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Abstract

We prove the existence of competitive equilibrium and the smoothness
of policy function in an optimal growth model with elastic labor supply
by using a simple method. Our approach is based on the result of exis-
tence of Lagrange multipliers and their representation as a summable
sequence due to Le Van and Saglam [2004] to define the sequence of
prices and wages. The proof of existence of equilibrium we give is more
simple than in Le Van and Vailakis [2004] and requires less stringent
assumptions (neither Inada conditions for the utility function and the
production function nor constant return to scale for the production
function nor strict concavity). We also prove the differentiability of
the policy function at a stationary optimal stock where the derivative
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value associated with Euler equation. Conditions for differentiability
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1 Introduction

The optimal growth model due to Cass and Koopmans is one of the main
frameworks in macroeconomics. While variations of the model with inelastic
labor supply are used widely in growth theory, the version with elastic labor
supply is used in business cycle models, both for exogenous and endogenous
fluctuations. Despite the central place of the model with elastic labor sup-
ply in dynamic general equilibrium models of macroeconomics, existence of
competitive equilibrium in general settings has proved to be a challenge.
Results of existence of equilibrium (Coleman (1997), Datta, et al (2002),
Greenwood and Huffman (1995), Le Van and Vailakis (2004)) use strong
conditions for existence. This paper establishes existence of equilibrium un-
der very weak conditions: neither Inada conditions, nor strict concavity,
nor constant returns to scale, nor restrictions on cross-partials of the utility
functions. The paper also establishes differentiability of the policy function
at the stationary stock. Unlike other papers which address this second issue
(Mitra (2000), Santos (1991)) we do not need to assume additional condi-
tions on the reduced form model, and show that the differentiability follows
from the primitives of the model.

The approach taken in this paper is a direct method based on existence
of Lagrange multipliers to the optimal problem and their representation
as a summable sequence. This problem with inelastic labor supply was
considered by Le Van and Saglam (2004). This approach uses a separation
argument where the multipliers are represented in the dual space (l∞)′ of the
space of bounded sequences l∞. While one would like the multipliers and
prices to lie in l1, it is not the dual space (Debreu (1950)). Previous work
following the work of Peleg and Yaari (1970), the representation theorems
followed separation arguments applied to arbitrary vector spaces (see Bewley
(1972), Majumdar (1972), Aliprantis et al. (1997), Dana and Le Van (1992).
The Le Van and Saglam (2004) approach also uses a separation argument but
imposes restrictions on the asymptotic behavior of the objective functional
and constraint functions which are easily shown to be satisfied in standard
models. This is related to Dechert (1982).

There is a difficulty in going from the inelastic labor supply to the elas-
tic labor supply model: while one can show that the optimal capital stock
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is strictly positive, without assuming Inada conditions, one cannot be sure
that the optimal labor supply sequence is strictly positive. Thus, the paper
by Le Van and Vailakis (2004) which took the approach of decentralizing
the optimal solution via prices as marginal utilities had to make additional
strong conditions on the utility function to ensure that the labor supply se-
quence remains strictly positive. As we show, following Le Van and Saglam
(2004), that the Lagrange multipliers to the social planners problem are a
summable sequence, we can directly use these to decentralize the optimal
solution and not have to make strong assumptions to ensure interiority of
the optimal plan. Thus, the Inada conditions do not have to be assumed.
As this approach does not require strict concavity, these strong assumptions
on utility functions can be dropped. This is especially important as one
important specification of preferences in applied macroeconomics models is
that of linear utility of leisure where strict concavity is violated. This speci-
fication also results in the planners problem in models with indivisible labor
(Hansen (1985), Rogerson (1988)). Furthermore, there is no need to make
any assumption on cross-partial derivatives of the utility function as in Cole-
man (1997), Datta et al (2002), and Greenwood and Huffman (1995). Thus,
whether labor supply is backward bending or not, and whether consumption
is an inferior or not plays no role in existence of equilibrium. As a separation
argument is used to generate the Lagrange multipliers, what is important is
concavity and not also constant returns to scale of the production function.

The second main result of the paper is to show under standard assump-
tions on technology and preferences, the policy function is differentiable at
the stationary optimal capital stock and the derivative is equal to the charac-
teristic root with the smallest absolute value of the Ramsey-Euler equations.
This result is important as one can use it to show stability properties of the
model (Mitra and Nishimura (2005)). We show that under the standard
assumptions, condition C1 in Mitra (2000) is satisfied, and thus the results
there can be applied. This condition is a restriction on the second deriva-
tives of the value function (Santos (1991) also has conditions on the second
derivatives of the value function to show differentiability of the value func-
tion). Thus, for standard applied macroeconomic models with elastic labor
supply one can check stability by studying derivatives of the policy function.
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The organization of the paper is as follows. Section 2 provides the suf-
ficient conditions on the objective function and the constraint functions so
that Lagrangean multipliers can be presented by an l1+ sequence of multipli-
ers in optimal growth model with leisure in the utility function. In section
3, we prove the existence of competitive equilibrium in a model with a rep-
resentative agent by using these multipliers as sequences of price and wage
systems. Section 4 establishes differentiability of the policy function at the
stationary stock. Section 5 concludes.

2 Lagrange multipliers in optimal growth model

Consider an economy in which a representative consumer has preferences
defined over processes of consumption and leisure described by the utility
function ∞∑

t=0

βtu(ct, lt).

In each period, the consumer faces two resource constraints given by

ct + kt+1 ≤ F (kt, Lt) + (1− δ)kt,

lt + Lt = 1, ∀t

where F is the production function, δ ∈ (0, 1) is the depreciation rate of
capital stock and Lt is labor. These constraints restrict allocations of com-
modities and time for the leisure.

