) and the probability q is highly non linear, we have simulated

the number of expected desirability channels for different values of q ∈ [0, 1] with K = 6. We obtain

the graph displayed on figure (5) where the variations of E(DC) are described by an inverted

parabola. Thus, it appears there exists an optimal value E(DC)∗ for q ≈ 0.5. This result makes

sense if we think about the ”gain” in terms of incentives, generated by a shock. Let n1 be the

aggregated size of the impacted groups, we know there are n1(n − n1) desirability channels newly

created from these shocks34. It is straightforward to show that this quantity is maximal for n1 =
n
2 ,

that is when the half of the Market is impacted. As q = 0.5 implies, in expectation, that the half of

the groups is impacted by a shock, it is not surprising that the corresponding number of expected

desirability channels is close to the optimum35.

[INSERT FIGURE (5)]

Of course, many groups can be jointly impacted and if all of them are experiencing a shock,

there is no trade anymore and every vertex becomes isolated. We will readdress the impact on the

Market of this kind of event in section (14.3) through the concept of absorption ability.

In next section, we explain how other parameters, as the number of groups K, can also alter

the expected number of desirability channels.

34As two impacted groups have no incentives to trade anymore.
35Of course this result also depends on the groups sizes distribution.
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11.2 Desirability channels and groups number

Partition with equally sized components : Let us consider the very simple case where

there would be only one group K = 1 and q = 0. The resulting expected number of edges is

E(E(G))|K=1 =
(
n
2

)
p and so the expected number of desirability channels can be written

(
n
2

)
p(1−P).

Now, if we halve this group, that is K = 2 such that the graph would be composed by two equally

sized components with n1 = n2 =
n
2 , it is straightforward to show that E(DC) becomes

E(E(G))|K=2(1− P′) =
[

2
(
n/2
2

)
p+

(
n
2

)2 p
2

]

(1− P′) with P11 = P22 = P12 = P′ the new probability

of no trade. Thus, we observe that the expected number of desirability channels has decreased since

P′ > P and E(E(G))|K=2 < E(E(G))|K=1.

More generally, if we divide over and over again each group into two equally sized groups, we

show in Appendix that for any pair of divisors (d, d′) of n such that d < d′, we have E(E(G))|K=d >

E(E(G))|K=d′ . As Pdd is an increasing function of d (when d increases, the size of each group de-

creases), we conclude36 that E(DC) decreases towards the limit value, E(DC)|K=n =
(
n
2

)p
2(1 − P̄)

with P̄ the probability of no trade in an atomistic Market, that is when each agent is a group by

himself. We report on the following figure E(DC) for all the divisors of N = 60.

[INSERT FIGURE EQUALLY SIZED GROUPS E(DC)=f(K)]

General case for a random partition : From the results obtained in next section, we are able

to state that the expected number of desirability channels decreases when we pass from K = 1 to

K = 2 whatever the respective sizes of the two newly formed groups. For higher groups numbers,

we observe on the simulations that the quantity E(DC) still decreases. More specifically, we observe

a sharp decrease for the first values of K that mimics an hyperbola, as we can see on the following

figure

[INSERT FIGURE E(DC) W.R.T. K]

Thus, it appears that on average when we increase the number of groups, we decrease the

expected number of desirability channels. That makes sense when you think in terms of differences

between the groups. Indeed, if we keep constant the global population, when K increases, the

groups size will progressively tend to the limit 1
n . Thus, as the sizes differences are removed,

every individual start to share the same environment and the preferences get closer. Finally, the

probability to have an incentive to trade decreases in the same way that E(DC). Now, let us

examine how the differences between the group sizes affect the expected number of desirability

channels.
36Notice that in the case of K = l equally sized groups with 1 < l < n a divisor of n and q = 0, we would have

E(DC)|K=l = l
(
nl

2

)
(1− P)p+

(
l
2

)
n2
l (1− P) p

2
=

(
l
(
nl

2

)
+ 1

2

(
l
2

)
n2
l

)
(1− P)p with P the probability of no trade based on

the unique group size n
l
.
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11.3 Desirability channels and groups sizes distribution

We want to highlight here the relationship between the variance in the group sizes distribution

and E(DC). We start again with a very simple case of two equally sized groups (K = 2) of size n
2

with q = 0 and we progressively move agents from one group to another to obtain new sizes setting

(n2 − i, n2 + i) with i = 1, ..., n2 . In order to understand the evolution of E(DC), we write down

analytically the equations where i agents migrate from one group to another

[

2
(
n/2
2

)
p+

(
n
2

)2 p
2

]

(1−P) →
(
n/2−i

2

)
(1−P11)p+

(
n/2+i

2

)
(1−P22)p+

(
n
2 − i

) (
n
2 + i

)
(1−P12)

p
2

Of course, we have P11

(
n
2 − i

)
> P

(
n
2

)
> P22

(
n
2 + i

)
as we know it is a decreasing function of

the group size. However, we show in Appendix that under the condition 2i
3n > 8

5

(

1− 1
4
3
+ 2

3n(i−
1
n)

)

,

we have P12

(
n
2 − i, n2 + i

)
< P

(
n
2

)
. Hence, it is no easy process to conclude on the evolution

of E(DC) in this case as some quantities potentially offset others. Therefore, we don’t prove it

analytically but we run simulations to conclude on this relationship.

Thus, it seems that on average, the expected number of desirability channels increases when the

group size volatility increases. We report the results of the following figure.

[INSERT FIGURE 6= SIZED GROUPS E(DC)=f(volat)]

This point is in accordance with the widely accepted positive relationship between volume and

Market heterogeneity. Indeed, as we claimed in section (10.4), the size of each group is a state

variable that describes the environment of each agent. We already argued how the size of a group

affects the preferences of its members, so it is clear that if we reinforce the differences between the

Market environments, we potentially generate more heterogeneity among the agents.

In light of these results, we are now able to rely our analysis to the volume but, before we get

into this point, let us introduce the required material to describe random graphs.

12 Some graph theory results

In this section we present some basics of graph theory to address the volume in the case q = 0.

The most of the following definitions and theorems come from Bollobas (1985), Diestel (2005) and

Frieze and Karonski(2015).

Definition : For any vertex x ∈ V (G), the set of all the vertices incident to x is called its

neighborhood and we denote it by N(x) = {y ∈ G : xy ∈ E(G)}. Notice here that x is not included

in N(x) since the loops are not allowed in the graph.
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Definition : Let G ∈ G(n, (pij)) be a graph with (V,E) its vertex and edge sets respectively. A

graph G′ ∈ G(n, (pij)) is a subgraph of G if and only if its vertex and edge sets are subset of V and

E respectively, that is if V ′ ⊂ V and E′ ⊂ E.

Definition : Let G′ = (V ′, E′) such that G′ ⊆ G and G′ contains all the edges e = xy ∈ E

with x, y ∈ V ′, then G′ is called an induced subgraph of G. Thus, for any vertex x, the set of all

the vertices adjacent to x, that is linked to x by an edge, is a subgraph of G which is called the

neighborhood of x.

Definition : A path is a non-empty graph (V,E) of the form :

V = {x0, ..., xk} E = {x0x1, x1x2, ..., xk−1xk}

where ∀i, j ∈ J0, kK, xi 6= xj. The length of the path is the number of its edges.

Definition : A property Q, subset of G(n, (pij)), is said monotone increasing if whenever G1 ∈ Q

(the graph G1 has the property) and G1 ⊂ G2 then also G2 ∈ Q.

Definition : Given a monotone increasing property Q, a function t(n) is said to be a threshold

function for Q if
p(n)
t(n) → 0 implies that almost no graph has Q
p(n)
t(n) → ∞ implies that almost every graph has Q

Definition : Let m(G) = max{d(F ) such that F ⊂ G} be the maximum average degree of a

graph G with d(F ) = 2|E(F )|
|V (F )| the average degree of the graph. The graph G is said balanced if

m(G) = d(G) and strictly balanced if F ⊂ G and m(G) = d(G) ⇒ F = G.

12.1 Special case K=1

Now, we introduce some results that only hold for the standard Erdös-Renyi model, that is in

the special case of our model where K = 1.

Theorem : (Erdös and Rényi 1960) : If H is a balanced graph with k vertices and l ≥ 1 edges,

then t(n) = n−k/l is a threshold function for QH .

Corollary : Considering the standard Erdös-Renyi model G(n, p), we can derive the threshold

function for several properties

• For the emergence of the first link, t(n) = 1
n2

• To observe an isolated component of three vertices and only two edges, t(n) = 1
n3/2

• To observe a k-tree with k ≥ 2, t(n) = 1
nk/(k−1)
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• To observe a cycle, t(n) = 1
n

• To obtain a k-complete graph Kk with k ≥ 2, t(n) = n−2/(k−1)

In regards to this corollary, we can say that as long as the probability p belongs to
[

1
n2 ,

1
n3/2

]

, whp

(with high probability) a graph should be only composed by pairs and isolated vertices. Similarly for

values in a range from 1
n3/2 to 1

n4/3 , whp a graph should be only composed by isolated components

of three vertices and only two edges, by pairs and isolated vertices. Thus, as we detail in Appendix,

that leads to the following corollary.

Corollary : In the case of our setting with K = 1 and q = 0, the expected number of desirability

channels can be asymptotically written, that is when n → ∞, as

E(DC) =







E(#(pairs))(1− PNN ) for p ∈
[

1
n2 ,

1
n3/2

]

[E(#(pairs)) + 2E(#(triples))] (1− PNN ) for p ∈
[

1
n3/2 ,

1
n4/3

]

Notice here that for p ∈
[

1
n2 ,

1
n3/2

]

, the expected number of desirability channels is exactly the

expected volume in the graph37. Thus, we first determine E(DC) for a pair and a triple and then,

given the expected number of these components, we can deduce E(DC) for the whole graph.

We can easily state that

E({# of isolated pairs}) =

(
n

2

)

p(1− p)2n−4

E({# of isolated triples}) =

(
n

3

)

p2(1− p)3n−8

E({# of isolated triangles}) =

(
n

3

)

p3(1− p)3n−9

E({# of isolated Kk}) =

(
n

k

)

p(
k
2)(1− p)k(n−k)

We now introduce a fundamental theorem that provides the threshold function for a graph to

exhibit the connectivity property.

Theorem (Erdös and Rényi 1961) : The function t(n) = logn
n is a threshold function for the

connectivity of the standard Erdös-Renyi model G(n, p). More formally, let consider p(n) = ν log(n)
n ,

we have
if ν < 1, P(G is connected) → 0

if ν > 1, P(G is connected) → 1

37We will go into further detail on this point in next section.
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Notice about graph connectivity that, in our model for q 6= 0, whatever the size of the impacted

component when a shock occurs, the whole graph of the social connections gets fully connected.

Definition : A random graph process on V with n nodes is a Markov chain G̃ = (Gt)
∞
0 , whose

states are graphs on V . We have G0 = (V, ∅) the empty graph and ∀k ≥ 1, the graph Gk+1 is

obtained from Gk by adding a random edge which is chosen uniformly among the missing edges, we

have the inclusion sequence ∀k, Gk ⊂ Gk+1.

This last definition will be fully meaningful in the dynamic version of our model but it is

interesting to observe here that the model G(n,M) we introduced in section (10.3) can be view as

a state of a random graph process.

12.2 General case K ≥ 1

Now, we present some useful results in the more general case where K ≥ 1 and q = 0. Let

consider the model G(n, (pij)), we denote ∀i 6= j, ρij = 1− pij and

Qi =
n∏

j=1

ρij , λn =
n∑

i=1

Qi and Rik = min
1≤j1≤...≤jk≤n

ρij1 ...ρijk

Let us suppose that the probabilities pij are chosen such that the three following conditions hold

simultaneously as n → ∞ :

max
1≤i≤n

Qi → 0 (19)

limλn
n→∞

= λ = constant (20)

lim
n→∞

n/2
∑

l=1

1

l!

(
n∑

i=1

Qi

Ril

)l

= eλ − 1 (21)

The following theorem allows us to rely the Market participation to the price formation mech-

anism.

Theorem (Kovalenko 1971) : Let X0 denote the number of isolated vertices in the random

graph G ∈ G(n, (pij)). If conditions (19), (20) and (21) hold, then the number of isolated vertices

is asymptotically distributed, that is ∀k = 0, 1, ... we have

lim
n→∞

P(X0 = k) =
λk

k!
e−λ

Theorem (Kovalenko 1971) : If the conditions (19), (20) and (21) hold, then
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lim
n→∞

P(G ∈ G(n, (pij)) is connected) = e−λ

Now that we introduced the concept of desirability channels and the different tools to control

for the graph topology, let us address the volume determination.

13 The Volume

As we mentioned above, a desirability channel only describes a pre-trade situation but does not

ensure that an exchange really occurs. It is a necessary but not sufficient condition, except for

the very special case of a pair component. In order to determine the volume, we have to consider

both the desirability and the optimality of a trade in terms of choice among potential partners.

Indeed, we assume here that given his budget constraints, an agent can interact with one buyer

and one seller at most, so he has to make a choice38. Therefore, if a desirability channel does exists

between two agents, a trade will really happen if and only if they are the best choice of each other39

given their feasible actions set. We emphasize here the fact that the choice entirely depends on the

available partners set since every agent will not always be able to trade at his first best alternative.

For instance, if the best partner of an individual X is already committed in an exchange with his

own best partner who is not actually X, X will try with his second best partner, then with his third

best, etc... He will span his whole neighborhood until he finds someone to trade with. Let Vij be

the binary variable that takes one if an exchange does exist between xi and xj and zero otherwise,

we can now introduce the following proposition.

Proposition : Let N(xi) and N(xj) be the neighborhood of agents xi and xj respectively, a

necessary and sufficient condition for a trade to occur between them is the following intersection

{Vij = 1} = {DCij = 1} ∩ {xi = x∗j} ∩ {xj = x∗i }

where for a first-best-matching, x∗i = argmax
xj∈N(xi)

|Ai −Aj | and x∗j = argmax
xi∈N(xj)

|Ai −Aj |.

Thus, the information every vertex has in the graph, is the preferences of his neighbors. As we

said, a trade is not always generated by the matching of two first best choices, it could also be due

to a first and a second best choice, to a third and a fifth best choice, etc... Everything depends on

the neighborhood of each agent, on the neighborhood of his neighbors, etc... Thus, the expected

volume can be decomposed according to the optimal order at which each agent commits in the

38This hypothesis will be fully meaningful when we will present a dynamic version of our model in section (16.1.2).
39More formally we could consider an automorphism φ on the vertex set V (G) which returns the best partner of

any agent xi, that is φ(xi) = argmax
xj∈N(xi)

|Ai − Aj | = x∗
i . Thus, provided that a desirability channel does exist, we are

looking for the second order fixed points x such that φ(φ(x)) = x as the equivalent of {xi = x∗
j}

⋂
{xj = x∗

i }.
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trade. Thus, we can write E(Vij) =
|N(xi)|,|N(xj)|∑

m,n
E(Vij = 1|(m,n)th)P((m,n)th) with P((m,n)th) the

probability that the exchange takes place as the mth best choice of agent xi and the nth best choice

of agent xj . Therefore, E(Vij) has a recursive form since P((m,n)th) can be expressed as a product

of expected volumes and depends on the neighbors of some neighbors of xi and xj and so forth.

Since all these conditional expectations have the same form and for a sake of simplicity, let

us focus here on the simple case where only the first best partners are matching. We provide in

Appendix the expression of the expected volume in the more general case where an agent would

play his kth best choice and his partner, his lth best choice.

As the event {xi = x∗j} and {xj = x∗i } depend on the neighborhoods of xj and xi respectively,

they also depend on p that decides the connectivity of the graph. Thus with high probability, we

could be able to control the architecture of the graph by constraining the probability p. This result

is essential as it will allow us for some range of p, to reduce the expression of the expected volume

to a first-best-matching problem. More precisely, we can state the following proposition.

Proposition : Let G be the underlying graph of a trades network, the expected volume de-

termination is equivalent to a first-best-matching problem if G is only composed by stars and/or

3-cycles40.

Indeed, a star is a complete bipartite graph with a singleton partition which is called the star’s

center, surrounded by its leaves. The degree of each leaf is equal to one, so they can only trade

with their best partner and the central vertex will be sure to trade at his optimal choice too. Notice

here that isolated pairs and isolated triples are stars with one and two leaves respectively. Finally,

in the case of a 3-cycle, whatever if people are allowed to trade once or twice at most, the trades

can only take place at a first-best order.

Finally, in order to determine the expected volume for the whole graph, we just aggregate every

pair of vertices by separating the intergroup and the intragroup pairings. As the probability of a

desirability channel is not the same according to whether the agents belong to the same group or

not, the same applies for the probability that a trade occurs. So, in the case of K groups we have

E(V )|K =
K∑

k=1

E(Vk/S̄
k)(1− q) +

1

2

∑

k,l
k 6=l

{

2E(Vkl/S
k, S̄l)q(1− q) + E(Vkl/S̄

k, S̄l)(1− q)2
}

40Notice that a cycle is just a path whose the first node and the last one are the same. Moreover, in the special
case of a 3-cycle, we observe that is also a triangle or a complete graph of order 3, denoted K3. In the case of random
graphs, there is a very small probability to obtain a topology displaying only stars of order higher than 3 or 3-cycles
with only isolated vertices, pairs or triples. This is due to the fact that the threshold function required to observe a
cycle is too high to not generate before whp more complex structures than triples or pairs.
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Notice that we can either assume that an agent only trade with his best partner (among all his

neighbors) or that he can both trade with his best buyer and his best seller to realize an arbitrage

opportunity. With this second assumption, we would obtain the following Market rules : the

pure buyers and the pure sellers can have one partner at most and only the traders can have two

partners at most. As a budget constraint argument would not be relevant here to limit the number

of arbitrage opportunities a trader can use, we rather claimed in section (10.2) that takes time to

make a trade.

13.1 One trade at most

First of all, let us consider the case where only one trade is permitted. An agent xi looks

at his best choice x∗i among his entire neighborhood such that x∗i = argmax
xj∈N∗(xi)

|Ai − Aj |, where

N∗(xi) =
{

y ∈ N(xi) :
Axi
Ay

6∈
[
1
3 , 3
]}

denotes the set of his potential partners. Notice that the

dimension of x∗i is usually lower than 2 but could be much more higher if a shock occurs. Indeed,

let V (Hk) be an impacted group of size nk to which xi does not belong, that implies |x∗i | ≥ nk. Thus,

in the case where two or more of his neighbors would be identically optimal, we assume that xi is

randomly paired with one of them by a regulatory body with equal probability 1
|x∗

i |
. Obviously, once

all the possible trades has been made in the Market, if we remove every edge that does not carry

one of them, the resulting graph should be only composed by isolated pairs and isolated vertices.

Formally, if xi is buyer and xj is seller, xj = x∗i implies that the risk aversion parameter of any

other neighbors xk ∈ N∗(xi) must lie into the interval [Aj , 2Ai − Aj ] as shown on the following

figure.

]
Aj

x∗i = xj

Ak

xk

Ai

xi
[

2Ai −Aj

As we claimed in section (10.4), agents have incentives to act as traders if and only if their risk

aversions belong to the set
[
Ā
2 ,

11Ā
18

]

. Considering that when an individual has the choice among

different partners he will always prefer the one with the furthest preferences, we can state the

following corollary.

Corollary : In the case where only one trade is permitted, a trader will always prefer to buy

the share.

Indeed, let us consider again the case with three agents x, y and z such that Ay < Ax < Az

and Ax ∈
[
Ā
2 ,

11Ā
18

]

. The condition Az
Ax

> 3 implies Az − Ax > 2Ax, so for Ax = Ā
2 , we have

Az − Ax > Ā > Ā
3 > Ax − Ay by construction. While Ax is walking up the interval to 11Ā

18 , the
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quantity Az − Ax grows linearly with respect to Ax and the quantity Ax − Ay grows linearly with

respect to Ay. As Ay is always lower than Ax, the preferences of z will be always farther from x

than the preferences of y.

As we mentioned above, the best partner of any agent is a random variable that entirely depends

on the state of the graph process. In order to obtain a closed-form formula of the expected volume,

we need to restrict the number of groups to K = 1 and to consider the optimized graph G∗ =

(V ∗, E∗) where V ∗ = V (G) and E∗ = E(G)\
{

xy ∈ E(G) : Ax
Ay

∈ [13 , 3]
}

. The probability that two

vertices are linked by an edge in this graph is exactly P({DCij = 1}). Given that the events

{xi = x∗j}, {xj = x∗i } and {xi ∼ xj} are totally independent, we can derive the following result.

Proposition : The expected volume for a first-best-matching between any pair of agents (xi, xj)

from G∗ when they can only trade once with q = 0 and K = 1, can be written as

E(Vij |(1, 1)
st) =

((
1

2

)|N∗(xi)|−2

+

(
1

2

)|N∗(xj)|−2

−

(
1

2

)N∗
ij−3

)(

2

3

(

1−
Ā

NI

)2
)N∗

ij−1

p

with N∗
ij = |N∗(xi)|+ |N∗(xj)|.

Notice here that N∗
ij ≥ 2 since E(Vij) = E(Vij |{DCij = 1})P({DCij = 1}), that is a conditional

probability on the event ”xi and xj are linked in the optimized graph”. If we want to state the equiv-

alent of this proposition in the original graph G, we have to consider every possible setting of the

xi and xj neighborhoods41. For the whole graph, we deduce that E(V |(1, 1)st) =
(
n
2

)
E(Vij |(1, 1)

st).

Clearly, the conditional expected volume is maximal when every vertex has exactly one partner

to trade with, that is ∀i ∈ J1, nK, |N∗(x(i))| = 1. In the particular case where ǫ → 0, we have

N∗(xi) = N(xi) and the kind of graph that maximizes this quantity is a 1-regular graph. For

this topology, the expected volume is equal to E(DCij), which is in accordance with the fact that

only desirability channels matter in the volume computation for isolated pairs. Notice also that a

1-regular graph can only be obtained in the case there is an even number of agents in the Market.

Under the assumption that players can only trade once, this topology provides us with an upper

bound for the volume since the number of exchanges cannot exceed n
2 .

In this proposition, the expected volume is a random quantity which depends on the neigh-

borhood size of each agent enrolled in the exchange. As we argued earlier, we know that every

neighborhood is shaped by the value of p. More precisely, when the probability p increases, the

graph becomes more connected and the neighborhood size of each vertex increases. Since N(xi) is

41Indeed, we would have

E(Vij)|G =
|N(xi)|,|N(xj)|∑

x,y

(|N(xi)|
x

)(|N(xj)|
y

)
E [Vij |(|N

∗(xi)|, |N
∗(xj)|) = (x, y)]P [(|N∗(xi)|, |N

∗(xj)|) = (x, y)]
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related to N∗(xi), the probability to observe a first-best-matching pairs must also decreases. Of

course, that does not mean that the expected volume is a decreasing function of p since when peo-

ple have more neighbors, they have more potential partners and consequently more chance to find

someone to trade with.

So far, we only discussed the volume in the case where the Market is composed by one group

of n agents. However, as we will see, a big part of the volume can be attributed to the presence of

groups with different sizes. When we allow K to be higher than one, it is not an easy task to keep

the model in a tractable way, especially because we don’t know a priori the composition of every

neighborhood in the graph. Thus, by running simulations, we try to overcome these issues and we

observe that the volume in a more general setting, is a non-monotone function of p as we can see

on the following figure.

[INSERT GRAPH E(V)=f(p)]

In regards to this global pattern, it seems that the volume is positively related to p, that is

when the agents have more connections in the Market, we expect to observe a higher number of

trades. In order to better understand the non linear mechanism behind this result, especially when

K 6= 1, let us now consider the very simple case where we start with three players whose one is

isolated, then we connect him to the two other ones. Thus, we will be able to analytically track

the volume evolution when we add a new social link for a very simple topology and we will see how

the output can be related to the group belonging of the different agents. Here, we consider a two

state deterministic graph process on three vertices which can be written as follow : (Gt)
2
1 with G1

a graph with edge E(G1) = {xy} and G2 a graph with edges E(G2) = {xy, xz}.

zy

x

Figure 1: G1

zy

x

Figure 2: G2

We show in Appendix that this graph process leads to the following proposition.

Proposition : Consider any isolated graph component with three different vertices {x, y, z}
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where x and y are already connected by an edge. We connect the third vertex z to x and we assume

that the agents can trade once at most.

• If x and y belong to the same group Nk, the expected volume increases (respectively decreases)

if and only if z belongs to a larger group Nl (respectively a smaller group such that Nl < Nk <

Nl +
16Ā
5

(

1− Ā
Nk

)

) than y.

• If x and y belong to different groups such that Nx < Ny, the expected volume increases (re-

spectively decreases) if and only if z belongs to a larger (respectively smaller) group than y.

• If x, y and z belong to the same group, the expected volume doesn’t change.

Thus, depending on the groups to which the different agents belong, adding a new edge will not

systematically lead to increase the expected volume.

More importantly is the relationship between volume and desirability channels. We already

highlighted the fact that when the number of desirability channels increases, people are more likely

to find someone to trade with and the expected volume (not conditioned on a first-best matching)

will increase too. Thus, we can rely to the results of section (11) to describe the evolution of the

unconditional expected volume. We found that E(DCij) is negatively correlated to the number

of groups K and positively correlated to the groups size distribution. By running simulations, we

found similar results for the volume.

[INSERT FIGURE V=f(K) and V=f(var)]

Notice that we can also compute the maximum volume allowed by a specific topology of G∗ with

the following theorem.

Theorem (Tutte-Berge formula) : For any graph G = (V,E), the maximum matching size

is given by

ν(G) =
1

2
min
U⊆V

(|U | − o(G− U) + |V |)

where o(H) is the number of connected components with odd number of vertices.

This theorem is a generalization of the classic König’s theorem for bipartite graphs. This provides

us with an upper bound on the volume for any graph whose all the edges that do not carry a trade

have been removed. Thus, for any optimized graph42 G∗, the maximum number of trades that can

occur on G∗ is given by ν(G∗) if the agents are allowed to trade once at most.

42Notice that any optimized graph cannot includes cycles since inequalities are not symmetric. Indeed, a cycle is a
path such that the first vertex and the last one are the same, so by definition we would have for three vertices x, y, z,
Ax < Ay < Az < Ax which is not possible.
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Let us now take another tack. If we consider a social planner who observes the agents preferences

and aims to only maximize the volume in the Market with respect to a constraint on the number of

social connections, what should be the networks that allow to reach this optimum? Let G∗(m,n) =

{G∗ : G ∈ G(m,n)} be the set of the optimized graphs with m edges and n vertices, we introduce

the following definition.

Definition : Given the preferences of all the agents, a m-suboptimal (respectively m-optimal)

setting is a graph H of order43 m on which the volume is strictly lower than (respectively equal to)

the maximum volume allowed on G∗(m,n).

