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1 Introduction

We study how players can reliably and securely exchange information: player a (the sender)
wants to send a message to player b (the receiver) reliably, i.e. b gets the correct message,
and securely, i.e. the content of the message is known to a and b only. If players a and b
are connected by a private and authenticated channel, this is possible. In many situations,
players a and b are distant nodes in a network where some players are possibly byzantine.
Secure communication in networks has been studied in many papers. A widely investigated
communication method is the unicast one where players can send different messages to different
neighbors. [Dol] and [DDWY] study the possibility of perfectly secure message transmission,
i.e. the correct message is transmitted with certainty, and relate this possibility to the con-
nectivity of the graph. Other papers study probabilistic reliability, i.e. the correct message is
transmitted with high probability. [BF] and [BM] study this notion and show how the use of
private authentication keys reduces the required connectivity of the graph. [SP] characterize
the possibility of probabilistic reliability for directed graphs and a general class of adversaries.
The relationship between the present work and unicast results is discussed in the concluding
section.

[FY], [FW] and [DW] (among others) have studied reliable and secure communication in
multicast models. Communication channels are multicast, if whenever a player casts a message,
this message is received by all its neighbors. Many examples of multicast channels can be
found, like a radio broadcast, an Ethernet bus or a token ring. In this setup, [FY] study secure
communication with passive adversaries, [FW] treats the case of byzantine adversaries and
[DW] study the efficiency of protocols in [FW]’s model.

Another motivation for the study of multicast models comes from game theory. Given a
neighbor graph on a set of players, one defines a dynamic game as follows. The game proceeds
in rounds. At each round, each player has to choose an action, the choices being synchronous.
Before proceeding to the next round, each player observes the actions chosen by his neighbors:
the graph is a monitoring network. At each round, a player gets a reward –or payoff– depending
on all actions chosen and his aim is to get a large average payoff (over time). The typical
solution concept is the Nash equilibrium: a specification of the strategies, such that no player
can increase his payoff by unilateral deviation. In the case of the complete graph, called the
perfect monitoring case, the characterization of Nash equilibria is well-known, this is the Folk
Theorem, due to Aumann and Shapley in the 70’s (see the re-edition [AS]). To construct an
equilibrium, one establishes a contract specifying the actions to be actually played. If a player
deviates from the contract, all his neighbors (i.e. all the players when the graph is complete)
observe it and coordinate to punish him. Games with imperfect monitoring have received a
lot of attention in the game-theoretic literature. [BPK] and [RTa] consider the case of a non-
complete monitoring graph. In such a model, only the neighbors of the deviating player are
aware of the deviation. [RTa] use then the monitoring graph as a communication graph, i.e.
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the neighbors of the deviating players use their actions as messages to signal to other players
that a deviation from the contract occurred. A strategy specification can then be formally
identified with a communication protocol and the multicast assumption is a consequence of
the monitoring structure. [RTa] study the existence of a communication protocol such that,
under any deviation from the contract, each non-deviating player outputs with certainty the
name of the deviating player, and prove that such a protocol exists if and only if the graph is
2-connected. In a slightly more general model of games, in addition to this description, some
players know the value of a payoff-relevant parameter called the state variable, and may wish to
transmit this value reliably and securely to uninformed players: since the contract may depend
on the state, it is important that players agree on the state value. This is deeply related to
reliable and secure communication and [RTb] shows how the possibility of reliable and secure
information transmission relates to the construction of Nash equilibria.

The present work is placed in [FW]’s setup. [FW] characterize the possibility of reliable and
secure communication in neighbor graphs with neighbor-disjoint paths and prove that reliable
and secure information transmission is possible if and only if the number of paths from the
sender to the receiver exceeds the number of faulty players. The aim of the present paper is
to extend this characterization to general neighbor graphs. In [RTb], we treated this problem
for one faulty player only, which is the important case for the study of Nash equilibria. The
present paper thus also extends some of [RTb]’s results.

In the model we consider, communications takes places in rounds and is synchronous. The
adversary is byzantine: given a number of players t, the adversary takes control of a coalition of
t nodes and chooses their messages at will. The case of specific faults (passive, fail/stop), is not
considered here, see [SR] for more general adversary models in the unicast case. To characterize
reliability we follow the same route as e.g. [BF]: for every pair (T, T ′) of candidates for the set
of bad parties, we characterize (T, T ′)-reliability, that is reliability when the adversary controls
either T of T ′. We deduce then the general characterization.

We describe formally the model and the notions of reliability and security in section 2. In
section 3, we study reliability. We first state the characterization then prove that the conditions
are sufficient and necessary. The protocol constructions blend those of [FW] and [RT]. The
proof that the conditions are necessary is quite involved so we first prove it on an example and
appendicize the general proof. Section 4 is devoted to security. The protocol constructions
generalize those found in [FW]. We provide concluding remarks in section 5. Section 6 is an
appendix containing the general proof of the necessity part of Theorem 3.10.

2 The communication model

Let G = (V, E) be an undirected graph with a finite set of nodes (or players) V and set of edges
E ⊂ V × V . For each i in V we let G(i) be the set of players who are directly connected to i
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including i himself:
G(i) = {j ∈ V, (i, j) ∈ E} ∪ {i} .

We fix once and for all G and two distinct nodes in V : a (the sender) and b (the receiver). The
aim of communication is to transmit a message from a to b. This message will be henceforth
called a state. This variable has two possible values ω and ω ′ and we let Ω = {ω, ω′}. Initially
the value of the state is known to a but not to b.

We consider multicast communication. When a node sends or multicasts a message, all
its neighbors in the graph hear it, only these neighbors hear it, and the correct value of the
message is received by each neighbor. In other words, a player can not eavesdrop on a line to
which he does not belong nor can he falsify the messages on this line.

Communication takes place in rounds and is synchronous. At each round, each player sends
the same message to all his neighbors. The message sent by a player at a given round depends
on the the previous messages sent by him, the previous messages sent by his neighbors and the
random input of this player. For player a, his messages also depend on the actual value of the
state. A communication protocol is a specification of a space of messages, of the way players
send messages, of the number of rounds and of the output produced by player b at the last
round.

We give now a formal definition of a protocol using the game theoretic language. We choose
a finite message space M , common to all players. At round 1, each player chooses a message
in M and multicasts it. At round r > 1, each player reads his new messages and according to
his history of messages, chooses the message to send at round r. For each node i, we let H i

r be
the set of messages received and sent by player i up to round r: H i

r = (MG(i))r.
A protocol then specifies how players choose their messages according to their observations.

Definition 2.1
• If i 6= a, a pure strategy for player i is a deterministic way of choosing his new message

according to previous messages, i.e. it is a mapping σi from the set of all finite histories
of messages H i = ∪r≥0H

i
r to M which prescribes after each history, the next message to be

multicast by player i.
• A mixed strategy for player i 6= a is the random choice of a pure strategy: this is just a

probability distribution over the set of pure strategies.
• A behavioral strategy for player i is a probabilistic way of choosing his new message

according to previous messages, i.e. it is a mapping σi from H i = ∪r≥0H
i
r to the set of probability

distributions on M which prescribes after each history, the coin flip used by player i to choose
his next message.

• Since player a knows the value of the state, his behavior is described by a pair of strategies
(pure, mixed or behavioral) σa = (σa

ω, σa
ω′) where σa

ω (resp. σa
ω′) is the strategy used by a if the

state is ω (resp. ω′).

Remark 2.2 These definitions concern how players use random strings. A player using a pure
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strategy flips no coins. Put in another way, a pure strategy is a deterministic rule of behavior
used by the player, given his random inputs.

Mixed and behavioral strategies are two way of modelling the way players generate their
random inputs. The traditional model in the cryptography literature is that each player chooses
a random string before the start of the protocol and lets the messages he sends depend on it.
This means that the player chooses randomly an element s from a set S equipped with a
probability measure µ, and then uses a pure strategy σi

s depending on s. Equivalently, player
i may as well choose a pure strategy at random, the probability of choosing σi being set as
∑

s:σi
s=σi µ(s). This is formally equivalent to a mixed strategy, i.e. a probability distribution on

the set of pure strategies.
A player using a behavioral strategy chooses a fresh random string at the beginning of each

round and uses it just at this round. It is obvious that this can be represented by a mixed
strategy: the player just has to choose all the local random strings at the beginning. Conversely,
the choice of an initial random string can always be decomposed as the sequence of choices of
local strings provided that the player has perfect memory, i.e. always recalls past messages.
This is known as Kuhn’s theorem [Ku]. These alternative representations will be useful in
proofs: whenever it is convenient, we shall either assume that players perform randomizations
before the first round or locally at each round.

In the following, the term strategy shall be used to mean either a mixed or a behavioral
strategy (except when indicated). A protocol specifies a strategy for each player.

To complete the definition of a protocol, we specify the number R of rounds and the condition
under which b outputs ω. This is defined by a subset D of H b

R: player b outputs ω if he observes
a history of messages which belongs to D and outputs ω ′ otherwise. To sum up, we give the
definition:

Definition 2.3 A communication protocol π is given by:
• A finite set M , the message space.
• A positive integer R, the total number of rounds.
• A vector of strategies σ = (σi)i∈V .
• A subset D of Hb

R.

We model now the adversary. Let t be a fixed integer between 0 and |V | − 2, where |V |
stands for the cardinality of V . The adversary takes control of a subset T ⊂ V \ {a, b} with at
most t nodes. The adversary knows the messages sent, the messages received and the random
inputs for each node in T , and controls the randomizations and the messages multicast by these
nodes. Such a byzantine adversary can also be modelled by strategies.

