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Abstract 
Starting from an intuitive and constructive approach for countable domains, and combining this 
with elementary measure theory, we obtain an upper semi-continuous utility function based on 
outer measure. Whenever preferences over an arbitrary domain can at all be represented by a 
utility function, our function does the job. Moreover, whenever the preference domain is endowed 
with a topology that makes the preferences upper semi-continuous, so is our utility function. Al-
though links between utility theory and measure theory have been pointed out before, to the best 
of our knowledge, this is the first time that the present intuitive and straight-forward route has 
been taken.  
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1. Introduction 
When treating utility theory, traditional economic textbooks discuss two disparate cases in considerable detail: 
the potential non-existence of utility functions for complete and transitive preference relations on non-trivial 
connected Euclidean domains—usually illustrated by lexicographic preferences (Debreu, [1])—and the exis-
tence of continuous utility functions for complete, transitive and continuous preferences on connected Euclidean 
domains; see, e.g. Mas-Colell, Whinston, and Green [2]. Yet, for many purposes, in particular for the existence 
of a best alternative in a compact set of alternatives, a weaker property—upper semi-continuity—suffices. 
Hence, the reader of such a textbook treatment might wonder if there exist upper semi-continuous utility func-
tions, and whether this is true even if the domain is not connected. 

The purpose of this note is primarily pedagogical: it provides necessary and sufficient conditions for the exis-
tence of upper semi-continuous utility functions on arbitrary domains; see Theorem 2 and the text following it. 
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Our approach is intuitive, constructive, and although it uses a measure-theoretic idea, it remains easily accessi-
ble to readers without any knowledge of measure theory. 

Measure theory is the branch of mathematics that deals with the question of how to define the “size” (area/ 
volume) of sets. The main pedagogical point of our paper is to formalize a direct, intuitive link with utility 
theory: given a binary preference relation on a set of alternatives, the “better” an alternative is, the “larger” is its 
set of worse alternatives. So if one can measure the “size” of the set of worse elements, for each given alterna-
tive, one obtains a utility function. 

To be a bit more precise, measure theory starts out by first defining the “size”—measure—of a class of “sim-
ple” sets, such as bounded intervals on the real line or rectangles in the plane, and then extends this definition to 
other sets by way of approximation in terms of simple sets. The outer measure is the best such approximation 
“from above”. This is illustrated in Figure 1: having defined the size of rectangles in the plane, we can assign a 
size also to more general sets S in the plane by covering it with rectangles. That can be done in many ways, but 
to get a good approximation, one wants a covering that resembles S as closely as possible. Roughly speaking, 
the rectangles covering S should not stick out from S a lot. So the outer measure S is the infimum, over all co-
verings by a countable number of rectangles, of the sum of the rectangles’ areas. In more general settings, the 
outer measure is defined likewise as the infimum over coverings whose sizes have been defined (see, for in-
stance, Rudin [3], p. 304; Royden [4], Sec. 3.2; Billingsley [5], Sec. 3; Ash [6], p. 14). 

 

 
Figure 1. A set S and an approximation of its size using a covering.                       

 
We follow this approach to define the utility of an alternative as the outer measure of its set of worse alterna-

tives. We start by doing this for a countable set of alternatives, where this is relatively simple and then proceed 
to arbitrary sets. 

Our paper is not the first to use tools from measure theory to address the question of utility representation: 
pioneering papers are Neuefeind [7] and Sondermann [8]. See Bridges and Mehta ([9], sections 2.2 and 4.3) for 
a textbook treatment. However, our approach differs fundamentally from these precursors. Firstly, we only use 
the basic notion of outer measure, while the mentioned studies impose additional topological and/or measure- 
theoretic constraints.1 To the best of our knowledge, the logical connection between outer measure and utility 
has never been made before. We hope that this link between utility theory and measure theory is more explicit, 
intuitive and mathematically elementary than the above-mentioned approaches. Let us stress the generality of 
this result. Although the utility function in terms of outer measure is simple and intuitive, it delivers the most 
general results possible. Firstly, whenever preferences over an arbitrary set of alternatives can be represented by 
a utility function, our function does the job (cf. Theorem 1). Secondly, whenever the set of alternatives is en-
dowed with a topology that makes preferences upper semi-continuous, also our utility function becomes upper 
semi-continuous (cf. Theorem 2). 

