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In Theorem 1 of the main article, we characterise the maximal set of parameters for
existence of an honest equilibrium, which is obtained by assuming that π∗Bb(0) = 0 and
thus, V ∗h (0) = `/(1 − δ) = V ∗` (0). This implies a discontinuity of V ∗h at µ = 0 because i)
V ∗h (µ) = hp∗G(µ) + δhV ∗h (π∗Gg(µ)) + δ(1−h)V ∗h (π∗Bb(µ)) for µ > 0 and ii) limµ→0 π

∗
Bb(µ) > 0

as implied by the fact that p∗G(µ) = δ(V ∗` (π∗Bb(µ))−V ∗` (0)) ≥ ` for all µ ∈ (0, µ̄). However,
an honest equilibrium without such a discontinuity also exists if

h >
1 +
√

1 + 4`2 + 4`3

2 + 2`
, (1)

which is a sufficient condition1 that guarantees optimality of truth-telling for an h-type
seller when we set π∗Bb(0) = limµ→0 π

∗
Bb(µ) > 0 and thus, an h-type seller would tell the

truth even at µ = 0 by continuity. The value functions of such an equilibrium are identical
to V ∗` and V ∗h that we obtained for Theorem 1 in the main article, except for the value of
V ∗h (0) which is now higher at limµ→0 V

∗
h (µ). To indicate this difference, we denote h-type’s

equilibrium value function in the current case as Ṽ ∗h . We first state and prove this result
in Proposition 1 below, which will be used in the main contents of this online Appendix
that ensue, namely, the proofs of Theorems 2 and 3 of the main article.

Proposition 1 If (1) holds and δ is large enough, there exists an honest equilibrium in
which an h-type seller announces truthfully even when µ = 0. The value functions V ∗` and
Ṽ ∗h are continuous on [0, 1].

Proof. Let y∗, p∗ and π∗ be the same as those in the proof of Theorem 1 with the following
modification: in the off-equilibrium contingency that a bad quality is truthfully announced
when µ = 0, the reputation is updated to π̃∗Bb(0) = limµ→0 πBb(µ, y

∗(µ)). Then, V ∗` is also
the same as in Theorem 1 and optimality of an `-type seller’s announcement strategy is

1An alternative but more tedious proof available upon request shows that a weaker sufficient condition
is h > 1/(2− `).
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verified by the same argument as that in the proof of Theorem 1, except for the case that
q = b when µ = 0. In this latter case, lying and telling the truth are equivalent for an
`-type seller by continuity because the same is true when q = b for all µ ∈ (0, µ̄) as shown
in the main article if δ > δ`, hence y∗(0) = 1 is optimal.

The value function of an h-type from always telling the truth is Ṽ ∗h (µ) = V ∗h (µ) for
µ > 0 as obtained in the proof of Theorem 1. So, we use Ṽ ∗h and V ∗h interchangeably for
µ > 0 for easy reference to earlier results on V ∗h . We set Ṽ ∗h (0) = limµ→0 V

∗
h (µ). We will

first prove that
V ∗h (µ)− Ṽ ∗h (0) > V ∗` (µ)− V ∗` (0) ∀µ > 0 (2)

for sufficiently large δ < 1, then establish optimality of truth-telling for h-type.
Denote the ex-ante payoff from the possibility of always drawing q = g as

V o
h (µ) := h

∞∑
t=0

htδtpG
(
πtGg(µ), y∗(πtGg(µ))

)
∀µ > 0,

so that

V ∗h (µ) = V o
h (µ) + (1− h)δ

∞∑
t=0

htδtV ∗h
(
πBb(π

t
Gg(µ), y∗(πtGg(µ))

)
∀µ > 0 (3)

and
dV ∗h (µ)

dµ
>

dV o
h (µ)

dµ
for almost all µ > 0 because V ∗h is strictly increasing2 and so do πtGg(µ)

and π∗Bb(µ) (this follows from Lemmas 5 and 6 in the Appendix A.3 of the main article).
In conjunction with (31) in the Appendix A.3, we have

V o
h (µ)− V ∗` (µ) =

[ ∞∑
t=0

(ht+1 − `t)δtpG
(
πtGg(µ), y∗(πtGg(µ))

)]
− δV ∗` (0)

1− `
1− δ`

.

For µ ≥ µ̄, since y∗(µ) = 1 we have

dV o
h (µ)

dµ
− dV ∗` (µ)

dµ
=
∞∑
t=0

(ht+1 − `t)δt
∂pG

(
πtGg(µ), 1

)
∂µ

dπtGg(µ)

dµ
(4)

=
∞∑
t=0

δ2t

[
(h2t+1 − `2t)

∂pG
(
π2t
Gg(µ), 1

)
∂µ

dπ2t
Gg(µ)

dµ

+ δ(h2t+2 − `2t+1)
∂pG

(
π2t+1
Gg (µ), 1

)
∂µ

dπ2t+1
Gg (µ)

dµ

]

>

∞∑
t=0

δ2t`2t

[
(h− 1)

∂pG
(
π2t
Gg(µ), 1

)
∂µ

dπ2t
Gg(µ)

dµ

+ δ(h2 − `)
∂pG

(
π2t+1
Gg (µ), 1

)
∂µ

dπ∗Gg(π
2t
Gg(µ))

dµ

dπ2t
Gg(µ)

dµ

]
. (5)

2This is because p∗G(·) is strictly increasing and V ∗h (µ) is the same probabilistic sum of pG(·)’s across
the posteriors after possible future histories from the current reputation µ, each of which is an increasing
function of µ.
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As an intermediate step to determining the sign of (5), we calculate

(h− 1)
∂pG

(
µ, 1
)

∂µ
+ (h2 − `)

∂pG
(
π∗Gg(µ), 1

)
∂µ

dπ∗Gg(µ)

dµ

= −h(1− h)(1− `)
(1− (1− h)µ)2

+
h2(h2 − `)(1− `)`
(`(1− µ) + h2µ)2

, (6)

the derivative of which is

−2(1− `) h(1− h)2

(1− (1− h)µ)3
− `(h3 − h`)2

(`(1− µ) + h2µ)3
< 0. (7)

It is routinely verified that (6) evaluated at µ = 1 is positive if (1) holds and thus, (6) is
positive for all µ due to (7). This further implies that (5) is positive for all µ ≥ µ̄ when

δ < 1 is sufficiently close to 1 and consequently, because
dV ∗h (µ)

dµ
>

dV o
h (µ)

dµ
as asserted above,

dV ∗h (µ)

dµ
≥ dV ∗` (µ)

dµ
∀µ ≥ µ̄. (8)

Next, let µm = min{µ|π∗Gg(µ) ≥ µ̄ and πBb(µ, y
∗(µ)) ≥ µ̄} and consider µ ∈ [µm, µ̄].

Note that µm < µ̄ due to Lemmas 4 and 5 of the Appendix A.3 of the main article. Since

V ∗h (µ) = hpG(µ, y∗(µ)) + δ
(
hV ∗h (π∗Gg(µ)) + (1− h)V ∗h (πBb(µ, y

∗(µ)))
)

and

V ∗` (µ) = pG(µ, y∗(µ)) + δ
(
`V ∗` (π∗Gg(µ)) + (1− `)V ∗` (0)

)
,

we deduce that
dV ∗h (µ)

dµ
− dV ∗` (µ)

dµ
, which exists almost everywhere because both V ∗h (µ) and

V ∗` (µ) are continuous and increasing, is equal to the derivative of

(1− h)
(
δV ∗h (πBb(µ, y

∗(µ)))− pG(µ, y∗(µ))
)

+ δ
(
hV ∗h (π∗Gg(µ))− `V ∗` (π∗Gg(µ))

)
,

which is positive due to (8) because pG(µ, y∗(µ)) = δ
(
V ∗` (πBb(µ, y

∗(µ)))−V ∗` (0)
)

for µ ≤ µ̄.

Repeated application of analogous argument establishes that
dV ∗h (µ)

dµ
>

dV ∗` (µ)

dµ
for all µ > 0

when δ < 1 is large enough so long as (1) holds. This proves (2).
Then, as in Theorem 1, an h-type strictly prefers to tell the truth whenever an `-type

seller weakly prefers to do so, which is the case when q = g or when q = b and µ ∈ [0, µ̄].
For the cases that q = b and µ > µ̄, it suffices to establish that an h-type seller prefers to
tell the truth when µ = 1, which amounts to showing that 1 + δṼ ∗h (0) ≤ δh/(1− δ). From

Ṽ ∗h (0) = h`+ δhṼ ∗h (0) + δ(1− h)V ∗h (π̃∗Bb(0))

and V ∗h (µ) ≤ h/(1− δ) for all µ, we obtain

1 + δṼ ∗h (0) ≤ 1 + δ
h`+ δ(1− h)h/(1− δ)

1− δh
= 1 +

δh

1− δ
− δh(1− `)

1− δh

which is less than δh/(1− δ) if δh(2− `) > 1. As (1) implies that h(2− `) > 1, the desired
condition is satisfied if δ < 1 is sufficiently close to 1.
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1 Proof of Theorem 2

Recall that we augment our baseline model as follows:

a) In every period, the seller receives a signal q̂t ∈ {g, b} such that Pr (q̂t = g | qt = g) =
1 > Pr (q̂t = b | qt = b) = α where α is close to 1.

b) In every period, the seller is replaced by another seller of the other type with a small,
exogenous probability 1− β, where β < 1 is close to 1.