A history for the adversary after round r is the list of all messages received and sent by all
players in T . This is thus an element of HT

r = (MG(T ))r, with G(T ) = ∪i∈T G(i). A strategy
τT for the adversary specifies after each such history a vectors of messages (mi)i∈T , i.e. if
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the adversary selects (mi)i∈T and each player i ∈ T multicasts mi. As above, the adversary
might use a mixed or a behavioral strategy: the adversary might choose a random string at the
beginning or perform local randomizations at each stage. While randomizations performed by
non-faulty players are (probabilistically) independent, the adversary is allowed to choose the
random inputs of the faulty players in a correlative way (see one of the concluding remarks in
Section 5).

We assume that the adversary knows the whole specification of the protocol but that other
players do not know which players are adversarial and which strategy the adversary is using.

Let H = (MV )R be the set of total histories of the communication protocol. The actual
state ω, the protocol π and the strategy of the adversary τ T define, through the random inputs
used be the strategies, a probability distribution on H which we denote by Pω,π,τT . We define
now the notion of reliability following e.g. Franklin and Wright [FW] (see also [BF]).

Definition 2.4 A protocol is ε-reliable if, when the adversary controls any set T ⊂ V \ {a, b}
of at most t players, the probability that b outputs ω (resp. ω ′) given that a transmitted ω (resp.
ω′) is at least 1 − ε.

In other words, the protocol π = (M, R, σ, D) is ε-reliable if for every T ⊂ V \ {a, b} with at
most t nodes and every strategy τ T :

Pω,π,τT (D) ≥ 1 − ε, Pω′,π,τT (D) ≤ ε.

The possibility of communication from a to b clearly depends on: the graph G, the positions
of a and b in the graph and the maximal number of faulty nodes t.

Definition 2.5 The communication from a to b in G given t is reliable (in short, 〈G, a, b, t〉 is
reliable) if for every ε > 0, there is an ε-reliable protocol π.

Following again [FW], we define security by the fact that reliable communication is possible
without the adversary knowing the actual state. Let π be a protocol, T be the set of faulty
nodes and τT be the strategy of the adversary.

Definition 2.6 A protocol π is ε-private if for every T ⊂ V \ {a, b} with |T | ≤ t and every
strategy τT of the adversary,

∑

h∈HT

∣

∣

∣Pω,π,τT (h) − Pω′,π,τT (h)
∣

∣

∣ ≤ ε

That is, if we let PT
ω,π,τT be the marginal distribution of Pω,π,τT on HT

R , ‖PT
ω,π,τT −PT

ω′,π,τT ‖1 ≤ ε,
where ‖·‖1 is the L1 norm: ‖p − q‖1 =

∑

x |p(x) − q(x)|.
Definition 2.7 〈G, a, b, t〉 is secure if for every ε > 0, there is a protocol π which is ε-reliable
and ε-private.

Remark 2.8 In the definitions of reliability and security, the condition ε > 0 cannot be re-
placed by ε ≥ 0 without affecting the results, see [FW] for a discussion of perfect reliability vs
almost perfect reliability.

6



3 Reliability

The receiver does not know the value of the state but is aware that the adversary may control
a subset of at most t players. Player b thus has to test the hypothesis { ω is the state and T
is the set of faulty players } against { ω′ is the state and T ′ is the set of faulty players }, for
all pairs of subsets T and T ′ with at most t players. We argue now that if b can discriminate
these two hypothesis for all pairs T and T ′, then 〈G, a, b, t〉 is reliable. A similar reasoning is
already met in the literature, see e.g. [BF].

Definition 3.1 Let T, T ′ ⊂ V \ {a, b}. A protocol is ε − (T, T ′)-reliable if, when a transmits ω
and the adversary controls T , b outputs ω with probability at least 1− ε, and when a transmits
ω′ and the adversary controls T ′, b outputs ω′ with probability at least 1 − ε.

That is, the protocol π is ε − (T, T ′)-reliable if for every pair of strategies (τ T , τ̄T ′

),

Pω,π,τT (D) ≥ 1 − ε, Pω′,π,τ̄T ′ (D) ≤ ε.

We say that 〈G, a, b〉 is (T, T ′)-reliable if for every ε > 0, there exists a protocol π which is
ε − (T, T ′)-reliable.

Lemma 3.2 〈G, a, b, t〉 is reliable if and only if 〈G, a, b〉 is (T, T ′)-reliable for every T, T ′ ⊂
V \ {a, b} with |T | , |T ′| ≤ t.

Proof. The only if part being clear, we only prove the if part. Assume that 〈G, a, b〉 is
(T, T ′)-reliable for every T, T ′ ⊂ V \ {a, b} with |T | , |T ′| ≤ t and fix ε > 0. We choose an
enumeration of the pairs (T, T ′) of subsets of V \ {a, b} with |T | , |T ′| ≤ t: (T1, T

′
1), (T2, T

′
2),. . . ,

(TK, T ′
K). For each k, 〈G, a, b〉 is (Tk, T

′
k)-reliable so by Definition 3.1 there exists a protocol

πk = (Mk, Rk, σk, Dk) which is ε − (Tk, T
′
k)-reliable.

We construct a protocol π = (M, R, σ, D) by playing the protocols πk one after the other:
use σ1 for the first R1 rounds, σ2 for the next R2 rounds and so on until σK is used for RK rounds.
The set of messages M is M1 ∪ . . .∪MK and the total number of rounds is R = R1 + · · ·+ RK.

Then b outputs ω in π if there exists an instance of the adversary T such that b outputs ω
from each protocol πk with Tk = T . That is, we let D be the set of histories in H b

R such that:
there exists T ⊂ V \{a, b} with |T | ≤ t, s. t. for all (Tk, T

′
k) with Tk = T , the messages received

by b from πk belong to Dk.
Fix now T ⊂ V \{a, b} with |T | ≤ t and assume that the adversary controls the players

in T and uses the strategy τT . Assume that the state is ω. For each k such that Tk = T , b
outputs ω from πk with probability at least 1 − ε, so Pω,π,τT (D) ≥ (1 − ε)L, where L =

√
K is

the number of subsets of V \{a, b} of cardinal at most t. Assume now that the state is ω ′. For
T ⊂ V \{a, b} with |T | ≤ t, b outputs ω from πk with k s.t. (Tk, T

′
k) = (T , T ), with probability

at most ε. As this holds for every such T , the probability that b outputs ω from π is at most
Lε: i.e. Pω′,π,τT (D) ≤ Lε. Since Lε ≥ 1− (1− ε)L, π is Lε-reliable. To construct an η-reliable
protocol we just have to choose ε = η/L. 2
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Fixing T, T ′, we characterize now (T, T ′)-reliability.

Definition 3.3 • A path c in the graph G is a finite sequence c = (c1, . . . , cn) such that for
each l = 1, . . . , n − 1, (cl, cl+1) ∈ E.

• Given i, j ∈ V , we say that c is a path from i to j if c1 = i and cn = j.
• If S is a subset of V , we say that c is a path in S and we write c ⊂ S if for each

l = 1, . . . , n, cl ∈ S.
• We denote {c1, . . . , cn}

⋂

S by c ∩ S and say that c goes through S if c ∩ S 6= ∅.
We analyze now simple cases and define simple protocols. We first consider a protocol where

a transmits an information to b along a path c from a to b. This protocol is found in [FW].

Basic propagation protocol.

The set of messages M is {ω, ω′} and the number of rounds R is n− 1. The vector
of strategies (σi)i∈V is such that player a transmits the value of the state to player
b through the path c : at round 1, player a multicasts the message corresponding
to the state, at round 2 player c2 multicasts the message previously sent by player
c1, and so on until round n − 1 where cn−1 multicasts the message previously sent
by player cn−2.

Lemma 3.4 If there exists a path c = (c1, . . . , cn) from a = c1 to b = cn in V \(T ∪ T ′) then
the basic propagation protocol is ε − (T, T ′)-reliable and thus 〈G, a, b〉 is (T, T ′)-reliable.

Proof. If c ⊂ V \(T ∪ T ′), no player in T or T ′ can prevent this information transmission: for
each pair (τT , τ̄T ′

), b outputs ω with probability one under (ω, π, τT ) and with probability zero
under (ω′, π, τ̄T ′

). 2

The following example was first studied in [FW] and was rediscovered independently in
[RTb]. Consider the following graph with T = {i} and T ′ = {j}.
Example 3.5
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cT = {i}
T ′ = {j}
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There exists no path from a to b in V \(T ∪ T ′), how can player a send the state to the
receiver?

First note that the “naive” protocol where a announces the state and i, j are supposed to
repeat it, is not reliable. If i announces that the state is ω ′ and j announces that the state is
ω, there is no way for the receiver to decide whether {the state is ω and the adversary controls
i } or {the state is ω′ and the adversary controls j }. Still, 〈G, a, b〉 is (T, T ′)-reliable, which
is shown by the following protocol, see [FW] and [RTb].

Simple reliable transmission protocol (Example 3.5).

M is a large set, with m0 in M being fixed, and there are R = 3 rounds.

• At round 1, player i chooses a message m̂ in M uniformly and multicasts it.
Players a and b are thus informed of m̂ (unlike player j).

• At round 2, player a repeats the message m̂ if the state is ω or multicasts the
message m0 if the state is ω′. Denote by m̄ in {m̂, m0} the message multicast by
player a at round 2. m̄ is received by players i and j.

• At round 3, player j multicasts the message m̄.

At the end of round 3, player b knows the value of m̂, and the message m sent by
player j at round 3. Player b outputs ω if m = m̂, so we let D be the set of histories
for the receiver such that m = m̂.

Remark that at round 1, the same message m̂ is received by a and b even if i is byzantine.
Sending no message at round 1 is not an option for a byzantine player i in our setup (this is
without loss of generality if one specifies a blank message in M meaning “no message”).

Lemma 3.6 In the situation of Example 3.5, the simple reliable transmission protocol is ε −
(T, T ′)-reliable and thus 〈G, a, b〉 is (T, T ′)-reliable.

