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Abstract

We estimate the distribution of a real-valued random variable from contaminated observations. The
additive error is supposed to be normally distributed, but with unknown variance. The distribution is
identifiable from the observations if we restrict the class of considered distributions by a simple condition in
the time domain. A minimum distance estimator is shown to be consistent imposing only a slightly stronger
assumption than the identification condition.
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1. Introduction

A standard problem in nonparametric statistics is to consistently estimate the distribution of some real
random variable X from a statistical sample that is subject to an additive measurement error ε. The usual
setting is to assume independent and identically distributed (iid) observations from a random variable Y
that is such that Y = X + ε. Knowing the cumulative distribution function (cdf) of ε, a vast literature
focuses on the accuracy of estimation of the cdf of X (e.g. Carroll and Hall (1988); Fan (1991)). The full
knowledge of the cdf of ε is of course a strong assumption that is rarely encountered in real data analysis.
However this assumption is also an identification condition: without the full information on the cdf of ε, the
cdf of X cannot be identified from the observations of Y .

In order to circumvent that issue, some authors have worked under other sampling processes. In addition
to the observation of a sample of Y some papers assume to observe another independent sample from the
measurement error ε. That new sample allows to estimate the cdf of ε in a first step, and therefore to
recover the cdf of X in a second step (e.g. Neumann (1997), Cavalier and Hengartner (2005), Johannes,
Van Bellegem, and Vanhems (2009)). In other studies, it is instead assumed to observe longitudinal, or
multilevel, versions of Y (e.g. Li and Vuong (1998); Meister and Neumann (2009)).

The present paper develops another strategy to identify the cdf of X. We assume that the measurement
error, ε, is normally distributed with mean zero and unknown variance σ2. In this setting the cdf of X is of
course not identified from the observation of Y . However if we restrict the class of cdfs of X we show below
that the model becomes identified in spite of the partial knowledge on the cdf of ε. In Section 2 below
we prove that the distribution of X is identifiable from the observation Y = X + ε if there is a
set of positive Lebesgue measure on which it puts no mass.

The normality of ε is not a restrictive assumption in real data analysis, in which the main issue is often
to evaluate the level of the noise σ2. In Hall and Simar (2002) a similar setting is considered but under the
additional assumption that σ2 depends on the sample size n in such a way that σ2 → 0 as n→∞. Matias
(2002) and Butucea and Matias (2005) also consider the consistent estimation of σ2 and of the cdf of X
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under strong restrictions on the characteristic function of X. In Section 3 we show that if we slightly restrict
the class of cdfs of X, then we can prove the consistency of a minimum penalized contrast estimator of the
cdf and σ2. The originality of our approach is to exploit the qualitative prior on X (which is vanishing on
some interval) in order to separate it from the measurement error.

The next section addresses the identification issue and in Section 3 we prove the consistency of the
minimum penalized contrast estimator. A technical lemma on measure theory is deferred to an appendix.

2. Identification

Suppose we want to recover the probability distribution PX of a random variable X that is observed
with an additive and independent random contamination error ε. This measurement error is assumed to be
normally distributed with mean zero and unknown variance σ2. The resulting observational model is

Y = X + ε. (1)

The distribution of Y is the convolution PY = PX ∗Nσ, where Nσ denotes the probability distribution of ε.
Writing ϕX , ϕY and ϕσ for the characteristic functions of PX , PY and Nσ, respectively, the convolution
equation is equivalent to ϕY = ϕX ϕσ by virtue of the convolution theorem. Because of the uncertainty
about the variance of the measurement error, not all probability distributions can be recovered from the
model. Define the set of distributions

P0 =
{
P ∈ P

∣∣ ∃A ∈ B(R) : |A| > 0 ∧ P (A) = 0
}
,

where B(R) denotes the set of Borel sets in R and P the set of all probability distributions, and |A| the
Lebesgue measure of A. In the following theorem, we show that all distributions belonging to P0 are
identifiable from the observational model.

Theorem 2.1 (Identification). The model defined by (1) is identifiable for the parameter space P0 ×
(0,∞), that is, for any two probability measures P 1, P 2 ∈ P0 and σ1, σ2 > 0, we have that P 1∗Nσ1 = P 2∗Nσ2

implies P 1 = P 2 and σ1 = σ2.