The replacement is not observed by potential buyers. We define δ as the seller’s discount
factor adjusted for survival, i.e., the discount factor multiplied by the survival rate β.

We fix β and δ close to 1 (this will be made precise below) and show that an honest
equilibrium exists for sufficiently large α. Under our assumption that the seller knows for
sure that quality is bad when the signal is bad, an `-type seller would never report a good
signal as bad because this would reveal his type without short-term gain, but may report
a bad signal as good, say with probability y. The equilibrium conditions for `-type are the
same as for β = α = 1 but with different formulae for the equilibrium price and transition
functions for the market’s update of reputation. In what follows, for conciseness we will
use “hat” to denote functions that are evaluated for β and α different from 1. Then, the
prices for B and G are p̂∗B(µ) = 0 and p̂∗G(µ) = p̂G(µ, y∗(µ)) where:3

p̂G(µ, y) =
µh+ (1− µ)`

µ(h+ (1− h)(1− α)) + (1− µ)(`+ (1− `)(1− α + αy))
.

The transition functions are π̂∗Gg(µ), π̂∗Bb(µ) = π̂Bb(µ, y
∗(µ)) and π̂∗Gb(µ) = π̂Gb(µ, y

∗(µ))
where

π̂∗Gg(µ) = (2β − 1)
µh

µh+ (1− µ)`
+ 1− β

π̂Bb(µ, y) = (2β − 1)
µ(1− h)

µ(1− h) + (1− µ)(1− `)(1− y)
+ 1− β

π̂Gb(µ, y) = (2β − 1)
µ(1− h)(1− α)

µ(1− h)(1− α) + (1− µ)(1− `)(1− α + αy)
+ 1− β

These price and transition functions increase in µ. Raising y increases p̂G and π̂Bb but
decreases π̂Gb. The key difference from the baseline model is that when α < 1, π̂Gb is
positive, increases in µ and decreases in y. Note that π̂Gb and its derivatives converge to 0
when α tends to 1. More precisely, there exists ρ > 0 such that for all α and µ ∈ [1− β, β],

∂π̂Gb(µ,y)
∂µ

= (2β−1)(1−`)(1−α+αy)(1−h)(1−α)

[µ(1−h)(1−α)+(1−µ)(1−`)(1−α+αy)]2
< ρ(1− α)∣∣∣∂π̂Gb(µ,y)

∂y

∣∣∣ = (2β−1)µ(1−µ)(1−`)α(1−h)(1−α)

[µ(1−h)(1−α)+(1−µ)(1−`)(1−α+αy)]2
< ρ(1− α).

(9)

This will imply that a small observation error has a small effect on the strategy of an
`-type seller.

3In an alternative case that the seller observes the quality perfectly but the buyers mis-report good
quality as bad with probability 1− α, the analysis is the same except that the price is pG(µ, y).
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To prove Theorem 2, we show first that an `-type seller’s strategy and value function
exist that satisfy incentive compatibility when α and β are large enough (Section 1.1),
then show that these functions converge as α and β tend to 1 (Section 1.2), which is used
to verify the incentive compatibility of an h-type seller (Section 1.3).

1.1 Existence of the value function and equilibrium strategy for
`-type

We first establish the existence of a value function V βα
` and a positive policy function yβα,

defined for µ ∈ [1 − β, β], that characterize the equilibrium value function and strategy
for an `-type seller. We will not claim they are unique but only that they are close to the
unique equilibrium of Theorem 1 when β and α are large. In this part, as β and α are
fixed (close to 1), we drop the superscript βα.

For a given β < 1 close to 1, fix κ ∈ R+ large enough so that

κ >
1

1− δ

(1− `
h

+
1− `
h

1

β(1− β)

)
, (10)

and define Fβ as the set of all non-decreasing κ-Lipschitz functions V : [1 − β, β] →
[ `
1−δ ,

1
1−δ ] such that V (β) − V (1 − β) ≤ 1. In this section we prove that for large enough

α, there exists an equilibrium with a value function for an `-type seller in Fβ.
Define yV in the same manner as in the proof of Theorem 1:

yV (µ) = 1 if p̂G(µ, 1) ≥ δ(V (β)− V (π̂Gb(µ, 1))) (11)

p̂G(µ, yV (µ)) = δ(V (π̂Bb(µ, yV (µ)))− V (π̂Gb(µ, yV (µ)))), otherwise. (12)

Notice that the left-hand side (LHS) of (12) is decreasing in y while the RHS is non-
decreasing in y. Let y > 0 be such that p̂G(0, y)

∣∣
α=1

= `
`+(1−`)y > δ ≥ δ(V (β)− V (1− β))

and µ̌ be close enough to 1 so that p̂G(µ̌, 1)
∣∣
α=1

> δ. Then, if α and β are large enough,
p̂G(µ, y) > δ for all µ and p̂G(µ, 1) > δ for µ > µ̌ and thus, yV (µ) is well-defined and
exceeds y for all µ ∈ [1 − β, β] and is equal to 1 if µ ≥ µ̌. Moreover, as p̂G(µ, 1) and
π̂Gb(µ, 1) increase in µ while π̂Bb(µ, 1) = β, for any V there exists µ̄V < µ̌ such that
yV (µ) = 1 ⇔ µ ≥ µ̄V . Therefore, there are αmin, βmin ∈ (0, 1) such that if α ∈ (αmin, 1)
and β ∈ (βmin, 1) then for any V ∈ Fβ,

yV (µ) ≥ y for all µ ∈ [1− β, β] and yV (µ) = 1⇔ µ ∈ [µ̄V , β] for some µ̄V < β. (13)

Below we only consider α ∈ (αmin, 1) and β ∈ (βmin, 1) so that (13) holds. From the same
argument as in the perfect signal case, as p̂G(µ, y) and δ(V (π̂Gb(µ, y))− V (π̂Bb(µ, y))) are
continuous, yV is continuous. In addition, we have

Lemma 1 For all V ∈ Fβ, the function yV is K-Lipschitz, where K is independent of α.

Proof. As {
∂p̂G(µ,y)

∂µ
= h(1−`)(1−α+αy)−`(1−h)(1−α)

(µ(h+(1−h)(1−α))+(1−µ)(`+(1−`)(1−α+αy)))2

∂p̂G(µ,y)
∂y

= − (µh+(1−µ)`)(1−µ)(1−`)α
(µ(h+(1−h)(1−α))+(1−µ)(`+(1−`)(1−α+αy)))2

(14)
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and

{
∂π̂Bb(µ,y)

∂µ
= (2β−1)(1−h)(1−y)(1−`)

[µ(1−h)+(1−µ)(1−`)(1−y)]2

∂π̂Bb(µ,y)
∂y

= (2β−1)µ(1−h)(1−µ)(1−`)
[µ(1−h)+(1−µ)(1−`)(1−y)]2

,
(15)

one can find positive numbers k0 and k1 such that for µ ∈ [1− β, β] and y ∈
[
y, 1
]
:

k0 <
∂p̂G(µ, y)

∂µ
,
∂π̂Bb(µ, y)

∂y
,−∂p̂G(µ, y)

∂y
< k1; 0 <

∂π̂Bb(µ, y)

∂µ
< k1; ρ(1− αmin) < k1.

(16)
Hence, H(µ, y) = p̂G(µ, y) + δ(V (π̂Gb(µ, y))−V (π̂Bb(µ, y))) is k-Lipschitz in both com-

ponents, where k = k1 + 2κk1. Consider µ, µ′ ∈ (1 − β, µ̄V ) so that yV (µ) < 1 and
yV (µ′) < 1. Then, H(µ, yV (µ)) = H(µ′, yV (µ′)) by (12), which implies

H(µ, yV (µ))−H(µ′, yV (µ)) = H(µ′, yV (µ′))−H(µ′, yV (µ))

and consequently,
k |µ− µ′| ≥ |H(µ′, yV (µ′))−H(µ′, yV (µ))| .

As H is absolutely continuous and ∂
∂y
H(µ, y) ≤ ∂p̂G(µ,y)

∂y
< −k0 < 0 where the first inequal-

ity follows from ∂π̂Gb(µ,y)
∂y

< 0 and ∂π̂Bb(µ,y)
∂y

> 0,

k |µ− µ′| ≥ |H(µ′, yV (µ′))−H(µ′, yV (µ))| > k0 |yV (µ′)− yV (µ)| .