Proof. If the adversary controls T = {i} he can only manipulate the value of m̂, so if the state is
ω, m and m̂ coincide: Pω,π,τT (D) = 1 for each strategy τT . Assume now that the state is ω′ and
that the adversary controls T ′ = {j}. Player a sends m0 at round 2 so m is (probabilistically)
independent from m̂. Since m̂ is uniformly distributed, Pω′,π,τ̄T ′ (D) = 1/|M |, which is small
enough if |M | is large, so 〈G, a, b〉 is (T, T ′)-reliable. Remark then that 〈G, a, b, 1〉 is reliable.
2

The analysis of these two simple cases leads to the following definition.

Definition 3.7 Let ΓT,T ′ be the symmetric binary relation on V \(T ∪ T ′) defined as follows:
ΓT,T ′(i, j) holds if and only if at least one of the two following conditions (1) and (2) is satisfied:
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(1) There is a path c in G from i to j such that c ⊂ V \(T ∪ T ′),
(2) There is a pair of paths c, c′ from i to j in G such that both (i) and (ii) hold:

(i) c ⊂ V \T ′ and c′ ⊂ V \T ,
(ii) ( c∩T is a singleton {k} such that k /∈ G(T ′) ) or ( c′∩T ′ is a singleton {k′} such that

k′ /∈ G(T ) ).

The next example shows that ΓT,T ′ may not be transitive.

Example 3.8
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T = {t1, t2}
T ′ = {t′1, t′2}

One easily checks that ΓT,T ′(a, b) does not hold but both ΓT,T ′(a, c) and ΓT,T ′(c, b) hold. Here
〈G, a, b〉 is (T, T ′)-reliable since an ε-reliable protocol is constructed as follows: a transmits the
value of the state ε

2
-reliably to c using the simple reliable transmission protocol and then c

transmits the value of the state to ε
2
-reliably to b using another instance of the simple reliable

transmission protocol.

This example shows the need to iterate the relation ΓT,T ′ and leads to defining the relation
CT,T ′ as the transitive closure of ΓT,T ′.

Definition 3.9 Let CT,T ′(a) be the connected component of a in the graph defined by the relation
ΓT,T ′ i.e. the set of players c ∈ V \(T ∪ T ′) such that there exists a sequence (i1, . . . , in) in
V \(T ∪ T ′) satisfying i1 = a, in = c and for each k, ΓT,T ′(ik, ik+1) holds.
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Theorem 3.10 Let T, T ′ ⊂ V \ {a, b}. 〈G, a, b〉 is (T, T ′)-reliable if and only if b ∈ CT,T ′(a).

The remainder of this section is devoted to the proof of this theorem. The ideas of the
“if” part have already been encountered in the examples studied. The “only if” part expresses
the fact that these examples contain all possibilities for reliability. The proof of this part is
involved. An illustrative example is given in Section 3.2 and the general proof is in the last
section of the paper. Using Lemma 3.2, the following corollary of Theorem 3.10 is immediate.

Corollary 3.11 〈G, a, b, t〉 is reliable if and only if for each pair of subsets T, T ′ ⊂ V \ {a, b}
with |T | , |T ′| ≤ t, b ∈ CT,T ′(a).

Remark 3.12 Reliability is only defined for transmission of binary information. Since any
finite message can be encoded into a finite string of symbols ω, ω ′, it can be transmitted
reliably by using a reliable protocol for each digit of the string. This will be used explicitly in
the construction of the secure protocol.

3.1 The ε-reliable protocol

We assume that b ∈ CT,T ′(a). Given ε > 0, we construct a protocol π = (M, R, σ, D) such that
for each pair (τT , τ̄T ), Pω,π,τT (D) ≥ 1−ε and Pω′,π,τ̄T ′ (D) ≤ ε. We first consider the particular
case where ΓT,T ′(a, b) holds and then study the general case.

A. Assume that ΓT,T ′(a, b) holds. If condition (1) of Definition 3.7 is satisfied, we may use
the basic propagation protocol. We assume then that condition (2) of Definition 3.7 holds and
generalize the simple reliable transmission protocol. By symmetry, one can assume without loss
of generality that there exist two paths c = (c1, . . . , cn) and c′ = (c′1, . . . , c

′
n′) in G satisfying:

c1 = c′1 = a, cn = c′n′ = b, c ⊂ V \(T ′), c′ ⊂ V \(T ), c ∩ T is a singleton {cd}, with
d ∈ {2, . . . , n − 1} and cd /∈ G(T ′).
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cn−1

T
T ′

Simple reliable transmission protocol (general case).

We define a protocol π = (M, R, σ, D), where M is a large set containing {ω, ω ′}.
Fix a message m0 in M .

Step 1: First, player a sends the actual state to cd−1 via the path (a, c2, . . . , cd−1) ⊂
V \(T ∪T ′): at the first round a multicasts the state, at the second round c2 repeats
the previous message of a and so on until cd−2 repeats the state to player cd−1. This
phase lasts d − 2 rounds and cannot be manipulated by players in T or T ′.

Step 2: At round d − 2 player cd chooses with uniform probability some element
m̂ in M and multicasts it. At the end of this round, player cd−1 learns the state via
the message of player cd−2 and also knows the message m̂ just announced by player
cd.

Step 3: At round d − 1, player cd−1 repeats m̂ if the state is ω, or send the
“uninformative” message m0 if the state is ω′. In other words, player cd−1 reveals to
his neighbors the message selected by player cd if and only if the state is ω. Denote
by m̄ in {m̂, m0} the message sent by cd−1 at this round.

Step 4: The value of m̄ is transmitted from player cd−2 to player b via the path
cd−2, cd−3, . . . , c1 = a = c′1, c

′
2, . . . , c

′
n′ = b. This phase lasts d−3+n′−1 = d+n′−4

rounds.

Step 5: Finally, the value of m̂ is transmitted from player cd+1 to player b via the
path cd+1, cd+2,. . . ,cn = b. This lasts n − d − 2 rounds.

12



This protocol lasts in total R = m′ + m + d − 7 rounds. At the end of step 4, the
receiver receives a value m which corresponds to m̄ if every player abides by the
protocol and at the end of step 5, b receives a value m′ which corresponds to m̂ if
every player abides by the protocol. To conclude the definition of the protocol, we
say that b outputs ω if m = m′ so we let D be the set of histories for the receiver
such that m and m′ coincide.

Lemma 3.13 If ΓT,T ′(a, b) holds, the simple reliable transmission protocol is ε−(T, T ′)-reliable.

Proof. Assume that the adversary controls the players in T . The only thing which can be
manipulated by these players is the value of m̂. Hence if the state is ω, m and m′ will coincide
so Pω,π,τT (D) = 1 for each strategy τT . Assume now that the adversary controls the players
in T ′ and that the state is ω′. Player cd−1 will send the message m0 at round d − 1 and
since cd /∈ G(T ′), m is (probabilistically) independent from m̂. Since {cd+1, . . . , cn} ∩ T ′ = ∅,
step 5 can not be manipulated by players in T ′ and thus m′ = m̂. So for any strategy τ̄T ′

,
Pω′,π,τ̄T (D) = 1

|M |
≤ ε for large |M |. 2

B. In general, ΓT,T ′(a, b) may not hold but b ∈ CT,T ′(a). Thus we can find players c1,. . . ,cn,
with c1 = a, cn = b and ΓT,T ′(cd, cd+1) for each d = 1, . . . , n− 1. Note that no player cd belongs
to T or T ′. Fix ε > 0.

For each d = 1, . . . , n − 1, from part A there exists an ε − (T, T ′)-reliable protocol πd =
(Md, Rd, σd, Dd) for the situation where the sender is player cd and the receiver is player cd+1.
We define the protocol π = (M, R, σ, D) by concatenating the protocols π1,. . . ,πn−1 as follows.

General reliable transmission protocol.

• In the first R1 rounds, the players play according to σ1.

• For each k = 1, . . . , n − 1: At the end of round Rk, player ck+1 considers his
history of messages. If this history belongs to Dk, he ascribes to the state the value
ω and otherwise he ascribes to the state the value ω ′. In the next Rk+1 rounds, the
players play according to σk+1 with player ck+1 treating the ascribed value of the
state as the true one.

This defines σ. The set of messages M is M1 ∪ . . . ∪ Mn−1 and the total number
of rounds is R = R1 + · · · + Rn−1. The set D is defined as the set of histories of
player cn = b such that the sequence of messages received by b during the last Rn−1

rounds belongs to Dn−1.

Lemma 3.14 If b ∈ CT,T ′(a), the general reliable transmission protocol is O(ε) − (T, T ′)-
reliable.

13



Proof. Assume that the adversary controls the players in T with some strategy τ T . We have:

Pω,π,τT (Dc) ≤
n−1
∑

d=1

ε, so Pω,π,τT (D) ≥ 1 − (n − 1)ε −→ε→0 1.

where Dc denotes the complementary of D. Assume now that the state is ω ′ and that the
adversary controls the players in T ′ with some strategy τ̄T ′

. The probability that every player
cd, for d = 2, . . . , n − 1 considers at the end of round R1 + · · · + Rd−1 that the state is ω′ is at
least (1 − ε)n−2 so:

Pω′,π,τ̄T ′ (Dc) ≥ (1 − ε)n−2(1 − ε) and Pω′,π,τ̄T ′ (D) ≤ 1 − (1 − ε)n−1 −→ε→0 0.

2

3.2 Non (T, T ′)-reliability. An example

We show now on an example how to prove the necessity part of Theorem 3.10. The general
proof is quite involved so we defer it to the appendix. We feel that the ideas used for the
example are enough to grasp the logic of the general proof.

Consider a “slight” modification of Example 3.5.
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@
t1

t2

b

a

t′1

t′2

c

c

c

c

c c
T = {t1, t2}
T ′ = {t′1, t′2}

ΓT,T ′(a, b) does not hold here, and b /∈ CT,T ′(a). So Theorem 3.10 asserts that 〈G, a, b〉 is
not (T, T ′)-reliable4, and we prove it now.

