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1 Introduction

We contribute to the literature on the estimation of large-dimensional integrated covolatility
matrices from high-frequency intraday data. The covolatility matrix plays a crucial role in
many financial applications including risk management, portfolio allocation, hedging and as-
set pricing, and as such, accurate and well conditioned estimates of the integrated covolatility
matrix, its inverse, and the correlation matrix are of great practical import.

Our new covolatility estimator is specifically designed to work in situations when the
the number of assets is large and the high-frequency data used in the estimation might be
contaminated with microstructure noises. It relies on the assumption of a factor structure
for characterizing the microstructure noise component, separate from the factor structure
that characterizes the latent genuine returns. The efficiency of the new estimator compares
favorably to other recently developed procedures. These theoretical results, derived under
the assumption of increasingly finer sampled intraday returns and an increasing number
of assets, carry over to more accurate estimates of large-scale integrated covolatility and
correlation matrices in empirically realistic situations with hundreds of assets and finitely
sampled intraday returns. On applying the new estimator in the construction of minimum
variance portfolios with a sample comprised of almost four-hundred individual stocks, it
also results in systematically lower ex-post risks than other competing realized covolatility
estimation procedures.

To more formally set out the ideas, letX∗t =
(
X∗1t, ..., X

∗
pt

)′
denotes the latent p-dimensional

frictionless vector log-price process of interest. Importantly, we allow for p to be “large” and
possibly in excess of the number of intraday price observations. Consistent with the lack of
arbitrage, we will further assume that Xt follows a continuous Itô semimartigale process,

dX∗t = µtdt + σtdBt, 0 ≤ t ≤ 1, (1)

where the unit time-interval corresponds to a day, Bt =
(
B

(1)
t , ..., B

(p)
t

)′
is a p-dimensional vec-

tor of standard independent Brownian motions, and µt =
(
µ

(1)
t , ..., µ

(p)
t

)′
and σt =

(
σ

(1)
t , ..., σ

(p)
t

)′
denote a p-dimensional predictable locally bounded drift process and a càdlàg p× p spot co-
volatility process, respectively. The object of interest is the p × p integrated covolatility
matrix,1

ICV =
1∫

0

σsσ
′

sds. (2)

This ex-post measure of the true daily covariation is, of course, latent. By the theory of
1Following the literature, we will also interchangeably refer to this as the integrated covariance, integrated

volatility, or integrated covariation matrix.
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quadratic variation, it may be consistently estimated by the summation of increasingly finer
sampled cross-products of the high-frequency frictionless vector return process,

RCV =
∑
ti

(X∗ti+1
−X∗ti)(X

∗
ti+1
−X∗ti)

′, (3)

where 0 ≤ ti ≤ 1 refer to the within day sampling times, ti− ti−1 → 0. In practice, of course,
the X∗t process is not directly observable. Instead, the actually observed price process, is
subject to “noise” stemming from a host of market microstructure complications, including
bid-ask spreads, non-trading, price discreteness, trades occurring on different markets or
networks, rounding errors, among others (see, e.g., Hansen and Lunde (2006) and Diebold
and Strasser (2013)),

Xt = X∗t + ut. (4)

This in turn renders the estimator for ICV based on RCV with the actually observed Xt

price process in place of X∗t inconsistent.
Several competing estimators that remain consistent in the presence of market microstruc-

ture noise have been proposed in the univariate case (p = 1), including the sub-sampling
and averaging approach of Zhang, Mykland, and Ait-Sahalia (2005), the realized kernel of
Barndorff-Nielsen, Hansen, and Shephard (2008), and the pre-averaging (henceforth PRV )
approach of Jacod, Li, Mykland, Podolskijc, and Vetter (2009). These estimators are nat-
urally extended to the multivariate case (p > 1), provided that the observation times of all
the assets are synchronous, and the number of assets is smaller than the number of intraday
observations. In practice, of course, prices are generally not recorded at the same time for
all assets, which can cause naive estimators of the covolatility matrix that pretend the data
are synchronous to be seriously biased.2

One solution to the non-synchronicity problem is provided by Hayashi and Yoshida (2005),
who propose including all overlapping (in time) intraday returns based on the actually ob-
served price series in the calculation of RCV . However, the estimator of Hayashi and Yoshida
(2005) doesn’t deal with the microstructure noise that plagues the use of high-frequency data
more generally. The multivariate realized kernel estimator of Barndorff-Nielsen, Hansen,
Lunde, and Shephard (2011) (henceforth MRker3) simultaneously guarantee consistency,

2This effect was first noted empirically for sample correlation matrices by Epps (1979), and it is now
commonly referred to as the Epps-effect.

3The realized kernel estimator is defined by:

K(Y ) =
n∑

h=−n
k( h

H+1 )Γh,

Γh =
n∑

j=h+1
yjy

′

j−h, for h > 0; Γh = Γ′

−h, for h < 0,
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positive semi-definiteness, robustness to microstructure noise, while also accounting for non-
synchroneity of observations. The non-synchronicity issue, in particular, is resolved using
so-called refresh-time sampling. The modulated realized covariance estimator (henceforth
MRC) of Christensen, Kinnebrock, and Podolskij (2010), based on a multivariate extension
of the univariate pre-averaging approach, also works in the presence of market microstruc-
ture noise. However, theMRC estimator assumes synchronous data, and it is not guaranteed
to be positive semi-definite. Christensen, Kinnebrock, and Podolskij (2010) introduced the
adjusted modulated realized covariance (henceforth MRCδ) and the pre-averaged Hayashi-
Yoshida estimator, in order to ensure the positive semi-definiteness, the noise-robustness and
to resolve the non-synchronous data problem.

The covolatility estimators discussed above were explicitly designed for situations in which
the number of assets is small relative to the number of intraday return observations, or the
sample size available for the estimation. Of course, in many practical portfolio allocation,
risk measurement and management decisions, the number of assets is often of the same order
of magnitude or even larger than the sample size, entailing a curse of dimensionality type
problem for any direct estimation of ICV matrix.4 Two main approaches has emerged in the
literature for dealing with this problem: (i) sparsity or decay assumptions pertaining directly
to the different entries in the covolatility matrix; and (ii) the use of factor structures.

Estimators that rely on sparsity and decay assumptions include Zhang (2011) and Zheng
and Li (2011). These estimators typically postulate that the covolatility matrix is comprised
of only a small number of non-zero block diagonal matrices, or that the absolute magnitude
of the elements in the matrix somehow decay away from the diagonal.5 The blocking and
regularization approach of Hautsch and Podolskij (2013), in which assets with similar obser-
vation frequency are grouped together in order to reduce the data loss stemming from the
use of refresh-time sampling, also implicitly builds on similar ideas. As does the composite
realized kernel estimator (henceforth Σ̂comp) of Lunde, Shephard, and Sheppard (2016), in
which bivariate realized kernel estimators for all pairs of assets is combined and regularized
in the construction of an estimation for the full high-dimensional covolatility matrix for all
assets.

The use of factor structures that underly the second approach for high-dimensional re-

where n is the number of synchronized returns per asset, Γh is the hth realized auto-covariance; yj = Yj−Yj−1

for j = 1, 2, ..., n; with Y0 = 1
m

m∑
j=1

Y (τp,j); Yn = 1
m

m∑
j=1

Y (τp,p−m+j); Yj = Y (τp,j+m) for j = 1, ..., n − 1;

{τp,j} is the series of refresh time ; and k is a non-stochastic weighting function. The rate of convergence of
this estimator is n−1/5.

4This mirrors the problem in parametric GARCH and stochastic volatility models, for which the dimen-
sionality of parameter space in unrestricted versions of the models grow at the rate of p4; see, e.g., Andersen,
Bollerslev, Christoffersen, and Diebold (2006).