Formally, the problem of the representative consumer is stated as follows:

max
∞∑

t=0

βtu(ct, lt)

s.t. ct + kt+1 ≤ F (kt, 1− lt) + (1− δ)kt, ∀t ≥ 0

ct ≥ 0, kt ≥ 0, lt ≥ 0, 1− lt ≥ 0, ∀t ≥ 0

k0 ≥ 0 is given.

We make a set of assumptions imposed on preferences and production tech-
nology. The assumptions on period utility function u : R2

+ → R are as
follows:
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Assumption U1: u is continuous, concave, increasing on R2
+ and strictly

increasing on R2
++.

Assumption U2: u(0, 0) = 0.

The assumptions on the production function F : R2
+ → R+ are as follows:

Assumption F1: F is continuous, concave, increasing on R2
+ and strictly

increasing on R2
++.

Assumption F2: F (0, 0) = 0, limk→0 Fk(k, 1) > δ, limk→+∞ Fk(k, 1) < δ.

The assumptions U1, U2, F1 are standard and we do not assume strict
concavity of the utility and production functions. There are also no Inada
conditions assumed. Assumption F2 is a weak assumption to ensure that
there is a maximum sustainable capital stock, and thus the sequence of
capital is bounded.

We say that a sequence (ct, kt, lt)t=0,1,...,∞ is feasible from k0 if it satisfies
the constraints

∀t ≥ 0, ct + kt+1 ≤ F (kt, 1− lt) + (1− δ)kt

ct ≥ 0, kt ≥ 0, lt ≥ 0, 1− lt ≥ 0,

k0 > 0 is given.

It is easy to check that, for any initial condition k0 > 0, a sequence k =
(kt)∞t=0 is feasible iff 0 ≤ kt+1 ≤ F (kt, 1) + (1 − δ)kt for all t. The class
of feasible capital paths is denoted by Π(k0).A pair of consumption-leisure
sequences (c, l) =(ct, lt)∞t=0 is feasible from k0 > 0 if there exists a sequence
k ∈ Π(k0) that satisfies 0 ≤ ct+kt+1 ≤ F (kt, 1−lt)+(1−δ)kt and 0 ≤ lt ≤ 1
for all t.

Define f(kt, Lt) = F (kt, Lt) + (1− δ)kt. Assumption F2 implies that

fk(+∞, 1) = Fk(+∞, 1) + (1− δ) < 1

fk(0, 1) = Fk(0, 1) + (1− δ) > 1.

From above, it follows that there exists k > 0 such that: (i) f(k, 1) = k

, (ii) k > k implies f(k, 1) < k, (iii) k < k implies f(k, 1) > k. Therefore
for any k ∈ Π(k0), we have 0 ≤ kt ≤ max(k0, k). Thus, k ∈ l∞+ which in
turn implies c ∈ l∞+ , if (c,k) is feasible from k0. Denote x = (c,k, l) and

F(x) = −
∞∑

t=0
βtu(ct, lt), Φ1

t (x) = ct + kt+1 − f(kt, 1 − lt), Φ2
t (x) = −ct,
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Φ3
t (x) = −kt, Φ4

t (x) = −lt,Φ5
t (x) = lt − 1, ∀t, Φt = (Φ1

t ,Φ
2
t , Φ

3
t+1, Φ

4
t , Φ

5
t ),

∀t. The social planner’s problem can be written as:

minF(x) s.t.Φ(x) ≤ 0,x ∈ l∞+ × l∞+ × l∞+

where F : l∞+ × l∞+ × l∞+ → R ∪ {+∞}
Φ = (Φt)t=0...∞ : l∞+ × l∞+ × l∞+ → R ∪ {+∞}

Let C = dom(F) = {x ∈ l∞+ × l∞+ × l∞+ |F(x) < +∞}
Γ = dom(Φ) = {x ∈ l∞+ × l∞+ × l∞+ |Φt(x) < +∞, ∀t.}

Proposition 1 Let x,y ∈ l∞+ × l∞+ × l∞+ , T ∈ N. Define

xT
t (x,y) =

{
xt if t ≤ T

yt if t > T
.

Suppose that the two following assumptions are satisfied:
T1: If x ∈ C, y ∈ l∞+ × l∞+ × l∞+ satisfy ∀T ≥ T0, xT (x,y) ∈ C, then

F(xT (x,y)) → F(x) when T →∞.

T2: If x ∈ Γ, y ∈ Γ and xT (x,y) ∈ Γ, ∀T ≥ T0, then
a) Φt(xT (x,y)) → Φt(x) as T →∞
b) ∃M s.t. ∀T ≥ T0 , ‖Φt(xT (x,y))‖ ≤ M

c) ∀N ≥ T0, lim
t→∞[Φt(xT (x,y))− Φt(y)] = 0.

Let x∗ be a solution to (P ) and x0 ∈ C satisfies the Slater condition:

sup
t

Φt(x0) < 0.

Suppose xT (x∗,x0) ∈ C ∩ Γ. Then, there exists Λ ∈ l1+\{0} such that

F(x) + ΛΦ(x) ≥ F(x∗) + ΛΦ(x∗), ∀x ∈ (C ∩ Γ)

and ΛΦ(x∗) = 0.

Proof : It is easy to see that l∞+ × l∞+ × l∞+ is isomorphic with l∞+ , since, for
example, there exists an isomorphism

Π : l∞+ → l∞+ × l∞+ × l∞+ ,
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Π(x) = ((x0, x3, x6, ...)(x1, x4, x7, ...), (x2, x5, x8, ...))

and
Π−1(u,v, s) = (u0, v0, s0, u1, v1, s1, u2, v2, s2, ..).

