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Expectiles define a least squares analogue of quantiles. They are determined by tail expectations
rather than tail probabilities. For this reason and many other theoretical and practical merits,
expectiles have recently received a lot of attention, especially in actuarial and financial risk man-
agement. Their estimation, however, typically requires to consider non-explicit asymmetric least
squares estimates rather than the traditional order statistics used for quantile estimation. This
makes the study of the tail expectile process a lot harder than that of the standard tail quantile
process. Under the challenging model of heavy-tailed distributions, we derive joint weighted
Gaussian approximations of the tail empirical expectile and quantile processes. We then use this
powerful result to introduce and study new estimators of extreme expectiles and the standard
quantile-based expected shortfall, as well as a novel expectile-based form of expected shortfall.
Our estimators are built on general weighted combinations of both top order statistics and
asymmetric least squares estimates. Some numerical simulations and applications to actuarial
and financial data are provided.

Keywords: Asymmetric least squares, Coherent risk measures, Expected shortfall, Expectile,
Extrapolation, Extremes, Heavy tails, Tail index.

1. Introduction

Least asymmetrically weighted squares estimation, borrowed from the econometrics lit-
erature, is one of the basic tools in statistical applications. This method often involves
Newey and Powell’s [34] concept of expectiles, a least squares analogue of traditional
quantiles. Given an order τ P p0, 1q, Koenker and Bassett [29] elaborated an absolute er-
ror loss minimization to define the τth quantile of the distribution of a random variable
Y as the minimizer

qτ P arg min
θPR

E tρτ pY ´ θq ´ ρτ pY qu ,

with equality if the distribution function of Y is increasing, where ρτ pyq “ |τ ´ 1Ipy ď
0q| |y| and 1Ip¨q is the indicator function. This successfully extends the conventional def-
inition of quantiles as left-continuous inverse functions. Newey and Powell [34] replaced
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the absolute deviations in the asymmetric loss function ρτ with squared deviations to
obtain the τth expectile of a random variable Y with finite first moment as

ξτ “ arg min
θPR

E tητ pY ´ θq ´ ητ pY qu , (1)

with ητ pyq “ |τ ´1Ipy ď 0q| y2. Both quantiles and expectiles are M-quantiles as the min-
imizers of asymmetric convex loss functions (Breckling and Chambers [8]), but expectiles
are determined by tail expectations rather than tail probabilities. Accordingly, expectiles
have been receiving a lot of attention as risk measures in statistical finance and actuarial
science since the pioneering paper of Kuan et al. [31]. As established very recently in this
literature of risk management (see, for instance [6, 7, 13, 44]), expectiles are excellent
alternatives to quantiles in different aspects relevant to this kind of applications. They
depend on both the tail realizations and their probability, while quantiles only depend
on the frequency of tail realizations and not on their values (Kuan et al. [31]). Expectiles,
contrary to quantiles, thus allow to measure extreme risk based on both the frequency of
tail losses and their severity. More generally, altering the shape of the upper or lower tail
of Y does not change the quantiles of the other tail, but it does impact all the expectiles
(Taylor [39]). This high sensitivity of expectiles to tail behavior allows for more prudent
and reactive risk management. Another substantial difference is that expectiles rely on
the distance to observations, whereas quantiles only use the information on whether an
observation is below or above the predictor (Sobotka and Kneib [38]). Also, inference on
expectiles is much easier than inference on quantiles (Abdous and Remillard [1]). Using
expectiles avoids distributional assumptions (Taylor [39]) without recourse to regularity
assumptions as can be seen by comparing, e.g., Holzmann and Klar [27] with Zwing-
mann and Holzmann [45]. Most importantly, expectiles are the only M-quantiles that
define a coherent risk measure in the sense of Artzner et al. [4] (see Bellini et al. [6]),
and the only coherent risk measure that is elicitable (Ziegel [44]). Many other theoretical
and numerical results motivate the adoption of expectiles in actuarial and financial risk
management, including those of Ehm et al. [20] and Bellini and Di Bernardino [7].

Yet, tail expectile theory is, in comparison to tail quantile theory, relatively unexplored
and still in full development. At the population level, only Bellini et al. [6], Mao et al. [32],
Mao and Yang [33] and Bellini and Di Bernardino [7] have initiated the study of the
connection between ξτ and qτ , as τ Ñ 1, when Y belongs to the domain of attraction of
a Generalized Extreme Value distribution. Also, for heavy-tailed distributions, Daouia et
al. [13] have obtained an asymptotic expansion of ξτ {qτ with a precise quantification of
the remainder term. At the sample level, attention has been mainly restricted to ordinary
expectiles of fixed asymmetry level τ staying away from the distribution tails; see, e.g.,
Holzmann and Klar [27] and Krätschmer and Zähle [30] for recent advanced theoretical
developments. The extreme value analysis of asymmetric least squares estimators is a lot
harder than for order statistics, mainly due to the absence of a closed form expression for
expectiles. In an earlier paper, we partially solved this difficulty by proving the pointwise
asymptotic normality of sample expectiles for ‘intermediate’ levels τ “ τn Ñ 1 such that
np1´τnq Ñ 8 as the sample size nÑ8; see Theorem 2 of Daouia et al. [13]. Such a result
does not, however, allow for simultaneous consideration of several intermediate sample
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expectiles. By contrast, Gaussian approximations of the tail empirical quantile process
have been known for at least three decades; see, among others, Csörgő and Horváth [10]
and Einmahl and Mason [21] as well as their more modern formulations in Drees [18] and
Theorem 2.4.8 in de Haan and Ferreira [15]. These powerful asymptotic results, and their
later generalizations, have been successfully used in the analysis of a number of complex
statistical functionals, such as test statistics aimed at checking extreme value conditions
(Dietrich et al. [17], Drees et al. [19], Hüsler and Li [28]), bias-corrected extreme value
index estimators (de Haan et al. [16]) and estimators of extreme Wang distortion risk
measures (El Methni and Stupfler [23, 24]).

The present paper tries to fill this gap in the current understanding of sample inter-
mediate expectiles, under Pareto-type models that accurately describe the tail structure
of most actuarial and financial data [see, e.g., Embrechts et al. ([25], p.9) and Resnick
([35], p.1)]. In Section 2, we show that the aforementioned convergence result on single
intermediate sample expectiles can be generalized to the tail empirical expectile process.
We first prove in Theorem 1 that the tail expectile process can be approximated by a
sequence of Gaussian processes with drift and we derive its joint asymptotic behavior
with the tail quantile process. Then, we analyze in Theorem 2 the difference between
the tail empirical expectile process and its population counterpart. These two results
constitute the major contribution of the paper; they open the door to the theoretical
analysis of a wide range of functionals of the tail expectile process. Even more strongly,
our joint weighted approximations of the tail empirical expectile and quantile processes
make it possible to consider complex functionals of both processes.

We shall discuss below a number of applications of our main results. Section 3 applies
the analysis of the tail expectile process in Theorem 1 to extreme expectile estimation.
We first construct a general class of weighted estimators for intermediate expectiles ξτn ,
by combining nonparametric asymmetric least squares estimates with semiparametric
quantile-based estimates. The latter involve the traditional Hill estimator of the tail in-
dex (Hill [26]). Thanks to the joint convergence result on the tail expectile and quantile
processes, in Theorem 1, we derive the joint asymptotic normality of both empirical inter-
mediate expectile and quantile estimators with Hill’s tail index estimator in Theorem 3.
Built on this theorem, we obtain the asymptotic normality of the generalized weighted
ξτn estimators in Theorem 4. Based on the ideas of Daouia et al. [13], our weighted
intermediate expectile estimators are then extrapolated to the very extreme expectile
levels that may approach one at an arbitrarily fast rate. The asymptotic properties of
the extrapolated estimators are established in Theorem 5.

