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Abstract

The solution of differential equations lies at the heart of many problems in structural economics. In

econometrics the general nonparametric analysis of consumer welfare is historically the most obvious

application, but there are also many in finance and other fields. This work considers the general non-

parametric form for these problems and identification conditions. It derives a kernel based estimator

and shows consistency and asymptotic normality.

In particular, the link with inverse problems allows to define it in terms of well-posed inverse

problem and to stress the regularity properties of the estimated solution.

Keywords: Inverse problem, nonparametric kernel estimation, differential equations
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1 Introduction

Consider independent identically distributed observations which admit an unknown cumulative dis-

tribution function F . Structural econometrics considers implicit transformation of F . Of course,

the theory developed depends on the nature and properties of the transformation considered. For

example, there exists a wide literature about integral transformations, like additive models (Hastie

and Tibshirani 1990), single index models (Ichimura 1987) (Horowitz 1998) or instrumental variables

theory (Blundell and Powell 2000, Darolles, Florens, Renault 2000), (Newey, Powell, Vella 2000).

This paper is concerned with studying differential transformations of F , and by extension of

the conditional expectation. Such a purpose can be justified first by the numerous applications in

economics and econometrics. In econometrics the general nonparametric analysis of consumer welfare

is historically the most obvious application, and there are also many in finance and other fields.

Hausman and Newey (1995) studied the variation of exact consumer surplus associated to a price

change by solving a differential equation. Ait-Sahalia (1996) studied the solution of a partial differential

equation in order to define the price of an interest-rate derivative security. Many examples can also

be quoted in physics (for example Florens and Vanhems 2001).

This work considers the general nonparametric form for these problems and identification condi-

tions. It derives a kernel based estimator and shows consistency and asymptotic normality.

Basically, it deals with the study of the following system:.(
λ0 (x) = m(x, λ (x))

λ(x0) = λ0
(1)

The function m is assumed to be continuous and is defined by m(x, y) = IE (Z |X = x, Y = y ) where

(X,Y,Z) are 3 real-valued random variables. The parameters x0 and λ0 are given by the underlying

economic background.

Let briefly detail an example of application in microeconomics. It is taken from an article by

Hausman and Newey (1995). The objective is to measure the impact on the consumer welfare of a

price change for one good. Therefore, consider one consumer; define y its income, q the demand in

good and p1 the price of a unique good. Assume that there exists a price variation from p0 to p1. A

way to capture the impact on the consumer is to calculate the variation of exact consumer surplus λ:

it represents the cost to pay to the consumer so that his welfare does not change for a price change.

It is a monetary measure of the variation of utility.

The first objective is to find a relation that links the functions λ and q. For that purpose, consider

a price path p (t) , t ∈ [t0, t1] where p (t0) = p0 and p (t1) = p1 and λ (p (t)) is the variation of exact

consumer surplus between p (t) and p (t1). Then, it is possible to derive the following relation between
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the interest parameter λ and the demand function q:λ0 (p (t)) = −q (p (t) , y − λ (p (t))) .p0 (t)

λ (p (t1)) = 0

assuming that p1 is a price reference, that is all price variations are calculated with respect to p1. By

a change of variable: λ0 (p) = −q(p, y − λ (p))

λ
¡
p1
¢
= 0

This is clearly a particular case of differential equation of order one. Compared to the general equation

(1), the random vector (X,Y,Z) represents the price of a good (X), the income of an individual (Y )

and the quantity consumed for the associated good (Z). The function m is defined as the observed

demand function and the solution λ measures the variation of consumer surplus associated to the

variation of prices from x0 to x. A similar problem could also be studied for the variation of firm

profit and the variation of demand factor.

The solution λ is then defined implicitely through the previous equation (1) and in order to study

its properties, it will be necessary to explicit the link between m and λ. This kind of problems

belongs to the general class of inverse problems and this paper will in particular stress the properties

of well-posed inverse problem of equation (1).

Moreover, if a solution λ exists, it depends on the unknown distribution function of (X,Y,Z),

F and it is necessary to introduce some nonparametric method to estimate it. Let bmn(x, y) be

a nonparametric kernel estimator of the conditional expectation and bλn the associated estimated
solution. Therefore, the main contribution of this work is to derive a detailed analysis of this estimated

solution, with results on consistency, optimality (in comparison with Hausman and Newey’s work),

and asymptotic normality. In particular, the link with inverse problems allows to define it in terms

of well-posed inverse problem and to stress the regularity properties of the estimated solution as a

functional of nonparametric kernel estimators. Indeed, integrating a nonparametric kernel estimator

will improve its asymptotic properties and this general result can also be verified on bλn.
The paper is organized as follows. Section 2 sets up the main problem to solve and presents the

identification and overidentification conditions. Section 3 gives the numerical aspect and implementa-

tion technics related to differential equations. Section 4 is devoted to asymptotic results (consistency,

optimality and asymptotic normality). The proofs are collected in the last section.

