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Abstract

To make a prediction of a response variable from an explanatory one which takes into account

features such as multimodality, a nonparametric approach based on an estimate of the conditional

density is advocated and considered. In particular, we build point and interval predictors based on

the quantile-copula estimator of the conditional density by Faugeras [8]. The consistency of these

predictors is proved through a uniform consistency result of the conditional density estimator.

Eventually, the practical implementation of these predictors is discussed. A simulation on a real

data set illustrates the proposed methods.

Key Words: Nonparametric prediction, Modal regression, Level-set, Conditional density estimation,

Quantile transform, Copulas.

1 Introduction

Let X,Y be a couple of real-valued random variables. To what extent one can predict the value of the

response variable Y from the explanatory one X? Classical decision theory à la Wald [20] recommends
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to consider a distance or loss function L : R × R 7→ R+ in order to measure the performance of the

prediction, and to minimize the corresponding risk or expected loss

R(X,Y ) = EL(X,Y ). (1)

It is standard practice among statisticians to use the squared loss, L(x, y) = (x − y)2, so that

the risk is minimized by setting as the Bayes (or probabilistic) point predictor the conditional mean

E[Y |X]. From a statistical standpoint, the problem thus reduces to estimating the regression function

m(x) = E [Y |X = x] by m̂(x), from a training sample (Xi, Yi), i = 1, . . . , n, and to set as a statistical

predictor m̂(x0) as the best prediction of Y given a newly observed value of X = x0.

Yet, consider the toy model depicted in figure 1, where is plotted the conditional density f(y|x)

at the location x where ones wants to make a prediction. The conditional density is assumed here to

be a mixture with equal weights of two Normal distribution, each one centered at y = 1 and y = 2,

respectively. In that case, the best prediction corresponding to the conditional mean would be given

by r(x) = 1.5. However, the practitioner could argue 1.5 is a bad prediction, as he rather observes

about half of the outcomes some values of Y concentrated around 1, and the other half values around

2. This toy example is to stress upon the subjectivity of a decision based solely on the estimation of

Figure 1: A toy example of predictive density

the regression function, as is the focus in many statistical studies: the predictive distribution here is

not well summarized by the “average” value to appear, viz. the mean, but better by the “most likely”

values to appear, viz. the modes.

More generally, one can consider the statistician should first estimate the full conditional distribu-
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tion to fully quantify the input of X on Y and then, once the general shape of the conditional density

is given, to build some sensible point predictors and predictive sets. This is especially relevant if the

predictive distribution is multi-modal or skewed, which often arises in applications with non-Gaussian

or non-linear phenomena.

To that purpose, we propose a methodology to design point and interval predictors based on

conditional density estimation, by building upon the quantile-copula conditional density estimator

proposed by the same author in [8]. This estimator was shown to be particularly interesting when one

wants to make a prediction on y for values of x far from the observed data.

The rest of the article is organized as follows: the quantile-copula estimator of the conditional

density is briefly presented in section 2, together with some uniform asymptotic convergence theorems

which extend those of [8]. From this conditional density estimator, point and set predictors correspond-

ing to the conditional mode and level sets are defined in sections 3 and 4 respectively, together with a

study of their asymptotic consistency and discussions regarding their implementation. An illustration

on a real data set is conducted in section 5. Some proofs and auxiliary results are deferred to the

appendix 6.

2 The quantile-copula conditional density estimator

2.1 Definition of the Quantile-copula estimator

Nonparametric estimators of the conditional density f(y|x) are either built upon estimators of joint

and marginal densities or are based on nonparametric regression on synthetic data, see [8] for an

account and references. The Quantile-copula estimator of [8] is based on the idea of transforming the

data X and Y by their respective marginal distributions F and G, and the representation of the joint

c.d.f. FXY of (X,Y ) by means of the copula function C as

FXY (x, y) = C(F (X), G(Y )), (2)
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where F and G are the c.d.f. of X, and Y respectively, see e.g. [13, 15] for some background on copulas.

Differentiating formula (2), the conditional density writes

f(y|x) = g(y)c(F (x), G(y)) (3)

where g is the density of Y and c is the copula density of (X,Y ), viz. the density of the vector

(F (X), G(Y )) with uniform marginals. From (3), a nonparametric estimator can be built as

f̂(y|x) = ĝ(y)ĉn(Fn(x), Gn(y))

where ĝ is the kernel estimate of g, viz.

ĝ(y) :=
1

nhn

n∑
i=1

K0

(
y − Yi
hn

)
,

Fn and Gn are the empirical distribution function of F and G, and ĉn is a kernel estimator of c based

on the approximate data (Fn(X1), Gn(Y1)), . . . , (Fn(Xn), Gn(Yn)), viz.

ĉn(u, v) :=
1

na2n

n∑
i=1

K

(
u− Fn(Xi)

an

)
K

(
v −Gn(Yi)

an

)
. (4)

We refer to [8] for pointwise consistency results and discussions on advantages of the product shape

of the estimator compared to ratio-shaped competitors.