Theorem 2 is particularly important in tail risk estimation using Expected Shortfall
(ES) measures. In Section 4, we show first that the expectile-based form XTCEτ of ES
introduced by Taylor [39] is not a coherent risk measure. Instead, we define a coherent
alternative form that we call XESτ . It is simply an average of tail expectiles, which is
in addition asymptotically equivalent to XTCEτ . Asymptotic connections of XESτ to
other tail quantities, such as high quantiles qτ and expectiles ξτ , are also provided in
Proposition 3 before moving on to the extreme value estimation problem. XESτ being
an average of tail expectiles, it is readily estimated at an intermediate level τ “ τn
by an average of the empirical tail expectile process, whose discrepancy from the true
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XESτn can be unraveled thanks to Theorem 2. This intermediate estimator, like our
generalized expectile estimators, can then be extrapolated to the very far tails of the
distribution of Y where few or no data lie. Financial institutions and insurance companies
are typically interested in the extreme region τ “ τ 1n Ò 1 such that np1 ´ τ 1nq Ñ c ă 8,
as n Ñ 8 (see, for example, Cai et al. [9] and Daouia et al. [13]). In Theorems 7
and 8 we provide the asymptotic properties of the resulting extrapolated estimator,
along with those of alternative plug-in estimators built on the asymptotic properties
of XESτ in Proposition 3. We conclude this section by using XES estimators as the
basis for estimating the more traditional quantile-based ES (QES) itself. We derive three
composite expectile-based estimators for QES, at extreme levels τ 1n, whose asymptotic
properties are established in Theorem 9.

Section 5 contains a simulation study of the estimators introduced hereafter. Appli-
cations to medical insurance data and financial returns data are presented in Section 6.
Section 7 concludes. The Supplementary Material document contains all proofs and aux-
iliary results along with further simulation results.

2. Tail empirical expectile process

Suppose we observe independent copies tY1, . . . , Ynu of a random variable Y and denote
by Y1,n ď Y2,n ď ¨ ¨ ¨ ď Yn,n their nth order statistics. A high expectile ξτn of order
τn Ñ 1, as nÑ8, can be estimated by its empirical counterpart

rξτn “ arg min
uPR

1

n

n
ÿ

i“1

rητnpYi ´ uq ´ ητnpYiqs “ arg min
uPR

n
ÿ

i“1

ητnpYi ´ uq. (2)

Here the expectile level τn approaches one at an ‘intermediate’ rate in the sense that
np1 ´ τnq Ñ 8 as n Ñ 8. By analogy to the well-known tail empirical quantile process
(see Definition 2.4.3 in de Haan and Ferreira [15])

p0, 1s Ñ R, s ÞÑ pq1´ks{n :“ Yn´tksu,n,

where t¨u stands for the floor function and k “ kpnq Ñ 8 is a sequence of integers with
k{nÑ 0, we define the tail empirical expectile process to be the stochastic process

p0, 1s Ñ R, s ÞÑ rξ1´p1´τnqs.

Note that the tail quantile process is nothing but tpq1´p1´τnqsu0ăsď1 with τn “ 1 ´ k{n.
Our main objective in this section is to provide general asymptotic approximations of the
tail expectile process by Gaussian processes, under the model assumption of heavy-tailed
distributions. To this end, some preparatory remarks and work are necessary.

2.1. Statistical model and preliminary results

We focus on the maximum domain of attraction of Pareto-type distributions with tail
index 0 ă γ ă 1. The survival functions of these heavy-tailed distributions can be
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expressed as
F pyq :“ 1´ F pyq “ y´1{γLpyq, (3)

for y ą 0 large enough, where L is a slowly varying function at infinity, i.e., a positive
function on the positive half-line satisfying Lptyq{Lptq Ñ 1 as t Ñ 8 for any y ą 0.
Equivalently, by Corollary 1.2.10 in de Haan and Ferreira [15], the tail quantile function
of Y , defined as Uptq :“ q1´t´1 ” infty P R | 1{F pyq ě tu, satisfies

lim
tÑ8

Uptxq

Uptq
“ xγ for all x ą 0. (4)

The index γ tunes the tail heaviness of F : the larger the index, the heavier the right
tail. Let Y´ “ minpY, 0q denote the negative part of Y . Then, together with condition
E|Y´| ă 8, the assumption γ ă 1 ensures that the first moment of Y exists, and hence
expectiles of Y are well-defined. It has also been found under (3) or equivalently (4) that

ξτ
qτ
„ pγ´1 ´ 1q´γ as τ Ñ 1 (5)

(Bellini and Di Bernardino [7]). An asymptotic expansion of ξτ {qτ with a precise quantifi-
cation of the bias term is obtained in Corollary 1 of Daouia et al. [13] under the following
standard second-order extreme value condition:

C2pγ, ρ,Aq For all x ą 0,

lim
tÑ8

1

Aptq

„

Uptxq

Uptq
´ xγ



“ xγ
xρ ´ 1

ρ

where ρ ď 0 and A is a function converging to 0 at infinity and having ultimately constant
sign. Hereafter, pxρ ´ 1q{ρ is to be read as log x when ρ “ 0.

The meaning and the rationale behind this second-order extension of the regular vari-
ation condition (4) are extensively discussed in Beirlant et al. [5] and de Haan and
Ferreira [15], along with abundant examples of commonly used continuous distributions
satisfying C2pγ, ρ,Aq. The asymptotic expansion in Daouia et al. [13] can actually be
further strengthened to match our purposes, as follows.

Proposition 1. Assume that E|Y´| ă 8 and condition C2pγ, ρ,Aq holds, with 0 ă γ ă 1.

(i) We have, as τ Ñ 1,

ξτ
qτ

“ pγ´1 ´ 1q´γ
ˆ

1`
γpγ´1 ´ 1qγ

qτ
pEpY q ` op1qq

`

ˆ

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
`
pγ´1 ´ 1q´ρ ´ 1

ρ
` op1q

˙

App1´ τq´1q

˙

.
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(ii) Let τn Ñ 1 be such that np1´ τnq Ñ 8, and pick s P p0, 1s. Then

ξ1´p1´τnqs

ξτn
“ s´γ

ˆ

1` psγ ´ 1q
γpγ´1 ´ 1qγ

qτn
pEpY q ` op1qq

`
p1´ γqpγ´1 ´ 1q´ρ

1´ γ ´ ρ
ˆ
s´ρ ´ 1

ρ
App1´ τnq

´1qp1` op1qq

˙

.

Part (i) of this proposition relaxes the conditions in Corollary 1 of Daouia et al. [13]
by removing their unnecessary assumption of strict monotonicity of F . Part (ii) gives
the asymptotic expansion of intermediate expectiles akin to condition C2pγ, ρ,Aq for
intermediate quantiles, which also reads as

q1´p1´τnqs

qτn
“ s´γ

ˆ

1`
s´ρ ´ 1

ρ
App1´ τnq

´1qp1` op1qq

˙

.