5The decay assumption is often somewhat arbitrary, since there is not a natural ordering of the assets.
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alized covolatility matrix estimation, is, of course, omnipresent in finance (see, e.g., Ross
(1976), Chen, Roll, and Ross (1986), Sharpe (1994), and Ledoit and Wolf (2003)). The use
of this approach in the context of high-frequency data realized covolatility estimation was
pioneered by Fan, Fan, and Lv (2008). It has the obvious advantages that it guarantees
a positive semi-definite and, under weak conditions, invertible estimate of the covolatility
matrix. Fan, Fan, and Lv (2008) further examine how the dimensionality of the problem
favorably impact the accuracy of the estimator compared to other procedures. Other re-
lated factor-based approaches include Tao, Wang, and Chen (2011) and Bannouh, Martens,
Oomen, and van Dijk (2012), who rely on mixtures of high-frequency intraday data and
daily date for estimating the covolatility matrix implied by a factor structure; Fan, Liao,
and Mincheva (2011) through their approximate factor models6 for the estimation of high-
dimensional covariance matrix; Fan, Liao, and Mincheva (2013) who introduce the Principal
Orthogonal Complement Thresholding Estimator (Henceforth, POET) 7; and the principal
component analysis for the estimation of high dimensional factor models recently explored
by Ait-Sahalia and Xiu (2017) and Dai, Lu, and Xiu (2018).8

Building on these ideas, we propose a new high dimensional covolatility matrix estimator
under the assumption that the true dynamics of the returns may be described by a latent
factor model. In contrast to the factor-based estimators discussed above, we explicitly allow
for the possibility of market microstructure noise in the actually observed price series. Moti-
vated by Hasbrouck and Seppi (2001), we assume that the cross-sectional dependencies in the
market microstructure noise component may be described by its own factor model, resulting
in two separately identified factor structures: a latent component of order Op(

√
∆) account-

ing for the genuine cross-sectional dependencies in the returns, which becomes increasingly
less important for discretely sampled observations over diminishing time-intervals of length
∆, and another component of order Op(1) for describing the noise, which remains invariant
to the sampling frequency. Exploiting these differences in the orders of magnitude, and ap-
propriately combining noise-robust MRker and PRV -based estimates of the rotated return
factors and their integrated volatilities, along with the corresponding loadings and integrated
idiosyncratic volatility components, in turn allows for consistent noise-robust estimation of
the full covolatility matrix in large dimensions.

The rest of the paper is organized as follow. Section 2 presents the theoretical setup and
formally defines the new estimator. Section 3 derives the convergence rate of the new and

6They assume observable factors and allow the presence of the cross-sectional correlation in a sparse error
covariance matrix.

7They assume a sparse error covariance matrix in an approximate factor model, and allow for the presence
of some cross-sectional correlation, after taking out common but unobservable factors.

8They rely on the pre-averaging method with refresh time to solve the microstructure problems, while
using three different specifications of factor models, and their corresponding estimators, respectively, to battle
against the curse of dimensionality.
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other competing estimators. This section also presents the results from a set of finite-sample
simulations involving both synchronous and asynchronous high-frequency prices. Section 4
presents the results from an empirical application involving a large cross-section of individual
stocks. Section 5 concludes. The details of the proofs and other more specific materials are
deferred to Appendixes.

2 Theoretical setup

2.1 The benchmark model

We assume that the continuous Itô semimartingale process Xt in (1) follows a factor model
of the form,

dX∗t = bdFt + dEt, (5)

where b = (bik)1≤i≤p,1≤k≤K denotes the p ×K matrix of factor loadings, Ft = (F1t, ..., FKt)′

refers to the latent factor vector, K is assumed to be asymptotically finite and known, and
Et = (E1t, ..., Ept)′ denotes the vector of idiosyncratic errors. The use of factor models in
asset pricing finance is, of course, quite standard and traces back to the seminal work by
Ross (1976) and Chamberlain and Rothschild (1983). The factor Ft is supposed to represent
general influences which tend to affect all assets. Following standard assumptions in the
literature, we assume that factor loadings b are time invariant and do not depend on t.

We further assume that the Ft and Et vectors and the individually components therein
are uncorrelated and driven by their own standard Brownian motions,

dFkt = σfktdB
F
kt,

dEit = σεitdB
E
it .

Integrating both sides of the resulting latent factor price process above over a time interval
of length ∆, it readily follows that∫ t

t−∆ dX
∗
s = b ·

∫ t
t−∆ σfsdB

F
s +

∫ t
t−∆ σεsdB

E
s .

Defining the corresponding returns, factors, and errors over the time-interval ∆,

r∗t ≡ r∗t,∆ ≡
∫ t
t−∆ dX

∗
s

ft ≡ ft,∆ ≡
∫ t
t−∆ σfsdB

F
s

εt ≡ εt,∆ ≡
∫ t
t−∆ σεsdB

E
s

allows for following standard discrete-time factor representation,

r∗t = bft + εt (6)
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where r∗t = (r∗1t, ..., r∗pt)′, ft = (f1t, ..., fKt)′, and εt = (ε1t, ..., εpt)′, respectively.
We make the additional assumptions directly pertaining to this representation, where

It−∆ refers to information set available at time t−∆.

Assumption 1 ∀t, ∀i, j, k, k′ ∈ {1, ..., p}, i 6= j, k 6= k′:

• Cov (fkt, εit|It−∆) = 0;

• Cov (fkt, fk′t|It−∆) = 0;

• Cov(εit, εjt|It−∆) = 0;

• E (εit|It−∆) = 0.

The latent X∗it prices for each of the p individual assets are not directly observable.
Instead, the actually observed prices are contaminated with market microstructure noise,

Xit = X∗it + uit. (7)

We assume that this noise component has its own separate factor representation,

uit = cigt + ηit, (8)

where the K ′ × 1 gt vector accounts for the cross-sectional dependence in the noise, and the
1×K ′ ci vector denotes the corresponding factor loadings. We make the following additional
assumptions about this structure.

Assumption 2 ∀t, ∀i, k, k′ ∈ {1, ..., p}, k 6= k′:

• Cov (gkt, fk′t|It−∆) = 0;

• Cov (gkt, εit|It−∆) = 0;

• Cov (ηit, fkt|It−∆) = 0, Cov (ηit, gkt|It−∆) = 0, Cov (ηit, εit|It−∆) = 0;

• V ar(ηit) = σ2
ηi, ∀i ∈ {1, ..., p};

• V ar(gkt) = σ2
gk
;

• gkt, ηit are independent across assets and time.
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Two main types of factors models are presented in the existing literature: strict factor
models and approximate factor models. The main difference between these models is the
assumption on the covariance matrix of idiosyncratic components. In a strict factor model,
this matrix is assumed to be diagonal, while, its terms can be weakly correlated in an ap-
proximated factor model. For an identification purpose, the following assumptions are widely
made:

• Pervasiveness: the factors influence a large number of assets which means that the
loading vectors b are bounded and ‖1

p
b′b−D‖ −→ 0 as p −→∞, where D is a K ×K

positive definite matrix;

• Factors: the fourth moment of factors exists and the covariance function of factors
converges to a definite positive matrix as 1/∆ −→∞;

• Approximate factor models may exhibit both temporal and cross-sectional dependen-
cies, as well as heteroskedastic error terms.

Our model is a strict factor model with some normalization assumptions: i) the per-
vasiveness assumption holds with D = Ip; ii) the fourth moments of factors exist and the
covariance function of the factors converges to a diagonal matrix without loss of generality,
as 1/∆ goes to infinity; iii) we rule out the existence of time and cross-section dependence
and heteroscedasticity of idiosyncratic terms which is left for future research.

As discussed further below, the assumption of a separate factor representation for the
microstructure noise makes it possible to disentangle the estimation of the covolatility matrix
into two parts: a traditional factor-based approach for the estimation of the latent component
of order Op(

√
∆) associated with the traditional factor structure in the returns, and a separate

estimation of the factor noise components of order Op(1).
The use of a factor structure for the microstruture noise is directly motivated by Has-

brouck and Seppi (2001), who document strong commonalities in various liquidity proxies
such as the bid-ask spread. To further corroborate the dominance of common factors in the
noise, we run two empirical exercises.

Firstly, we construct the signature plot of the cross-sectional average return, computed
from a sample of 384 individual stocks analyzed in the empirical section below. Under a cross-
sectional uncorrelation of microstructure noise, the noise component is supposed to vanish
by the law of large numbers. As a consequence, the resulting signature plot is supposed to
be flat. However, as presented in figure 1, we obtain a strictly decreasing curve. This is an
evidence that the cross-sectional average return still contain a microstructure term. Thus,
microstructure noises must be cross-sectionally correlated and common factors may capture
this cross-sectional correlation.

7



Figure 1. Signature plot of the cross-sectional average return

Note: This figure plots the signature plot of the cross-sectional average return, computed from a sample of
384 individual stocks analyzed in the empirical section below.

Secondly, we estimated the covariance matrix for the market microstructure noise for the
same sample. Decomposing the resulting covariance matrix estimates for each day in the
sample, strongly supports the idea that the cross-sectional dependencies may be adequately
captured by a few factors. Further details concerning these results are provided in Appendix
A.3.