The rest of the paper is organized as follows. Section 2 recalls definitions and provides notation. Section 3 
contains the main results; one proof is in the Appendix. 

2. Preliminaries  
Let preferences on an arbitrary set X be defined in terms of a binary relation   (“weakly preferred to”) which is: 

 

 

1Neuefeind [7] restricts attention to finite-dimensional Euclidean spaces and assumes that indifference sets have Lebesgue measure zero. 
Sondermann [8] assumes that preferences are defined on a probability space or a second countable topological space; see also Corollary 2 
below.  
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complete: for all , : ,x y X x y y x∈   , or both; 
transitive: for all , ,x y z X∈ : if x y  and y z , then x z .  
As usual, x y  means x y , but not y x , whereas ~x y  means that both x y  and y x . The 

sets of elements strictly worse and strictly better than y X∈  are denoted  

( ) { } ( ) { }: and : .W y x X x y B y x X x y= ∈ = ∈   

For ,x y X∈  with x y , the “open interval” of alternatives better than x but worse than y is denoted  

( ) { }, : .x y z X x z y= ∈    

A preference relation   is represented by a function :u X →   if  

( ) ( )
( ) ( )

~ ,
, :

.

x y u x u y
x y X

x y u x u y

⇒ =∀ ∈ 
⇒ > 

                            (1) 

Any such function u is called a utility function for the preference relation in question. 

3. Constructing the Utility Function  
This section makes the intuitive argument from the introduction precise: given a binary preference relation on a 
set of alternatives, the “better” an alternative is, the “larger” is its set of worse alternatives. So if one can meas-
ure the “size” of the set of worse elements, for each given alternative, one obtains a utility function. 

Although our construction borrows its main idea from measure theory, it ought to be stressed that no topolog-
ical or measure-theoretic assumptions are needed: the way we define the utility function works whenever the 
necessary and sufficient conditions for the existence of a utility function are satisfied. The purpose of the more 
technical second subsection is to show a stronger result, namely that our utility function automatically inherits a 
commonly imposed continuity property of the preferences. Here, of course, some topology is required to define 
continuity. 

3.1. Existence  
A complete, transitive binary relation   on a set X can be represented by a utility function if and only if it is 
Jaffray order separable2 (Jaffray, [10]): there is a countable set D X⊆  such that for all ,x y X∈ :  

, : .x y d d D x d d y′ ′⇒ ∃ ∈                                 (2) 

Roughly speaking, countably many alternatives suffice to keep all pairs ,x y X∈  with x y  apart: x lies 
on one side of d and d ′ , whereas y lies on the other. To make our search for a (usc) utility representation at all 
meaningful, we will henceforth focus on preference relations that are Jaffray order separable. 

Note that Jaffray order separability is satisfied automatically if the domain X itself is countable: you can 
simply take D equal to X. For uncountable domains, like commodity bundles in n

+ , it is often—for instance 
under suitable continuity assumptions—the case that the countable subset that does the trick is the set D of 
commodity bundles with rational coordinates.  

The set D in the definition of Jaffray order separability is countable, so let :n D →   be an injection. Find-
ing a utility function on D is easy. Give each element d of D a positive weight such that weights have a finite 
sum and use the total weight of the elements weakly worse than d as the utility of d. For instance, give  

weight 1
2

 to the alternative d with label ( ) 1n d = , weight 1
4

 to the alternative d with label ( ) 2n d = , and 

inductively, weight ( ) 2 kw d −=  to the alternative d with label ( )n d k= . In general, let ( ) 1k k
ε ∞

=
 be a summa-

ble sequence of positive weights; without loss of generality its sum 1 kk ε∞

=∑  is one. Assign to each d D∈  

 

 

2See Fishburn ([11], Section 3.1) or Bridges and Mehta ([9], Section 1.4) for alternative necessary and sufficient separability conditions.  
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weight ( ) ( )n dw d ε= .3 Define 0 :u D →   for each d D∈  by ( ) ( )0 d du d w d′
′= ∑  . Clearly, (1) is satis-

fied.4 
We can extend this procedure from D to X as follows. Let   be the collection of subsets 
( ){ } { }: ,W d d D X∈ ∪ ∅  and define [ ]: 0,1ρ →  as follows: ( ) 0ρ ∅ = , ( ) 1Xρ =  and for d D∈ :  