2.2. Main results

It is well-known that, under condition C2pγ, ρ,Aq, the tail quantile process can be approx-
imated by a sequence of scaled Brownian motions with drift. Namely, one can construct
a sequence Wn of standard Brownian motions and a suitable measurable function A0

such that

sγ`1{2`ε

ˇ

ˇ

ˇ

ˇ

?
k

ˆ

pq1´ks{n

q1´k{n
´ s´γ

˙

´ γs´γ´1Wnpsq ´
?
kA0pn{kqs

´γ s
´ρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

converges in probability to 0 uniformly in s P p0, 1s for any sufficiently small ε ą 0 (see
Theorem 2.4.8 in de Haan and Ferreira [15]). In addition to satisfying k Ñ8 and k{nÑ
0, the sequence of integers k “ kpnq should also satisfy

?
kA0pn{kq “ Op1q. The proof

of this approximation result reveals that it is valid for a suitable version of the quantile
process, equal to the original one in distribution, on a rich enough probability space
(potentially different from the original space on which the Yi’s are defined). We will work
in the sequel with this version of the quantile process and thus with the associated Yi’s.
Our weak convergence results in Sections 3 and 4 are of course unaffected by this choice.
Full details of where this suitable choice of process has to be made can be found in the
Supplementary Material document. Besides, the function A0 is actually asymptotically
equivalent to A, see Theorem 2.3.9 in de Haan and Ferreira [15]. We may therefore write:

pq1´p1´τnqs

qτn
“ s´γ

˜

1`
1

a

np1´ τnq
γs´1Wnpsq `

s´ρ ´ 1

ρ
App1´ τnq

´1q

` oP

˜

s´1{2´ε

a

np1´ τnq

¸¸

uniformly in s P p0, 1s, (6)
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where we set k “ np1 ´ τnq, with τn Ñ 1 and np1 ´ τnq Ñ 8. As regards the tail

expectile process, it is known from Theorem 2 of Daouia et al. [13] that rξτn is, under
certain conditions, an asymptotically normal estimator of ξτn . Similarly to the uniform
approximation (6) of the tail quantile process, this result can be generalized to a uniform

approximation of the tail expectile process s ÞÑ rξ1´p1´τnqs. This is the first main result
of the paper.

Theorem 1. Suppose that E|Y´|2 ă 8. Assume further that condition C2pγ, ρ,Aq holds,
with 0 ă γ ă 1{2. Let τn Ñ 1 be such that np1´τnq Ñ 8 and

a

np1´ τnqApp1´τnq
´1q “

Op1q. Then there exists a sequence Wn of standard Brownian motions such that, for any
ε ą 0 sufficiently small,

pq1´p1´τnqs

qτn
“ s´γ

˜

1`
1

a

np1´ τnq
γ
a

γ´1 ´ 1 s´1Wn

ˆ

s

γ´1 ´ 1

˙

`
s´ρ ´ 1

ρ
App1´ τnq

´1q ` oP

˜

s´1{2´ε

a

np1´ τnq

¸¸

and
rξ1´p1´τnqs

ξτn
“ s´γ

ˆ

1` psγ ´ 1q
γpγ´1 ´ 1qγ

qτn
pEpY q ` oPp1qq

`
1

a

np1´ τnq
γ2
a

γ´1 ´ 1 sγ´1

ż s

0

Wnptq t
´γ´1 dt

`
p1´ γqpγ´1 ´ 1q´ρ

1´ γ ´ ρ
ˆ
s´ρ ´ 1

ρ
App1´ τnq

´1q

` oP

˜

s´1{2´ε

a

np1´ τnq

¸¸

uniformly in s P p0, 1s.

In the particular case s “ 1, Theorem 1 entails

a

np1´ τnq

˜

rξτn
ξτn

´ 1

¸

d
ÝÑ γ2

a

γ´1 ´ 1

ż 1

0

W ptq t´γ´1 dt

where W denotes a standard Brownian motion. The right-hand side is a centered Gaus-
sian random variable, whose variance is

γ3p1´ γq

ż 1

0

ż 1

0

minps, tqpstq´γ´1 ds dt “
2γ3

1´ 2γ
.

We do therefore recover Theorem 2 of Daouia et al. [13], subject to the additional
condition

a

np1´ τnqApp1 ´ τnq
´1q “ Op1q, but under the reduced moment condition
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E|Y´|2 ă 8. Note that the bias condition
a

np1´ τnqApp1 ´ τnq
´1q “ Op1q is also re-

quired in order to establish the desired approximation (6) for the tail quantile process.
The latter approximation in the quantile case does not require, however, the extra as-
sumptions that γ P p0, 1{2q and E|Y´|2 ă 8. These conditions essentially guarantee that
the loss variable has a finite variance. This is not likely to be restrictive in practice, since
in most studies on actuarial and financial data, the realized values of γ have been found
to lie well below 1{2; see, e.g., the R package ‘CASdatasets’, Cai et al. [9], Daouia et
al. [13] and the references therein.

Nevertheless, Theorem 1 does not compare directly the tail expectile process with its
population counterpart s ÞÑ ξ1´p1´τnqs. Our second main result analyzes the discrepancy
between these two quantities. Such a comparison is particularly relevant when developing
the asymptotic theory for integrals of the tail expectile process, as discussed below in
Section 4. This result cannot be obtained as a direct corollary of Theorem 1, because
Proposition 1(ii) is not a uniform result.

Theorem 2. If the conditions of Theorem 1 hold with ρ ă 0, then there exists a sequence
Wn of standard Brownian motions such that, for any ε ą 0 sufficiently small,

rξ1´p1´τnqs

ξ1´p1´τnqs
“ 1`

1
a

np1´ τnq
γ2
a

γ´1 ´ 1 sγ´1

ż s

0

Wnptq t
´γ´1 dt

` oP

˜

s´1{2´ε

a

np1´ τnq

¸

uniformly in s P p0, 1s.

Note that the Gaussian term appearing in Theorem 2 is exactly the same as in the
approximation of the tail expectile process in Theorem 1. Both theorems open the door
to the analysis of the asymptotic properties of a vast array of functionals of the tail
expectile and quantile processes. We discuss in the next sections particular examples
where these results can be used to construct general weighted estimators of extreme
expectiles and of an expectile-based analogue for the Expected Shortfall risk measure.
Theorems 1 and 2 will be the key tools when it comes to unravel the asymptotic behavior
of these estimators.

3. Extreme expectile estimation

In this section, we first return to intermediate expectile estimation by combining nonpara-
metric asymmetric least squares estimates with semiparametric quantile-based estimates
to construct a more general class of estimators for high expectiles ξτn such that τn Ñ 1
and np1´ τnq Ñ 8 as nÑ8. Then we extrapolate the obtained estimators to the very
high expectile levels that may approach one at an arbitrarily fast rate.

Alternatively to the direct nonparametric estimator rξτn defined in (2), one may use
the asymptotic connection ξτn „ pγ´1 ´ 1q´γqτn between ξτn , γ and the intermediate
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quantile qτn , described in (5), to define the following indirect semiparametric estimator
of ξτn :

pξτn :“
`

pγ´1
τn ´ 1

˘´pγτn
pqτn ,

where pγτn is a suitable estimator of the tail index γ. We will consider in the sequel the
Hill estimator (Hill [26])

pγτn “
1

tnp1´ τnqu

tnp1´τnqu
ÿ

i“1

log

ˆ

pq1´pi´1q{n

pq1´tnp1´τnqu{n

˙

, (7)

which enjoys a high degree of popularity thanks to its simplicity and advantageous
variance properties. Beirlant et al. [5] and de Haan and Ferreira [15] give an extensive
overview of the asymptotic theory for this popular estimator.