Figure 2 depicts the average shares of the total variability in the observed returns which
can be explained by the first six factors. The analysis is done for various frequencies: 5,
15, 30, 60 and 300 seconds. It is well-known that the variance of the market microstructure
is better estimated at the highest frequency. Thus, the higher the sampling frequency, the
more accurate is the estimation of the shares of the total variability of microstructural noise
that can be explained by factors. However, when one increases the frequency, one has less
assets. Estimations based on 15, 30 and 60 seconds are robust and corroborate the factor
structure of the noise. At the 300 seconds frequency, the observed factor structure concerns
latent returns. Clearly, Figure 2 supports the factor structure of the noise, especially at the
5-seconds frequency, even if the number of assets is relatively small.9

9At the 5 seconds frequency, the number of stocks involved drops drastically (only 28 assets remain in
the sample, in contrast to the other cases involving more than 282 assets). In general, the factors are better
approximated the larger the number of stocks. Correspondingly, the cases of 60s, 30s, and 15s sampling
provide more reliable information about the factor structure of the microstructure noise. Note that the
ratios aren’t necessarily monotonically decreasing with the sampling frequency, as the factors driving the
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Figure 2. Ratio of largest eigenvalues relative to the total variation

Note: This figure plots the average shares of the total variability in the microstructure noises which can be
explained by the first six factors. The analysis is done for various frequencies: 5, 15, 30, 60 and 300 seconds.

2.2 Estimation methodology

The general setup and assumptions outlined in the previous section implies that the integrated
covolatility matrix of interest may be succinctly expressed as,

Σ = bDiag
[∫ 1

0
σ2
f1udu, ...,

∫ 1

0
σ2
fKudu

]
b′ +Diag

[∫ 1

0
σ2
ε1udu, ...,

∫ 1

0
σ2
εpudu

]
. (9)

We rely on traditional factor analysis together with the pre-averaging approach for con-
veniently estimating the different components of Σ. As usual, the factors and the factor
loadings are only determined up to a rotation.10 Correspondingly, our estimation strategy is
comprised of four separate steps for estimating:

• The rotated factors f̃ .

• The integrated volatilities of f̃ .

• The rotated loadings b̃.

• The integrated volatility of the idiosyncratic component.

fundamental prices start to play a role.
10Let H denote a K ×K orthogonal H matrix such that H ′H = IK . The Σ matrix defined by the rotated

factors f̃t = Hft and rotated factor loadings b̃ = bH ′, is then identical to the matrix in (9).
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We will discuss each of these four steps in turn. We will begin by assuming that all of
the high-frequency returns used in the estimation span the same time-interval of length ∆,
with ∆ → 0 corresponding to continuous-time case. However, we will also subsequently
consider the empirically more realistic case with unevenly spaced non-synchronous discrete-
time observations.

2.2.1 Estimation of f̃

Following the Principal Component Analysis (henceforth PCA) of Connor and Korajczyk
(1988), fj∆ is chosen to minimize the scaled sum of squared values of the idiosyncratic
component, 

Min
fj∆,b

1
p

b1/∆c∑
j=1

(r∗j∆ − bfj∆)′(r∗j∆ − bfj∆)

s.t 1
p
b′b = IK

It follows readily from the solution to this optimization problem that

f̂k∆ = 1
p
W ′r∗k∆, ∀k = 1, ..., b1/∆c,

where W denotes the matrix of ordered eigenvectors of
b1/∆c∑
j=1

[
r∗j∆r

∗′
j∆

]
. Taking ∆ → 0, we

obtain the continuous time expression,

f̂t = 1
p
W ′r∗t , (10)

in which the columns of W correspond to the ordered eigenvectors of Σ.
The estimator defined by equation (10) is not feasible because r∗t and Σ are latent. In

order to obtain a feasible estimator, we need consistent estimates of the ordered eigenvectors
W of Σ. Let Ŵ denote the matrix of K ordered eigenvectors of an estimator Σ̂ of Σ that is
robust to microstructure noise. The simulation results in Appendix A.5 shows that MRker

provides a good candidate.11 Hence, we propose as feasible estimator:

f̂t = 1
p
Ŵ ′rt, (11)

where rt is the p× 1 vector of observed returns, Ŵ =
(
Ŵ 1, ..., ŴK

)
is a consistent estimator

of the p×K matrix W of ordered eigenvectors of Σ provided by MRker.
11This approach mirrors the "Linear Shrinkage" estimator of the covariance matrix of Ledoit and Wolf

(2003). In order to improve the covariance matrix estimator in large dimensions, a "Linear Shrinkage" estima-
tor is obtained from the spectral decomposition of the sample covariance matrix by keeping the eigenvectors,
while transforming the eigenvalues.
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We need to verify that the resulting f̂ consistently estimates a rotation f̃ of f plus a
microstruture noise component. To do so, we express f̂ as a function of the true factor f ,
the idiosyncratic component εt, and the factor representation of the microstructure noise
component ut

f̂t = 1
p
Ŵ ′bft + 1

p
Ŵ ′εt + 1

p
Ŵ ′c(gt − gt−∆) + 1

p
Ŵ ′(ηt − ηt−∆)

The consistency result in the estimation of a rotation f̃ of f contaminated by a microstructure
noise component is given in the following theorem inspired by the paper of Stock and Watson
(2002).

Lemma 2.1 There exists an orthogonal matrix S such that Sf̂ consistently estimates f up
to a microstruture noise component, so that for ∆→ 0 and p→∞:

• 1
p
SŴ ′bft

p→ ft.

• 1
p
SŴ ′εt

p→ 0.

• 1
p
SŴ ′(ηt − ηt−∆) p→ 0.

Proof: See the Supplementary Appendix (section 1).

2.2.2 Estimation of
∫ 1
0 σ

2
f̃ku
du

Consider the following decomposition of f̂t,

f̂kt = 1
p
W ′
kr
∗
t + 1

p
W ′
k(ut − ut−∆) + 1

p
W ε′
k r
∗
t + 1

p
W ε′
k (ut − ut−∆),

where W ε′
k is the error term in the estimation of W . We assume that 1

p
W ε′
k r
∗
t and 1

p
W ε′
k (ut −

ut−∆) are of orders smaller than max(n, p)(−1/2).12 Since 1
p
W ′
kεt = Op(n−1/2p−1/2) and

1
p
W ′
k(ηt − ηt−∆) = Op(p−1/2), it follows that

f̂kt = f̃kt + 1
p
W ′
kc(gt − gt−∆) +Op(p−1/2)

For n and p sufficiently large,

f̂kt ≈ f̃kt + 1
p
W ′
kc(gt − gt−∆)

12The intuition is that p and n are sufficiently large such that the error components 1
pW

ε′

k r
∗
t and 1

pW
ε′

k (ut−
ut−∆) are dominated by their latent counterparts, 1

pW
′
kr
∗
t and 1

pW
′
k(ut−ut−∆) respectively . These two latent

components are respectively of orders n−1/2 and p−1/2. The simulation results presented in the Appendix
A.5 show that errors in the estimation of W are very small and decreases with p and n.
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Note that f̂ is effectively a rotation of the latent factor f contaminated by microstruc-
ture noises. Hence, by the literature on the estimation of integrated volatility using data
contaminated by microstructure noise,

∫ 1
0 σ

2
f̃ku
du can be estimated by,

̂∫ 1

0
σ2
f̃ku
du = PRV (f̂k), (12)

where the PRV estimator is defined in Appendix A.1.

2.2.3 Estimation of b̃ik

Since the factors are pairwise independent and also independent of the idiosyncratic compo-
nent, it follows that the integrated covolatility matrix for r∗i and f̃k equals b̃ik.IV (f̃k). Thus,
b̃ik = ICV (r∗i , f̃k)/IV (f̃k), so that an estimate for b̃ik is naturally obtained by,

b̂ik = MRC(ri, f̂k)
PRV (f̂k)

. (13)

with the MRC estimator formally defined in Appendix A.1.