2 Differential equations and nonparametric kernel estimators

This section provides a first description of the functions λ and bλn defined by (1), in particular the
properties of identification and overidentification.
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2.1 Presentation of the problem

Let S = (X,Y,Z) be a IR3-valued random vector. The data available consist of s1, ..., sn realizations of

S1, ..., Sn independent identically distributed as fS(., ., .), an unknown density function with associated

cumulative distribution function FS(., ., .). Let assume that the third coordinate of S, Z, is square

integrable that is IEZ2 < +∞ .
Define f(x, y) =

Z
fS(x, y, z)dz , ϕ(x, y) =

Z
zfS(x, y, z)dz ; and the conditional expectation:

m(x, y) = IE [Z |X = x, Y = y ] = ϕ(x,y)
f(x,y) on f(x, y) > 0 .

Then, the initial system to be studied is the following, where the function m is defined on a subset

of IR2 and is at least continuous: (
λ0 (x) = m(x, λ (x))

λ (x0) = λ0
(2)

The first objective is to detail the properties of the solution (if it exists) of this system. Moreover,

since it depends on an unknown parameter, it has to be estimated through a nonparametric method.

The estimator of the function m(x, y) is calculated using nonparametric kernel estimation. Let K

denote a kernel function of one dimension, centered and separable, and σn a bandwidth parameter.

Consequently, the kernel estimator of m is defined on
∧
fn(x, y) > 0 as

∧
mn(x, y) =

∧
ϕn(x, y)
∧
fn(x, y)

=

nP
i=1

ziK
³
x−xi
σn

´
K
³
y−yi
σn

´
nP
i=1

K
³
x−xi
σn

´
K
³
y−yi
σn

´
where

∧
fn(x, y) and

∧
ϕn(x, y) are the respective estimators of f(x, y) and ϕ(x, y) .

Remark 2.1 : This expression could have been written with a kernel of dimension 2, which corre-

sponds to the 2-dimensional random vector (X,Y ) . Nevertheless, in order to simplify the calculus

and especially the proofs, we assume that the kernel function is centered and separable, in order to

decompose it into 2 independent kernel functions of dimension 1 (See Wand and Jones 1995).

Remark 2.2 : Moreover, a unique bandwidth parameter σn is considered for all the variables. A

more general definition could have been used with two different smoothing parameters σXn , σ
Y
n , which

are approximately equal up to a multiplicative constant term. For sake of simplicity, it is assumed that

σXn = σYn = σn

Therefore, the associated estimated system (3), where bmn(x, y) is the kernel estimator of

m(x, y) = IE (Z |X = x, Y = y ) , is defined by:(
λ0 (x) = bmn(x, λ (x))

λ (x0) = λ0
(3)
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Before studying the convergence of two possible solutions, let check whether or not there exists a

unique solution for both systems and also if the solutions are stable under small perturbations of

initial conditions. In other words, the objective of the next part is to study the well-posedness of a

particular inverse problem.

2.2 Link with inverse problems theory

Denote by A an operator which depends on two arguments, m and λ, such that:

A (m,λ) = λ0 −m (., λ)

Therefore, solving equation (2) is equivalent to solving:(
A (m,λ) = 0

λ(x0) = λ0
(4)

The objective is then to express the solution λ as a function of m, that is: λ = Φ(m) . Such a kind

of problem obviously belongs to the inverse problem theory (Florens 2000). The properties of the

solution λ will in particular depend on the regularity of the initial operator A.

A classical class of inverse problems deals with integral operators. Inversion of some integral

operators has already been studied, like Fredholm integral (Groetsch 1984), Abel type equation (Garza,

Hall and Ruymgaart 1999). These kind of operators are usually linear and compact on Hilbert spaces

(IL2) (Van Rooij and Ruymgaart 1999). The differences between these examples and (4) are mainly

twofold. First, without imposing restrictions on the form of the function m, the relation (4) defines a

nonlinear equation to solve. Therefore, one important step of this analysis will be to try to linearize

this relation in order to study its properties. Further, the operator to invert is a differential one, and

then, contrary to integral operators, has not the good regularity properties expected for the previous

ones. For example, A will not be continuous with respect to the uniform norm, but for some Sobolev

norm (detailed later).

Let now study the well-posedness of our problem: if it admits a unique solution stable under

perturbation of the function m (when m is replaced by a kernel estimator bmn).

2.3 Identification and overidentification

The study of identification and overidentification is needed for both systems (2) and (3).