2.2 Uniform consistency results of the conditional density estimator

In order to obtain the consistency of the statistical point and interval predictors of sections 3 and

4, uniform consistency results of the conditional density estimator on a compact set are required.

Beforehand, we present the notations and assumptions used throughout the paper.

We note the ith moment of a (multivariate) kernel K as mi(K) :=
∫
uiK(u)du and the Lp norm of

a function h by ||h||p :=
∫
hp. Let ' stands for the order of equivalence of the bandwidths, i.e. hn ' un

means that hn = cnun with cn → c > 0. The support of the densities function f and g are noted by

4



supp(f) = {x ∈ R; f(x) > 0} and supp(g) = {y ∈ R; g(y) > 0}, where A stands for the closure of a set

A.

To state our results, we will have to make some regularity assumptions on the kernels and the

densities which, although far from being minimal, are somehow customary in kernel density estimation

(see section 6.1 for discussions and details). Set x be a fixed point in the interior of supp(f).

Assumption A

(i) the c.d.f. F of X and G of Y are strictly increasing and differentiable;

(ii) the densities g and c are twice continuously differentiable with bounded second derivatives on

their support;

(iii) the density g (respectively c) is uniformly continuous and non-vanishing almost everywhere on a

compact set J := [a, b] (respectively D ⊂ (0, 1)2), included in the interior of supp(g) (respectively

supp(c)).

Moreover, we assume that the kernels K0 and K satisfy the following:

Assumption B

(i) K and K0 are of bounded support and of bounded variation;

(ii) 0 ≤ K ≤ C and 0 ≤ K0 ≤ C for some constant C;

(iii) K and K0 are second order kernels: m0(K) =
∫
K = 1, m1(K) =

∫
xK(x)dx = 0 and m2(K) =∫

x2K(x)dx < +∞, and the same for K0;

(iv) K it is twice differentiable with bounded second partial derivatives.

We have the following uniform consistency result:

Theorem 2.1. Let the regularity conditions A (i)-(iii) and B (i)-(iv) be satisfied. If hn ' (lnn/n)1/5

and an ' (lnn/n)1/6, then, for x in the interior of supp(f) and [a, b] included in the interior of

supp(g),

sup
y∈[a,b]

|f̂n(y|x)− f(y|x)| = Op

((
lnn

n

)1/3
)
,
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and

sup
y∈[a,b]

∣∣∣f̂n(y|x)− f(y|x)
∣∣∣ = Oa.s.

((
lnn

n

)1/3
)
.

Proof. As in [8], the main ingredient of the proof follows from the decomposition:

f̂n(y|x)− f(y|x) = ĝn(y)ĉn(Fn(x), Gn(y))− g(y)c(F (x), G(y))

= [ĝn(y)− g(y)] ĉn(Fn(x), Gn(y))

+ g(y) [ĉn(Fn(x), Gn(y))− c(F (x), G(y))]

: = D1 +D2

where cn is in (4), the analogue of ĉn but based on the pseudo-data (F (X1), G(Y1)), . . . , (F (Xn), G(Yn))

instead of the approximate ones. We proceed one step further in the decomposition of each terms, by

centering at fixed locations,

D1 = [ĝn(y)− g(y)] [ĉn(Fn(x), Gn(y))− ĉn(F (x), G(y))]

+ [ĝn(y)− g(y)] [ĉn(F (x), G(y))− cn(F (x), G(y))]

+ [ĝn(y)− g(y)] [cn(F (x), G(y))− c(F (x), G(y))]

+ [ĝn(y)− g(y)] [c(F (x), G(y))]

D2 = g(y) [ĉn(Fn(x), Gn(y))− ĉn(F (x), G(y))]

+ g(y) [ĉn(F (x), G(y))− cn(F (x), G(y))]

+ g(y) [cn(F (x), G(y))− c(F (x), G(y))]

Taking the supremum norm for y ∈ [a, b] and applying propositions 6.2 and 6.1 of section 6, together

with the uniform consistency results of the kernel density estimators of theorems 6.1 and 6.2 applied

to gn and cn, also recalled in section 6, yields the claimed result.
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3 Point prediction by the conditional mode

3.1 Construction of the modal predictor

Depending on the loss function L considered in equation (1) to measure the performance of the

prediction, several Bayes (or probabilistic) point predictors are obtainable. The focus in this article is

on the 0− 1 loss, viz. L(x, y) = Ix 6=y, which leads the “most likely value” or conditional mode,

θ(x) := arg sup
y
f(y|x).

For additional references regarding the use of the mode for prediction purposes, refer e.g. to Scott [17],

which advocates its use to account for situations as those discussed in the introduction. The interest

in the conditional mode lies also that its estimator can be directly obtained from an estimator of the

conditional density, following the approaches of [16, 14, 6, 7, 9] among others.