Thus, there exists an isomorphism Π
′
: (l∞+ × l∞+ × l∞+ )

′ → (l∞+ )
′
. It follows

from Theorem1 in Le Van - Saglam [2004] that there exists Λ ∈ (l∞+ × l∞+ ×
l∞+ )

′
. Let Λ = Π

′
(Λ) ∈ (l∞+ )

′
. Then, the results are derived by the analogous

arguments where a standard separation theorem used1 as in the Theorem2
in Le Van - Saglam [2004].

Proposition 2 If x∗ = (c∗,k∗, l∗) is a solution to the following problem:

min−
∞∑

t=0

βtu(ct, lt) (P )

s.t. ct + kt+1 − f(kt, 1− lt) ≤ 0,

−ct ≤ 0, −kt ≤ 0, 0 ≤ lt ≤ 1,

then there exists λ = (λ1, λ2, λ3, λ4, λ5) ∈ l1+× l1+ × l1+ × l1+ × l1+, λ 6= 0 such
that: ∀x = (c,k, l) ∈ l∞+ × l∞+ × l∞+

∞∑

t=0

βtu(c∗t , l
∗
t )−

∞∑

t=0

λ1
t (c

∗
t + k∗t+1 − f(k∗t , 1− l∗t ))

+
∞∑

t=0

λ2
t c
∗
t +

∞∑

t=0

λ3
t k
∗
t +

∞∑

t=0

λ4
t l
∗
t +

∞∑

t=0

λ5
t (1− l∗t )

≥
∞∑

t=0

βtu(ct, lt)−
∞∑

t=0

λ1
t (ct + kt+1 − f(kt, 1− lt))

+
∞∑

t=0

λ2
t ct

∞
+

∑

t=0

λ3
t kt

∞
+

∑

t=0

λ4
t lt +

∞∑

t=0

λ5
t (1− lt) (1)

1As the Remark 6.1.1 in LeVan and Dana [2003], assumption fk(0, 1) > 1 is equivalent

to the Adequacy Assumption in Bewley (1972) and this assumption is crucial to have

equilibrium prices in l1+ since it implies that the production set has an interior point.

Subsequenctly, it allows using a separation theorem in the infinite dimensional space to

create Lagrange multipliers.
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λ1
t (c

∗
t + k∗t+1 − f(k∗t , 1− l∗t )) = 0 (2)

λ2
t c
∗
t = 0 (3)

λ3
t k
∗
t = 0 (4)

λ4
t l
∗
t = 0 (5)

λ5
t (1− l∗t ) = 0 (6)

0 ∈ βt∂1u(c∗t , l
∗
t )− {λ1

t }+ {λ2
t } (7)

0 ∈ βt∂2u(c∗t , l
∗
t )− λ1

t ∂2f(k∗t , L
∗
t ) + {λ4

t } − {λ5
t } (8)

0 ∈ λ1
t ∂1f(k∗t , L

∗
t ) + {λ3

t } − {λ1
t−1} (9)

where ∂iu(c∗t , l∗t ), ∂if(k∗t , L∗t ) respectively denote the projection on the ith

component of the subdifferential of function u at (c∗t , l∗t ) and the function
f at (k∗t , L∗t ).

Note that T1 holds when F is continuous in the product topology. T2c

is satisfied if the asymptotically insensitivity, i.e., if x is changed only on a
finitely many values the constraint value for large t does not change that
much (Dechert (1982)). T2c is the asymptotically non-anticipatory assump-
tion and requires Φ to be nearly weak-* continuous (Dechert (1982)). T2b

holds when when Γ = dom(Φ) = l∞ and Φ is continuous (see Dechert (1982),
Le Van and Saglam (2004)).

Proof : We first check that the Slater condition holds. Indeed, since f ′k(0, 1) >

1, then for all k0 > 0, there exists some 0 < k̂ < k0 such that: 0 < k̂ < f(k̂, 1)
and 0 < k̂ < f(k0, 1).Thus, there exists two small positive numbers ε, ε1

such that:

0 < k̂ + ε < f(k̂, 1− ε1) and 0 < k̂ + ε < f(k0, 1− ε1).

Denote x0 = (c0,k0, l0) such that c0 = (ε, ε, ...), k0 = (k0, k̂, k̂, ...), l0 =
(ε1, ε1, ...). We have

Φ1
0(x

0) = c0 + k1 − f(k0, 1− l0)

= ε + k̂ − f(k0, 1− ε1) < 0

Φ1
1(x

0) = c1 + k2 − f(k1, 1− l1)

= ε + k̂ − f(k̂, 1− ε1) < 0

Φ1
t (x

0) = ε + k̂ − f(k̂, 1− ε1) < 0, ∀t ≥ 2
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Φ2
t (x

0) = −ε < 0, ∀t ≥ 0, Φ3
0(x

0) = −k0 < 0.

Φ3
t (x

0) = −k̂ < 0 ∀t ≥ 1, Φ4
t (x

0) = −ε1 < 0, ∀t ≥ 0.

Φ5
t (x

0) = ε1 − 1 < 0, ∀t ≥ 0

Therefore the Slater condition is satisfied. Now, it is obvious that, ∀T,

xT (x∗,x0) belongs to l∞+ × l∞+ × l∞+ . As in Le Van-Saglam 2004, Assumption
T2 is satisfied. We now check Assumption T1. For any x̃ ∈ C, ˜̃x ∈ l∞+ ×
l∞+ × l∞+ such that for any T, xT (x̃, ˜̃x) ∈ C we have

F(xT (x̃, ˜̃x)) = −
T∑

t=0

βtu(c̃t, l̃t)−
∞∑

t=T+1

βtu( ˜̃ct,
˜̃
lt).

