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Abstract

Consider the model Y = X + ε with X = τ + Z, where τ is an unknown constant
(the boundary of X), Z is a random variable defined on R+, ε is a symmetric error,
and ε and Z are independent. Based on a iid sample of Y we aim at identifying and
estimating the boundary τ when the law of ε is unknown (apart from symmetry) and
in particular its variance is unknown. We propose an estimation procedure based on a
minimal distance approach and by making use of Laguerre polynomials. Asymptotic
results as well as finite sample simulations are shown. The paper also proposes an
extension to stochastic frontier analysis, where the model is conditional to observed
variables. The model becomes Y = τ(w1, w2) + Z + ε, where Y is a cost, w1 are the
observed outputs and w2 represents the observed values of other conditioning variables,
so Z is the cost inefficiency. Some simulations illustrate again how the approach works
in finite samples, and the proposed procedure is illustrated with data coming from post
offices in France.
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1 Introduction

The objective of this paper is to identify and estimate the lower endpoint of the support of a
random variable that is bounded from below and that is observed with error when ‘minimal’
assumptions are imposed on the error term, in the sense that the error is only assumed to be
symmetric around zero with no distributional assumptions. The problem of estimating the
minimum of a random variable that is observed with noise, has received a lot of attention in
the literature. Consider the relation Y = X+ε = τ+Z+ε, where Y is the observed variable,
X is the variable of interest, τ is the lower endpoint of the support of X, Z ≥ 0, ε is the
noise, and Z and ε are independent. When the distribution of ε is known, a large body of
papers exists on the estimation of the support of the variable X, most of which are based on
deconvolution techniques. See e.g. Goldenshluger and Tsybakov (2004), Delaigle and Gijbels
(2006), Meister (2006a), and Aarts, Groeneboom and Jongbloed (2007), among others. The
assumption that the distribution of ε is given, is a strong hypothesis (see Daouia et al.,
2018). However, it has been shown that thanks to the positivity of Z the variance of ε is
identified if ε is normally distributed (see Schwarz and Van Bellegem, 2010), and in that case
the minimum τ may be estimated nonparametrically (see Hall and Simar, 2002, and Kneip
et al., 2015). Also note that a different but related literature is on the identification and
estimation of the density of X under certain smoothness assumptions on the density of X
and ε. This has been studied in Butucea and Matias (2005), Meister (2006b, 2007), Butucea
et al. (2008), Schwarz and Van Bellegem (2010) and Delaigle and Hall (2016), among others.

This paper goes one step further in the sense that we weaken the hypotheses on the
stochastic error ε: we only assume that ε is symmetric around zero. Our approach is in
the line of Delaigle and Hall (2016), who estimate the density of X using the empirical
phase function. See also Butucea and Vandekerkhove (2014) and Butucea et al. (2017) for
somewhat related papers, in which ε has a symmetric density and X is discrete. The price
of this weak assumption on ε is that the distribution of X is no longer identified. As we
will show below, only the odd cumulants of the distribution of X are identified, which is not
sufficient to identify in a unique way the distribution. However, a precise parametric but
flexible approximation of the density of X may be estimated from the odd cumulants.

This model may be extended to conditional models. Our main motivation for such an
extension is to analyze the so-called stochastic frontier models. Let us assume that X is a
cost generated conditionally on variablesW = (W1,W2). The distribution ofX is conditional
to W1 ≥ w1 in Rp1 and to W2 = w2 in Rp2 . In econometric applications W1 represents the
outputs and W2 describes the conditions of the production process. We are interested in the
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minimal cost given that W1 ≥ w1 and W2 = w2, which we denote by τ(w1, w2). If we define
Z = X − τ(w1, w2), the usual expression of the stochastic frontier model is

Y = τ(w1, w2) + Z + ε,

where Z is positive, the error ε has a symmetric but unknown density, and ε and Z are
independent conditionally on W1 ≥ w1 and W2 = w2. This model has been studied exten-
sively in the case where Z, ε and τ have a parametric form (for example, a Cobb-Douglas
model for τ , an exponential distribution for Z, and a normal distribution for ε), see Aigner
et al. (1977), Meeusen and van den Broek (1977). Some semiparametric approaches have
also been proposed where for instance the frontier function is unspecified but the stochastic
part is fully parametric (see e.g. Fan et al., 1996 or Kuosmanen and Kortelainen, 2012). We
extend this analysis to the case where the density of ε is only assumed to be symmetric.

The paper is organized as follows. In Section 2 we discuss the identifiability of the
marginal model. Estimation in the case without conditioning variables is treated in Section
3. A tractable flexible parametric family of distributions based on Laguerre polynomials
is considered in Section 4, together with finite sample simulations. Section 5 presents the
extension to frontier estimation, with some simulations and an illustration based on data
coming from post offices in France. Conclusions and further research are given in Section 6.
The proofs of the main results are gathered in Appendix A, whereas Appendix B collects
some properties of Laguerre polynomials. Finally, Appendix C gives some details about the
practical implementation of our estimators.

2 Identifiability of the model

We consider the following model. We observe the random variable Y defined as

Y = X + ε = τ + Z + ε, (2.1)

where Z is an unobservable random variable with support starting at 0 and with density
g, τ is an unknown constant corresponding to the lower endpoint of the support of the
random variable X = τ +Z, Y has density f , the error ε has a symmetric density h (around
zero), and ε and Z are independent. The model parameters are τ , g and h, but we are
mostly interested in estimating τ . Note that we do not specify the distribution of ε, nor its
variance, we only assume symmetry. We suppose throughout the paper that all variables are
continuous and have an analytic characteristic function, and in particular that all moments
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exist (see Lukacs, 1960, Chapter 7). The characteristic function of Y (and similarly for all
other variables) will sometimes be written as ψY and sometimes as ψf , depending on the
context.

Let θ0 = (τ0, g0, h0) be the true parameter values, and let Θ = R × G × H, where G is
the class of densities living on [0,∞), and H is the class of symmetric densities around zero.
We suppose that θ0 ∈ Θ.

We know that the true density f of Y satisfies

f(y) =

∫ +∞

−∞
g0(y − τ0 − e)h0(e) de (2.2)

for all y. The question we like to answer is how to identify τ, g and h from (2.2) given that g
lives on [0,∞) and that h is symmetric, or in other words under which conditions does the
following hold true : if for some (τ, g, h) ∈ Θ we have that f(y) =

∫
g(y − τ − e)h(e) de for

all y, then necessarily τ = τ0, g = g0 and h = h0 ?
It is clear that additional assumptions are needed to identify the model. Consider for

example model (2.1) with τ = 2, Z ∼ Exp(1) and ε distributed according to the independent
sum of a Un[−1, 1] variable and a standard normal variable. Then, exactly the same density
f will be obtained if τ = 1, Z is distributed according to the independent sum of a Exp(1)

and a Un[0, 2] variable, and ε is standard normal. More generally, if in model (2.1) we take

τ = τ̃ − c, Z = c+ Z̃ + U, ε = ε̃− U,

with c ≥ 0, U independent of (Z̃, ε̃), Z̃ and ε̃ independent, the density of U symmetric around
zero and the support of U equal to [−c, c], then we can equally well write Y as Y = τ̃+Z̃+ ε̃.
Note that this shows that the constraints on Z to make the model identifiable are related
to the concept of indecomposability of Z, which means that Z cannot be decomposed as
the sum of two independent non-constant random variables (see Lukacs, 1960, 1983 for
more details about indecomposability of a distribution). Here it is necessary that such a
decomposition is not possible if one of the two variables is required to be symmetric, which
we call symmetric indecomposability. The following lemma gives sufficient conditions on a
positive random variable Z to be symmetric indecomposable.

Lemma 2.1 Let ψZ be the characteristic function of a positive random variable Z, and
suppose that ψZ has at most a finite number of zeros. Then, Z is symmetric indecomposable.

Proof. Suppose that Z would be symmetric decomposable and could be written as Z =

Z̃ +U with U symmetric around zero and Z̃ independent of U . Since Z > 0, we necessarily
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have that |U | ≤ a for some finite a > 0 and Z̃ ≥ a, because minZ = min Z̃ + minU = 0.
Then, by Theorem 7.2.3 in Lukacs (1960), the characteristic function ψU of U has an infinite
number of zeros. Since ψZ = ψZ̃ψU , this contradicts the assumption that ψZ has at most a
finite number of zeros. 2

So, for example, the exponential, the half-normal and the truncated normal distribution
are symmetric indecomposable, since ψZ(t) has no zeros in these cases. The same is true for
the gamma distribution or for finite linear combinations of these, since ψZ(t) is in these cases
a polynomial of finite order in t with at most a finite number of zeros. So the above lemma
indicates that the symmetric indecomposability of a distribution defined on the positive real
line is rather common. But still this is not a universal property as the simple example above
reminds us.

In order to formulate conditions that guarantee the identifiability of our model, we follow
a somewhat similar approach as Delaigle and Hall (2016), who studied the identifiability of
the model Y = X + ε, where ε has a symmetric density (as in our case), but they do not
assume that the support of X has a finite lower bound. Assumption (2.3) in their paper is a
crucial assumption to identify the law ofX, and states that the distribution ofX uniquely has
least variance among all distributions sharing the phase function ψY /‖ψY ‖, where ‖ · ‖ is the
modulus. Note that this implies that X and hence Z must be symmetric indecomposable. 1

One way to identify our model would therefore be to impose their assumption (2.3) restricted
to the class F of densities living on [τ,∞) with τ unknown, since τ is identified as soon as
the law of X is identified. However, we are in a more particular framework than Delaigle
and Hall (2016) and we feel that it is more natural to disentangle Z and τ in our model.
Therefore, we will look for alternative assumptions to identify the density g of Z, since once
g is identified we know τ via the relation

E(Y ) = τ + E(Z).