If we denote VH the volume associated to the underlying graph H, H is m-suboptimal means

that VH < max
U∈G∗(m,n)

ν(U) since the maximum cardinality of a matching in a graph U is exactly the

maximum volume allowed on this topology. For instance, if we consider four agents with preferences

(Ai)i∈J1,4K such that A1 <
A2
3 < A3

9 < A4
27 enrolled within the following network.

3

21

4

Figure 3: H with VH = 1

3

21

4

Figure 4: H ′ with VH′ = 2

We observe on H that x2 is strictly dominated by x4 to trade with x1 or by x1 to trade with

x4. Similarly x3 is strictly dominated by x1 to trade with x4. As x2 and x3 are not connected by

an edge, the only possible trade is here (x1, x4) and H is 4-suboptimal. Instead, in H ′ the topology

allows them to trade and the volume is maximal, so H ′ is 4-optimal. Notice that an optimal graph

does not necessarily maximizes the total surplus of the economy.

Finally, from the results of section (10.4) we can state the following proposition.

Proposition : In our model, any optimized graph is either bipartite or tripartite.

Indeed, if there is no trader in the economy, that is if we assume ∄x ∈ G such that the both

conditions Ax ∈
[
Ā
2 ,

11Ā
18

]

and ∃y, z ∈ N(x) : Ax
Ay

> 3, Ax
Az

< 1
3 hold, then we immediately conclude

that G has a bipartite structure since its vertices can be divided into two disjoint independent

sets : the pure buyers and the pure sellers. Now, if traders do exist in the Market, we know that

43This means with m edges.
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their risk aversions belong to the interval
[
Ā
2 ,

11Ā
18

]

. However, a desirability channel cannot exist

between them since the length of the interval is not sufficient to ensure that the trade condition

holds. Indeed, we have 11Ā
18 × 2

Ā
∈
[
1
3 , 3
]
, so no trade can take place between two traders. Thus, no

edge has its two ends in the same set of vertices and the graph is tripartite.

As we mentioned above, in most cases the expected volume for a first-best-matching is not the

expected volume in the Market since we don’t take into account the other best-matching orders at

which people could also trade. However, in some special cases, we are able to fix this issue.

13.1.1 Special cases

In this section, we show that for some range of p, we can analytically compute the expected

volume.

Let us consider for instance the special case of a frictionless Market. More precisely, we assume

K = 1, q = 0, p = 1 and ǫ → 0, that is an organized Market without shock where everyone knows

each other and where we can exchange a fraction of share as small as we want. As we have seen in

section (10.2), we would have P = 0 and a complete graph for the social connections, that is all the

trades are desirable and E(DC) = E(E(G)) =
(
n
2

)
. In this case, we cannot directly determine the

volume since several agents only exchange a fraction ǫ of share but we can definitely determine the

number of transactions in the economy. Thus, we just use the fact that after all the preferences have

been drawn, there is an order on the set of the risk aversion parameters as shown on the following

figure.

Ai1

xi1

Ai2

xi2

Ain−1

xin−1

Ain

xin

Here everyone knows each other, so each agent wants to trade with xi1 or xin . As only one

trade is allowed, at the first best choice, the only matching pair is (xi1 , xin). Then, at the second

best, the only matching pair is (xi2 , xin−1), etc... Every trade consists here in matching the highest

outstanding offer to buy (current bid) with the lowest outstanding offer to sell (current ask). Finally,

this suggests that the number of transactions is maximal and is equal44 to NT = ⌊n2 ⌋, given that

the size of the population is even or not.

Let us now highlight the case p 6= 1. As we mentioned above, for some graph topology, volume

is only generated by first-best pairings.

Thus, it is interesting to see how these components emerge in random graphs. When we control

for the value of p, we are able to generate almost surely a specific architecture of G. For instance,

44Notice in the case ǫ 6→ 0, Amin

Amax
could belong to

[
1
3
, 3
]
, that would imply V = 0.
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as we mentioned in section (12) when p ∈
[

1
n2 ,

1
n3/2

]

and n → ∞, whp the resulting graph is only

composed by pairs and isolated vertices. Similarly, when p ∈
[

1
n3/2 ,

1
n4/3

]

, whp the resulting graph

is only composed by pairs, triples and isolated vertices. As we already know the expected number of

pairs and triples in the graph, by computing the expected volume for these components individually,

we can deduce the expected volume for the whole graph. That leads to the following proposition.

Proposition : In a Market with n agents who can only trade once, we assume K = 1 and q = 0.

The expected volume can be expressed in the asymptotic case (n → ∞) when p ∈
[

1
n2 ,

1
n3/2

]

as

E(V ) =
4

3

(
n

2

)

p(1− p)2n−4

(

2− 2
n

5− 2
n

)2

And when p ∈
[

1
n3/2 ,

1
n4/3

]

as

E(V ) =
4

3

(
n

2

)

p(1− p)2n−4

(

2− 2
n

5− 2
n

)2

+

(
n

3

)

p2(1− p)3n−8 4

3

(

2− 2
n

5− 2
n

)2


2−
16

9

(

2− 2
n

5− 2
n

)4




Of course, we recover here E(V ) →
n→∞

∞ in both cases. In light of these results, we now relax the

assumption that agents can only trade once by letting them realize their best arbitrage opportunity.

13.2 Two trades at most

In this section, we still assume K = 1 for technical reasons but every agent is now allowed to

trade with both his best seller and his best buyer. More precisely, a pure buyer or a pure seller can

only trade once, while a trader can trade twice. Our main motivation behind this new hypothesis is

to allow people to transmit shares through social connections by introducing the concept of graph

connectivity. Thus, everyone can potentially act on the Market during the same session and each

individual preferences will affect the average market price. We will further develop the pricing

implications of our model in section (14). Thus, we have

Proposition : The expected volume for a pair of agents from G∗ when the traders are allowed

to realize their best arbitrage opportunity can be expressed in the case q = 0 and K = 1 as

E(Vij |(1, 1)
st) = 8

(

1−

(
1

2

)|N∗(xi)|
)(

1−

(
1

2

)|N∗(xj)|
)(

2

3

(

1−
Ā

NI

)2
)N∗

ij−1

with N∗
ij = |N∗(xi)|+ |N∗(xj)|.

Again, N∗
ij ≥ 2 since the result is based on the condition ”xi and xj are linked in the optimized
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graph”. In order to find the expected volume for the whole graph, we just aggregate over all the

individual pairs as E(V |(1, 1)st) =
(
n
2

)
E(Vij |(1, 1)

st). Of course, regarding to the case where people

can only trade once, the conditional expected volume is higher for any pairs of agents when they

can realize their best arbitrage opportunity. We observe now that when each agent has exactly one

partner to trade with, that is ∀i ∈ J1, nK, |N∗(x(i))| = 1, this quantity is not always maximal.

Let us now examine some special cases. First of all, we want to determine the longest path in

terms of share transmission observable in the graph after all the edges that do not carry a trade has

been removed. As we claimed in section (10.4), a necessary condition for an agent to be a trader is

given by Ax ∈
[
Ā
2 ,

11Ā
18

]

. By construction, it is clear that a share can be transmitted twice at most.

Indeed, we cannot find more than three people whose the risk aversions are ordered in a way there

is an incentive to trade from one to another, that is we cannot have Ax < Ay < Az < At such that

DCxy = DCyz = DCzt = 1. So the same share cannot be bought more than twice and the longest

path is 2. As we will see in next section, there exist an upper bound for the volume that is equal

to V = n− 1.

13.2.1 Special cases

Let us consider again the case where q = 0, p = 1 and ǫ → 0, that is an organized Market

without shock where everyone knows each other and where we can exchange a fraction of share as

small as we want. As in section (13.1.1), after the preferences have been drawn, the order on the

set of the risk aversion parameters Ai1 < ... < Ain leads to the following reasoning. Any agent xik
with k 6= {1, n} in the Market want to trade with both xi1 and xin . These two people are pure

buyer and pure seller respectively, so they can trade only once. The resulting first-best-matching

pair is (xi1 , xin). Then, every agent will consider his second best choice, that is ∀k 6= {2, (n − 1)},

xik is willing to trade with xi2 and xin−1 . However, xi2 and xin−1 cannot trade with xi1 and xin ,

so they become pure buyer and pure seller respectively and the only second-best-matching pair is

(xi2 , xin−1) and so forth. Finally, we obtain the same result here than in the case people can only

trade once and the number of transactions is equal to NT = ⌊n2 ⌋.

Now, we consider another special case where we keep q = 0 and ǫ → 0 but we relax the

assumption p = 1 and K = 1. Given the order Ai1 < ... < Ain , we only assume the following

underlying structure for the social connections between the agents.

i1 i2 i3 in−1 in

Thus, as there exists a desirability channels between every pair of agents, everyone is a trader in

this Market except for the vertices xi1 and xin . Given the degree of each node, that is ∀k 6= {1, n},
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δ(xik) = 2, all the traders can realize their best arbitrage opportunity and the number of transactions

will be equal to NT = n− 1.

Let us consider again the two states deterministic graph process on three vertices we have

introduced in previous section : (Gt)
2
1 with G1 a graph with edge E(G1) = {xy} and G2 a graph

with edges E(G2) = {xy, xz}. When a trader is allowed to realize his best arbitrage opportunity,

we can state the proposition

Proposition : Consider any isolated graph component with three different vertices {x, y, z}

where x and y are already connected by an edge. We connect the third vertex z to x and we assume

that the agents can realize their best arbitrage opportunity.

• If y and z are of the same type (e.g. they are two buyers), the expected volume behaves exactly

in the same way that we described in the case where people are allowed to trade only once and

the proposition of previous section applies.

• If y and z are not of the same type, the expected volume always increases since x is potentially

able to trade with both of them.

Let us now address the asymptotic case where we control for the topology of the graph by

constraining the probability p. As previously mentioned, we can state the following proposition.

Proposition : In a Market with n agents who can trade at most twice, we assume K = 1 and

q = 0. For p ∈
[

1
n2 ,

1
n3/2

]

, the asymptotic expected volume (n → ∞) is the same that in the case

where an agent can only trade once. For p ∈
[

1
n3/2 ,

1
n4/3

]

, it can be expressed as

E(V ) =
4

3

(

2− 2
n

5− 2
n

)2

p(1− p)2n−4





(
n

2

)

+

(
n

3

)

p(1− p)n−4




8

3

(

2− 2
n

5− 2
n

)4

+ 2−
8

3

(

2− 2
n

5− 2
n

)2








It is straightforward to show here that the expected volume has increased compared to the case

where the agents are allowed to only trade once.

Let us now address the pricing implications of our model. In next section, we define the price

and its two first moments for each trade.

14 Asset pricing and graph connectivity

14.1 The price

As we mentioned above, an agent will always prefer to trade with the neighbor who has the

furthest preferences compared to their own ones. Once he found his best partner, if a share can be
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traded, we assume that the transaction price P (ij) is the output of a bargaining game that takes

place between the two agents. Our setting suggests multiple equilibrium prices and regarding to

the results of section (10.2), we propose the following price definition.

Definition : Let xi and xj be a seller and a buyer respectively. If Vij = 1, the price at which

the trade occurs is

P (ij) = f(Ai, Aj) = wi

(

µ− Ai
2 σ2

)

+ wj

(
µ− 3

2Ajσ
2
)

where wi and wj are the weights associated to the individuals preferences and verify wi+wj = 1.

The function f could be chosen such that the relative neighborhood composition of each player

has an effect on the price determination. For instance, in an alternating offers bargaining game such

as in Corominas-Bosch, we would have wi = 1|Ns(xj)|>|Nb(xi)| and wj = 1 − wi where N s and N b

describe the number of sellers and buyers respectively an agent has in his neighborhood. In order

to capture the bargaining power of an agent, we could also define

f(Ai, Aj) =
Ns(xj)

Nb(xi)+Ns(xj)

(

µ− Ai
2 σ2

)

+ Nb(xi)
Nb(xi)+Ns(xj)

(
µ− 3

2Ajσ
2
)

Thus, higher the number of buyers in the neighborhood of xi compared to the number of sellers

in the neighborhood of xj , stronger the bargaining power of xi with respect to xj . Therefore, the

weight associated to the xi minimum ask µ− Ai
2 σ2 will be lower and the resulting price of the trade

will be closer to the xj maximum bid µ − 3
2Ajσ

2. Notice that in the case where xi belongs to a

group impacted by a shock, if the size of this group is higher than n
2 , xi has less bargaining power

than xj . The reverse is not always true.

However, in the rest of this paper, we will simply assume that ∀(i, j), wi = wj = 1
2 . In other

terms, when two agents are willing to trade, the price is entirely built on their preferences regardless

of their respective positions in the graph. This could be due to a regulatory body or social planner

that sets the price only with respect to the individual risk aversions to ensure a perfectly balanced

bargaining power. This is the classical perfect equilibrium payoff of the two players game developed

by Rubinstein (1982) in the case of an isolated pair of very impatient agents (δ = 1). Therefore

∀xi, xj ∈ V (G) the price can be expressed as follow

P (ij) =

{

µ− 1
4 (3Ai +Aj)σ

2 for Ai
Aj

> 3

µ− 1
4 (Ai + 3Aj)σ

2 for Ai
Aj

< 1
3

Notice that when xi is impacted by a shock, the price becomes P (ij) = µ − 1
4

(
18Ā+Aj

)
σ2

which is lower than the price in the case where no shock occurs. As we mentioned in section (13),

when some agent xi has many first best partners to trade with, he will simply randomly pick up one

of them with probability 1
|x∗

i |
. Thus, when a group of size nk ≤ n

2 is impacted by a shock, all of his
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members will be able to trade with the nk best buyers of the non-impacted part of the graph but

will be randomly paired with them. However, if nk > n
2 , only n − nk impacted agents, randomly

chosen, will be allowed to exchange a share in the Market. We propose in Appendix an alternative

mechanism by considering an auction that would take place when a group is impacted by a shock.

Before we move into the properties of the price, let us introduce a first proposition.

Proposition : Let assume that n agents can trade a fraction of share as small as they want,

that is ǫ → 0. Moreover, we consider K = 1 and p = 1 to generate a complete graph. Then for

n → ∞, the law of one price holds in the Market.

Indeed, when n tends to infinity, the individual risk aversion coefficients would span the entire

support of the single uniform distribution from which each agent preferences are drawn in this

economy. Regarding to the results of section (13.1.1), we know that whatever the rules about the

number of trades permitted for each player, the matching process will always associate agents with

the furthest preferences. The almost continuum of individuals in the Market implies that every price

is generated from risk aversion parameters symmetrically located around Ā. Finally, by using the

results obtained in section (10.2), we know that the price can be expressed as P (ij) = µ− 1
2(Ai+Aj)

and 1
2(Ai +Aj) should be always equal to Ā. Therefore, each transaction price should be the same

and the law of one price should be verified.

14.2 The price distribution

As we introduced the price P (ij) in previous section (13), we are now able to express its two

first moments. First, consider the general case where q ≥ 0, ∀(xi, xj) ∈ V (Hk)× V (Hl) we have

E(P (ij)|{Vij = 1}) = E(P (ij)|S̄k, Sl)q(1− q) + E(P (ij)|Sk, S̄l)q(1− q) + E(P (ij)|S̄k, S̄l)(1− q)2

Notice that a trade cannot occur between two impacted groups. Thus, we have ∀(xi, xj) ∈

V (Hk)× V (Hl)

E(P (ij)|{Vij = 1}) = (1− q2)µ− (1− q)

(
17

2
q + 1

)

Āσ2

Here, the expected price is a non-monotone function of the shock probability q and for q = 0

E (P (ij))) = µ− Āσ2

We observe that the expected price is always the same whatever the group to which the agents

belong and whatever the direction of the trade. As we mentioned above, if we assume individual
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bargaining power based on the agents relative positions in the graph, clearly the price will strongly

depend on the value of p which determines the neighborhood of each vertex.

For the variance, we obtain ∀(xi, xj) ∈ V (Hk)× V (Hl) with xj is a buyer and xi is a seller

Var(P (ij)|{Vij = 1})) = (1− q)2
(
5− 4q

96
N2

kσ
4 +

N2
l −N2

k

16

σ4

12

)

Clearly here, this quantity is a decreasing function of the shock probability q and for q = 0

Var(P (ij)|{Vij = 1})) =
5

96
N2

kσ
4 +

N2
l −N2

k

16

σ4

12

Notice that in the case |V (Hk)| = |V (Hl)|, the xi and xj preferences are drawn from the same

distribution and the formula is reduced to 5
96N

2
kσ

4. Here, the variance of the price does depend on

the group belonging of each agent enrolled in the trade. Symmetrically when xj sells and xi buys,

we have Var(P (ij)|{Vij = 1})) = 5
96N

2
l σ

4 +
N2

k−N2
l

16
σ4

12 . Hence, depending on the sign of N2
l −N2

k or

N2
k −N2

l , the variance for a trade intra-group will be lower or higher than the variance for a trade

inter-group. For instance, when xj buys and xi sells, if xj belongs to a larger group than xi, the

variance increases.

Let us now consider the mean price of the graph P̄ = 1
card(V)

∑

xixj∈V
P (ij) with V = {xixj ∈

E(G) : Vij = 1} the set of the edges that actually carry a trade. As P (ij) and V are independent,

we can easily derive the two first moments of the mean price.

E(P̄ ) = E(E(P̄ |V)) = E




1

card(V)

∑

xixj∈V
E(P (ij))



 = E

(
1

card(V)
card(V)E(P (ij))

)

= E(P (ij))

For its variance, let Bkl = {xixj ∈ E(G), xi ∈ V (Hk), xj ∈ V (Hl) : Vi,j = 1} be the set of the

trades inter-group and when l = k, Bkk the set of the trades inter-group. Hence we have
⋃

k,l
k≤l

Bkl = V

and for q = 0

Var(P̄ |V) =
1

V

[

5

96
σ4

(
K∑

k=1

Vk +
∑

k<l

Vkl

)

N2
k +

∑

k<l

(
N2

l −N2
k

16
V out
kl +

N2
k −N2

l

16
V in
kl

)]

Where V out
kl (respectively V in

kl ) is the number of sales from the group Hk to the group Hl (re-

spectively purchases by the group Hk from the group Hl). Hence, the variance of the mean price

clearly depends on the volume and on the graph topology.
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[INSERT FIGURE Var(P̄ ) = f(p)]

Let us now address an alternative mechanism that could take place when a shock occurs in the

Market.

14.3 The auction’s mechanism

We consider here the case c = 1, that is when the social connections are drawn regardless of the

group belonging of each agent and we generate a pure homogeneous random graph.

We assume that a group Hk of size nk is impacted by a shock. Every member of this group

is instantaneously connected with the non impacted part of the graph and has a risk aversion

equal to 6Ā. Thus, any agent from a non impacted group has among his neighbors nk partners

with the same preferences. In the case where the matching process would not be ensured by a

regulatory body as we assumed in section (13) and (14.1), we need new decision rules to elect the

best choice of such agent. Hence, we consider a first-price simultaneous auction mechanism with

n − nk bidders and nk identical objects since all the agents from the impacted group want to sell

their shares. Of course, we require nk < n/2 to ensure a non-zero price. Because of the trade

rules mentioned above, every potential buyer demands only one object. Let B = {b1, ..., bn−nk
} and

S = {s1, ..., sn−nk
} be the sets of the bids and the individual signals respectively. ∀i ∈ J1, n − nkK,

bi = b(si) and si = min
y∈Ns(xi)\V (Hk)

(

µ− Ay

2 σ2
)

, that is the signal of each vertex is the lowest price

at which an agent is willing to sell among his neighbors. The profit Πi is expressed as a function of

both bi and si. For every vertex xi such that δin(xi) ≥ 1, with δin(x) = |N s(x)\V (Hk)| the number

of sellers an agent has in his non impacted neighborhood, we fairly expect that b(si) < si. Let

sn−nk(1), ..., sn−nk(n− nk) be the order statistics45 of the n− nk draws.

14.3.1 Case nk = 1

First, we consider the case where only one object is auctioned, that is when a group of size 1 is

impacted. We have ∀xi ∈ V (G)\V (Hk)

E(Πi(bi, si)) = (si − bi)P(∀xj 6= xi ∈ V (G)\V (Hk), b(sj) < bi)

= (si − bi)P(∀xj 6= xi ∈ V (G)\V (Hk), sj < b−1(bi))

= (si − bi)
∏

xj∈V (G)\V (Hk)
xj 6=xi

Fsj (b
−1(bi))×

1

Fsi(b
−1(bi))

45For instance, there are j − 1 realizations in the sample strictly lower than sn−nk (j).
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Now, we need to determine the distribution of the variable si = min
y∈Ns(xi)

(

µ− Ay

2 σ2
)

. We have46

Fsi(z) =
K∏

j 6=k

(
Ā+Ni/2− 2

σ2 (µ−z)

Ni

)|Ns(xi)∩V (Hj)|
with N s(xi) = {y ∈ N(xi) :

Ay

Ai
> 3}.

Thus, the optimal bid of every agent can be expressed as

b∗i = argmax
bi

(lnE(Πi(bi, si)))

with lnE(Πi(bi, si)) = ln (si − bi)− lnFsi(b
−1(bi)) +

∑

xj∈V (G)\V (Hk)
xj 6=xi

lnFsj (b
−1(bi)).

14.3.2 Case nk > 1

In order to solve for the optimal bid, we have to control for the topology of the graph and

more precisely for the neighborhood of each agent. Thus, we consider the case where n → ∞ and

p ∈
[

1
n2 ,

1
n3/2

]

, that is whp the non impacted part of the graph is only composed by pairs and

isolated vertices. Thus, for any non impacted vertex, we have whp

si =

{

µ− Ai
2 σ2 if |N s(xi)\V (Hk)| = 0

µ− A−i

2 σ2 if |N s(xi)\V (Hk)| = 1

where A−i is the risk aversion parameter of the single non impacted neighbor of xi when

|N s(xi)\V (Hk)| = 1. We denote I the event ”the non impacted part of the graph is only com-

posed by pairs and isolated vertices”, so

E(si|I) = µ−
E(A)σ2

2

= µ−
Āσ2

2

Notice here that A ∼ U[a,b] ⇒ si ∼ U
[µ−σ2

2
b,µ−σ2

2
a]
. Therefore, as we have nk objects to sell in

this auction, we are interested by the k-th order statistics of n−nk draws from a uniform distribution

on [µ− σ2

2 b, µ− σ2

2 a]. To make the resolution more readable, we choose µ = σ2

2

(
Ā+ 1

2Nn

)
and we

have si ∼ U
[0,σ

2

2
Nn]

. As we show in Appendix, the expected value of sn−nk(k) is

E(sn−nk(k)|I) =
k

2(n− nk + 1)
σ2Nn

46See the Appendix for more details.
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Therefore the individual profit can be expressed as

E(Πi(bi, si)) = (si − bi)P

(
k

2(n− nk + 1)
σ2Nn < bi

)

14.4 Graph connectivity and agent participation

Depending on the probability p, every vertex or agent in the Market could be potentially involved

in a trade. Indeed, we have seen that the implication {xi ∼ xj} ⇒ {Vij = 1} does not systematically

hold. However, its negation {xi 6∼ xj} ⇒ {Vij = 0} is always verified. In other terms, if two agents

do not know each other, even if their preferences are such that they have an incentive to trade, no

trade will take place.

In section (11) and (13), we already discussed the relationship between the connectivity of the

graph and the number of desirability channels and the volume respectively. Here, our purpose is

more to understand how the impact of individual preferences potentially propagates through the

graph. We will focus on connected component, whatever the connectivity level, to examine how the

preferences of one agent can potentially affect the trade of another.

Thus, the participation of an agent could potentially modify the setting of the trades and so the

expected mean price of the Market, especially when this agent has one of the lowest or the highest

preferences. For instance, let us consider the simple case of a Market composed by the individuals

{x1, x2, ..., x5} where we have the following trades pattern.

1 2 3 4 5

We assume here that a desirability channel exists between any connected pair of agents. The

red edges carry a trade while the black ones don’t. The dashed line between the vertices x1 and x2

just describes the fact that we want to connect them. Let us assume that people can exchange once

at most and we have the optimal choices : x∗2 = x1, x
∗
3 = x2, x

∗
4 = x3 and x∗5 = x4. When x2x1 6∈ V,

the trades take place as (1, 2)th order pairings.

Now, if we connect x1 and x2, we get the following new trades pattern

1 2 3 4 5

where (x1, x2) is a (1, 1)st order pairing and (x3, x4) is a (1, 2)th order pairing. Therefore, the

participation of x1 in the Market, modifies both the trades pattern and the price at which x2 can

exchange. That leads to the next proposition.
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Proposition : Considering any pair of agents embedded in a Graph, there exists at least one

topology for which they are the best choice of each other.

This will be especially the case for the dynamic version of our model presented in Appendix as

everyone learns from his neighbors. We would go even further by saying that the price at which

an agent is able to trade, indirectly depends on the preferences of every member of the connected

component to which he belongs.

Proposition : Let G(n, (pij)) be a random graph model such that (pij)ij =
{p
c , p
}
and X0 denote

the number of isolated vertices in the random graph G ∈ G(n, (pij)). For any probability p(n) higher

than c log(n)
n , we have

lim
n→∞

P(X0 = k) = 0 and lim
n→∞

P(G ∈ G(n, (pij)) is connected) = 1

So the graph is almost surely connected.

This proposition obviously describes our model for c = 2 and q = 0. Thus, we can state the

following corollary.

Corollary : In our model, there is no isolated group in the Market almost surely when p ≥
2 log(n)

n , so there exists a path of acquaintances which connects any pair of agents.

This corollary provides us with the necessary condition for obtaining a maximal volume in a

Market with n agents who can trade at most twice. Indeed, as we illustrated in section (13), the

volume is maximal only for some classes of topology, that is the underlying graph must be connected

to allow each agent to be enrolled in a trade.

15 Conclusion and Extensions

In this paper, we rely the social architecture to the agents preferences and we found a relationship

between Market composition and trading activity. Every social group in this economy can be

impacted by a shock with equal probability. This shock can be interpreted as any exogenous motives

to become a pure seller for the rest of the Market. We mostly think here in terms of liquidity shock

for instance. We derive closed formula for the expected number of desirability channels and for the

expected volume in different special cases of our model. We found that in the case of equal-sized

groups, an increase of their number generates a decrease of the incentives to trade and thereby

the volume potentially diminishes. Symmetrically, for a given number of groups, if we make them

more dissimilar, new desirability channels appear and the volume potentially increases. We also

found a nonlinear relationship between the expected number of desirability channels and the shock

probability. This can be easily explained by arguing that given our setting, the incentives generated
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by one or many shocks non linearly depend on the size of the impacted part of the Market. As this

size is entirely determined by the shock probability value, the result follows. Finally, we used some

graph theory results to characterize the optimality of any network. Thus, from a social planner

perspective, we are able to state which class of topology maximizes the number of trades on the

Market.

As a natural extension of our model, we could allow shocks to be of different kinds. More

specifically, we could allow the interval from which the preferences are drawn to be shifted into

the both directions such that all the members of an impacted group can become pure sellers or

pure buyers with respect to the rest of the graph. The dynamic version of our model presented in

Appendix would also be improved and developed to understand the evolution of a such Market over

time.