Indeed, define the corresponding statistical point predictor by its empirical counterpart in a plug-in

setting as follows: Set S a compact subset of R. In order to assure the existence of the desired object,

we assume that f(y|x) is such that:

(R) There exists an η > 0, an unique y0 ∈ S such that f(.|x) is strictly increasing on (y0 − η, y0),

and strictly decreasing on (y0, y0 + η).

Under this assumption, the local maximizing problem of f(y|x) on S′ = (y0 − η, y0 + η) has a unique

solution, which is exactly y0. Therefore, the conditional mode is uniquely defined on this interval:

Definition 3.1. Under assumption (R), the statistical modal predictor is defined as

θ̂n(x) := arg sup
y∈S′

f̂n(y|x).

3.2 Asymptotic properties of the conditional mode predictor

From the uniform consistency result of the quantile-copula density estimator (2), we have the following

consistency result of the conditional mode predictor:
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Proposition 3.1. if f(.|x) follows assumption (R), and the conditions for uniform consistency of the

conditional density on a compact set of theorem 2.1, then,

θ̂n(x)
a.s.→ θ(x).

Proof. Let k, n be integers. By assumption (R), f(.|x) is continuous and strictly increasing on (θ(x)−

η, θ(x)). therefore, the inverse function f−1(.|x) exists and is continuous. Thus, by continuity of the

latter at the point f(θ(x)|x), for any ε > 0,

∃δ1(ε) > 0,∀y ∈ (θ(x)− η, θ(x)), |f(y|x)− f(θ(x)|x)| ≤ δ1(ε)⇒ |y − θ(x)| ≤ ε.

Similarly,

∃δ2(ε) > 0,∀y ∈ (θ(x), θ(x) + η), |f(y|x)− f(θ(x)|x)| ≤ δ2(ε)⇒ |y − θ(x)| ≤ ε,

so that,

∃δ(ε) > 0,∀y ∈ (θ(x)− η, θ(x) + η), |f(y|x)− f(θ(x)|x)| ≤ δ(ε)⇒ |y − θ(x)| ≤ ε.

By construction, θ̂k(x) ∈ (θ(x)− η, θ(x) + η), so that,

∃δ(ε) > 0, |f(θ̂k(x)|x)− f(θ(x)|x)| ≤ δ(ε)⇒ |θ̂k(x)− θ(x)| ≤ ε

and finally,

∃δ(ε) > 0, P (sup
k≥n
|θ̂k(x)− θ(x)| > ε) ≤ P (sup

k≥n
|f(θ̂k(x)|x)− f(θ(x)|x)| > δ(ε)). (5)
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On the other hand, it comes from the triangle inequality that

∣∣∣f(θ(x)|x)− f(θ̂k(x)|x)
∣∣∣ ≤ ∣∣∣f̂k(θ(x)|x)− f(θ(x)|x)

∣∣∣+
∣∣∣f̂k(θ̂k(x)|x)− f(θ̂k(x)|x)

∣∣∣
≤ 2 sup

y∈(θ(x)−η,θ(x)+η)

∣∣∣f̂k(y|x)− f(y|x)
∣∣∣

and uniform almost sure convergence of the conditional mode estimator on a compact set of theorem

2.1 entails that

∀δ > 0, lim
n→∞

P

(
sup
k≥n

sup
y∈(θ(x)−η,θ(x)+η)

∣∣∣f̂k(y|x)− f(y|x)
∣∣∣ > δ

)
= 0,

thus θ̂n(x)
a.s.→ θ(x) by equation (5).

3.3 A remark on the practical implementation of the conditional mode predictor

Set SY |X = {y : f(y|x) > 0} the support of the conditional density. In practice, the search of the

conditional mode can be difficult and time-consuming to implement. Indeed, as the conditional mode

estimator is defined as the maximizer of f̂(y|x), i.e. θ̂(x) = arg supy∈SY |X
f̂(y|x), one has a priori to

compute the estimator of the conditional density on a large number of y values in SY |X to find the

largest value of the estimated conditional density.

Therefore, we would like to mention a method to ease the computation of the conditional mode

predictor, proposed in the papers by Abraham, Biau, Cadre [1, 2]. An alternative is to maximize the

estimator on the Y data Dn := {y1, . . . , yn}, i.e. to set θ̃(x) = arg maxy∈Dn f̂(y|x). The maximisation

is thus performed on a set of finite cardinality, and can be quickly implemented. According to the

asymptotics developed in these papers, one has that θ̃(x) − θ̂(x)
a.s.→ 0 as n → ∞, under suitable

regularity conditions.
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4 Prediction by intervals

4.1 Predictive intervals and level sets

Similarly to the well-known case in estimation, where point estimates can be replaced by confidence

intervals, one may wish to summarise the predictive probability distribution by defining a region of

the sample space covering a specified probability, i.e. to define a set Cα(x) such that

P (Y ∈ Cα(x)|X = x) = α.