Our approach is based on cumulants, where for ` = 1, 2, . . ., the `-th cumulant of X
is defined as κ`(f) = K

(`)
f (0), and the cumulant generating function Kf (t) is given by

Kf (t) = logE[exp(tY )]. Using standard properties of cumulants, we have that

κ1(f) = E(Y ) = τ + E(Z) + E(ε) = τ + κ1(g).

1Note that the opposite is not true : if X is symmetric indecomposable, it does not necessarily imply
that X is identified.
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On the other hand, for p ≥ 1,

κ2p+1(f) = κ2p+1(δτ ) + κ2p+1(g) + κ2p+1(h) = κ2p+1(g),

with δτ the Dirac measure at τ , since κ2p+1(δτ ) = 0 and since odd cumulants of symmetric
densities are zero (because of formula (2.3) below, and the fact that the characteristic func-
tion of a symmetric function is real). So the odd cumulants of g of order 3 or higher are
identifiable. We also know that again for p ≥ 1,

κ2p(f) = κ2p(g) + κ2p(h),

and since the even cumulants of h do not vanish in general, the even cumulants of g are not
identifiable. We therefore introduce a class of densities of Z denoted by G, that satisfies the
following hypothesis :

(A1) The density g0 belongs to G, and if κ2p+1(g) = κ2p+1(g0) for p ≥ 1 and for some g ∈ G,
then g = g0.

Then as κ2p+1(f) = κ2p+1(g0), the model restricted to the class G becomes identified.
In particular we will consider cases where G is parametrized by a vector of parameters

λ ∈ Λ of finite dimension :

G = {g(·|λ) : λ ∈ Λ ⊂ Rm,Λ compact}.

In Delaigle and Hall (2016) identification is obtained by the selection of the distribution of
smallest variance in the class of equivalent densities (i.e. defining the same f).

In order to formulate assumption (A1) in a different way, we introduce now the function
ηf (and similarly for ηg) :

ηf (t) =
∂

∂t

[
= logψf (t)

]
,

where =(a + ib) = b for any complex number a + ib, and where for any complex number
z = ρ exp(iθ) with θ ∈ (−π, π], the logarithm of z is defined as log z = log ρ+ iθ. Note that

logψf (t) =
∞∑
p=1

(it)p

p!
κp(f) =

∞∑
p=1

(−t2)p

(2p)!
κ2p(f) + i

∞∑
p=1

(−1)p+1t2p−1

(2p− 1)!
κ2p−1(f), (2.3)

and hence

= logψf (t) =
∞∑
p=1

(−1)p+1t2p−1

(2p− 1)!
κ2p−1(f),

or

ηf (t) = κ1(f) +
∞∑
p=2

(−1)p+1t2p−2

(2p− 2)!
κ2p−1(f) = κ1(f) +

∞∑
p=1

(−1)pt2p

(2p)!
κ2p+1(f).
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This shows that we can write

ηf (t)− ηf (0) =
∞∑
p=1

(−1)pt2p

(2p)!
κ2p+1(f),

which depends only on κ2p+1(f) for p ≥ 1. The above derivations now lead to the following
equivalent formulation of assumption (A1) :

(A1’) The density g0 belongs to G, and if ηg(t)− ηg(0) = ηg0(t)− ηg0(0) for all t and for some
g ∈ G, then g = g0.

Note that the mean (first cumulant) κ1(f) is not identified, as it contains the unknown
parameter τ . By considering the function ηg(t)−ηg(0) instead of the function ηg(t) the mean
cancels out, and we end up with an identified function. If we denote by Tλ(t) the function
ηg(t)− ηg(0) with g ≡ g(·|λ), the identification condition means that for all λ ∈ Λ,

Tλ ≡ Tλ0 ⇒ λ = λ0.

In a non-linear context local identification is a useful concept and is defined as follows : there
exists a neighborhood V of λ0 such that

Tλ ≡ Tλ0 for some λ ∈ V ⇒ λ = λ0.

In this paper we identify V without loss of generality with Λ. We denote now by κ`(λ) the
`-th cumulant of g(·|λ). Then, the equality Tλ ≡ Tλ0 is equivalent to the property that if
κ2p+1(λ) = κ2p+1(λ0) for all p ≥ 1 , then λ = λ0. The implicit function theorem implies
that if κ2p+1(λ0) is differentiable with respect to λ, then there exists a P ≥ m such that the
matrix ( ∂

∂λj
κ2p+1(λ)

∣∣∣
λ=0

)
p=1,...,P
j=1,...,m

has rank equal to m.
To conclude, if λ is identified, the distribution of Z is also identified, and so E(Z) and

E(Z2) are identified as well as a function of λ. Since τ0 = E(Y )−E(Z) and σ2
0 = Var(ε) =

Var(Y )− Var(Z), the identification of τ0 and σ2
0 is guaranteed as well.

3 Estimation of the model

We start by explaining the methodology, followed by the asymptotic properties of the pro-
posed estimators. Throughout this section the parametric family G can be any parametric
class which is such that it contains the true density g(·|λ0) and such that the cumulants of
odd order starting from order 3 identify the densities in the class. In Section 4 we will work
with one particular class of densities determined by Laguerre polynomials.
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3.1 Methodology

Recall that the class G is a parametric class of densities g(·|λ) defined on R+ and indexed
by λ ∈ Λ ⊂ Rm. We equip Λ with the canonical inner product 〈λ, λ̃〉Rm =

∑m
j=1 λjλ̃j (we

will suppress the subscript Rm in 〈·, ·〉Rm whenever there is no ambiguity). Let ηλ(t) =
∂
∂t

[
= logψλ(t)

]
, where ψλ is the characteristic function corresponding to g(·|λ). We suppose

that the function Tλ(·) = ηλ(·)− ηλ(0) belongs to the space E of functions from R to C such
that 〈v1, v2〉E =

∫
v1(t)v2(t)w(t) dt < ∞ for v1, v2 ∈ E , for a certain measure w, and where

v is the complex conjugate of v. (Note that Tλ(·) takes values in R, which we embed in C.)
We suppose that the Fréchet derivative T ′λ : Λ→ E exists and that Tλ and T ′λ are injective.
The linear operator T ′λ is bounded, and hence the dual operator T ′∗λ , defined by

〈T ′λ(λ), v〉E = 〈λ, T ′∗λ (v)〉Rm

exists, for any v ∈ E . Note that T ′∗λ T ′λ : Rm → Rm is regular (since T ′λ is injective), but often
ill-conditioned, and hence we will use penalization techniques to estimate λ0.

Define T̂ (t) = η̂(t)− η̂(0), where η̂(t) = ∂
∂t

[
= log ψ̂Y (t)

]
and ψ̂Y (t) = n−1

∑n
j=1 exp(itYj),

where Y1, . . . , Yn is an i.i.d. sample of Y . Then, the estimator of λ0 is defined as

λ̂α = argminλ∈Λ

{∫ +∞

−∞

(
T̂ (t)− Tλ(t)

)2
w(t) dt+ αP (λ)

}
(3.1)

= argminλ∈Λ

{
‖T̂ − Tλ‖2

E + α‖λ‖2
Rm

}
,

where P (λ) = ‖λ‖2 and α > 0 is a regularization parameter. We could also work with other
penalties like sparsity penalties (P (λ) = ‖λ‖) or entropy penalties (P (λ) =

∑m
j=1 λj log |λj|),

but we do not consider them here for reasons of brevity. Note that instead of working with
P (λ) = ‖λ‖2, which favors models for which λ is close to zero, we could also work with
P (λ) = ‖λ − λ∗‖2, if we have an a priori guess of the value of λ. Properties of λ̂α are not
affected by the choice of λ∗.

Remark 3.1 We assume that there exists a parametric family Λ of dimension m such that
g = g(·|λ0) for some λ0 ∈ Λ. This assumption is not restrictive if m may be large (but
finite). In that case, the model remains identified but severely ill-conditioned (i.e. the ratio
of the largest and smallest eigenvalue of T ′∗λ0T

′
λ0

is very high). The penalization solves the
numerical problems caused by this ill-conditioning.

Note that for all λ ∈ Λ, λ̂α satisfies

−〈T ′
λ̂α

(λ), T̂ − Tλ̂α〉+ α〈λ, λ̂α〉 = −〈λ, T ′∗
λ̂α

(T̂ − Tλ̂α)〉+ α〈λ, λ̂α〉 = 0,
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and hence

T ′∗
λ̂α

(T̂ − Tλ̂α)− αλ̂α = 0. (3.2)

For what follows, we need to define the regularized version λα of λ0 :

λα = argminλ∈Λ

{
‖Tλ0 − Tλ‖2

E + α‖λ‖2
Rm

}
,

which satisfies (using a similar derivation as for λ̂α)

T ′∗λα(Tλ0 − Tλα)− αλα = 0. (3.3)

Finally, note that since E(Z) = a(λ) and Var(Z) = b(λ) for some known functions a and
b, we may estimate τ and σ2 by

τ̂α = Y − a(λ̂α) and σ̂2
α = σ̂2

Y − b(λ̂α), (3.4)

where Y and σ̂2
Y are the empirical average and variance of Y , respectively. Appendix C gives

some details about the practical implementation of the whole method.

3.2 Asymptotic properties

The proofs of the results of this subsection are deferred to Appendix A, as well as the
conditions under which these results are valid. We start with the weak convergence of the
process (T̂ (·)− Tλ0(·)) as a process in E , equipped with 〈·, ·〉E .