16 Appendix

16.1 Trade condition

16.1.1 Static case

With CARA preferences, we have for any agent who would decide to buy, U(W ) = −e−A((1+ǫ)ṽ−pǫ)

and E(U(W )) = −e−A((1+ǫ)µ−pǫ)+A2

2
(1+ǫ)2σ2

. So the corresponding expected utilities are







E(U(WB)) = −e−A((1+ǫ)µ−pǫ)+A2

2
(1+ǫ)2σ2

E(U(WS)) = −e−A((1−ǫ)µ+pǫ)+A2

2
(1−ǫ)2σ2

E(U(WNT )) = −e−Aµ+A2

2
σ2

Therefore, an agent is willing to buy ǫ share when E(U(WB)) > E(U(WNT )) and E(U(WB)) >

E(U(WS)). Symmetrically he sells this quantity when E(U(WS)) > E(U(WNT )) and E(U(WS)) >

E(U(WB)). To sum up

he buys iff

{

p < µ−A
(
1 + ǫ

2

)
σ2

p < µ−Aσ2
he sells iff

{

p > µ−A
(
1− ǫ

2

)
σ2

p > µ−Aσ2

Finally, there is an incentive to trade between agent i and agent j if and only if
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µ−Ai

(

1 +
ǫ

2

)

σ2 >
<

µ−Aj

(

1−
ǫ

2

)

σ2

Ai

(

1 +
ǫ

2

)

σ2 <
>

Aj

(

1−
ǫ

2

)

σ2

Ai

Aj
6∈

[
1− ǫ

2

1 + ǫ
2

,
1 + ǫ

2

1− ǫ
2

]

→
ǫ→0

{1}

with P
(

Ai
Aj

6= 1
)

= 1 when ǫ tends towards zero by definition.

16.1.2 Dynamic case

Without additional costs : We keep here our original framework by adding a law of motion for

the risk aversion parameter of each agent. Thus, according to his decision to buy or sale the asset,

or to do not trade, an agent will have the following wealth

Wt+1 =







WB
t+1 = (ṽ − p)ǫt+1 + ṽ +Wt = (ǫt+1 − 1)ṽ + pǫt+1 +Wt if he buys ǫ share

WS
t+1 = (p− ṽ)ǫt+1 + ṽ +Wt = (1− ǫt+1)ṽ + pǫt+1 +Wt if he sells ǫ share

WNT
t+1 = ṽ +Wt if he does not trade

Therefore, the maximization program for every agent i becomes

max
ιt∈{−1,0,1}

− Et(e
−Ai,t+1(ιt+1(ṽ−p)ǫt+1+ṽ+Wt))

where Et() is the conditional operator based on the filtration Ft = {Wτ : τ ≤ t}. Of course, we

obtain the same trade condition that in the static case
Ai,t+1

Aj,t+1
6∈

[
1− ǫt+1

2

1+
ǫt+1

2

,
1+

ǫt+1
2

1− ǫt+1
2

]

→
ǫt+1→0

{1}. Notice

here that the risk aversion is time-varying and has the following dynamic

Ai,t+1 =

{
Ai,t+Ay,t

2 if ∃y ∈ V (G) : V t
iy = 1

Ai,t otherwise

Thus, at the end of each period when we matched all the compatible pairs, people who has been

enrolled in a trade revise their preferences in the light of the risk aversion of his partner. In other

terms, there is a learning effect. Then, a new period starts, we replicate the game and so forth.

Everything stops when there is no incentive to exchange in the Market anymore.

It is very interesting to see here at which speed the preferences converge. We claim that this

speed will strongly depend on the graph topology.
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With additional costs : Let us further assume now that is costly to stay on the Market. At

the beginning of each period, the agents must pay a fixed cost C > µ to continue to trade. Thus,

according to his decision to buy or sale the asset, or to do not trade, an agent will have the following

wealth

Wt+1 =







WB
t+1 = (ṽ − p)ǫt+1 + ṽ − C +Wt = (ǫt+1 − 1)ṽ + pǫt+1 +Wt if he buys ǫ share

WS
t+1 = (p− ṽ)ǫt+1 + ṽ − C +Wt = (1− ǫt+1)ṽ + pǫt+1 +Wt if he sells ǫ share

WNT
t+1 = ṽ − C +Wt if he does not trade

Therefore, it is costly now for an agent to do not trade during one period. The maximization

program for every agent i becomes

max
ιt∈{−1,0,1}

− Et(e
−Ai,t+1(ιt+1(ṽ−p)ǫt+1−C+ṽ+Wt))

By using the law of motion mentioned above for the risk aversion, we obtain the same trade

condition than before since both Wt and C disappear in the resolution.

However, we are able to determine the probability of an idiosyncratic liquidity shock, that is for

every agent qi,t+1 = P(W i
t < 0|Ft−1) = Φνt,χ2

t
(0) with

(νt, χ
2
t ) =







((µ− pt)ǫt − C + µ+Wt−1, (1 + ǫt)
2σ2) if he buys

((pt − µ)ǫt − C + µ+Wt−1, (1 + ǫt)
2σ2) if he sells

(−C + µ+Wt−1, σ
2) if he does not trade

Where pt = P (ij) is the price described in section (14). As this price depends on the group

belonging of the agents enrolled in the trade xi and xj , the same applies for the probability qi,t+1.

We can deduce the probability of a collective shock on a specific group V (Hk), that is when every

member of V (Hk) simultaneously experience a liquidity shock, we have

qt+1(nk) =
∏

xi∈V (Hk)

qi,t+1 =
(
Φν,χ2(0)

)nk . Notice here that every group will not have the same

probability to be impacted by a shock anymore.

In this version of the model, we assume that both the social connections and the preferences of

each agent are time-varying. Thus, the game will evolve as follows.

1. We generate the random graph of the social connections and the individual preferences in the

same way than described in section (10.4) and (10.3).

2. The game starts and we first match all the possible pairs.

3. Given the value of C and the different realized trades, we compute the wealth of each agent

and detect those who are insolvent.
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4. According to the individual wealth signs, we fully connect the agents who has experienced a

liquidity shock to the non impacted agents.

5. A new period starts, we match all the possible pairs and we remove all the previously impacted

vertices from the graph. Then we replicate exactly the same procedure than before and so

forth.

6. The game stops when there is no feasible trade during one period.

16.2 Expected number of desirability channels w.r.t. p and q

0.0 0.2 0.4 0.6 0.8 1.0

0
2
0
0

4
0
0

6
0
0
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0
0

q

E
(D

C
)

Figure 5: The expected number of desirability channels as a function of q
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16.3 Random graphs and corresponding prices
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Figure 6: The social connections between the agents for N = 80, K = 6, p = 0.4, q = 0.1. Here the

group {77, 78, 79, 80} is impacted and so fully connected with the rest of the graph.
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Figure 7: The resulting desirability channels for N = 80, K = 6, p = 0.4 and q = 0.1. Here the

group {77, 78, 79, 80} is impacted and so fully connected with the rest of the graph.
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Figure 8: In red the realized trades for N = 80, K = 6, p = 0.4 and q = 0.1. Here the group

{77, 78, 79, 80} is impacted and so fully connected with the rest of the graph.

The auction prices have a *.

16.4 Volume Code

In order to simulate the volume in the general case of K groups and q 6= 0, we have implemented

in R language an algorithm that proceeds as follows :

1. We generate the random sizes of the K different groups by adding the opportunity to only

draw unequally sized groups.
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Table 5: : Trades with corresponding prices for Ā = 10, µ = 90 and σ = 1

Buyers Sellers Price

”2” ”58” 83.212
”19” ”34” 83.296
”24” ”50” 82.873
”48” ”61” 83.459
”28” ”78” 34.232*
”62” ”77” 34.232*
”68” ”80” 34.232*
”69” ”79” 34.232*

2. We take a partition of the global population given the sizes of the groups.

3. According to the size of the group an agent belongs to, we draw his risk aversion coefficient

from the appropriate uniform distribution.

4. We detect which group(s) will be impacted by a shock by generating a random binary vector.

5. We generate the random graph that describes the social connections between agents. For any

pair of vertices, we set the probability that there exists an edge between them according to

their group belonging and to the probability that one of these groups are impacted by a shock.

6. According to the rules we presented in the previous sections, we define the different functions

that return the neighborhood of each vertex, his preference and his best partner .

7. In the particular case where at least one group is impacted by a shock, we first consider the

output of the auction, that is the number of share sold and the corresponding prices. If the

number of auctioned ”objects” is lower than the number of potential buyers, we keep the

highest losing valuation among the non impacted agents. Otherwise, we set the price to zero.

8. In order to compute the volume, we first count the first-best-matching pairs, then we remove

all the nodes that have been involved in a trade and we compute again the first-best-matching

pairs on the remaining graph, over and over until no trade is feasible. Finally, we just have

to add the number of shares sold during a potential previous auction.

16.5 Distribution of Zij =
Ai

Aj

Let X and Y be two random variables, we denote fX and fY their probability density functions.

The distribution of the ratio Z = X/Y is
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FZ(z) = P(Z ≤ z) = P(X ≤ Y z | Y > 0) + P(X ≥ Y z | Y < 0)

=

∫ ∞

0

(∫ yz

−∞
fX(x)dx

)

fY (y)dy +

∫ 0

−∞

(∫ ∞

yz
fX(x)dx

)

fY (y)dy

By differentiating, we obtain the probability density function of Z

fZ(z) =
d

dz
FZ(z) =

∫ 0

−∞
(−yfX(yz)) fY (y)dy +

∫ ∞

0
yfX(yz)fY (y)dy

=

∫ +∞

−∞
|y|fX(yz)fY (y)dy

In the case where X and Y are uniformly distributed on the intervals [aI , bI ] and [aJ , bJ ] respec-

tively, we have Z ∼
U[aI ,bI ]

U[aJ ,bJ ]
. We are still looking for the distribution of Z.

First of all, we assume I = J .

fX(yz)fY (y) = U[aI ,bI ](yz)U[aI ,bI ](y)

=

(
1

bI − aI

)2

1{
[
aI
z
,
bI
z
]∩[aI ,bI ]

}(y)

Since U[aI ,bI ](yz) = 1 if yz ∈ [aI , bI ] ⇔ y ∈ [aIz ,
bI
z ]. Thus, we distinguish two cases :

• z ∈
[
aI
bI
, 1
]

⇒ [aIz ,
bI
z ] ∩ [aI , bI ] =

[
aI
z , bI

]

• z ∈
[

1, bI
aI

]

⇒ [aIz ,
bI
z ] ∩ [aI , bI ] =

[

aI ,
bI
z

]

Therefore

fZ(z) =







∫∞
0

|y|
(bI−aI)

21{[aIz ,bI ]}(y)dy =
b2I−(

aI
z )

2

2(bI−aI)
2 if z ∈

[
aI
bI
, 1
]

∫∞
0

|y|
(bI−aI)

21
{[

aI ,
bI
z

]}(y)dy =

(

bI
z

)2
−a2I

2(bI−aI)
2 if z ∈

[

1, bI
aI

]

Now we consider the case where I 6= J

fX(yz)fY (y) =
1

(bI − aI) (bJ − aJ)
1{

[
aI
z
,
bI
z
]∩[aJ ,bJ ]

}(y)

Thus when NI < NJ
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• z ∈
[
aI
bJ
, bI
bJ

]

⇒ [aIz ,
bI
z ] ∩ [aJ , bJ ] =

[
aI
z , bJ

]
⇒ fZ(z) =

b2J−(
aI
z )

2

2NINJ

• z ∈
[
bI
bJ
, aI
aJ

]

⇒ [aIz ,
bI
z ] ∩ [aJ , bJ ] =

[
aI
z ,

bI
z

]

⇒ fZ(z) =

(

bI
z

)2
−(aI

z )
2

2NINJ

• z ∈
[
aI
aJ
, bI
aJ

]

⇒ [aIz ,
bI
z ] ∩ [aJ , bJ ] =

[

aJ ,
bI
z

]

⇒ fZ(z) =

(

bI
z

)2
−a2J

2NINJ

and when NI > NJ

• z ∈
[
aI
bJ
, aI
aJ

]

⇒ [aIz ,
bI
z ] ∩ [aJ , bJ ] =

[
aI
z , bJ

]
⇒ fZ(z) =

b2J−(
aI
z )

2

2NINJ

• z ∈
[
aI
aJ
, bI
bJ

]

⇒ [aIz ,
bI
z ] ∩ [aJ , bJ ] = [aJ , bJ ] ⇒ fZ(z) =

b2J−a2J
2NINJ

• z ∈
[
bI
bJ
, bI
aJ

]

⇒ [aIz ,
bI
z ] ∩ [aJ , bJ ] =

[

aJ ,
bI
z

]

⇒ fZ(z) =

(

bI
z

)2
−a2J

2NINJ

16.6 Evolution of E(E(G)) with respect to q

In the case of two groups, if the group of size n1 is impacted, we have

E(DC / {S̄1})− E(DC / {S1}) =
n1(n1 − 1)p

2
(1− P11) +

n2(n2 − 1)p

2
(1− P22) + n1n2

p

2
(1− P12)

−
n2(n2 − 1)p

2
(1− P22)− n1n2

=
n1(n1 − 1)p

2
(1− P11) + n1n2

(p

2
(1− P12)− 1

)

= n1

(

(n1 − 1)
p

2
(1− P11) + (n− n1)

(p

2
(1− P11 − P12 + P11)− 1

))

= n1






(n− 1)

p

2
(1− P11) + n2







p

2
(P11 − P12)− 1
︸ ︷︷ ︸

<0













Similarly, in the case of three groups, If two of them (n1 and n2) are impacted, we have
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E(DC/{S̄1, S̄2})− E(DC/{S1, S2}) =
3∑

k=1

nk(nk − 1)p

2
(1− Pkk) +

1

2

3∑

l,k=1

nlnk
p

2
(1− Pkl)

−
n3(n3 − 1)p

2
(1− P33)− n1n3 − n2n3

=
2∑

k=1

nk(nk − 1)p

2
(1− Pkk) + n1n2

p

2
(1− P12)

+
(p

2
− 1
)

(n1n3(1− P13) + n2n3(1− P23))

=
n1

2



(n1 − 1)p(1− P11) + n2
p

2
(1− P12) + (p− 2)

︸ ︷︷ ︸

<0

n3(1− P13)





+
n2

2



(n2 − 1)p(1− P22) + n1
p

2
(1− P12) + (p− 2)

︸ ︷︷ ︸

<0

n3(1− P23)





Again, as n3 = n − (n1 + n2), the sign of this difference entirely depends on the size of the

impacted part of the graph. Lower the size of n1 + n2, more likely the shock will increase the

number of desirability channels.

16.7 Evolution of E(E(G)) in the case of equally sized groups

We want to show that ∀k < k′, E(E(G))|k > E(E(G))|k′ :

E(E(G))|k − E(E(G))|k′ =

(n
k

2

)

p+

(
k

2

)(n

k

)2 p

2
−

( n
k′

2

)

p−

(
k′

2

)( n

k′

)2 p

2

= n
(n

k
− 1
) p

2
+ (k − 1)

n2

k

p

4
− n

(n

k
+
( n

k′
−

n

k

)

− 1
) p

2
− (k′ − 1)

n2

k′
p

4

= −n
( n

k′
−

n

k

) p

2
+ n2 p

4

(
1

k′
−

1

k

)

= n2 p

4

(
1

k
−

1

k′

)

> 0

16.8 The probabilities

The different probabilities are determined here for the case no group is impacted by a shock.

When a group k is impacted by a shock, we know that Pkk = 1 and ∀l 6= k, Pkl = 0.

The intragroup probability is
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P(
1

3
< Zkk < 3) =

2
3b

2
k − 2a2k
N2

k

=
1

N2
k

(

2

3

(

Ā2 +

(
Nk

2

)2

+NkĀ

)

− 2

(

Ā2 +

(
Nk

2

)2

−NkĀ

))

=
1

N2
k

(

−
4

3
Ā2 +

8

3
ĀNk −

1

3
N2

k

)

= −
4

3

Ā2

N2
k

+
8

3

Ā

Nk
−

1

3

= −
4

3

(
Ā

Nk
− 1

)2

+ 1

The intergroup probability is

P(
1

3
< Zkl < 3) =

1

2NkNl






2 (bkbl + akal)
︸ ︷︷ ︸

B

−






3(a2k + a2l ) +

1

3
(b2k + b2l )

︸ ︷︷ ︸

C













NlNk = (bk − ak)(bl − al)

= bkbl − bkal − akbl + akal

⇔ B = NlNk + bkal + akbl

= NlNk +

(

Ā+
Nk

2

)(

Ā−
Nl

2

)

+

(

Ā−
Nk

2

)(

Ā+
Nl

2

)

= NlNk + 2Ā2 −
NkNl

2

=
NkNl

2
+ 2Ā2

And,

C = 3

(

2Ā2 +
N2

k +N2
l

4
− Ā(Nk +Nl)

)

+
1

3

(

2Ā2 +
N2

k +N2
l

4
+ Ā(Nk +Nl)

)

=
20

3
Ā2 +

5

6
(N2

k +N2
l )−

8

3
Ā(Nk +Nl)

Thus,
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Pkl = P(
1

3
< Zkl < 3 — S̄k, S̄l) =

1

2NkNl

(

2(bkbl + akal)−

[

3(a2k + a2l ) +
1

3
(b2k + b2l )

])

=
1

2NkNl

(

NkNl + 4Ā2 −

[
20

3
Ā2 +

5

6
(N2

k +N2
l )−

8

3
Ā(Nk +Nl)

])

=
4

3
−

1

6NkNl

(

8

5
Ā2 +

5

2

(

Nk +Nl −
8

5
Ā

)2
)

=
1

2
−

1

NkNl

4

3
Ā2 −

5

12

(
Nk

Nl
+

Nl

Nk

)

+
4

3

(
Ā

Nl
+

Ā

Nk

)

16.9 Probabilities properties

We have the following properties

1. ∀k, l ∈ J1,KK

Pkl =
1

2
−

1

NkNl

4

3
Ā2 −

5

12

(
Nk

Nl
+

Nl

Nk

)

+
4

3

(
Ā

Nl
+

Ā

Nk

)

= −
4

3

Ā2

N2
k

+
8

3

Ā

Nk
−

1

3
+

1

2
−

4Ā2

3

(
1

NkNl
−

1

N2
k

)

−
5

12

(
Nk

Nl
+

Nl

Nk

)

+
4

3

(
Ā

Nl
−

Ā

Nk

)

+
1

3

= Pkk +
5

6
−

4Ā2

3

(
1

NkNl
−

1

N2
k

)

−
5

12

(
Nk

Nl
+

Nl

Nk

)

+
4

3

(
Ā

Nl
−

Ā

Nk

)

= Pkk −
4Ā2

3

(
1

NkNl
−

1

N2
k

)

+
5

12

(
2NkNl −N2

k −N2
l

NkNl

)

+
4Ā

3

(
Nk −Nl

NkNl

)

= Pkk −
4Ā2

3

(
1

NkNl
−

1

N2
k

)

+
(Nk −Nl)

NkNl

(
4Ā

3
−

5

12
(Nk −Nl)

)

⇔ Pkl − Pkk =
(Nk −Nl)

NkNl








4Ā

3

(

1−
Ā

Nk

)

︸ ︷︷ ︸

>0

−
5

12
(Nk −Nl)
︸ ︷︷ ︸

<0








Therefore in the case Nk < Nl, we have Pkk > Pkl. Notice that in the case Nk > Nl, we have

Pkl > Pkk if and only if we have Nk −Nl <
16Ā
5

(

1− Ā
Nk

)

⇔ 1
3n(nk − nl) <

8
5

(

1− 1

1+
2nk
3n

)

.

2. Moreover, we have

128



Pkm − Pkl =
4

3
Ā2

(
1

NkNl
−

1

NkNm

)

−
5

12

(
Nk

Nm
+

Nm

Nk
−

Nk

Nl
−

Nl

Nk

)

+
4

3

(
Ā

Nm
−

Ā

Nl

)

=
4Ā2

3Nk

(
Nm −Nl

NlNm

)

−
5

12NlNm

(
N2

kNl +N2
mNl −N2

kNm −N2
l Nm

Nk

)

+
4Ā

3

(
Nl −Nm

NmNl

)

=
4Ā

3

(
Nm −Nl

NlNm

)(
Ā

Nk
− 1

)

+
5

12

(Nm −Nl)

NlNm

(

Nk −
NlNm

Nk

)

=

(
Nm −Nl

NlNm

)








4Ā

3

(
Ā

Nk
− 1

)

︸ ︷︷ ︸

<0

+
5

12

(

Nk −
NlNm

Nk

)








(22)

Therefore, Nk < Nl < Nm ⇒ Pkm < Pkl.

3. Finally, we want to show that under specific conditions nk < nl < nm implies Pmk < Pll.

We have for any triple (nk, nl, nm) such that nk < nl < nm and 1
3n(nm−nk) >

8
5

(

1− 1
1+ 2

3n(nm− 1
n)

)

,

we have Pmk < Pmm and as the probability Pxx is a decreasing function of nx, we have ∀x such

that nx < nm, Pxx > Pmm. So in particular, we have Pll > Pmm and that implies Pmk < Pll.
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16.10 Expected number of desirability channels

16.10.1 Determination of
∑K

k=1 nk(nk − 1)Pkk

K∑

k=1

nk(nk − 1)Pkk =

K∑

k=1

nk(nk − 1)

(

−
4

3

Ā2

N2
k

+
8

3

Ā

Nk
−

1

3

)

= n2
K∑

k=1

3

2

(
Nk

Ā
− 1

)
3

2

(
Nk

Ā
− 1−

2

3n

)(

−
4

3

Ā2

N2
k

+
8

3

Ā

Nk
−

1

3

)

= n2 9

4

K∑

k=1

((
Nk

Ā

)2

−
Nk

Ā

(

2 +
2

3n

)

+ 1 +
2

3n

)(

−
4

3

Ā2

N2
k

+
8

3

Ā

Nk
−

1

3

)

= n2 9

4

K∑

k=1

{

−
4

3
+

8Nk

3Ā
−

1

3

(
Nk

Ā

)2

+
Ā

Nk

4

3

(

2 +
2

3n

)

−
8

3

(

2 +
2

3n

)

+
1

3

(

2 +
2

3n

)
Nk

Ā

}

+n2 9

4

K∑

k=1

{

−
4

3

(

1 +
2

3n

)(
Ā

Nk

)2

+
8

3

(

1 +
2

3n

)
Ā

Nk
−

1

3

(

1 +
2

3n

)}

= n2 9

4

K∑

k=1

{

−7−
2

n
+

1

3

(

10 +
2

3n

)
Nk

Ā
−

1

3

(
Nk

Ā

)2

+
4

3

(

4 +
2

n

)
Ā

Nk

}

+n2 9

4

K∑

k=1

{

−
4

3

(

1 +
2

3n

)(
Ā

Nk

)2
}

= n2 9

4

{

−

(

7 +
2

n

)

K +
1

3

(

10 +
2

3n

)

(K +
2

3
)−

1

3

(

K +
4

3
+

4

9

K∑

k=1

n2
k

n2

)}

+n2 9

4

{

4

3

(

4 +
2

n

) K∑

k=1

Ā

Nk
−

K∑

k=1

4

3

(

1 +
2

3n

) K∑

k=1

(
Ā

Nk

)2
}

= n2 9

4

{

−

(

4 +
16

9n

)

K +

(
16

9
+

4

27n

)

−
4

27

K∑

k=1

n2
k

n2
+

4

3

(

4 +
2

n

) K∑

k=1

Ā

Nk

}

+n2 9

4

K∑

k=1

{

−
4

3

(

1 +
2

3n

) K∑

k=1

(
Ā

Nk

)2
}

= Q1(K, (ni)i∈J1,KK)

with P(13 < Zkk < 3) = Pkk. Note that we have ∀k ∈ J1,KK, 1
n < nk

n < 1 ⇒ K
n2 < 1

n2

K∑

k=1

n2
k < 1.

For the determination of the quantity
∑

k,l
k 6=l

nknlPkl, we assume ∀(k, l) ∈ J1, nK2, Nk 6= Nl since
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Nk = Nl ⇒ Pkl = Pkk = Pll. We have

∑

k,l
k 6=l

nknlPkl = n2 9

4

∑

k,l
k 6=l

(
Nk

Ā
− 1

)(
Nl

Ā
− 1

)

Pkl

= n2 9

4

∑

k,l
k 6=l

(
NkNl

Ā2
−

Nk +Nl

Ā
+ 1

)

Pkl

= n2 9

4







∑

k,l
k 6=l

NkNl

Ā2
Pkl

︸ ︷︷ ︸

E

−
∑

k,l
k 6=l

Nk +Nl

Ā
Pkl

︸ ︷︷ ︸

F

+
∑

k,l
k 6=l

Pkl







With P(13 < Zkl < 3) = Pkl.