2.2.4 Estimation of
∫ 1
0 σ

2
εiudu

Define ε̂it = rit −
∑K
k=1 b̂ik · f̂kt. It is easy to show that

ε̂it = εit + (ut − ut−∆)−
K∑
k=1

b̃ikf̃
ε
kt −

K∑
k=1

b̃εikf̃kt −
K∑
k=1

b̃εikf̃
ε
kt − 1

p

∑K
k=1

∑K
l=1 b̃ikW

′
l c(gt − gt−∆)−

1
p

∑K
k=1

∑K
l=1 b̃

ε
ikW

′
l c(gt − gt−∆)

where f̃ εkt and b̃εik denote the estimation errors in the estimation of f̃kt+ 1
p

∑K
k=1W

′
kc(gt−gt−∆)

and b̃ik, respectively. Since f̃ εkt = Op(p−1/2) and b̃εik = Op(n−1/4), let’s assume that n and p are
both sufficiently large such that

K∑
k=1

b̃ikf̃
ε
kt,

K∑
k=1

b̃εikf̃kt,
K∑
k=1

b̃εikf̃
ε
kt and 1

p

∑K
k=1

∑K
l=1 b̃

ε
ikW

′
l c(gt −

gt−∆) can be neglected. Then,

ε̂it ≈ εit + (ut − ut−∆)− 1
p

∑K
k=1

∑K
l=1 b̃ikW

′
l c(gt − gt−∆),

it follows that ε̂it equals the idiosyncratic component εit contaminated with microstruture
noise. Thus,

∫ 1
0 σ

2
εiudu may be consistently estimated by,

̂∫ 1

0
σ2
εiudu = PRV (ε̂i). (14)
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2.2.5 Putting the pieces together

Our covolatility matrix estimator is defined by plugging the different estimators discussed
above into the expression for Σ̂ in equation (9),

Σ̂ =


b̂11 · · · b̂1K
... ...
b̂p1 · · · b̂p1




̂∫ 1
0 σ

2
f1udu

. . .
̂∫ 1

0 σ
2
fKudu




b̂11 · · · b̂p1
... ...
b̂1K · · · b̂pK



+


̂∫ 1

0 σ
2
ε1udu

. . .
̂∫ 1

0 σ
2
εpudu



=


MRC(r1,f̂1)
PRV (f̂1) · · · MRC(r1,f̂K)

PRV (f̂K)
... ...

MRC(rp,f̂1)
PRV (f̂1) · · · MRC(rp,f̂K)

PRV (f̂K)



PRV (f̂1)

. . .
PRV (f̂K)




MRC(r1,f̂1)
PRV (f̂1) · · · MRC(rp,f̂1)

PRV (f̂1)
... ...

MRC(r1,f̂K)
PRV (f̂K) · · · MRC(rp,f̂K)

PRV (f̂K)

+


PRV (ε̂1)

. . .
PRV (ε̂p)

 .

Or, more succinctly,

Σ̂ij =
K∑
k=1

MRC(ri, f̂k).MRC(rj, f̂k)
PRV (f̂k)

; Σ̂ii =
K∑
k=1

MRC(ri, f̂k)2

PRV (f̂k)
+ PRV (ε̂i), (15)

for i, j = 1, ..., p13.
Remark: Our estimator is constructed using the pre-averaging estimator PRV and

the modulated realized covariance estimator MRC. Since those two estimators have been
adapted in the literature to account for serially correlated microstructure noises (see, e.g.,
Jacod, Li, Mykland, Podolskijc, and Vetter (2009) and Hautsch and Podolskij (2013)), our
estimator can easily be adapted into this specific setting. Our setup can also be easily
adapted to account for semi-martingale processes with jumps. Tools used in this paper for
the estimation strategy (MRKer, MRC and PRV ) have extensions to the case of semi-
martingale processes with jumps. Additionally, as in Pelger (2018), the model can also be
split into two sub-models: i) a factor representation for small movement of returns; ii) and
a factor representation for big movements using a threshold to identify jumps. Only the
first model can be used for the estimation of integrated volatility. Moreover, our model

13Due to the factor structure of our estimator Σ̂ = b̂Σ̂f b̂′+Σ̂ε and since Σ̂f and Σ̂ε are diagonal matrices with
positive elements, the positive semi-definiteness is guaranteed. It can be easily shown that: ∀X, X ′Σ̂X ≥ 0.
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may also be extended to an approximate factor structure. In that case, the factors may be
extracted using the procedure in Bai and Ng (2002); the loadings and idiosyncratic terms will
be estimated using the same procedure discussed in section 2. Estimation of the additional
parameters describing the covolatility between the idiosyncratic terms, may be handled using
MRC(ε̂i, ε̂j). The convergence rate of our estimator under the Frobenius norm will not be
affected, since estimation errors generated by MRC(ε̂i, ε̂j), ∀i 6= j, are Op(

√
p(p− 1)n−1/4).

3 Comparing different estimators

3.1 Convergence rates

Our new estimator defined in (15) consistently estimates Σ for ∆ → 0 and p → ∞. It is
instructive to more formally assess how the values of n = 1/∆ and p impact the estima-
tion errors. The following lemma provides the specific convergence rates for the integrated
volatilities, the loadings of the rotated factors, and the integrated covolatility matrix of the
idiosyncratic errors, where ‖.‖F denotes the Frobenius norm.14

Lemma 3.1 Under Assumptions 1-2, for n→∞ and p→∞:

•
∣∣∣Σ̂f̃

kk − Σf̃
kk

∣∣∣ = Op

(
n−1/4

)
.

•
∥∥∥b̂k − bk∥∥∥

F
=
∥∥∥b̂k − bk∥∥∥2

= Op

(
p1/2n−1/4

)
.

•
∥∥∥Σ̂ε − Σε

∥∥∥
F

= Op(p1/2n−1/4).

Proof: See the Supplementary Appendix (section 1).

Appropriately combining these convergence rates for the individual components, it is
possible to deduce the overall rate of convergence of Σ̂. In order to compare this rate to other
competing large dimensional realized covolatility estimators, the following Theorem provides
the convergence rate for Σ̂ along with the rates for the adjusted modulated realized covariance
estimator MRCδ of Christensen, Kinnebrock, and Podolskij (2010), the multidimensional
kernel estimatorMRker of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011), and the
composite realized kernel Σ̂comp of Lunde, Shephard, and Sheppard (2016).

Theorem 3.1 Under Asumptions 1-2, for n→∞ and p→∞:

•
∥∥∥Σ̂− Σ

∥∥∥
F

= Op(pn−1/4).

•
∥∥∥MRCδ − Σ

∥∥∥
F

= Op(pn−1/5).

14The Frobenius norm for the matrix A = (aij)1≤i,j≤p is formally defined by ‖A‖F =
√∑p

i=1
∑p
j=1 |aij |

2.
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• ‖MRker − Σ‖F = Op(pn−1/5).

•
∥∥∥Σ̂comp − Σ

∥∥∥
F

= Op(
√
p(p− 1)n−1/5).

Proof: See the Supplementary Appendix (section 1).

The results in Theorem 3.1 suggest that under the Frobenius norm, the dimensionality of
the covolatility matrix reduces the speed of convergence for the new Σ̂ estimator by an order
of p. Of course, this is also the case for all of the other estimators. Meanwhile, the speed of
convergence of Σ̂ exceeds that of MRCδ, MRker or Σ̂comp.

The next theorem derives the convergence rate of Σ̂−1.

Theorem 3.2 Under Asumptions 1-2, for n→∞ and p→∞:

∥∥∥Σ̂−1 − Σ−1
∥∥∥
F

= Op(p2n−1/4)

Proof: See the Supplementary Appendix (section 1).

The simulation results discussed in the next section confirm that this superior asymptotic
performance carries over to empirically realistic finite-sample settings.

3.2 Finite-sample simulations: synchronous prices

We simulate artificial high-frequency prices from a K-factor(s) continuous-time stochastic
volatility model in which the actually observed prices are contaminated by noise. While K is
allowed to vary from 1 to 5, we only report in this section results for the case K = 2. Other
simulation results are provided in the Supplement Appendix. We add as competitors, two
PCA-based estimators of the covolatility matrix, namely: the POET estimator of Fan, Liao,
and Mincheva (2013) and the PCA-based estimator of Dai, Lu, and Xiu (2018)(henceforth,
PCA-PRV ). Specific details concerning the simulation design are provided in Appendix A.4.