Theorem 3.1 The process n1/2(T̂ (·)−Tλ0(·)) converges weakly in E to a mean-zero Gaussian
process W (·) with covariance operator Γ given by (Γψ)(t) =

∫
γ(s, t)ψ(s)w(s)ds with

γ(s, t) = σ(s, t)− σ(s, 0)− σ(0, t) + σ(0, 0),

where

σ(s, t) =
1

4

∂2

∂s∂t

{ ψY (t− s)
ψY (t)ψY (s)

+
ψY (t− s)
ψY (t)ψY (s)

− ψY (t+ s)

ψY (t)ψY (s)
− ψY (t+ s)

ψY (t)ψY (s)

}
.

Next, we consider the weak consistency and asymptotic normality of λ̂α for fixed α > 0.
Note that the term ∇(T ′∗λ S)|S=Tλα−Tλ0 ,λ=λα in the formula of the asymptotic variance is non-
standard and is caused by the non-linearity of the operator Tλ, where ∇ denotes the gradient
vector with respect to λ.

9



Theorem 3.2 Assume (C1)-(C4). Then, for fixed α > 0, λ̂α →P λα, and

n1/2(λ̂α − λα)
d→ N(0,Ω),

where
Ω = ∆−1T ′∗λαΓT ′λα∆−1,

∆ = αI + T ′∗λαT
′
λα +∇(T ′∗λ S)|S=Tλα−Tλ0 ,λ=λα .

The variance matrix Ω depends on T ′λ and T ′∗λ , which can be calculated analytically,
although their formula might be complicated. Let us consider T ′∗λ . Define βjλ = T ′λej, where
ej is the vector in Rm with j-th component equal to one and all other components equal to
zero. Then, for all λ̃ ∈ Λ, T ′λλ̃ = T ′λ

(∑m
j=1 λ̃jej

)
=
∑m

j=1 λ̃jβjλ, and therefore

〈λ̃, T ′∗λ a〉Rm = 〈T ′λλ̃, a〉E =
m∑
j=1

λ̃j〈βjλ, a〉E = 〈λ̃, 〈βλ, a〉L2〉Rm .

Hence, T ′∗λ a = 〈βλ, a〉.
Note that the choice of α is an important but delicate issue. We refer to Theorem 10.7

in Engl et al. (1996) for a result based on balancing the variance and the squared bias of λ̂α.
Next, we consider the asymptotic normality of τ̂α and σ̂2

α.

Theorem 3.3 Assume (C1)-(C5). Then, for fixed α > 0,

n1/2(τ̂α − τα)
d→ N(0, vτ ) and n1/2(σ̂2

α − σ2
α)

d→ N(0, vσ2),

where τα = E(Y )−a(λα), σ2
α = Var(Y )− b(λα), and where vτ and vσ2 are given in the proof

in the Appendix.

We finish this section with the weak consistency of λ̂α, τ̂α and σ̂2
α when α tends to zero.

Theorem 3.4 Assume (C1)-(C4) and assume that α→ 0 and (nα)−1 = O(1). Then, there
exists a subsequence λ̂α,ss of λ̂α that converges in probability to λ0. Similarly, there exist
subsequences τ̂α,ss of τ̂α and σ̂2

α,ss of σ̂2
α that converge in probability to τ0 and σ2

0, respectively.

4 A flexible parametric family of densities on R+

4.1 Laguerre approximation of densities

We now consider a particular parametric family of densities, that is rich and flexible and that
is based on Laguerre polynomials. The idea is to extend the basic exponential density e−z by

10



using polynomial expansions which are orthogonal to it. These polynomials are the Laguerre
polynomials (see e.g. Rice, 1964). Similar ideas have already been used, e.g., by Geerdens
et al. (2013) in a different context (frailty models) for one-parameter gamma densities, and
by Bertrand et al. (2017) for approximating the density of a variable with compact support
based on Bernstein polynomials. The extended-exponential model is fixed by the chosen
order m of the polynomial expansions. The densities in this family are given by

fm(z|θ) =
e−z

||θ||2

{
m∑
k=0

θkvk(z)

}2

, (4.1)

where θ = (θ0, θ1, . . . , θm)t, ‖θ‖ is the Euclidean norm of θ, and vk are polynomials orthonor-
mal to the exponential density e−z. We fix θ0 = 1 to fix the scale of θ. Note that if m = 0,
we have f0(z|θ) = e−z, and we can check that for any m, fm(z|θ) is a density on R+. Note
that in the notation of Section 3, the relation between θ and λ is given by

θt = (1, λt).

The idea of orthogonal polynomials is as follows. The polynomials have to be orthogonal
with respect to the inner product 〈ϕ1, ϕ2〉 =

∫∞
0
ϕ1(z)ϕ2(z)e−zdz and they can be obtained

by the Gram-Schmidt orthogonalization procedure. Next, they are divided by their norm
to get an orthonormal sequence. As pointed out in Geerdens et al. (2013), the interesting
feature is that since

∫∞
0
ecze−zdz < ∞ for any 0 < c < 1, the system of polynomials

{vk : k = 0, 1, . . .} is closed to continuous functions ϕ on R+ that satisfy∫ ∞
0

ϕ2(z)e−zdz <∞. (4.2)

It follows thatby defining ck = 〈ϕ, vk〉,we have that limm→∞
∫∞

0
[ϕ(z)−

∑m
k=0 ckvk(z)]

2
e−zdz =

0 for any continuous function ϕ satisfying (4.2). Now consider any continuous density
fZ(·) of Z on R+. By defining ϕ(z) = [fZ(z)/e−z]

1/2, we see that (4.2) is verified, so with
ck =

∫∞
0

[fZ(z)e−z]
1/2
vk(z)dz we obtain

lim
m→∞

∫ ∞
0

[√
fZ(z)−

m∑
k=0

ck
√
e−zvk(z)

]2

dz = 0,

and hence

lim
m→∞

∫
A

[√
fZ(z)−

√
fm(z|θ)

]2

dz = 0,

where A is any set in R+ for which there exists a δ > 0 such that fZ(z) > δ for all z ∈ A, which
indicates that the densities in (4.1) parametrized by the appropriate θ = (θ0, θ1, . . . , θm)t can
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potentially approximate any continuous density on R+ with respect to the Hellinger distance
restricted to the set A.2

Appendix B explains how to construct Laguerre polynomials and illustrates by means of
some simulated examples how flexible the family is and how well continuous functions can
be approximated by functions of this family.

Another nice feature of the Laguerre family is that we can easily express the density in
(4.1) as a linear combination of gamma densities. We have indeed the following result. The
proof is given in Appendix B.

Lemma 4.1 The density given in (4.1) can be written as

fm(z|θ) =
2m∑
j=0

ajfγ(z|j + 1, 1), (4.3)

where
∑2m

j=0 aj = 1 and fγ(z|j+ 1, 1) =
zje−z

Γ(j + 1)
are the gamma densities with shape param-

eter j + 1 and scale equal to 1. The aj are real numbers defined as

aj =

{
||θ||−2Γ(j + 1)

∑j
k=0 ckcj−k for j = 0, . . . ,m

||θ||−2Γ(j + 1)
∑m

k=j−m ckcj−k for j = m+ 1, . . . , 2m
, (4.4)

where the coefficients ck are given by

ck =
m∑
j=k

(
j

k

)
(−1)j−kθj
Γ(k + 1)

, for k = 0, . . . ,m. (4.5)

Note that equation (4.3) does not define a mixture of Gamma densities, but a linear
combination with coefficients aj summing to one but having possibly positive or negative
values, as shown by equation (4.5). We refer to Appendix B for the calculation of the
coefficients aj in a simulated example.

Thanks to this result we can provide explicit expressions for the moments and an an-
alytical expression for ψZ(t|θ), its derivative and finally for the function ηZ(t|θ). For the
moments we have

E(Zk|θ) =
2m∑
j=0

aj(j + 1)k, for k = 1, 2, . . . , (4.6)

2As pointed out in Geerdens et al. (2013), with an additional assumption on the function ϕ, i.e.∫∞
0

[ϕ′(z)]2ze−zdz <∞, the convergence is uniform on any interval [z1, z2] ⊂ R+ (see Nikiforov and Uvarov,
1988).
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where (j + 1)k is the Pochhammer symbol representing Γ(j + 1 + k)/Γ(j + 1). In the same
way we have

ψZ(t|θ) =
2m∑
j=0

aj

(
1

1− it

)j+1

=
2m∑
j=0

aj

(
1 + it

1 + t2

)j+1

, (4.7)

therefore we can derive

ψ′Z(t|θ) =
(−2t+ i(1− t2))

(1 + t2)2

2m∑
j=0

aj
j + 1

(1− it)j
. (4.8)

Finally we can compute ηZ(t|θ) = =
[
ψ′Z(t|θ)/ψZ(t|θ)

]
.

4.2 Simulations

For exploring the behavior of our estimator in finite samples, we will compare its performance
with that of the estimator suggested in Kneip et al. (2015) (hereafter denoted by KSVK),
where an explicit density (a normal with unknown variance) is used to build the penalized
likelihood function (see KSVK for details). For the distribution of Z, KSVK use an histogram
based density with fixed number of bins. We will use the same scenarios as in their Examples
1 to 4 and we will compare the results in their Tables 2–7 with ours, where we do not use the
information that the noise is normal and we use our approach for approximating the density
of Z.