In the present context, there are numerous ways to construct such predictive intervals or sets covering

a specified conditional probability. Among proposals, one may cite the interval symmetric around the

mean, the interval symmetric around the median, the interval between the 1−α
2 and 1+α

2 quantiles,

the interval of shortest length, the interval that minimizes the probability of covering a given family

of sets. et cetera... Hyndman [12] provides a detailed discussion of the issues involved in defining such

a probability region in the unconditional case. In the conditional case we are interested in, note the

coverage region depends on a fixed, chosen x.

To make use of the conditional density and its estimator, it is natural to advocate for an approach

based on the level sets of the conditional density, also called the Highest Density Region (HDR) by

Hyndman [12], which allows to incorporate the features mentioned in the introductory example such

as multimodality.

Definition 4.1. The level set (probabilistic) predictor is the set Cα consisting of points y,

Cα := {y : f(y|x) ≥ fα} (6)

where fα is the largest constant such as the prediction set has coverage probability α,

P (Y ∈ Cα(x)|X = x) ≥ α. (7)
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In case of multimodality, Cα(x) takes the form of an union of possibly disjoint intervals, say

Cα(x) =
⋃
Iα(x), where each Iα(x) := [yα, y

α], with yα ≤ yα. Each extremity of these subintervals

is such that f(yα|x) = f(yα|x) = fα. Note, as shown in [11], that this approach also allows to give

an informative and convenient graphical display of the predicted regions by drawing confidence bands

corresponding to, e.g. 50 % and 99% coverage probability.

A plug-in strategy to define the corresponding statistical predictor is discussed in the next two

subsections.

4.2 Determination of the level by a density quantile approach

In order to determine the corresponding interval statistical predictor, a first step is to determine, for

a given coverage probability α, the corresponding cut-off level fα of equation (7). To that purpose, we

assume x is fixed and follow the approach proposed by Hyndman [12]. For Y with conditional density

f(y|x), define the random variable Z = f(Y |x). Then,

Y ∈ Cα ⇔ f(Y |x) ≥ fα ⇔ Z ≥ fα.

Therefore, P (Y ∈ Cα) = α ⇔ P (Z ≥ fα) = α. So fα is the 1 − α quantile of Z. It thus can be

estimated by the sample quantile from a set of i.i.d. observations Z1, . . . , Zn from the distribution of

Z = f(Y |X = x). As f(y|x) is unknown, it has to be estimated by f̂(y|x). Therefore, the following

two practical approaches to determine the level of the level-set can be proposed:

1. A Bootstrap technique for estimating fα is to generate a i.i.d. pseudo-sample (Ŷ1, . . . , ŶN ) from

the estimated distribution f̂(y|x) of f(y|x). Then, (Ẑ1, . . . , ẐN ) := (f̂(Ŷ1|x), . . . , f̂(ŶN |x)) will

be a i.i.d. pseudo-sample from the distribution of Z. The level fα is estimated by the sample

quantile of the Zi as

f̂α := Ẑjα,N ,

with jα = b(1− α)Nc and where Ẑj,N denotes the jth order statistic of the sample Ẑ1, . . . , ẐN .

2. Alternatively, a more direct approach, especially if n is large, is to use the same set of observa-
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tions (Y1, . . . , Yn), and to calculate the quantile from the synthetic sample Z̃ = (Z̃1, . . . , Z̃n) :=

(f̂n(Y1|x), . . . , f̂n(Yn|x)). The estimated value is defined analogously by

f̂α := Z̃jα,n.

4.3 Calculation of predictive intervals

A natural plug-in estimate of the predictive set Cα(x) defined by equation (6), would be to set

Cα,n(x) := {y : f̂n(y|x) ≥ f̂α},

where f̂α is the above mentioned estimate of the level fα. Practically, recall that Cα(x) is made up of the

different subintervals Iα(x) = [yα, y
α]. The corresponding statistical interval estimate Îα(x) = [ŷα, ŷ

α]

with ŷα ≤ ŷα is then obtained by solving for y the equation f̂n(y|x) = f̂α, viz.

ŷα = f̂−1n (f̂α|x) and ŷα = f̂−1n (f̂α|x).

In the following, we assume the existence of these inverses, that is to say we consider that the level is

reasonably chosen.

Convergence of the estimated predictive intervals is then obtained from the uniform convergence

of the conditional density estimator, as shown in the next proposition.

Proposition 4.1. Assume f̂α
a.s.→ fα. Then ŷα

a.s→ yα and ŷα
a.s→ yα, thus λ(Cα,n∆Cα)

a.s.→ 0.

Proof. We do the proof only for ŷα, the proof for ŷα being similar. Introduce the estimate y∗α of yα,

had we known the true value fα, i.e.

f̂n(y∗α|x) = fα.