We begin by simulating frictionless price vectors of length p = 50, p = 100, p = 300 and
p = 500 based on the true covolatility matrix Σ. We then generate noisy prices by adding
market microstructure noise to the vectors of frictionless prices. Each path of the noisy price
vector is comprised of n + 1 observations. We start by assuming that all of the prices are
synchronously recorded, with one observation every five minutes and a trading day of 6.5
hours, resulting in 79 prices per day.15 We also have simulation results for other sampling
frequencies such as: one observation every minute and one observation every 30 seconds (cf.
appendix). We consider three different levels of noise in the simulation setup, corresponding

15This closely mirrors Lunde, Shephard, and Sheppard (2016), who report around 100 observations on
average per day after the synchronization of 473 liquid stocks.
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to three values of the signal-to-noise ratio parameter ξ2: 0.001, 0.005, and 0.01. Due to a
space constraint, we only report the results for K = 2, ξ2 = 0.005 and 79 prices per day.
Results of other cases are reported in the Supplement Appendix.

We evaluate the performance of the same four estimators of Σ analyzed in Theorem 3.1
by computing the errors relative to the true integrated covolatility matrix (columns labeled
Covariance in the tables), the integrated correlation matrix (columns labeled Correlation),
and the inverse of the integrated covariance matrix (columns labeled Inverse). We rely on
the scaled Frobenius norm for assessing the difference between the estimates and the true
matrices.16

Tables 1 presents the average values based on 1, 000 Monte Carlo replications, with the
standard deviations across the simulations reported in parentheses. The new Σ̂ estima-
tor systematically outperforms all of the five alternative estimators Σ̂comp, MRker, MRCδ,
PCA−PRV and POET , in terms of most accurately estimating the true covolatility matrix.
This holds true across all of the different noise levels and the four values of p. As a whole,
the estimation errors systematically increase with the dimensionality of the matrix and the
magnitude of the market microstructure noise. These results, of course, are consistent with
the theoretical predictions from Theorem 3.1. Looking at columns five and six, which report
the separate (unscaled) norms for estimating the diagonal and the off-diagonal elements in Σ,
it does not appear that the more accurate estimates afforded by the new Σ̂ estimator come
solely from one or the other. Interestingly, the Σ̂comp estimator of Lunde, Shephard, and
Sheppard (2016) appears to perform especially poorly for estimating the diagonal variance
elements.

This superior performance of the Σ̂ estimator carries over to the estimation of the correla-
tion matrix implied by the true covolatility matrix. It also holds true for estimating Σ−1 for
low noise levels17. However, Σ̂−1

comp performs slightly better than Σ̂−1 for estimating Σ−1 for
higher levels of market microstructure noise. Also, whereas Σ̂comp and Σ̂ are both guaranteed
to be positive semi-definite, the inverse of bothMRker andMRCδ fails to exist when p > n,
and MRker−1 and

(
MRCδ

)−1
generally also perform very poorly for estimating the inverse

when p = 50 and close to n = 78.
Remark: We confirmed the good finite sample properties of our estimator under auto-

correlated microstructure noise. In this specific case, the higher order dependence is con-
sidered by assuming that the factors in microstructure noise are the sum of an iid process
and an AR(1) as in Aït-Sahalia, Mykland, and Zhang (2011). Table 7 and Table 8 of the

16The scaled Frobenius norm is defined by diving the usual Frobenius norm with √p. As discussed in
Hautsch, Kyj, and Oomen (2012), this scaling allows for a more meaningful comparison across different
values of p.

17In some of the simulated samples, both the new estimator and all of the competitors analyzed in the
simulations are nearly singular, making their inverses numerically unstable. Importantly, however, this
problem did not occur in any of the actual empirical applications discussed in the next section.
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Table 1. Covolatility estimators, synchronous prices.

Signal-to-Noise ratio ξ2 = 0.005, K = 2
Number of assets: p=50

Covariance Correlation Inverse Diag Off-Diag
Σ̂ 2.492 1.299 4.567 21.09 377.6

(0.729) (0.316) (0.360)
MRker 2.645 1.472 5667 23.88 412.6

(0.714) (0.170) (93231)
MRCδ 2.607 1.499 1050 22.09 385.3

(0.605) (0.170) (4936)
Σ̂comp 2.625 1.431 4.120 40.92 392.6

(0.733) (0.172) (0.694)
PCA− PRV 2.587 1.454 7.164 22.09 383.3

(0.623) (0.173) (10.32)
POET 5.663 2.922 402.6 209.0 1449

(0.382) (0.229) (22.68)
Number of assets: p=100

Σ̂ 3.554 1.792 4.734 41.93 1500
(1.261) (0.394) (27.54)

MRker 3.865 2.124 NA 41.63 1701
(0.927) (0.238) NA

MRCδ 3.811 2.161 NA 39.152 1589
(0.771) (0.229) NA

Σ̂comp 3.809 2.061 5.008 63.44 1639
(0.942) (0.242) (0.833)

PCA− PRV 3.732 2.067 6.038 39.15 1536
(0.800) (0.236) (10.29)

POET 7.653 4.371 596.0 364.6 5648
(0.516) (0.334) (130.2)

Number of assets: p=300
Σ̂ 5.642 3.035 9.304 137.0 12669

(2.120) (0.724) (0.247)
MRker 6.313 3.707 NA 110.6 13623

(1.546) (0.413) NA
MRCδ 6.204 3.761 NA 102.1 12685

(1.250) (0.398) NA
Σ̂comp 6.251 3.649 6.821 146.0 13365

(1.557) (0.417) (1.260)
PCA− PRV 5.991 3.508 5.586 102.123 11884

(1.300) (0.415) (1.877)
POET 12.17 7.681 NA 981.0 44653

(0.853) (0.559) NA
Number of assets: p=500

Σ̂ 6.940 3.856 14.87 218.2 31870
(2.678) (0.824) (61.76)

MRker 7.937 4.765 NA 174.6 36191
(1.905) (0.490) NA

MRCδ 7.915 4.871 NA 165.1 33994
(1.417) (0.471) NA

Σ̂comp 7.878 4.716 18.82 221.2 35703
(1.911) (0.494) (1.960)

PCA− PRV 7.598 4.601 15.68 165.1 31669
(1.471) (0.477) (11.87)

POET 14.94 10.08 NA 1498 111142
(0.977) (0.717) NA

Note: This table presents simulation results based on 1, 000 Monte Carlo replications for the simulation
design described in Appendix A.4. We compute the Scaled Frobenius norm of estimation errors of: the
integrated covolatility matrix, the integrated correlation matrix, the inverse of the integrated covolatility
matrix, diagonal elements of the integrated covolatility matrix and off-diagonal elements.
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Supplementary Appendix provides such simulation results.

3.3 Finite-sample simulations: asynchronous prices

The simulation results discussed above were based on synchronous prices. This section eval-
uates the performance of the same six estimators in the more realistic situation when the
prices for different assets are not necessarily recorded at the same time and therefore first
have to be synchronized.18

To accommodate this feature within the simulations, we augment the previously discussed
factor setup by dividing the assets into three separate groups of differing observation frequen-
cies. For assets in the first group, an observation is available on average every 30 seconds, in
the second group every 90 seconds, and in the final third group every 150 seconds. All of the
observation times for each of the individual assets within each of the three groups are drawn
from Poisson distributions.

The results from these augmented simulations are reported in Table 2. To conserve space
we only report the results for the case corresponding to ξ2 = 0.01. As expected, all of the
estimators perform worse in an absolute sense compared to the situation with synchronously
observed prices in Table 119. However, the relative performance of the different estimators
is entirely in line with the previously discussed results in Table 2, underscoring the superior
overall performance of the new Σ̂ estimator. The empirical application discussed in the next
section also further corroborates this.

4 Empirical Application

Our empirical application is based on a large cross-section of individual stocks. It closely
follows Lunde, Shephard, and Sheppard (2016) in assessing the performance of the different
covolatility estimators by comparing the resulting risk minimizing portfolios.

18This issue is especially acute for the MRker and MRCδ estimators, which require that the synchroniza-
tion process is applied to full p-dimensional price vector. By comparison, the computation of Σ̂ only needs
for the prices to be synchronized on a pairwise basis, in turn resulting less of a loss of observations.

19The estimation error increases when incorporating the asynchronous sampling times because of the loss
of data during the synchronization process. The error size is still acceptable. This is a finite sample property.
Asymptotically, the effect of asynchronous price data on the covolatility matrix is small. The consistency
of Σ̂ is the consequence of the consistency of MRC under asynchronous sampling times. The theoretical
assumptions about the irregularity and asynchronicity of the sampling times are the same as in Christensen,
Kinnebrock, and Podolskij (2010).
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Table 2. Covolatility estimators, asynchronous prices.