The scenarios can be summarized as follows. We have the model Y = τ + Z + ε, where
τ = 0 and ε ∼ N(0, σ2) with σ = ρntsσZ . Various scenarios will be considered for the
density of Z, and we take samples of size n = 50, 100, 500 and noise-to-signal ratios equal
to ρnts = 0, 0.10, 0.25, 0.50 and 0.75. In Examples 1a and 1b in KSVK, Z ∼ Exp(β) with
µZ = σZ = β with β = 2 and β = 1. In their Examples 2a and 2b, Z ∼ N+(β1, β

2
2) is a

truncated normal, where first β1 = 0 and β2 = 0.8 giving an half-normal distribution with
µZ = 0.6383 and σZ = 0.4822, whereas in their Example 2b, β1 = 0.6 and β2 = 0.6 leading
to a truncated-normal distribution with µZ = 0.7726 and σZ = 0.4761, having its mode far
from the frontier point. By analogy with KSVK to select the tuning penalty parameter, we
select the values of m (the order of the polynomials) and of α (the penalty parameter) by
selecting the pair (m,α) that minimizes the Monte-Carlo sum of the two Root Mean Squared
Errors (RMSE): RMSE(τ̂α) +RMSE(σ̂α).

Our results are displayed in Tables 1 to 4. First of all, a quick scan through the tables
confirms that the results are going in the expected directions: as the sample size n increases
the RMSE’s decrease for a fixed level of ρnts. This is not uniform in all the cases: see,

13



e.g. Table 3, for ρnts = 0.25, RMSE(τ̂α) is the same for n = 50 and n = 100, but this is
because the optimal pair (m,α) is selected for optimizing the sum of the two RMSE’s (for
estimating τ and σ). But in most cases, the behavior is as expected. Second, for a fixed
sample size n, the RMSE increases with ρnts as expected. Finally we observe that in the 4
scenarios, the level of the accuracy is quite comparable through the different scenarios for
the density of Z.

Now we will compare the results with the corresponding results from KSVK. We kept the
same order for the tables and the same “presentation” to facilitate the comparison. Globally,
at least for the 4 preceding cases where the normal assumption is correct, we expect to
have less accurate performances, since we only use the symmetry of ε in our method. We
summarize in what follows the global picture and the main differences.

Except for the no-noise case (ρnts = 0), globally our results in terms of the RMSE of the
estimators are of the same order as in KSVK. When the size of the noise increases, and when
the sample size increases, our results are sometimes better than those obtained in KSVK,
although the difference is small. But this is globally good news, because our method does
not use the (correct) assumption of normality of ε. The case without noise is much harder to
estimate with our approach, which only uses the information on the odd cumulants of order
greater than 3. We should also stress that in Table 4, the truncated normal case, where the
density of Z is bell-shaped with mode 0.7726 and truncated at zero, our approach based on
Laguerre polynomial approximations, works much better than the histogram approach used
in KSVK: here the RMSE’s are substantially smaller in our approach, in particular for the
estimation of τ , in all the cases where ρnts > 0.

Next, in their Examples 3 and 4, KSVK illustrate how their approach is robust to the
normality assumption, by generating samples with ε ∼ C1× Stud(4), where C1 = σ/

√
2 is a

constant to adjust the same noise-to-signal ratios as in the preceding examples.3 The signal
Z is chosen as above as N+(0, 0.82). The second non-normal specification is ε ∼ C2×Laplace,
where again C2 = σ/

√
2 to tune correctly ρnts. Our results are displayed in Tables 5 and 6.

In the last two examples we may expect better results from our approach since our
specification is correct, whereas the one in KSVK is wrong. The global picture coming from
the comparisons with Tables 6 and 7 in KSVK is however very similar to the preceding cases:
same order of magnitude for the RMSE for the two cases, which confirms that KSVK is
rather robust to these two deviations from normality, and that our approach is not quite

3Note the unfortunate typo in Kneip et al. (2015), where C1 is wrongly defined as σ/2, but this is only
a typo, the calculations have been done in KSVK with the correct value of C1.
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well adapted to situations where we have no noise.

5 Estimation of frontiers

We now extend the marginal analysis studied in the previous sections, to the conditional
analysis of the boundary of X given a number of explanatory variables. The observable
variables are now (Y,W ), where the vector W = (W t

1,W
t
2)t contains variables describing the

level of outputs in a cost analysis (denoted by W1) and/or environmental variables (denoted
by W2). We are interested in the distribution of X, and in particular in the frontier of
X, conditional on W1 ≥ w1 and/or W2 = w2. In this paper our approach is based on the
estimation of τ for given values of w1 and w2 and the estimated τ̂α(w1, w2) is the estimated
frontier function. This means that we estimate τ(w1, w2) without any regularity constraint
(smoothness, monotonicity, concavity,...) on this frontier function. If the estimator τ̂(w1, w2)

does not satisfy the required constraints, τ̂(w1, w2) may in a second step be approximated
by a function that verifies the constraints. Another approach not presented in this paper
would be to estimate the parameters λ as a function of w1 and w2 by imposing constraints.
For instance, λ may be estimated under smoothness constraints with respect to w1 and w2

in order to estimate the smooth frontier τ(w1, w2).
Let us now give the precise definition of τ̂(w1, w2). Suppose we have a sample (Yi,Wi),

i = 1, . . . , n, of i.i.d. observations having the same distribution as (Y,W ). Conditioning on
W1 ≥ w1 is done in an elementary way : the sample is restricted to the observations verifying
W1j ≥ w1 (where the inequality is taken componentwise), and the relevant sample size is no
longer n but n(w1) =

∑n
j=1 I{W1j ≥ w1}, the number of observations for which W1j ≥ w1.

In absence of the W2 variable the construction is hence identical to our previous marginal
construction and the asymptotic normality of λ̂α(w1) is derived from the property that

{n(w1)}1/2
{
ψ̂Y (t|W1 ≥ w1)− ψY (t|W1 ≥ w1)

}
converges to a Gaussian process with covariance function ψY (s + t|W1 ≥ w1) − ψY (s|W1 ≥
w1)ψY (t|W1 ≥ w1), where ψ̂Y (t|W1 ≥ w1) = n(w1)−1

∑n
j=1 I{W1j ≥ w1}eitYj .

Conditioning on W2 = w2 requires kernel smoothing or any other method for estimating
a conditional expectation. Our marginal approach studied in the previous sections was based
on the (penalized) minimization of the distance between η̂(·)−η̂(0) and ηλ(·)−ηλ(0). We now
replace η̂(·) by η̂(·|W2 = w2) and the solution λ will be a function of w2. Here, η̂(t|W2 = w2)

15



equals ∂
∂t
= log ψ̂Y (t|W2 = w2), where ψ̂Y (t|W2 = w2) is given by

ψ̂Y (t|W2 = w2) =
1

n

n∑
j=1

Kh(w2 −W2j)

f̂W2(w2)
eitYj ,

where K(u) = k(u1)× · · · × k(up2) for u = (u1, . . . , up2) with p2 the dimension of W2, k is a
univariate kernel function, Kh(u) = h−p2k(u1/h)× · · · × k(up2/h), h is bandwidth sequence,
and f̂W2(w2) = n−1

∑n
j=1 Kh(w2−W2j) is a kernel estimator of the density fW2 ofW2. Under

usual regularity conditions, it may be proved that

(nhp2)1/2
(
ψ̂Y (·|W2 = w2)− ψY (·|W2 = w2)

)
converges weakly in E to a zero-mean Gaussian process with covariance operator character-
ized by the function∫

k2(u)du

fW2(w2)

[
ψY (s+ t|W2 = w2)− ψY (s|W2 = w2)ψY (t|W2 = w2)

]
.

Apart from these modifications on the rate and on the covariance, the analysis is identical
to the non-conditional case.

Finally, the combination of the conditionsW1 ≥ w1 andW2 = w2 is obvious : it suffices to
replace n by n(w1), fW2(w2) by fW2(w2|W1 ≥ w1) and the conditional characteristic function
is now ψY (t|W1 ≥ w1,W2 = w2).

Based on this result, the asymptotic normality of the estimators λ̂(w1, w2) and τ̂(w1, w2)

can now be derived in the same way as it has been done in Theorems 3.2 and 3.3 in the
univariate case. In particular, the rates of convergence are the same as for the estimator ψ̂Y .

We conclude this section by some Monte-Carlo experiments to illustrate how the methods
work and for allowing the comparison with the Kneip et al. (2015) (KSVK) approach.
We thus follow the KSVK scenario and their strategy for the estimation of the frontier
function. The only difference is that they use the assumption of normality of the noise in
their approach, whereas we only use the information that the noise is symmetric, as developed
above. The Monte-Carlo scenario in KSVK (which was already used in Hall and Simar, 2002)
can be described as follows. We want to estimate a production frontier (instead of a cost
frontier), giving the maximum achievable level of the output Y when using the amount of
input W . We use the maximum instead of the minimum, in order to be coherent with what
was done in KSVK. This has however no influence on the methodology. The stochastic
frontier model can thus be written as

Y = τ(W ) exp(−Z) exp(ε), (5.1)
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where we only know that Z ≥ 0 and ε is symmetric around zero. As in KSVK, we simulate n
data points from the following model: τ(w) = w1/2, Z ∼ Exp(3) and ε ∼ N(0, 0.06672), with
W ∼ U(0, 1), all the variables W,Z and ε are independent in this scenario. Note that ρnts =

0.20. As in KSVK, we analyze the estimation of τ(w) for 3 values of w = (0.25, 0.50, 0.75)

and we select a neighborhood for each w, by using the same bandwidth hw (given by the
usual rule of thumb). Note that taking the logarithms we have

log Y = log τ(W )− Z + ε, (5.2)

which has exactly the additive form of our model. As in KSVK, we do not use directly the
observations log Yi for which |Wi−w| ≤ hw but we rather use a “local linear” approximation
of τ(·) around the point of interest w. To be more precise, the idea is as follows : if
τ(·) is sufficiently smooth we have from a Taylor expansion that log τ(W ) is approximately
log τ(w) + βt(w)(W − w) and for small hw we then obtain

log Yi ≈ α(w) + βt(w)(Wi − w)− Z̃i(w) + εi, if |Wi − w| ≤ hw, (5.3)

where α(w) = log τ(w) − E(Z|W = w) and Z̃i(w) = Zi − E(Z|W = w). Since in the last
equation the error term has locally zero mean, α(w) and β(w) can be estimated by ordinary
least squares. Now we have for all Wi with |Wi − w| ≤ hw:

log Ỹi := log Yi − βt(w)(Wi − w)

≈ log τ(w)− Zi + εi,

which suggests to estimate the frontier function atW = w by the upper boundary of the local
linear least squares estimator of log Ỹi for |Wi−w| ≤ hw rather than the upper boundary of
the local observations log Yi themselves (see the practical details in Kneip et al., 2015).