Hence, yV is K-Lipschitz on (1−β, µ̄V ) where K = k/k0. As yV (µ) = 1 for all µ ∈ [µ̄V , β],
it is K-Lipschitz on the entire domain.

We now define an operator T on the set Fβ as

TV (µ) = p̂G(µ, yV (µ)) + δ(`V (π̂Gg(µ)) + (1− `)V (π̂Gb(µ, yV (µ)))). (17)

Lemma 2 There are ᾱ < 1 and κ > 0 such that if α > ᾱ then for all V ∈ Fβ and
µ ∈ [1− β, β], (i) ` ≤ (1 − δ)TV (µ) ≤ 1, (ii) TV (β) − TV (1 − β) < 1, (iii) TV is
κ-Lipschitz, and (iv) TV ′(µ) > −κ(1− α) for a.e. µ. In addition, (v) T is continuous on
Fβ.

Proof. (i) That `/(1− δ) ≤ TV ≤ 1/(1− δ) obtains because `/(1− δ) ≤ V (µ) ≤ 1/(1− δ)
and ` ≤ p̂G(µ, y) ≤ 1.

(ii) Using yV (β) = 1, we have

TV (β) = 1 + δ(`V (β) + (1− `)V (π̂Gb(β, 1))) and

TV (1− β) ≥ `+ δV (1− β).

For α large, we have (using the fact that V is κ-Lipschitz):

TV (β)− TV (1− β) ≤ 1− `+ δ`(V (β)− V (1− β)) + δ(1− `)(V (π̂Gb(β, 1))− V (1− β))

≤ 1− `+ δ`+ δ(1− `)κ(π̂Gb(β, 1)− (1− β))

= 1− `+ δ`+ δ(1− `)κ(2β − 1)
β(1− h)(1− α)

β(1− h)(1− α) + (1− β)(1− `)
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where the equality follows from writing out π̂Gb(β, 1). Hence, TV (β)− TV (1− β) < 1 for
large enough α as −`+ δ` < 0.

(iii) We first show that π̂Gb(µ, yV (µ)) is increasing in µ. This is straightforward from
∂π̂Gb(µ,y)

∂µ
when yV (µ) = 1. When yV (µ) < 1, we have p̂G(µ, yV (µ)) + δV (π̂Gb(µ, yV (µ))) =

δV (πBb(µ, yV (µ))) from (12). The value of this equality is non-decreasing in µ, because if
it were decreasing then yV (µ) would have to increase for the LHS to decrease as µ increases
while yV (µ) would have to decrease for the RHS to decrease. Note that

∂π̂Gb(µ,y)
∂µ

−∂π̂Gb(µ,y)
∂y

=
1− α + αy

µ(1− µ)α
>

∂p̂G(µ,y)
∂µ

−∂p̂G(µ,y)
∂y

=
h(1− `)(1− α + αy)− `(1− h)(1− α)

(µh+ (1− µ)`)(1− µ)(1− `)α
> 0.

If πGb(µ, yV (µ)) were non-increasing, then yV would be increasing and the above inequality
implies that p̂G(µ, yV (µ)) would be decreasing. But this would imply that p̂G(µ, yV (µ)) +
δV (π̂Gb(µ, yV (µ))) is decreasing, a contradiction to the assertion above. Hence, we conclude
that πGb(µ, yV (µ)) is increasing in µ.

We now show that TV is κ-Lipschitz. As the function yV , p̂G, π̂Bb, π̂Gb, TV are
Lipschitz, they are absolutely continuous and we can apply the rule of composition for
derivatives. From (17) we get

TV ′(µ) =
∂p̂G(µ, yV (µ))

∂µ
+
∂p̂G(µ, yV (µ))

∂y

dyV (µ)

dµ
+ δ

[
`V ′(π̂Gg(µ))

dπ̂Gg(µ)

dµ

+(1− `)V ′(π̂Gb(µ, yV (µ)))
(∂π̂Gb(µ, yV (µ))

∂µ
+
∂π̂Gb(µ, yV (µ))

∂y

dyV (µ)

dµ

)]
.(18)

Notice that

(2β − 1)h`

(βh+ (1− β)`)2
<
dπ̂Gg(µ)

dµ
=

(2β − 1)h`

(µh+ (1− µ)`)2
<
`

h
< 1. (19)

Using, in addition, the fact that π̂Gg(µ) and π̂Gb(µ, yV (µ)) increase in µ, we obtain (from
now on we omit the arguments for partial derivatives):

TV ′(µ) ≤ ∂p̂G
∂µ

+
∂p̂G
∂y

dyV (µ)

dµ
+ δκ + δ(1− `)κ

(∂π̂Gb
∂µ

+
∂π̂Gb
∂y

dyV (µ)

dµ

)
. (20)

Recall that ∂p̂G
∂y

and ∂π̂Gb

∂y
are negative. Moreover,

∂p̂G(µ, y)

∂µ
<

h(1− `)
(µh+ (1− µ)`)2

<
1− `
h

and

∣∣∣∣∂p̂G∂y
∣∣∣∣ < 1− `

h
. (21)

We consider two cases as below.
a) Suppose that dyV (µ)

dµ
< 0. Then, the LHS of (12) increases in µ, which implies that

π̂Gb(µ, yV (µ)) increases and thus,

dyV (µ)

dµ
> −∂πBb

∂µ

/∂πBb
∂y

= −1− yV (µ)

µ(1− µ)
> − 1

β(1− β)
.
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Thus, for α large enough, using (9) and (21) we obtain from (20) that

TV ′(µ) <
1− `
h

+
1− `
h

1

β(1− β)
+ δκ + δ(1− `)κ

(
1 +

1

β(1− β)

)
ρ(1− α) < κ

and that

TV ′(µ) >
dp̂G(µ, yV (µ))

dµ
> 0.

b) Suppose that dyV (µ)
dµ
≥ 0. Then, from (20) we have

TV ′(µ) <
1− `
h

+ δκ + δ(1− `)κρ(1− α) < κ

for large enough α. Moreover, as p̂G(µ, yV (µ)) and V (π̂Gg(µ)) increase in µ, for large
enough α we obtain from (18) that

TV ′(µ) ≥ δ(1− `)κ∂π̂Gb
∂y

dyV
dµ

> −δ(1− `)κρ(1− α)K > −κ. (22)

(iv) As TV ′(µ) > 0 has been shown when dyV (µ)
dµ

< 0 above, TV ′(µ) > −κ(1 − α) by

(22) whenever TV ′(µ) is defined if we set κ = δ(1− `)κρK.
(v) The proof is omitted. It is the same as in the case α = β = 1, except that V

is continuous which simplifies the proof. Notice that the image of Fβ is also a set of
κ-Lipschitz function. Thus, the topology of pointwise convergence is the same as the
topology of uniform convergence.

Lemma 2 shows that T preserves all properties of V except for monotonicity. Hence,
we define T̃ : Fβ → Fβ as

T̃ V (µ) = max
m∈[1−β,µ]

TV (m)

and show in the next two lemmas that T̃ has a fixed point and that it is a fixed point of
T as well.

Lemma 3 There exists a fixed point V βα
` of T̃ .

Proof. As Fβ is a compact set by Ascoli-Arzelà Theorem,4 it suffices to show that T̃
is continuous. Suppose that Vn converges to V , where convergence is uniform. Sup-
pose that T̃ Vn(µ) converges to z > T̃V (µ). Then there exists a sequence µn < µ such
that TVn(µn) converges to z. Assume without loss of generality that µn converges to
µ̂ ≤ µ. Since TVn is κ-Lipschitz and TVn converges to TV, it must be the case that
limn→+∞ T̃ Vn(µ) = TV (µ̂). Hence TV (µ̂) = z > T̃V (µ), a contradiction with µ̂ ≤ µ. Sup-

pose that T̃ Vn(µ) converges to z < T̃V (µ), then there is some µ̂ ≤ µ such that TV (µ̂) > z.

But then TVn(µ̂) converges to TV (µ̂) so that limn→+∞ T̃ Vn(µ) ≥ TV (µ̂) > z, a contradic-

tion. Hence, it must be the case that T̃ Vn(µ) converges to T̃ V (µ) for all µ.

4See Royden H.L.(1988), Real Analysis, 3rd ed., Macmillan Publishing Company, New York.

8



Lemma 4 For α sufficiently close to 1, if V is a fixed point of T̃ , then V is a fixed point
of T , i.e., V is increasing.