16.10.2 Determination of E

We have

E =
∑

k,l
k 6=l

NkNl

Ā2
Pkl

=
∑

k,l
k 6=l

(
NkNl

2Ā2
+ 2

)

︸ ︷︷ ︸

L

−
1

2

∑

k,l
k 6=l

[
20

3
+

5

6

(
N2

k

Ā2
+

N2
l

Ā2

)

−
8

3

(
Nk

Ā
+

Nl

Ā

)]

︸ ︷︷ ︸

M

Where47

47Notice that
∑

k,l
k 6=l

=
∑

l

∑

k
k 6=l

=
∑

l

(K − 1) = K(K − 1) and
∑

k,l
k 6=l

nk =
∑

l

∑

k
k 6=l

nk =
∑

l

n − nl = (K − 1)n and

∑

k,l
k 6=l

n2
k =

∑

l

∑

k
k 6=l

n2
k =

∑

l

∑

k

n2
k − n2

l = (K − 1)
∑

k

n2
k and

∑

k,l
k 6=l

nknl =
∑

l

∑

k
k 6=l

nknl =
∑

l

(n − nl)nl = n2 −
∑

k

n2
k and

∑

k,l
k 6=l

nknl(−1)σ = 0 (remind we have Pkl associated to this quantity and we alternatively consider Pkl, then Plk, you

can take the simple case with n1, n2, n3 and
3∑

k 6=l
k,l

nknl.
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L =
∑

k,l
k 6=l

NkNl

2Ā2
+ 2

∑

k,l
k 6=l

=
1

2







∑

k,l
k 6=l

+
2

3n

∑

k,l
k 6=l

(nk + nl) +
4

9n2

∑

k,l
k 6=l

nknl







+ 2K(K − 1)

=
1

2

(

K(K − 1) +
4

3
(K − 1) +

4

9
−

4

9

∑

k

n2
k

n2
+ 4K(K − 1)

)

=
1

2

((

5K +
4

3

)

(K − 1) +
4

9
−

4

9

∑

k

n2
k

n2

)

Since NkNl = Ā2
(
1 + 2nk

3n )(1 + 2nl
3n

)
= Ā2

(
1 + 2

3
nk+nl

n + 4nknl
9n2

)
. And

M =
10

3

∑

k,l
k 6=l

+
5

12







∑

k,l
k 6=l

N2
k

Ā2
+
∑

k,l
k 6=l

N2
l

Ā2







−
8

6







∑

k,l
k 6=l

Nk

Ā
+
∑

k,l
k 6=l

Nl

Ā







=
10

3
K(K − 1) +

5

6







∑

k,l
k 6=l

+
4

3

∑

k,l
k 6=l

nk

n
+

4

9

∑

k,l
k 6=l

(nk

n

)2







−
8

3







∑

k,l
k 6=l

+
2

3

∑

k,l
k 6=l

nk

n







=
10

3
K(K − 1) +

5

6

(

K +
4

3

)

(K − 1)−
8

3

(

K +
2

3

)

(K − 1) +
10

27

∑

k,l
k 6=l

(nk

n

)2

=
K − 1

3

(

10K −
11

2
K − 2

)

+
10

27
(K − 1)

∑

k

(nk

n

)2

=
K − 1

3

(

9

2
K − 2 +

10

9

∑

k

(nk

n

)2
)

Finally

132



E =
1

2

(

(5K +
4

3
)(K − 1) +

4

9
−

4

9

∑

k

n2
k

n2

)

−
K − 1

3

(

9

2
K − 2 +

10

9

∑

k

(nk

n

)2
)

= (K − 1)

[
1

2
(5K +

4

3
)−

1

3

(
9

2
K − 2

)]

−

(
10

27
(K − 1) +

2

9

)
∑

k

n2
k

n2
+

2

9

= (K − 1)

(

K +
4

3

)

−
1

27
(10K − 4)

∑

k

n2
k

n2
+

2

9

16.10.3 Determination of F

Here, we have48

48Since
∑

k,l
k 6=l

Nl

Nk
=

∑
k Nk−N1

N1
+

∑
k Nk−N2

N2
+ ... =

∑

j

∑
k Nk−Nj

Nj
= (K + 2

3
)
∑

k
Ā
Nk

− K. Similarly
∑

k,l
k 6=l

N2

l

Nk
=

∑

j

∑
k N2

k−N2

j

Nj
=

∑

j

∑
k N2

k

Nj
−

∑

j Nj = Ā(K + 4
3
+ 4

9

∑

k

(
nk

n

)2
)
∑

k
Ā
Nk

− Ā(K + 2
3
).
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F =
∑

k,l
k 6=l

1

2NkNl

(
Nk +Nl

Ā

)(

2

(
NkNl

2
+ 2Ā2

)

−

[
20

3
Ā2 +

5

6
(N2

k +N2
l )−

8

3
Ā(Nk +Nl)

])

=
1

2Ā

∑

k,l
k 6=l

(
1

Nk
+

1

Nl

)(

NkNl + 4Ā2 −
20

3
Ā2 −

5

6
(N2

k +N2
l ) +

8

3
Ā(Nk +Nl)

)

=
1

2Ā







∑

k,l
k 6=l

(

1−
5

6

)

(Nk +Nl)−
8

3
Ā2
∑

k,l
k 6=l

(
1

Nk
+

1

Nl

)

−
5

6

∑

k,l
k 6=l

(
N2

l

Nk
+

N2
k

Nl

)

+
8

3
Ā

(
Nl

Nk
+

Nk

Nl

)







+
8

3

∑

k,l
k 6=l

=
1

6







∑

k,l
k 6=l

+
2

3

∑

k,l
k 6=l

nk

n







−
4

3

∑

k,l
k 6=l

(
Ā

Nk
+

Ā

Nl

)

−
5

12Ā

∑

k,l
k 6=l

(
N2

l

Nk
+

N2
k

Nl

)

+
4

3

∑

k,l
k 6=l

(
Nl

Nk
+

Nk

Nl

)

+
8

3
K(K − 1)

=

((
8

3
+

1

6

)

K +
1

9

)

(K − 1)−
4

3

∑

k,l
k 6=l

(
Ā

Nk
+

Ā

Nl

)

+
4

3

∑

k,l
k 6=l

(
Nl

Nk
+

Nk

Nl

)

−
5

12Ā

∑

k,l
k 6=l

(
N2

l

Nk
+

N2
k

Nl

)

=

(
17

6
K +

1

9

)

(K − 1)−
8

3
(K − 1)

∑

k

Ā

Nk
+

8

3

∑

k,l
k 6=l

Nl

Nk
−

5

6

∑

k,l
k 6=l

Nl

Nk

Nl

Ā

=

(
17

6
K +

1

9

)

(K − 1)−
8

3
(K − 1)

∑

k

Ā

Nk
+

8

3

((

K +
2

3

)
∑

k

Ā

Nk
−K

)

−
5

6Ā

(

Ā

(

K +
4

3
+

4

9

∑

k

(nk

n

)2
)
∑

k

Ā

Nk
− Ā(K +

2

3
)

)

=

(
17

6
K +

1

9

)

(K − 1)−
8

3
K +

[

8

3

(

K +
2

3
−K + 1

)

−
5

6

(

K +
4

3
+

4

9

∑

k

(nk

n

)2
)]
∑

k

Ā

Nk

−
5

6

(

K +
2

3

)

=
17

6
K2 −

41

9
K +

4

9
+

(

−
5

6
K +

10

3
−

10

27

∑

k

(nk

n

)2
)
∑

k

Ā

Nk
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16.10.4 Determination of the probabilities sum

∑

k,l
k 6=l

Pkl =
∑

k,l
k 6=l

1

2NlNk

(

NlNk + 4Ā2 −

[
20

3
Ā2 +

5

6
(N2

l +N2
k )−

8

3
Ā(Nl +Nk)

])

=
1

2

∑

k,l
k 6=l

−
4

3

∑

k,l
k 6=l

Ā

Nk
×

Ā

Nl
−

5

12

∑

k,l
k 6=l

(
Nk

Nl
+

Nl

Nk

)

+
4

3

∑

k,l
k 6=l

(
Ā

Nl
+

Ā

Nk

)

=
1

2
K(K − 1)−

4

3

∑

k,l
k 6=l

Ā

Nk
×

Ā

Nl
−

5

6

∑

k,l
k 6=l

Nk

Nl
+

8

3
(K − 1)

∑

k

Ā

Nk

=
1

2
K(K − 1)−

4

3

∑

k,l
k 6=l

Ā

Nk
×

Ā

Nl
−

5

6

(

(K +
2

3
)
∑

k

Ā

Nk
−K

)

+
8

3
(K − 1)

∑

k

Ā

Nk

=
1

2
K2 +

1

3
K +

(
11

6
K −

29

9

)
∑

k

Ā

Nk
−

4

3

∑

k,l
k 6=l

Ā

Nk
×

Ā

Nl

Finally,

∑

k,l
k 6=l

nknlPkl = n2 9

4






E − F +

∑

k,l
k 6=l

Pkl







= n2 9

4

(

−
4

3
K2 +

47

9
K −

14

9
+

[

8

3
K −

59

9
+

10

27

∑

k

(nk

n

)2
]
∑

k

Ā

Nk
−

1

27
(10K − 4)

∑

k

n2
k

n2

)

−n2 9

4







4

3

∑

k,l
k 6=l

Ā

Nk
×

Ā

Nl







= Q2(K, (ni)i∈J1,KK)
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16.10.5 Determination of E(DC)|K

E(DC)|K =

K∑

k=1

E(DCk) +
1

2

∑

k,l
k 6=l

E(DCkl)

=
K∑

k=1






E(DCk/S

k)
︸ ︷︷ ︸

=0

q + E(DCk/S̄
k)(1− q)







+
1

2

∑

k,l
k 6=l






E(DCkl/S

k, Sl)
︸ ︷︷ ︸

=0

q2 + 2E(DCkl/S
k, S̄l)q(1− q) + E(DCkl/S̄

k, S̄l)(1− q)2







=
K∑

k=1

(
nk

2

)

(1− Pkk) p(1− q) +
1

2

∑

k,l
k 6=l

2nknl
p

2
︸︷︷︸

→1

q(1− q) +
1

2

∑

k,l
k 6=l

nknl
p

2
(1− Pkl) (1− q)2

=

K∑

k=1

nk(nk − 1)p

2
(1− Pkk) (1− q) + q(1− q)

∑

k,l
k 6=l

nknl +
1

2
(1− q)2

∑

k,l
k 6=l

nknl
p

2
(1− Pkl)

= (1− q)












K∑

k=1

nk(nk − 1)p

2
+
∑

k,l
k 6=l

nknl

2

p

2
(1− q) + q

∑

k,l
k 6=l

nknl

︸ ︷︷ ︸

G












−
p(1− q)

2

K∑

k=1

nk(nk − 1)Pkk

−
p(1− q)2

4

∑

k,l
k 6=l

nknlPkl

Since P
({

Ai
Aj

∈ [13 , 3] with Ai ∼ U[ak,bk], Ai ∼ U[al,bl]

}

/Sk
)

= 0. We have49

49In our R code Afun =
∑K

k=1 nk(nk − 1)Pkk, Bfun =
∑

k,l
k 6=l

nknlPkl.
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G =
p

2

K∑

k=1

n2
k −

p

2

K∑

k=1

nk +
p(1− q)

4

∑

k,l
k 6=l

nknl + q
∑

k,l
k 6=l

nknl

=
p

2

K∑

k=1

n2
k −

np

2
+

(
p(1− q)

4
+ q

)
∑

k,l
k 6=l

nknl

=
p

2

K∑

k=1

n2
k −

np

2
+

(
p(1− q)

4
+ q

)(

n2 −
K∑

k=1

n2
k

)

=

(
p(1− q)

4
+ q

)

n2 −
np

2
+

(
p(1 + q)

4
− q

) K∑

k=1

n2
k

=
p

4

[(

1− q +
4q

p

)

n2 − 2n+

(

1 + q −
4q

p

) K∑

k=1

n2
k

]

To conclude

E(DC)|K =
p(1− q)

4

[(

1− q +
4q

p

)

n2 − 2n+ n2

(

1 + q −
4q

p

) K∑

k=1

n2
k

n2

]

−
p(1− q)

2







K∑

k=1

nk(nk − 1)Pkk +
(1− q)

2

∑

k,l
k 6=l

nknlPkl







16.11 E(DC) in the asymptotic case

We know that in the special case of our model where K = 1 and q = 0, the expected number of

desirability channels is equal to E(DC) =
(
n
2

)
p(1−PNN ). Notice from the definition of a threshold

function that

lim
n→∞

P(G ∈ Q) =







0 if p/t →
n→∞

0

1 if p/t →
n→∞

∞

Thus, for specific ranges of p, when n → ∞, the probability that the graph has a given topology

tends to one and let Q1 = {max δ(G) ≤ 1} and Q2 = {max δ(G) ≤ 2} ∩ {longest path ≤ 2} be the

two properties that consist in having only isolated vertices and pairs, and isolated vertices, pairs and

triples respectively. For instance, we have E(DC) = E(DC|Q1)P(G ∈ Q1) + E(DC|Q̄1)(1− P(G ∈
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Q1)). As lim
n→∞

P(G ∈ Q1) = 1 for p ∈
[

1
n2 ,

1
n3/2

]

, we have lim
n→∞

E(DC) = lim
n→∞

E(DC|Q1). We make

the same reasoning for Q2 and we can write

lim
n→∞

E(DC) =







lim
n→∞

E(#(pairs))(1− PNN ) for p ∈
[

1
n2 ,

1
n3/2

]

lim
n→∞

[E(#(pairs)) + 2E(#(triples))] (1− PNN ) for p ∈
[

1
n3/2 ,

1
n4/3

]

16.12 Determination of the probability when I = J

P

(
Ai

Aj
< 1

)

II

=

∫ 1

aI
bI

b2I −
(
aI
z

)2

2(bI − aI)2
dz

=
1

2N2
I



b2I

(

1−
aI
bI

)

+

[
a2I
z

]1

aI
bI





=
1

2N2
I

[
b2I − aIbI + a2I − aIbI

]

=
1

2N2
I

(bI − aI)
2

=
1

2

P

(
Ai

Aj
<

1

3

)

II

=

∫ 1
3

aI
bI

b2I −
(
aI
z

)2

2(bI − aI)2
dz

=
1

2N2
I



b2I

(
1

3
−

aI
bI

)

+

[
a2I
z

] 1
3

aI
bI





=
1

2N2
I

[
b2I
3

− aIbI + 3a2I − aIbI

]

=
1

6N2
I

(bI − 3aI)
2

=
1

6N2
I

(2Ā− 4aI)
2

=
2

3

(

1−
Ā

NI

)2
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P

(
Ai

Aj
> 3

)

II

= 1− P

(
1

3
<

Ai

Aj
< 3

)

II

− P

(
Ai

Aj
<

1

3

)

II

= 1−

(

−
4

3

(
Ā

NI
− 1

)2

+ 1

)

−
2

3

(

1−
Ā

NI

)2

=
4

3

(
Ā

NI
− 1

)2

−
2

3

(

1−
Ā

NI

)2

=
2

3

(

1−
Ā

NI

)2

= P

(
Ai

Aj
<

1

3

)

II

16.13 Determination of the probability when I 6= J

When NI < NJ , we have

P

(
Ai

Aj
< 1

)

IJ

=

∫ bI
bJ

aI
bJ

b2J −
(
aI
z

)2

2NINJ
dz +

∫ 1

bI
bJ

(
bI
z

)2
−
(
aI
z

)2

2NINJ
dz

=
1

2NINJ



b2J

(
bI
bJ

−
aI
bJ

)

+

[
a2I
z

] bI
bJ

aI
bJ

+

[
a2I
z

]1

bI
bJ

−

[
b2I
z

]1

bI
bJ





=
1

2NINJ

(

bIbJ − aIbJ + a2I
bJ
bI

− aIbJ + a2I − a2I
bJ
bI

− b2I + bIbJ

)

=
1

2NINJ

(
2bIbJ − 2bJaI + a2I − b2I

)

=
1

2NINJ
(aI − bI)(aI + bI − 2bJ)

= −
NI(2Ā− 2bJ)

2NINJ

=
bJ − Ā

NJ

=
1

2

and similarly when NJ < NI
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P

(
Ai

Aj
< 1

)

IJ

=

∫ aI
aJ

aI
bJ

b2J −
(
aI
z

)2

2NINJ
dz +

∫ 1

aI
aJ

b2J − a2J
2NINJ

dz

=
1

2NINJ



b2J

(
aI
aJ

−
aI
bJ

)

+

[
a2I
z

] aI
aJ

aI
bJ

+
(
b2J − a2J

)
(

1−
aI
aJ

)




=
1

2NINJ

(

b2J
aI
aJ

− aIbJ + aIaJ − aIbJ + b2J − a2J − b2J
aI
aJ

+ aIaJ

)

=
1

2NINJ

(
2aIaJ − 2bJaI + b2J − a2J

)

=
1

2NINJ
(bJ − aJ)(aJ + bJ − 2aI)

=
NJ(2Ā− 2aI)

2NINJ

=
Ā− aI
NI

=
1

2

Whatever the sign of NI −NJ we have

P

(
Ai

Aj
<

1

3

)

IJ

=

∫ 1
3

aI
bJ

b2J −
(
aI
z

)2

2NINJ
dz

=
1

2NINJ



b2J

(
1

3
−

aI
bJ

)

+

[
a2I
z

] 1
3

aI
bJ





=
1

2NINJ

(
1

3
b2J − aIbJ + 3a2I − aIbJ

)

=
1

2NINJ

(
1

3
(bJ − 3aI)

2

)

=
1

6NINJ

(
NJ + 3NI

2
− 2Ā

)2

Be careful, here P
(

Ai
Aj

< 1
3

)

IJ
6= P

(
Ai
Aj

< 1
3

)

JI
. And whatever the sign of NI −NJ we have
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P

(
Ai

Aj
> 3

)

IJ

= 1− P

(
1

3
<

Ai

Aj
< 3

)

IJ

− P

(
Ai

Aj
<

1

3

)

IJ

= 1−
1

2NINJ

(

NINJ + 4Ā2 −

[
20

3
Ā2 +

5

6
(N2

I +N2
J )−

8

3
Ā(NI +NJ)

])

−
1

6NINJ

(
NJ + 3NI

2
− 2Ā

)2

=
1

2NINJ

(

2NINJ −NINJ − 4Ā2 +

[
20

3
Ā2 +

5

6
(N2

I +N2
J )−

8

3
Ā(NI +NJ)

])

−
1

2NINJ

1

3

(
NJ + 3NI

2
− 2Ā

)2

=
1

2NINJ

(

NINJ − 4Ā2 +
20

3
Ā2 +

5

6
(N2

I +N2
J )−

8

3
Ā(NI +NJ)

)

−
1

2NINJ

(
1

12
N2

J +
3

4
N2

I +
NINJ

2
+

4

3
Ā2 −

2

3
Ā(NJ + 3NI)

)

=
1

2NINJ

(
NINJ

2
+

4

3
Ā2 +

1

12
N2

I +
3

4
N2

J −
2

3
Ā(NI + 3NJ)

)

=
1

6NINJ

(
NI + 3NJ

2
− 2Ā

)2

= P

(
Ai

Aj
<

1

3

)

JI

16.14 Volume and graph connectivity

In this section we still assume that every agent can only trade once and we try to understand

how the volume evolves with respect to the graph connectivity. Let us first consider the following

case

32

1

Here, there are three agents but only one link between agent 1 and agent 2. We can compute

the expected value of the volume for this graph as
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E(V |{x1 ∼ x2}) = P(DC12 = 1|{x1 ∼ x2})

= P

(
A1

A2
6∈

[
1

3
, 3

])

= 1− Pkk or 1− Pkl

So the expected volume is equal to the probability that agent 1 and agent 2 are willing to trade.

Depending on if they belong to the same group, this probability will be 1− Pkk or 1− Pkl.

Let us add a new link between agent 2 and agent 3 as follows

32

1

The expected volume becomes

E(V |{x1 ∼ x2}, {x1 ∼ x3}) = E(V12|{x1 ∼ x2}, {x1 ∼ x3}) + E(V13|{x1 ∼ x2}, {x1 ∼ x3})

= P(DC12 = 1)P(x2 = x∗1) + P(DC13 = 1)P(x3 = x∗1)

= [P(DC12 = 1)− P(DC13 = 1)]P(x2 = x∗1) + P(DC13 = 1)

Notice here that P(x3 = x∗1) = P(|A3 −A1| > |A2 −A1|) = 1− P(x2 = x∗1)

If x1, x2 ∈ V (Hk) and x3 ∈ V (Hl)

E(V |{x1 ∼ x2}, {x1 ∼ x3}) = (1− Pkk)P(x2 = x∗1) + (1− Pkl)P(x3 = x∗1)

= (1− Pkk)(1− P(x3 = x∗1)) + (1− Pkl)P(x3 = x∗1)

= (1− Pkk) + P(x3 = x∗1)(Pkk − Pkl)

In the case where Nk < Nl, we have Pkk > Pkl and E(V |{x1 ∼ x2} ∪ {x1 ∼ x3}) > 1 − Pkk,

so the expected volume has increased compared to the setup where the agents x1 and x3 didn’t

know each other. If50 Nl < Nk < Nl +
16Ā
5

(

1− Ā
Nk

)

, the expected volume is lower than 1 − Pkk,

50See Appendix for the proof.
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so it is lowered compared to the former setup. Symmetrically, If (x1, x2) ∈ V (Hk) × V (Hl) and

x3 ∈ V (Hk), we would have E(V |{x1 ∼ x2} ∪ {x1 ∼ x3}) = (1− Pkl) + P(x3 = x∗1)(Pkl − Pkk).

If x1, x2, x3 ∈ V (Hk)

E(V |{x1 ∼ x2}, {x1 ∼ x3}) = (1− Pkk)P(x2 = x∗1) + (1− Pkk)P(x3 = x∗1)

= (1− Pkk)(1− P(x3 = x∗1)) + (1− Pkk)P(x3 = x∗1)

= (1− Pkk)

Obviously, we can extend51 this result by saying that ∀x such that δ(x) 6= 0, the expected

volume of N(x) is the same if and only if the whole set N(x)\{x} is included into the same group.

Of course here, we recover the same expected volume than in the first case. Symmetrically, If

(x1, x2) ∈ V (HI)× V (Hl) and x3 ∈ V (Hl), we have E(V |{x1 ∼ x2} ∪ {x1 ∼ x3}) = (1− Pkl).

If x1, x2, x3 ∈ V (Hk), V (Hl), V (Hm)

E(V |{x1 ∼ x2}, {x1 ∼ x3}) = (1− Pkl)P(x2 = x∗1) + (1− Pkm)P(x3 = x∗1)

= (1− Pkl)(1− P(x3 = x∗1)) + (1− Pkm)P(x3 = x∗1)

= 1− Pkl + P(x3 = x∗1)(Pkl − Pkm)

So in the case where Nk < Nl < Nm, we have Pkl > Pkm and E(V |{x1 ∼ x2} ∪ {x1 ∼ x3}) >

1 − Pkl, so the expected volume has increased compared to the setup where the agents x1 and x3

didn’t know each other.

16.15 Expected Volume when only one trade is permitted

Here, the neighborhood composition of each agent is totally random and we don’t know a

priori the desirability channels in the graph. Therefore, in order to get the computations more

tractable, we must assume that every non desirable channels has already been removed and we

have K = 1. Thus, we consider the optimized graph G∗ = (V ∗, E∗) where V ∗ = V (G) and

E∗ = E(G)\
{

xy ∈ E(G) : Ax
Ay

∈ [13 , 3]
}

. The probability that two vertices are linked by an edge

in this graph is exactly P({DCij = 1}). If we consider a partition {] − ∞, 13 [, ]3,+∞[}, the total

probability law leads to

51See Appendix for having more details.
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E(Vij) = E(Vij |{DCij = 1})P({DCij = 1}) + E(Vij |{DCij = 0})P({DCij = 0})

= P({Vij = 1}|{DCij = 1})P({DCij = 1})

= P

(

{Vij = 1} —

{
Ai

Aj
<

1

3

}

, {xi ∼ xj}

)

P

(
Ai

Aj
<

1

3

)

p

+P

(

{Vij = 1} —

{
Ai

Aj
> 3

}

, {xi ∼ xj}

)

P

(
Ai

Aj
> 3

)

p

Now, as the events {xi = x∗j} and {x∗i = xj} are conditionally independent on the event
{

Ai
Aj

< 1
3

}

, we have

P

(

{Vij = 1}—{xi ∼ xj},

{
Ai

Aj
<

1

3

})

= P

(

{xi = x∗j} ∩ {x∗i = xj} —

{
Ai

Aj
<

1

3

}

, {xi ∼ xj}

)

= P

(

{xi = x∗j} —

{
Ai

Aj
<

1

3

}

, {xi ∼ xj}

)

×P

(

{x∗i = xj} —

{
Ai

Aj
<

1

3

}

, {xi ∼ xj}

)

As we mentioned in section (13), when only one trade is permitted, traders always prefer to

exchange with sellers rather than with buyers. Thus, the probability that a buyer is elected as a

first best choice is zero when at least one seller exists in the neighborhood. More precisely, the only

way a buyer can be chosen by an agent is when the agent is a pure seller. Similarly, the probability

that a seller is elected only depends on the number of other sellers there are in the neighborhood.

P

(

{xi = x∗j}|{xi ∼ xj},

{
Ai

Aj
<

1

3

})

= P

(

∀xk ∈ N∗(xj)\ {xi} , xk ≺ xi for xj /

{
Ai

Aj
<

1

3

})

= P

(

∄y ∈ N∗(xj)\ {xi} :
Ay

Aj
> 3

)

P(Ak > Ai)
|N∗(xj)|−1

=
∏

y∈N∗(xj)
y 6=xi

P

(
Ay

Aj
<

1

3

)(
1

2

)|N∗(xj)|−1

=

(
1

2

)|N∗(xj)|−1
(

2

3

(

1−
Ā

NI

)2
)|N∗(xj)|−1

And
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P

(

{xj = x∗i }|{xi ∼ xj},

{
Ai

Aj
<

1

3

})

= P

(

∀xk ∈ N∗(xi)\ {xj} , xk ≺ xj for xi /

{
Ai

Aj
<

1

3

})

=

|N∗(xi)|∑

m=1

P

(

{xj = x∗i }|{xi ∼ xj},

{
Ai

Aj
<

1

3

}

, {|N s(xi)| = m}

)

×P({|N s(xi)\ {xj} | = m− 1})

=

|N∗(xi)|∑

m=1

P(Ak < Aj)
m−1P

(
Ai

Ak
<

1

3

)m−1

P

(
Ai

Al
> 3

)|N∗(xi)|−m

= 2

(

1−

(
1

2

)|N∗(xi)|
)(

2

3

(

1−
Ā

NI

)2
)|N∗(xi)|−1

with N s(xi) =
{

y ∈ N(xi) :
Ay

Ai
> 3
}

. Therefore, we have

P

(

{Vij = 1}—

{
Ai

Aj
<

1

3

}

, {xi ∼ xj}

)

=

((
1

2

)|N∗(xj)|−2

−

(
1

2

)N∗
ij−2

)(

2

3

(

1−
Ā

NI

)2
)N∗

ij−2

where N∗
ij = |N∗(xj)|+ |N∗(xi)|. Symetrically

P

(

{Vij = 1}—

{
Ai

Aj
> 3

}

, {xi ∼ xj}

)

=

((
1

2

)|N∗(xi)|−2

−

(
1

2

)N∗
ij−2

)(

2

3

(

1−
Ā

NI

)2
)N∗

ij−2

And

E(Vij) =

((
1

2

)|N∗(xi)|−2

+

(
1

2

)|N∗(xj)|−2

−

(
1

2

)N∗
ij−3

)(

2

3

(

1−
Ā

NI

)2
)N∗

ij−1

p

16.15.1 Expected volume in the asymptotic case

As PII = PIJ = PNN , we have P(Vij = 1) = P(Vij = 1)NN and the volume for an isolated pair

is52 the same whatever if the agents are allowed to trade once or twice at most.

52Notice, we have Ā
NN

= 3
5−2/n

.
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E(Vij = 1|{xi ∼ xj})|pair = E(DCij |{xi ∼ xj})

=

(

P

(
Ai

Aj
<

1

3

)

+ P

(
Ai

Aj
> 3

))

=
4

3

(

1−
Ā

NI

)2

=
4

3

(

2− 2
n

5− 2
n

)2

→
n→∞

16

75
(23)

As we mentioned in section (12) we have for p ∈
[

1
n2 ,

1
n3/2

]

, lim
n→∞

E(V ) = lim
n→∞

E(DC|Q1), so in

the asymptotic case, the expected volume is

E(V ) = E(#(pairs))E(Vij = 1|{xi ∼ xj})|pair

=
4

3

(
n

2

)

p(1− p)2n−4

(

2− 2
n

5− 2
n

)2

(24)

Since p ∈
[

1
n2 ,

1
n3/2

]

, we have E(#(pairs)) →
n→∞

+∞, so as P(Vij = 1) → 16
75 , we have E(V ) →

n→∞
+∞. Indeed, we have lim

n→∞

(
n
2

)
p(1−p)2n−4 = p

2 lim
n→∞

n2(1−p)2n where lim
n→∞

(1−p)2n = lim
n→∞

e−2np(n),

so for p(n) = λ lnn/2n, we have lim
n→∞

(1−p)2n = n−λ and we can easily show that lim
n→∞

n2(1−p)2n =

n2−λ. Thus, as p ∈
[

1
n2 ,

1
n3/2

]

⇒ λ < 2, we have lim
n→∞

(
n
2

)
p2(1− p)2n−4 = +∞.