( )( ) ( )
:

.
d D d d

W d w dρ
′ ′∈

′= ∑


                                   (3) 

Notice that   is countable and that it is a covering of X. Extend ρ  to an outer measure µ∗  on X in the 
usual way (recall Figure 1): for each set A X⊆ , define ( )Aµ∗  as the smallest total size of sets in   cov-
ering A. Formally, a countable collection { }iW  of sets iW  from   covers A if ii

A W⊆


. Now define  

( ) ( )inf ,i
i

A Wµ ρ∗ = ∑  

where the infimum is taken over all countable collections { }iW  that cover A. 
Define :u X →   for each x X∈  as the outer measure of the set of elements worse than x:  

( ) ( )( )* .u x W xµ=                                     (4) 

It is easily seen that this gives the desired utility representation: 
 
Theorem 1. Consider a complete, transitive, Jaffray order separable binary relation   on an arbitrary set 

X. The function u in (4) is a utility function for  .  
 
Proof. By definition,  

( ) ( )( ) ( )( ) ( )*

:
: ( ,

d D d d
d D u d W d W d w dµ ρ

′ ′∈

′∀ ∈ = = = ∑


                 (5) 

and the outer measure *µ  is monotonic: if A B X⊆ ⊆ , then ( ) ( )* *A Bµ µ≤ . 
We prove that u represents  , i.e., we prove (1). Let ,x y X∈ . If ~x y , then ( ) ( )W x W y=  by transitiv-

ity of  , so ( ) ( )u x u y= . If x y , there are ,d d D′∈  with x d d y′
   by (2). By monotonicity of 

*µ  and (5): ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )* * * *u x W x W d W d W y u yµ µ µ µ′= ≥ > ≥ = .  

So finding a utility function is not so difficult; in fact, the literature we cite gives many other constructions as 
well. Our main message in this subsection is rather that our approach is from scratch, following an elementary 
idea of assigning an appropriate size to the set of worse elements. And it works without any topological or 
measure-theoretic assumptions on the domain: whenever preferences over an arbitrary set X can be represented 
by a utility function (i.e., they are complete, transitive, Jaffray order separable), our function does the job. 

Perhaps a more important insight is that it automatically inherits a standard continuity property that is often 
imposed to guarantee the existence of most preferred elements; this part of the paper is a bit more technical and 
requires some further definitions. 

3.2. Upper Semi-Continuity of the Outer-Measure Utility  
By letting in a little bit of topology, one can use the above to obtain results concerning the existence of upper 
semi-continuous utility functions. Given a topology on X, preferences   are: 

 

 

3If there is a worst element in X (an 0x X∈  with 0x x  for all x X∈ ), one may assume without loss of generality that D contains one 

such element, say d . Its weight can be normalized to zero: ( ) 0w d = . This will assure that ( )( ) ( ) 0W dρ ρ= ∅ =  in (3).  
4In class, we usually illustrate this common construction of utility functions on a countable domain D using chocolate bars: since D is coun-
table, we may label its elements 1 2 3, , ,d d d  . Now break a chocolate bar in two pieces and place the first piece on 1d . Then break the re-

maining piece in two and place one piece on 2d . Then break the remaining piece in two and place one piece on 3d , etc. Letting 0nε >  

denote the weight of the chocolate placed on alternative nd , with n∈ , the aggregate weight of any subset is finite (at most one choco-

late bar) and the utility function 0u  that we defined on the countable set D assigns to each alternative d the total weight of chocolate placed 
on pieces that are weakly worse than d. 
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continuous if for each y X∈ , ( )W y  and ( )B y  are open; 
upper semi-continuous (usc) if for each y X∈ , ( )W y  is open.  
Similarly, a function :u X →   is usc if for each r∈ , ( ){ }:x X u x r∈ <  is open. 
Three important topologies are, firstly, the order topology, generated by (i.e., the smallest topology containing) 

the collections ( ){ }:W y y X∈  and ( ){ }:B y y X∈ ; secondly, the lower order topology, generated by the 
collection ( ){ }:W y y X∈ , and thirdly, for any subset D X⊆ , the D-lower order topology, generated by the  
collection ( ){ }:W y y D∈ . By definition, the order topology is the coarsest topology in which   is conti-