As ˜̃x ∈ l∞+ × l∞+ × l∞+ , sup
t
| ˜̃ct| < +∞ , there exists m > 0, ∀t, | ˜̃ct| ≤ m. Since

β ∈ (0, 1) we have

∞∑

t=T+1

βtu(m, 1) = u(m, 1)
∞∑

t=T+1

βt → 0 as T →∞.

Hence, F(xT (x̃, ˜̃x)) → F(x̃) when T → ∞. Taking account of the Proposi-
tion 1, we get (1) - (6).

Finally, we obtain (7) - (9) from the Kuhn-Tucker first-order conditions.

3 Competitive equilibrium

Definition 1 A competitive equilibrium for this model consists of an allo-
cation {c∗, l∗,k∗,L∗} ∈ l∞+ × l∞+ × l∞+ × l∞+ , a price sequence p∗ ∈ l1+ for the
consumption good, a wage sequence w∗ ∈ l1+ for labor and a price r > 0 for
the initial capital stock k0 such that:

i) (c∗, l∗) is a solution to the problem

max
∞∑

t=0

βtu(ct, lt)

s.t. p∗c ≤ w∗L + π∗ + rk0
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where π∗ is the maximum profit of the firm.
ii) (k∗,L∗) is a solution to the firm’s problem

π∗ = max
∞∑

t=0

p∗t [f(kt, Lt)− kt+1]−
∞∑

t=0

w∗t Lt − rk0

s.t. 0 ≤ kt+1 ≤ f(kt, Lt), Lt ≥ 0, ∀t.

iii) Markets clear

∀t, c∗t + k∗t+1 = f(k∗t , L
∗
t )

l∗t + L∗t = 1 and k∗0 = k0

Theorem 1 Let (c∗,k∗, l∗) solve Problem (P ). Take

p∗t = λ1
t for any t and r > 0.

There exists fL(k∗t , L∗t ) ∈ ∂2f(k∗t , L∗t ) such that {c∗,k∗,L∗,p∗,w∗, r} is a
competitive equilibrium with w∗t = λ1

t fL(k∗t , L∗t ).

Proof : Consider λ = (λ1, λ2, λ3, λ4, λ5) of Proposition 2. Conditions (7),(8),(9)
in Proposition2 show that ∂u(c∗t , l∗t ) and ∂f(k∗t , L∗t ) are nonempty and there
exists uc(c∗t , l∗t ) ∈ ∂1u(c∗t , l∗t ), ul(c∗t , l∗t ) ∈ ∂2u(c∗t , l∗t ), fk(k∗t , L∗t ) ∈ ∂1f(k∗t , L∗t )
and fL(k∗t , L∗t ) ∈ ∂2f(k∗t , L∗t ) such that ∀t

βtuc(c∗t , l
∗
t )− λ1

t + λ2
t = 0 (10)

βtul(c∗t , l
∗
t )− λ1

t fL(k∗t , L
∗
t ) + λ4

t − λ5
t = 0 (11)

λ1
t fk(k∗t , L

∗
t ) + λ3

t − λ1
t−1 = 0 (12)

Define w∗t = λ1
t fL(k∗t , L

∗
t ) < +∞.We now prove that w∗ ∈ l1+.

We have

+∞ >
∞∑

t=0

βtu(c∗t , l
∗
t )−

∞∑

t=0

βtu(0, 0) ≥
∞∑

t=0

βtuc(c∗t , l
∗
t )c

∗
t +

∞∑

t=0

βtul(c∗t , l
∗
t )l

∗
t ,

which implies
∞∑

t=0

βtul(c∗t , l
∗
t )l

∗
t < +∞, (13)
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and

+∞ >
∞∑

t=0

λ1
t f(k∗t , L

∗
t )−

∞∑

t=0

λ1
t f(0, 0) ≥

∞∑

t=0

λ1
t fk(k∗t , L

∗
t )k

∗
t +

∞∑

t=0

λ1
t fL(k∗t , L

∗
t )L

∗
t

which implies
∞∑

t=0

λ1
t fL(k∗t , L

∗
t )L

∗
t < +∞. (14)

Given T, we multiply (11) by L∗t and sum up from 0 to T . We then obtain.
Observe that

∀T,
T∑

t=0

βtul(c∗t , l
∗
t )L

∗
t =

T∑

t=0

λ1
t fL(k∗t , L

∗
t )L

∗
t +

T∑

t=0

λ5
t L

∗
t −

T∑

t=0

λ4
t L

∗
t . (15)

0 ≤
∞∑

t=0

λ5
t L

∗
t ≤

∞∑

t=0

λ5
t < +∞. (16)

0 ≤
∞∑

t=0

λ4
t L

∗
t ≤

∞∑

t=0

λ4
t < +∞ (17)

Thus, since L∗t = 1− l∗t , from (15), we get

T∑

t=0

βtul(c∗t , l
∗
t ) =

T∑

t=0

βtul(c∗t , l
∗
t )l

∗
t +

T∑

t=0

λ1
t fL(k∗t , L

∗
t )L

∗
t

+
T∑

t=0

λ5
t L

∗
t −

T∑

t=0

λ4
t L

∗
t

Using (13),(14),(16),(17) and letting T →∞, we obtain

0 ≤
∞∑

t=0

βtul(c∗t , l
∗
t ) =

∞∑

t=0

βtul(c∗t , l
∗
t )l

∗
t +

∞∑

t=0

λ1
t fL(k∗t , L

∗
t )L

∗
t

+
∞∑

t=0

λ5
t L

∗
t −

∞∑

t=0

λ4
t L

∗
t < +∞

Consequently, from (11),
∑∞

t=0 λ1
t fL(k∗t , L∗t ) < +∞ i.e. w∗ ∈ l1+. So, we

have {c∗, l∗,k∗,L∗} ∈ l∞+ × l∞+ × l∞+ × l∞+ , with p∗ ∈ l1+ and w∗ ∈ l1+.