The proof of this theorem is based on the following lemma.

Lemma 2.2. Let P 1 and P 2 be probability distributions and 0 < σ1 < σ2. Then,

P 1 ∗ Nσ1 = P 2 ∗ Nσ2 =⇒ P 1 = P 2 ∗ Nσ3 , where σ3 =
√
σ2

2 − σ2
1.

Proof. First, apply the convolution theorem on both sides of the equation, then divide by ϕσ1 which is
positive everywhere. To conclude, it suffices to remark that ϕσ3 = (ϕσ2/ϕσ1). �

Proof of Theorem 2.1. Suppose that (P 1, σ1), (P 2, σ2) ∈ P0 × (0,∞) are chosen in such a way that
P 1 ∗ Nσ1 = P 2 ∗ Nσ2 . It has to be shown that this implies (P 1, σ1) = (P 2, σ2). First, we prove by
contradiction that σ1 = σ2. Suppose that σ1 6= σ2. Without loss of generality, say σ1 < σ2. By virtue of
Lemma 2.2, this implies P 1 = P 2 ∗ Nσ3 .

We show now that this is only possible if P 1 is not in P0 which contradicts the assumption. Indeed,
let A = [a1, a2] be some interval of positive length |A| = a2 − a1 and B = [b1, b2] another interval with
|B| < |A| and P 2(B) > 0. By definition of the convolution and in view of the independence of X and ε in
our model, we can write (P 2 ∗ Nσ3)(A) = (P 2 ⊗ Nσ3)(SA), where SA = {(x, y) ∈ R2 | x + y ∈ A} and ⊗
denotes the product measure. We have that a1 − b1 < a2 − b2 because of |B| < |A|. It is easily verified that
B × [a1 − b1, a2 − b2] ⊂ SA and hence P 1(A) = (P 2 ∗ Nσ3)(A) ≥ P 2(B)Nσ3([a1 − b1, a2 − b2]) > 0. This
contradicts the assumption that P 1 ∈ P0, showing that σ1 = σ2.

The characteristic function of the normal distribution being positive everywhere, an application of the
convolution theorem completes the proof. �
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Remark 2.3. The identification theorem assumes that the measurement error, ε, is normally
distributed with an unknown variance σ2. Although it is a most natural assumption from a
practical point of view, it should be noticed that the proof essentially exploits the infiniteness
of the support of ε. Therefore, the identification result may be extended for general (but
known) error distributions of the error, provided some counterpart of Lemma 2.2 holds. It is
the case for Cauchy distributions with location parameter µ = 0 or, more generally, for stable
distributions with fixed exponent α ∈ (0, 2], skewness parameter β = 0, and location µ = 0, for
example.

It is worth noticing that if in Theorem 2.1 we do not suppose both P 1 and P 2 to belong to P0, the
conclusion is false in general as the following counterexample illustrates. Let P 1 be the uniform distribution
on the unit interval and ϕ1 its characteristic function. Clearly, P 1 ∈ P0. If we let P 2 be the probability
distribution with characteristic function ϕ2 := ϕ1 ϕσ/ϕ(σ/2), then, in view of the convolution theorem, we
have P 1 ∗ Nσ = P 2 ∗ N(σ/2), but P 1 6= P 2.

We conclude this section by remarking that the probability distributions in question are not required to
have densities. For those having one, the identification condition can be equivalently expressed by requiring
that the density has to vanish on a set of positive Lebesgue measure.

3. Estimation

Now suppose we have an i.i.d. sample {Y1, . . . , Yn} from the model (1). Let D−→ denote convergence
in distribution. An estimator (P̂Xn , σ̂n) of (PX , σ) is called consistent if, almost surely, P̂Xn

D−→ PX and
σ̂n → σ as n→∞. For a consistent estimator, we always have P̂Xn ∗Nσ̂n

D−→ PY , which is hence a necessary
condition of consistency. We call an estimator satisfying this condition admissible.