nuous; the lower order topology is the coarsest topology in which   is usc. 
As mentioned in the introduction, although one often appeals to continuity to establish existence of most pre-

ferred alternatives, the weaker requirement of upper semi-continuity suffices: consider a complete, transitive, 
usc binary relation   over a compact set X. If X has no most preferred element, then for each x X∈ , there is 
a y X∈  with y x , i.e., the collection ( ){ }:W y y X∈  is a covering of X with (by usc) open sets. By  
compactness, there are finitely many 1, , ky y X∈  such that ( ) ( )1 , , kW y W y  cover X. Let jy  be the 

most preferred element of { }1, , ky y . Then ( )jW y  covers the entire set X, a contradiction. 

From Theorem 1, we already know that our utility function defined in (4) represents preferences in all scena-
rios where utility functions exist. Our next result shows that whenever X is endowed with a topology that makes 
the preferences   usc, also our utility function becomes usc. 

 
Theorem 2. Consider a complete, transitive, Jaffray order separable binary relation   on an arbitrary set 

X. The utility function u in (4) is usc in the D-lower order topology.  
 
The proof is in the appendix. Corollaries 1 and 2 below provide applications of this result. Consider prefe-

rences   over a topological space X with countable base.5 If   is usc in this topology, it is Jaffray order se-
parable (Rader, [12]). By assumption, ( )W y  is open for each y X∈ , so the topology on X is finer than the 
D-lower order topology. Hence, Theorem 2 applies: 

 
Corollary 1. If   is a complete, transitive, usc binary relation over a topological space X with countable 

base, the utility function in (4) represents   and is usc.  
 
Also Rader [12] establishes existence of a usc utility function under the conditions of Corollary 1. However, 

we obtain the result as a special case of Theorem 2, which holds under weaker conditions and gives a specific 
usc utility function building upon basic measure-theoretic intuition. 

Sondermann [8] calls a preference relation   on a set X perfectly separable if there is a countable set 
C X⊆  such that for all ,x y X∈ , with ~x c/  and ~y c/  for all c C∈ , the following holds:  

: .x y c C x c y⇒ ∃ ∈    

Perfect separability implies Jaffray order separability (Jaffray, [10]), so we obtain the following result, due to 
Sondermann [8], as a special case: 

 
Corollary 2. (Sondermann, [8], Corollary 2) Consider a complete, transitive, perfectly separable binary 

relation   on a set X. Then there is a utility function representing  , usc in any topology equal to or finer 
than the lower order topology.  

 
Also here, the “value added” of Theorem 2 is that it provides a specific usc utility function building upon ba-

sic measure-theoretic intuition. 
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5E.g., consumer preferences over a commodity space nX +=   ( n∈ ) with its standard Euclidean topology. 
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Appendix: Proof of Theorem 2  
Recall that  

( ) ( )( ) ( )( ) ( )*

:
: ,

d D d d
d D u d W d W d w dµ ρ

′ ′∈

′∀ ∈ = = = ∑


 

and that the outer measure *µ  is monotonic: if A B X⊆ ⊆ , then ( ) ( )* *A Bµ µ≤ . 
To establish upper semi-continuity, let r∈ . We show that ( ){ }:x X u x r∈ <  is open. To avoid triviali-

ties, assume that ( ){ }:x X u x r∈ <  equals neither ∅  nor X. Hence, there is a y X∗ ∈  with ( ) 1r u y∗≤ ≤ . 
Let x X∈  have ( )u x r< . In particular, y x∗

 . It suffices to show that there is an open neighborhood V of x 
with ( )u v r<  for each v V∈ . 