Let us now consider the case where we also have isolated triples in the graph, that is when

p ∈
[

1
n3/2 ,

1
n4/3

]

. When the agents are allowed to trade once, the expected volume for a pair

embedded within a triple is

E(Vij |{xi ∼ xj}, {xi ∼ xk})|triples =

[

2

(
1− P

2

)2

(1− P) + (1− P)P

]

= (1− P)

[

2

(
1− P

2

)2

+ P

]

where 1− P = P
(

Ai
Aj

6∈
[
1
3 , 3
])

. That implies
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E(V |{xi ∼ xj}, {xi ∼ xk})|triples = 2(1− P)

[

2

(
1− P

2

)2

+ P

]

= (1− P)(1 + P2)

=
4

3

(

1−
Ā

NI

)2
(

2−
16

9

(

1−
Ā

NI

)4
)

=
4

3

(

2− 2
n

5− 2
n

)2


2−
16

9

(

2− 2
n

5− 2
n

)4




→
n→∞

4

3

(
2

5

)2
(

2−
16

9

(
2

5

)4
)

(25)

If the agents are allowed to trade twice at most, this quantity becomes E(V |{xi ∼ xj}, {xi ∼

xk})|triples = (1 − P)
[
3
2 (1− P)2 + 2P

]

. Thus, the expected volume for the whole graph in the

asymptotic case, can be expressed as

E(V ) = E(#(pairs))E(Vij |{xi ∼ xj})|pair + E(#(triples))E(V |{xi ∼ xj}, {xi ∼ xk})|triples

=
4

3

(
n

2

)

p(1− p)2n−4

(

2− 2
n

5− 2
n

)2

+

(
n

3

)

p2(1− p)3n−8 4

3

(

2− 2
n

5− 2
n

)2


2−
16

9

(

2− 2
n

5− 2
n

)4




Or if the agents are allowed to trade twice at most,

E(V ) =
4

3

(
n

2

)

p(1−p)2n−4

(

2− 2
n

5− 2
n

)2

+

(
n

3

)

p2(1−p)3n−8 4

3

(

2− 2
n

5− 2
n

)2



8

3

(

2− 2
n

5− 2
n

)4

+ 2−
8

3

(

2− 2
n

5− 2
n

)2




16.16 Expected volume when agents can trade at most twice

Here, we assume that K = 1 and traders are allowed to benefit from their best arbitrage

opportunity.

E(Vij) = P

(

{xi = x∗j}
⋂

{xj = x∗i }} —

{
Ai

Aj
<

1

3

}

, {xi ∼ xj}

)

P

({
Ai

Aj
<

1

3

})

P ({xi ∼ xj})

+P

(

{xi = x∗j}
⋂

{xj = x∗i } —

{
Ai

Aj
> 3

}

, {xi ∼ xj}

)

P

({
Ai

Aj
> 3

})

P ({xi ∼ xj})
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As the events {xi = x∗j} and {x∗i = xj} are conditionally independent on the events
{

Ai
Aj

< 1
3

}

and
{

Ai
Aj

> 3
}

, we can examine separately

P

(

{xi = x∗j} —

{
Ai

Aj
<

1

3

}

, {xi ∼ xj}

)

= P

(

∀xk ∈ N∗(xj)\ {xi} , xk ≺ xi for xj —

{
Ai

Aj
<

1

3

})

=

N∗(xj)∑

m=1

P

(

{xi = x∗j}|{xi ∼ xj},

{
Ai

Aj
<

1

3

}

, {|N b(xj)| = m}

)

×P({|N b(xj)\ {xj} | = m− 1})

=

N∗(xj)∑

m=1

P(Ak > Ai)
m−1P

(
Aj

Ak
> 3

)m−1

P

(
Aj

Al
<

1

3

)|N∗(xj)|−m

= 2

(

1−

(
1

2

)|N∗(xj)|
)(

2

3

(

1−
Ā

NI

)2
)|N∗(xj)|−1

Similarly,

P

(

{xj = x∗i } —

{
Ai

Aj
<

1

3

}

, {xi ∼ xj}

)

= P

(

∀xk ∈ N∗(xi)\ {xj} , xk ≺ xj for xi —

{
Ai

Aj
<

1

3

})

=

N∗(xi)∑

m=1

P

(

{xj = x∗i }|{xi ∼ xj},

{
Ai

Aj
<

1

3

}

, {|N s(xi)| = m}

)

×P({|N s(xi)\ {xj} | = m− 1})

=

N∗(xi)∑

m=1

P(Ak < Aj)
m−1P

(
Ai

Ak
<

1

3

)m−1

P

(
Ai

Al
> 3

)|N∗(xi)|−m

= 2

(

1−

(
1

2

)|N∗(xi)|
)(

2

3

(

1−
Ā

NI

)2
)|N∗(xi)|−1

Therefore, we have

P

(

{Vij = 1}—

{
Ai

Aj
<

1

3

}

, {xi ∼ xj}

)

= 4

(

1−

(
1

2

)|N∗(xi)|
)(

1−

(
1

2

)|N∗(xj)|
)(

2

3

(

1−
Ā

NI

)2
)N∗

ij−2

= P

(

{Vij = 1}—

{
Ai

Aj
> 3

}

, {xi ∼ xj}

)

Notice here that the conditional expected volume is the same whatever they are sellers or buyers.
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We observe that these quantities are maximal53 for N∗
ij = N∗

ij = 2, that is when (xi, xj) have only

one potential partner in their neighborhood.

Finally, the expected volume is

E(Vij) = 8

(

1−

(
1

2

)|N∗(xi)|
)(

1−

(
1

2

)|N∗(xj)|
)(

2

3

(

1−
Ā

NI

)2
)N∗

ij−1

However, in the case where K > 1 is

E(V )|K =
K∑

k=1

E(Vk) +
1

2

∑

k,l
k 6=l

E(Vkl)

=
K∑

k=1






E(Vk/S

k)
︸ ︷︷ ︸

=0

q + E(Vk/S̄
k)(1− q)







+
1

2

∑

k,l
k 6=l






E(Vkl/S

k, Sl)
︸ ︷︷ ︸

=0

q2 + 2E(Vkl/S
k, S̄l)q(1− q) + E(Vkl/S̄

k, S̄l)(1− q)2







=
K∑

k=1

E(Vk/S̄
k)(1− q) +

1

2

∑

k,l
k 6=l

{

2E(Vkl/S
k, S̄l)q(1− q) + E(Vkl/S̄

k, S̄l)(1− q)2
}

16.17 Determination of the expected volume in the general case

When a lth and kth best choice are matching, we assume that the agents can only trade once

and we have

E(Vij)|l,k best = P(Vij = 1)|l,k best

= P
(

{xi = xl∗j }
⋂

{xj = xk∗i }
)

P(DCij = 1)

Let Ωl(x) = {x(l−1)∗, x(l−2)∗, ..., x∗} ⊆ N(xi) be the set of the (l− 1) first best partners of x and

N∗
−l(xj) = N∗(xj)\ ({xi} ∪ Ωl(xj)) the set of the N∗(xi)− l remaining best partners.

53In this case we would have P(Vij = 1)II = 10
3

(

1− Ā
NI

)2

p.
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P

(

{xi = xl∗j } | {xi ∼ xj},

{
Ai

Aj
<

1

3

})

= P

[

∀xk ∈ N∗
−l(xj), xk ≺ xi ≺ x(l−1)∗ for xj /

{
Ai

Aj
<

1

3

}]

= P

(

∄y ∈ N∗
−l(xj) :

Ay

Aj
> 3

)

P(Ak > Ai)
|N∗

−l(xj)|

×P(∀xl ∈ Ωl(xj) : xi ≺ xl)

=

(
1

2

)|N∗
−l(xj)|(Ay

Aj
<

1

3

)|N∗
−l(xj)|

P({|Ωs
l (xj)| = m})

×
l−1∑

m=0

P (∀xl ∈ Ωl(xj) : xi ≺ xl|{|Ω
s
l (xj)| = m})

=

(
1

2

)|N∗(xj)|−l (Ay

Aj
<

1

3

)|N∗(xj)|−l

×
l−1∑

m=0

P (Al < Ai)
l−1−m P

(
Al

Aj
> 3

)m

P

(
Al

Aj
<

1

3

)|Ωl(xj)|−m

=

(
1

2

)|N∗(xj)|−l (Ay

Aj
<

1

3

)|N∗(xj)|−l

×

(
1

2

)l−1

P

(
Al

Aj
<

1

3

)|Ωl(xj)| l−1∑

m=0

2m

=

((
1

2

)|N∗(xj)|−l−1

−

(
1

2

)|N∗(xj)|−1
)(

2

3

(

1−
Ā

NI

)2
)|N∗(xj)|−1

with |N∗
−l(xj)| = |N∗(xj)| − |Ωb

l (xj)| − 1 = |N∗(xj)| − l and Ωs
k(xj) =

{

y ∈ Ωk(xj) :
Ay

Aj
> 3
}

.

Similarly with N∗
−k(xi) = N∗(xi)\ ({xj} ∪ Ωk(xi)) the set of the N

∗(xi)−k remaining best partners,

we have
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P

(

{xj = xk∗i } | {xi ∼ xj},

{
Ai

Aj
<

1

3

})

= P

[

∀xl ∈ N∗
−k(xi), xl ≺ xj ≺ x(k−1)∗ for xi /

{
Ai

Aj
<

1

3

}]

=

|N∗(xi)|−k
∑

m=0

P

(

{xj = xk∗i }|,

{
Ai

Aj
<

1

3

}

, {|N s
−k(xi)| = m}

)

×P({|N s
−k(xi)| = m})P(∀xt ∈ Ωk(xi) : xj ≺ xt)

=

|N∗(xi)|−k
∑

m=0

P(Ay < Aj)
m

(
Ay

Ai
> 3

)m

P

(
Ay

Ai
<

1

3

)|Ns
−k(xi)|−m

×P

(

∄t ∈ Ωk(xi) :
At

Ai
<

1

3

)

P(At > Aj)
|Ωk(xi)|

=

(
Ay

Ai
<

1

3

)|N∗(xi)|−1(1

2

)k−1 |N∗(xi)|−k
∑

m=0

(
1

2

)m

=

((
1

2

)k−2

−

(
1

2

)|N∗(xi)|−1
)(

2

3

(

1−
Ā

NI

)2
)|N∗(xi)|−1

so

P

(

{Vij = 1} —

{
Ai

Aj
<

1

3

})

=

((
1

2

)|N∗(xj)|+k−2

−

(
1

2

)N∗
ij−1

)
(

21+l − 2
)(1− P

2

)N∗
ij−2

Of course, we will find a symmetrical result for P
(

{Vij = 1} —
{

Ai
Aj

> 3
})

.

16.18 Additional simple cases

Let us consider a vertex x1 located at the center of a star in topological terms. His neighborhood

would be composed by n neighbors {y1, ..., yn} such that ∀i ∈ J1, nK, δ(yi) = 1. We assume here

that x1 can be a trader, that is he can realize his best arbitrage opportunity. The social network is

as follows

y1 yny2

x1
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If x1 ∈ V (Hk) and N(x1) ⊆ V (Hk), we have

E(V |{x1 ∼ x2} ∩ ... ∩ {x1 ∼ xn}) =

n∑

i=2

E(V1i|{x1 ∼ x2} ∩ ... ∩ {x1 ∼ xn})

= nE(V1i|{x1 ∼ x2} ∩ ... ∩ {x1 ∼ xn})

As we are considering a star, we know that the expected volume determination is equivalent to

a firs-best-matching problem, so we can use directly the proposition of section (13).

E(V1i)|G =

n−1∑

x=0

(
n− 1

x

)

E (V1i — {DC1i = 1}, |N∗(x1)| = x+ 1)P (|N∗(x1)\{DC1i = 1}| = x)

with

E (V1i — {DC1i = 1}, |N∗(x1)| = x+ 1) = 8

(

1−

(
1

2

)x+1
)(

1−

(
1

2

))(
1− Pkk

2

)x+1

We remind here that these quantities are based on the condition {DC1i = 1}. Therefore,

E(V1i)|G =

n−1∑

x=0

(
n− 1

x

)(

1−

(
1

2

)x+1
)

(1− Pkk)
2x+1 Pn−x−1

kk 21−x

And,

E(V | ∩
i∈J2,nK

{x1 ∼ xi}) = n

n−1∑

x=0

(
n− 1

x

)((
1

2

)x−1

−

(
1

2

)2x
)

(1− Pkk)
2x+1 Pn−x−1

kk

So when the neighborhood of x belongs to the same group, the expected volume for the compo-

nent N(x)∪{x} only depends on the size of N(x). From this result, it is straightforward to recover

the expression of the expected volume obtained for n = 1, 2.

Now, let consider the following pattern
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x3

x2x1

This is the topology of a complete graph K3. As each agent can at most realize his best arbitrage

opportunity but cannot trade with two neighbors of the same type (for instance two buyers), the

volume will be equal to 0 or 1. Indeed, if we assume DC12 = DC23 = DC13 = 1, one agent exactly

can be a trader, let say x2, while x1 and x3 are the best choice of each other. Therefore, a trader

will never trade in this topology as the others will always prefer to realize their single trade between

them. The expected volume can be expressed as54

E(Vij — {(x1, x2, x3) ∼ ∆}) =
9

2

(
1− Pkk

2

)3

(1− Pkk)
2 + 2× 3

(
1− Pkk

2

)2

(1− Pkk)Pkk

=
(1− Pkk)

3

2

[
9

8
(1− Pkk)

2 + 3Pkk

]

Therefore, the expected volume for a K3 topology is 3 (1−Pkk)
3

2

[
9
8 (1− Pkk)

2 + 3Pkk

]

. And

1 3

42

We have

54We denote here {(x1, x2, x3) ∼ ∆} the event the vertices belong to the complete graph K3.
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E(V — (1, 1)st) =
9

2

(
1− Pkk

2

)3

(1− Pkk)
2 + 2× 3

(
1− Pkk

2

)2

(1− Pkk)Pkk

+2×

(

3

(
1− Pkk

2

)2

(1− Pkk) + 2

(
1− Pkk

2

)

Pkk

)

=
(1− Pkk)

2

[
9

8
(1− Pkk)

3 + 3 (1− Pkk)
2 Pkk +

3

2
(1− Pkk)

2 + 2Pkk

]

=
(1− Pkk)

2

[
3

2
(1− Pkk)

2

(
3

4
(1− Pkk) + 2Pkk + 1

)

+ 2Pkk

]

Of course here, we would have to also consider second-order-matching to obtain the general

expected volume.

16.19 Variance of the price

For all xi, xj ∈ V (Hk) we have for q = 0

Var(P (ij)|{Vij = 1}) = Var

(

µ−
1

4
(3Ai +Aj)σ

2

)

or

(

Var

(

µ−
1

4
(Ai + 3Aj)σ

2

))

=
5

96
N2

kσ
4

Notice that we obtain exactly the same expression whatever who buys and sells since we consider

here that all the agents belong to the same group, so their preferences are drawn from the same

distribution.

Now, let consider the case where xi, xj ∈ V (Hk)× V (Hl), we have for q = 0

Var(P (ij)|xj buys and xi sells) = Var

(

µ−
1

4
(3Ai +Aj)σ

2

)

=
1

16
(9Var(Ai) + Var(Aj))σ

4

=
1

16
(9N2

k +N2
l )

σ4

12

=
5

96
N2

kσ
4 +

N2
l −N2

k

16

σ4

12

16.20 Distribution of si

We have si = min
y∈Ns(xi)\V (Hk)

(Zi) with Zi = µ− Ay

2 σ2
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P(Zi ≤ zi) = P

(

µ−
σ2

2
Ai ≤ zi

)

= P

(

µ− z ≤
σ2

2
Ai

)

= 1− P

(

Ai ≤
2

σ2
(µ− zi)

)

= 1−
2
σ2 (µ− zi)− (Ā−Ni/2)

Ni

=
Ā+Ni/2−

2
σ2 (µ− zi)

Ni

Finally,

P(si ≤ u) = P

(

min
y∈Ns(xi)\V (Hk)

(

µ−
Ay

2
σ2

)

≤ u

)

= P(∀y ∈ N s(xi)\V (Hk), Zi ≤ u)

=

K∏

j 6=k

(

Ā+Ni/2−
2
σ2 (µ− u)

Ni

)|Ns(xi)∩V (Hj)|

= Fsi(u)

16.21 Expected value of sn−nk(m)

Let {X1, X2, ..., Xn} be n independent and identically distributed random variables with cumu-

lative distribution function F . We know that the density of the m-order statistic from a sample of

size n is f(m,n)(x) = n
(
n−1
m−1

)
(1 − F (x))(n−1)−(m−1)F (x)m−1f(x). Hence, in the case of a uniform

distribution on [0, u], we obtain

f(m,n)(x) = n

(
n− 1

m− 1

)(

1−
x

u

)n−m (x

u

)m−1 1

u

And we can write
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1 =

∫ u

0
f(m,n)(x)dx

⇔ 1 = n

(
n− 1

m− 1

)∫ u

0

(

1−
x

u

)n−m (x

u

)m−1 1

u
dx

⇔
(n−m)!(m− 1)!

n!
=

∫ 1

0
(1− t)n−m tm−1dt

with t = x
u . Now, let us denote r = m and v = n − r + 1, we have

∫ 1
0 (1− t)n−m tm−1dt =

∫ 1
0 (1− t)v−1 tr−1dt = (v−1)!(r−1)!

(v+r−1)! = Γ(v)Γ(r)
Γ(r+v) , by the properties of the Gamma function. Finally, as

the beta(r, v) distribution has the following density ∀x ∈ [0, 1], fbeta(r,v)(x) =
Γ(r+v)
Γ(v)Γ(r) (1− x)v−1 xr−1,

we can write

E(sn−nk(m)) = n

(
n− 1

m− 1

)∫ 1

0
x
(

1−
x

u

)n−m (x

u

)m−1 1

u
dx

=
Γ(r + v)

Γ(v)Γ(r)
u

∫ 1

0
t (1− t)v−1 tr−1dt

= u

∫ 1

0
tfbeta(r,v)(t)dt

=
ur

r + v
=

uk

n+ 1

Since the mean of a beta(r, v) distribution is r
r+v .

16.22 Connectivity of the graph in the case k 6= 1

We want to show that for p(n) > c log(n)
n , the conditions (19),(20) and (21) holds and by the

theorem of Kovalenko (1971), the graph is almost surely connected when n tends to infinity.

First, we compute the main quantities involved in the three conditions. For the probability that

a vertex xi ∈ V (Hk) is an isolated vertex, we have

Qi =
n∏

j=1

ρij = (1− p)nk−1
(

1−
p

c

)n−nk

For the expected number of isolated vertices, we have
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λn =
n∑

i=1

Qi =
n∑

i=1

(1− p)nk−1
(

1−
p

c

)n−nk

=
K∑

k=1

nk(1− p)nk−1
(

1−
p

c

)n−nk

(26)

For Ril, we have ∀l ≤ n

Ril = min
1≤j1≤...≤jk≤n

ρij1 ...ρijk =

{

(1− p)l if l ≤ nk

(1− p)nk
(
1− p

c

)l−nk otherwise
= (1−p)min(l,nk)

(

1−
p

c

)l−min(l,nk)

Now, we are able to compute the limits.

max
1≤i≤n

Qi =
(

1−
p

c

)n− min
(ni)i≤K

(ni)

(1− p)
min

(ni)i≤K

(ni)−1

=
(

1−
p

c

)n
(
1− p

1− p
c

) min
(ni)i≤K

(ni)

︸ ︷︷ ︸

<1

×
1

1− p

We have
(
1− p

c

)n
= en log(1− p

c
) ≈ e−n p

c so for p(n) = νc log(n)
n , we have

(
1− p

c

)n
≈ e−ν log(n) =

n−ν and we have ∀ν > 0, n−ν →
n→∞

0 so max
1≤i≤n

Qi →
n→∞

0.

Similarly, we have

lim
n→∞

λn = lim
n→∞

K∑

k=1

nk(1− p)nk−1
(

1−
p

c

)n−nk

= lim
n→∞

K∑

k=1

nk

(
1− p

1− p
c

)nk (

1−
p

c

)n
×

1

1− p

= (1− p)−1 lim
n→∞

K∑

k=1

(n−
K∑

j 6=k

nj)

(
1− p

1− p
c

)nk (

1−
p

c

)n

= (1− p)−1 lim
n→∞





K∑

k=1

n

(
1− p

1− p
c

)nk (

1−
p

c

)n
−

K∑

k=1

K∑

j 6=k

nj

(
1− p

1− p
c

)nk (

1−
p

c

)n





As we mentioned above for p(n) = νc log(n)
n ,

(
1− p

c

)n
≈ n−ν , so n

(
1− p

c

)n
≈ n1−ν →

n→∞
0 if and

only if ν > 1. Therefore, lim
n→∞

λn = 0 with ν > 1.

Finally, we have ∀xi ∈ V (Hk)

157



Qi

Ril
=

(1− p)nk−1
(
1− p

c

)n−nk

(1− p)min(l,nk)
(
1− p

c

)l−min(l,nk)
=

{

(1− p)nk−l−1
(
1− p

c

)n−nk if l ≤ nk

(1− p)−1
(
1− p

c

)n−l
otherwise

So,

n∑

i=1

Qi

Ril
=

K∑

k=1

nk

[

(1− p)nk−l−1
(

1−
p

c

)n−nk

1{l≤nk} + (1− p)−1
(

1−
p

c

)n−l
1{l>nk}

]

On the basis of the results we obtained for the two first conditions, it is straightforward to show

that with p(n) > c log(n)
n , ∀l ≤ n/2, lim

n→∞

n∑

i=1

Qi

Ril
= 0 so lim

n→∞

n/2∑

l=1

1
l!

(
n∑

i=1

Qi

Ril

)l

= 0.

Thus, we have shown that for any probability p higher than c log(n)
n , the three conditions (19),(20)

and (21) holds and we can apply the Kovalenko theorem. Of course, this result is verified for any

value of c, in particular for c = 2.
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[12] H. Föllmer. Random economies with many interacting agents. Journal of Mathematical Eco-

nomics, 1(1):51–62, 1974-03.

[13] P. Gai and S. Kapadia. Contagion in financial networks. Proceedings of the Royal Society A:

Mathematical, Physical and Engineering Sciences, 466(2120):2401–2423, 2010-08-08.

[14] C. Gollier. Wealth inequality and asset pricing. The Review of Economic Studies, 68(1):181–

203, 2001.

159



[15] T. C. Green. Economic news and the impact of trading on bond prices. The Journal of Finance,

59(3):1201–1233, 2004-06.

[16] H. Hong, J. D. Kubik, and J. C. Stein. Thy neighbor’s portfolio: Word-of-mouth effects in the

holdings and trades of money managers. The Journal of Finance, 60(6):2801–2824, 2005-12.

[17] K. L. Judd, F. Kubler, and K. Schmedders. Asset trading volume with dynamically complete

markets and heterogeneous agents. The Journal of Finance, 58(5):2203–2217, 2003-10.

[18] J. M. Karpoff. A theory of trading volume. The Journal of Finance, 41(5):1069, 1986-12.

[19] J. M. Karpoff. The relation between price changes and trading volume: A survey. The Journal

of Financial and Quantitative Analysis, 22(1):109, 1987-03.

[20] B. Karrer and M. E. J. Newman. Random graph models for directed acyclic networks. Physical

Review E, 80(4), 2009-10-15.

[21] A. A. Kirilenko. A network model of market prices and trading volume. Working Paper,

page 24, 2008.

[22] C. M. Lee and B. Swaminathan. Price momentum and trading volume. The Journal of Finance,

55(5):2017–2069, 2000-10.

[23] A. Lo and J. Wang. Trading volume: Implications of an intertemporal capital asset pricing

model. The Journal of Finance, page 36, 2006.

[24] A. W. Lo, H. Mamaysky, and J. Wang. Asset prices and trading volume under fixed transactions

costs. journal of political economy, page 37, 2004.

[25] A. W. Lo and J. Wang. Stock market trading volume. Working paper, page 102, 2001.

[26] M. Manea. Models of bilateral trade in networks. The Oxford Handbook of the Economics of

Networks, page 35, 2016.

[27] S. Nagel. Trading rules and trading volume. Working Paper, page 53, 2003.

[28] M. E. J. Newman. Mixing patterns in networks. Physical Review E, 67(2), 2003-02-27.

[29] T. Odean. Volume, volatility, price, and profit when all traders are above average. Journal of

Finance, page 48, 1998.

[30] M. Pagano. Trading volume and asset liquidity. The Quarterly Journal of Economics,

104(2):255, 1989-05.

160



[31] C. Panagopoulos. Social pressure, surveillance and community size: Evidence from field exper-

iments on voter turnout. Electoral Studies, 30(2):353–357, 2011-06.

[32] D. J. Pearce and P. H. J. Kelly. A dynamic topological sort algorithm for directed acyclic

graphs. Journal of Experimental Algorithmics, 11:1.7, 2007-02-09.

[33] P. Pfleiderer and A. R. Admati. A theory of intraday patterns volume and price variability.

The Review of Financial Studies, 1988.

[34] B. Pittel and R. Tungol. A phase transition phenomenon in a random directed acyclic graph.

Random Structures and Algorithms, 18(2):164–184, 2001-03.

[35] G. D. Sarolli. Pump up the volume: Income risk and counter-cyclical asset trading. Eastern

Economic Journal, 42(4):594–610, 2016-09.

[36] J. A. Scheinkman and L. Weiss. Borrowing constraints and aggregate economic activity. Econo-

metrica, 54(1):23, 1986-01.

[37] H. R. Varian. Divergence of opinion in complete markets. Journal of Finance, 1985.

[38] J. Wang. A model of competitive stock trading volume. Journal of Political Economy, 1994.

161



Part IV

On Social Status

162



Social status, liquidity shocks and trading Volume

17 Introduction

“In the land of the blind, the one-eyed man is king”

Most of people has been concerned at least once in their life by a phenomenon of social com-

parison. They look at their entourage and measure how far they seem to be in terms of happiness

compared to their own condition. When they realize that their position is strongly unbalanced com-

pared to the rest of the population, they feel disadvantaged and suffer from this situation. Thus, in

order to be more at ease among their relatives, they try to turn any comparison to their advantage

by reallocating their resources to reduce the gap between them and their environment. Thus, a such

phenomenon is of crucial interest for understanding social interactions and is definitely at play in

economics.