3.1. Minimum distance estimation
Let ϕ̂Yn (t) = 1

n

∑n
k=1 exp(itYk) be the empirical characteristic function of the observations.

For characteristic functions ϕ̃X , ϕ̃σ, and ϕ̃Y let us define a distance ρ,

ρ(ϕ̃X , ϕ̃σ; ϕ̃Y ) :=
∫

R
|ϕ̃X(t) ϕ̃σ(t)− ϕ̃Y (t)| h(t) dt, (2)

where h is some continuous and strictly positive probability density ensuring the existence of the integral.
With a slight abuse of notation we do not make the dependence of the distance on h explicit,
as it does not have any influence on the results derived in this work. The estimation consists in
choosing P̂Xn and Nσ̂n

such that their characteristic functions ϕ̂Xn and ϕσ̂n
minimize ρ(· , · ; ϕ̂Yn ). Since this

minimum is not necessarily attained, we give the following definition.

Definition 3.1. Let (δn)n∈N be a vanishing sequence and C a set of probability distributions. In the context
of the deconvolution model, we call a random sequence (P̂Xn , σ̂n) depending on the observations {Y1, . . . , Yn}
a minimum distance estimator on C if it is such that the corresponding characteristic functions yield

ρ(ϕ̂Xn , ϕσ̂n
; ϕ̂Yn ) ≤ inf

ϕ̃X∈ΦC
σ̃≥0

ρ(ϕ̃X , ϕσ̃; ϕ̂Yn ) + δn, (3)

where we denote by ΦC the set of all characteristic functions of some class of distributions C. Let further
P̂X+ε
n := P̂Xn ∗ Nσ̂n

, the characteristic function of which is ϕ̂Xn ϕσ̂n
.

Our aim is to prove the consistency of this estimator. Obviously, this requires further assumptions on the
class C. In the first instance, we show that the minimum distance estimator is always admissible.

Lemma 3.2 (Admissibility). Any minimum distance estimator (P̂Xn , σ̂n) on the set P of all probability
distributions is admissible.
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Proof. The empirical characteristic function ϕ̂Yn converges almost surely pointwise to ϕY . By Lebesgue’s
Theorem, this implies ρ(ϕX , ϕσ; ϕ̂Yn )→ 0 almost surely. Applying the triangle inequality and using ϕXϕσ =
ϕY , we obtain ρ(ϕ̂Xn , ϕσ̂n

;ϕY ) ≤ ρ(ϕ̂Xn , ϕσ̂n
; ϕ̂Yn )+ρ(ϕX , ϕσ; ϕ̂Yn ). Because of (3), we can write ρ(ϕ̂Xn , ϕσ̂n

; ϕ̂Yn ) ≤
ρ(ϕX , ϕσ; ϕ̂Yn ) + δn, so that we conclude that, almost surely, ρ(ϕ̂Xn , ϕσ̂n

;ϕY ) ≤ 2ρ(ϕX , ϕσ; ϕ̂Yn ) + δn → 0.
We choose an element ω ∈ Ω of the underlying probability space such that this convergence holds. As the
integrand in (2) is non-negative, it follows that

∫ a
0
ϕ̂Xn (t)ϕσ̂n

(t)dt −→
∫ a

0
ϕY (t)dt for all a ∈ R as n → ∞.

We have shown that the integrated characteristic functions of the measures P̂X+ε
n converge to the integrated

characteristic function of the probability measure PY , so that, applying Theorem 6.3.3 from Chung (1968),
we get P̂X+ε

n
V−→ PY , where V−→ denotes vague convergence. Knowing that the measures P̂X+ε

n as well as
their vague limit PY are probability distributions, the Portmanteau Theorem implies that we do in fact have
weak convergence, which means that the estimator is admissible. �

Remark 3.3. We have seen that the minimum distance estimator is always admissible. Next, we determine
classes of distributions on which it is also consistent. One might wonder if the identification condition alone
is sufficient to guarantee consistency, that is, if minimum distance estimators on P0 are consistent. This is
not the case, as the following counterexample illustrates. Let P̂Xn (A) := P̂Yn (A∩[−n, n])/P̂Yn ([−n,n]) for any
Borel set A, where P̂Yn is any consistent estimator of PY , and denote by ϕ̂Xn its characteristic function.
Note that P̂Xn ∈ P0 for every n ≥ 1, and let further σ̂n := (1/n). Then, (P̂Xn , σ̂n) is a minimum distance
estimator. Indeed, P̂Xn converges to PY in distribution almost surely by construction. Using
Lévy’s continuity theorem, we deduce that |ϕ̂Xn (t)ϕσ̂n

(t)− ϕ̂Yn (t)| → 0 for all t almost surely and
hence ρ(ϕ̂Xn , ϕσ̂n

; ϕ̂Yn ) → 0 almost surely by Lebegue’s dominated convergence theorem. Thus,
the sequence (P̂Xn , σ̂n) is a candidate for a minimum distance estimator when δn decreases
sufficiently slow. It is easily verified that this estimator is admissible but not consistent. The following
consideration shows in which way we have to restrict the class P0 in order to obtain consistency. Assume
that PX ∈ P0 and let (P̂Xn , σ̂n) be an admissible estimator. By virtue of Lemma A.1 below, admissibility
implies the existence of an increasing sequence (nk)k∈N, some probability measure PX∞ , and σ∞ ≥ 0 such
that

P̂Xnk

D−→ PX∞ and σ̂nk
−→ σ∞ (4)

as n→∞, which implies P̂Xnk
∗ Nσ̂nk

D−→ PX∞ ∗ Nσ∞ , and hence, due to admissibility and by uniqueness of
the weak limit,

PX∞ ∗ Nσ∞ = PX ∗ Nσ. (5)

It follows from (4) that a necessary condition for P̂Xn to be consistent is PX∞ = PX . In view of (5) and
Theorem 2.1, this is equivalent to PX∞ ∈ P0. But this may not be the case in spite of all P̂Xnk

lying in P0 as
this class is not closed under convergence in distribution as the above counterexample shows.

3.2. Consistency
In Remark 3.3 we have seen that in order to show consistency of the minimum distance estimator, we

need to restrict the set of considered distributions. For R, η > 0, let

PηR := {P ∈ P | ∃A = (a1, a2) ⊂ [−R,R] : |A| ≥ η ∧ P (A) = 0}.

Indeed, this choice avoids the problem of possibly obtaining a sequence of estimators the weak limit of
which lies outside the identified class P0, as the following lemma shows. Note that for a positive random
variable X, we have PX ∈ PηR for any choice of η and R.

Lemma 3.4. For any R, η > 0, weakly convergent sequences in PηR have their limit in P0.

Proof. Let (Pn)n∈N be a sequence in PηR. Then, we have

∀n ∈ N ∃ interval An ⊂ [−R,R] : Pn(An) = 0 ∧ |An| ≥ η. (6)
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Suppose further that (Pn)n∈N converges in distribution to some P∞. We have to show that there is some
A∞ ∈ B([−R,R]) of positive Lebesgue measure such that P∞(A∞) = 0, that is P∞ ∈ P0.

Firstly, we deduce from (6) that there exists an x0 ∈ [−R,R] which lies in infinitely many An, or in other
words, ∃x0 ∈ [−R,R] ∃(nk)k∈N ∀k ∈ N : x0 ∈ Ank

. As all Ank
are intervals of length at least η, there is an

interval containing x0 which is a null set for infinitely many measures of the sequence Pnk
. More precisely,

there is a subsequence n′k of nk such that (x0 − η/2, x0] ⊂
⋂
k∈N An′k or [x0, x0 + η/2) ⊂

⋂
k∈N An′k .

Hence, we can choose A∞ = (x0 − η/2, x0) or A∞ = (x0, x0 + η/2) such that |A∞| = η/2 > 0 and
Pn′k(A∞) = 0 for all k ∈ N. The latter assertion implies that lim infn→∞ Pn(A∞) = 0. Recall that the
Pn converge weakly to P∞ and that A∞ is an open set. Therefore, the Portmanteau theorem allows us to
conclude that P∞(A∞) = 0. �

Before proving consistency, recall the definition of the Lévy distance: For probability distributions P 1, P 2

with cumulative distribution functions F 1, F 2, define

d(P 1, P 2) := inf{δ > 0 | F 1(x− δ)− δ ≤ F 2(x) ≤ F 1(x+ δ) + δ ∀x ∈ R}.