More generally, one may also combine the two estimators pξτn and rξτn to define, for
β P R, the weighted estimator

ξτnpβq :“ β pξτn ` p1´ βq
rξτn .

The two special cases β “ 1 and β “ 0 correspond to the unique existing intermediate
expectile estimators in the literature, namely, the estimators pξτn and rξτn first introduced
in Daouia et al. [13]. These were coined, respectively, “indirect estimator” and “direct
estimator” to reflect the pure asymmetric least squares nature of the latter and the
reliance of the former on quantiles. The limit distribution of their linear combination
ξτnpβq crucially relies on the asymptotic dependence structure between the tail expectile

and quantile processes established in Theorem 1, since ξτnpβq is built on both of these
processes. More specifically, it relies on the following asymptotic dependence structure
between the Hill estimator pγτn and the intermediate sample quantile pqτn and expectile
rξτn .

Theorem 3. Suppose that E|Y´|2 ă 8. Assume further that condition C2pγ, ρ,Aq holds,
with 0 ă γ ă 1{2. Let τn Ñ 1 be such that np1 ´ τnq Ñ 8, and suppose that the bias
condition

a

np1´ τnqApp1´ τnq
´1q Ñ λ1 P R is satisfied. Then,

a

np1´ τnq

˜

pγτn ´ γ,
pqτn
qτn

´ 1,
rξτn
ξτn

´ 1

¸

d
ÝÑ N pm,Vq

where m is the 1ˆ 3 vector

m :“

ˆ

λ1
1´ ρ

, 0, 0

˙

,

and V is the 3ˆ 3 symmetric matrix with entries

Vp1, 1q “ γ2, Vp1, 2q “ 0, Vp1, 3q “
γ3

p1´ γq2
pγ´1 ´ 1qγ ,

Vp2, 2q “ γ2, Vp2, 3q “ γ2
ˆ

pγ´1 ´ 1qγ

1´ γ
´ 1

˙

, Vp3, 3q “
2γ3

1´ 2γ
.
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Based on the joint asymptotic normality in Theorem 3, we obtain the following limit
distribution of the weighted estimator ξτnpβq.

Theorem 4. Suppose that the conditions of Theorem 3 hold with the additional bias
condition

a

np1´ τnq{qτn Ñ λ2 P R. Then, for any β P R,

a

np1´ τnq

˜

ξτnpβq

ξτn
´ 1

¸

d
ÝÑ β

`

b` rp1´ γq´1 ´ logpγ´1 ´ 1qsΨ`Θ
˘

` p1´ βqΞ

where the bias component b is b “ λ1b1 ` λ2b2 with

b1 “
p1´ γq´1 ´ logpγ´1 ´ 1q

1´ ρ
´
pγ´1 ´ 1q´ρ

1´ γ ´ ρ
´
pγ´1 ´ 1q´ρ ´ 1

ρ
,

b2 “ ´γpγ´1 ´ 1qγEpY q,

and pΨ,Θ,Ξq is a trivariate Gaussian centered random vector with covariance matrix V
as in Theorem 3.

Remark 1. The same second-order conditions involving the auxiliary function A in
Theorems 3 and 4 are also required to derive the marginal asymptotic normality of the
conventional Hill estimator pγτn , with asymptotic bias λ1{p1´ρq and asymptotic variance
γ2 [see Theorem 3.2.5 in de Haan and Ferreira ([15], p.74)]. Theorem 4 features, however,
a further bias condition involving the quantile function q; this was to be expected in view of
Proposition 1(ii), of which a consequence is that the remainder term in the approximation
ξ1´p1´τnqs{ξτn « s´γ depends on both A and q.

Remark 2. When β “ 1, we recover the convergence of the ‘indirect’ estimator pξτn
obtained in Corollary 2 of Daouia et al. [13]. When β “ 0, we get the convergence of the

‘direct’ estimator rξτn stated in Theorem 2 of [13].

The use of the weighted estimator ξτnpβq is, by construction, most appropriate when
it comes to deal with intermediate expectile levels τ “ τn Ñ 1 such that np1´ τnq Ñ 8.
In the very far tails where the expectile level τ “ τ 1n Ñ 1 is such that np1 ´ τ 1nq Ñ
c P r0,8q, this estimator becomes unstable and inconsistent due to data sparsity. To
estimate an extreme expectile ξτ 1n , Daouia et al. [13] propose to extrapolate any consistent

intermediate expectile estimator, say qξτn , to the very high level τ 1n by considering the
generic class of estimators

qξ‹τ 1n :“

ˆ

1´ τ 1n
1´ τn

˙´qγn
qξτn ,

where qγn is a suitable estimator of γ. Here, we choose to use the general weighted in-
termediate estimator ξτnpβq in conjunction with the Hill estimator pγτn to define the
following class of extreme expectile estimators:

ξ
‹

τ 1n
pβq :“

ˆ

1´ τ 1n
1´ τn

˙´pγτn

ξτnpβq. (8)
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The two special cases β “ 1 and β “ 0 correspond to the unique existing extreme
expectile estimators in the literature, namely, the extrapolated indirect and direct ex-
pectile estimators suggested in Daouia et al. [13]. The next theorem gives the asymptotic

behavior of the generalized extreme expectile estimators ξ
‹

τ 1n
pβq.

Theorem 5. Suppose that the conditions of Theorem 4 hold. Assume also that ρ ă 0
and np1 ´ τ 1nq Ñ c ă 8 with

a

np1´ τnq{ logrp1 ´ τnq{p1 ´ τ 1nqs Ñ 8. Then, for any
β P R,

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

ξ
‹

τ 1n
pβq

ξτ 1n
´ 1

¸

d
ÝÑ N

ˆ

λ1
1´ ρ

, γ2
˙

.

One can observe that the limiting distribution of ξ
‹

τ 1n
pβq is controlled by the asymptotic

distribution of pγτn . In particular, in the cases β “ 1 and β “ 0, we exactly recover
Corollaries 3 and 4 of Daouia et al. [13] on the convergence of the extrapolated indirect
and direct expectile estimators.

4. Estimation of tail Expected Shortfall

4.1. Background

The risk of a financial position Y is usually summarized by a risk measure %pY q, where
% is a mapping from a space of random variables to the real line. Value at Risk (VaR) is
arguably the most common risk measure used in practice. It is given at probability level
τ P p0, 1q by the τ -quantile VaRτ pY q :“ qτ . Hereafter, we adopt the convention that Y
is a real-valued random variable whose values are the negative of financial returns. The
right-tail of the distribution of Y , for levels τ close to one, then corresponds to extreme
losses.

One of the main criticisms of VaRτ is that it does not account for the size of losses
beyond the level τ , since it only depends on the frequency of tail losses and not on
their values (Dańıelsson et al. [11]). Furthermore, VaRτ fails to be subadditive, since the
inequality VaRτ pY1 ` Y2q ď VaRτ pY1q `VaRτ pY2q does not hold in general (Acerbi [2]).
It is therefore not a coherent risk measure in the sense of Artzner et al. [4], which is
problematic in risk management.