In the literature, happiness is usually interpreted in terms of utility. For instance, the neoclassi-

cal view assumes that the utility of an agent only depends on the absolute level of his consumption.

Of course, this assumption contradicts the idea that social comparisons play a role in the optimal

choice of the consumer. Thus, many efforts have been made over the decades, to develop new

preferences forms. For instance, Veblen (1899) was the first to propose that the happiness of an

individual could depend on the apparent happiness of his acquaintances. More precisely, Veblen

introduced the concept of conspicuous consumption by stating that people pay more attention to

goods which allow to signal their wealth to the others and thereby obtain a higher social status.

Thus, the main concern of an agent is how he can get the esteem of his relatives and one way to do

it, is to regularly display is social rank to his fellows. An extreme case, which called the Veblen’s

effect, is when an individual is willing to pay higher price for functionally equivalent goods only

for distinguishing itself (see Frank 1985a and Heffetz 2004). Finally, Veblen makes the distinction

between two types of behaviors motivated by status needs. First, an agent with a high social rank

will consume conspicuously to show that he does not belong to a lower class. Second, an agent

with a low social rank will consume conspicuously to imitate the behavior of the upper class. The

concept of conspicuous consumption is particularly relevant in our historical context since during

the Old Regime period, a specific good was consumed to obtain greater status. Let us now shed

some light on the concept of social status.

Social status is a widely recognized ranking of individuals within a social organization. People

have intrinsic characteristics that bestow them with a specific position relative to the others. For

instance, some of them may have higher status due to their wealth while others, could owe their
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status to intelligence or leadership. The key point here is that the status of an individual does exist

only for those who share the same criteria of social positioning than him. Indeed, if a wealthy agent

is living in a society that does not recognize wealth as impacting hierarchy, he will not benefit from

any preferred position. Of course many other skills or accomplishments can generate social status

and every sub-population can have different ones.

Another interesting aspect related to ranking is when we publicly sort people according to some

established criteria, we make them more dissimilar and thereby magnify attraction or repulsion

between them. Indeed, it is common knowledge that status entitles their owner to certain privileges

and modifies the way the others behave. More specifically, we observe two effects, the first is that

low status individuals are more willing to share with higher status people but the reverse is not

true. Usually, people with low social position are more respectful with upper class members while

people with status are more dismissive with lower class members. For instance, during the Old

Regime period in France, the Nobles frown upon to get married with commoners. The second is

an indirect effect based on a comparison with the neighborhood since an agent will suffer from a

disutility when his position is dominated by his neighbors ones. Therefore, he will have a strong

incentive to deviate in order to align with his entourage.

When we consider groups of people sharing the same status, we notice that the cohesion be-

tween them is of crucial interest in terms of individual behavior. Indeed, the action of one agent can

potentially affects the status of his relatives. Thus, each of them monitor his neighbors and thereby

a social pressure is exerted on the group members. In particular, some sociological studies support

the idea that this pressure is enhanced by the size of the structure since the smaller the group, the

higher the social pressure. This point is particularly relevant in the context of our empirical support

as we can fairly assume that when high ranking people as Nobles start to deviate from established

standards, they affects the whole group. Hence, their fellows have a strong incentive to convince

them to comply with the social rules, otherwise they would incur the risk of being banished.

In economical terms, we can say that if status is desirable, any agent would be willing to re-

allocate his current consumption to have it. Therefore, the relative social positions also affect the

allocation of resources in the economy and thereby the trades pattern. Indeed, if the quest for status

push people to get closer to some partners rather than to others or to modify their preferences, this

will potentially shut down channels commonly used to exchange, to open new ones which would be

less efficient. More precisely, an agent could deviate from his best choice in terms of trade partners

for a specific good to prefer someone else who is entitled by status. This point is of particular

interest for explaining trading volume on markets and it is partially what our study is about.

Another interesting point is how the quest for status can alter the agents preferences in terms of

risk. Indeed, as it was suggested in Friedman and Savage (1948), the marginal utility of wealth rises,

and thereby the risk aversion decreases, when we reach a higher social position. In their paper, the
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authors investigate how broad observations about the behavior of agents who are facing alternatives

involving risk, are consistent with the hypothesis of von Neumann and Morgenstern utility theory.

They found that a special shape of the utility function is required to allow a such matching. A

direct implication of this result is the interpretation we made above about the relationship between

socioeconomic classes and risk aversion. More precisely, the author claim that people are willing to

take risks to distinguish themselves. A caricatural example would be here, the case of any extreme

sports where participants put their life on the line to become famous. Thus, the higher the status of

an agent, the lower his risk aversion. In our historical context, this would suggest that the nobility

members are less risk averse than people from the lower class. We will see this point can be tested

empirically as we are able to detect the bad state of this old economy and thereby to establish the

periods during which investing was more risky due to high uncertainty.

Finally, another strand of the literature initiated by Postlewaite (1998), considers that status

would not be intrinsic preferences but rather an instrumental concern. In other terms, people do not

value status itself but seek it because this allows to have an access to exclusive goods or to better

consumption opportunities. To illustrate this last point with our empirical support, we would say

that when a bourgeois for instance, is willing to get married with a Noble, he must rise his status to

make this marriage possible. Thus, the status is only an instrument that provide an access to some

privileges.

In this paper, we propose a model with heterogeneous agents that describes the main features

of the Toulouse mills economy. More precisely, our model is in the spirit of several previous works

on social status, starting from Hirsch (1977) which introduced a distinction between positional and

non positional goods. More precisely, Hirsch claimed that positional goods derive their value from

their social scarcity. Indeed, if everyone receive a medal, a such distinction cannot be used to

distinguish people anymore as it becomes a common good. This concept of positional good and

relative consumption has been extensively used in many studies as in Frank (1985b), Blanchflower

and Oswald (2004), Duesenberry (1949), Frey and Stutzer (2002) or in Hopkins and Kornienko

(2004). In this last paper, the authors investigate the strategical choice of an agent in terms of

conspicuous consumption as his utility depends on the consumption of the others. They found at

the equilibrium, that agents spend an inefficiency high amount on the positional good.

Another important feature of our model is that it relies on network theory to build the underlying

structure that describes the social interactions. Indeed, as we mentioned above, each agent is

concerned about the consumption of the others. More precisely, as he does not have information

about all the population members, we assume that he only cares about the conspicuous consumption

of his acquaintances. Thus, the most natural way to display these connections is to use nodes and

edges as material of Graph theory. A very interesting paper and closely related to our present work

is Ghiglino and Goyal (2010). They consider a networked market where individuals have private
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endowments and feel a disutility when their relative consumption compared to their neighbors is

low for the conspicuous good. They found that equilibrium prices and consumption depend on a

centrality measure of the underlying network. In our model, we consider a partition of the population

composed by agents with status and agents without status. This setting fairly reproduces the two

main social groups existing during the Old Regime period in Toulouse. An important difference

between Ghiglino’s paper and this one is that he considers arbitrary given networks while we use

heterogeneous random graphs for highlighting the fact that people are more likely to know each

others if they share the same status than if they belong to different social groups. This implies

that the neighborhood of each agent will be more homogeneous in our model. For instance, a Noble

will be more likely connected to other Nobles and a merchant has more low class members in his

neighborhood than Nobles.

We also randomly draw the preferences of the agents by considering that non status people have

on average a higher risk aversion than those who have a status. This is of course in accordance with

the Friedmann and Salvage conclusion. Another interesting paper which also investigates how risk-

taking behavior can emerge from the assumption that people care about status is Ray and Robson

(2012). They show how risk-taking behavior might coexists with risk-averse behavior and derive

the same findings than Friedmann and Savage (1948) without making ad hoc specifications about

the utility function. In this study, we first consider a static version of our model where the agents

can only exchange a non positional good. We assume they can only choose to buy or to sell one

unit of good or to don’t trade but cannot act on the positional good. In other terms, the status are

exogenously determined and we only focus on their impact on the trades pattern. We further assume

that the agent’s utility is impacted by the relative status of his trade partner, positively for a higher

status and negatively for a lower status. We found that although individuals would be more willing

to trade with individuals who have different status levels, since such partners maximize on average

their profit, the utility’s component capturing their status concern lowers this incentive. Hence,

we show that in some cases, the intra groups trades predominate. Second, we propose a dynamic

version of our model where the agents are allowed to choose their optimum consumption in both

the non positional and the positional one. Here, we slightly modify the utility function by adding

a component dedicated to the relative consumption concerns. Thus, a low status agent who has a

higher ranking neighbor, will have an incentive to increase his conspicuous consumption. Obviously,

in order to be coherent with our historical context, the price of the positional good is assumed higher

than the price of the non positional good and every agent faces a budget constraint that does not

allow him to freely migrate to the upper class. Moreover, we include in the individual wealth

dynamic a binary random variable that captures the disasters occurrence and can be interpreted as

a liquidity shock. Thus, our model is able to explain trading volume on both agents heterogeneity

in terms of status and liquidity shock.
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By using the Toulouse mills data and in particular specific sales contracts to test our theoretical

predictions, we found very interesting stylized facts. First, it seems that a part of the trading

volume could be explained by the occurrence of the multiple exogenous shocks that have impacted

the companies over the centuries. More precisely, we show that the huge talhas required for repairing

the mills, which indicate the periods where some shareholders could experience a liquidity shock,

significantly explain the trading volume. We further investigate this relationship by focusing on

the different social groups, that is the Religious, the Nobles, the Merchants and the Bourgeois. We

found that the religious institutions was more likely to default during such periods and thereby

to sell their shares. Then, we performed a network analysis in order to highlight the interactions

between the different social groups and in particular, between people who has a status and those

from lower social position. We observe that majority of trades take place between the Nobles and

the Merchants. We finally test the results of Ball (2001) obtained in an experimental setting. They

found that average prices are higher when higher-status sellers face lower-status buyers, and lower

when buyers have higher status than sellers.

This paper is organized as follows. In a first section, we present the historical context in which

the Toulouse mill companies take place. More precisely, we outline the events which have played a

key role in the Castle mills story and the main social groups to which every agent belong. Then,

we describe the data we use in this study to test the volume dynamics. In particular, we highlight

our dividends computation from the companies output and the shareholders contribution to general

expenses. We also depict the different types of sales contracts available at that time and we explain

how they can be used to detect liquidity shocks. In the third section, we propose a model with

heterogeneous agents that capture the main features of this old economy. We justify how different

individual social status lead to preferences skewness and impact the global trading pattern. Then,

we introduce some descriptive statistics and stylized facts about volume and social position for this

old economy before testing our predictions in the next section. Section 6 concludes.

18 Historical Background and data

A complete description of the Bazacle company is already provided in Le Bris et al. (2014).

Le Bris, Goetzmann, Pouget and Wavasseur (2017) gives some insights into its main competitor,

the Narbonnais Castle mills. Sicard (1953) and Goetzmann and Pouget (2010) describe why these

firms can be seen as corporations. Thus, we just bring here additional historical facts about the

Narbonnais Castle company and we depict how the shareholders behave on the market according to

their social category. Our study is broadly based on the plenty of data provided by the Municipal

archives and all the historical information about Mill companies from Sicard’s monograph (1953).

In this section, we present the data we found about the trading volume, the shareholders identity
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and the social class to which they belong, before to introduce the times series we use as a proxy for

assessing the liquidity shocks experienced by the investors.

18.1 The economic and social environment

Let us now describe the main features of the Toulouse society during the 17th and the 18th

century. The content of this section is largely inspired by the works of Godechot (1966), Thoumas-

Schapira (1955) and Wolff (1958).

It seems that the population in Toulouse has decreased between the 15th and the 16th century,

then remained roughly constant until 1750 before to increase by 30% over the next half-century.

Here, the real question is what were the living standards of the citizens at that time and how many

social groups existed. There were four main categories of people represented in Toulouse, the nobles,

the bourgeois, the religious and the lower classes. The examination of the marriage contracts allows

to both assess the size of the different social groups and the wealth of each of them. It appears

that the nobles make up less than 2% of the population in 1749 and in 1785 and receive the third

of the total dowries of the year. About 15% of the population is bourgeois and perceives 45% of

the dowries. In this category, we find the dealers, the merchants, the liberal professions and the

annuitants. The wealth of some of them is similar to a noble’s one. The majority (85%) of marriages

is celebrated by people from lower classes, including masters manufacturers, journeymen, farmers,

commoners and servants. They obtain 20% of the total dowries. Thus, during the 18th century,

the inequalities are great since a small portion of the population (17%) owns the three quarters of

the capital.

Following the golden age of trade in Pastel, that is starting from the second-half of the 16th

century, the economy is declining while a new social class is emerging, the magistrates. At the end

of the 17th century, people from lower classes are willing to belong to the bourgeoisie while its own

members want to become nobles. As we mentioned above, some bourgeois had a life very similar

to the nobles one. Moreover, we observe that the most of religious people actually belong to these

upper classes since they are often capitouls, magistrates or nobles. There was also a predominance

of the religious institutions among the property owners and the capital. This why we found in 1637

for the Narbonnais Castle that almost half of the shareholding is composed by ecclesiastics.

At that time, the main concern of any wealthy people is to look like a noble. The typical way

to mimic the Lord’s life was to proceed in the same manner as during the Medieval period, that

is by buying a smallholding although this activity was not very profitable. There were also other

alternatives that bestowed a bourgeois with titles. The most common one was to buy a position

at the Toulouse Parliament. Indeed, this institution had a crucial role in the procedure to acquire

nobility. During the 17th century, we notice in the bourgeoisie, a decrease of the number of merchants
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to make room for people who owe their rank to judicial or administrative posts. The context was

conductive for the emergence of this new social class since a large part of the ”sword nobility” has

been decimated by the Albigensian crusade some centuries earlier. Moreover, many nobles also

chose to enter the Parliament ranks and thereby increased its size. Thus, at the end of the 17th

century, this community was the most influential one in Toulouse society. Here, a natural question

to ask would be how people acceded to this judicial institution? The Parliament of Toulouse, which

was created in 1442, was composed by chairmen, counsellors and King’s representatives. To become

member, we had to fulfill some conditions. First of all, this requires to apply for an official position

in it. This position can be inherited from a family member or directly bought at an expensive

price that varies between 15,000 and 150,000 livres. Moreover, each applicant must be over 25,

has worked as a lawyer for at least three years and does not have any relative in the Parliament.

Over decades, we observe that the composition of this social group remained quite stable since most

positions were inherited through generations. This why that takes time and money to access to

a such closed community. It appears that only people from the high bourgeoisie had a chance to

become a Parliament member. Therefore at that time, there were few ways to rise in society and

the social ladder was very demanding. We further conclude that a part of the investment decisions

of some people was only motivated by the willingness to rise in society. Such historical fact is of

particular interest to support our model.

18.2 Trading Volume

As we mentioned above, the contract registers available at the municipal archives, are very well

documented and provides the reader with a plenty of valuable data. Thus, most of the transactions

have been recorded and for each of them, we are able to determine the profession or the social

category to which the seller and the buyer belong, if the seller have lost her shares because of

liquidity constraints and the contract’s form used (irrevocable or with redemption rights). We

also find the expiry date of the option in the case of an agreement with redemption rights. In

several cases, the deeds even indicate the path followed by the share until the current transaction.

Therefore, we are able sometimes to rebuild the trade network of buyers-sellers over many years.

Thus, we built a time series for the Bazacle that covers the period 1511-1874 and for the Castle, the

period 1590-1845. We believe that the registers are fairly complete and that only few transactions

are missing, especially during the Old Regime period. The main difficulty to fully follow a share’s

path over the multiple transactions is due to the fact that the shares are often transmitted through

inheritance or a marriage and it is difficult to perfectly document these kind of notarial acts without

the corresponding contracts.
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18.3 The ”Recrobit ’s” form

In the contract registers, we distinguish two main forms of agreements : the binding and irre-

vocable sales55 and the sales with redemption rights56 which was called ”recrobit”. The former is

a standard deed of sale while the latter allows the seller to repurchase her sold shares within a set

time period, usually between 2 and 30 years, or even with perpetual rights.

For the shareholders, the ”recrobit” form provides the opportunity to avoid to be expropriated

and to quickly cash out the value of their shares in order to honour potential debts or to satisfy

liquidity needs. A very stylized fact is that during the periods where the mills have experienced a

disaster, more contracts with redemption rights are documented57. The most likely explanation is

the following, when the plant was partially or totally destroyed, huge fees were required to repair

it and to restore the mills activity. Some shareholders faced liquidity constraints and cannot afford

these extraordinary expenses, so they lost their shares, constrained by the company to auction them

off to new investors. Besides these rare events of disasters, any shareholder could experience shocks

on his private income and use the ”recrobit”’s right to keep a control on his holding the time to

regain solvency.

Thus this contract’s form, frequently observed for Toulouse real estate since the Middle Ages,

is a very valuable tool for detecting periods where a set of shareholders were facing borrowing con-

straints, either due to extraordinary huge talhas or to idiosyncratic shocks on their private income.

Moreover, we can fairly associate these liquidity shocks to the social category the shareholders be-

long. As we mentioned above, we observe that investors usually come from the upper classes such

as Noble or Bourgeois, but also from lower classes such as bakers, tailors and other merchants who

don’t have the same individual wealth and can potentially lose their shares during bad periods.

Thus, even though social inequalities are not really correlated with the portfolio’s composition of

individual investors, we find that the state of nature at which they trade can potentially determine

the social category they belong. Indeed, the poorest shareholders or the most exposed ones should

sell while only the wealthiest or the less exposed ones should be able to buy during a bad state.

Finally and more specifically, the ”recrobit”’s form provides the seller with the right but not

the obligation to buy back its shares during the set time period at the price they were sold (at

the contract date) plus the aggregate talhas the buyer had to spend during the holding period.

Therefore, this can be viewed as a kind of forward start option for which the strike would not be

known at the beginning. Moreover, since the owner can exercise the option at any time prior to

and including its maturity date, it is more fair to compare it to an American option.

55”vente pure et à jamais irrévocable”
56”vente sous faculté de rachat”
57It would be also very interesting to check in the modern markets during the recession periods what kind of

contracts is the more traded (stocks, stock option, derivatives, forward, etc...) and where the Volume comes from
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18.4 Expropriation

As we mentioned above, when a huge talha was required to repair the mills, some shareholders

cannot afford the cost involved. In such a case, the company board gave to the investors a payment

term of 15 days at the risk of being expropriated. More precisely, the official rule included into the

mills charter of 1417 (Mot 1910) states that the shares of a parier can be auctioned when his debt

exceeds 12 livres tournois. We observe these expropriations many times over the mills lifespan, in

particular during periods where the dam was partially destroyed by a river flood. It is important

to emphasize that the liquidity shock also depends on the size of the ownership. Indeed, bigger

shareholders were more exposed to the default risk as they had to spend an amount proportional

to the number of share they owned.

18.5 Rare events and disasters

Every event associated to the exogenous risks incurred by the mills companies are gathered into

the registers of shareholders’ deliberations. For example, when the dam of the plant was damaged

or destroyed, the shareholders hold a general meeting to take stock of the situation and carry out

a review of the available alternatives by computing their associated costs. The governance board

informed all the investors and the decisions were voted. We find in these registers all the issues

the companies encountered about plant’s damages, unfair competition, or disagreement with local

policies. They also document the new investment opportunities, the changes in the governance

structure, the partisons, and the talhas.

19 The model

19.1 Exogenous status

In this simple version of our model, we assume that people cannot act on their own status which

are exogenously determined. We will propose further a more general setting where each agent will

be able to both choose his optimal action to buy or sell an asset and the status that maximizes his

utility.

We consider a non-informational economy with n agents heterogeneous in terms of social posi-

tion. They are gathered into two groups depending on whether or not they have a status. As the

status is positively related to marginal utility, the higher the rank of an agent, the lower his risk

aversion. This last point is in accordance with the idea that preferences are partially determined

by the relative position of an individual with respect to his environment. Every player is assumed

to maximize the following pairing-dependent utility function :
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uij(Wi, ηj) = −e−Ai(Wi+(α[ηj−ηi]
+−β[ηi−ηj ]

+)|ιi|)

where Wi is the wealth of the agent, Ai the risk aversion, α, β > 0 and ηi, ηj = {0, 1} are binary

variables that describe status. More precisely, ηi = 1 describes the case where the agent i has a

status, and ηi = 0 otherwise. Notice here that the utility function can only be optimized on the

basis of individual wealth and trade partner status ηj since people cannot decide their social position

but can elect their preferred neighbor. Clearly here, u is increasing in ηj , that is for a given value

of Wi, uij(Wi, η
′
j) > uij(Wi, ηj) with η

′
j > ηj . In other words, the agent’s utility raises when he

exchanges with someone with higher status, only depends on wealth if the trade takes place within

the same social class and is lowered when his partner comes from a lower class. Here, the coefficients

α (respectively β) can be viewed as psychological gain (respectively cost) generated by the trade

partner status. We chose to split the impact of relative social positions into two components to

avoid a symmetric effect for the different partners. More precisely, we assume α > β, that is the

disutility experienced by some status players exchanging with lower class partners is lower than the

rise in utility experienced in the opposite situation. This specification will be of crucial interest in

our model to elect the best choice of a player among his neighborhood.

The agents can only trade a single asset x in the market whose the real value ṽ is normally

distributed with mean µ and variance σ2. They start with the same endowment of one unit of share

and maximize their wealth Wi according to the alternative to buy, to sale or to don’t trade a fixed

quantity ǫ ∈ [0, 1] of share at once. We can write Wi = ιi(ṽ − p)ǫ + ṽ with ιi = {−1, 0, 1} with p

the price of at which the x is traded. We can easily derive the following proposition.

Proposition : Let xi and xj be two agents with risk aversions Ai and Aj respectively and let

Ξxy be a random variable such that ∀x 6= y, Ξxy = Ax

(
ǫ
2 − 1

)
+Ay

(
1 + ǫ

2

)
. By assuming a tradable

asset x exists on the market and can be divided into ǫ shares, there is an incentive to trade between

the agents i and j if and only if

Ξij <
α−β
ǫσ2 or Ξji <

α−β
ǫσ2

As we mentioned above, we sort people into status groups by considering a 2-partition of the

population set as {1, ..., n} = {i1, ..., in1} ∪ {in1+1, ..., in} = I1 ∪ I2. For instance, I1 would be

composed by members with status and I2 by those who don’t have one. In order to draw the

social connections between the agents, we rely on the sociological definition of a group to state that

there is a stronger intra-group cohesion than an inter-group one. Indeed, most studies on social

connections agree on the fact that people are more likely to know each other within a group than

if they belong to two different groups.

In order to capture these features, we set up an underlying random network. More precisely, we
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generate a random graph with vertices and edges whose the randomness entirely depends on the

group to which each node belongs. Thus, we consider the following model.

pij =







p if xi, xj belong to the same group

p
c otherwise

with c a constant. Notice here for c = 1, we would obtain the Erdös-Rényi standard model, that

is the case of an organized Market where a regulatory body would match players regardless of their

status.

This setting allows to capture another important feature of real networks, the small-world phe-

nomenon. This phenomenon states that, in addition to their primary social circle, individuals also

have some long-range connections with people who have very little in common with them in terms

of preferences. Thus, an agent from lower classes, that is without status, can know someone else

bestowed with status.

Let us now describe how the preferences are generated in this economy. We assume here that

the individual risk aversions are drawn from uniform distributions whose the mean depends on the

status of the agents. Indeed, as we mentioned above, people with higher status are more likely to be

risk seekers than those with a low status. Thus we construct the bounds of our intervals as follows.

0
[

Ā− λ
2

Ā

[

2Ā− λ
2

]

Ā+ λ
2

2Ā

]

2Ā+ λ
2

Here, the support of the uniform distribution is entirely based on two parameters Ā and λ. We

assume that people from lower classes are twice as much risk averse than agents with status and the

size of each interval is the same. In order to avoid negative values and thereby to keep the model in

a tractable way, we further assume λ < 2Ā. Moreover, by making vary the value of λ, we increase

or decrease the length of the intersection of the two intervals. In other terms, λ is controlling the

social diversity between groups.

As we mentioned above, the probability of no trade is given by the quantity

P
({

Ξij ≥
α+β
σ2

}

∩
{

Ξji ≥
α+β
σ2

})

. We also made the assumption that the individual risk aversions

are uniformly distributed on intervals which depend on the group to which each agent belongs.

Thus, we must determine the distribution of Ξij to derive the probability that two players are

willing to exchange. Let a1 = Ā− λ
2 = b1−λ and a2 = 2Ā− λ

2 = b2−λ, as shown in Appendix, Ξij

is a continuous random variable with the density function fΞ(ξ).

We propose here to set up λ = 3
2Ā such that we obtain the following intervals.
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0 Ā
4

[
Ā

5
4Ā

[

3
2Ā

7
4Ā

]
2Ā

11
4 Ā

]

Where a1 = Ā
4 , b1 = 7

4Ā, a2 = 5
4Ā and b2 = 11

4 Ā. This setting implies that a1
b1

< 1
3 but

3
5 > a2

b2
> 1

3 . Moreover by construction, we have58 a1
a2

< 1
2 and symmetrically b1

b2
> 1

2 . More

precisely, we have a1
a2

< 1
3 and b1

b2
< 2

3 . Finally, as we imposed the condition λ
2 < Ā, we have b1

a2
< 2.

We deduce from these results that

0

a1
a2

1
2

b1
b2

1

b1
a2

2

Thus, we can determine the probability of no trade for every fraction of share ǫ.

19.2 Dynamic case

So far, we have presented a static game where players can only act on their consumption of the

non positional good to reach an optimum. This version was very convenient to highlight that the

existence of status directly affects the trading volume. However, as we ex ante set up the partition

of the population, that is we decide who has a status and who does not have one, this setting does

not allow to track the evolution of each social group. Indeed, that would be interesting to look at

closely when higher class members are constrained to leave their social position or when non status

people have an incentive to rise in society. Obviously, in a static context a such analysis cannot be

conducted.

Thus, we propose now a dynamic version of our original model that should be able to capture

all these features. We still consider a non-informational economy with n agents who are assumed

to be heterogeneous in terms of endowment. Agents can now trade both a positional good x and a

non-positional one y. In order to raise in society, they buy the former while the latter is dedicated

to speculative desires. We still start again on an ex ante partitioned population with n1 players who

only have one unit of the positional good and n2 players who have one unit of both the positional

and non-positional good. This time, they can select their optimal consumption for the both goods.