We now show that (k∗,L∗) is solution to the firm’s problem.
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Since p∗t = λ1
t , w∗t = λ1

t fL(k∗t , L∗t ), we have

π∗ =
∞∑

t=0

λ1
t [f(k∗t , L

∗
t )− k∗t+1]−

∞∑

t=0

λ1
t fL(k∗t , L

∗
t ) L∗t − rk0

Let :

∆T =
T∑

t=0

λ1
t [f(k∗t , L

∗
t )− k∗t+1]−

T∑

t=0

λ1
t fL(k∗t , L

∗
t ) L∗t − rk0

−
(

T∑

t=0

λ1
t [f(kt, Lt)− kt+1]−

T∑

t=0

λ1
t fL(k∗t , L

∗
t ) Lt − rk0

)
.

By the concavity of f , we get

∆T ≥
T∑

t=1

λ1
t fk(k∗t , L

∗
t )(k

∗
t − kt)−

T∑

t=0

λ1
t (k

∗
t+1 − kt+1)

= [λ1
1fk(k∗1, L

∗
1)− λ1

0](k
∗
1 − k1) + ...

+[λ1
T fk(k∗T , L∗T )− λ1

T−1](k
∗
T − kT )− λ1

T (k∗T+1 − kT+1).

By (4) and (12), we have: ∀t = 1, 2, ..., T

[λ1
t fk(k∗t , L

∗
t )− λ1

t−1](k
∗
t − kt) = −λ3

t (k
∗
t − kt) = λ3

t kt ≥ 0.

Thus,

∆T ≥ −λ1
T (k∗T+1 − kT+1) = −λ1

T k∗T+1 + λ1
T kT+1 ≥ −λ1

T k∗T+1.

Since λ1 ∈ l1+, sup
T

k∗T+1 < +∞, we have

lim
T→+∞

∆T ≥ lim
T→+∞

− λ1
T k∗T+1 = 0.

We have proved that the sequences (k∗,L∗) maximize the profit of the firm.
We now show that c∗ solves the consumer’s problem.

Let {c,L} satisfy
∞∑

t=0

λ1
t ct ≤

∞∑

t=0

w∗t Lt + π∗ + rk0 (18)

By the concavity of u, we have:

∆ =
∞∑

t=0

βtu(c∗t , l
∗
t )−

∞∑

t=0

βtu(ct, lt)

11



≥
∞∑

t=0

βtuc(c∗t , l
∗
t )(c

∗
t − ct) +

∞∑

t=0

βtul(c∗t , l
∗
t ) (l∗t − lt).

Combining (3 ),(6),(10),(11) yields

∆ ≥
∞∑

t=0

(λ1
t − λ2

t )(c
∗
t − ct) +

∞∑

t=0

(λ1
t fL(k∗t , 1− l∗t ) + λ5

t − λ4
t )(l

∗
t − lt)

=
∞∑

t=0

λ1
t (c

∗
t − ct) +

∞∑

t=0

λ2
t ct −

∞∑

t=0

λ2
t c
∗
t +

∞∑

t=0

(w∗t + λ5
t )((l

∗
t − lt)

−
∞∑

t=0

λ4
t l
∗
t +

∞∑

t=0

λ4
t lt

≥
∞∑

t=0

λ1
t (c

∗
t − ct) +

∞∑

t=0

(w∗t + λ5
t )((l

∗
t − lt) =

∞∑

t=0

λ1
t (c

∗
t − ct) +

∞∑

t=0

w∗t (l
∗
t − lt) +

∞∑

t=0

λ5
t (1− lt)

≥
∞∑

t=0

λ1
t (c

∗
t − ct) +

∞∑

t=0

w∗t (Lt − L∗t )

Since

π∗ =
∞∑

t=0

λ1
t c
∗
t −

∞∑

t=0

w∗t L
∗
t − rk0,

it follows from (18) that

∆ ≥
∞∑

t=0

p∗t c
∗
t −

∞∑

t=0

w∗t L
∗
t − rk0 − [

∞∑

t=0

p∗t ct −
∞∑

t=0

w∗t Lt − rk0]

≥ π∗ − π∗ = 0

Consequently, ∆ ≥ 0 that means c∗ solves the consumer’s problem.
Finally, the market clears at every period, since ∀t, c∗t +k∗t+1 = f(k∗t , L∗t )

and 1− l∗t = L∗t .
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4 Differentiability of the policy function

To show differentiability of the policy function we need additional set of
assumptions imposed on preferences and production technology. These are
standard in the macroeconomics literature. Assumption U3 imposes Inada
conditions, and U4 is weaker than assuming normality (which requires in

addition that
(

ull

ul
≤ ucl

uc

)
. This condition just requires the marginal rate of

substitution
ul

uc
be non-decreasing in c. When ucl ≥ 0 it is trivially satisfied.

It establishes monotonocity of the optimal capital path (see Aiyagari (1992),
and the discussion in Le Van and Saglam (2004)). Assumptions F3 , F4 are
standard in the literature.
Assumption U3: u is twice continuously differentiable on R2

++ with partial
derivatives satisfying the Inada conditions: limc→0 uc(c, l) = +∞, ∀l > 0
and liml→0 ul(c, l) = +∞, ∀c > 0.

Assumption U4: For all c > 0 and l > 0, the cross partial derivative
ucl has a constant sign. In addition, we require the first and second partial
derivatives to verify the following condition:

ucc

uc
≤ ucl

ul
.

Moreover, ucc < 0 and ull < 0, for all c > 0 and l > 0.