We used 200 Monte-Carlo replications to evaluate both the bias and the MSE, and
compared the results with those obtained in KSVK for the case n = 100 and n = 500. The
results are shown in Table 7. The table deserves some comments. First we see that the
results are going in the expected direction: the MSE for both τ(w) and σ(w) decreases when
n increases. Comparing with the results in KSVK, we see that for n = 100 the results are,
as expected, less accurate in our approach, since we only use the symmetry assumption for
the distribution of the noise. Note also that we have very few observations for each value
of w (on average only 24 data points for log Ỹi). As a result, and comparing with Table 8
in KSVK, we see that the MSE for the estimation of τ(w) has an order augmented by a
factor 2. For the estimation of σ(w) the situation is worse and we have a factor 10. The

17



situation is much better when the sample size increases to n = 500. Here for the estimation
of τ(w) we reach for the MSE the same order as the values in KSVK. For σ(w) we still have
disappointing results with the MSE greater by a factor 7. In this case (n = 500), note that
for each value of w, we only use on average 88 data points, which is not much for a procedure
that does not exploit the normality of the noise, as opposed to KSVK. This is the price to
pay for being more general. 4

Only for illustration, we show also in Table 8 the results obtained by conditioning not
on W = w but rather on W ≤ w as described above (we are in a production setup here
so we look for the upper support of Y given that W ≤ w). In this case there is no local
linear smoothing step. To summarize, we see that in this scenario the results are similar for
the estimation of τ(w), but they are still worse for the estimation of σ(w), where too many
Monte-Carlo estimates were set to zero. For the chosen scenario, the first approach seems
more appropriate.

To end this section, we illustrate our procedure with a real data set coming from 2326
post offices (delivery offices) of a French operator, observed in 2013. For each post office we
have the level of the activity, the output W (the volume of delivered mail), and the labor
cost measured by the quantity of labor (number of hours) X. This data set has been used
in a different context (deterministic frontier) in Cazals et al. (2016).

We are here interested in the cost frontier, conditional on the value W = w, from the
sample of n = 2326 observations (Wi, Yi), where i = 1, . . . , n and Yi are the noisy versions
of Xi. Due to the shape of the cloud of points (quite asymmetric with heavy right tails for
both dimensions) we decided to work on a logarithmic scale for both input and output. The
localization in the logW is done by selecting a bandwidth hw = 0.1944 which was obtained
by least-squares cross validation for estimation of the conditional distribution of log Y given
logW (see Li et al, 2013). As explained above for estimating the cost frontier around logw,
we use a local linear approximation, as suggested in Kneip et al. (2015). In particular, we
do not use directly the observations log Yi for which | logWi − logw| ≤ hw, but their local
linear approximations log Ỹi = log Yi − βt(w)(logWi − logw) where β(w) is the local slope
obtained by local ordinary least squares approximation of log Yi over (logWi − logw) (see
details above).

The estimates are computed for a fixed grid of 21 values of logw. The values for m
4We might expect better performance of our approach compared to KSVK when the noise is not normal.

Unfortunately we know from the results in the univariate case, that for the Student-t and the Laplace cases
we need a lot of observations to improve the KSVK approach, see the comments above on Tables 5 and 6.
Here for each value of w, we only have roughly 24 observations when n = 100 and 88 when n = 500.
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are selected over a grid of values m = 0, . . . , 5 and for the penalty term over a grid of 21
equidistant values of α ∈ [0, 3]. The optimal values of the pairs (m,α) are obtained, at each
selected value of logw, by minimizing the bootstrap estimate of the RMSE of the frontier
estimates (500 bootstrap replications at each point).

The results are displayed in Figure 1 and the 21 values of logw are shown by the blue
circles. The final estimate of the cost frontier is obtained by smoothing these pointwise esti-
mates (we used a standard B-splines smoothing technique, cubic splines, 20 knots, penalty
on second derivatives with penalty factor 10, see Eilers and Marx, 1996). We can see how
the cost frontier “envelops” the cloud of points by letting as expected a few points outside the
frontier. In particular a few points are really extreme (e.g. around the coordinate (11.7,5))
and our model is quite robust to these outliers. In the logarithmic units that we have chosen,
the magnitude of σ̂ε(w) is stable over the 21 pointwise estimates and is of the order of 10−4.
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Figure 1: Example with data from post offices, the curve is a smoothed version of the pointwise
estimates (blue circles). The n = 2326 data points are also displayed.
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6 Conclusion and further research

This paper presents a new nonparametric analysis of the model Y = τ + Z + ε (with Z ≥ 0

and ε ∈ R), where ε is only constrained to be symmetric, the distribution of Z is supposed
to belong to a flexible parametric class, and Z and ε are independent. We also consider the
extension to stochastic frontier models. We provide an estimation approach based on the
cumulant functions of odd order and we develop asymptotic properties of our estimator. A
tractable family for the distribution of the inefficiency Z is proposed, and the power of our
method is shown via simulations.

In this paper we estimate the true frontier, i.e. the minimal value of the cost. It is well
known that this estimator is not robust, in particular to outliers. We may argue that the
introduction of a stochastic error improves the robustness of the estimation of the frontier,
but it is possible to adapt the technology of this paper to a robust estimator. From the
information contained in the imaginary part of the characteristic function we may estimate
the survival function S(x|w1, w2) = P (X ≥ x|W1 ≥ w1,W2 = w2) of X given W1 ≥ w1 and
W2 = w2, which leads to an estimator of the quantile τα(w1, w2) = S−1(1−α|w1, w2), or the
m-frontier τm(w1, w2) =

∫∞
0
Sm(u|w1, w2) du, see e.g. Daouia and Simar (2007) and Cazals

et al. (2002). A deeper analysis of the relation between stochastic frontiers and robustness
will be the topic of future research.

Several extensions of deterministic frontiers may be considered in the case of stochastic
frontiers with symmetric errors, like endogeneity, separability, among others.

Finally, note that our model is an example of a more general situation. We want to
estimate a function or a set of functions which are non identified (different functions are
compatible with the data generating process). However, there exists a sieve family of para-
metric approximations which satisfies the two following properties. First for any finite di-
mensional parametric approximation the parameters are identified and, second, there exists
a sequence of parametric approximations which converges (for a suitable topology) to any
function. Intuitively, if the dimension of the parametric model increases the approximation
is more accurate but the model is less identified and the choice of the parametric dimension
follows from a trade-off between these two arguments. In our example the lack of identi-
fication requires the introduction of the penalty term which introduces an estimation bias.
Two tuning parameters should be determined: the size of the approximation and the penalty
parameter. In our paper we assume that the true function belongs to a finite parametric
family and we do not develop the general theory.
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A Appendix A: Proofs of the main results

We start by stating the regularity conditions under which our main asymptotic results are
valid.

(C1) Tλ = ηλ − ηλ(0) is an operator from Λ to the space E , Tλ is injective and Lipschitz
continuous, and supλ∈Λ

∫
|Tλ|2w <∞.

(C2) Tλ is Fréchet differentiable and the Fréchet derivative T ′λ is a linear, injective and
bounded operator from Rm to E for λ ∈ Λ. The adjoint T ′∗λ of T ′λ satisfies ‖T ′∗λ −T ′∗λ0‖ ≤
γ‖λ− λ0‖, and T ′∗λ g (g ∈ E) is continuously differentiable for λ in the interior of Λ.

(C3) There exists a λα in the interior of Λ that is the unique solution of minλ∈Λ

{
‖Tλ0 −

Tλ‖2 + α‖λα‖2
}
, for all α > 0.

(C4) The matrix ∆ (defined in Theorem 3.2) is positive definite.

(C5) The function

u : Λ→ R2 : λ→

(
a(λ)

b(λ)

)
is continuously differentiable.

Proof of Theorem 3.1. It is easily seen that in the space E the process n1/2(ψ̂Y (·)−ψY (·))
converges weakly to a zero-mean Gaussian process with covariance function (β(s, t))s,t given
by β(s, t) = ψY (s+ t)− ψY (s)ψY (t) (see e.g. Van der Vaart and Wellner, 1996, Chapter 1.8
for weak convergence in Hilbert spaces). Next, using the Delta-method it follows that the
process

n1/2
(
= log ψ̂Y (·)−= logψY (·)

)
converges weakly to a zero-mean Gaussian process, whose covariance function is given by

1

4

{ ψY (t− s)
ψY (t)ψY (s)

+
ψY (t− s)
ψY (t)ψY (s)

− ψY (t+ s)

ψY (t)ψY (s)
− ψY (t+ s)

ψY (t)ψY (s)

}
,
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since = log ψ̂Y (t) = (2i)−1(log ψ̂Y (t)−log ψ̂Y (t)). Since the covariance function of this process
is twice continuously differentiable, it follows from Theorem 2.2.2 in Adler (1981) that

n1/2
(
T̂ − Tλ0

)
= n1/2 ∂

∂t

(
= log ψ̂Y (·)−= log ψ̂Y (0)−= logψY (·) + = logψY (0)

)
converges also weakly to a zero-mean Gaussian process whose covariance operator is given
in the statement of the theorem. 2

Proof of Theorem 3.2. For the consistency note that we need to show that (see e.g. Van
der Vaart (1998), Theorem 5.7, p. 45)

sup
λ∈Λ

∣∣∣ ∫ {[(T̂ − Tλ)2w + α‖λ‖2
]
−
[
(Tλ0 − Tλ)2w + α‖λ‖2

]}∣∣∣ P→ 0.