For a sequence Pn of probability distributions, one has that Pn
D−→ P if and only if d(Fn, F )→ 0 as n→∞.

In other words, d metrizes the weak convergence. Now define, for probability distributions P̃X and real
numbers σ̃,

∆(P̃X , σ̃;PX , σ) = d(P̃X , PX) + |σ̃ − σ|.

Remark that ∆(PXn , σn;PX , σ)→ 0 if and only if PXn
D−→ PX and σn → σ (and hence Nσn

D−→ Nσ).

Theorem 3.5 (Consistency). Let R, η > 0 and suppose that in the deconvolution model (1), we have
PX ∈ PηR . Then, any minimum distance estimator (P̂Xn , σ̂n) on PηR is consistent, that is, we have
∆(P̂Xn , σ̂n;PX , σ)→ 0 almost surely.

Proof. We have seen in Lemma 3.2 that the considered estimator is admissible. Now we show that
under the assumptions of this theorem, this implies ∆(P̂Xn , σ̂n;PX , σ) → 0. The proof is by contradiction.
Assume there is a δ > 0 and an increasing sequence (nk)k∈N in N such that ∆(P̂Xnk

, σ̂nk
;PX , σ) ≥ δ ∀ k ∈ N.

Lemma A.1 furnishes a subsequence (n′k)k∈N of (nk)k∈N, a probability measure PX∞ and a constant σ∞ ≥ 0
such that

P̂Xn′k
D−→ PX∞ and Nσ̂n′

k

D−→ Nσ∞ . (7)

Denote the characteristic functions of PX∞ and Nσ∞ by ϕX∞ and ϕσ∞ , respectively. Since weak convergence
implies pointwise convergence of the corresponding characteristic functions, we obtain by Fatou’s Lemma
that ρ(ϕX∞, ϕσ∞ ;ϕY ) ≤ lim infk→∞ ρ(ϕ̂Xn′k , ϕσ̂n′

k

;ϕY ) = 0, that is,
∫

R |ϕ
X
∞(t)ϕσ∞(t) − ϕY (t)| h(t) dt = 0.

As h is strictly positive and characteristic functions are uniformly continuous on R, we conclude that

ϕX∞(t)ϕσ∞(t) = ϕY (t) = ϕX(t)ϕσ(t) ∀ t ∈ R.

Lemma 3.4 allows us to deduce from (7) that PX∞ ∈ P0. Consequently, Theorem 2.1 ensures that PX∞ = PX

and σ∞ = σ. Together with (7), this implies ∆(P̂Xn′k , σ̂n
′
k
;PX , σ)→ 0. This contradicts the assumption and

completes the proof. �

4. Conclusion

We have considered the problem of density deconvolution from one single contaminated sample with
uncertainty in the error distribution and we have shown a minimum distance estimator to be consistent
in this model. The estimation procedure presented here is inspired by a similar estimator suggested by
Neumann (2007) in the context of panel data. Neumann proposes an identification assumption which also
implies consistency. This condition is expressed in terms of characteristic functions.
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Unlike this, the focus of the present note is on a weak identification condition in the time domain which
reflects the properties of the involved distributions in a more natural way. In Section 2 we have proposed
such an assumption. An additional difficulty arises from the fact that this condition is too weak to imply
consistency, which motivates the definition of admissibility. However, a slight restriction of the considered
class of distributions is sufficient to conclude, as the theorem shows.

As far as convergence rates under additional assumptions on the characteristic functions are concerned,
the reader may consult the work of Butucea and Matias (2005) in which rates are developed and shown to
be minimax-optimal.

As for practical computability, the infinite-dimensional minimization problem (3) could be reduced to a
finite-dimensional one by considering σ̃ ∈ Σn and ϕ̃X ∈ ΦPn

only, where Σn becomes dense in R as n→∞
and Pn = {

∑Nn

j=1 αjδxj | αj ∈ R} is a collection of purely atomic probability distributions which grows
with n. Such a procedure obviously involves the choice of a number of parameters. A further
development of such a procedure as well as an investigation of its behavior and sensitivity to
these choices goes beyond the scope of this work and appears to be a relevant and intersting
topic for further research.