Then,

P (|ŷα − yα| > ε) ≤ P (|ŷα − y∗α| > ε/2) + P (|y∗α − yα| > ε/2).
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Since f̂−1n (.|x) is continuous at yα, for every ε > 0, there exists a δε > 0, such that |f̂n(y|x)−f̂n(yα|x)| ≤

δε/2 implies |y − yα| ≤ ε. In particular, for y = y∗α, there exists a δε such that

P (|y∗α − yα| > ε/2) ≤ P (|f̂n(y∗α|x)− f̂n(yα|x)| > δε)

≤ P (|fα − f̂n(yα|x)| > δε)

≤ P (|f(yα|x)− f̂n(yα|x)| > δε)

and almost sure convergence of the conditional density estimator yields almost sure convergence of

the y∗α to yα. Similarly, by continuity of f̂−1n (.|x) at y∗α, there exists δ′ε > 0, such that

P (|ŷα − y∗α| > ε/2) ≤ P (|f̂n(ŷα|x)− f̂n(y∗α|x)| > δ′ε)

and almost sure convergence of f̂α
a.s.→ fα means that |f̂n(ŷα|x)− f̂n(y∗α|x)| a.s.→ 0, yielding ŷα − yα

a.s.→

0.

5 An illustration on a real-data set

To complement the asymptotic results obtained, i.e. valid for large samples, the proposed methodology

is illustrated in a small sample setting on the Old Faifthful Geyser data set. The data consists in 272

records of the eruption time of the geyser and the waiting time between two successive eruptions. The

aim is to predict the eruption time (Y) conditionally on the waiting time (X).

5.1 Small sample implementation

As noted in [8], since the copula density is of compact support [0, 1]2, the kernel method of estimation

may suffer from boundary bias. Therefore, to alleviate this possible bias issue of the copula density

part of the estimator, the quantile-copula density estimator is implemented with the modifications

suggested in [8]. In particular, the Beta kernels mentioned herein were used. The bandwidth for the

copula density was chosen such that it contains at least a fixed amount (20%) of the data, and for the

13



bandwidth for the Y density by direct plug-in (see [21]). The conditional density was calculated on a

regular rectangular grid of 100 values with the edges corresponding to the maximum and minimum

values of the data. We computed the conditional mode (black line) as well as 50 percents level sets

(shaded area) and the classical Nadaraya-Watson regression estimator (dashed line). The result of the

simulation is displayed on figure 5.1.

Figure 2: Prediction of the Eruption duration from the Waiting time for the Old Faithful Geyser data
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5.2 Results

The shaded area corresponding to the 50 percent predictive intervals clearly evidences the bimodal

and nonlinear nature of the response of the eruption duration conditionally on the waiting time. The

point prediction of the eruption duration given by the conditional mode switches between about 2

min., say 1.8 min, and, slightly more than 4 min., say 4.5 min., depending on the waiting time being

lower or upper than a threshold value of about 70 min. As advocated in the introduction, such a

phenomenon can not be inferred from the regression function. Moreover, the regression proposes as a

point prediction a continuum of values between 1.8 min and 4.5 min, whereas the shaded area shows

that observing a value in between this continuum (say between 2.5 min and 3.5 min) appears to be

very unlikely.

6 Appendix

6.1 Uniform consistency of the kernel density estimators

We recall below for convenience some classical results of convergence of the kernel density estimators

uniformly on sets. For additional references, see.g. [17, 21, 4]. In this section only, f denotes a generic

density on Rd.

6.1.1 Bias

If f is supposed to be twice differentiable with second partial derivatives uniformly bounded on J , the

bias is also uniformly bounded on J : indeed,

sup
t∈J
|Efn(t)− f(t)| = h2n/2

∫
K(y)yT {f ′′(y)}ydy + o(h2n)

where

f ′′(t) =

(
∂2f

∂xi∂xj

∣∣∣∣
x=t

)
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is a shorthand for the Hessian of f , and where the o(.) is independent of t. This comes from a so-called

uniform Bochner type theorem, see e.g. Bosq and Lecoutre [4].

6.1.2 Uniform convergence in probability

The following theorem is a direct corollary of Bickel and Rosenblatt’s [3] convergence result of the

norm of the deviation of the kernel density estimator to a double exponential law:

Theorem 6.1 (Bickel and Rosenblatt). For f bounded and non-vanishing on a compact subset J

included in the interior of supp(f), and a bandwidth sequence hn → 0, such that nhdn →∞, nhdn/ lnn→

∞,

sup
x∈J

∣∣∣f̂n(x)− Ef̂n(x)
∣∣∣ = Op

[(
lnn

nhdn

)1/2
]
.