Signal-to-Noise ratio ξ2 = 0.01, K = 2
Number of assets: p=50

Covariance Correlation Inverse Diag Off-Diag
Σ̂ 4.914 2.374 3.788 49.88 1182.1

(0.470) (0.173) (7.871)
MRker 5.207 2.732 4960 44.54 1332

(0.515) (0.205) (13222)
MRCδ 5.180 2.689 1594 43.08 1316

(0.497) (0.200) (6580)
Σ̂comp 5.047 2.646 4.430 42.70 1271

(0.482) (0.179) (0.258)
PCA− PRV 5.155 2.617 7.187 43.08 1292

(0.498) (0.206) (10.49)
POET 6.233 3.312 385.8 168.5 1841

(0.512) (0.189) (415.6)
Number of assets: p=100

Σ̂ 5.430 3.141 4.041 94.92 2878
(0.438) (0.209) (12.03)

MRker 5.768 3.702 NA 71.747 3294.052
(0.411) (0.182) NA

MRCδ 5.757 3.655 NA 66.73 3283
(0.410) (0.178) NA

Σ̂comp 5.619 3.565 4.622 60.35 3155
(0.403) (0.153) (0.325)

PCA− PRV 5.657 3.485 8.110 66.73 3150
(0.422) (0.203) (41.32)

POET 6.306 4.386 319.9 248.7 3834
(0.428) (0.176) (4848)

Number of assets: p=300
Σ̂ 10.35 5.426 7.315 473.2 32356

(0.825) (0.327) (30.27)
MRker 11.15 6.595 NA 295.0 37950

(0.809) (0.307) NA
MRCδ 11.11 6.493 NA 281.7 37699

(0.797) (0.353) NA
Σ̂comp 10.97 6.126 8.568 512.4 36548

(0.912) (0.374) (3.578)
PCA− PRV 10.87 6.094 8.225 281.7 35987

(0.811) (0.346) (8.580)
POET 12.57 7.468 NA 1000 46936

(0.892) (0.321) NA
Number of assets: p=500

Σ̂ 12.46 6.842 9.780 357.2 78228
(1.554) (0.351) (80.61)

MRker 13.61 8.443 NA 416.6 93282
(0.923) (0.335) NA

MRCδ 13.58 8.265 NA 396.6 92472
(0.914) (0.381) NA

Σ̂comp 13.45 8.159 10.85 754.2 89258
(0.932) (0.298) (5.365)

PCA− PRV 13.22 7.742 8.570 396.6 87690
(0.930) (0.372) (10.67)

POET 15.09 9.419 NA 1461 114468
(1.039) (0.398) NA

Note: This table presents simulation results based on 1, 000 Monte Carlo replications for the simulation
design described in Appendix A.4. We compute the Scaled Frobenius norm of estimation errors of: the
integrated covolatility matrix, the integrated correlation matrix, the inverse of the integrated covolatility
matrix, diagonal elements of the integrated covolatility matrix and off-diagonal elements.
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4.1 Data

We rely on intraday data from the TAQ database. Our original sample is comprised of all of
the stocks included in the S&P 500 during the period spanning January 2007 to December
2011. Following Lunde, Shephard, and Sheppard (2016), we remove stocks that trade less
than 195 times during a given day. We further clean the data following the procedures
advocated in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011). All-in-all, this leaves
us with a total of 384 stocks.

4.2 Risk minimization

Our comparison of the different covolatility estimators rely on their ability to minimize port-
folio risks. Specifically, let Ω̂t denote a covolatilty estimate for day t. We will assume that
Ω̂t follows a random walk, and use it as the forecast for the day t + 1 covolatility matrix.
Correspondingly, the portfolio weights ŵt+1 that minimize the day t + 1 risk, subject to a
cross exposure constraint, may be found by solving:


Min w

′
t+1Ω̂twt+1

s.t. w
′
t+11 = 1 and

p∑
i=1
|wi,t+1| ≤ 1 + 2s.

(16)

The gross exposure parameter s represents the share of the stocks in the portfolio that can be
held short.20 Setting s = 0 restricts the portfolio to long positions only, while higher values
of s allow for increasingly larger short positions. We will consider values of s ranging from 0
to 1. The gross exposure constraint also ensures that the optimization problem has a unique
solution, even if Ω̂t is not positive semi-definite.21 It also serves to moderate the impact of
estimation errors in the covolatility matrices used in place of Ω̂t more generally (see, e.g., the
discussion Fan, Li, and Yu (2012)).

We evaluate the performance of the different covolatility estimators, by calculating,

ŵ
′

t+1RCovt+1ŵt+1 (17)

where RCovt+1 denotes the day t+1 realized covariance matrix constructed from five-minute
returns. This approach closely mirrors that of Lunde, Shephard, and Sheppard (2016). In
addition to the results for the six specific covolatility estimators discussed above, we also
report the results for a naive equally weighted portfolio ŵt+1 = 1

p
Ip, as recently advocated by

DeMiguel, Garlappi, and Uppal (2009).
20The classical Markowitz portfolio problem corresponds to s =∞.
21This is especially useful for the MRker and MRCδ estimators, which are not guaranteed to be positive

semi-definite.
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Consistent with the simulation results for the asynchronous price series discussion above,
we rely the refresh-time sampling approach of Barndorff-Nielsen, Hansen, Lunde, and Shep-
hard (2011) to synchronize the data used in the actual implementation of the estimators.22

The practical implementation of the new Σ̂ estimator further requires a choice for the number
of systematic risk factors, K. We use the information criteria IC advocated by Bai and Ng
(2002) for choosing the value of K that minimizes23,

IC = log

1
p

b1/∆c∑
j=1

(r∗j∆ − bfj∆)′(r∗j∆ − bfj∆)
+K × g(p, b1/∆c), (18)

with the penalty function define by g(p, b1/∆c) = p+b1/∆c
pb1/∆c × log

[
pb1/∆c
p+b1/∆c

]
. In order to reduce

the impact of market microstructure noise, IC is applied in the dataset sampled at the 5-
minutes frequency. The number of factors chosen by this criteria range between one and four
for each of the different days, with an average value of 3.277 over the full sample.

Table 3. Minimum variance portfolios

s=0 s=0.01 s=0.05 s=0.1 s=0.15 s=0.20 s=0.25 s=0.5 s=1

Σ̂ 0.334 0.298 0.287 0.261 0.256 0.252 0.245 0.24 0.241

Σ̂comp 0.409 0.343 0.31 0.32 0.308 0.303 0.301 0.325 0.326

MRker 0.399 0.351 0.335 0.313 0.305 0.302 0.278 0.263 0.258

MRCδ 0.412 0.368 0.352 0.334 0.331 0.323 0.362 0.343 0.319

EqualWeight 0.636 0.636 0.636 0.636 0.636 0.636 0.636 0.636 0.636

PCA− PRV 0.395 0.355 0.339 0.318 0.31 0.302 0.319 0.317 0.327

POET 0.401 0.338 0.311 0.287 0.277 0.266 0.289 0.278 0.286

Note: This table presents the ex-post variation of competing covolatility estimators, for different gross
exposure levels, as described in equations (16) and (17).

Looking across the different rows of the table 3, the portfolios constructed based on the
new Σ̂ estimator systematically result in the lowest ex-post variation. This dominance holds
true for all of the different values of the gross exposure constraint s. Meanwhile, the portfolios
that rule out short positions reported in the first column (s = 0) unambiguously perform
the worst. The differences observed across the other values of s are generally small and not

22Applying the synchronization to all of the stocks results in an average of 104.4 intraday observations.
23Since the number of stocks p and the intraday observations n diverge, we implement the Bai and Ng

(2002) estimator of K using intraday observations sampled at 5 minutes frequency. There is an underlining
assumption that the number of factors is asymptotically bounded by a fix positive number kmax.
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always monotonic. All of the realized volatility-based portfolios also convincingly beat the
1
p
naively diversified portfolios. In contrast to the simulation-based comparisons discussed

above, where the Σ̂comp systematically outperformed MRker and MRCδ that is not the case
here.

5 Conclusion

We provide a new realized covolatility estimator that is guaranteed to be positive semi-
definite in large dimensions and also works in the presence of market microstructure noise.
The estimator relies on two separate factor structures: one of order Op(

√
∆) for describing

the cross-sectional variation in the systematic risks, and another of order Op(1) for describing
the noise. The practical implementation of the estimator relies on traditional factor anal-
ysis together with already existing procedures for consistently and robustly estimating the
different components of the covolatility matrix.