Assumption F3: F is twice continuously differentiable on R2
++ with par-

tial derivatives satisfying the Inada conditions: limk→0 Fk(k, 1) = +∞,

limk→+∞ Fk(k, 1) < δ and limL→0 FL(k, L) = +∞, ∀k > 0.

Assumption F4: For all k > 0 and L > 0, FkL ≥ 0 and Fkk < 0, FLL < 0.
In order to save notation, we write f(kt, Lt) = F (kt, Lt) + (1− δ)kt. Ob-

serve that under the previous assumptions, limk→0 fk(k, 1) = +∞, limk→+∞ fk(k, 1)
< 1 and limL→0 fL(k, L) = +∞.

Let us rewrite the social planning problem (P) of determining a Pareto

13



efficient consumption-leisure allocation and production sequence

max
∞∑

t=0

βtu(ct, lt)

s.t. ct + kt+1 ≤ f(kt, Lt), ∀t
lt + Lt ≤ 1, ∀t
ct ≥ 0, lt ≥ 0, kt ≥ 0, Lt ≥ 0, ∀t
k0 ≥ 0 is given.

Let (k, y) verify 0 ≤ y ≤ f(k, 1). Define the function V : R2
+ → R+:

V (k, y) = maxu(c, l)

s.t. c + y ≤ f(k, 1− l)

c ≥ 0, 0 ≤ l ≤ 1.

Consider the following problem (Q):

max
∞∑

t=0

βtV (kt, kt+1)

s.t. 0 ≤ kt+1 ≤ f(kt, 1), ∀t
k0 ≥ 0 is given.

It is easy to see that problems (P ) and (Q) are equivalent.
The principle of optimality is formally stated in the following proposition.

It will help us characterize basic properties of optimal paths.

Proposition 3 The value function solves the Bellman equation, i.e.

∀k0 ≥ 0, W (k0) = max{V (k0, k1) + βW (k1) : 0 ≤ k1 ≤ f(k0, 1)},

and for all k0 ≥ 0, a feasible path k is optimal, if and only if,

W (kt) = V (kt, kt+1) + βW (kt+1)

holds for all t.

Proof : See Stokey and Lucas (1989, Ch. 4).
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Lemma 1 Assume U1-U3 and F1-F3. Let k0 > 0 and denote by (c∗, l∗,k∗)
the optimal solution to problem (P ). Then:

i) k∗t > 0, ∀t.
ii) c∗t > 0 and l∗t > 0, ∀t.

Proof : See Appendix

Now we can prove that the optimal solution (c∗, l∗,k∗) converges to a
unique optimal steady state (cs, ls, ks) which is unique and nontrivial .

Proposition 4 There exists a unique nontrivial steady state (cs, ls, ks) that
satisfies fk(ks, 1− ls) = 1

β and cs = f(ks, 1− ls)− ks.

Proof : For the single agent case, see Le Van and Vailakis (2004) and for
the many agents, see Le Van, Nguyen and Vailakis (2007).

The following Lemma play an important role to prove the differentiability
of policy function at the stationary optimal stock. It is an assumption
in Mitra (2000). Note that it is a restriction of derivatives of the value
function and thus, as such it is not clear what underlying assumptions on the
technology and preferences generate it. As we show in addition to standard
differentiability, Inada, and concavity assumptions all that is needed is the
non-decreasing marginal rate of substitution which ensures monotonicity of
the optimal capital stock.

Lemma 2 Let ks be a steady state. Then

(1 + β)|V12(ks, ks)|+ βV11(ks, ks) + V22(ks, ks) < 0.

Proof : Let the function V be defined as before, i.e. given any (k, y), such
that, 0 ≤ y ≤ f(k, 1),

V (k, y) = maxu(c, l)

s.t. c + y ≤ f(k, 1− l)

c ≥ 0, 0 ≤ l ≤ 1.
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Note that the Slater condition is trivially satisfied for c = 0, l = 0, so there
exist multipliers λ, µ ∈ R associated with the constraints c + y ≤ f(k, 1− l)
and l ≤ 1, such that, (c∗, l∗, λ, µ) maximizes the associated Lagrangian. The
Kuhn-Tucker first-order conditions are2:

0 ∈ ∂1(u(c∗, l∗))− {λ}
0 ∈ ∂2(u(c∗, l∗))− λ∂2(f(k, 1− l∗))− {µ}
λ ≥ 0, λ [c∗ + y − f(k, 1− l∗)] = 0

µ ≥ 0, µ(l∗ − 1) = 0.

The strict increasingness of u together with assumption U2 imply that
(c∗, l∗) 6= 0. Since u satisfies the Inada conditions, it follows that c∗ > 0
and l∗ > 0 (otherwise ∂1(u(c∗, l∗)) and ∂2(u(c∗, l∗)) will be empty). Con-
dition 1 implies that λ > 0. Observe that the Inada condition on labor’s
marginal productivity implies that l∗ < 1, µ = 0 (otherwise ∂2(f(k, 1− l∗))
will be empty). We have

uc(c∗, l∗)− λ = 0

ul(c∗, l∗)− λfL(k, 1− l∗) = 0

c∗ + y − f(k, 1− l∗) = 0.

Uniqueness of the solution follows from the strict concavity of u. Differen-
tiating the above equations gives:

uccdc∗ + ucldl∗ − dλ = 0

ucldc∗ + ulldl∗ − λ [fkLdk − fLLdl∗]− fLdλ = 0

dc∗ − fkdk + dy + fLdl∗ = 0

Denote

V12(ks, ks) = V̂12, V11(ks, ks) = V̂11, V22(ks, ks) = V̂22,

p = λfLL, a = ucc, b = ucl, c = ull.