Therefore, for the choice of the bandwidth hn ' (lnn/n)1/d+4 which realises the optimal trade-off

between the bias and variance, one gets, by combining this result with the one on the bias in section

6.1.1 above, the following result in probability:

sup
x∈J

∣∣∣f̂n(x)− f(x)
∣∣∣ = Op

[(
lnn

n

)2/(d+4)
]

which is the optimal speed in the minimax sense in the class of density functions with bounded second

derivatives, according to Hasminskii [10].

6.1.3 Uniform almost sure convergence

We cite Stute’s [18, 19] theorem on the uniform convergence of the kernel density estimator, see also

Deheuvels [5], Bosq and Lecoutre [4] :

Theorem 6.2 (Stute). Let J be a compact subset of Rd, included in the support of f .

i) If the kernel K is of bounded support, and of finite variation (e.g. if K has bounded partial

derivative of order two),
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ii) if the density f is uniformly continuous on J , is bounded away from zero and infinity on J :

0 ≤ m < f |J < +∞,

iii) if the marginal densities fi of f , i = 1, . . . , d are bounded away from zero and infinity on J ,

iv) if the bandwidth hn → 0 satisfy nhdn → +∞, ln(1/hdn) = o(nhdn), and ln(1/hdn)/(ln lnn)→ +∞

then, with probability one,

lim
n→∞

sup
t∈J

√
nhdn

2 lnh−dn

∣∣∣∣∣fn(t)− Efn(t)√
f(t)

∣∣∣∣∣ =

(∫
K2

)1/2

.

Remark 6.1. if the last condition on the bandwidth is suppressed, the theorem remains valid with lim

replaced with lim. With the usual choice of bandwidth hn ' (lnn/n)1/(d+4) to deal with the bias, one

gets the almost sure uniform convergence of the kernel density estimator at the rate (lnn/n)2/(d+4).

6.2 Two uniform approximation propositions

The following two propositions are key to prove theorem 2.1. Proposition 6.1 gives the a.s. and in

probability rates of approximation of the quantile density estimator ĉn based on the approximate data

(Fn(Xi), Gn(Yi)) from the moving w.r.t n location (Fn(x), Gn(y)) to the fixed one (F (x), G(y)), and

proposition 6.2 the a.s. and in probability rates of approximations of the quantile density estimator ĉn

based on the approximate data by the pseudo estimator cn based on the pseudo data (F (Xi), G(Yi)).

Proposition 6.1. Let the regularity assumptions A and B be satisfied, then, for a compact set D ⊂

(0, 1)2, an → 0 and na3n/ lnn→∞ entails

sup
(x,y)∈D

|ĉn(Fn(x), Gn(y))− ĉn(F (x), G(y))| = OP

(
1

na4n
+

lnn

n1/2

)
,

sup
(x,y)∈D

|ĉn(Fn(x), Gn(y))− ĉn(F (x), G(y))| = Oa.s

(
ln lnn

na4n
+

lnn(ln lnn)1/2

n1/2

)
.
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Proof. For convenience, set the norm of a vector as the max norm, ||(x1, . . . , xd)|| = max1≤j≤d |xj |.

Set D = [u0, u∞]× [v0, v∞] ⊂ (0, 1)2 a compact subset where 0 < u0 ≤ u∞ < 1 and 0 < v0 ≤ v∞ < 1.

Note T for the transpose of a matrix. Set

∆n(x, y) := ĉn(Fn(x), Gn(y))− ĉn(F (x), G(y)) =
1

na2n

n∑
i=1

∆i,n(x, y) (8)

with

∆i,n(x, y) := K

(
Fn(x)− Fn(Xi)

an
,
Gn(y)−Gn(Yi)

an

)
−K

(
F (x)− Fn(Xi)

an
,
G(y)−Gn(Yi)

an

)
.

For notational simplicity, define

Zn(x, y) :=

 Fn(x)− F (x)

Gn(y)−G(y)

 , Zi,n :=

 F (Xi)− Fn(Xi)

G(Yi)−Gn(Yi)

 .

We first express ∆i,n at a fixed location by a Taylor expansion, viz.

∆i,n = Zn(x, y)T
∇K
an

(
F (x)− Fn(Xi)

an
,
G(y)−Gn(Yi)

an

)
+
||Zn||2∞
a2n

R3 (9)

where R3 is uniformly bounded almost surely by the boundedness assumptions on the second order

derivatives of the kernel (assumption K (iv)). We then proceed from the data (Fn(Xi), Gn(Yi)) to the

pseudo ones (F (Xi), G(Yi)) by another Taylor expansion,

∇K
(
F (x)− Fn(Xi)

an
,
G(y)−Gn(Yi)

an

)
= ∇K

(
F (x)− F (Xi)

an
,
G(y)−G(Yi)

an

)
+
ZTi,n
an

R2 (10)

18



with ||R2|| = Oa.s.(1), again by assumption K (iv). Thus, plugging (9) and (10) in (8),

∆n(x, y) =
ZTn (x, y)

na3n

n∑
i=1

∇K
(
F (x)− F (Xi)

an
,
G(y)−G(Yi)

an

)

+
ZTn (x, y)

na4n

n∑
i=1

ZTi,nR2 +R3
||Zn||2∞
a4n

. (11)

Notice that |Fn(Xi) − F (Xi)| ≤ ||Fn − F ||∞ and |Gn(Yi) − G(Yi)| ≤ ||Gn − G||∞ a.s. for every

i = 1, . . . , n. From Chung-Mogulskii’s law of the iterated logarithm,

‖Fn − F‖∞ = Oa.s.