4As noticed by an anonymous referee, this might be related to the impossibility result of [DDWY] as follows.
Assume that 〈G, a, b〉 is (T, T ′)-reliable. The idea is that (T, T ′)-reliable communication would then be possible
in the graph of example 3.5 with unicast communication, setting T = {i} and T ′ = {j}. This is impossible by
theorem 5.1. of [DDWY].
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Fix a protocol π = (M, R, σ̃, D). We construct strategies τ T and τ̄T ′

such that Pω,π,τT

and Pω′,π,τ̄T ′ induce the same probability distributions over the sequences of messages received
by b, i.e. over the sequences of messages multicast by b, t1 and t′1. This will prove that the
receiver can not distinguish between {the state is ω and the adversary controls T and plays
τT } and {the state is ω′ and the adversary controls T ′ and plays τ̄T ′ }, so that 〈G, a, b〉 is not
(T, T ′)-reliable. We fix a particular message m0 in M and only consider R-rounds strategies.
The construction of τT and τ̄T ′

are completely symmetric. We first present the main ideas and
then give precise definitions.

Assume that the adversary controls T and plays according to τ T . He will try to convince
the receiver that the state is ω′ i.e. that player a plays according to σ̃a

ω′ and that the adversary
controls T ′ and plays τ̄T ′

. To do so, the main points are the followings:
• Player t2 will send at each round m0.
• The messages sent by players a, t2 and t′2 are not received by player b, so the adversary

will construct fictitious messages for them, corresponding to the situation: {the state is ω ′,
the adversary controls T ′ and player t′2 is sending m0 at each round}. Player t1 will then play
according to these fictitious messages and to the real messages sent by b (a similar construction
is found in [BF], Lemma 8).

Let us see intuitively why τT and τ̄T ′

do the job. Consider the point of view of the receiver
and assume that player t1 is telling him via his messages :

“I do not know what player t′1 is playing, but I can tell you that: t2 is not faulty,
player a says that the state is ω′ and t′2 is sending m0 at each round”,

whereas player t′1 tells the receiver :

“I do not know what t1 is playing, but I can tell you that: player t′2 is not faulty,
player a says that the state is ω and t2 is sending m0 at each round”.

In this case, the receiver has no way to deduce which players are controlled by the adversary
and what is the true state. We formalize these ideas now. In what follows, we shall use both
representations of strategies (mixed and behavioral) and perform randomization before the
execution or within the execution of the protocol whenever convenient.

The following observation leads to the definition of τ T . Assume that player a is using some
pure strategy σa, that player t2 is using a pure strategy σt2 and that player t1 (resp. t′2) has
sent, up to some round r, a sequence of messages mt1(r) = (mt1

1 , . . . , mt1
r ) (resp. mt′

2(r) =

(m
t′
2

1 , . . . , m
t′
2

r )). Since G({a, t2}) = {a, t2, t
′
2, t1}, this defines unambiguously by induction on r,

the message sent by the players a and t2 at rounds 1,. . . ,r + 1. The interpretation is that t′2
and t1 separate a and t2 from the rest of the network. We denote the corresponding sequence
of messages sent by player t2 at rounds 1,. . . ,r (but not r + 1) by:

mt2(r)(σa, σt2 , mt1(r), mt′
2(r)).
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Symmetrically, mt′
2(r)(σa, σt′

2 , mt′
1(r), mt2(r)) will denote the sequence of messages sent by

player t′2 at rounds 1,. . . ,r if: player a uses σa, player t′2 uses a pure strategy σt′
2 and mt′

1(r),
mt2(r) have respectively being sent by players t′1, t2.

We now define τT as a mixed strategy for the adversary controlling T = {t1, t2}.

• Before round 1, the adversary selects a fictitious pure strategy σa for the sender
according to the distribution σ̃a

ω′ and for each player i in T a pure strategy σi

according to σ̃i.

• At each round, player t2 sends the message m0.

• At round r = 1, player t1 plays according to the pure strategy σt1 . After round
r = 1, . . . , R − 1, the adversary knows, for each player i in G(T ) = {a, t1, t2, b}, the
sequence of messages mi(r) = (mi

1, . . . , m
i
r) actually sent by player i up to stage r.

Player t1 will send at round r + 1 the message σt1
(

(m̂i(r))i∈G(t1)

)

, where:

- m̂b(r) = mb(r) and m̂t1(r) = mt1(r) (player b knows the messages sent
by b and t1, so the adversary can not cheat on them),

- m̂t2(r) is a fictitious sequence of messages. m̂t2(r) is the sequence of
messages that player t2 would have sent if: player t′2 sends m0 at each
round, player t1 has sent the messages mt1

1 , mt1
2 ,. . . , mt1

r , and players a
and t2 respectively use the pure strategies σa and σt2 . That is, m̂t2(r) is
what we previously denoted by:

mt2(r)(σa, σt2 , mt1(r), (m0, . . . , m0)).

This ends the definition of τT , τ̄T ′

is defined symmetrically. To conclude, we fix for each i
in G(b) = {b, t1, t′1}, a sequence of messages mi(R) = (mi

1, . . . , m
i
R) and we prove that:

Pω,π,τT

(

(

mi(R)
)

i∈G(b)

)

= Pω′,π,τ̄T ′

(

(

mi(R)
)

i∈G(b)

)

.

Put N = {a, t1, t2} and N ′ = {a, t′1, t
′
2}. Fix two vectors of pure strategies σN = (σa, σt1 , σt2)

and σ̄N ′

= (σ̄a, σ̄t1 , σ̄t2). Note that no player in N is controlled by T ′, and no player in N ′ is
controlled by T . Consider the events:

HT (σN , σ̄N ′

) = { the adversary T playing τT first selects σN and each player i in N ′ playing σ̃i selects σ̄i },
HT ′(σN , σ̄N ′

) = { each player i in N playing σ̃i selects σi and the adversary T ′ playing τ̄T ′

first selects σ̄N ′ }.
The probability under (ω, π, τT ) of HT (σN , σ̄N ′

) is the product:

σ̃a
ω′(σa) × σ̃t1(σt1) × σ̃t2(σt2) × σ̃a

ω(σ̄a) × σ̃t′
1(σ̄t′

1) × σ̃t′
2(σ̄t′

2),
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which is also the probability under (ω′, π, τ̄T ′

) of HT ′(σN , σ̄N ′

). Since this holds for each pair
(σN , σ̄N ′

), it will be sufficient to prove that the following equality between conditional proba-
bilities holds for each (σN , σ̄N ′

):

Pω,π,τT

(

(

mi(R)
)

i∈G(b)
|HT (σN , σ̄N ′

)
)

= Pω′,π,τ̄T ′

(

(

mi(R)
)

i∈G(b)
|HT ′(σN , σ̄N ′

)
)

. (∗)

We show (∗) by induction on R. Fixing r in {0, . . . , R − 1}, it is enough to prove:

Pω,π,τT

(

(

mi
r+1

)

i∈G(b)
|HT (σN , σ̄N ′

), (mi(r))i∈G(b)

)

=

Pω′,π,τ̄T ′

(

(

mi
r+1

)

i∈G(b)
|HT ′(σN , σ̄N ′

), (mi(r))i∈G(b)

)

. (∗∗)

By convention, (∗∗) for r = 0 is just:

Pω,π,τT

(

(

mi
1

)

i∈G(b)
|HT (σN , σ̄N ′

)
)

= Pω′,π,τ̄T ′

(

(

mi
1

)

i∈G(b)
|HT ′(σN , σ̄N ′

)
)

.

We compute the left-hand side of (∗∗). We assume that the state is ω, the adversary controls
T , plays according to τT and has first selected σN , each player i in N ′ has first selected σ̄i

according to its mixed strategy σ̃i (according to σ̃a
ω for player a), and the messages really sent by

each player i in G(b) at rounds r′ = 1, . . . , r corresponds to mi(r) = (mi
1, . . . , m

i
r) ∈ M r. Under

these assumptions, which messages are sent at round r + 1 by the players in G(b) = {b, t1, t
′
1}?

• The receiver is using his behavioral strategy σ̃b, so he chooses to send his message of round
r + 1 according to the probability σ̃b

(

(mi(r))i∈G(b)

)

.

• Player t′1 uses the pure strategy σ̄t′
1 , so he sends the message σ̄t′

1

(

(m̄i(r))i∈G(t′
1
)

)

, where

m̄i(r) is the sequence of messages really sent by player i up to round r. Since G(t′1) = {b, t′1, t′2},
we have m̄b(r) = mb(r), m̄t′

1(r) = mt′
1(r), and we need to compute m̄t′

2(r). m̄t′
2(r) is unambigu-

ously defined by the following facts:
- player t2 has sent m0 at each stage (by definition of τT ), player t′1 has sent mt′

1(r),
- players a and t′2 respectively use the pure strategies σ̄a and σ̄t′

2 . That is, m̄t′
2(r) is what

we previously defined as mt′
2(r)(σ̄a, σ̄t′

2 , mt′
1(r), (m0, . . . , m0)).

• Player t1 is controlled by the adversary, which has selected σN . By definition of τT , player
t1 will send the message σt1

(

(m̂i(r))i∈G(t1)

)

, where m̂b(r) = mb(r), m̂t1(r) = mt1(r) and m̂t2(r)

= mt2(r)(σa, σt2 , mt1(r), (m0, . . . , m0)).
Setting mt2(r) = m̂t2(r) and mt′

2(r) = m̄t′
2(r) for symmetry reasons, we obtain that under

Pω,π,τT and conditionally on
(

HT (σN , σ̄N ′

), (mi(r))i∈G(b)

)

, the players in G(b) select their mes-

sage of round r+1 as follows: player b uses the lottery σ̃b
(

(mi(r))i∈G(b)

)

, player t′1 sends the mes-

sage σ̄t′
1

(

(mi(r))i∈G(t′
1
)

)

, and player t1 sends the message σt1
(

(mi(r))i∈G(t1)

)

, where mt′
2(r) =

mt′
2(r)(σ̄a, σ̄t′

2 , mt′
1(r), (m0, . . . , m0)), and mt2(r) = mt2(r)(σa, σt2 , mt1(r), (m0, . . . , m0)).
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We obtain a symmetric expression (in (T, σN )-(T ′, σ̄N ′

)) so this is also how the players in

G(b) select their message of round r+1 under Pω′,π,τ̄T ′ and conditionally on
(

HT ′(σN , σ̄N ′

), (mi(r))i∈G(b)

)

.
The proof is thus complete.