More precisely, by keeping the same notation than before, we assume there are two tradable assets

on the market, a non-positional good x which is still divisible and a positional one y which can only

be exchanged per single unit. The real value of x is still denoted by ṽ and is normally distributed

such that ṽ ∼ N (µv, σ
2
v). Similarly, the real value of y is denoted η̃ which is normally distributed

58We have a1

a2
=

Ā−λ
2

2Ā−λ
2

<
Ā−λ

2

2Ā−λ
= 1

2
and b1

b2
=

Ā+λ
2

2Ā+λ
2

>
Ā+λ

2

2Ā+λ
= 1

2
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with η̃ ∼ N (µη, σ
2
η). Let q be the price of one unit of good y and we assume q >> p. Of course, we

make the same connection between the risk aversion of an agent and his social status than before,

and every player is assumed to maximize the following utility function :

uij(W
i
t , η

i
t, {η

k
t }xk∈N(xi)) = −e

−Ai
t

(

W i
t+(α[ηjt−ηit]

+−β[ηit−ηjt ]
+)|ιit|+γ

∑

xk∈N(xi)

(ηit−1−ηkt−1)

)

Here, we add a new ingredient to the utility function we developed in the static version of our

model. Indeed, as people are now able to directly act on their status, we let them be concerned about

the social position of each of their neighbors. More precisely, when the consumption of the positional

good of an individual is lower than the average consumption of the same good by its neighborhood,

he is negatively impacted by this difference through the coefficient γ. This specification is in line

with the previous work of Immorlica (2017) and Ghiglino (2010). Thus, when someone have mostly

relatives with a higher status, he has an incentive to increase his consumption of the positional

good.

As we mentioned above, n1 players start with one unit of x while n2 players start with both one

unit of x and one unit of y. In fact, the stock of shares an agent has at time t of the positional good

entire determines the group to which he belongs. Notice that in our model and unlike previous

work on status, the social position of an individual will alter his social connections as we generate

random graphs based on group belonging.

The wealth of an agent can be written as follow

W i
t = W i

t−1 + (ṽ − p)ιt +

(

2

t−1∑

k=0

νk − 1

)

νtq + η̃

(
t−1∑

k=0

νk +

(

1− 2

t−1∑

k=0

νk

)

νt

)

− b̃ξ

t−1∑

k=0

ιk

where b̃ is a binary variable that takes 1 with probability P and 0 otherwise. When b̃ = 1, that

describes the case where the agents are experiencing a collective liquidity shock. Such component

is important in our model as it captures the players incentive to sell the positional good. Moreover,

notice that the shock magnitude is proportional to the stock of good x they have, ξ
t−1∑

k=0

ιk. From

a historical perspective, this specification can be interpreted as the negative dividends experienced

by the Toulouse mill shareholders when a major disaster impacted the economy. Indeed, as we

mentioned in section (??), when the plant or the production tool was damaged, each investor had

to contribute to the repairs by paying an amount proportional to his ownership. The quantity
t−1∑

k=0

νk

indicates the group to which an agent belongs and his consumption of good y, denoted νt, can only

take the values 0 or 1. Notice that if an agent has a status at time t − 1, that is
t−1∑

k=0

νk = 1, his
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wealth can be expressed as W i
t = W i

t−1+(ṽ−p)ιt+ νtq+ η̃ (1− νt)− b̃ξ
t−1∑

k=0

ιk. Thus, as νt = {0, 1},

the feasible actions of a such agent are only to sell y or to keep it. Symmetrically, when
t−1∑

k=0

νk = 1,

that is for a lower class member, his wealth becomes W i
t = W i

t−1 + (ṽ − p)ιt − νtq + η̃νt − b̃ξ
t−1∑

k=0

ιk

and he can only buy the positional good. Finally, when W i
t < 0, the player i must leave the game.

For a given price, a lower class member always prefers to exchange with someone from the upper

class rather than with one of his fellows. Conversely, for a given price, an agent with a status always

prefers to exchange with someone from the same rank. Notice that when two persons from the same

social group make a trade, the status component vanishes and the profit takes a standard form.

20 Descriptive statistics

As we mentioned above, we have collected data about volume that covers the Old Regime period

for the both mill companies.

Let us first examine the two time series displayed on the figure (14). We observe that the two

curves roughly evolve within the same range of values although their correlation of 0.03 suggests a

weak relationship between them. We also notice that the volume is more volatile59 for the Bazacle

than for the Castle and the Bazacle shares have been more traded at some dates during the 18th

century. In particular, there is a sharp peak in 1714 of 64 shares. Indeed, the Honor del Bazacle

has experienced the worse period of its lifespan between 1709 and 1720 where the dam was entirely

destroyed by the ice flows on the Garonne river. During this period, the mills activity was shut

down because of the very high cost of repair which cannot be afforded by the shareholders. Finally,

the engineer Abeille purchased the half of the company shares and started the plant reconstruction

in 1714 with the support of some Genevans bankers. As the very high talha recorded in 1709 has

been really paid later when Abeille became the majority shareholder, we chose to postpone this

expense to its effective date in 1714. This explains why we observe a such peak in the graph. Other

abnormal values for the volume have been recorded in 1639, 1731, 1732, 1735, 1753 and 1756 for

the Bazacle. Unfortunately, the registers do not provide enough information to justify all of these

events. We only notice that in 1638 and 1735, the Bazacle mills were damaged. Thus, this could

explain an increase of the trading volume. In 1752, we also document a famine in Toulouse which

has potentially altered the company attractiveness during the following year and could justify the

corresponding peak we find on the graph. For the Castle, we observe two main dates at which

we have a high volume, 1593 and 1638. Although we don’t have specific information about what

59The standard deviation is equal to 5.9 for the Bazacle and 1.5 for the Catsle.

176



happens around 1593, we know that in 1637, a part of the plant has been destroyed. Thus, this

would explain the peak of 1638 with some lag.

The tables (15) and (18) display both the dividends and the trading volume recorded during

the Old Regime period. For the Bazacle, almost every time a huge negative dividend is associated

to a large trading volume, during the same year or with one year lag. In particular, we observe

this phenomenon in 1597-1598, 1638-1639, 1709-1714 and 1735. This result is in line with what

we mentioned above about the disasters events. When the mills expenses are higher than the

production, that is when the partisons do not compensate the talhas, the shareholders must re-

inject money in the firm if they want to keep their shares. Moreover, these individual contributions

are proportional to the ownership. In other terms, if we own 10 shares, we must pay 10 times the

talha. Therefore, either an investor cannot afford this amount and his liquidity shock forces him

to sell or, the subsequent alteration of the firm value will motivate speculative desires for other

agents. The only result we cannot explain here is the huge negative dividend experienced in 1613

which is not associated with any movement in the trading volume. For the Castle, we make similar

comments about the relationship between negative dividends and volume increase for the periods

1637-1638 and 1643-1645. Moreover, we also document the same implication in the case of a positive

dividend, which is less obvious for the Bazacle. Indeed, during the period 1592-1593, we observe

that an important increase of the mills production is followed one year later, by a rise of the number

of traded shares in 1593.

Now let us turn to the tables (17) and (20) that break down the dividends into the talhas and the

partisons. These graphs confirm for the Bazacle and the Castle what we discussed above. Indeed,

we observe here that large trading volumes usually follow great talhas and in particular for the

Castle, it seems that the high number of traded shares of 1593 is associated to the high partisons

of 1592.

Finally, the tables (16) and (19) gather volume and price data. Here, the relationship between

price and volume is not really obvious. Indeed, even if the firm value and its shares price are related

to the disaster occurrence, they are not clearly connected to the number of shares exchanged in the

market.

21 Stylized Facts About Volume and Social Status

21.1 Volume and liquidity shock

As we mentioned above, we expect to find a relationship between volume and liquidity shock.

More precisely in the case of the Toulouse mill companies, when the dam or the plant was destroyed,

a huge talha was required and potentially several shareholders cannot afford such expenses. In
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particular, the religious institutions were the most vulnerable to this kind of shock as they usually

owned large numbers of shares. For instance, if we look at the pie charts displayed on figures (13),

we observe the evolution of the Castle shareholding between 1637 and 1648. As we mentioned

above, during this period, the mills have experienced major destruction in 1637 and in 1643, but

the region has also been impacted by a drought in 1642. Thus, in 10 years, there have been

substantial changes in the social group distribution of the shareholders. More specifically, we notice

the religious institutions that owned almost half of the outstanding shares in 1637, drastically

reduced their ownership mostly in favour to other investors as merchants, bourgeois and religious

members. Indeed, we will see further that the merchants formed the most active group in the

trading of mills shares over the centuries, so it is not surprising to find them here. The bourgeois

were wealthy investors able to provide liquidity to the economy when a bad state occurs. Finally,

many religious members was also nobles and had funds to buy back the shares that their institutions

cannot afford anymore. Thus, we expect to find a positive correlation between the talhas and the

number of transactions involving a religious institution.

First, we propose to run the following regression :

Vt = a+ bPVt + cTalhast + dTalhast−1 + e(Partisonst − Partisons) + ǫt

where PVt describes the present value of all the cash flows that take place starting from date

t. More precisely, this variable can be expressed as PVt =
T∑

i=t

Di

(1+Rf )i−t with Di the dividends

and Rf the risk-free rate. Here, we test if the value of the company, computed on the basis of

the standard present value formula, affects the trading volume. We also split the dividends into

their two sub-components : the talhas and the partisons. More precisely, we include into the

regression the talhas from both date t and date t + 1 in order to check if a latency effect exists

and thereby to explain why a current shock does not impact the current number of shares traded.

We normalized the partisons time series by removing its mean value to focus the analysis on the

abnormal values. Moreover, notice that volume data collected in the archives suffers from missing

values and incomplete information about the exact date at which it takes place. Thus, the recorded

transactions could occur sometimes before the natural disaster but the registers inaccuracy does not

allow us to rebuild the real chronological order of the different events. The regression estimations are

gathered into the tables (8) and (9) where we only focus on the transactions involving ecclesiastics

and merchants respectively.

[INSERT FIGURE HERE]

We observe in the case of religious institutions that only the normalized partisons and the present

value significantly explain the trading volume. Moreover, the estimations of b and e are positive
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and negative respectively. Therefore, when the sum of future expected payoffs increases, the volume

increases as well. Obviously, if the company value rises, that increases the shares price and thereby

the incentive to trade them. In the case of partisons, we observe that they are negatively correlated

to the volume. This effect is a bit more ambiguous since it suggests that the volume decreases when

the quantity of grain redistributed to the shareholders increases. Unfortunately, we will not be able

to provide more insight on this point.

Now, let us refine our regression to capture the effect of dividends on trading volume. For the

Castle mill company, we run the following regression :

V i
t = a+ bND+

t + cND−
t + dV B

t + ePVt + ǫt

where i = {rel, brg, lowercl, nble}, Dt = ND+
t 1Dt>0 − |ND−

t |1Dt<0, that is ND+
t and ND−

t

are the positive and negative dividends respectively. We also include into this regression the volume

recorded for the main competitor of the Castle company : the Bazacle, denoted V B. Again, we use

the present value of the future expected discounted cash flow to control for the firm value.

The estimation results are gathered into the tables (10) and (11). We observe for the religious

that only PVt seems to have a significant impact on the volume over the centuries and is negatively

related to it. Thus, when the value of the firm increases, the volume decreases. We could interpret

this phenomenon by saying that at this time, a large part of the shareholders and in particular the

religious institutions, were very long-term investors as they used the product of their investment

for their own consumption of wheat.

On the merchants side, we observe exactly the opposite. Indeed, it is very interesting to see

that the volume is positively related to PVt for this social class. Thus, when the value of the firm

increases, the merchants buy or sell more. This fact is in accordance with the network analysis we

perform in next section which shows that they were the most active investors and had a central

position in the trades over the companies lifespan. Moreover, some of them displayed several times

a speculative behavior.

[INSERT FIGURE HERE]

21.2 Volume and social group

In figure (21), we display from 1591 to 1788 the proportion of each social group in the total

number of trades for the Castle each year. The shareholders are sorted among four different cat-

egories : the Bourgeois, the Nobles, the Religious and the Lower Classes. The content of each of

these sub-populations is detailed in Appendix and follows the classification introduced in Godechot

(1966) and Thoumas-Schapira (1955).
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Thus, we observe that the market seems to be broadly balanced around two social groups : the

Nobles and the Lower Classes, although the former slightly dominates the trades. More precisely

during the 18th century, the Nobles are more frequently involved in transactions that the other

groups. This is coherent with the fact that this category of shareholders was almost always present

at the board of directors. We also notice that these two social groups were several times the only

ones to trade during the Old Regime period. The Lower Classes members are the second most ac-

tive shareholders in the market, they frequently appear over the centuries and in particular around

1700. Then, we find the Bourgeois and the Religious which are in a minority in this diagram. This

is due first to the fact that these two groups have historically less members than the Lower Classes

and the Nobles. Moreover, the religious institutions were long-term investors that bought mills

shares for feeding their members and did not show any speculative desires.

22 Descriptive results from a network analysis

Let us now introduce a first definition from the standards of the network analysis.

Definition : Let G be a simple, (strongly) connected graph. Let S(x, y) be the set of the shortest

paths between two vertices x, y ∈ V (G) and S(x, u, y) ⊆ S(x, y) the ones that pass through vertex

u ∈ V (G). The betweenness centrality cB(u) of vertex u is defined as

cB(u) =
∑

x,y

|S(x, u, y)|

|S(x, y)|(N − 1)(N − 2)

Here we normalize by (N − 1)(N − 2), the possible pairs of vertices that u can connect.

This quantity is particularly useful to understand here which social category played a role of

marketmaker in this old economy. We observe in the table (6) that the merchants and the Nobles

of the Robe had a crucial position at this time. In particular, the merchants were on more than

50% of all shortest paths in the network. In other terms, for each pair of node in this graph, when

we look at the shortest sequence of intermediaries between them, we have fifty-fifty chance to find

a merchant on the way.

Let us now sort the shareholders into two categories, those who have a status and those who

don’t have one. By considering subperiods of 10 years between 1590 and 1788, we compute for

each of them the ratio of the number of intra group trades over the total number of trades recorded

for this period and we find the results summarized in table (12). Here we observe that there were

mostly more intra group trades than inter group ones during the Old regime period. However, for the

periods 1641-1648, 1661-1668, 1682-1688, 1691-1698 and 1780-1787 this ratio is lower than 0.5 and

the inter group trades dominate. Thus, over the centuries, this suggests that different mechanisms
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are at play in the social interactions. In our model, we distinguish two main forces which have two

opposite effects. The first is based on a pure comparison of the individual preferences to elect the

best partner of each agent and generate on average more incentives to trade with someone with a

different status. The second mostly reflects the psychological gain or lost generated by the relative

status of the paired players. As we highlighted, sometimes the disutility related to some trade can

offset the preferences-based incentives and lead to a trade pattern where the exchanges mostly take

place intragroup.

We also sort all the transactions into three categories, those for which the buyer has a status

and the seller does not have one, those for which we observe the opposite and those for which buyer

and seller have the same social position. Then, we compute the mean of the deflated prices for

each of these categories and we found the following results. It seems that on average the price is

higher for the first category than for the second. The second and the third ones does not display

large differences. This result is in accordance with the experimental work of Ball et. al. (2001) that

observe the same phenomenon in a laboratory market.

23 Conclusion

We examine here the case of an old economy where the social distinctions based on status

were very clear. More precisely, we are able to sort the whole population into four main classes,

the religious, the nobles, the bourgeois and the lower class. The two first ones definitely had a

social privileged position and can be viewed as the status group while the other classes are the

non status group. We are mostly interested to explain the evolution of the trades pattern over the

centuries. Thus, we propose a model which captures two forces with potentially antagonist effects,

the preferences-based incentives and the status-based ones. The model predicts that under specific

conditions, the former force can be offset by the latter one and partially explain the empirical

network analysis we performed for the mills companies in Toulouse. We also introduce a dynamic

version of our model where the agents can experience liquidity shocks. This new feature describes

the impact of the rare disasters which have occurred over the firms lifespan. We also show empiricaly

why we can fairly relate the abnormal trade observed during some periods to these liquidity shocks.

A Trade condition

A.1 Static case

If the trade partner has a strictly higher status than the agent, we have the following expected

utility: E(uij(Wi, ηj)|ηj − ηi = 1) = −e−Ai(ιi(µ−p)ǫ+µ+α|ιi|)+A2

2
(1+ιiǫ)

2σ2). For the opposite case, we

obtain : E(uij(Wi, ηj)|ηj − ηi = −1) = −e−Ai(ιi(µ−p)ǫ+µ−β|ιi|)+A2

2
(1+ιiǫ)

2σ2). Thus, we have
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





E(U(WB)) = −e−A((1+ǫ)µ−pǫ+α1ηj>ηi−β1ηj<ηi)+
A2

2
(1+ǫ)2σ2

E(U(WS)) = −e−A((1−ǫ)µ+pǫ+α1ηj>ηi−β1ηj<ηi)+
A2

2
(1−ǫ)2σ2

E(U(WNT )) = −e−Aµ+A2

2
σ2

Therefore, an agent is willing to buy ǫ share when E(U(WB)) > E(U(WNT )) and E(U(WB)) >

E(U(WS)). Symmetrically he sells this quantity when E(U(WS)) > E(U(WNT )) and E(U(WS)) >

E(U(WB)). To sum up

he buys iff p < µ−A
(
1 + ǫ

2

)
σ2 +

α1ηj>ηi−β1ηj<ηi

ǫ

he sells iff p > µ+A
(
ǫ
2 − 1

)
σ2 −

α1ηj>ηi−β1ηj<ηi

ǫ

Finally, let Ξxy = Ax(
ǫ
2 − 1) +Ay(1 +

ǫ
2), we have

i sells to j iff Ξij <
α−β
ǫσ2

i buys from j iff Ξji <
α−β
ǫσ2

A.2 Distribution of Ξ

Let Aj and Ai be two independent uniform variables drawn from the intervals [a, b] and [a′, b′]

respectively. We know that the density of Ξ is equal to the convolution product of the Y
(1)
i and

Y
(2)
j densities where Y

(1)
j = Aj(

ǫ
2 − 1) and Y

(2)
i = Ai(1 +

ǫ
2).

fΞ(ξ) = (f
Y

(1)
j

∗ f
Y

(2)
i

)(ξ)

=

∫ ∞

−∞
f
Y

(1)
j

(ξ − u)f
Y

(2)
i

(u)du

=

∫ ∞

−∞
U[b( ǫ

2
−1),a( ǫ

2
−1)](ξ − u)U[a′(1+ ǫ

2
),b′(1+ ǫ

2
)](u)du

=

∫ ∞

−∞
U[a(1− ǫ

2
)+ξ,b(1− ǫ

2
)+ξ](u)U[a′(1+ ǫ

2
),b′(1+ ǫ

2
)](u)du (27)

In the case [a, b] = [a1, b1] =
[
Ā
4 ,

7
4Ā
]

and [a′, b′] = [a2, b2] =
[
5
4Ā,

11
4 Ā
]
, we have
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0 a1(1−
ǫ
2)

[

b1(1−
ǫ
2)

]

a2(1 +
ǫ
2)

[

b2(1 +
ǫ
2)

]

Thus by denoting
⋂

the intersection
[
a1(1−

ǫ
2) + ξ, b1(1−

ǫ
2) + ξ

]
∩
[
a2(1 +

ǫ
2), b2(1 +

ǫ
2)
]
, we

have

• a2(1 +
ǫ
2)− b1(1−

ǫ
2) < ξ < a2(1 +

ǫ
2)− a1(1−

ǫ
2) ⇒

⋂
=
[
a2(1 +

ǫ
2), b1(1−

ǫ
2) + ξ

]

• a2(1 +
ǫ
2)− a1(1−

ǫ
2) < ξ < b2(1 +

ǫ
2)− b1(1−

ǫ
2) ⇒

⋂
=
[
a1(1−

ǫ
2) + ξ, b1(1−

ǫ
2) + ξ

]

• b2(1 +
ǫ
2)− b1(1−

ǫ
2) < ξ < b2(1 +

ǫ
2)− a1(1−

ǫ
2) ⇒

⋂
=
[
a1(1−

ǫ
2) + ξ, b2(1 +

ǫ
2)
]

In the case [a′, b′] = [a1, b1] =
[
Ā
4 ,

7
4Ā
]

and [a, b] = [a2, b2] =
[
5
4Ā,

11
4 Ā
]
, we have

0 a1(1 +
ǫ
2)

[

a2(1−
ǫ
2)

[

b1(1 +
ǫ
2)

]

b2(1−
ǫ
2)

]

Thus by denoting
⋂

the intersection
[
a2(1−

ǫ
2) + ξ, b2(1−

ǫ
2) + ξ

]
∩
[
a1(1 +

ǫ
2), b1(1 +

ǫ
2)
]
, we

have

• a1(1 +
ǫ
2)− b2(1−

ǫ
2) < ξ < a1(1 +

ǫ
2)− a2(1−

ǫ
2) ⇒

⋂
=
[
a1(1 +

ǫ
2), b2(1−

ǫ
2) + ξ

]

• a1(1 +
ǫ
2)− a2(1−

ǫ
2) < ξ < b1(1 +

ǫ
2)− b2(1−

ǫ
2) ⇒

⋂
=
[
a2(1−

ǫ
2) + ξ, b2(1−

ǫ
2) + ξ

]

• b1(1 +
ǫ
2)− b2(1−

ǫ
2) < ξ < b1(1 +

ǫ
2)− a2(1−

ǫ
2) ⇒

⋂
=
[
a2(1−

ǫ
2) + ξ, b1(1 +

ǫ
2)
]

Therefore, we have the following density function :

fΞ(ξ) =
1

λ2(1− ǫ
2)(1 +

ǫ
2)

∫ b1(1− ǫ
2
)+ξ

a2(1+
ǫ
2
)

1[a2(1+ ǫ
2
)−b1(1− ǫ

2
),a2(1+

ǫ
2
)−a1(1− ǫ

2
)](ξ)du

+
1

λ2(1− ǫ
2)(1 +

ǫ
2)

∫ b1(1− ǫ
2
)+ξ

a1(1− ǫ
2
)+ξ

1[a2(1+ ǫ
2
)−a1(1− ǫ

2
),b2(1+

ǫ
2
)−b1(1− ǫ

2
)](ξ)du

+
1

λ2(1− ǫ
2)(1 +

ǫ
2)

∫ b2(1+
ǫ
2
)

a1(1− ǫ
2
)+ξ

1b2(1+
ǫ
2
)−b1(1− ǫ

2
),b2(1+

ǫ
2
)−a1(1− ǫ

2
)(ξ)du

B Graph analysis
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Figure 9: The trades network for the Castle company during the period 1590-1788. The size of each
node depends on its degree
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Table 6: Betweeness measure

Inst. Religieux Marchand NA Nobl. De Robe Bourgeois Divers

0.0 0.5144 0.0122 0.3215 0.0 0.0

Cons. Parl. Cons. Secret. Noblesse Seigneur Admn. Sup Religieux ind.

0.0019 0.0004 0.0 0.0 0.0042 0.0

Escuyer Admn. Medecine Capitoul Militaire Université

0.0052 0.0072 0.0086 0.02941 0 0.0

Figure 10: A directed network of the trades for the Castle company during the period 1590-1788.
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Divers

Nobl. De Robe

Marchand

Bourgeois

Universite

NBR Inf

NBR Sup

Admn.

Inst. Religieux

Medecine

March. Sup

Noble

Admn. Sup

Religieux Ind.

Militaire

President

Conseiller au Senechal

Elu

1er pres.

Petits metiers

ruraux

Admn. Inf

Figure 11: A visualization of the trades sorted by group for the Castle company. The groups are
the religious, the nobles, the merchants and the lower class
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Figure 12: The ratio between the number of intra group trades over the total number of them
during subperiod of 10 years for the Castle mills company

Table 7: Composition of each social class

Nobles Bourgeois Lower class Religious

Nobl. of the Robe Sup Bourgeois Marchand Religieux Ind.
Nobl. of the Robe March. Sup Medecine Inst. Religieux
Elu Universite
President Admn. Inf
Noble NBR Inf
1er pres. Admn.
Admn. Sup Petits metiers
Militaire ruraux
Conseiller au Senechal
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Table 8: Regression Religious I

Dependent variable :

V olrel

Talhast 1.830e-07
(0.85102)

Talhast−1 5.759e-06
(0.549792)

Partisonst − Partisons 4.064e-05∗∗

(0.022670)

PVt −4.103e-06∗∗∗

(0.003289)

Constant 0.060∗∗∗

(0.017)

Observations 198
R2 0.066
Adjusted R2 0.047
Residual Std. Error 0.136 (df = 193)
F Statistic 3.435∗∗∗ (df = 4; 193)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 9: Regression Merchant I

Dependent variable:

V olmar

Talhast −2.892e-06
(0.91549)

Talhast−1 1.939e-05
(0.46894)

Partisonst − Partisons −1.562e-04∗∗∗

(0.00173)

PVt 1.071e-05∗∗∗

(0.00573)

Constant 0.269∗∗∗

(0.048)

Observations 198
R2 0.079
Adjusted R2 0.060
Residual Std. Error 0.378 (df = 193)
F Statistic 4.161∗∗∗ (df = 4; 193)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 10: Regression Religious II

Dependent variable:

V olrel

D+
t 2.829e-05

(0.1183)

D−
t 5.589e-06

(0.5782)

V B
t −3.535e-04

(0.8316)

PVt −3.388e-06∗∗

(0.0187)

Constant 0.044∗∗

(0.020)

Observations 198
R2 0.051
Adjusted R2 0.031
Residual Std. Error 0.137 (df = 193)
F Statistic 2.580∗∗ (df = 4; 193)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11: Regression Merchant II

Dependent variable:

V olmar

D+
t −1.020e-04∗∗

(0.0445)

D−
t 5.646e-06

(0.8407)

V B
t −3.132e-03

(0.5005)

PVt 9.242e-06∗∗

(0.0217)

Constant 0.360∗∗∗

(0.056)

Observations 198
R2 0.053
Adjusted R2 0.033
Residual Std. Error 0.384 (df = 193)
F Statistic 2.693∗∗ (df = 4; 193)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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C Comments about the Mills collection

• We observe into the register of partisons 1636-1659, ph.1756 that when the wheat was redis-

tributed to the shareholders, if some of them were missing, their quantity was stocked into

a specific storage place under the authority of the treasurer to give them time to retrieve it

later. Moreover, they had a delay of 3 days to pick up the wheat (cf. ph. 4234 partisons 1761)

• We observe that an official member of the Bourse de Toulouse Daupiac became a shareholder

in 1763 ph.654.