(√
ln lnn

n

)
, or = OP

(
1√
n

)
. (12)

and similarly for ||Gn −G||, so that the norm of Zi,n is independent of i and such that

||Zi,n|| = OP (1/
√
n), or = Oa.s.(

√
ln lnn/n). (13)

In the same manner,

||Zn||∞ = OP (1/
√
n), or = Oa.s.(

√
ln lnn/n). (14)

Therefore the last two terms in (11) are of order OP

(
1
na4n

)
, or Oa.s

(
ln lnn
na4n

)
, uniformly for (x, y) ∈ D.

For the first term in (11), by Cauchy-Schwarz inequality,

sup
(x,y)∈D

∣∣∣∣∣ZTn (x, y)

na3n

n∑
i=1

∇K
(
F (x)− F (Xi)

an
,
G(y)−G(Yi)

an

)∣∣∣∣∣
≤ ||Zn||∞ sup

(x,y)∈D

∥∥∥∥∥ 1

na3n

n∑
i=1

∇K
(
F (x)− F (Xi)

an
,
G(y)−G(Yi)

an

)∥∥∥∥∥
From the convergence results of the kernel estimator of the gradient of the density c(u, v) (see Scott

[17] and the previous section 6.1), and the assumption A (ii) of boundedness of the gradient of the
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copula density on D, one gets with na3n/ lnn→∞ that

sup
(x,y)∈D

∥∥∥∥∥ 1

na3n

n∑
i=1

∇K
(
F (x)− F (Xi)

an
,
G(y)−G(Yi)

an

)∥∥∥∥∥ = OP (lnn), or = Oa.s.(lnn)

In turn, with (14), the first term in (11), is an = OP (lnn/n−1/2) or Oa.s.(lnn(ln lnn/n)1/2). Recol-

lecting all elements yields the claimed result.

Proposition 6.2. Let the regularity assumptions A and B be satisfied, then, for a compact set D ⊂

(0, 1)2, and a bandwidth such as an '
(
lnn
n

)1/6
, one has

sup
(u,v)∈D

|ĉn(u, v)− cn(u, v)| = Oa.s.

((
lnn

n

)1/3
)

or OP

((
lnn

n

)1/3
)

Proof. We proceed similarly. Write

∆′(u, v) := ĉn(u, v)− cn(u, v) =
1

na2n

n∑
i=1

∆i,n(u, v),

with

∆′i,n(u, v) := K

(
u− Fn(Xi)

an
,
v −Gn(Yi)

an

)
−K

(
u− F (Xi)

an
,
v −G(Yi)

an

)
,

and define

Wi,n(u, v) := ∇K
(
u− F (Xi)

an
,
v −G(Yi)

an

)
.

For every fixed (u, v) ∈ [0, 1]2, since the kernel K is twice differentiable, there exists, by Taylor

expansion, random variables Ũi,n and Ṽi,n such that, almost surely,

∆′(u, v) =
1

na3n

n∑
i=1

ZTi,n∇K
(
u− F (Xi)

an
,
v −G(Yi)

an

)

+
1

2na4n

n∑
i=1

ZTi,n∇2K

(
u− Ũi,n
an

,
v − Ṽi,n
an

)
Zi,n

:= ∆′1 + ∆′2,
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where ∇K and ∇2K the gradient and the Hessian respectively of the multivariate kernel function K.

By centering at expectations, decompose further the first term ∆′1 as,

∆′1 =
1

na3n

n∑
i=1

ZTi,nWi,n(u, v)

=
1

na3n

n∑
i=1

ZTi,n. (Wi,n(u, v)− EWi,n(u, v))

+
1

na3n

n∑
i=1

ZTi,n.EWi,n(u, v)

:= ∆′11 + ∆′12.

• Negligibility of ∆′2

By bounding uniformly the Hessian of the kernel, we get that

sup
(u,v)∈D

|∆′2(u, v)| ≤ ||Zi,n||
2

a4n
R2,

where R2 = Oa.s.(1) uniformly. With (13), we get eventually that

sup
(u,v)∈D

|∆2(u, v)| = OP (n−1a−4n ), or Oa.s.((ln lnn)/(na4n)). (15)

• Negligibility of ∆′12

Notice that na−3n
∑n

i=1Wi,n(u, v) is the kernel estimator of the gradient ∇c(u, v) and that in

the expression of the bias of the kernel estimator, equation 6.1.1, the O(.) is uniform in (u, v).