Proof. Recall from (13) that if α and β are sufficiently close to 1, then yV (µ) ≥ y and
yV (µ) = 1 if µ ≥ µ̄V . Moreover, the reasoning for (13) has shown that µ̄V is uniformly
bounded above by µ̌. For the proof we will need to bound some slopes. For any given
c > 0, one can set η > 0 small enough so that

µ̌η < (β − µ̌)c/2. (23)

Then Lemma 2, properties (9) and (16) and the definition (18) imply that there exist
ξ > 0 and c > 0 such that if we choose α0 ≥ α so that κ(1 − α0) < η, then the following
holds:

For α > α0 and µ ∈ [1− β, β] , TV ′(µ) > −η and TV ′(µ) > c if
dyV (µ)

dµ
< ξ. (24)

To prove the lemma, suppose V is a fixed point of T̃ for α > α0.
First, note from (24) that TV ′(µ) > c for all µ ≥ µ̌ so that TV (β) > TV (µ̌)+(β− µ̌)c.

Together with (23), this further implies that

max
m∈[1−β,µ̌]

TV (m) < TV (µ̌) + µ̌η < TV (µ̌) + (β − µ̌)c/2 < TV (β)− (β − µ̌)c/2.

Then, by choosing µ† ∈ (µ̌, β) such that κ(β − µ†) < (β − µ̌)c/2, we have TV (µ) >
maxm∈[1−β,µ̌] TV (m) for µ ≥ µ† and thus TV (µ) = maxm∈[µ̌,µ] TV (m) by (24). Hence,

T̃ V (µ) = TV (µ) = V (µ) and T̃ V ′(µ) = TV ′(µ) = V ′(µ) > c for all µ ≥ µ†. (25)

Notice that µ† is independent of α > α0. For each α > α0, define

µ◦(α) = sup{µ|T̃ V (µ) 6= TV (µ)} ≤ µ†

if T̃ V (µ) 6= TV (µ) for some µ ∈ [1− β, β], and let µ◦(α) = 1− β otherwise. Observe from
(19) that, independently of α, there exist ε > 0 and ν > 0 such that

For µ ∈ [1− β, µ†], π̂Gg(µ) > µ+ ε and
dπ̂Gg(µ)

dµ
> ν. (26)

We assume ν < 1 without loss of generality. From this we establish the following:

Claim There exist finite sequences cn > 0 and αn < 1 for n = 1, · · · , N , with µ† −Nε <
1 − β, such that if α > αn and µ† − (n − 1)ε > µ◦(α), then T̃ V ′(µ) = TV ′(µ) =
V ′(µ) ≥ cn for all µ ∈ [max{µ† − nε, µ◦(α)}, β].

Proof of Claim: We proceed by induction. The property holds for n = 1 with c1 = c.
Suppose that it holds for n− 1 and ck is non-increasing in k ≤ n− 1.

Consider α ∈ (αn−1, 1) such that µ† − (n− 1)ε > µ◦(α). If such α does not exist, then
the property of the Claim holds trivially for n by setting cn = cn−1 and αn = αn−1. Hence,
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suppose such α exists. Then T̃ V ′(µ) = TV ′(µ) = V ′(µ) ≥ cn−1 if µ ≥ µ† − (n − 1)ε by
induction hypothesis.

Define In = [max{µ† − nε, µ◦(α)}, µ† − (n − 1)ε]. For µ ∈ In, we have TV ′(µ) > c if
dyV (µ)
dµ

< ξ from (24). Suppose now that dyV (µ)
dµ
≥ ξ, then condition (12) implies that

dp̂G(µ, yV (µ))

dµ
+ δV ′(π̂Gb(µ, yV (µ)))

(∂π̂Gb
∂µ

+
∂π̂Gb
∂y

dyV (µ)

dµ

)
= δV ′(π̂Bb(µ, yV (µ)))

(∂π̂Bb
∂µ

+
∂π̂Bb
∂y

dyV (µ)

dµ

)
≥ 0. (27)

Moreover, for µ ∈ In, π̂Gg(µ) ≥ µ† − (n − 1)ε implies that V ′(π̂Gg(µ)) ≥ cn−1. These
properties imply from (18) that

TV ′(µ) ≥ `
dp̂G(µ, yV (µ))

dµ
+ δ`V ′(π̂Gg(µ))

dπ̂Gg(µ)

dµ
≥ `

dp̂G(µ, yV (µ))

dµ
+ δ`cn−1ν. (28)

If the second term of the LHS of (27) is negative then dp̂G(µ,yV (µ))
dµ

is positive and

TV ′(µ) ≥ δ`cn−1ν by (28).
Consider the alternative case that the second term of the LHS of (27) is positive. Then,

from Lemma 1 and Lemma 2, we can choose αn ≥ αn−1, so as to ensure that for α ≥ αn the
second term of the LHS of (27) is less than δcn−1ν/2. Thereby, dp̂G

dµ
≥ −δcn−1ν/2 so that

TV ′(µ) ≥ −δ`cn−1ν/2 + δ`cn−1ν = δ`cn−1ν/2 by (28).
Thus, we have shown that the property of the Claim holds for αn and cn = δ`cn−1ν/2,

completing the induction argument. �

The Claim above establishes that there is α∗ < 1 and c∗ > 0 such that:

T̃ V ′(µ) = TV ′(µ) = V ′(µ) ≥ c∗ for all µ ∈ [µ◦(α), β] if α > α∗. (29)

To prove the lemma, it remains to show that µ◦(α) = 1− β for sufficiently large α. To do
this, for α > α∗ such that µ◦(α) > 1 − β, by applying the induction step in the proof of
the Claim one more time on J = [µ◦(α)− ε, µ◦(α)]∩ [1−β, β], we deduce that there exists

α∗∗ < 1 such that (notice that we cannot claim T̃ V ′(µ) = TV ′(µ) on J):

TV ′(µ) ≥ δ`c∗ν/2 for all µ ∈ J = [µ◦(α)− ε, µ◦(α)] ∩ [1− β, β] if α > α∗∗. (30)

The last step is to show that µ◦(α)−ε ≤ 1−β for α large. Suppose that µ◦(α)−ε > 1−β
for some α > α∗∗. One can choose α∗∗∗ ≥ α∗∗ such that κ(1 − α∗∗∗) < εδ`c∗ν/4. For
α > α∗∗∗, as TV ′(µ) > −εδ`c∗ν/4 from Lemma 2, we have for any µ < µ◦(α)− ε,

TV (µ) < TV (µ◦(α)− ε) + εδ`c∗ν/4(µ◦(α)− ε− µ) < TV (µ◦(α))− εδ`c∗ν/4. (31)

In conjunction with (30), this means that there is µ′ < µ◦(α) such that TV ′(µ) > 0 if
µ ≥ µ′ and TV (µ) < TV (µ′) if µ < µ′, which would contradict the definition of µ◦(α).
Thus, we conclude that µ◦(α)− ε ≤ 1− β for all α > α∗∗∗. Then for α > α∗∗∗, properties
(29) and (30) imply that TV is increasing on [1− β, β] and thus that µ◦(α) = 1− β.

In conjunction with (29), this proves that V ′(µ) > 0 for all µ if V is a fixed point of T̃
when α > α∗∗∗. Hence, V = TV.
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1.2 Continuity of V βα
θ in β and α

Recall that given β, a fixed point of T and the corresponding policy function, V βα
` and yβα,

are Lipschitz with uniformly bounded Lipschitz constant for α close to 1. For a fixed value
of β, consider a sequence αk that converges to 1. As the set Fβ is compact, we can assume

without loss of generality that the value function V βαk

` converges uniformly as k →∞. Let

V β
` denote this limit. Define yβ as the solution of equations (11) and (12) for V β

` , which is
unique. It must be the case that yβαk converges to yβ. We thus conclude that the limits
V β
` and yβ correspond to a fixed point and policy function pair (V β1

` , yβ1) for β and α = 1.
Now consider a sequence βn that converges to 1. Again as the set of increasing Lipschitz

functions is compact we can assume without loss of generality that V βn
` (µ) converges to

a limit denoted by V ∞` (µ) for all µ ∈ (0, 1). Define V ∞` (0) = limn→∞ V
βn
` (1 − βn) and

V ∞` (1) = limn→∞ V
βn
` (βn). By continuity we have (here superscript n of p̂nG and π̂nGg means

evaluated at βn and α = 1)

yβn(µ) = 1 for µ > µ̄n

p̂nG(µ, yβn(µ)) = δ(V βn
` (π̂nBb(µ, y

βn(µ)))− V βn
` (1− βn)) for µ ≤ µ̄n, and

V βn
` (µ) = p̂nG(µ, yβn(µ)) + δ(`V βn

` (π̂nGg(µ)) + (1− `)V βn
` (1− βn))

where µ̄n is µ̄V of (13) obtained for the given βn and α = 1 relative to V = V βn
` .