The convergence rate of the new estimator compares favorably to other recently devel-
oped procedures, including the adjusted modulated realized covariance estimator MRCδ of
Christensen, Kinnebrock, and Podolskij (2010), the multivariate kernel estimator MRker of
Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011), and the composite realized kernel
Σ̂comp of Lunde, Shephard, and Sheppard (2016). Simulations confirm that the theoretical
results derived under the assumption of synchronous prices observed over increasingly finer
time intervals carry over to empirically realistic settings with a finite number of asynchronous
intraday observations. Applying the new estimator in the construction of ex-ante minimum
variance portfolios from a set comprised of several hundred individual equities also produces
the lowest ex-post variation compared to other practically feasible competing covolatility
estimators.
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Appendix

A.1 Alternative estimators

• The pre-averaging estimator is defined by:

PRV (r) =
√

∆n

θψ2

b1/∆nc−kn+1∑
i=0

(Y n

i )2 − ψ1∆n

2θ2ψ2

b1/∆nc∑
i=1

r2
i , (19)

where n is the number of observed returns; ∆n is the time interval between two obser-
vations; ri = Yi∆n − Y(i−1)∆n is the ith return computed from the observed price series

Y ; Y n
i =

kn−1∑
j=1

g(j/n)ri+j is the ith pre-averaging return and θ is a setting parameter

to choose optimally such that kn
√

∆n = θ + o(∆1/4
n ). Also φ1(s) =

1∫
s
g′(u)g′(u− s)du,

φ2(s) =
1∫
s
g(u)g(u− s)du, and ψi = φi(0). The most important result of the pre-

averaging approach is resumed in the asymptotic behavior established in Jacod, Li,
Mykland, Podolskijc, and Vetter (2009).

∆−1/4
n (PRV (r)− IV )→ N(0; Γ), (20)

with Γ =
1∫
0

4
ψ2

2

(
Φ22θσ

4
t + 2Φ12

σ2
t Vε
θ

+ Φ11
V 2
ε

θ3

)
dt, Vε is the noise variance, IV the true

integrated volatility and Φij =
1∫
s
φi(s)φj(s)ds.

• The realized kernel is defined by:

K(Y ) =
n∑

h=−n
k( h

H + 1)Γh, (21)

Γh =
n∑

j=h+1
yjy

′
j−h, for h > 0; Γh = Γ′

−h, for h < 0,

where n is the number of synchronized returns per asset, Γh is the hth realized auto-
covariance; yj = Yj−Yj−1 for j = 1, 2, ..., n; with Y0 = 1

m

m∑
j=1

Y (τp,j); Yn = 1
m

m∑
j=1

Y (τp,p−m+j);

Yj = Y (τp,j+m) for j = 1, ..., n− 1; {τp,j} is the series of refresh time ; and k is a non-
stochastic weighting function. The rate of convergence of this estimator is n−1/5.

• The modulated realized covariance estimator is defined by:

MRC [Y ]n = n

(n− kn + 2)
1

ψ2kn

n−kn+1∑
i=0

Ȳ n
i

(
Ȳ n
i

)′

− ψkn1

2nθ2ψkn2

n∑
i=1

(ri)(ri)
′
, (22)
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where Y is the observed price vector, n is the number of observed returns per asset,
Ȳi the ith averaged return vector, ri the ith usual return vector defined as in (4), g a
weighting function, ψkn1 = kn

∑kn−1
i=1

(
g( i

kn
)− g( i−1

kn
)
)2
, ψkn2 = 1

kn

∑kn−1
i=1 g2( i

kn
) , kn − 1

the number of returns in each average, such that kn
n1/2 = θ + o(n−1/4) and θ is a setting

parameter. When the assets are not observed at the same time, the non-synchronicity
issue is resolved using the refresh time method of Barndorff-Nielsen, Hansen, Lunde,
and Shephard (2011).

• The adjusted modulated realized covariance estimator is defined by:

MRC [Y ]δn = n

(n− kn + 2)
1

ψ2kn

kn∑
i=0

Ȳ n
i

(
Ȳ n
i

)′

, (23)

where θ is such that kn
n1/2+δ = θ + o(n−1/4+δ/2). This estimator is consistent, with a

sub-optimal rate of convergence of n−1/5, and is positive semi-definite.

A.2 Estimation of rotated factors, f̃

Consider the following least squared problem where fj∆ is chosen to minimize the scaled sum
of squared values of the idiosyncratic component:

Min
fj∆,b

1
p

b1/∆c∑
j=1

(r∗j∆ − bfj∆)′(r∗j∆ − bfj∆)

s.t 1
p
b′b = IK

This is equivalent to: 
Min
fj∆,b

1
p

b1/∆c∑
j=1

(r∗j∆ − bfj∆)′(r∗j∆ − bfj∆)

s.t ∀k = 1, ..., K, 1
p
b′kbk = 1

∀k = 1, ..., K,∀l = k + 1, ..., K, b′kbl = 0

where bk corresponds to the column k of b. The Lagrangian of this problem is defined by

L = 1
p

b1/∆c∑
j=1

(r∗j∆ − bfj∆)′(r∗j∆ − bfj∆)−∑K
k=1 λk(b′kbk − p)−

∑K
k=1

∑K
l=k+1 µklb

′
kbl

By deriving this Lagrangian with respect to fk∆, we obtain
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∂L
∂fk∆

= ∂
∂fk∆

[
1
p

b1/∆c∑
j=1

(r∗j∆ − bfj∆)′(r∗j∆ − bfj∆)
]

= ∂
∂fk∆

[
1
p
(r∗k∆ − bfk∆)′(r∗k∆ − bfk∆)

]
= ∂

∂fk∆

[
1
p
(r∗′
k∆r

∗
k∆ − r∗

′
k∆bfk∆ − f ′k∆b

′r∗k∆ + f ′k∆b
′bfk∆)

]
= (−b′r∗k∆ − b′r∗k∆ + b′bfk∆ + b′bfk∆)
= (−2b′r∗k∆ + 2b′bfk∆)

∂L
∂fk∆

= 0 ⇐⇒ (−2b′r∗k∆ + 2b′bfk∆) = 0
⇐⇒ b′bfk∆ = b′r∗k∆

⇐⇒ fk∆ = (b′b)−1b′r∗k∆

⇐⇒ fk∆ = (pIK)−1b′r∗k∆

⇐⇒ fk∆ = 1
p
b′r∗k∆

Hence,
fk∆ = 1

p
b′r∗k∆, ∀k = 1, ..., b1/∆c (24)

We are going now to concentrate the objective function by replacing fj∆ by its formula given
by (17).

1
p

b1/∆c∑
j=1

(r∗j∆ − bfj∆)′(r∗j∆ − bfj∆) = 1
p

b1/∆c∑
j=1

(r∗j∆ − b.1pb
′r∗j∆)′(r∗j∆ − b.1pb

′r∗j∆)

= 1
p

b1/∆c∑
j=1

r∗
′
j∆(Ip − 1

p
bb′)′(Ip − 1

p
bb′)r∗j∆

= 1
p

b1/∆c∑
j=1

r∗
′
j∆r

∗
j∆ − 1

p

b1/∆c∑
j=1

r∗
′
j∆bb

′r∗j∆

= 1
p

b1/∆c∑
j=1

r∗
′
j∆r

∗
j∆ − 1

p

b1/∆c∑
j=1

K∑
k=1

r∗
′
j∆bkb

′
kr
∗
j∆

= 1
p

b1/∆c∑
j=1

r∗
′
j∆r

∗
j∆ − 1

p

K∑
k=1

b1/∆c∑
j=1

r∗
′
j∆bkb

′
kr
∗
j∆

= 1
p

b1/∆c∑
j=1

r∗
′
j∆r

∗
j∆ − 1

p

K∑
k=1

b1/∆c∑
j=1

(
r∗

′
j∆bk

) (
b′kr
∗
j∆

)
= 1

p

b1/∆c∑
j=1

r∗
′
j∆r

∗
j∆ − 1

p

K∑
k=1

b1/∆c∑
j=1

(
b′kr
∗
j∆

) (
r

′∗
j∆bk

)
= 1

p

b1/∆c∑
j=1

r∗
′
j∆r

∗
j∆ − 1

p

K∑
k=1

b′k

(
b1/∆c∑
j=1

r∗j∆r
′∗
j∆

)
bk

From the last equality, we deduce that the optimal b = (b1, ..., bK) is the solution of the
following problem 