An important alternative to VaRτ is Expected Shortfall at level τ . This risk measure
is defined as (Acerbi [2])

QESτ :“
1

1´ τ

ż 1

τ

qt dt. (9)

When Y is continuous, QESτ is identical to the Conditional Value at Risk (Rockafellar
and Uryasev [36, 37]), known also as Tail Conditional Expectation (TCE), defined as
QTCEτ :“ ErY |Y ą qτ s. Both QESτ and QTCEτ can then be interpreted as the average
loss incurred in the event of a loss higher than VaRτ . We note, however, that QESτ defines
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a coherent risk measure but QTCEτ does not in general (see Wirch and Hardy [43] and
Acerbi and Tasche [3]).

4.2. Expectile-based Expected Shortfall

Motivated by the merits and good properties of expectiles, Taylor [39] has introduced an
expectile-based form of Expected Shortfall (ES) as the expectation XTCEτ :“ ErY |Y ą
ξτ s of exceedances beyond the τth expectile ξτ of the distribution of Y . This expectile-
based TCE was actually implemented by Taylor [39] only as an intermediate instrument
for the ultimate interest in estimating the conventional quantile-based form QTCEτ ,
or equivalently, the coherent version QESτ under the continuity assumption on Y . Al-
though the interpretability of XTCEτ is straightforward, its coherence as a proper risk
measure has been an open question so far. This is now elucidated below in Proposition 2,
showing the failure of XTCEτ to fulfill the coherence property in general. It would then
be awkward to use this non-coherent measure as the basis for estimating the coherent
quantile-based version QESτ . Instead, by analogy to QESτ itself, we propose to use the
new expectile-based form of ES

XESτ :“
1

1´ τ

ż 1

τ

ξt dt, (10)

obtained by substituting the expectile ξt in place of the quantile qt in the standard
form (9) of ES. It turns out that, in contrast to XTCEτ , the new risk measure XESτ is
coherent in general.

Proposition 2. For all τ ě 1{2,

(i) XESτ induces a coherent risk measure;
(ii) XTCEτ is neither monotonic nor subadditive in general, and hence does not induce

a coherent risk measure.

The coherence property of XESτ , contrary to that of QESτ , is actually a straightfor-
ward consequence of the coherence of the expectile-based risk measure ξτ , for τ ě 1{2.

Next, we show under the model assumption (3) that XESτ is asymptotically equivalent
to XTCEτ as τ Ñ 1, and hence inherits its direct meaning as the conditional expectation
ErY |Y ą ξτ s for all τ large enough.

Proposition 3. Assume that E|Y´| ă 8 and that Y has a Pareto-type distribution (3)
with tail index 0 ă γ ă 1. Then

XESτ
QESτ

„
ξτ
qτ
„

XTCEτ
QTCEτ

and
XESτ
ξτ

„
1

1´ γ
„

XTCEτ
ξτ

as τ Ñ 1.

Propositions 2 and 3 then afford arguments to justify that the new form XESτ of
expectile-based ES provides a better alternative to XTCEτ not only as a proper risk
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measure, but also as an intermediate tool for estimating the classical quantile-based
version QESτ . Indeed, XESτ is coherent and keeps the intuitive meaning of XTCEτ as
a conditional expectation when τ Ñ 1, since XESτ „ XTCEτ . Most importantly, XESτ
may be adopted as a reasonable alternative to QESτ itself. As is the case in the duality (5)
between the expectile ξτ and the VaR qτ , the choice in any risk analysis between the
expectile-based form XESτ and its quantile-based analogue QESτ will then depend on
the value at hand of γ ž 1

2 . More precisely, the quantity XESτ will be more (respectively,
less) extreme than QESτ and hence more (respectively, less) pessimistic or conservative
in practice, for all τ large enough, if γ ą 1

2 (respectively, γ ă 1
2 ).

The connections in Proposition 3 are very useful when it comes to interpreting and
proposing estimators for XESτ . Also, by considering the second-order regular variation
condition C2pγ, ρ,Aq, one may establish a precise control of the remainder term which
arises in the asymptotic equivalent XESτ {ξτ „ p1´ γq

´1.

Proposition 4. Assume that E|Y´| ă 8. Assume further that condition C2pγ, ρ,Aq
holds, with 0 ă γ ă 1. Then, as τ Ñ 1,

XESτ
ξτ

“
1

1´ γ

ˆ

1´
γ2pγ´1 ´ 1qγ

qτ
pEpY q ` op1qq

`
1´ γ

p1´ γ ´ ρq2
pγ´1 ´ 1q´ρApp1´ τq´1qp1` op1qq

˙

.

This result will prove instrumental when examining the asymptotic properties of our
tail expectile-based ES estimators in the next section.

4.3. Estimation and asymptotics

Propositions 1(i) and 4 indicate that the expectile-based ES satisfies a regular variation
property in the same way as quantiles and expectiles do. To estimate an extreme value
XESτ 1n , where τ 1n Ñ 1 and np1 ´ τ 1nq Ñ c ă 8, we may therefore start by estimating
XESτn , with τn being an intermediate level, before extrapolating this estimator to the
far tail using an estimator of the tail index γ. A natural estimator of XESτn is its direct
empirical counterpart:

ĆXESτn :“
1

1´ τn

ż 1

τn

rξt dt,

obtained simply by replacing ξt in (10) with its sample version rξt described in (2). Since
this estimator is a linear functional of the tail empirical expectile process, Theorem 2 is
more adapted than Theorem 1 for the analysis of its asymptotic distribution.

Theorem 6. Under the conditions of Theorem 2,

a

np1´ τnq

˜

ĆXESτn
XESτn

´ 1

¸

d
ÝÑ N

ˆ

0,
2γ3p1´ γqp3´ 4γq

p1´ 2γq3

˙

.
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On the basis of Proposition 1(ii) and then Proposition 3, we have for τn ă τ 1n Ñ 1
that

XESτ 1n
XESτn

„
ξτ 1n
ξτn

«

ˆ

1´ τ 1n
1´ τn

˙´γ

.

Therefore, to estimate XESτ 1n at an arbitrary extreme level τ 1n, we replace γ by the Hill

estimator pγτn and XESτn at an intermediate level τn by the estimator ĆXESτn to get

ĆXES
‹

τ 1n
:“

ˆ

1´ τ 1n
1´ τn

˙´pγτn
ĆXESτn . (11)

The next result analyzes the convergence of this Weissman-type estimator.

Theorem 7. Assume that the conditions of Theorem 5 hold. Then

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

ĆXES
‹

τ 1n

XESτ 1n
´ 1

¸

d
ÝÑ N

ˆ

λ1
1´ ρ

, γ2
˙

.

One can also design alternative options for estimating XESτ 1n by using the asymp-
totic connections in Proposition 3. For example, the asymptotic equivalence XESτ 1n „
p1´ γq´1ξτ 1n , established therein, suggests that XESτ 1n can be estimated consistently by

substituting the tail quantities γ and ξτ 1n with their consistent estimators pγτn and ξ
‹

τ 1n
pβq

described in (7) and (8), respectively. This yields the extrapolated estimator

XES
‹

τ 1n
pβq :“ r1´ pγτns

´1 ξ
‹

τ 1n
pβq, (12)

with a weight β P R, whose asymptotic normality is established in the following.

Theorem 8. Assume that the conditions of Theorem 5 hold. Then, for any β P R,
a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

XES
‹

τ 1n
pβq

XESτ 1n
´ 1

¸

d
ÝÑ N

ˆ

λ1
1´ ρ

, γ2
˙

.