2For a concave function f defined on Rn, ∂f(x) denotes the subdifferential of f at

x ∈ Rn. Note also that ∂if(x) is the projection of ∂f(x) on the ith component.
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The above equations become

adcs + bdls − dλ = 0 (1)

bdcs + [c + p]dls − fLdλ = λfLkdk. (2)

dcs + fLdls = fkdk − dy. (3)

Furthermore, we already have

βfk(ks, 1− ls) = 1,

V̂1 =
∂V (k, y)

∂k
= λfk(ks, 1− ls)

V̂2 =
∂V (k, y)

∂y
= −λ.

Thus,

V̂21 =
∂2V̂

∂y∂k
= −∂λ

∂k
, V̂22 =

∂2V̂

∂y∂y
= −∂λ

∂y

V̂11 =
∂2V̂

∂k∂k
=

∂(λfk(k, 1− ls))
∂k

=

∂λ

∂k
fk + λ(fkk − fkL

∂ls

∂k
).

It follows from (1),(2),(3) that

(fL − b

a
)dls +

1
a
dλ = fk − dy

(c + p− b2

a
)dls − (fL − b

a
)dλ = λfLkdk

Denote

x = fL − b

a
=

ul

uc
− ucl

ucc

=
ul

ucc

(
ucc

uc
− ucl

ul

)
≥ 0,

y = c− b2

a
+ p =

ac− b2

a
+ p < 0
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Denote A = det

[
x 1/a

y −x

]
= −x2 − y

a < 0, we have

dls =
−xfk − λfkL

a

A
dk +

x

A
dy,

dλ =
xλfkL − yfk

A
dk +

y

A
dy.

Thus,
∂ls

∂k
=
−xfk − λfkL

a

A
≥ 0, (4)

∂λ

∂k
=

xλfkL − yfk

A
,
∂λ

∂y
=

y

A
(5)

Therefore, V̂21 = ∂2V̂
∂y∂k = −∂λ

∂k = −xλfkL+yfk
A ≥ 0. Hence we only need to

prove that
(1 + β)V̂12 + βV̂11 + V̂22 < 0.

Indeed, it follows from (4), (5) that

(1 + β)V̂12 + βV̂11 + V̂22 =

−(1 + β)
∂λ

∂k
+ β[

∂λ

∂k
fk + λ(fkk − fkL

∂ls

∂k
)]− ∂λ

∂y

=
βλfkkA + β(λfLk)2 1

a

A
+

xλfkL(1− β)
A

.

It is easy to see that xλfkL(1−β)
A ≤ 0.

Therefore, we now have to prove that

βλfkkA + β(λfLk)2 1
a

A
< 0

⇔ fkkA + λ(fLk)2
1
a

> 0. (6)

Note that λ = p
fLL

, (6) can be written as follows

fkkfLL(−A) > (fLk)2
p

a
.

Since f is concave, we have

fkkfLL ≥ (fLk)2.
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Therefore, we just need to show that p
a < −A. Indeed, we have

p

a
+ A =

p

a
− y

a
− x2 = −ac− b2

a2
− x2 < 0.

Hence,
(1 + β)V̂12 + βV̂11 + V̂22 < 0.

The method to prove the differentiability of the policy function at a
stationary optimal stock is based on Mitra (2000) where the derivative of
the policy function equals the smaller characteristic root in absolute value
associated with Euler equation (see also Mitra and Nishimura (2005)). Thus,
we can state.

Proposition 5 Assume U1-U4 and F1-F4. The policy function h(k) is
differentiable at the unique nontrivial steady state (cs, ls, ks) and h′(k) = |λ1|
where λ1 is the characteristic root of the Ramsey-Euler equations with the
smaller absolute value.

Proof : From Lemma 2, condition C1 of Proposition 7.3, Mitra (2000) is
satisfied, and we can follow the result therein.

Assumption U4 which is needed to obtain monotonicity of the optimal
capital stock in the elastic labor supply framework can be dispensed with in
the Mitra (2000) framework with inelastic labor supply.

5 Conclusion

This paper studies existence of equilibrium in the optimal growth model
with elastic labor supply. This model is the workhorse of dynamic general
equilibrium theory both endogenous and real business cycles. The results
on existence of equilibrium have assumed strong conditions which are vio-
lated in some specifications of applied models. This paper uses a separation
argument to obtain Lagrange multipliers which lie in l1. As the separation
argument relies on convexity, strict convexity can be relaxed; this also means
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that assumptions on cross partials of utility functions are not needed (as in
Coleman (1997), Greenwood and Huffman (1995) and Datta et al (2002));
and constant returns to scale is not needed. The representation theorem
involves assumptions on asymptotic properties of the constraint set (which
are weaker than Mackey continuity (see Bewley (1972) and Dechert (1982)).
The assumptions ensure that the either the optimal sequence {ct, lt}∞t=0 is
either always strictly interior or always equal to zero. Thus, one does not

have to impose strong conditions, either Inada or limε→0
u(ε, ε)

ε
→ +∞ as

in Le Van and Vailakis (2004) to ensure that the sequence of labor is strictly
interior. This later condition is not satisfied, for example, in homogeneous
period one utility functions. Thus, for a wide class of models, where assum-
ing strict concavity of preferences or Inada conditions are not problematic,
e.g., models with linear utility of leisure, one can still use approach of study-
ing the social planner’s problem knowing that these can be decentralized.
In addition, one does not need to assume normality (or rule out backward
bending labor supply curves) to study the competitive equilibrium. For fur-
ther properties such as studying stability properties of the equilibrium, for
nice characterizations, these are however, still needed.

6 Appendix

Proof of Lemma1

Proof : i) Let k0 > 0 but assume that k∗1 = 0. Denote L∗t = 1− l∗t . Since

c∗0 = f(k0, L
∗
0) > 0,

First, we claim that with l∗1 > 0.