Therefore one gets that

sup
(u,v)∈D

||EWi,n(u, v)− a3n∇c(u, v)|| = O(a5n).

Thus,

sup
(u,v)∈D

|∆′12(u, v)| = OP (1/
√
n), or Oa.s.((ln lnn/n)1/2). (16)
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• Negligibility of ∆′11

We use a chaining argument: define a covering of D by M2
n compact hypercubes Dk centered in

(uk, vk),

Dk = {(u, v) ∈ D : ||(u, v)− (uk, vk)|| ≤ 1/Mn} , 1 ≤ k ≤M2
n

with
◦
Dk ∩

◦
Dk′= ∅ , 1 ≤ k 6= k′ ≤M2

n.

One can write

sup
(u,v)∈D

|∆′11(u, v)| ≤ max
1≤k≤M2

n

sup
(u,v)∈Dk

|∆′11(u, v)−∆′11(uk, vk)|

+ max
1≤k≤M2

n

|∆′11(uk, vk)|

:= (I) + (II).

• Negligibility of (I)

For (I), by boundedness and Lipshitz assumption on the product kernel K, there exists a constant

C such that,

||∇K(u, v)−∇K(uk, vk)|| ≤ C||(u, v)− (uk, vk)||.

Therefore for (u, v) ∈ Dk,

∥∥∥∥∇K (u− F (Xi)

an
,
v −G(Yi)

an

)
−∇K

(
uk − F (Xi)

an
,
vk −G(Yi)

an

)∥∥∥∥ ≤ C

Mnan

since K is product-shaped. In turn, the same bound is valid by Jensen’s inequality for the

expectations of the difference, so that

(I) ≤ 2C||Zn||
Mna4n

. (17)
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Setting Mn = n1/2a−3n ' n/
√

lnn for an ' (lnn/n)1/6, one has that (I) = oa.s.

(√
lnn
na2n

)
or

oP ((na2n)−1/2).

• Negligibility of (II)

For the second term, set Ai(u, v) = Wi,n(u, v)− EWi,n(u, v), and bound, for each k,

|∆′11(uk, vk)| ≤
||Zn||
na3n

n∑
i=1

||Ai(uk, vk)||

≤ ||Zn||
na3n

n∑
i=1

(||Ai(uk, vk)|| − E||Ai(uk, vk)||+ E||Ai(uk, vk)||)

≤ ||Zn||
na3n

n∑
i=1

ηi(uk, vk) +
||Zn||
na3n

n∑
i=1

E||Ai(uk, vk)||

where we have set ηi(uk, vk) = ||Ai(uk, vk)|| − E||Ai(uk, vk)||.

For the expectation term, as the product kernel is of finite variation, and with the assumption

that the gradient of the copula density remains bounded on D, one has that

max
1≤k≤M2

n

E||Ai(uk, vk)|| = O(a3n).

In turn,

max
1≤k≤M2

n

||Zn||
na3n

n∑
i=1

E||Ai(uk, vk)|| = OP (n−1/2) , or Oa.s.

((
ln lnn

n

)1/2
)
. (18)

It remains to deal with the deviation term

max
1≤k≤M2

n

||Zn||
na3n

n∑
i=1

ηi(uk, vk).

We have

P

(
max

1≤k≤M2
n

|
n∑
i=1

ηi(uk, vk)| > ε

)
≤

M2
n∑

k=1

P

(
|
n∑
i=1

ηi(uk, vk)| > ε

)
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and apply Hoeffding’s inequality to the summand, to get that, for every ε > 0,

P

(
|
n∑
i=1

ηi(uk, vk)| > ε
√
n lnn

)
≤ exp

(
−ε

2 lnn

C

)

for a constant C independent of k, which exists by the boundedness assumption on the gradient

of the kernel. Thus,

P

(
max

1≤k≤M2
n

|
n∑
i=1

ηi(uk, vk)| > ε
√
n lnn

)
≤M2

n exp

(
−ε

2 lnn

C

)
≤ exp

(√
2 lnMn −

ε2 lnn

C

)
.

For an ' (lnn/n)1/6 and Mn = n1/2a−3n ' n/
√

lnn,

exp

(√
2 lnMn −

ε2 lnn

C

)
≈ exp

(
−ε

2 lnn

C

)
=

1

nε2/C

which is absolutely summable for an ε large enough. Therefore,

max
1≤k≤M2

n

|
n∑
i=1

ηi(uk, vk)| = Oa.co.

(√
n lnn

)

and eventually,

||Zn||
na3n

max
1≤k≤M2

n

|
n∑
i=1

ηi(uk, vk)| = Oa.s.

(√
lnn ln lnn

na3n

)
(19)

for the choice an ' (lnn/n)1/6.

Recollecting elements (15), (16), (17), (18), (19) gives the claimed result for the given choice of an.
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