Theorems 7 and 8 are, like Theorem 5, derived by noticing that, on the one hand, the

asymptotic behaviors of ĆXES
‹

τ 1n
and ξ

‹

τ 1n
pβq are controlled by the asymptotic behavior

of tp1´ τ 1nq{p1´ τnqu
´pγτn , which is itself governed by that of pγτn only. This is why, in

Theorems 7 and 8, the asymptotic distributions of ĆXES
‹

τ 1n
and XES

‹

τ 1n
pβq coincide. On

the other hand, the nonrandom remainder term coming from the use of Proposition 3
can be controlled thanks to Proposition 4.

4.4. Extreme level selection

A major practical question that remains to be addressed is the choice of the extreme level
τ 1n in the tail risk measure XESτ 1n . Since XESτ 1n „ ErY |Y ą ξτ 1ns, this problem translates
into choosing ξτ 1n itself.
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When moving from the conventional VaR qpn , for a pre-specified tail probability
pn Ñ 1 with np1 ´ pnq Ñ c ă 8, to the expectile ξτ 1n , Bellini and Di Bernardino [7]
have suggested to pick out τ 1n so that ξτ 1n ” qpn . The expectile ξτ 1n then inherits the same
intuitive probabilistic interpretation as the quantile qpn while keeping its coherence. This
idea was, however, implemented for a normally distributed Y . Instead, Daouia et al. [13]
have suggested to estimate nonparametrically the level τ 1n that satisfies ξτ 1n “ qpn , with-
out recourse to any a priori distributional specification apart from the standard assump-
tion (3) of heavy tails. By taking the derivative with respect to θ in the L2 criterion (1)
and setting it to zero, we get

τ “
E t|Y ´ ξτ |1IpY ď ξτ qu

E |Y ´ ξτ |
for all τ P p0, 1q.

The extreme expectile level τ 1nppnq :“ τ 1n such that ξτ 1n ” qpn then satisfies

1´ τ 1nppnq “
E t|Y ´ qpn | 1I pY ą qpnqu

E |Y ´ qpn |
.

Under the model assumption of Pareto-type tails (3), it turns out that

1´ τ 1nppnq „ p1´ pnq
γ

1´ γ
as nÑ8.

The proof of this result can be found in Daouia et al. ([13], Proposition 3). Built on the
Hill estimator pγτn of γ, we can then define a natural estimator of τ 1nppnq as

pτ 1nppnq :“ 1´ p1´ pnq
pγτn

1´ pγτn
. (13)

By substituting this estimated value in place of τ 1n ” τ 1nppnq in the extrapolated estima-

tors ĆXES
‹

τ 1n
and XES

‹

τ 1n
pβq described in (11) and (12), we obtain composite estimators

that estimate XESτ 1nppnq „ QESpn , by Proposition 3. The convergence results in Theo-

rems 7 and 8 of the extrapolated estimators ĆXES
‹

τ 1n
and XES

‹

τ 1n
pβq still hold true for their

composite versions as estimators of QESpn , with the same technical conditions.

Theorem 9. Suppose the conditions of Theorem 5 hold with pn in place of τ 1n. Then,
for any β P R,

a

np1´ τnq

logrp1´ τnq{p1´ pnqs

˜

ĆXES
‹

pτ 1nppnq

QESpn
´ 1

¸

d
ÝÑ N

ˆ

λ1
1´ ρ

, γ2
˙

,

and

a

np1´ τnq

logrp1´ τnq{p1´ pnqs

˜

XES
‹

pτ 1nppnq
pβq

QESpn
´ 1

¸

d
ÝÑ N

ˆ

λ1
1´ ρ

, γ2
˙

.
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5. Numerical simulations

In order to illustrate the behavior of the presented estimation procedures of the two
expected shortfall forms XESτ 1n and QESpn , we consider the Student t-distribution with

degree of freedom 1{γ, the Fréchet distribution F pxq “ e´x
´1{γ

, x ą 0, and the Pareto
distribution F pxq “ 1 ´ x´1{γ , x ą 1. The finite-sample performance of the differ-
ent estimators is evaluated through their relative Mean-Squared Error (MSE) and bias,
computed over 200 replications. The accuracy of the weighted estimators is investigated
for various values of the weight β P t0, 0.2, 0.4, 0.6, 0.8, 1u. All the experiments have sam-
ple size n “ 500 and tail index γ P t0.05, 0.25, 0.45u. In our simulations we used the
extreme levels τ 1n “ pn “ 1´ 1

n and the intermediate level τn “ 1´ k
n , where the integer

k can be viewed as the effective sample size for tail extrapolation.

5.1. Estimates of XESτ 1n

We evaluated the finite-sample performance of ĆXES
‹

τ 1n
and XES

‹

τ 1n
pβq, described in (11)

and (12), as estimators of XESτ 1n , for the different chosen scenarios and values of β.
Figures 1 and 2 give, respectively, the MSE (on a logarithmic scale) and bias estimates

of XES
‹

τ 1n
pβq{XESτ 1n , as functions of the sample fraction k (each curve corresponds to a

value of β as indicated by the colour-scheme). The Monte-Carlo estimates obtained for
ĆXES

‹

τ 1n
{XESτ 1n are superimposed in black curves. In the case of Student distribution (top

panels), the latter estimates perform clearly better in terms of both MSE and bias, for
all values of γ. In the case of Fréchet distribution (panels in the middle), it may be seen
that the orange curves pβ “ 1q behave quite well in terms of MSE and bias, for the three
values of γ. In the case of Pareto distribution (bottom panels), it may be seen from left
to right that the green pβ “ 0.4q, blue pβ “ 0.8q and orange pβ “ 1q curves are superior,
respectively, for γ “ 0.05, 0.25, 0.45.

To summarize, ĆXES
‹

τ 1n
is the winner in the case of the real-valued Student distribu-

tion, while XES
‹

τ 1n
pβq appears to be the most efficient in the case of the non-negative

Fréchet and Pareto distributions. The best choice of the weight β in the case of Fréchet
distribution is globally β “ 1. By contrast, the best choice of β in the case of Pareto
distribution seems to increase with γ.

5.2. Estimates of QESpn

We have also undertaken simulation experiments to evaluate the finite-sample perfor-

mance of the composite versions ĆXES
‹

pτ 1nppnq
and XES

‹

pτ 1nppnq
pβq studied in Theorem 9, with

pτ 1nppnq being described in (13). These composite expectile-based estimators estimate the
same conventional expected shortfall QESpn as the direct quantile-based estimator

zQES
‹

pn :“

ˆ

1´ pn
1´ τn

˙´pγτn 1

tnp1´ τnqu

tnp1´τnqu
ÿ

i“1

Yn´i`1,n (14)



Tail expectile process and risk assessment 17
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Figure 1. MSE estimates (in log scale) of ĆXES
‹

τ 1n
{XESτ 1n (black) and XES

‹

τ 1n
pβq{XESτ 1n (colour-

scheme), against k, for Student (top), Fréchet (middle) and Pareto (bottom) distributions, with γ “ 0.05
(left), γ “ 0.25 (middle) and γ “ 0.45 (right).
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Figure 2. Bias estimates of ĆXES
‹

τ 1n
{XESτ 1n (black) and XES

‹

τ 1n
pβq{XESτ 1n (colour-scheme).