D The estimations

We also perform the following regressions :

V i
t = β0 + β1ND+ + β2ND− + β3V

−i
t + PVt + ǫt

V i
t = β0 + β1dt + β2D

−
t + PVt + ǫt

where V −i is the volume recorded for the main competitor, PVt the present value of the future

dividends, dt the dividends for which the partisons were low and D−
t the negative dividends cor-

responding to the very huge talhas episodes. The estimation results are gathered in the following

tables.
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Figure 13: Shareholding evolution between 1637 and 1648 for the Castle company
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Bazacle Castle General

Year Description Year Description Year Description

1597 Dam damaged 1610 Dam damaged 1528 Languedoc famine
1613 Dam damaged 1611 Dam damaged 1621 Montauban assault
1637 Mills destroyed 1613 Dam damaged 1636 Both mills inoperable
1638 Dam damaged 1637 Dam destroyed 1641 Dryness

1709-1720 Mills destroyed 1642 Dam damaged 1690 Artisans Riot
1717 Lackeys Riot 1670 Dam damaged 1691 Tax Revolt
1724 Lackeys Riot 1673 Dam damaged 1692 Famine
1728 Mills destroyed 1743 Dam Damaged 1693 Famine
1736 Dam destroyed 1745 Dam destroyed 1694 Grain Riots
1802 Mills destroyed 1746 Dam destroyed 1709 Languedoc Famine
1814 Fire 1795 Dam damaged 1710 Languedoc Famine

1884 Fire 1713 Grain Riot
1910 Mills destruction 1721 Students Riot

1737 Students Riot
1739 Several Riots
1740 Students Riot
1742 Grain Riot
1747 Riots and Seizure
1750 Students Riot
1751 Rise of prices
1758 Prisoners Riot
1766 Trade Constraints
1771 Prisoners Riot
1773 Grain Riot
1776 Grain Riot
1778 Grain Riot
1782 Grain Riot
1787 Famine
1788 Famine
1789 Grain Riot
1799 Toulouse battle
1814 Toulouse battle
1816 Bad Weather
1817 Famine

Table 12: : The table reports the different rare events recorded for each Mills and the disasters
impacting the whole economy (Schneider 1989, Sicard 1953, Mot 1910)
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Figure 14: Volume
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Figure 15: BAZACLE : Volume and Dividends
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Figure 16: BAZACLE : Volume and Price
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Figure 17: BAZACLE : Volume, Talhas and Partisons
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Figure 18: CASTLE : Volume and Dividends
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Figure 19: CASTLE : Volume and Price
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Figure 20: CASTLE : Volume, Talhas and Partisons
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Figure 21: CASTLE : Relative volume per social groups
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Figure 22: CASTLE : Relative volume per social groups of buyers in the case of recrobit contracts

201



Figure 23: CASTLE : Relative volume per social groups of sellers in the case of recrobit contracts
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Figure 24: CASTLE : Relative volume per social groups of buyers in the case of expropriation contracts
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Figure 25: CASTLE : Relative volume per social groups of sellers in the case of expropriation contracts
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Table 13: . δBt (or δt) is a dummy variable measuring if a rare event has occured for the Castle (or
in general) at time t and {θit}i=1,..,4 are different temperature measures.

Dependent variable:

BazTt

(1) (2)

δBt−1 84.921
(107.872)

δt 421.312∗∗∗

(107.872)

θ1t 11.369
(39.170)

θ4t −41.711
(49.789)

Constant 399.298∗∗∗ 487.640∗∗∗

(46.944) (62.613)

Observations 198 198
R2 0.081 0.004
Adjusted R2 0.071 −0.006
Residual Std. Error (df = 195) 566.166 589.309
F Statistic (df = 2; 195) 8.579∗∗∗ 0.410

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 14:

Dependent variable:

BazPt

θ1t 30.466
(80.594)

θ2t 209.745
(154.596)

θ3t −216.367
(266.608)

θ4t 102.166
(64.572)

δBt−1 −33.578
(138.967)

Constant −603.247
(2,459.190)

Observations 198
R2 0.023
Adjusted R2 −0.002
Residual Std. Error 730.211 (df = 192)
F Statistic 0.910 (df = 5; 192)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 15:

Dependent variable:

V B
t ∗1000 V B

t

(1) (2)

BazTt 1.158
(0.801)

BazPt 0.019
(1.001)

BazTt−1 −0.277
(0.776)

log(CoSil) −1,993.261
(1,979.875)

Pb −0.045
(0.079)

δt −2,114.028∗

(1,193.273)

δBt−1 2,071.922∗

(1,185.079)

PB
t+1−PB

t

PB
t

−0.436

(0.454)

Constant 33,524.120 3.446∗∗∗

(28,401.300) (0.658)

Observations 198 198
R2 0.057 0.005
Adjusted R2 0.022 −0.0004
Residual Std. Error 5,860.624 (df = 190) 5.928 (df = 196)
F Statistic 1.638 (df = 7; 190) 0.922 (df = 1; 196)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 16:

Dependent variable:

ShturnoverBt ∗10̂ 6 ShturnoverBt

(1) (2)

BazTt 9.901
(6.403)

BazPt 0.124
(8.001)

BazTt−1 −0.852
(6.204)

log(CoSil) −14,753.360
(15,831.400)

PB
t −0.323

(0.632)

δt −18,496.690∗

(9,541.603)

δBt−1 16,066.940∗

(9,476.077)

PB
t+1−PB

t

PB
t

−0.004

(0.004)

Constant 250,911.200 0.030∗∗∗

(227,101.300) (0.005)

Observations 198 198
R2 0.055 0.005
Adjusted R2 0.020 −0.0001
Residual Std. Error 46,862.470 (df = 190) 0.047 (df = 196)
F Statistic 1.576 (df = 7; 190) 0.978 (df = 1; 196)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 17:

Dependent variable:

CasT

(1) (2)

δCt−1 250.998
(233.921)

δCt 42.022
(231.046)

θ1t −94.797
(79.692)

θ4t −67.939
(101.299)

Constant 875.048∗∗∗ 798.504∗∗∗

(98.986) (127.388)

Observations 198 198
R2 0.006 0.009
Adjusted R2 −0.004 −0.001
Residual Std. Error (df = 195) 1,200.527 1,198.973
F Statistic (df = 2; 195) 0.630 0.885

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 18:

Dependent variable:

CasPt

θ1t 14.655
(59.065)

θ2t −57.135
(113.592)

θ3t −135.049
(195.493)

θ4t −171.153∗∗∗

(47.438)

δCt−1 6.423
(104.934)

Constant 3,310.738∗

(1,807.935)

Observations 198
R2 0.087
Adjusted R2 0.063
Residual Std. Error 535.466 (df = 192)
F Statistic 3.644∗∗∗ (df = 5; 192)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 19:

Dependent variable:

V C
t ∗1000 V C

t

CasTt 0.153∗

(0.088)

CasPt −0.321
(0.211)

CasTt−1 0.568∗∗∗

(0.087)

CoSil 0.000∗∗∗

(0.000)

PC
t 0.000

(0.013)

δCt −19.260
(236.057)

δCt−1 −229.948
(238.833)

PC
t+1−PC

t

PC
t

0.689∗∗

(0.315)

Constant 125.166 0.823∗∗

(329.651) (0.347)

Observations 198 198
R2 0.354 0.024
Adjusted R2 0.330 0.019
Residual Std. Error 1,219.334 (df = 190) 1.476 (df = 196)
F Statistic 14.882∗∗∗ (df = 7; 190) 4.781∗∗ (df = 1; 196)

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Table 20:

Dependent variable:

ShturnoverCt ∗10̂ 6 ShturnoverCt

(1) (2)

CasTt 1.629
(1.016)

CasPt −4.980∗∗

(2.439)

CasTt−1 5.994∗∗∗

(1.011)

CoSil 0.002∗∗∗

(0.001)

PC
t 0.167

(0.146)

δCt 1,273.015
(2,729.196)

δCt−1 −723.597
(2,761.292)

PC
t+1−PC

t

PC
t

0.008∗∗

(0.003)

Constant 4,862.613 0.011∗∗∗

(3,811.290) (0.004)

Observations 198 198
R2 0.281 0.027
Adjusted R2 0.254 0.022
Residual Std. Error 14,097.430 (df = 190) 0.016 (df = 196)
F Statistic 10.587∗∗∗ (df = 7; 190) 5.480∗∗ (df = 1; 196)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 21: . Poisson regression model BAZACLE

Dependent variable:

V B
t

Const −0.014∗∗∗

(0.0003)

Constant 6.258∗∗∗

(0.011)

Observations 198
Log Likelihood −42,923.550
Akaike Inf. Crit. 85,851.090

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 22: . Poisson regression model CASTLE

Dependent variable:

V C
t

Const 0.011∗∗∗

(0.0002)

Constant 4.550∗∗∗

(0.013)

Observations 198
Log Likelihood −8,792.050
Akaike Inf. Crit. 17,588.100

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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1610 1614 1637 1638 1642 1643 1644 1647 1670

Medecine Marchand Bourgeois Inst. Religieux Marchand 1er pres. Petits metier Marchand Nobl. De Robe

President Marchand NBR Sup Divers Marchand Nobl. De Robe

Nobl. De Robe Marchand Nobl. De Robe Divers Marchand Marchand

Marchand Noble Nobl. De Robe Divers Inst. Religieux Nobl. De Robe

Religieux Ind. Noble Bourgeois Divers Marchand Divers

Universite Marchand NBR Sup Inst. Religieux Marchand Nobl. De Robe

Medecine Marchand Nobl. De Robe

Elu Inst. Religieux

Divers Marchand

Inst. Religieux Marchand

Nobl. De Robe Bourgeois

NBR Sup Nobl. De Robe

Medecine Inst. Religieux

Nobl. De Robe ruraux

Bourgeois Nobl. De Robe

Medecine

Nobl. De Robe

Marchand

Marchand

Inst. Religieux

Nobl. De Robe

Elu

1672 1700 1709 1710 1711 1712 1714 1771 1772

March. Sup Medecine Nobl. De Robe Marchand Marchand Noble Noble

NBR Sup NBR Sup Marchand Marchand Noble

Medecine NBR Sup

Noble

Medecine

Table 23: : The table reports the professions of the various sellers during the most important sales recorded for the Castle
Mills (Archives départementales)
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1593 1638 1644

Name Profession Name Profession Name Profession

Vedelle Docteur Régent Salles de Latanerie Chanoine

Dutel Bourgeois Pelissier Marchand de Latanerie Chanoine

Nolet Pelissier Marchand Bajordan Tailleur

St étienne Figueres Mâıtre batteur d’or de Lafour Chanoine

Barthélémy Religieux Figueres Mâıtre batteur d’or de Tousin Chanoine

Fargues Miquel Marchand De Lausluisier Docteur

Dalbanir Docteur régent Miquel Marchand Fanier Religieux

Canalié Miquel Marchand Grangeron Apothicaire

Precheur Miquel Marchand de Bunard Docteur et advocat

Galien Docteur Olivier Trésorier général de Bunard Docteur et advocat

Delpech Bourgeois

de Druille Conseiller du roi

Aliguier Marchand du port Garaud

Aliguier Marchand du port Garaud

Barthes Marchand du port Garaud

Barthes Marchand du port Garaud

Doudal Marchand du port Garaud

Doudal Marchand du port Garaud

Doudal Marchand du port Garaud

Declergeault Bourgeois

Denemy Marchand du port Garaud

Durell et tanlanra Marchand

Table 24: : The table reports the names and professions of the various sellers during the three most important sales recorded
for the Castle Mills (Archives départementales)
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Conclusion Générale
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Au cours de ce mémoire de thèse, deux thèmes majeurs ont été abordés : l’évaluation des actifs

financiers et le volume des échanges sur les marchés.

Le premier à fait l’objet d’une étude empirique visant à démontrer que des modèles simples

basés sur la consommation des agents peuvent expliquer les niveaux de prix observés. Pour ce faire,

nous nous sommes rapportés au cas historique de deux compagnies multiséculaires : les moulins de

Toulouse, dont les documents officiels ont été conservés aux archives municipales et départementales

de la ville. Ainsi, nous avons pu constituer une base de données unique sur ces structures et le marché

dans lequel elles évoluent. Unique avant tout par sa dimension, ce support empirique couvre près

de cinq siècles d’activité et se révèle ainsi être l’un des plus long actuellement disponible en Europe.

Mais aussi unique par sa richesse comme il regroupe des informations précises et individuelles sur

les actionnaires.

Dans la tradition des modèles canoniques d’évaluation des actifs, nous nous sommes intéressés

à l’équation fondamentale sur laquelle repose la théorie, encore appelée équation d’Euler, présentée

en introduction de ce mémoire. Au sein de cette équation, intervient un outil macroéconomique de

première importance, le facteur stochastique d’actualisation, dont le rôle est de détecter les mauvais

états de la nature pour les intégrer dans le processus de détermination du prix. Ce facteur fait

depuis longtemps couler beaucoup d’encre puisque sa structure est souvent désignée comme étant à

l’origine de la mauvaise performance prédictive des modèles actuels. Afin de surmonter les différents

échecs théoriques avérés, toute une génération de chercheur n’a cessé de sophistiquer son expression

et relativement peu d’études ont envisagé que c’est l’estimation empirique même qui pouvait être en

cause. Nous montrons ici que dans le cas d’une économie simplifiée où les variables d’intérêt tel que

la consommation sont facilement mesurables, de simples structures avec fonction d’utilité séparable

dans le temps, permettent de justifier les niveaux de prix observés. Plus précisément, nous trouvons

que la volatilité de la consommation est suffisamment élevée pour qu’un modèle simple ne soit pas

rejeté avec des niveaux d’aversion pour le risque sensiblement bas. De plus, nous identifions une

corrélation significative entre le facteur stochastique d’actualisation, dont la structure n’a pas été

spécifiée au préalable, et le taux de croissance de la consommation. Un tel résultat soutient ainsi

l’intuition fondamentale de la théorie.

L’une des conséquences directes de cette étude porte sur le coût du capital calculé pour les

entreprises. En effet, le taux de rentabilité espéré par les actionnaires étant calculé par le modèle

d’évaluation des actifs, la célèbre énigme de l’equity premium rendait jusqu’alors son estimation peu

fiable. Notre étude réhabilite ici ce modèle en montrant qu’il fonctionne sur une économie simplifiée

dont les caractéristiques principales restent en accord avec les fondements de nos marchés modernes.

Le second thème abordé dans ce mémoire de thèse fait l’objet d’un traitement théorique d’une

part et d’un traitement empirique d’autre part. La première approche vise a proposer une structure

adaptée à la description des interactions sur les marchés financiers. Plus précisément, nous avons
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essayé de justifier le niveau de volume observé en considérant une décomposition de la population

des agents selon différents groupes sociaux. Il est entre autre supposé que ces groupes se constituent

sur la simple base des accointances de leurs membres. Deux personnes auront ainsi plus de chance

de se connâıtre s’ils sont issus du même sous-ensemble que s’ils étaient issus de deux agrégats dis-

tincts. Nous avons également introduit le risque de choc de liquidité endossé par chaque groupement

d’individus présent dans l’économie comme facteur des échanges.

L’étude des interactions sur les marchés de gré à gré suscite un intérêt croissant d’autant que

l’on sait aujourd’hui que ces interactions forment souvent des systèmes complexes pour lesquels

des comportements locaux, même minimes, peuvent engendrer de larges anomalies au niveau

macroéconomique. Il convient donc de s’intéresser à la dimension incitative qui détermine l’organisation

des échanges entre les agents. Il est par ailleurs important d’indiquer que la compréhension des in-

teractions entre les acteurs d’un marché, lorsque l’on mâıtrise leur caractéristiques propres, permet

d’apporter des éléments de réponse quant à la formation des prix.

En utilisant la théorie des graphes comme support sous-jacent aux connexions sociales entre

les individus, nous avons montré qu’il existe une relation non linéaire entre le risque d’un choc de

liquidité et les incitations à l’échange. Nous observons également que dans le cas de groupes de

même taille, lorsque leur nombre augmente, les incitations a échanger décroissent et ainsi le volume

potentiellement décrôıt lui aussi. De manière similaire, pour un nombre donné de groupes, lorsqu’on

accentue leur différences en matière de taille, on augmente sensiblement les incitations à échanger

et par conséquent le volume espéré des échanges. Enfin, notre modèle permet aussi de caractériser

toute configuration de réseau associé à un marché en fonction de sa capacité à maximiser les inter-

actions entre les agents.

Ces résultats sont donc d’un intérêt tout particulier dans l’étude des risques de liquidité et des

phénomènes de contagion qu’ils supposent au sein d’un marché globalisé. Par ailleurs, ils possèdent

également de fortes implications dans le domaine de la composition de l’actionnariat des entreprises,

puisqu’ils définissent selon les caractéristiques de chaque actionnaire et le nombre de groupes so-

ciaux qu’ils constituent, qu’elle sera le niveau espéré des échanges. Ainsi, ils éclairent la relation

ambivalente entre connexion sociale et préférences puisque des agents issus d’un même groupe ont

plus de chance de se connâıtre, donc d’avoir l’opportunité d’échanger, alors que leurs préférences

sont elles, bien plus proches et donc minimisent les incitations à échanger.

Le volume des échanges a également été traité dans ce mémoire au travers d’une étude empirique

basée sur les données du moulin du Château Narbonnais. Cette étude est avant tout motivée par

le contexte historique dans lequel la compagnie prend place puisque celui-ci a le précieux avantage

d’être caractérisé par une division sociale nette de la population en termes de statut. Il y avait en

effet d’un côté les nobles et les religieux qui bénéficiaient d’une place de choix dans la hiérarchie so-

ciale puis de l’autre, les bourgeois et les classes populaires dont la position était inférieure. L’histoire
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des moulins a par ailleurs été marquée par des épisodes de désastres purement exogènes qui ont

impacté ces derniers constituant souvent autant de chocs de liquidité pour les actionnaires. Une

telle particularité nous permet ainsi d’évaluer empiriquement le rôle de ces chocs dans l’organisation

des échanges au cours de ces périodes. Enfin nous mettons aussi en place un modèle où les agents

peuvent investir dans un bien positionnel leur conférant un statut, et un bien non positionnel pour

une consommation standard. Une telle structure nous permet de montrer comment le désir de

s’élever dans la hiérarchie sociale peut affecter le schéma des échanges basé à l’origine sur les sim-

ples connexions sociales et les préférences individuelles des individus.

Nous montrons ainsi que la survenue de chocs de liquidité permet d’expliquer une part sub-

stantielle du volume présent dans l’économie des moulins. Une étude minutieuse et systématique

des échanges lors des périodes de désastre révèle que la majorité des transactions prend place entre

les groupes sociaux plutôt qu’au sein de ces derniers.
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E Asset Pricing in Old Regime France

In this study, we examine the Toulouse mill companies, the oldest shareholding corporations

known in Europe, to test asset pricing models. We collected data on dividends and share prices

for the Honor del Bazacle and the Narbonnais Castle from 1591 to 1788. The total milled grain

quantity in Toulouse was also used to build a proxy for local consumption. In accordance with

the consumption-based asset pricing theory, we describe the prices by using a stochastic discount

factor (SDF) in the Euler equation. More specifically, we decompose the SDF into an observable

component and an unobservable one (as in Julliard et al. 2016), and we perform a relative entropy

analysis to estimate the pricing kernel of the economy parametrically and non-parametrically. We

observe that the model-free SDF correlates with the model-implied one and with consumption. A

CRRA-based model with power utility is not rejected by the data for very low risk aversion levels,

and some classic issues in finance, such as the equity premium puzzle, do not arise thanks to high

consumption growth volatility.

Dans cette étude, nous proposons d’utiliser le cas historique des Moulins de Toulouse - une des

plus vieilles sociétés par actions connue à ce jour en Europe - afin de tester les modèles fondamentaux

de l’évaluation des actifs. Ainsi, nous avons collecté des données sur les dividendes et sur le prix

des parts détenues à la fois à l’Honor del Bazacle et aux Moulins du Château Narbonnais entre

1591 et 1788. La quantité totale de grains moulus à Toulouse nous permet de construire un proxy

pour la consommation locale. En accord avec la théorie de l’évaluation des actifs basée sur la

consommation, nous décrivons les prix en utilisant un facteur stochastique d’évaluation (FSE) qui

intervient dans l’équation d’Euler. Plus spécifiquement, nous décomposons le FSE en deux éléments

: l’un observable et l’autre non (selon la méthodologie proposée par Julliard et. al. 2016), et nous

réalisons une analyse basée sur la minimisation de l’entropie relative pour estimer le pricing kernel

de l’économie de manière paramétrique et non paramétrique. Nous constatons que le modèle pour

lequel aucune structure n’est spécifiée à priori sur le FSE, est liée à la consommation. Par ailleurs,

un modèle simple basé sur une fonction d’utilité puissance n’est pas rejeté par les données et ce,

même pour des niveaux d’aversion pour le risque bas. Enfin, certaines incohérences bien connues

de la théorie financière telles que l’equity premium puzzle, n’apparaissent pas ici du fait de la forte

volatilité de la consommation.
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F Trading Volume And Networks

In this paper, we study the relationship between Market composition and trading volume. More

precisely, we rely the existence of social groups to trading activity. In our setting, the preferences

of an agent depend on his environment and an exogenous shock can be collectively experienced

by the group members. We also introduce the concept of desirability channels as a preliminary

outcome that leads to the volume determination. We are able to generate closed formula for both

of these expected quantities and we measure how the social architecture affects them. We also rely

the topology of the underlying network to the occurrence of exogenous shocks. Thus, we find that

for equally sized groups, if their number increases, the incentives to trade and thereby the volume

decrease. However, for a given number of groups, when they become more dissimilar in terms of

size, new desirability channels are created and the volume potentially increases. We also show that

a nonlinear relationship exists between the incentives to trade and the shock probability. Finally,

given the agents preferences, we propose a characterization of any network regarding to its capacity

to maximize the trading activity.

Dans cette étude, nous nous intéressons au lien entre la structure de marché en termes de

groupes sociaux et le volume des échanges. Plus précisément, nous tentons de relier l’existence de

sous-agrégats dans la population à l’activité de marché. Dans notre modèle, les préférences d’un

agent dépendent de son environnement et un choc exogène peut impacter de manière collective les

membres de chaque groupe. Nous introduisons également le concept de canal de désirabilité comme

condition nécessaire menant à la détermination du volume. Nous sommes ainsi capables d’exprimer

à la fois le volume espéré mais aussi le nombre espéré de canaux de désirabilité sous forme analytique

pour plusieurs cas particuliers. Ces premiers résultats nous permettent alors de mesurer comment

la structure du réseau de marché va affecter ces quantités. En termes plus mathématiques, on

parlera de topologie, laquelle pourra être modifiée par la survenue d’un choc sur un ou plusieurs

groupes. Ainsi, nous trouvons que, pour des groupes de tailles identiques, si leur nombre augmente,

les incitations à échanger et par conséquent le volume, décroissent. De manière symétrique, pour

un nombre de groupes donné, lorsque ces derniers se différencient d’avantage par leur taille, de

nouveaux canaux de désirabilité apparaissent et le volume peut augmenter. Par ailleurs, nous

montrons également qu’il existe une relation non linéaire entre les incitations à échanger et la

probabilité d’observer un choc. Enfin, le cadre théorique que nous proposons nous permet également

de caractériser n’importe quel réseau selon sa capacité à maximiser l’activité de marché.
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G Social Status, Liquidity Shocks And Trading Volume

This paper investigates the relationship between trading volume and social status concern.

Following the Hirsch (1977) setting, we propose a model where heterogeneous agents can trade two

types of goods, a positional and a non positional one. The former can be owned in binary quantities

only, that is an agent holds one unit of good or nothing and the latter can be freely accumulated

over time. We use a pairing-dependent utility function that both captures the absolute utility of the

agent and determines his best partner through a status comparison. The economy is splitted into

two social groups, those who have a status and those who don’t have one. We randomly generate

the social connections between the agents according to their group belonging and we assume that

every individual can be impacted by a liquidity shock. We depict how the trades take place over

time regarding to the groups and justify in which case the inter group trades dominate. Finally, we

test our predictions on a very suitable historical support, the Toulouse mills companies.

Nous étudions ici le lien entre niveau d’échange sur un marché et quête de statuts des investis-

seurs. Suivant les travaux de Hirsch (1977), nous proposons ici un modèle avec agents hétérogènes

pouvant échanger deux types de biens, l’un dit positionnel et l’autre non positionnel. Le premier

peut être détenu uniquement par lot unitaire, c’est-à-dire que pour chaque transaction, les investis-

seurs ont le choix d’acheter ou vendre exactement une unité du bien ou ne rien faire. Le second

peut quant à lui être librement échangé sans restriction. Nous utilisons ici une fonction d’utilité

dépendant de l’identité de la contrepartie dans l’échange, elle capture à la fois l’utilité absolue des

agents et permet de définir son meilleur partenaire en termes de statut. La population est par-

titionnée selon différent groupes sociaux, ceux qui ont un statut et ceux qui n’en ont pas. Nous

générons alors aléatoirement les connections sociales entre les agents selon leur appartenance sociale

et nous supposons que chaque individu peut être impacté par un choc de liquidité. Nous décrivons

ainsi comment les échanges prennent place au cours du temps selon la structure des groupes et

justifions dans quel cas les échanges inter-groupes dominent. Enfin, nous testons nos prédictions

sur des données historiques dont le cadre est particulièrement bien adapté à cette étude : l’économie

des moulins de Toulouse.
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Résumé

Ce mémoire de thèse est organisé en trois articles. Le premier est dédié au cas des

moulins de Toulouse dont les données nous permettent de tester certains points de la

théorie de l’évaluation des actifs. Plus précisément, nous proposons une mesure de la

consommation locale et réalisons une analyse basée sur l’entropie relative pour extraire

le facteur stochastique d’actualisation de cette économie. Nous observons que ce dernier

est lié à la consommation et qu’un modèle simple à la Lucas n’est pas rejeté pour des

niveaux d’aversion pour le risque bas. Dans le second article, nous décrivons de manière

purement théorique la relation entre le volume d’échange et la composition du marché par

le biais d’un modèle où les préférences d’un agent dépendent de son environnement et où

un choc de liquidité peut survenir de manière collective pour tous les membres d’un même

groupe. Nous introduisons alors le concept de canal désirable comme condition nécessaire

à la réalisation d’un échange et lions la topologie du réseau au volume espéré des échanges.

Le troisième article porte sur le rôle des statuts sociaux dans la dynamique de marché.

Nous proposons un modèle où deux types de biens sont disponibles, un bien positionnel et

un bien non positionnel. En distinguant dans l’économie ceux possédant un statut et ceux

qui n’en possèdent pas nous justifions comment les échanges prennent place au cours du

temps par rapport à cette distinction sociale. Les prédictions du modèle sont alors testées

sur les données historiques des moulins de Toulouse.

Abstract

This doctoral thesis is organized in three articles. In the first one, we use the Toulouse

mills companies data as a suitable testbed for asset pricing theory. More precisely, we

provide a proxy for local consumption and perform a relative entropy analysis to extract the

stochastic discount factor of this old economy. We found that the model-free pricing kernel

correlates with consumption and a standard CRRA-model is not rejected by the data, even

for very low risk aversion levels. In the second article, we describe the relationship between

trading volume and market composition through a pure theoretical approach. We build

a model where the agent preferences depend on his environment and a liquidity shock is

collectively experienced by the members of each social group in the economy. We introduce

the concept of desirability channel as a necessary condition for a trade to occur and we rely

the topology of the network to the expected volume. The third article focus on the role

of social status concern in the exchanges dynamic. We propose a setting where two types

of goods are available, a positional and a non positional one. By splitting the economy

into two social groups, we depict how trades take place over time regarding to these social

groups. The model predictions are finally tested on the historical support of the Toulouse

mills companies.
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