Max
b1,...,bK

1
p

K∑
k=1

b′k

(
b1/∆c∑
j=1

r∗j∆r
′∗
j∆

)
bk

s.t ∀k = 1, ..., K, 1
p
b′kbk = 1

∀k = 1, ..., K,∀l = k + 1, ..., K, b′kbl = 0
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The problem above is equivalent to resolve K optimization problems defining by: ∀k ∈
{1, ..., K}: 

Max
bk

1
p
b′k

(
b1/∆c∑
j=1

r∗j∆r
′∗
j∆

)
bk

s.t 1
p
b′kbk = 1

∀l 6= k, b′kbl = 0

(25)

The Lagrangian of the above problem has the following form

L = 1
p
b′k

(
b1/∆c∑
j=1

r∗j∆r
′∗
j∆

)
bk − λk

(
1
p
b′kbk − 1

)
−

K∑
l 6=k

µklb
′
kbl

By resolving for bk

∂L
∂bk

= 2
p

b1/∆c∑
j=1

[
r∗j∆r

∗′
j∆

]
bk − 2λk

p
bk −

∑
l 6=k

µklbl

∂L
∂b

= 0⇐⇒ 2
p

b1/∆c∑
j=1

[
r∗j∆r

∗′
j∆

]
bk − 2λk

p
bk −

∑
l 6=k

µklbl = 0

By a left multiplication by b′m (∀m 6= k)

2
p
b′m
b1/∆c∑
j=1

[
r∗j∆r

∗′
j∆

]
bk − 2λk

p
b′mbk −

∑
l 6=k

µklb
′
mbl = 0

⇔ 2
p

b1/∆c∑
j=1

b′m
[
r∗j∆r

∗′
j∆

]
bk − 2λk

p
b′mbk − µkmb′mbm = 0

⇔ µkm = 0

The third equation comes from the uncorrelation assumption of factors and the identification
constraint on loadings. Hence, ∀m 6= k, µkm = 0. We deduce that

2
p

b1/∆c∑
j=1

[
r∗j∆r

∗′
j∆

]
bk − 2λk

p
bk = 0

This is equivalent to
b1/∆c∑
j=1

[
r∗j∆r

∗′
j∆

]
bk − λkbk = 0

It follows that bk is an eigenvector associated to the matrix
b1/∆c∑
j=1

[
r∗j∆r

∗′
j∆

]
.
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A.3 Factor structure in the noise

In order to underscore the empirical relevance of factor structures in the market microstruc-
ture noise component, we consider a sample of 384 stocks (as further described in Section
4) for all trading days from 2006 to 2011. For each trading days, we compute the realized
covariance matrix and we divide it by 2n, where n is the number of intraday transaction times
after synchronization. By doing so, we get an estimator of the covolatility of the microstruc-
ture noise. The next step consists on a spectral decomposition of the obtained matrix. The
following figure plots the ratio of the sum of the largest eigenvalues (the biggest eigenvalue,
the first two biggest eigenvalues, the first three biggest eigenvalues, until the first six biggest
eigenvalues) to the total sum of eigenvalues: these ratios can been interpreted as the part of
the total variability explained by the considered factors (the first factor, the first two factors,
until the first six factors).

Figure A.1. Ratio of largest eigenvalues relative to the total variation

Note: This figure plots the part of the total variability in microstructure noises explained by the considered
factors (the first factor, the first two factors, until the first six factors).

Consistent with the idea of a factor structure in the market microstructure noise component,
the figure shows that the four largest eigenvalues of the noise covolatility matrix explain more
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than 60% of the total variability for all of the trading days from 2006 to 2011.

A.4 Simulation design

Our simulation design replicates a two factor model in which the prices are observed with
noise.

• The loading factors b is generated such that elements of the kth column bk, for k =
1, ..., K, follow a normal law with mean 0 and standard deviation 1: bik ∼ N(0, 1), ∀
i = 1, ..., p.

• The two factor components in the frictionless return representation are generated by
the following model:24

– Factor 1

f1t = σf1tdB1t

with B1t a brownian motion and σf1t generated by a GARCH diffusion model as
in Andersen and Bollerslev (1998),

dσ2
f1t = κf1

(
θf1 − σ2

f1t

)
dt+ λf1σ

2
f1tdW1t

with Corr(W1t, B1t) = −0.5, κf1 = 0.035, θf1 = 0.636, φf1 = 0.296, λf1 =√
2κf1φf1, σf10 = θf1

– Factor 2

f2t = σf2tdB2t

with B2t a brownian motion and σf2t generated by a GARCH diffusion model as
in Andersen and Bollerslev (1998),

dσ2
f2t = κf2

(
θf2 − σ2

f2t

)
dt+ λf2σ

2
f2tdW2t

with Corr(W2t, B2t) = −0.5, κf2 = 0.035, θf2 = 0.3, φf2 = 0.296, λf2 =
√

2κf2φf2,
σf20 = θf2

• The idiosyncratic error term in the factor representation is assumed to satisfy

εit = σitdW
ε
it

with W ε
it a brownian motion such that W ε

it ⊥ W1t,W2t and W ε
it ⊥ B1t, B2t, with the

spot volatility generated by three different representative models:
24Recall that fkt is assumed to be the return of some portfolio

31



– For 1 ≤ i ≤ p/3, the volatility of the idiosyncratic component is generated by a
Nelson GARCH diffusion limit model as in Barndorff-Nielsen and Shephard (2002):

d(σ2
it) = (0.1− σ2

it) dt+ 0.2σ2
itdB

ε
it,

with Corr(W ε
it, Bε

it) = −0.3 and Bε
it ⊥ W1t,W2t and Bε

it ⊥ B1t, B2t;

– For p/3 < i ≤ 2p/3, the volatility process is assumed to follow a geometric
Ornstein-Uhlenbeck (OU) model as in Barndorff-Nielsen and Shephard (2002):

dlog(σ2
it) = −0.6 (0.157 + log(σ2

it)) dt+ 0.25dBε
it,

with Corr(W ε
it, Bε

it) = −0.3 and Bε
it ⊥ Wt and Bε

it ⊥ Bt;

– For 2p/3 < i ≤ p, the volatility follows a GARCH diffusion model as in Andersen
and Bollerslev (1998):

dσ2
it = κε (θε − σ2

it) dt+ γεσitdB
ε
it,

with Corr(W ε
it, Bε

it) = −0.3 and Bε
it ⊥ Wt and Bε

it ⊥ Bt; κε = 0.035 , θε = 0.636,
γε = 0.296, σi0 = θε

• The slope in the factor representation of the microstructure noise is such that: ci ∼
N(1, 1), ∀i = 1, ..., p;

• As in Barndorff-Nielsen, Hansen, and Shephard (2008), the variance of the microstruc-
ture noise of the asset i satisfies the equality: V ar(ui) = ξ2

√
1
n

∑n
t=1 σ

4
it, with ξ2 the

noise-to-signal ratio which takes values in {0.001, 0.005, 0.01} and σit the spot volatility
of the true price process of asset i at time t.

• The variance of the idiosyncratic component ηit in the factor representation of the
microstructure noise is assumed to have a fraction 1/n1.1 of the total variance V ar(ui).
Then, the variance of the factor term in this representation is given by: σ2

g = (V ar(u)−σ2
η)

C̄2
p

,
with C̄2

p = 1
p

∑p
i=1 c

2
i .

• gt and ηit are such that: gt ∼ N(0, σ2
g) and ηit ∼ N(0, 1

n1.1V ar(ui)).

A.5 Estimation of W

In order to confirm that the eigenvectors of MRker provide reliable estimates for W , we
simulate daily efficient price vectors of dimension p ∈ {50, 100, 300}. We consider three
different levels of microstructure noise: low, median and high with noise-to-signal ratio equal
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to 0.001, 0.01 and 0.1, respectively. Prices are generated by the same two factor simulation
design describe in Appendix A.4. We compute the true covolatility matrix MRker for each
price path, and derive their spectral decompositions. The following figures illustrate the
results for each of the different noise levels.

Figure A.2. Eigenvectors estimation using the multirealized kernel MRker: low noise
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Figure A.3. Eigenvectors estimation using the multirealized kernel MRker: medium noise
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Figure A.4. Eigenvectors estimation using the multirealized kernel MRker: high noise
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As is evident from the figures, the first two eigenvectors of the latent covolatility matrix are
well estimated by the eigenvectors of the MRker matrix. For low noise levels the two are
almost indistinguishable, but there is also a close coherence for the high noise case.
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