Tail expectile process and risk assessment 19

introduced by El Methni et al. [22]. To save space, all figures illustrating our simulation
results here are deferred to the Supplementary Material document. In Supplement A, we
arrive at the following tentative conclusions:

• In the case of the (real-valued) Student distribution, the best estimator seems to

be ĆXES
‹

pτ 1nppnq
;

• In the cases of Fréchet and Pareto distributions (both positive), the best estimators

seem to be XES
‹

pτ 1nppnq
pβ “ 1q and/or zQES

‹

pn .

6. Applications

6.1. Application to medical insurance data

The Society of Actuaries (SOA) group Medical Insurance large claims database contains
75,789 claim amounts exceeding 25,000 USD, collected over the year 1991 from 26 in-
surers. The full database which records about 3 million claims over the period 1991-92
is available at http://www.soa.org. The scatterplot and histogram of the 1991 log-
claim amounts, displayed in Figure 3(a), exhibit a considerable right-skewness. Beirlant
et al. ([5], p.123) have argued that the underlying distribution is heavy-tailed with a γ
estimate around 0.35. A traditional instrument to assess the magnitude of future unex-
pected higher claim amounts is the expected shortfall QESpn described in (9). Insurance
companies typically are interested in an extremely low exceedance probability of the or-
der of 1{n, say, 1´ pn “ 1{100,000 for the sample size n “ 75,789. This corresponds to
rare events that happen on average only once in 100,000 cases.

In this situation of non-negative data with heavy right tail, our experience with sim-

ulated data indicates that XES
‹

pτ 1nppnq
pβ “ 1q and zQES

‹

pn provide the best extrapolated
pointwise estimates of the extreme value QESpn in terms of MSE and bias. As such,

these are the estimates we adopt here. For the sake of simplicity, XES
‹

pτ 1nppnq
pβ “ 1q will

be denoted in the sequel by XES
‹

pτ 1nppnq
.

The path of the composite expectile-based estimator XES
‹

pτ 1nppnq
against the sample

fraction k is shown in Figure 3(b) as rainbow curve, for the selected range of intermediate

values of k “ 10, 11, . . . , 700. The effect of the Hill estimate pγ1´k{n on XES
‹

pτ 1nppnq
is

highlighted by a colour-scheme, ranging from dark red (low pγ1´k{n) to dark violet (high
pγ1´k{n). This γ estimate seems to mainly vary within the interval r0.35, 0.36s, which
corresponds to the stable (blue-green) part of the plot over k P r150, 500s. The curve

k ÞÑ XES
‹

pτ 1nppnq
exceeds overall the sample maximum Yn,n “ 4.51 million (indicated by

the horizontal pink dashed line). To select a reasonable pointwise estimate, we applied a
simple automatic data-driven device similar to that of El Methni et al. [23]. This consists

first in computing the standard deviations of XES
‹

pτ 1nppnq
over a moving window large

enough to cover 20% of the possible values of k in the selected range 10 ď k ď 700. Then
one selects the first window over which the standard deviation has a local minimum,
and is less than the average standard deviation across all windows. The desired sample

http://www.soa.org
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fraction is finally defined as the value of k for which XES
‹

pτ 1nppnq
is the median estimate

within this window. The resulting estimate XES
‹

pτ 1nppnq
“ 6.42 million is obtained for the

value k “ 222 in the window r119, 259s.

The path of the direct quantile-based estimator zQES
‹

pn against k is graphed in the

same figure as dashed black curve. It is very similar to that of XES
‹

pτ 1nppnq
. The pointwise

estimate zQES
‹

pn “ 6.37 million is indicated by the minimal standard deviation achieved
at k “ 222 over the window r119, 259s. By Theorem 9 we have

?
k

logrk{np1´ pnqs

˜

XES
‹

pτ 1nppnq

QESpn
´ 1

¸

d
ÝÑ N

ˆ

λ1
1´ ρ

, γ2
˙

.

Under the bias condition λ1 “ 0 in Theorem 3, the asymptotic bias reduces to zero.
With this condition, the (symmetric) expectile-based asymptotic confidence interval with

confidence level 100ϑ% has the form CIϑpkq “ XES
‹

pτ 1nppnq
ˆ I, where I stands for the

interval

I :“

„

1˘ zp1`ϑq{2 log

ˆ

k

np1´ pnq

˙

pγ1´k{n
?
k



, (15)

with zp1`ϑq{2 being the p1 ` ϑq{2´quantile of the standard Gaussian distribution. The

confidence interval derived from the asymptotic normality of zQES
‹

pn in [22] can be ex-

pressed as xCIϑpkq “ zQES
‹

pn ˆ I.
The two asymptotic 95% confidence intervals CI0.95pkq and xCI0.95pkq are superimposed

in Figure 3(b) as well, respectively, in dotted blue and solid grey lines. Clearly, they point
towards similar conclusions. In particular, the stable parts of their lower boundaries
(around k P r100, 500s) remain quite conservative as they are very close to the maximum
recorded claim amount.

Finally, we would like to comment on the estimator pτ 1nppnq of the extreme expectile

level τ 1nppnq which ensures that XES
‹

pτ 1nppnq
estimates XESτ 1nppnq „ QESpn . The plot of

pτ 1nppnq versus k is graphed in Figure 3(c) as rainbow curve, and the corresponding optimal
pointwise estimate is indicated by the horizontal dashed black line. This selected optimal
level pτ 1nppnq “ 0.9999941 is higher than the pre-specified relative frequency pn “ 0.99999
indicated by the horizontal dashed pink line. This is actually in line with our theoretical
findings in Proposition 3 that lead in conjunction with (5) to

XESpn
QESpn

„
ξpn
qpn

„ pγ´1 ´ 1q´γ as pn Ñ 1.

Since γ ă 1{2, it follows that XESpn is less extreme than QESpn „ XESτ 1nppnq, for all pn
large enough. Therefore pn ă τ 1nppnq by monotonicity of τ ÞÑ XESτ , which follows from

the fact that XESτ “ p1´ τq
´1

ş1

τ
ξt dt, where the expectile function t ÞÑ ξt is continuous

and strictly increasing by Proposition 1 in Holzmann and Klar [27].



Tail expectile process and risk assessment 21

6.2. Application to financial data

In this section, we apply our method to estimate the ES for three large US financial
institutions. We consider the same investment banks as in the study of Cai et al. [9],
namely Goldman Sachs, Morgan Stanley and T. Rowe Price. All of these banks had a
market capitalization greater than 5 billion USD at the end of June 2007. The dataset
consists of the negative log-returns pYiq on their equity prices at a weekly frequency
during 10 years from July 3rd, 2000, to June 30th, 2010. The choice of the frequency
of data and time horizon follows the same set-up as in Cai et al. [9] and Daouia et
al. [13]. Our theorems being derived under the assumption that the data Y1, . . . , Yn
are independent and identically distributed, we use here weekly rather than daily loss
returns to reduce substantially the potential serial dependence. This results in the sample
size n “ 522. We use our composite expectile-based method to estimate the standard
quantile-based expected shortfall QESpn , or equivalently the expectile-based expected

shortfall XESτ 1nppnq, with an extreme relative frequency pn “ 1´ 1
n that corresponds to

a once-per-decade rare event.
In this situation of real-valued profit-loss distributions, our experience with simulated

data indicates that the composite estimator ĆXES
‹

pτ 1nppnq
provides the best QESpn estimates

in terms of MSE and bias. In the estimation, we employ the intermediate sequence
τn “ 1 ´ k{n as before, for the selected range of values k “ 1, . . . , 80. The confidence

interval with confidence level 100ϑ% derived from the asymptotic normality of ĆXES
‹

pτ 1nppnq
,

in Theorem 9, has the form ĂCIϑpkq “ĆXES
‹

pτ 1nppnq
ˆI, where I is described in (15). For our

comparison purposes, we use as a benchmark the direct quantile-based estimator zQES
‹

pn
of El Methni et al. [22], along with the corresponding asymptotic confidence interval
xCIϑpkq.