We now show that the limit is an equilibrium.
i) For any µ ∈ (0, 1), let y∞ be the unique solution to equations (11) and (12) evaluated

at β = α = 1. Recall that µ̌ is independent of β and µ̌ > µ̄n. For µ > µ̌, we have
V βn
` (µ) =

∑∞
t=0(δ`)tp̂nG(π̂nGg(µ)t, 1) + φn where π̂nGg(µ)t is the t-iteration of π̂nGg(µ), and φn

is a constant. Given that π̂nGg(·) and p̂nG have uniformly bounded slopes on [µ̌, 1], it follows
that V βn has a uniformly bounded slope on µ > µ̌. The same argument as in Lemma 2
(of this Appendix) shows that for any µ0 > 1 − βn arbitrarily close to 1 − βn, the slope
of V βn

` is uniformly bounded on [µ0, βn] (by choosing κ > 1
1−δ (

1−`
h

+ 1−`
h

1
µ0(1−µ0)

) one can

ensure that the bound of the slope on (µ0, µ̌] is independent of βn). This implies that for
any µ ∈ (0, 1), yβn(µ) converges to y∞(µ) and

V ∞` (µ) = pG(µ, y∞(µ)) + δ(`V ∞` (πGg(µ)) + (1− `)V ∞` (0)).

ii) Moreover

V ∞` (1) = lim
n→∞

{
p̂nG(βn, 1) + δ(`V βn

` (π̂nGg(µ)) + (1− `)V βn
` (1− βn))

}
= pG(1, 1) + δ(`V ∞` (1) + (1− `)V ∞` (0))

iii) To conclude we show that V ∞` (0) = `/1− δ. By continuity of V ∞` , we have

V ∞` (0) = lim
µ→0
{pG(µ, y∞(µ)) + δ(`V ∞` (πGg(µ)) + (1− `)V ∞` (0))} .

Also, by continuity of V ∞` , limµ→0 δ(V
∞
` (πBb(µ, y))−V ∞` (0)) = 0 for y < 1. Hence, y∞(µ)

converges to 1 when µ goes to zero, which implies that the V ∞` (0) = `+ δV ∞` (0) = `/1− δ.

11



We thus conclude from i), ii) and iii) that the limit (V ∞, y∞) is the unique equilibrium
(V ∗` , y

∗) for β = α = 1 characterized in Proposition 1 of this Appendix.
To show uniform convergence, we extend V βn

` on [0, 1] by postulating V βn
` (µ) = V βn

` (1−
βn) for µ < 1−βn and V βn

` (µ) = V βn
` (βn) for µ > βn. Then V βn

` (µ) converges to V ∗` (µ) for

all µ ∈ [0, 1]. Notice that V βn
` is increasing while the limit V ∗` is continuous on [0, 1].

According to Polya’s Theorem5 this implies that the extension of V βn
` to [0, 1] converges

uniformly to V ∗` . Excluding 0 and 1 as they are not in the support [1− βn, βn], we obtain
uniform convergence of V βn

` to V ∗` on (0, 1).
In the proof of Theorem 3 (Claim 2 of Lemma 8 of this Appendix), we show V ∗` to be

Lipschitz-continuous on any interval [µ0, 1] with µ0 > 0. From the argument of Lemma 1
of this Appendix, y∗ is also Lipschitz-continuous on [µ0, 1].

By the same argument, we can show that the value function V βn
h converges to V ∗h ,

uniformly on (0, 1) (again convergence follows because all the functions involved are Lips-
chitz and converge on any interval [µ0, 1], with uniformly bounded Lipschitz constant, and
uniform convergence follows from Polya’s Theorem).

1.3 Incentive compatibility for h-type

Consider first β < 1 and α = 1 and let yβ be the equilibrium policy. Let V β
h denote the

value function of an h-type seller who truthfully announces the signal received.

Lemma 5 Suppose that (1) holds and δ is large. For β sufficiently close to 1, p̂G(µ, yβ(µ)) <
δ(V β

h (π̂Bb(µ, y
β(µ)))− V β

h (1− β)) for all µ ∈ [1− β, β]

Proof. Suppose this is not the case. Then we can find sequences βn < 1 and µn ∈
[1− βn, βn] such that (where the superscript n means evaluated at βn)

p̂nG(µn, y
βn(µn)) ≥ δ(V βn

h (π̂nBb(µn, y
βn(µn)))− V βn

h (1− βn)) (32)

where βn → 1. Assume without loss of generality that µn and yβn(µn) converge and let
µ∞ and y∗(µ∞) denote their respective limits.

Recalling that the value function V βn
h converges to V ∗h uniformly on (0, 1), we focus on

the equilibrium of the game when β = α = 1 where the value function Ṽ ∗h of the h-type
is continuous at µ = 0, that we derived in Proposition 1 of this Appendix when (1) holds
and δ is large. Recall that Ṽ ∗h (0) = infµ>0 V

∗
h (µ) and π̃∗Bb (0) = limµ→0 π

∗
Bb (µ).

Notice that limn→∞ V
βn
h (1−βn) ≤ V ∗h (µ) for any µ > 0, implying that limn→∞ V

βn
h (1−

βn) ≤ Ṽ ∗h (0). Thus, taking the limit of condition (32) we obtain (notice that this hold even
if µ∞ = 0 because π̂nBb(µn, y

βn(µn)) converges to π̃∗Bb(0) > 0)

pG(µ∞, y
∗(µ∞)) ≥ δ(V ∗h (πBb(µ∞, y

∗(µ∞)))− Ṽ ∗h (0)),

which contradicts the fact the h-type strictly prefers to announce truthfully for all µ ∈ [0, 1]
as shown in the proof of Proposition 1 of this Appendix. This proves the lemma.

Finally, we have

5See R. Rao (1962), “Relations between Weak and Uniform Convergence of Measures with Applica-
tions,” The Annals of Mathematical Statistics, Vol. 33, No. 2, pp. 659-680.
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Lemma 6 Suppose that (1) holds and δ is large. For β close to 1, the incentive constraint
of an h-type seller is satisfied for all µ ∈ [1− β, β] when α is close to 1.

Proof. Fix β sufficiently large so that Lemma 5 holds. To reach a contradiction, suppose
that the conclusion of this lemma fails. Then, we can find a sequence αn converging to 1
such that for each fixed point V βαn

` with policy function yβαn , there exists µn where the
incentive constraint of the h-type is violated. One can ensure δ is large enough so that for
any µ ∈ [0, β] if yβαn(µ) = 1 then an h-type seller strictly prefers to tell the truth when the
signal is bad because the long-term loss would exceed the maximum possible short-term
gain, 1, if n is large enough. Then, it must be the case that yβαn(µn) < 1 for large enough
n. By an argument analogous to before, the value function V βαn

h converges uniformly to

V β
h on [1 − β, β] (again this follows because all the functions involved are Lipschitz with

uniformly bounded Lipschitz constant). Thus, at the limit the incentive constraint of the
h-type must hold with equality at any limit value of µn, which would contradict Lemma
5.

Lemmas 3, 4, 5 and 6 (in this Appendix) imply Theorem 2.

2 Negative social value

We establish here that an honest equilibrium exist when sellers incur a small distribution
cost c < `. The equilibrium has the following features:

i) An h-type seller announces the quality truthfully and doesn’t sell when quality is
bad.

ii) An `-type seller announces truthfully when q = g but lies when q = b with probability
y and sells.

The characterization of the `-type seller strategy and value function is the same as in
the baseline model except that pG (µ, y) has to be replaced by pG (µ, y) − c. At µ = 0,
`-type seller “babbles” and sell at a price equal to `− c.

The proof that an h-type seller always announces bad quality truthfully is the same as
before if

δ > δch =
1− c

1 + h (1− c)− `
.

However, we need to ensure that an h-type seller does not lie when q = g to boost
reputation. As the reputation monotonically increases from an initial level µ1 for h-type
seller, it suffices to show that

p∗G(µ)− c+ δV ∗h (π∗Gg(µ)) ≥ δV ∗h (π∗Bb(µ)) for all µ ≥ µ1.

As V ∗h (π∗Gg(µ)) converges to V ∗h (1) when µ tends to 1 by continuity, this inequality holds
for large enough µ because as µ→ 1,

p∗G(µ)− c → h− c > δ
(
V ∗h (1)− V ∗h (π∗Gg(µ))

)
≥ δ
(
V ∗h (π∗Bb(µ))− V ∗h (π∗Gg(µ))

)
.

Therefore, an honest equilibrium exists if µ1 is large enough.
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3 Proof of Theorem 3

To prove the existence of an honest equilibrium in the model where sellers can start afresh
with a new identity, we proceed in two steps. First, we characterise the equilibrium of an
instrumental “auxiliary model” in which a newborn seller with initial reputation µ ∈ [0, 1]
must trade in the platform in the first period but may exit in any future period for an
exogenous outside option value v1 ∈ ( `

1−δ ,
1

1−δ ). Then, by incorporating equilibrium restart
decisions into this analysis, we establish the existence of a stationary equilibrium of the
model with an option to restart, where v1 is endogenously determined as the value of an
`-type seller deciding to restart.