The integral in the above expression is bounded in absolute value by∣∣∣ ∫ T̂ 2w −
∫
T 2
λ0
w
∣∣∣+ 2 sup

λ

∣∣∣ ∫ (T̂ − Tλ0)Tλw
∣∣∣

≤
∣∣∣ ∫ T̂ 2w −

∫
T 2
λ0
w
∣∣∣+ 2

(∫
(T̂ − Tλ0)2w

)1/2

sup
λ

(∫
|Tλ|2w

)1/2

,

and this tends to zero in probability.
Next we prove the asymptotic normality of λ̂α. It follows from (3.2) and (3.3) that

α(λ̂α − λα) + T ′∗λα(Tλ̂α − Tλα)− (T ′∗
λ̂α
− T ′∗λα)(T̂ − Tλ̂α) = T ′∗λα(T̂ − Tλ0).

Note that

(T ′∗
λ̂α
− T ′∗λα)(T̂ − Tλ̂α)

= (T ′∗
λ̂α
− T ′∗λα)

{
(T̂ − Tλ0) + (Tλ0 − Tλα) + (Tλα − Tλ̂α)

}
= −∇(T ′∗λ S)|S=Tλα−Tλ0 ,λ=λα(λ̂α − λα) + oP (‖λ̂α − λα‖),

since ‖T ′∗
λ̂α
− T ′∗λα‖ ≤ γ‖λ̂α − λα‖ for some γ <∞, and similarly for Tλα . Hence,

λ̂α − λα =
(
αI + T ′∗λαT

′
λα +∇(T ′∗λ S)|S=Tλα−Tλ0 ,λ=λα

)−1

T ′∗λα(T̂ − Tλ0) + oP (‖λ̂α − λα‖),

from which the asymptotic normality follows. 2

Proof of Theorem 3.3. By following similar arguments as in the proof of Theorem 3.1,
we can show that the process

n1/2


Y − E(Y )

n−1
∑n

j=1 Y
2
j − E(Y 2)

η̂Y (·)− ηY (·)

 = n1/2


−i
(
∂
∂t
ψ̂Y (t)|t=0 − E(Y )

)
−
(
∂2

∂t2
ψ̂Y (t)|t=0 − E(Y 2)

)
∂
∂t
= log ψ̂Y (·)− ηY (·)


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converges weakly to a zero-mean Gaussian process with variance operator Ξ characterized
for fixed s and t by

− ∂2

∂s∂t
β(s, t)|s,t=0 i ∂3

∂s∂t2
β(s, t)|s,t=0 −1

2
∂2

∂s∂t

[
β(s,t)
ψY (t)

− β(s,−t)
ψY (−t)

]∣∣∣
s=0

i ∂3

∂s2∂t
β(s, t)|s,t=0

∂4

∂s2∂t2
β(s, t)|s,t=0 − 1

2i
∂3

∂s2∂t

[
β(s,t)
ψY (t)

− β(s,−t)
ψY (−t)

]∣∣∣
s=0

−1
2
∂2

∂s∂t

[
β(s,t)
ψY (s)

− β(−s,t)
ψY (−s)

]∣∣∣
t=0

− 1
2i

∂3

∂s∂t2

[
β(s,t)
ψY (s)

− β(−s,t)
ψY (−s)

]∣∣∣
t=0

σ(s, t)

 ,

where β(s, t) = ψY (s+ t)− ψY (s)ψY (t), and where σ(s, t) is defined in Theorem 3.1. Let us
rewrite this matrix as 

a11 a12 c1(t)

a21 a22 c2(t)

c1(s) c2(s) σ(s, t)

 .

Use the notation

A =

(
a11 a12

a21 a22

)
,

let Σ be the operator characterized by σ(s, t), and let C be the operator from E to R2 given
by

Cg =

(
〈c1, g〉E
〈c2, g〉E

)
.

Then, Ξ may be partitioned into (
A C

C∗ Σ

)
,

where C∗ is the adjoint operator of C. Define the 2× 2 matrix

M =

(
1 −2E(Y )

0 1

)
,

and let Υ be the linear operator from E to Rm that is such that the asymptotic variance of
λ̂α for fixed α is given by ΥΣΥ∗ (this is possible thanks to Theorem 3.2). Also, define the
function u : Rm → R2 such that

u(λ) =

(
a(λ)

b(λ)

)
,

and let ∂u
∂λ

be the 2×m matrix of partial derivatives. Then,

n1/2


Y − E(Y )

σ̂2
Y − [E(Y 2)− E(Y )2]

u(λ̂α)− u(λ)

 d→ N

(
0,

(
MAM t MCΥ∗ ∂u

∂λ

t

∂u
∂λ

ΥC∗M t ∂u
∂λ

ΥΣΥ∗ ∂u
∂λ

t

))
.
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The latter variance matrix is a 4× 4 matrix which we denote by

B =

(
B11 B12

B21 B22

)
.

It now follows that

n1/2

(
τ̂α − τα
σ̂2
α − σ2

α

)
d→ N

(
0, B11 +B22 −B12 −B21

)
.

2

Proof of Theorem 3.4. We follow the method of proof given in Engl et al (1996). First
note that by definition of λ̂α,

‖T̂ − Tλ̂α‖
2 ≤ ‖T̂ − Tλ̂α‖

2 + α‖λ̂α‖2 ≤ ‖T̂ − Tλ0‖2 + α‖λ0‖2, (A.1)

and this converges to zero in probability if α → 0, since ‖T̂ − Tλ0‖2 = OP (n−1) thanks to
Theorem 3.1. Hence, Tλ̂α

P→ Tλ0 , since

‖Tλ̂α − Tλ0‖ ≤ ‖Tλ̂α − T̂‖+ ‖T̂ − Tλ0‖
P→ 0.

Moreover, ‖λ̂α‖ = OP (1), since by (A.1), ‖λ̂α‖ = OP ((nα)−1)+‖λ0‖2 = OP ((nα)−1). It now
follows that there exists a subsequence λ̂α,ss of λ̂α that converges in probability to a certain
limit λ. Hence, Tλ̂α,ss

P→ Tλ. We also know that Tλ̂α,ss
P→ Tλ0 . Hence, by the injectivity of

T , λ = λ0. Since τ̂α and σ̂2
α are functions of λ̂α, Y and σ̂2

Y , the same holds true for τ̂α and
σ̂2
α. 2

B Appendix B: Some properties of Laguerre polynomials

The Laguerre polynomials are easy to build. For k = 0, 1, . . ., they can be written as

vk(z) =
k∑
j=0

(
k

j

)
(−1)k−j

j!
zj, (B.1)

and it is easy to prove that∫ ∞
0

vk1(z)vk2(z)e−zdz =

{
0 if k1 6= k2

1 if k1 = k2.
(B.2)

In Figure 2 we illustrate how flexible the family is with only m = 3. We display 5
densities randomly selected from this family. Here, the parameters θ1, θ2 and θ3 are randomly
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Figure 2: The 5 densities d1 to d5 are randomly selected from the parametric family with
m = 3. The parameters θ1, θ2 and θ3 are drawn from independent N(0, 1) variables.

generated from independent N(0, 1) variables. We see how even with only m = 3 we cover
a wide variety of shapes of the resulting densities. The coefficients a1, . . . , a7 are given in
Table 9 for each of the 5 densities, and are derived from formulas (4.3)-(4.5).

In Figures 3 and 4 we show how usual parametric densities used for positive random
variables are easily approximated by a density in our family (4.1). We consider the half-
normal and the truncated-normal. We see that even with low order for m we have already
a good ‘visual’ approximation.

To conclude we give the proof of Lemma 4.1.
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Figure 3: Plots of the true half-normal density, fZ(z) (dashed-red), together with the best
parametric approximation fm(z|θ) (solid blue) for m = 1, 3, 5 (respectively).

Proof of Lemma 4.1. Write

fm(z|θ) =
e−z

‖θ‖2

{ m∑
k=0

θkvk(z)
}2

=
e−z

‖θ‖2

{ m∑
k=0

θk

k∑
j=0

(
k

j

)
(−1)k−j

j!
zj
}2

=
e−z

‖θ‖2

{ m∑
j=0

m∑
k=j

θk

(
k

j

)
(−1)k−j

j!
zj
}2

.

The expression between braces can be written as
∑m

j=0 cjz
j with, for j = 0, . . . ,m,

cj =
m∑
k=j

θk

(
k

j

)
(−1)k−j

j!
.
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Figure 4: Plots of the true truncated-normal density, fZ(z) (dashed-red), together with the
best parametric approximation fm(z|θ) (solid blue) for m = 1, 3, 5, 10 (respectively).