4 Security

We give now necessary and sufficient conditions for security of information transmission.

Definition 4.1 Let T be a subset of nodes, and c = (c1, . . . , cn) be a path. We say that T has
no consecutive neighbors on c if ∀m = 1, . . . , n − 1, (cm ∈ G(T ) ⇒ cm+1 /∈ G(T )).

Note that under this condition, c ∩ T = ∅.

Theorem 4.2 〈G, a, b, t〉 is secure if and only if it is reliable and for each T ⊂ V \ {a, b} with
|T | ≤ t, there is a path c in G from a to b with c ⊂ V \T such that T has no consecutive
neighbors on c.

The graphs considered by Franklin and Wright [FW] have neighbor-disjoint paths i.e. there
are n disjoints lines from a to b and each edge in the graph is on some line. Franklin and Wright
prove then that〈G, a, b, t〉 is secure if and only if n > t which can be proven applying Theorems
3.10 and 4.2: one checks easily that the necessary and sufficient conditions we provide are
satisfied by Franklin and Wright’s graph. We give now examples for which 〈G, a, b, t〉 is secure
but G is not of the type considered by [FW].

Example 4.3
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〈G, a, b, 2〉 is secure.
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The sequel is devoted to the proof of Theorem 4.2. We shall use some properties of usual
distances between probabilities which we recall now. Let P, Q be two probability distributions
on some product of finite sets X×Y , we let ‖P − Q‖∞ = supA |P (A) − Q(A)| and ‖P − Q‖1 =
∑

x,y |P (x, y) − Q(x, y)|. We have the following properties:

Proposition 4.4 1.‖P − Q‖1 = 2 ‖P − Q‖∞.
2. If we let P X (resp. QX) be the marginal distribution of P (resp. Q) on X, the distances

between the marginals are smaller than the distances between the global distributions:
∥

∥

∥P X − QX
∥

∥

∥

∞
≤ ‖P − Q‖∞

∥

∥

∥P X − QX
∥

∥

∥

1
≤ ‖P − Q‖1 .

3. If P and Q induce the same conditional distribution on y given x, i.e. P (y|x) = Q(y|x),

∀x, y, then:
∥

∥

∥P X − QX
∥

∥

∥

1
= ‖P − Q‖1 .

The proof is straightforward and is omitted.

4.1 The reliable and private protocol

We construct a protocol which is ε-reliable and ε-private. The construction is similar to that
of [FW], adapted to the graph we consider. Let q be a prime integer and let the message space
M = IFq be a finite field with q elements. We first build a sub-protocol π(a, b, T ) by which a
sends a message to b whose content is secret for T ⊂ V \ {a, b} using a path c from a to b such
that T has no consecutive neighbors on c.

We first start with two distinct nodes i, j and T ⊂ V \ {i, j} for which there is a path c from
i to j such that:

(i) T has no consecutive neighbors on c;
(ii) c ∩ G(T ) ⊂ {i, j}.

Several cases are consistent with those assumptions. T might hear only i or only j on c, or T
both i and j but then there must be k 6= i, j on c which T do not hear.

Let us first assume that c = (c1 = i, c2, . . . , cn = j) and that n > 2. (c2, . . . , cn−1) are not
in G(T ).

Sub-protocol π0(i, j, T ): i sends the message si
T to j, keeping it secret from

T .

• Round 1. c2 draws rT uniformly from M and multicasts it.

• Round 2. i multicasts uT = si
T + rT .

• Subsequent rounds. c2 sends sT = uT − rT to j along c (using a basic propagation
protocol).

• Let sj
T be the message received by j.
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The other cases to consider are when i and j are neighbors of each other. Then if c∩G(T ) =
{i}, construct π0(i, j, T ) as above by letting j play the role of c2. If c ∩ G(T ) = {j}, i just
multicasts si

T . We get readily the property:

Property. If the adversary controls T , si
T = sj

T and the distribution of si
T given any adversary’s

history is uniform.

Let now c be a path from a to b such that T has no consecutive neighbors on c. Note that
necessarily, c ∩ T = ∅. We write c = (c1 = a, . . . , cn = b) and decompose it as follows:

c = (ci0 = a, . . . , ci1 , . . . , cik , . . . , cik+1
, . . . , ciK = b)

in such a way that for each k = 0, . . . , K − 1 cik and cik+1
are not consecutive on c (i.e.

ik + 1 < ik+1) and that T has no neighbor strictly between these two nodes (i.e. ik < i < ik+1

⇒ i /∈ G(T )), so that for each k, we can apply π0(cik , cik+1
, T ).

Sub-protocol π(a, b, T ): a sends the message sa
T to b, keeping it secret from

T .

• Apply successively π0(cik , cik+1
, T ) for k = 0, . . . , K − 1.

• Let sj
T be the message received by j.

Property. If the adversary controls T , sa
T = sb

T and the distribution of sa
T given any adversary’s

history is uniform.

We describe now the complete protocol. We fix an enumeration of the set of T ’s such that
T ⊂ V \ {a, b} with |T | ≤ t. When the protocol is supposed to perform a sub-protocol for each
T , it means that the sub-protocols are used independently and successively according to this
enumeration.

Protocol π: a sends the message ω to b.

• For each T , a chooses (ca
T , da

T ) uniformly in M2 and sends it to b with π(a, b, T ).
Let (cb

T , db
T ) received by b.

• For each T , b chooses rb
T uniformly in M and sets sb

T = cb
T rb

T + db
T . b transmits

{

(rb
T , sb

T ), T ⊂ V \ {a, b} , |T | ≤ t
}

ε
4
-reliably to a. Let {(ra

T , sa
T ), T ⊂ V \ {a, b} , |T | ≤ t}

be received by a.

• a computes W a = {T, sa
T = ca

T ra
T + da

T} and za = ω +
∑

T∈W a ca
T . a transmits

(W a, za) ε
4
-reliably to b. Let (W b, zb) be received by b.

• b sets ωb = zb − ∑

T∈W b cb
T .

Lemma 4.5 π is ε-reliable and ε-private for q large enough.
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Proof. Let ω be the state, T̃ be the set of nodes controlled by the adversary and τ T̃ the strategy
of the adversary, set P = Pω,π,τ T̃ . Let E be the event where the two reliable transmissions used

in the definition of π succeed, P (E) ≥ (1 − ε
4
)2 ≥ 1 − ε

2
. Conditional on E, set rT = ra

T = rb
T ,

sT = sa
T = sb

T , W = W a = W b, z = za = zb. Then for each T ,

P (T ∈ W, ca
T 6= cb

T |E) = P (cb
T rT + db

T = ca
T rT + da

T , ca
T 6= cb

T |E)

= P (rT = (cb
T − ca

T )−1(da
T − db

T ), ca
T 6= cb

T |E)

≤ P (rT = (cb
T − ca

T )−1(da
T − db

T )|E)

=
1

q

since rT is uniform in IFq. Then, P (ωb 6= ω|E) ≤ ∑

T P (T ∈ W, ca
T 6= cb

T |E) ≤ (v
t )

1
q

with

v = |V − 2|. We get finally, P (ωb 6= ω) ≤ (v
t )

1
q

+ ε
2
≤ ε for large q, π is thus ε-reliable.

We prove now that this protocol is ε-secure. We let Q = Pω′,π,τ T̃ and we want to prove that
∥

∥

∥P T̃ − QT̃
∥

∥

∥

1
≤ ε. First note that in the definition of the protocol π, only za depends on ω.

Thus for each event A in the set of histories of the adversary, P (A|za = z) = Q(A|za = z).
The relevant data that the adversary might observe during the execution of the protocol is

summarized by the tuple h = ((ca
T , da

T )T 6=T̃ , (cb
T , db

T )T 6=T̃ , (ra
T , sa

T )T , (rb
T , sb

T )T , W a) and by za. Let

S be the set of those tuples h for which ∀T , (ra
T , sa

T ) = (rb
T , sb

T ). From the property of the sub-
protocol π(a, b, T̃ ), T̃ ∈ W a whenever h belongs to S, thus za writes: za = ca

T̃
+ω+

∑

T∈W,T 6=T̃ ca
T .

The random variables (ca
T , da

T )T being independent across T ’s, the conditional distribution of
ca
T̃

given h equals the distribution of ca
T̃

given (ra
T̃
, sa

T̃
). For each (c, r, s), we compute P (ca

T̃
=

c|ra
T̃

= r, sa
T̃

= s). If r = 0, this equals P (ca
T̃

= c|da
T̃

= s) = 1
q

since ca
T̃

is uniformly distributed

and ca
T̃
, da

T̃
are independent. If r 6= 0, P (ca

T̃
= c|ra

T̃
= r, sa

T̃
= s) = P (da

T̃
= s − rc) = 1

q
since da

T̃

is uniformly distributed. The conditional distribution of za given h is thus uniform (the sum
of a uniform and a constant) for each h in S. By symmetry, this property holds under P and
under Q. It follows that for each h in S and z in IFq, P (za = z, h) = Q(za = z, h).