A. Technical lemma

Lemma A.1. Let Qn be a sequence of probability distributions and σn a sequence of positive real numbers.
Suppose further that (Qn ∗ Nσn

)n∈N converges weakly to some probability distribution. Then, there exist an
increasing sequence (nk)k∈N, a probability distribution Q∞, and a constant σ∞ ≥ 0 such that

Qnk

D−→ Q∞ and Nσnk

D−→ Nσ∞

as n→∞, where N0 := δ0 denotes the Dirac measure by convention.

Proof. By Helly’s selection theorem, there is a subsequence (nk)k∈N and a subprobability measure Q∞
such that Qnk

V−→ Q∞, where V−→ denotes vague convergence (e.g. Chung (1968)). We show below that
the σnk

are bounded from above such that they have a convergent subsequence; without loss of generality,
say σnk

→ σ∞ for some σ∞ ≥ 0. Proposition 3.1 from Jain and Orey (1979) states that if Rn
V−→ R and

Sn
D−→ S, then Rn ∗Sn

V−→ R∗S, so we have Qnk
∗Nσnk

V−→ Q∞ ∗Nσ∞ . By assumption, the same sequence
converges weakly, and hence vaguely, to some distribution, so the uniqueness of the vague limit of measures
on locally compact spaces implies Q∞(R) = 1 because (µ ∗ ν)(R) = µ(R) ν(R) for any two finite measures µ
and ν on (R,B(R)). The Portmanteau Theorem then implies Qnk

D−→ Q∞, which was our claim.
It remains to prove that σnk

is bounded from above. We show that otherwise the sequence (Qnk
∗Nσnk

)k∈N
would not be tight, which contradicts its weak convergence. Random variable notation is more convenient
for this argument, so let Uk ∼ Qnk

and Vk ∼ Nσnk
be i.i.d. random variables and Wk := Uk + Vk. We have

to show the non-tightness of the distributions of {Wk}k∈N, that is

∃ δ ∈ (0, 1) ∀ J > 0 ∃ k ∈ N : P
[
Wk ∈ [−J, J ]

]
< 1− δ.

Fix δ = (1/12) and J > 0, and let J = [−J, J ]. Put I+
j = [3jJ, (3j + 1)J ] and I−j = [−(3j + 2)J,−(3j −

1)J ], and let I :=
⊎
j≥0 I

+
j be the disjoint union of the I+

j . Because of the monotony of the normal density on
[0,∞), we have P[Vk ∈ I+

j ] > (1/3)P
{
Vk ∈ [3jJ, 3(j + 1)J)

}
. The disjoint union over j ≥ 0 of the intervals

on the right hand side of this inequality is [0,∞), and P[Vk ≥ 0] = (1/2). Thus, we have P[Vk ∈ I] > (1/6).
We can now write P[Wk ∈ J ] < (5/6) + (1/6)P[Wk ∈ J | Vk ∈ I], and it is sufficient to prove that the
conditional probability appearing in this inequality is less than (1/2) for some k.

It is easy to check that P[Wk ∈ J | Vk ∈ I] =
∑∞
j=0 P[Wk ∈ J | Vk ∈ I+

j ] P[Vk ∈ I+
j | Vk ∈ I]. By

construction, Vk ∈ I+
j and Wk ∈ J together imply Uk ∈ I−j . Using further the monotony of the normal

density on [0,∞), we deduce that P[Wk ∈ J | Vk ∈ I] ≤ 6P[Vk ∈ I+
0 ]
∑∞
j=0 P[Uk ∈ I−j ]. As the I−j are
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pairwise disjoint, the sum is bounded from above by 1, and hence P[Wk ∈ J | Vk ∈ I] ≤ 6P[Vk ∈ I+
0 ]. If

σnk
is unbounded, k can be chosen in such a way that the right hand side of this inequality is less than (1/2),

which completes the proof. �
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