Moreover,

( m∑
j=0

cjz
j
)2

=
m∑
k=0

m∑
j=0

ckcjz
k+j =

m∑
k=0

m+k∑
j=k

ckcj−kz
j

=
m∑
j=0

( j∑
k=0

ckcj−k

)
zj +

2m∑
j=m+1

( m∑
k=j−m

ckcj−k

)
zj =

2m∑
j=0

bjz
j,

where

bj =

{ ∑j
k=0 ckcj−k if j = 0, 1, . . . ,m∑m
k=j−m ckcj−k if j = m+ 1,m+ 2, . . . , 2m.

Hence,

fm(z|θ) =
e−z

‖θ‖2

2m∑
j=0

bjz
j =

2m∑
j=0

aj
zje−z

Γ(j + 1)
,
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where aj = bjΓ(j + 1)/‖θ‖2. This provides (4.3). Since fm(z|θ) is a density on R+, it
integrates to one, yielding

∑2m
j=0 aj = 1. 2

C Appendix C: Some details about the practical imple-

mentation

The method has been implemented in MATLAB, but should be easy to implement in R too.
The basic calculations are summarized in Section 3.1. First, the values appearing in the
optimization problem (3.1) are calculated for all t ∈ R as

T̂ (t) = =

[∑n
j=1 iYj exp(itYj)∑n
j=1 exp(itYj)

]
− Y ,

Tλ(t) = =
[
ψ′Z(t|θ)/ψZ(t|θ)

]
− E(Z|θ),

where explicit expressions for ψ′Z(t|θ), ψZ(t|θ) and E(Z|θ) are given in (4.7), (4.8) and (4.6),
respectively. The = operator is obtained through the build-in function “imag” from MAT-
LAB.

The integral in (3.1) is computed by trapezoidal methods over a grid of 2000 equidistant
points over the interval [−t∗, t∗], where t∗ is selected following the rule motivated in Delaigle
and Hall (2016), i.e., t∗ is the smallest t > 0 such that |ψ̂Y (t)| ≤ n−1/4. This is only a rule of
thumb based on the fact that n−1/2 is the order of magnitude of the error when estimating
ψY (t).5 For the weight function w(t) we used the Epanechnikov kernel rescaled to the interval
[−t∗, t∗].6 For the optimization procedure we used the unconstrained optimization program
“fminunc” from MATLAB.

For the estimation of the variance, we slightly modify the formula given in (3.4) to obtain
positive values for σ̂2

α = max{0, σ2
Y − b(λ̂α)}. As suggested in the supplement of Delaigle

and Hall (2016) we obtained slightly better results by fitting the polynomial 1 − (1/2)t2σ2

to ψ̂ε(t) in a neighborhood of t = 0. Here

ψ̂ε(t) =
ψ̂Y (t)

ψ̂Z(t) exp(itτ̂α(t))
,

5Note that we tried also with a grid of only 1000 values and a threshold value for |ψ̂Y (t)| such as n−1/2,
without significant changes in the results.

6We tried also other kernels in some pilot experiments, like uniform, triangular, quartic, with similar
results. Symmetric kernels giving more weight near zero gave slightly better results. So the results in our
tables correspond to the Epanechnikov case.
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and then we can define, as suggested in Delaigle and Hall (2016), the estimator

σ̂2
α = arg min

σ≥0

∫ t0

−t0

[
ψ̂ε(t)− 1 + (1/2)t2σ2

]2

dt,

where t0 is small and fixed as sup|t|≤t0 |ψ̂ε(t)−1| ≤ 0.05. In fact the two estimation approaches
gave very similar results, but we report in our tables the values obtained by the Delaigle and
Hall approach.

31



Table 1: Scenario 1: Z ∼ Exp(2) with µZ = σZ = 0.5, and Gaussian noise N(0, σ2), see
Table 2 in Kneip et al. (2015). The results are based on 200 Monte-Carlo trials.

n = 50 n = 100 n = 500

τ̂ σ̂ m α τ̂ σ̂ m α τ̂ σ̂ m α

Noise to signal ratio ρnts = 0.00, σ = 0.0000

RMSE 0.0652 0.0288 4 0.150 0.0523 0.0172 4 0.150 0.0249 0.0101 2 0.050
BIAS 0.0443 0.0090 0.0405 0.0039 0.0220 0.0024
STD 0.0480 0.0274 0.0333 0.0168 0.0117 0.0099

Noise to signal ratio ρnts = 0.10, σ = 0.0500

RMSE 0.0598 0.0517 4 0.100 0.0387 0.0510 4 0.050 0.0160 0.0406 2 0.000
BIAS 0.0282 -0.0260 0.0076 -0.0114 -0.0000 -0.0118
STD 0.0528 0.0448 0.0380 0.0499 0.0160 0.0390

Noise to signal ratio ρnts = 0.25, σ = 0.1250

RMSE 0.0695 0.0749 4 0.040 0.0472 0.0593 4 0.030 0.0262 0.0289 4 0.020
BIAS 0.0094 -0.0205 0.0020 -0.0085 0.0049 -0.0038
STD 0.0690 0.0723 0.0473 0.0588 0.0258 0.0288

Noise to signal ratio ρnts = 0.50, σ = 0.2500

RMSE 0.0833 0.0776 2 0.000 0.0653 0.0607 2 0.000 0.0449 0.0271 4 0.010
BIAS 0.0117 0.0003 0.0071 0.0199 0.0040 -0.0036
STD 0.0827 0.0778 0.0651 0.0575 0.0448 0.0269

Noise to signal ratio ρnts = 0.75, σ = 0.3750

RMSE 0.1116 0.0851 2 0.000 0.0858 0.0570 2 0.000 0.0459 0.0369 2 0.010
BIAS 0.0268 -0.0270 0.0156 -0.0039 0.0158 0.0021
STD 0.1086 0.0810 0.0846 0.0570 0.0432 0.0369
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Table 2: Scenario 2: Z ∼ Exp(1) with µZ = σZ = 1, and Gaussian noise N(0, σ2), see Table
3 in Kneip et al. (2015). The results are based on 200 Monte-Carlo trials.

n = 50 n = 100 n = 500

τ̂ σ̂ m α τ̂ σ̂ m α τ̂ σ̂ m α

Noise to signal ratio ρnts = 0.00, σ = 0.0000

RMSE 0.0896 0.1687 10 0.800 0.0633 0.1200 10 0.950 0.0247 0.0605 10 0.950
BIAS -0.0200 0.1077 -0.0172 0.0789 -0.0085 0.0381
STD 0.0875 0.1302 0.0611 0.0906 0.0232 0.0472

Noise to signal ratio ρnts = 0.10, σ = 0.1000

RMSE 0.0903 0.1360 10 0.590 0.0654 0.1025 10 0.980 0.0279 0.0513 10 0.590
BIAS -0.0211 0.0341 -0.0156 0.0090 -0.0092 -0.0094
STD 0.0881 0.1320 0.0637 0.1024 0.0264 0.0505

Noise to signal ratio ρnts = 0.25, σ = 0.2500

RMSE 0.1005 0.1230 10 0.250 0.0768 0.0887 8 0.400 0.0362 0.0394 10 0.600
BIAS -0.0207 0.0132 -0.0205 0.0153 -0.0064 0.0002
STD 0.0986 0.1226 0.0742 0.0876 0.0357 0.0395

Noise to signal ratio ρnts = 0.50, σ = 0.5000

RMSE 0.1318 0.1239 10 0.200 0.0983 0.0807 10 0.350 0.0525 0.0434 10 0.600
BIAS -0.0038 -0.0177 -0.0029 0.0016 -0.0033 -0.0019
STD 0.1321 0.1229 0.0985 0.0808 0.0525 0.0435

Noise to signal ratio ρnts = 0.75, σ = 0.7500

RMSE 0.1604 0.1592 8 0.600 0.1207 0.1013 8 0.600 0.0630 0.0504 10 0.600
BIAS 0.0088 -0.0432 0.0039 -0.0123 -0.0015 -0.0066
STD 0.1605 0.1537 0.1209 0.1008 0.0631 0.0501
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Table 3: Scenario 3: Z ∼ N+(0, 0.82) with µZ = 0.6383 and σZ = 0.4822, and Gaussian
noise N(0, σ2), see Table 4 in Kneip et al. (2015). The results are based on 200 Monte-Carlo
trials.

n = 50 n = 100 n = 500

τ̂ σ̂ m α τ̂ σ̂ m α τ̂ σ̂ m α

Noise to signal ratio ρnts = 0.00, σ = 0.0000

RMSE 0.0689 0.0007 4 0.500 0.0461 0.0001 2 0.550 0.0250 0.0001 2 0.450
BIAS 0.0221 0.0001 0.0013 0.0001 0.0028 0.0001
STD 0.0655 0.0007 0.0462 0.0000 0.0249 0.0000

Noise to signal ratio ρnts = 0.10, σ = 0.0482

RMSE 0.0662 0.0474 2 0.550 0.0463 0.0480 2 0.550 0.0254 0.0481 2 0.450
BIAS -0.0031 -0.0467 0.0023 -0.0479 0.0015 -0.0480
STD 0.0663 0.0086 0.0463 0.0027 0.0254 0.0012

Noise to signal ratio ρnts = 0.25, σ = 0.1206

RMSE 0.0837 0.0820 8 0.050 0.0836 0.0501 4 0.125 0.0656 0.0409 4 0.075
BIAS 0.0338 -0.0259 -0.0556 -0.0181 -0.0491 -0.0161
STD 0.0767 0.0780 0.0625 0.0468 0.0436 0.0377

Noise to signal ratio ρnts = 0.50, σ = 0.2411

RMSE 0.1192 0.0832 2 0.100 0.0933 0.0634 4 0.100 0.0730 0.0496 10 0.025
BIAS -0.0876 -0.0412 -0.0605 -0.0362 0.0559 -0.0346
STD 0.0811 0.0724 0.0712 0.0522 0.0471 0.0356