Now for each event A in the set of histories of the adversary,

P (A) =
∑

h,z

P (A|za = z)P (za = z, h)

=
∑

h∈S

∑

z

P (A|za = z)P (za = z, h) +
∑

h/∈S

∑

z

P (A|za = z)P (za = z, h)

=
∑

h∈S

∑

z

Q(A|za = z)Q(za = z, h) +
∑

h/∈S

∑

z

Q(A|za = z)P (za = z, h).

Similarly,

Q(A) =
∑

h∈S

∑

z

Q(A|za = z)Q(za = z, h) +
∑

h/∈S

∑

z

Q(A|za = z)Q(za = z, h).
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It follows,

|P (A) − Q(A)| =
∑

h/∈S

∑

z

Q(A|za = z)(P (za = z, h) − Q(za = z, h))

= |P (Sc) − Q(Sc)|

where Sc is the complementary of S. When the first reliable transmission in π succeeds, the
event S occurs, thus P (S) ≥ 1 − ε

4
and Q(S) ≥ 1 − ε

4
. Therefore

∥

∥

∥P T̃ − QT̃
∥

∥

∥

∞
≤ ε

4
and since

∥

∥

∥P T̃ − QT̃
∥

∥

∥

1
= 2

∥

∥

∥P T̃ − QT̃
∥

∥

∥

∞
, π is ε-secure.

2

4.2 The conditions of Theorem 4.2 are necessary

Assume that there is T that has two consecutive neighbors on each path from a to b. Assume
further that 〈G, a, b, t〉 is reliable. Let ε > 0 and π be a protocol such that every strategy τ T :

Pω,π,τT (D) ≥ 1− ε, Pω′,π,τT (D) ≤ ε. We prove now that
∥

∥

∥PT
ω,π,τT − PT

ω′,π,τT

∥

∥

∥

1
cannot be small.

Let us fix such ε > 0, π and a strategy τ T of the adversary. Define the following sets of
nodes:

• M is the set of nodes i ∈ V , for which there is a path c from a to i such that T
has no consecutive neighbors on c.

• N = V \M .

The following claim follows directly from the definition of M .

Claim 4.6 (1) If i ∈ M has a neighbor j /∈ M , then both i and j are neighbors of T .

(2) If i ∈ N has a neighbor j /∈ N , then both i and j are neighbors of T .

We let now U = (G(M)\M) ∪ (G(N)\N). From the previous claim, a member i of M is in
U iff it has a neighbor j in N and then j is in U and both are neighbors of T .

Each path from a to b has to cross U on two consecutive nodes which are neighbors of T .
So all information regarding the value of the state has to transit by U , i.e. there is a cut in the
network such that the adversary hears all communication exchanged on this cut.

We let P = Pω,π,τT and Q = Pω′,π,τT . For each S ⊂ V , we let P S (resp. QS) be the marginal

of P (resp. Q) on histories for S. We also let P̃ (resp. Q̃) be the marginal of P (resp. Q) on
histories of messages sent by U .

Lemma 4.7 The distribution of histories for N conditional on messages sent by U does not
depend on ω.
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Proof. By induction on R. The claim is obvious for R = 1 since a ∈ M . Assume this property
to be true for histories of length R− 1. Given the messages sent by U at round R− 1, the next
messages chosen by nodes in G(N) are selected according to distributions that do not depend
on ω. 2

Now, if b is informed of ω it has to be through U and thus T is also informed. We get the
following inequalities.

1−2ε ≤(a)
∥

∥

∥P b − Qb
∥

∥

∥

∞
≤(b)

∥

∥

∥P N − QN
∥

∥

∥

∞
=

1

2

∥

∥

∥P N − QN
∥

∥

∥

1
=(c) 1

2

∥

∥

∥P̃ − Q̃
∥

∥

∥

1
≤(d) 1

2

∥

∥

∥P T − QT
∥

∥

∥

1

where: (a) follows from π being ε-reliable; (b) holds since P b (resp. Qb) is a marginal of P N

(resp. QN ); (c) follows from Lemma 4.7 since the distribution of histories for N conditional on
messages sent by U is the same under P N and QN ; (d) holds since P̃ (resp. Q̃) is a marginal
of P T (resp. QT ).

This proves that π cannot be ε-reliable and ε-private for ε small.

5 Concluding remarks

The unicast case. The notions of reliability and security are also naturally defined in the unicast
setup. The analog of theorem 3.11 is the following: regarding unicast communication, 〈G, a, b, t〉
is (T, T ′)-reliable if and only if there exists a path from a to b included in V \(T ∪ T ′). This
can be deduced, e.g., from Theorem 23 in [BF] or from Theorem 3 in [SP]. Regarding privacy
of information transmission, we believe that one can proceed as in subsection 4.1 of [FW] or of
subsection 4.1. of the present paper to obtain that in the unicast setup, 〈G, a, b, t〉 is secure if
and only if it is reliable.

It appears thus that for undirected communication graphs, it is easier to obtain reliable and
secure communication in the multicast setup than in the unicast setup. This is not a priori
obvious, as discussed in the fourth paragraph of the introduction in [FW]: in the multicast
setup, compared to the unicast one, the adversary may a priori benefit from the loss of privacy
in the communication between the other players. However, the adversary also suffers from a
restriction, since an incorrect transmission from a faulty player will be received identically by all
the nodes connected to this player. In the present setting, as in [FW], the change from unicast
to multicast communication hurts the adversary more than it helps. It would be interesting to
determine whether this property is robust and can be extended to more general setups, e.g. to
directed communication graphs.

Efficiency. We did not address the question of efficiency of the protocols. As pointed out by
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an anonymous referee, the message complexity of the protocols constructed here is exponential
when t is large but the round complexity is polynomial. The existence of efficient communication
protocol in this setup is an open problem.

Independence and correlation of random inputs. In the model studied here, non-faulty players
use independent randomizations while the adversary is allowed to correlate the randomizations
of the faulty players. It might be the case that the results would remain the same if we
restricted the adversary to perform randomizations which are independent across faulty players.
The conditions obviously remain sufficient but in the proof of the necessity part of Theorem
3.10, the strategies constructed for the adversary use correlated randomizations. It is not clear
whether this proof may be adapted.

On the other hand, allowing non-faulty players to perform correlated randomizations would
certainly affect the results. The random inputs of players i and j are correlated when they
both depend on a common random element known to both i and j, which might be interpreted
as an authentication key. The study of reliable and secure communication with authentication
keys is done by [BF] for the unicast case. An interesting line of research is thus to study how
the existence of authentication keys affects our characterization.

6 Appendix: The condition b ∈ CT,T ′(a) is necessary in

Theorem 3.10

We assume that b /∈ CT,T ′(a) and show that 〈G, a, b〉 is not (T, T ′)-reliable. We fix a protocol
π = (M, R, σ̃, D) and construct strategies τ T and τ̄T ′

such that Pω,π,τT (D) = Pω′,π,τ̄T ′ (D). This
will prove that player b -the receiver- is not able to differentiate between { the state is ω and
the adversary controls the players in T } and { the state is ω ′ and the adversary controls the
players in T ′ } , i.e. that 〈G, a, b〉 is not (T, T ′)-reliable.

We fix a message m0 in M which shall play the role of an uninformative message. We let for
simplicity A = CT,T ′(a) ⊂ V \(T ∪ T ′) and B = CT,T ′(b) ⊂ V \(T ∪ T ′). Since b is not in A, we
have A ∩B = ∅. Letting for each S subset of V , G(S) be ∪i∈SG(i), we have G(A)\A ⊂ T ∪ T ′

and G(B)\B ⊂ T ∪T ′ and each path in G starting from (a player in) A and arriving to (a player
in) B goes through T ∪ T ′. The players in A can communicate with the sender in a safe (i.e.
(T, T ′)-reliable) way so we can think as if each player in A had the information on the state.
Similarly, the players in B can communicate safely with the receiver, so when constructing τ T

and τ̄T ′

we have to prevent each player in B from learning the state. We distinguish two cases.
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6.1 First Case

We assume that there exist a path from A to B that does not go through T ′ and a path from
A to B that does not go through T .

This implies (see Definition 3.7) that: if c is a path from A to B that does not go through
T ′, then c ∩ T 6= ∅ and if moreover c ∩ T is a singleton {k}, then k ∈ G(T ′) i.e. the messages
multicast by player k are received by at least one player in T ′. A similar observation holds if
we exchange the roles of T and T ′.

We start with considerations on the graph G. All what follows is symmetric between T and
T ′. We first separate the elements of T (resp. T ′) into 3 disjoint categories: those which are
also in T ′ (resp. T ), those which are not in T ′ (resp. T ) and are directly connected to B, and
the remaining elements. We define:

T ′′ = T ∩ T ′,

T1 = (T\T ′) ∩ G(B), T ′
1 = (T ′\T ) ∩ G(B),

T2 = T\(T” ∪ T1), T ′
2 = T ′\(T” ∪ T ′

1).

We use ∨ for the symbol of disjoint union. It is plain that T = T”∨T1∨T2, and T ′ = T”∨T ′
1∨T ′

2.
Recall that A ∩ (T ∪ T ′) = ∅ = B ∩ (T ∪ T ′), G(A)\A ⊂ (T ∪ T ′), and G(B)\B ⊂ (T ∪ T ′).
The last inclusion gives G(B) ⊂ B ∨T”∨T1 ∨T ′

1. All the information about the state obtained
by the players in B come from T”∨ T1 ∨ T ′

1. These players will not be able to determine if the
adversary controls T (hence T” and T1) or T ′ (hence T” and T ′

1), so they will not determine
what the state is. The following sets will also play an important role.

N = {i ∈ V \B, there exists a path from i to B in V \T ′},

N ′ = {i ∈ V \B, there exists a path from i to B in V \T}.
Notice that A ⊂ N ∩ N ′, B ∩ (N ∪ N ′) = ∅, N ∩ T ′ = ∅, N ′ ∩ T = ∅, T1 ⊂ N\(N ′ ∪ T ′) and
T ′

1 ⊂ N ′\(N ∪ T ).