Case 1: There is no d D∈  with ~d x . As D may be assumed to contain a worst element of X, if such ex-
ists (see footnote 1), ( )W x ≠ ∅ . By definition of *µ , there are { }i i

W
∈

⊆   with ( ) ii
W x W

∈
⊆
   and  

( )( ) ( )* 1iiW x W rµ ρ
∈

≤ < ≤∑


. As ( )W x ≠ ∅ , the set { }: iJ i W= ∈ ≠ ∅  is nonempty. As ( ) 1Xρ =   
and ( ) 1ii Wρ

∈
<∑



, iW X≠  for each i J∈ . So for each i J∈  there is a id D∈  with ( )i iW W d= . We  
show that id x  for some i J∈ . Suppose, to the contrary, that id x  for each i J∈ . For each i J∈ , the 
set { }: ,i i jd D i J d d∈ ∈   is infinite: otherwise, it has a best element *d , but then  

( ) ( )*
i ii i J

W W d W d
∈ ∈

= =
   is a proper subset of ( )W x  by Jaffray order separability, contradicting  

( ) i iW x W∈⊆ ∪  . Let i J∈  and let ( )( ): 0jW dε ρ= > . By the above, there are infinitely many i J∈  with  
( ) ( )( ) ( )( )i i jW W d W dρ ρ ρ ε= ≥ = , contradicting that ( ) 1ii Wρ

∈
<∑



. We conclude that id x  for some  

i J∈ . So ( )ix W d∈ , an open set in the D-lower order topology, and for each ( )iv W d∈ : ( ) ( )iu v u d< =
( )( )iW d rρ < . 

Case 2: There is a d D∈  with ~d x . Using (2) and y x∗
 : ( ) { }:B d D d D d d′ ′∩ = ∈ ≠ ∅ . 

Case 2A: There is a ( )d B d D′∈ ∩  with ( ),d d ′ = ∅ . Then { } { } ( ): :z X z d z X z d W d′ ′∈ = ∈ =  is 
open in the D-lower order topology, contains x, and for each ( ) ( ) ( ) ( ):z W d u z u d u x r′∈ ≤ = < . 

Case 2B: For each ( )d B d D′∈ ∩ , ( ),d d ′ = ∅ . Then by (2), there is, for each ( )d B d D′∈ ∩ , a 
( )d B d D′′∈ ∩  that is strictly worse: d d′′ ′

 . So ( )B d D∩  is infinite. Since the sequence of weights  

( ) 1k k
ε ∞

=
 is summable, there is a k ∈  such that ( )k r u xε∞

=
< −∑





. Since there are only finitely many  

d D′∈  with ( )n d k′ < , there is a ( )*d B d D∈ ∩  such that ( )n d k′ ≥  for each ( )d B d D′∈ ∩  with *d ′ . 
Since ( )*d B d D∈ ∩ , ( )*x W d∈ , which is open in the D-lower order topology. Using ~x d  and the 

construction of *d :  

( ) ( )
:d D d d

u x w d
′ ′∈

′= ∑


 

and  

( )
( )

( )
( ) ( )

* *: :

.n d
kd B d D d d d B d D d d

w d r u xε ε
∞

′
=′ ′ ′ ′∈ ∩ ∈ ∩

′ = ≤ < −∑ ∑ ∑


 

 

Hence, for each ( )*v W d∈ ,  

( ) ( ) ( )( ) ( )
( )

( ) ( ) ( )
*

* *

: :

.
d D d d d B d D d d

u v u d W d w d w d u x r u x rρ
′ ′∈ ′ ′∈ ∩

′ ′< = = + < + − =∑ ∑
 

 

This concludes the proof. As a final remark, observe that due to the completeness of preferences, the counta-
ble collection   of “simple” sets that we use to cover others is nested: for each pair of sets 1 2,W W ∈ , ei-
ther 1 2W W⊆  or 2 1W W⊆ . With minor changes, our proof can then be used to show that for each x X∈  and 
each covering { }i i

W
∈  of ( )W x , we can pick a single set jW  that also covers ( )W x . Therefore, the utility 

function in (4) can be rewritten as  

( ) ( )( ) ( ) ( ){ }* inf : , .u x W x W W W x Wµ ρ= = ∈ ⊆  
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Whenever x is not a most preferred alternative in X, Jaffray order separability assures that there is a d D∈  
with x d , so ( ) ( )( ) ( ) ( )0u x W d u d Xρ ρ≤ = < : the most precise covering of ( )W x  does not use the en-
tire set X. So in that case we can simplify the expression further and write  

( ) ( )( ){ } ( ){ }inf : , inf : .u x W d d D x d u d x dρ= ∈ =   

Jaffray ([10], p. 982) defines utility similar to the expression in the previous line, but, so to speak, from the 
opposite direction: he defines utility of an alternative x as the supremum of the utility of worse ones from a 
suitably chosen countable set.  
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