Assume the contrary that l∗1 = 0. In this case, we prove that c∗1 > 0.

Indeed, if c∗1 = 0 then k∗2 = f(0, 1). Choose ε > 0 such that c∗0 > ε + ε2. Let
α = ε+1

β and γ = ε+1
β[c∗0−(ε+ε2)]

. Consider the alternative path (c, l,k) defined
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as follows:

i) c0 = c∗0 − (ε + ε2), c0 = c∗0
ii) c1 = αε

iii) l0 = l∗0, l1 = γε

iv) ct = c∗t and lt = l∗t ,∀t ≥ 2

v) k1 = ε, kt = k∗t , ∀t ≥ 2.

Observe that

c0 + k1 =

c∗0 − (ε + ε2) + ε ≤ c∗0 + k∗1 = f(k0, L
∗
0).

Moreover,

f(k1, 1− l1)− k2 − c1

= f(ε, 1− γε)− f(0, 1)− αε

≥ ε[fk(ε, 1− γε)− fL(ε, 1− γε)γ − α].

Due to the Inada conditions on F, the term inside the bracket is strictly
positive for ε small enough. This proves feasibility of the alternative path.

Observe that as ε → 0 both α and γ converge to a finite value. In
addition, α

γ = c0. Define:

∆(ε) =
∞∑

t=0

βtu(ct, lt)−
∞∑

t=0

βtu(c∗t , l
∗
t )

= [u(c0, l0)− u(c∗0, l
∗
0)] + β [u(c1, l1)− u(c∗1, l

∗
1)] .

The concavity of u implies that

∆(ε) = [u(c1, l1)− u(c∗1, l
∗
1)] + [u(c0, l0)− u(c∗0, l

∗
0)]

≥ βu(αε, γε)− uc(c0, l0)(ε + ε2).
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If ucl > 0, then

∆(ε) ≥ βu

(
γε

αε

γε
, γε

)
− uc(c0, l0)(ε + ε2)

≥ βu

(
α

γ
, 1

)
γε− uc(c0, l0)(ε + ε2)

≥ βuc

(
α

γ
, 1

)
αε− uc(c0, l0)(ε + ε2)

= βuc (c0, 1)
ε2 + ε

β
− uc(c0, l0)(ε + ε2)

= (ε2 + ε)[uc (c0, 1)− uc(c0, l0)] ≥ 0.

If ucl ≤ 0, then

∆(ε) ≥ βu(αε, γε)− uc(c0, l0)(ε + ε2)

≥ βuc(αε, γε)αε− uc(c0, l0)(ε + ε2)

≥ (ε2 + ε)[uc(αε, 1)− uc(c0, l0)].

Due to the Inada conditions on u, the term inside the bracket becomes
nonnegative for ε small enough. A contradiction.

Thus, we have c∗1 > 0.We claim that l∗1 > 0. Indeed, if this were false,
define a feasible path as follows:

i) l1 = ε,

ii) c1 = c∗1 + f(0, 1− ε)− f(0, 1)

iii) ct = c∗t , lt = l∗t ,∀t 6= 1, kt = k∗t ∀t.

Define:

∆(ε) =
∞∑

t=0

βtu(ct, lt)−
∞∑

t=0

βtu(c∗t , l
∗
t )

= β [u(c1, ε)− u(c∗1, 0)] ≥ βuc(c1, ε)(f(ε, L∗1)− f(0, L∗1))

+βul(c1, ε)ε ≥ β[−uc(c1, ε)(fL(0, 1− ε) + ul(c1, ε)]ε .

As ε → 0, ul(c1, ε) → +∞ while −uc(c1, ε)(fL(0, 1 − ε) < +∞. Hence, for
ε > 0 small enough, ∆(ε) > 0 : a contradiction. Thus, l∗1 > 0.
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Now, we consider the alternative feasible path (c, l,k) defined as follows:

i) c0 = c∗0 − ε, c1 = c∗1 + f(ε, L∗1)− f(0, L∗1), ct = c∗t , ∀t ≥ 2,

ii) lt = l∗t , ∀t
iii) k1 = ε, kt = k∗t , ∀t ≥ 2.

Define:

∆ε =
∞∑

t=0

βtu(ct, lt)−
∞∑

t=0

βtu(c∗t , l
∗
t )

The concavity of u and f implies that

∆(ε) = u(c0, l0)− u(c∗0, l
∗
0) + β [u(c1, l1)− u(c∗1, l1)]

≥ [−uc(c0, l0) + βuc(c1, l1)fk(ε, L∗1)]ε.

As ε → 0, βuc(c1, l1)fk(ε, L∗1) → +∞ while uc(c0, l0) → uc(c∗0, l
∗
0) < +∞.

Hence, for ε > 0 small enough, ∆(ε) > 0 : a contradiction. It follows that
k∗1 > 0. Working by induction we can show that k∗t > 0 for any t.

ii) It follows from proposition 10 in C. Le Van, M.H Nguyen and Y.
Vailakis [2007] that there exists γ > 0 such that k∗t > γ ∀t. Suppose that
there exist an optimal paths (c∗, l∗,k∗) with c∗0 = 0,we can choose a feasible
paths from this optimal paths where we just replace c

∗
0, k

∗
t with c0 = ε0 > 0,

kt = k∗t −εt in which {εt} is an increasing sequence bounded from above by γ

( for example, εt = γ− 1
t+n , n > 0) such that c∗t +k∗t+1−εt+1 ≤ f(k∗t −εt, L

∗
t ).

This feasible path create a new greater value than optimal value which leads
to a contradiction. Thus c∗t > 0 for all t. It follows from (7) that l∗t > 0.

(Otherwise, λ1
t would not belong to l1+).
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