Lemma 6.1

G(N) ⊂ N ∨ B ∨ T” ∨ T ′
2 ∨ (T ′

1 ∩ G(T )) (1)

G(N ′) ⊂ N ′ ∨ B ∨ T” ∨ T2 ∨ (T1 ∩ G(T ′)) (2)

G(N\T1) ⊂ N ∨ T” ∨ T ′
2 ∨ (T ′

1 ∩ G(T )) (3)

G(N ′\T ′
1) ⊂ N ′ ∨ T” ∨ T2 ∨ (T1 ∩ G(T ′)) (4)

Proof. By symmetry, we only prove (1) and (3). The unions are clearly disjoint.
Consider j in G(N)\(N ∨ B ∨ T” ∨ T ′

2). Then j /∈ N ∪ B so each path from j to B goes
through T ′ but j ∈ G(i) with i ∈ N thus j is in T ′. As j /∈ T ′

2 ∪ T”, j ∈ T ′
1 ⊂ G(B). If i ∈ T ,

then j ∈ T ′
1 ∩ G(T ) and we are done. Assume now that i /∈ T . i belongs to N so there exists a
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path from i to B in V \T ′. Also i ∈ G(j) and j ∈ G(B)\T so there exists b′ in B such that the
path c = (i, j, b′) goes from i to B in V \T . Moreover c ∩ T ′ = {j} is a singleton and i /∈ B so
by the definitions of B and ΓT,T ′, we also have j ∈ G(T ) and (1) is proved.

Notice that if j ∈ B, i ∈ G(B)\B ⊂ T ∪ T ′. i ∈ N so i /∈ T ′, and i ∈ T1. This proves (3).
2

We now define:

S = T” ∨ T1 ∨ T ′
2 ∨ (T ′

1 ∩ G(T )) and S ′ = T” ∨ T ′
1 ∨ T2 ∨ (T1 ∩ G(T ′)).

Using inclusions (3) and (4) of Lemma 6.1, we obtain:

G(N\T1) ⊂ (N\T1) ∨ S (5)

G(N ′\T ′
1) ⊂ (N ′\T ′

1) ∨ S ′ (6)

The following figure illustrates these definitions.
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T = {t1, t2, t3, t”}
T1 = {t1, t3}
T2 = {t2}
T” = {t”}

N = A ∪ {t2, l, t1, t3}
S = {t”, t1, t3, t′2, t′3}

T ′ = {t′1, t′2, t′3, t”}
T ′

1 = {t′1, t′3}
T ′

2 = {t′2}
T” = {t”}

N ′ = A ∪ {t′2, l′, t′1, t′3}
S ′ = {t”, t′1, t′3, t2, t3}

Figure 6.1: illustration

Assume now that the adversary controls T = T” ∨ T2 ∨ T1 and plays according to τT . He
tries to convince the receiver that the state is ω ′, that the adversary controls T ′ and plays τ̄T ′

.
The ideas are the followings:

- each player in T” is both in T and T ′, and will send the message m0 at each round.
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- if i ∈ T2, every path from i to B goes through T1 ∨ T ′
1 ∨ T” since G(B) ⊂

B∨T1∨T ′
1∨T”. This implies that the players in B will not have a “safe” information

about the messages sent by player i. Such a player i will also send the message m0

at each round.

- if i ∈ T1, the messages of i are received by the players in B. Player i will
pretend that player a says via his messages that the state is ω ′ and that the players
in T ′

2 ∨ T” are sending m0 at each round. He will construct, for the players in
N\T1, fictitious messages corresponding to this case and will play according to
these fictitious messages. Since G(N\T1) ⊂ (N\T1) ∨ S and S ⊂ G(T ) ∨ T ′

2, the
adversary controlling T will be able to construct these fictitious messages.

Recall that the strategy σ̃ = (σ̃i)i∈V is given by the protocol π. For each player i, σ̃i is a
strategy for player i and if m(r) = (mj(r))j∈G(i) represents the messages sent by the neighbors
of i and himself at rounds 1,. . . ,r, σ̃i(m(r)) will denote the corresponding probability on M
used by player i to select his message at round r + 1. By Kuhn’s theorem, σ̃i can also be seen
as a mixed strategy of player i. For player a set: σ̃a = (σ̃a

ω, σ̃a
ω′) where σ̃a

ω and σ̃a
ω′ are mixed

strategies of player a. All strategies considered in this proof are R-rounds strategies.

The following observation is based on inclusion (5). Fix :
- for each player i in N\T1, a pure strategy σi. We let (σi)i∈N\T1

= σN\T1 .
- a round number r in {0, . . . , R − 1} and for each player i in S a sequence of messages

mi(r) = (mi
1, . . . , m

i
r) ∈ M r.

Assume that each player i in N\T1 sends messages according to σi and each player i in S sends
at each round r′ = 1, . . . , r the message mi

r′. Because of inclusion (5), this defines by induction,
for each player i in N\T1, the message sent by player i at each round r′ = 1, . . . , r + 1. We
denote the corresponding sequence of messages sent by such player i at rounds 1,. . . ,r by:

mi(r)
(

σN\T1 , (mj(r))j∈S

)

∈ M r.

Symmetrically, for i in N ′\T ′
1, r in {0, . . . , R−1}, given a vector of pure strategies σN ′\T ′

1 =
(σj)j∈N ′\T ′

1
for the players in N ′\T ′

1 and for each j in S ′ a sequence of messages mj(r) =

(mj
1, . . . , m

j
r) ∈ M r, we denote by:

mi(r)(σN ′\T ′

1 , (mj(r))j∈S′) ∈ M r,

the sequence of messages sent by player i at the rounds r′ = 1, . . . , r if: each player j in N ′\T ′
1

use σj and each player j in S ′ has sent at each round r′ ≤ r the message mj
r′ . This definition

makes sense because of inclusion (6).

Construction of τT .
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We formally construct τT as a mixed strategy for the adversary controlling the players in
T . To define τT , we have to define which message is sent by each player in T at each round.
It is particularly simple for the players in T2 ∪ T”, but more complicated for the players in T1.
The procedure is the following.

• The adversary first selects, for each player i 6= a in N , a pure strategy σi according
to the probability σ̃i and for player a he selects a pure strategy σa according to σ̃a

ω′ .
The idea is that the adversary pretends that the state is ω ′ and that every player i
in N plays according to σi.

• Each player in T2 ∪ T” follows a very simple strategy: send the message m0 at
each round, whatever happens.

• Fix some player i in T1, then i ∈ N . At round 1, i plays according to the selected
pure strategy σi. Fix now r in {1, . . . , R − 1} in order to define what is played by
player i at round r + 1. At the end of round r, the adversary knows all previous
messages multicast by the players in G(T ), which we denote by (mj(r))j∈G(T ). Player
i will play at round r+1 according to the pure strategy σi and multicasts the message
σi((m̂j(r))j∈G(i)), which is the prescription of the pure strategy σi at round r + 1
if the messages previously observed by player i correspond to (m̂j(r))j∈G(i). The
point is that these messages (m̂j(r))j∈G(i) are not the messages previously sent by
the neighbors of i, but are fictitious messages that we define now.

Fix j in G(i). i ∈ N , so j belongs to N ∨ B ∨ T” ∨ T ′
2 ∨ (T ′

1 ∩ G(T )) by inclusion
(1) of Lemma 6.1.

- If j belongs to T ′
2, the adversary will pretend that j is sending the message m0 at

each round: m̂j(r) = (m0, m0, . . . , m0).

- If j belongs to T1 ∨ B ∨ T” ∨ (T ′
1 ∩ G(T )), the adversary will not cheat on the

messages sent by player j: m̂j(r) = mj(r).

- If j belongs to N\T1, the adversary will pretend that player j has sent messages
corresponding to the case where: (a) the players in N\T1 use σN\T1 = (σl)l∈N\T1

,
(b) each player k in T1 ∨ (T ′

1 ∩ G(T )) ∨ T” has sent the sequence of messages
lk(r) = mk(r), which is known by the adversary since in this case k ∈ G(T ), and
(c) each player k in T ′

2 has played at each round the message m0, i.e. has sent the
sequence lk(r) = (m0, . . . , m0) ∈ M r. Since S = T” ∨ T1 ∨ T ′

2 ∨ (T ′
1 ∩ G(T )), these

messages m̂j(r) correspond to the notation:

m̂j(r) = mj(r)
(

σN\T1 , (lk(r))k∈S

)

.

This concludes the definition of the strategy τ T of the adversary. The construction of τ̄ T ′

is perfectly symmetric and is given now for the sake of completeness.
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Construction of τ̄T ′

.
To play according to τ̄T ′

, the procedure is the following.

• The adversary first selects, for each player i 6= a in N ′, a pure strategy σi according
to the probability σ̃i and for player a he selects a pure strategy σa according to σ̃a

ω.
The idea is that the adversary will pretend that the state is ω and that every player
i in N ′ is playing according to σi.

• Each player in T ′
2 ∪ T” simply sends at each round the message m0.

• Fix some player i in T ′
1 ⊂ N ′. At round 1, i plays according to the selected pure

strategy σi. Fix r in {1, . . . , R−1}. At the end of round r, the adversary knows the
previous messages sent by the players in G(T ′), which we denote by (mj(r))j∈G(T ′).
Player i will play at round r+1 according to the pure strategy σi, and will send the
message σi((m̂j(r))j∈G(i)), which is the prescription of the pure strategy σi at round
r + 1 if the messages previously observed by player i correspond to the quantity
(m̂j(r))j∈G(i), which is defined now.

Fix j in G(t). j belongs to N ′ ∨ B ∨ T” ∨ T2 ∨ (T1 ∩ G(T ′)) by inclusion (2) of
Lemma 6.1.

- If j belongs to T2, the adversary will pretend that j is sending the message m0 at
each round: m̂j(r) = (m0, m0, . . . , m0).