First, we show that the auxiliary model described above has an equilibrium. It is worth
pointing out that this result is of independent interest to the extent that in the proof of
Theorem 3 we only exploit the existence of an incentive compatible value function of the
auxiliary model and the optimality of the h-type seller strategy is obtained differently.

Lemma 7 In the auxiliary model with an exit value v1 ∈ ( `
1−δ ,

1
1−δ ), an honest equilibrium

exists if δ( h
1−δ − v1) > 1. All honest equilibria coincide on the equilibrium path.

Proof. It is straightforwardly verified that an `-type seller truthfully announces when q = g
by the same argument as before. Thus, as in the baseline model, an equilibrium strategy
is described by the probability of lying by an `-type seller upon drawing q = b, denoted by
y†(µ) to distinguish it from that in Section 4 of the main article. Let V †v1 denote the value
function of an `-type seller in an honest equilibrium (presuming one exists). Adopting the
convention, for the same reason as before, that an `-seller always announce G when µ = 0,
we have V †v1(0) = p∗G(0) + δmax{v1, V

†
v1

(0)} = ` + δv1 >
`

1−δ ; and, analogously to (25) of

the main article, V †v1(µ) > V †v1(0) is immediate for all µ > 0. In addition, an argument
analogous to that leading to (13) in the main article, establishes that without loss of
generality we may set π†Gb(1) = 0. Then, the boundary values are routinely computed to
be

V †v1(0) = `+ δv1 ∈ (
`

1− δ
, v1) and V †v1(1) = v1 + ∆v1 > V ∗` (1) (33)

where ∆v1 :=
1− (1− δ)v1

(1− δ`)
< ∆ < 1 .

Moreover, the relevant steps in the proof for Lemma 2 of the main article, extend straight-
forwardly to verify that V †v1 is continuous and strictly increasing in µ.

Define F̄v1 to be the set of all non-decreasing and right-continuous functions V on
[0, 1] such that V (0) = V †v1(0) and V (1) = V †v1(1). Define y†V (µ) in the same manner
as in (41) and (42) of the main article, with V (0) replaced by v1 and µ̄ replaced by
µ̄† := min{µ | pG(µ, 1) ≥ δ∆v1} < µ̄ where the last inequality follows from ∆v1 < ∆. As
long as δ∆v1 > ` so that y†V (µ) < 1 for some µ, which we assume below (else, y†V (µ) ≡ 1
and the proof is simpler), we have y†V (µ) ∈ (0, 1) for µ ∈ (0, µ̄†) with limµ→0 y

†
V (µ) = 1

because δ
(

max{V (πBb(µ, y)), v1} − v1

)
approaches δ∆v1> ` as y → 1 while it approaches
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0 as µ → 0 for all y < 1.6 Furthermore, y†V (µ) is clearly continuous and equal to 1 for
µ ≥ µ̄†. Define Tv1 : F̄v1 → F̄v1 as

Tv1(V )(µ) := pG(µ, y†V (µ)) + δ(`max{v1, V (π∗Gg(µ))}+ (1− `)v1). (34)

It is straightforward to verify that Tv1(V ) ∈ F̄v1 .
Then, the proof for Proposition 1 of Section 4.2 (of the main article) extend to Tv1 ,

establishing that, for any v1 ∈ ( `
1−δ ,

1
1−δ ), there is a unique fixed point of Tv1 and it is

continuous and strictly increasing. We omit the proofs because they are analogous with
straightforward changes due to the seller opting to exit whenever his reputation level is so
low that the continuation value falls short of v1.7

Since the outside option value is v1 for an h-type seller as well, optimality of truth-telling
for h-type seller can be verified by an argument analogous to that leading to Theorem 1,
with δh replaced by the threshold δv1 that solves

δv1

( h

1− δv1
− v1

)
= 1.

Thus, we have shown that an honest equilibrium exists if δ( h
1−δ − v1) > 1, when sellers can

exit for an outside option value v1.

3.1 Existence of an honest equilibrium with restart

Recall that µ1 and χ1 denote the default reputation level and stationary mass of new
sellers, respectively; and v1 denotes `-seller’s default value. In equilibrium, an `-seller’s
strategy y†v1 and value function and V †v1 are given by Lemma 7 above.

Let ρθ(q) denote the probability that a seller of type θ draws q ∈ {g, b}, i.e., ρθ(g) = θ =
1 − ρθ(b). For any k-period quality history hk = (q1, · · · , qk) ∈ Hk := {g, b}k, let ρθ(h

k)
be the ex-ante probability that hk realises for a seller of type θ. We use hkj = (q1, · · · , qj)
to denote the first j-entry truncation of hk.

Given a default reputation µ1 > 0, let π(hkj ) denote the posterior reputation for a
seller who has survived the history hkj without cheating, updated according to y†v1 . Setting
π(hk0) = µ1, we can define π(hkj ) recursively by:

π(hkj ) =
π(hkj−1)ρh(qj)

π(hkj−1)ρh(qj) + (1− π(hkj−1))ρ`(qj)(1− y†v1(π(hkj−1), qj))
, (35)

where y†v1(µ, g) = 0 and y†v1(µ, b) = y†v1(µ) for all µ. Then, the ex-ante probability that an
`-seller remains in the market without having cheated after k-period history hk is

Pr(hk) =
k∏
j=1

[ρ`(qj)(1− y†v1(π(hkj−1), qj))(1− χ)]. (36)

6Note that this implies V (πBb(µ, y
†
V (µ))) − v1 > pG(µ, y†V (µ)) for all µ ∈ (0, µ̄†). Thus, an h-seller

with any reputation µ > 0 does not restart after trading a bad quality item because the value of updated
reputation exceeds v1 as this inequality shows. However, both types of seller may exit after trading a good
quality item in the initial period if the value of the updated reputation, V †θ (π∗Gg(γ)), falls short of v1.

7In Appendix A.3 of the main article, (31) becomes V †v1(µ) =
∑∞
t=0 δ

t`t(pG(πtGg(µ), yV (πtGg(µ)))− `) +
δv1(1−`)+`

1−δ` and thus, (37) becomes V †` (µ̃)− v1 <
∑∞
t=0(pG(πtGg(µ̃), ŷ)− `)δt`t because δv1(1−`)+`

1−δ` < v1.
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Consequently, in a stationary state, the measure of nominally k-period old `-sellers
who restart in period k + 1 for k ≥ 1, is

χ1(1− µ1)
( ∑

hk∈Hk

Pr(hk)(1− `)y†v1(π(hk))(1− χ)
)
.

This implies that the total measure of old `-sellers who restart in an arbitrary period is
χ1(1− µ1)Λ(v1, µ1) where

Λ(v1, µ1) := (1− `)(1− χ)
∞∑
k=1

∑
hk∈Hk

Pr(hk)y†v1(π(hk)). (37)

Now, as verified in the discussion preceding Theorem 3 in the main article, the values
of v1 and µ1 in a stationary equilibrium constitute a fixed point that solves

v1 = V †v1(µ1) and µ1 =
γ − γΛ(v1,µ1)

1− γΛ(v1, µ1)
. (38)

To show that such a fixed point exists, we need the next result.

Lemma 8 Let ψ : ( `
1−δ ,

1
1−δ ) → C[0,1] be a mapping such that ψ(v1) = V †v1 where C[0,1] is

the set of all continuous functions on [0, 1]. Then, ψ is continuous in v1 under the sup
norm at any v1 >

`
1−δ .

Proof. Since continuity under the sup norm requires uniform convergence, the possibility
of a fixed point having unbounded derivative poses a potential problem. The bulk of the
proof evolves around how to circumvent this problem. We start with two preliminary
claims asserting that p∗G(µ) is of bounded variation on [ε, 1] for any ε > 0 (Claim 1) and
consequently, so is the fixed point V †v1 (Claim 2).

Claim 1 For any ε > 0 there exists Mε > 0 such that ∀v1 ∈ [ `
1−δ ,

1
1−δ ), ∀V ∈ F̄v1 ∩

C[0,1], ∀µ and µ′ ∈ (ε, µ̄†v1),

pG(µ′, y†v1(µ
′))− pG(µ, y†v1(µ))

µ′ − µ
≤Mε. (39)

Proof of Claim 1: Note that we can find k > 0 such that ∂pG
∂µ

> 0 is bounded above

uniformly by k, and ∂pG
∂y

< 0 is bounded below uniformly by −k. Suppose µ < µ′ < µ̄†v1

without loss of generality. If y†v1(µ
′) ≥ y†v1(µ), then

pG(µ′,y†v1 (µ′))−pG(µ,y†v1 (µ))

µ′−µ < k because pG
decreases in y, proving (39).