For each bank, we superimpose in Figure 4 the plots of the two competing estimates
ĆXES

‹

pτ 1nppnq
and zQES

‹

pn against k, as rainbow and dashed black curves respectively, along

with their associated 95% confidence intervals ĂCI0.95pkq in dotted blue lines and xCI0.95pkq

in solid grey lines. The effect of the Hill estimate pγ1´k{n on ĆXES
‹

pτ 1nppnq
is highlighted by

a colour-scheme, ranging from dark red (low pγ1´k{n) to dark violet (high pγ1´k{n).
We have already provided Monte Carlo evidence that the composite expectile-based

estimator ĆXES
‹

pτ 1nppnq
is efficient relative to the pure quantile-based estimator zQES

‹

pn .
Its superiority in terms of plots’ stability, including confidence intervals, can clearly be
visualized in Figure 4 for the three banks. The final ES levels based on the selection
criterion of Section 6.1, computed over a moving window covering 20% of the possible
values of k, are reported in Table 1, along with the asymptotic 95% confidence intervals

of the ES. Based on the ĆXES
‹

pτ 1nppnq
estimates (in the second column), the ES levels for

Goldman Sachs and T. Rowe Price seem to be close (around ´38% to ´44%), whereas the
ES level for Morgan Stanley is almost twice higher (around ´81%). It is worth noticing

that the difference between the ĆXES
‹

pτ 1nppnq
levels for Goldman Sachs and T. Rowe Price is

very close to the difference between their respective maxima Yn,n. The zQES
‹

pn estimates
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(in the fourth column) point towards slightly more pessimistic risk measures for the three
banks.

Bank ĆXES
‹

pτ 1nppnq
ĂCI0.95 zQES

‹

pn
xCI0.95 Yn,n

Goldman Sachs 0.445 (0.194, 0.620) 0.495 (0.226, 0.680) 0.365
Morgan Stanley 0.817 (0.384, 1.305) 0.883 (0.366, 1.478) 0.904
T. Rowe Price 0.386 (0.213, 0.511) 0.407 (0.216, 0.548) 0.305

Table 1. ES levels of the three investment banks, with the 95% confidence intervals and the sample
maxima. Results based on weekly loss returns, with n “ 522 and pn “ 1´ 1

n
.

Our two applications with real data seem to indicate that the more accurate composite
expectile-based estimates tend to be less (respectively, more) conservative than the pure

quantile-based estimates zQES
‹

pn in the case of real-valued profit-loss (respectively, non-
negative loss) distributions.

7. Concluding remarks

Originally introduced in Newey and Powell [34], expectiles have found recently an increas-
ing usage in finance and actuarial science as alternative instruments of risk protection to
quantiles. Their estimation via the method of asymmetric least squares is still in full de-
velopment in the areas of risk management and extreme value statistics. Our general joint
theory for tail empirical expectile and quantile processes opens new horizons for a wide
variety of tail risk estimation problems. This is illustrated through a fruitful estimation
of Expected Shortfall (ES), based on general weighted combinations of both top order
statistics and high expectiles. Interestingly, pure asymmetric least squares estimators are
particularly advantageous in the case of real-valued profit-loss distributions.

In our motivating application we focus on both quantile and expectile-based forms
of ES, but our weighted approximation theorems can be applied to other complex risk
functionals of both expectile and quantile processes. This includes the wider class of co-
herent spectral risk measures (Acerbi [2]), but also the very recent concept of extremiles
(Daouia et al. [12]). The latter concept defines a new least squares analogue of quantiles,
which is motivated via several angles and includes the family of expected minima and
expected maxima. Its characterization as weighted average of all quantiles, as well as its
specific merits and strengths, raise the question of extending this concept by replacing
quantiles with expectiles. The class of Wang [41] distortion risk measures with concave
distortion functions is another concrete example of genuine interest for future research.
The formulation and estimation of extreme versions of these coherent risk measures, tack-
led for instance in Vandewalle and Beirlant [40] and El Methni and Stupfler [23, 24], can
also be adapted and extended by substituting expectiles in place of quantiles and apply-
ing our general theory. Yet another example of generalized quantile-based risk measures
where similar considerations may be relevant is the family of so-called Lp-quantile risk
measures studied recently from the perspective of extreme values in Daouia et al. [14].
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Supplementary Material

The supplement to this article contains simulation results along with technical lemmas
and the proofs of all our theoretical results.
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[11] Dańıelsson, J., Embrechts, P., Goodhart, C., Keating, C., Muennich, F., Renault,
O. and Shin, H.S. (2001). An Academic Response to Basel II. Special paper no. 130,
Financial Markets Group, London School of Economics.



24 A. Daouia et al.

[12] Daouia, A., Gijbels, I. and Stupfler, G. (2018). Extremiles: A new perspective on
asymmetric least squares, J. Amer. Statist. Assoc., to appear. Available at
https://www.tandfonline.com/doi/full/10.1080/01621459.2018.1498348.

[13] Daouia, A., Girard, S. and Stupfler, G. (2018). Estimation of tail risk based on
extreme expectiles, J. R. Stat. Soc. Ser. B, 80, 263–292.

[14] Daouia, A., Girard, S. and Stupfler, G. (2019). Extreme M-quantiles as risk mea-
sures: From L1 to Lp optimization, Bernoulli, 25, 264–309.

[15] de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction,
Springer-Verlag, New York.

[16] de Haan, L., Mercadier, C. and Zhou, C. (2016). Adapting extreme value statistics
to financial time series: dealing with bias and serial dependence, Finance Stoch., 20,
321–354.
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Figure 3. (a) Scatterplot and histogram of the log-claim amounts. (b) The ES plots k ÞÑ XES
‹

pτ 1nppnq
pβ “

1q as rainbow curve, and k ÞÑ zQES
‹

pn
in dashed black, along with the constant sample maximum Yn,n

in horizontal dashed pink. The confidence intervals CI0.95pkq in dotted blue lines and xCI0.95pkq in solid
grey lines. (c) The plot of k ÞÑ pτ 1nppnq as rainbow curve, along with the selected optimal pointwise
estimate in horizontal dashed black line, and the constant tail probability pn in horizontal dashed pink.
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Figure 4. Results based on weekly loss returns of the three investment banks: (a) Goldman Sachs, (b)

Morgan Stanley, and (c) T. Rowe Price, with n “ 522 and pn “ 1´ 1{n. The estimates ĆXES
‹

pτ 1nppnq
as

rainbow curve and zQES
‹

pn
as dashed black curve, along with the asymptotic 95% confidence intervals

ĂCI0.95pkq in dotted blue lines and xCI0.95pkq in solid grey lines. The sample maximum Yn,n indicated in
horizontal dashed pink line.
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