- If j belongs to T ′
1 ∨ B ∨ T” ∨ (T1 ∩ G(T ′)), the adversary will not cheat on the

messages sent by player j: m̂j(r) = mj(r).

- If j belongs to N ′\T ′
1, we let m̂j(r) = mj(r)

(

σN ′\T ′

1 , (lk(r))k∈S′

)

, where : σN ′\T ′

1 =

(σl)l∈N ′\T ′

1
, lk(r) = mk(r) for each k in T ′

1 ∨ (T1 ∩ G(T ′)) ∨ T”, and lk(r) =
(m0, . . . , m0) ∈ M r for each k in T2.

Conclusion
We finally show that player b can not distinguish between { ω is the state, all players in

V \T play according to σ and the adversary controls the players in T with τ T } and { ω′ is the
state, all players in V \T ′ play according to σ and the adversary controls the players in T ′ with
τ̄T ′ } . Formally, we prove that Pω,π,τT and Pω′,π,τ̄T ′ induce the same probability distributions

over the messages sent at rounds 1,. . . ,R by the players in B =def B∨T1∨T ′
1∨T”. Since b ∈ B

and G(B) ⊂ B, this will show that Pω,π,τT (D) = Pω′,π,τ̄T ′ (D) and conclude the proof.
For each player i in N ∪ N ′, we view σ̃i (σ̃a

ω and σ̃a
ω′ for player a) as a mixed strategy and

we think as if player i using σ̃i (σ̃a
ω or σ̃a

ω′ for player a) first selects a pure strategy according to
this probability and then plays this pure strategy. If σi is a pure strategy of player i, we denote
by σ̃i(σi) the induced probability to select σi. We define, for any vector of pure strategies
σN = (σi)i∈N and σ̄N ′

= (σi)i∈N ′, the following events:
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HT (σN , σ̄N ′

) = {the adversary T playing τT first selects σN and each player i in N ′ playing σ̃i selects
σ̄i },
HT ′(σN , σ̄N ′

) = {each player i in N playing σ̃i selects σi, and the adversary T ′ playing τ̄T ′

first selects

σ̄N ′ }.

Notice that:
Pω,π,τT (HT (σN , σ̄N ′

)) =
∏

i∈N,i6=a

σ̃i(σi)×σ̃a
ω′(σa)×

∏

i∈N ′,i6=a

σ̃i(σ̄i)×σ̃a
ω(σ̄a) = Pω′,π,τ̄T ′ (HT ′(σN , σ̄N ′

)).

Fix now any sequence of messages (mi(R))i∈B , where for each i, mi(R) = (mi
1, . . . , m

i
R) ∈ MR

corresponds to the messages played by player i at rounds 1,..,R. If for all pairs (σN , σ̄N ′

) we
show that,

Pω,π,τT

((

mi(R)i∈B

)

|HT (σN , σ̄N ′

)
)

Pω′,π,τ̄T ′

((

mi(R)i∈B

)

|HT ′(σN , σ̄N ′

)
)

,

then we obtain Pω,π,τT

((

mi(R)i∈B

))

= Pω′,π,τ̄T ′

((

mi(R)i∈B

))

, which concludes the proof. We

fix then a pair (σN , σ̄N ′

). To prove that:

Pω,π,τT

((

mi(R)i∈B

)

|HT (σN , σ̄N ′

)
)

= Pω′,π,τ̄T ′

((

mi(R)i∈B

)

|HT ′(σN , σ̄N ′

)
)

,

we proceed by induction on R. It is then sufficient to prove the following lemma.

Lemma 6.2 For each r in {0, . . . , R − 1},

Pω,π,τT

(

(

mi
r+1

)

i∈B
|HT (σN , σ̄N ′

), (mi(r))i∈B

)

= Pω′,π,τ̄T ′

(

(

mi
r+1

)

i∈B
|HT ′(σN , σ̄N ′

), (mi(r))i∈B

)

.

where by convention the equality for r = 0 is:

Pω,π,τT

(

(

mi
1

)

i∈B
|HT (σN , σ̄N ′

)
)

= Pω′,π,τ̄T ′

(

(

mi
1

)

i∈B
|HT ′(σN , σ̄N ′

)
)

.

Proof of Lemma 6.2. We compute Pω,π,τT

(

(

mi
r+1

)

i∈B
|HT (σN , σ̄N ′

), (mi(r))i∈B

)

. We thus

assume that: ω is the state, the adversary controls T , plays τ T and has selected σN , the players
in N ′ play according to the pure strategy σ̄N ′

and at the first r rounds the messages really sent
by each player i in B corresponds to mi(r). What is played by the players in B = B∨T1∨T ′

1∨T”
at round r + 1 ?

• Each player i in B plays σ̃i and has received the messages (mj(r))j∈G(i), so he sends at
round r + 1 his message according to the probability σ̃i(mj(r))j∈G(i).

• Each player i in T” plays m0 at each round, so he sends (with probability one) the message
m0 at round r + 1.

• Consider a player i in T ′
1, i belongs to N ′\(T ∪ N) thus to N ′\T so i uses the pure

strategy σ̄i. At round r + 1 he sends the message σ̄i((m̄j(r))j∈G(i)), where for each j in G(i),
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m̄j(r) denotes the stream of messages really sent by player j at the first r rounds. For each j in
G(i), we compute m̄j(r). We have j ∈ G(i) ⊂ G(N ′) ⊂ (N ′\T ′

1)∨T ′
1∨B∨T”∨T2∨(T1∩G(T ′))

by inclusion (2) of Lemma 6.1.
- If j ∈ T ′

1 ∨ B ∨ T” ∨ (T1 ∩ G(T ′)), j belongs to B so m̄j(r) = mj(r).
- If j ∈ T2, by definition of τT , player j plays m0 at each round: m̄j(r) = (m0, . . . , m0).
- If j ∈ N ′\T ′

1, we also need to compute m̄j(r). The players in N ′\T ′
1 are using the pure

strategy σ̄N ′\T ′

1 , each player k in T ′
1∨T”∨ (T1 ∩G(T ′)) ⊂ B has played mk(r) and each player k

in T2 is controlled by the adversary and has played m0 at each round. So m̄j(r) is exactly what
we have defined as: mj(r)(σ̄N ′\T ′

1 , (lk(r))k∈S′), with lk(r) = mk(r) if k ∈ T ′
1 ∨ T”∨ (T1 ∩G(T ′))

and lk(r) = (m0, . . . , m0) if k ∈ T2.
• Consider finally a player i in T1. Player i is controlled by the adversary so he plays

according to the pure strategy σi and at round r + 1 he sends the message σi(m̂j(r))j∈G(i)),
where for each j in G(i), m̂j(r) is defined as follows by the strategy τ T .

- If j ∈ T1 ∨ B ∨ (T ′
1 ∩ G(T )) ∨ T”, m̂j(r) = mj(r).

- If j ∈ T ′
2, m̂j(r) = (m0, . . . , m0).

- If j ∈ N\T1, m̂j(r) = mj(r)(σN\T1 , (lk(r))k∈S) with lk(r) = mk(r) if k ∈ T1∨ (T ′
1 ∩G(T ))∨

T” and lk(r) = (m0, . . . , m0) if k ∈ T ′
2.

We have computed, for each player i in B, the probability that he plays mi
r+1 at round r+1.

Pω,π,τT

(

(

mi
r+1

)

i∈B
|HT (σN , σ̄N ′

), (mi(r))i∈B

)

is nothing but the product of these probabilities and one can check that it is a symmetric
expression of (T, σN), (T ′, σ̄N ′

). So this equals,

Pω′,π,τ̄T ′

(

(

mi
r+1

)

i∈B
|HT ′(σN , σ̄N ′

), (mi(r))i∈B

)

and the proof of the first case is complete. 2

6.2 Second Case

The second case is when all paths from A to B go through T or when all paths from A to B go
through T ′. By symmetry, it is sufficient to assume that all paths from A to B go through T .
The idea is that T separates A from B and it suffices for the adversary controlling T to pretend
that the state is ω′ and that there is no adversary. This case is easier than the previous one
and we just define τT and τ̄T ′

without going into computations.
Formally, τ̄T ′

is just “do not deviate”, i.e. in order to play according to τ̄ T ′

, each player i
in T ′ just uses σ̃i. In order to construct τT , we define:

A = {i ∈ V \T, there exists a path from a to i in V \T} and B = V \(A ∪ T ).
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We have V = A∨T ∨B, A ⊂ A, B ⊂ B, G(A) ⊂ A∪T and G(B) ⊂ B ∪T . To play according
to τT :

• the adversary first selects a pure strategy σa according to σ̃a
ω′ and for each player i 6= a in

A ∪ T a pure strategy σi according to σ̃i.
• fix i in T , and r in {0, . . . , R−1}. At the end of stage r, the adversary knows the sequence

of messages mj(r) ∈ M r sent by each player j in G(T ) at the rounds 1,. . . ,r. Player i will play

at round r + 1 the message σi
(

(m̂j(r))j∈G(i)

)

, where: for j in B ∪ T , m̂j(r) = mj(r) and for

j in A, m̂j(r) is the sequence of messages that j would have sent at the rounds 1,. . . ,r if each
player k in A plays σk whereas each player k in T has sent messages according to mk(r).

One can show that (ω, π, τT ) and (ω′, π, τ̄T ′

) induce the same distributions over the messages
sent by the players in B ∪T . The proof is similar to that of the first case (one can consider, for

each vector of pure strategies σA∪T = (σi)i∈A∪T , the hypotheses: HT (σA∪T ) = {the adversary

playing τT has first selected σi for each player i in A∪T } and HT ′(σA∪T ) = {every player i in
A ∪ T playing σ̃i selects σi) } ). Since b ∈ B and G(B) ⊂ B ∪ T , this is sufficient to conclude
this second case.
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