Now suppose that y†v1(µ
′) < y†v1(µ). Note that one can find kε, k̃ε > 0 such that

∂πBb(µ, y)

∂µ
=

(1− h)(1− `)(1− y)

[µ(1− h) + (1− µ)(1− `)(1− y)]2
< kε

∂πBb(µ, y)

∂y
=

(1− h)(1− `)(1− µ)µ

[µ(1− h) + (1− µ)(1− `)(1− y)]2
> k̃ε
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for all µ > ε and y ∈ [0, 1]. Thus, recalling that πBb(µ, y
†
v1

(µ)) is nondecreasing, we deduce
that (using the facts that y†v1(µ

′) < y†v1(µ) and µ < µ′)

0 ≤ πBb(µ
′, y†v1(µ

′))− πBb(µ, y†v1(µ)) < kε(µ
′ − µ) + k̃ε(y

†
v1

(µ′)− y†v1(µ)),

and consequently,

y†v1(µ
′)− y†v1(µ) > −kε

k̃ε
(µ′ − µ).

Therefore, we have

pG(µ′, y†v1(µ
′))− pG(µ, y†v1(µ)) < k(µ′ − µ)− k

(
y†v1(µ

′)− y†v1(µ)
)

< k
(

1 +
kε

k̃ε

)
(µ′ − µ).

We complete the proof by setting Mε = k
(
1 + kε

k̃ε

)
. �

Claim 2 For any ε > 0 and v1 ∈ [ `
1−δ ,

1
1−δ ),

D+V †v1(µ) := lim sup
µ′↓µ

V †v1(µ
′)− V †v1(µ)

µ′ − µ
≤ Mε

1− δh
∀µ > ε.

Proof of Claim 2: For given v1 there exists µ > 0 defined by V †v1(π
∗
Gg(µ)) = v1, so that

V †v1(µ) =

{
pG(µ, y†v1(µ)) + δv1 if µ ≤ µ

pG(µ, y†v1(µ)) + δ(`V †v1(π
∗
Gg(µ)) + (1− `)v1) if µ ≥ µ.

(40)

To prove the claim we first show that D+V †v1(µ) is uniformly bounded. To reach a con-
tradiction, suppose that for any K > 0 one can find µK > ε such that D+V †v1(µK) > K.

Then, since π∗Gg(µ) is differentiable and `
h
≤ ∂π∗Gg(µ)

∂µ
≤ h

`
, (39) and (40) would imply

that µK > µ when K is sufficiently large and that one can construct a sequence µn → 1
where µn = π∗Gg(µn−1) and µ2 = π∗Gg(µK). Consider τ < ∞ such that πτGg(ε) > µ̄. By
choosing K arbitrarily large, one can ensure that D+V †v1(π

τ
Gg(µK)) is arbitrarily large while

π∗Gg(µn−1) > µ̄†. But, this is impossible because D+V †v1(µ) is bounded for µ > µ̄† as can
be verified from

V †v1(µ) =
[ ∞∑
t=0

`tδtpG(πtGg(µ), 1)
]

+ δv1(1− `)
∞∑
t=0

`tδt, (41)

a formula derived from y†v1(µ) = 1 for µ > µ̄†. Hence, we conclude that D+V †v1(µ) is
uniformly bounded for µ > ε and thus, (39) and (40) imply

D+V †v1(µ) ≤ Mε + `δ
(

sup
µ>ε

D+V †v1(µ)
)(

max
µ

∂π∗Gg(µ)

∂µ

)
≤ Mε + hδ

(
sup
µ>ε

D+V †v1(µ)
)
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for µ > ε where the second inequality follows from
∂π∗Gg(µ)

∂µ
≤ h/`. Thus, D+V †v1(µ) ≤ Mε

1−δh
if µ > ε. �

Next, choose v1 ∈ ( `
1−δ ,

1
1−δ ). Notice that for a sufficiently small η > 0, in particular

smaller than v1 − `
1−δ , the operator Tv1 can be extended to F̄ηv1 ∩ C[0,1] where F̄ηv1 :=

∪v1−η≤v≤v1+ηF̄v. As an intermediate step, we need:

Claim 3 For v1 ∈ ( `
1−δ ,

1
1−δ ), the operator

Tv1 : F̄ηv1 ∩ C[0,1] → C[0,1] is continuous in sup norm. (42)

Proof of Claim 3: Consider V, V ′ ∈ F̄ηv1 ∩ C[0,1] such that maxµ∈[0,1] |V ′(µ)− V (µ)| < ε.

Since y†V (µ) and y†V ′(µ) are, by construction, the solutions to

min
0≤y≤1

∣∣pG(µ, y)− δ
(

max{v1, V (πBb(µ, y))} − v1

)∣∣ (43)

and the same equation with V ′ instead of V , respectively, it follows that |pG(µ, y†V ′(µ))−
pG(µ, y†V (µ))| < ε. From (34), therefore, we deduce that

max
µ∈[0,1]

|Tv1(V ′)(µ)− Tv1(V )(µ)| < ε+ δε,

which establishes (42). �

Given v1 ∈ ( `
1−δ ,

1
1−δ ) and η small as specified above, consider small |κ| < η/2 and any

V ∈ F̄ηv1 ∩ F̄
η
v1+κ ∩ C[0,1]. By (43), the value of pG(µ, y†V (µ)) differs when calculated for Tv1

and when calculated for Tv1+κ, and the difference is at most δκ. Thus, from (34),

Tv1(V )(µ)− 2|δκ| ≤ Tv1+κ(V )(µ) ≤ Tv1(V )(µ) + 2|δκ| ∀µ ∈ [0, 1]. (44)

In particular, observe that

Tv1(V
†
v1+κ)(µ)− 2|δκ| ≤ Tv1+κ(V

†
v1+κ)(µ) = V †v1+κ(µ) ≤ Tv1(V

†
v1+κ)(µ) + 2|δκ|.

Finally, to prove continuity of ψ at v1, we decompose the argument into two parts:
First, we prove uniform convergence of functions ψ(v1 + κ) = V †v1+κ to ψ(v1) = V †v1 as
κ → 0 on intervals [ε, 1], then do the same separately on [0, 2ε]. The continuity will be
established by combining the two parts.

a) We know from Claim 2 that on the interval [ε, 1] , the function V †v1+κ is Kε-Lipschitz
where Kε = Mε

1−δh . Then from Ascoli-Arzelà Theorem (see Royden (1988)), the subset

consisting of all Kε-Lipschitz function of F̄ηv1 is compact under the sup norm. Hence, there

exists a sequence of fixed points V †v1+κ such that, when restricted to the domain [ε, 1], it

converges as κ→ 0 to a limit, denoted by W
[ε,1]
v1 , continuous on [ε, 1] and

V †v1+κ
unif−→ W [ε,1]

v1
under the sup norm on [ε, 1] for any ε > 0. (45)

18



Let V
†[ε,1]
v1+κ denote V †v1+κ restricted on [ε, 1] and let Ṽ

†[ε,1]
v1+κ denote the continuous linear

extension of V
†[ε,1]
v1+κ on [0, ε]. Then, by (42) and (44),

Tv1(lim
κ→0

Ṽ
†[ε,1]
v1+κ )(µ) ≤ lim

κ→0
Tv1+κ(Ṽ

†[ε,1]
v1+κ )(µ) ≤ Tv1(lim

κ→0
Ṽ
†[ε,1]
v1+κ )(µ). (46)

Note that Tv1(limκ→0 Ṽ
†[ε,1]
v1+κ )(µ) for each µ is fully determined by limκ→0 Ṽ

†[ε,1]
v1+κ restricted

on [µ, 1] according to (34), and the same is true for Tv1+κ(Ṽ
†[ε,1]
v1+κ ). Since Ṽ

†[ε,1]
v1+κ = V †v1+κ on

[ε, 1] by definition, therefore, (45) and (46) imply that

Tv1(W̃
[ε,1]
v1

)(µ) ≤ W̃ [ε,1]
v1

(µ) ≤ Tv1(W̃
[ε,1]
v1

)(µ) for all µ ∈ [ε, 1],

where W̃
[ε,1]
v1 is the continuous linear extension of W

[ε,1]
v1 on [0, ε]. Since ε > 0 is arbitrary

and V †v1 is the only function V that satisfies Tv1(V )(µ) = V (µ) on [ε, 1] for all ε ∈ (0, 1)

by uniqueness of the fixed point of Tv1 , it further follows that W̃
[ε,1]
v1 = V †v1 on [ε, 1], i.e.,

W
[ε,1]
v1 coincides with V †v1 on [ε, 1]. From (45), therefore,

V †v1+κ
unif−→ V †v1 under the sup norm on [ε, 1] for any ε > 0. (47)

b) Note, however, that this is not sufficient for uniform convergence on [0, 1]. Hence,
choose ε > 0 small enough such that V †v1(π

∗
Gg(2ε)) < v1. Then, because V †v1+κ converges to

V †v1 under the sup norm on [ε, 1] by (47), we have V †v1+κ(π
∗
Gg(2ε)) < v1 + κ for sufficiently

small κ. But this implies that V †v1+κ(π
∗
Gg(µ)) < v1 + κ for all µ ≤ 2ε for sufficiently small

κ, and consequently, V †v1+κ(µ) = pG(µ, 1) + δ(v1 + κ) on [0, 2ε], which converges uniformly
to V †v1(µ) = pG(µ, 1) + δv1. Thus,

V †v1+κ
unif−→ V †v1under the sup norm on [0, 2ε]. (48)

Combining (47) and (48), we obtain uniform convergence under the sup norm on the entire
domain [0, 1], which proves continuity of ψ at v1 and thus, Lemma 8.