Noise to signal ratio ρnts = 0.75, σ = 0.3617

RMSE 0.1290 0.0910 2 0.075 0.1015 0.0778 2 0.100 0.0790 0.0573 6 0.050
BIAS -0.0884 -0.0441 -0.0772 -0.0464 0.0473 -0.0421
STD 0.0942 0.0798 0.0660 0.0626 0.0634 0.0390
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Table 4: Scenario 4: Z ∼ N+(0.6, 0.62) with µZ = 0.7726 and σZ = 0.4761, and Gaussian
noise N(0, σ2), see Table 5 in Kneip et al. (2015). The results are based on 200 Monte-Carlo
trials.

n = 50 n = 100 n = 500

τ̂ σ̂ m α τ̂ σ̂ m α τ̂ σ̂ m α

Noise to signal ratio ρnts = 0.00, σ = 0.0000

RMSE 0.0673 0.0001 6 1.000 0.0494 0.0001 6 1.200 0.0199 0.0002 8 1.400
BIAS -0.0089 0.0001 -0.0054 0.0001 0.0010 0.0002
STD 0.0669 0.0000 0.0492 0.0000 0.0199 0.0000

Noise to signal ratio ρnts = 0.10, σ = 0.0476

RMSE 0.0681 0.0475 6 1.000 0.0495 0.0475 6 1.200 0.0204 0.0475 6 1.400
BIAS -0.0086 -0.0475 -0.0039 -0.0475 -0.0015 -0.0475
STD 0.0678 0.0000 0.0494 0.0000 0.0204 0.0000

Noise to signal ratio ρnts = 0.25, σ = 0.1190

RMSE 0.1038 0.0673 10 0.200 0.0877 0.0515 10 0.250 0.0738 0.0222 8 0.250
BIAS -0.0712 -0.0228 -0.0695 -0.0193 -0.0700 -0.0068
STD 0.0757 0.0635 0.0537 0.0478 0.0233 0.0212

Noise to signal ratio ρnts = 0.50, σ = 0.2381

RMSE 0.1097 0.0949 10 0.150 0.0994 0.0590 8 0.125 0.0891 0.0280 8 0.125
BIAS -0.0684 -0.0589 -0.0810 -0.0259 -0.0846 -0.0129
STD 0.0859 0.0746 0.0578 0.0531 0.0281 0.0249

Noise to signal ratio ρnts = 0.75, σ = 0.3571

RMSE 0.1250 0.1027 8 0.075 0.0935 0.0815 6 0.100 0.0884 0.0385 6 0.100
BIAS -0.0766 -0.0510 -0.0638 -0.0557 -0.0802 -0.0280
STD 0.0990 0.0894 0.0685 0.0597 0.0374 0.0266
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Table 5: Scenario 5: Z ∼ N+(0, 0.82) with µZ = 0.6383 and σZ = 0.4822, and Student noise
C1 × Stud(4), where C1 = σ/

√
2, see Table 6 in Kneip et al. (2015). The results are based

on 200 Monte-Carlo trials.

n = 50 n = 100 n = 500

τ̂ σ̂ m α τ̂ σ̂ m α τ̂ σ̂ m α

Noise to signal ratio ρnts = 0.00, σ = 0.0000

RMSE 0.0689 0.0007 4 0.500 0.0461 0.0001 2 0.550 0.0250 0.0001 2 0.450
BIAS 0.0221 0.0001 0.0013 0.0001 0.0028 0.0001
STD 0.0655 0.0007 0.0462 0.0000 0.0249 0.0000

Noise to signal ratio ρnts = 0.10, σ = 0.0482

RMSE 0.0663 0.0475 2 0.550 0.0468 0.0480 2 0.550 0.0253 0.0481 2 0.450
BIAS -0.0032 -0.0467 0.0023 -0.0479 0.0016 -0.0480
STD 0.0664 0.0090 0.0469 0.0028 0.0253 0.0012

Noise to signal ratio ρnts = 0.25, σ = 0.1206

RMSE 0.0814 0.0848 8 0.075 0.0790 0.0569 4 0.150 0.0649 0.0414 4 0.075
BIAS 0.0394 -0.0371 -0.0478 -0.0335 -0.0488 -0.0173
STD 0.0714 0.0764 0.0631 0.0460 0.0428 0.0377

Noise to signal ratio ρnts = 0.50, σ = 0.2411

RMSE 0.0967 0.1155 8 0.050 0.0998 0.0643 2 0.100 0.0731 0.0582 10 0.025
BIAS 0.0412 -0.0564 -0.0837 -0.0374 0.0540 -0.0420
STD 0.0876 0.1010 0.0545 0.0525 0.0494 0.0404

Noise to signal ratio ρnts = 0.75, σ = 0.3617

RMSE 0.1282 0.1137 2 0.075 0.1098 0.0807 2 0.075 0.0768 0.0677 6 0.050
BIAS -0.0912 -0.0542 -0.0890 -0.0412 0.0376 -0.0511
STD 0.0903 0.1002 0.0645 0.0696 0.0671 0.0445
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Table 6: Scenario 6: Z ∼ N+(0, 0.82) with µZ = 0.6383 and σZ = 0.4822, and Laplace noise
C2 × Laplace, where C2 = σ/

√
2, see Table 7 in Kneip et al. (2015). The results are based

on 200 Monte-Carlo trials.

n = 50 n = 100 n = 500

τ̂ σ̂ m α τ̂ σ̂ m α τ̂ σ̂ m α

Noise to signal ratio ρnts = 0.00, σ = 0.0000

RMSE 0.0689 0.0007 4 0.500 0.0461 0.0001 2 0.550 0.0250 0.0001 2 0.450
BIAS 0.0221 0.0001 0.0013 0.0001 0.0028 0.0001
STD 0.0655 0.0007 0.0462 0.0000 0.0249 0.0000

Noise to signal ratio ρnts = 0.10, σ = 0.0482

RMSE 0.0673 0.0474 2 0.550 0.0460 0.0480 2 0.550 0.0254 0.0481 2 0.450
BIAS -0.0031 -0.0468 0.0012 -0.0480 0.0015 -0.0480
STD 0.0674 0.0073 0.0461 0.0014 0.0254 0.0011

Noise to signal ratio ρnts = 0.25, σ = 0.1206

RMSE 0.0888 0.0845 8 0.075 0.0805 0.0570 4 0.150 0.0643 0.0374 4 0.075
BIAS 0.0416 -0.0394 -0.0521 -0.0315 -0.0498 -0.0143
STD 0.0787 0.0749 0.0615 0.0477 0.0407 0.0346

Noise to signal ratio ρnts = 0.50, σ = 0.2411

RMSE 0.1285 0.0777 2 0.075 0.0805 0.0831 8 0.050 0.0703 0.0533 10 0.025
BIAS -0.0999 -0.0226 0.0521 -0.0438 0.0547 -0.0356
STD 0.0810 0.0745 0.0616 0.0708 0.0444 0.0398

Noise to signal ratio ρnts = 0.75, σ = 0.3617

RMSE 0.1319 0.1033 2 0.075 0.0923 0.0944 8 0.025 0.0761 0.0588 10 0.025
BIAS -0.0947 -0.0450 0.0527 -0.0414 0.0586 -0.0380
STD 0.0920 0.0932 0.0760 0.0851 0.0487 0.0450
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Table 7: Bivariate example. Same scenario as for Table 8 in Kneip et al. (2015) and
conditioning on W = w. The results are based on 200 Monte-Carlo trials.

n w = 0.25 w = 0.50 w = 0.75

100 τ(w) BIAS 0.0027 0.0071 0.0092
STD 0.0272 0.0426 0.0489
MSE 0.0007 0.0019 0.0025

σ(w) BIAS -0.0265 -0.0085 -0.0075
STD 0.0573 0.0644 0.0708
MSE 0.0040 0.0042 0.0051

500 τ(w) BIAS 0.0003 0.0036 0.0054
STD 0.0141 0.0186 0.0246
MSE 0.0002 0.0004 0.0006

σ(w) BIAS -0.0187 0.0019 0.0028
STD 0.0431 0.0492 0.0500
MSE 0.0022 0.0024 0.0025

Table 8: Bivariate example. Same scenario as for Table 8 in Kneip et al. (2015) and
conditioning on W ≤ w. The results are based on 200 Monte-Carlo trials.

n w = 0.25 w = 0.50 w = 0.75

100 τ(w) BIAS -0.0090 -0.0032 -0.0034
STD 0.0437 0.0474 0.0478
MSE 0.0020 0.0023 0.0023

σ(w) BIAS -0.0580 -0.0649 -0.0661
STD 0.0441 0.0138 0.0061
MSE 0.0053 0.0044 0.0044

500 τ(w) BIAS 0.0002 -0.0027 -0.0001
STD 0.0220 0.0215 0.0195
MSE 0.0005 0.0005 0.0004

σ(w) BIAS -0.0661 -0.0666 -0.0665
STD 0.0067 0.0000 0.0000
MSE 0.0044 0.0044 0.0044
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Table 9: Values of the coefficients a1, . . . , a7 for the densities in Figure 2.

density a1 a2 a3 a4 a5 a6 a7

d1 0.0086 0.0058 0.1519 0.0564 3.8010 -8.3671 5.3434
d2 1.4374 -1.3021 -0.1233 1.1649 0.1756 -0.4860 0.1336
d3 0.1928 0.3393 0.4643 0.2048 -0.6054 -1.0000 1.4042
d4 0.2183 1.0974 1.0840 -11.9649 25.8999 -25.3179 9.9832
d5 0.3496 -0.7125 1.3596 -1.9028 1.5836 0.3062 0.0163
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