Recall that y†v1(µ) uniquely solves

pG(µ, y†v1(µ)) = δ
(
V †v1(πBb(µ, y

†
v1

(µ)))− v1

)
if pG(µ, 1) ≤ δ∆v1 , and

y†v1(µ) = 1 otherwise.

By an analogous argument as in the proof of Theorem 1 (of the main article), y†v1(µ) is
continuous in v1 and in µ.

To complete the proof of Theorem 3, consider a mapping from [ `+ε
1−δ ,

1−ε
1−δ ] × [0, γ] into

itself as below for sufficiently small ε > 0:(
v1

µ1

)
7−→

(
max

{
V †v1(µ1), `+ε

1−δ

}
γ−γΛ(v1,µ1)

1−γΛ(v1,µ1)

)
.

Since this mapping is continuous as explained above, there is a fixed point by Brouwer’s
Fixed Point Theorem.
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Note that, for given v1 close to `
1−δ , the solution value to µ1 = γ−γΛ(v1,µ1)

1−γΛ(v1,µ1)
remains

bounded away from zero (because Λ(v1,µ1) is bounded away from 1 by (37)) and satisfies
V †v1(µ1) > `+ε

1−δ . Moreover, V †v1(µ1) < V †v1(γ) < pG(γ, h−`
1−` ) + δ(v1 + ∆v1) <

1−ε
1−δ by (33).

Hence the fixed point value of v1 satisfies v1 ∈ ( `+ε
1−δ ,

1−ε
1−δ ).

Let µ1 and v1 denote a fixed point of the mapping. To establish the existence of an
equilibrium, we still need to show that it is optimal for h-type sellers to always report
truthfully as long as µ ≥ µ1. Since the continuation value of h-type sellers after cheating
is the equilibrium value at the entry level, denoted by V †h (µ1), rather than V †h (0), the
optimality condition of h-type sellers is more involved to verify than when restarting is
impossible.

However, in the proof of Proposition 1 of this Online Appendix, we showed that if (1)
holds then the slope of V ∗h is larger than the slope of V ∗` at all level of reputation and
consequently, the sorting condition (2) holds. The same reasoning applies to the current
case to verify that

V †h (µ)− V †h (µ1) > V †v1(µ)− V †v1(µ1) ∀µ > µ1.

Therefore, if (1) holds then it constitutes an equilibrium for `-type sellers to announce
according to y†v1(µ) and for h-type sellers to always announce honestly for µ ≥ µ1, provided

that δ(V †h (1)− V †h (µ1)) ≥ 1.8

Lastly, to show that δ(V †h (1)− V †h (µ1)) ≥ 1, as µ1 < γ and y†v1 > ŷ we obtain

V †h (µ1) < hpG
(
γ,
h− `
1− `

)
+ δhV †h (πGg(γ)) + δ (1− h)V †h (1).

As pG(µ, h−`
1−` ) = µ(h−`)+`

h
, by extending the formula recursively we get

V †h (µ1) <
∞∑
t=0

δtht
(
πtGg (γ) (h− `) + `

)
+
δ (1− h)

1− δh
h

1− δ

=
∞∑
t=0

δtht
(
γht+1 + (1− γ) `t+1

γht + (1− γ) `t

)
+
δ (1− h)

1− δh
h

1− δ

where the equality follows from πtGg (γ) = γht

γht+(1−γ)`t
. Then, as V †h (1) = h/ (1− δ),

δ
(
V †h (1)− V †h (µ1)

)
> δ

(
h

1− δh
−
∞∑
t=0

δtht
(
γht+1 + (1− γ) `t+1

γht + (1− γ) `t

))

= δ

(
∞∑
t=0

δtht
(
h− γht+1 + (1− γ) `t+1

γht + (1− γ) `t

))

= δ

(
∞∑
t=0

δtht (1− γ) `t
(

h− `
γht + (1− γ) `t

))
.

8The proof is omitted because it is the same as the proof of Proposition 1 of this online Appendix with
obvious changes, such as v1 and µ̄† in place of V ∗` (0) and µ̄, respectively.
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Taking the limit as δ → 1,

V †h (1)− V †h (µ1) ≥
∞∑
t=0

(1− γ)`t

(
h− `

γ + (1− γ)(`/h)t

)
(49)

> (h− `)

[
1− γ +

∞∑
1

(1− γ)`t

γ + (1− γ)(`/h)t

]

> (h− `)

[
1− γ +

(1− γ)`

(1− `)
(
γ + (1− γ)(`/h)

)]
→ (h− `)

(
1 +

h

1− `

)
as γ → 0.

Therefore, δ(V †h (1) − V †h (µ1)) ≥ 1 holds for sufficiently large δ if γ is sufficiently small,
so long as h > h†(`) where h†(`) ∈ (`, 1) is a solution to (h − `)

(
1 + h

1−`

)
= 1. This

completes the proof of existence of an equilibrium as stated in Theorem 3. Note that the
lower bound of h above which an honest equilibrium exists decreases as the sum (49) is
expanded beyond t = 1.

3.2 Proof that y†(µ) > y∗(µ).

Observe from ∆v1 < ∆ that µ̄†v1 < µ̄. It is immediate from the definition of µ̄†v1 that
y†v1(µ) = 1 for all µ ≥ µ̄†v1 . Hence, we consider µ < µ̄†v1 < µ̄ below.

It is straightforward to extend the relevant arguments in the proof of Proposition 1
of the main article, to verify that y†v1 is continuous and y†v1(µ) ∈ (0, 1) for µ < µ̄†v1 . To
reach a contradiction, suppose y†v1(µ

′) = y∗(µ′) for some µ′ < µ̄†v1 and y†v1(µ) > y∗(µ) for
all µ ∈ (µ′, µ̄). Then,

δ
(
V ∗` (πBb(µ

′, y∗(µ′)))− V ∗` (0)
)

= pG(µ′, y∗(µ′))

= pG(µ′, y†v1(µ
′)) = δ

(
V †v1(πBb(µ

′, y†v1(µ
′)))− v1

)
and thus,

V ∗` (µ̃)− V ∗` (0) = V †v1(µ̃)− v1 where µ̃ := πBb(µ
′, y∗(µ′)) > µ′ (50)

and the inequality is from Lemma 5 of Appendix A.3. Furthermore, since

V ∗` (µ̃) = pG(µ̃, y∗(µ̃)) + δ
(
`V ∗` (π∗Gg(µ̃)) + (1− `)V ∗` (0)

)
and (51)

V †v1(µ̃) = pG(µ̃, y†v1(µ̃)) + δ
(
`V †v1(π

∗
Gg(µ̃)) + (1− `)v1

)
(52)

while pG(µ̃, y∗(µ̃)) ≥ pG(µ̃, y†v1(µ̃)), (50)–(52) would imply

δ`((V ∗` (π∗Gg(µ̃))− V ∗` (0))− (V †v1(π
∗
Gg(µ̃))− v1)) ≤ (δ − 1)(v1 − V ∗` (0)) < 0. (53)

Since V ∗` (1) − V ∗` (0) = ∆ > ∆v1 = V †v1(1) − v1, there must exist µ′′ ∈ [µ̃, 1) such that
V ∗` (µ′′)− V ∗` (0) ≤ V †v1(µ

′′)− v1 and V ∗` (µ)− V ∗` (0) > V †v1(µ)− v1 for all µ > µ′′. However,
since pG(µ′′, y∗(µ′′)) ≥ pG(µ′′, y†v1(µ

′′)) and π∗Gg(µ
′′) > µ′′, (51) and (52) evaluated at µ = µ′′

imply that V ∗` (µ′′)−δV ∗` (0) > V †v1(µ
′′)−δv1 and consequently, V ∗` (µ′′)−V ∗` (0) > V †v1(µ

′′)−v1,
contradicting the definition of µ′′. This completes the proof.
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