2.3.1 Study of the true differential equation

Consider first the initial system (2). The proof for existence and uniqueness of a solution λ is given

using a well-known analysis result on ordinary differential equations: the Cauchy-Lipschitz theorem

(Schwartz 1970).
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Let I = [x0 − a, x0 + a] fora > 0 and C(I) be the Banach space of continuous functions x(t) on I

with the sup norm kxk∞ = max
t∈I

|x(t)| .
In what follows, without loss of generality, assume that x0 = λ0 = 0 , so that I = [−a, a] .
Define D = {(x, y) ; |x| ≤ a, |y| ≤ b} and
Cb,0(I) = {u ∈ C(I);u(0) = 0, kuk∞ ≤ b} . The following assumptions are made:

[a] : max
(x,y)∈D

|m(x, y)| < b/a

[b] : |m(x, y1)−m(x, y2)| ≤ k |y1 − y2|, ∀ (x, yi) ∈ D such that c = ka < 1.

Lemma 2.1 : Under assumptions [a] and [b], there exists a unique solution to (2), λ ∈ Cb,0(I)

This result comes from the Cauchy-Lipschitz theorem; the mathematical points are detailed in the

mathematical appendix.

Both assumptions [a] and [b] lead to some comments on the regularity imposed on m and f that

are detailed below.

Remark 2.3 : First, the important condition for proving existence and uniqueness of a solution is

assumption [b]. Indeed, assumption [a] is just imposed by the local definition of our solution on D.

Moreover, it is not very restrictive since the parameter a will usually be chosen small enough; in

particular, if the function m is continuous, this assumption can be satisfied for a well-chosen a.

Remark 2.4 : Assumption [b] imposes m to be continuous on D and to satisfy the Lipschitz condition

uniformly on the second argument; in particular a sufficient condition on m to verify this assumption

is to be continuously differentiable of order 1 on D (or that m is continuously differentiable of order

2 on D, as needed for the mean square convergence).

Remark 2.5 : Thanks to Cauchy-Lipschitz theorem, a unique solution λ can be defined inside a

compact neighborhood of the initial condition (0, 0). It could be interesting to find the optimal interval

I and a maximal solution defined on this optimal interval, or in other words, to check if the solution

can be extended to a larger interval. Theoretically, under the same assumptions, it can be proved that

it exists a unique maximal solution. That means concretely to piece together local solutions if the

intersection of their definition intervals is not empty.

Remark 2.6 : Note that these assumptions [a] and [b] are in particular satisfied under standard

regularity assumptions on f , like continuity and continuous derivability, and it is not necessary to

restrict the definition domain of f to compact support (contrary to standard assumptions in nonpara-

metric estimation), or to worry about kernel estimation in the boundary of finitely supported random

variables. In other words, in principle, there is no need here for imposing compact supports on the

variables X,Y,Z or for bounding f from below. The restriction to a compact neighborhood around
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(0, 0) will be imposed in a second step when defining a unique solution to the differential equation.

Then, construct the conditional expectation m(x, y) (and its associated estimator bmn(x, y)) on every

point where f (x, y) > 0 and just restrict it to a compact support D only to define the solution of the

differential equation.

However, in order not to rule out simple cases like uniform random variables, we don’t define ϕ

and f on IR2 but consider that any compact subset Θ of IR2 containing D is a good condidate for the

definition domain of these functions.

Remark 2.7 : Moreover, to be sure that the function m is defined on D, we implicitely assume that

f is strictly positive on D. By continuity, under the assumption that f (0, 0) > 0 , it will always be

possible to define a neighborhood around (0, 0) where m is well defined.

To summarize, here are the assumptions imposed on ϕ and f :

[A1 (s1)] (i) ϕ and f are continuous bounded functions on a compact subset Θ ⊂ IR2 , such that D ⊂ int(Θ)

(interior of Θ), and continuously differentiable of order s1 on D

(ii) f (0, 0) > 0 .

This assumption depends on one parameter s1 which captures the regularity of the function f .

2.3.2 Study of the estimated differential equation

To calculate bmn(x, y), introduce some nonparametric kernel estimator with a kernel function K. As

mentioned before, K is a one dimension kernel for sake of simplicity. Here are the assumptions required

for K:

[A2(r, s2)] (i) K is a bounded and Lebesgue integrable function of IR into IR.
Z
−∞

+∞
K(x)dx = 1 .

(ii) K is of order r ≥ 2, that is: ∀1 ≤ p < r,

Z
−∞

+∞
xpK(x)dx = 0 ,

Z
−∞

+∞
xrK(x)dx 6= 0 and

Z
−∞

+∞
|x|r |K(x)| dx < +∞ , where x ∈ IR .

(iii) K is continuously differentiable up to order s2 and its derivatives of order up to s2 are in

L2(IR) .

This assumption depends on two parameters r and s2, which correspond to the order and the

regularity of the function K. When r = 2 , K is of order 2, which is a common used assumption.

Further restrictions may be imposed on K, as in the next section, with the notion of kernel of order 3

(which is of course no longer symmetric). Such an additional assumption may be useful when solving

the inverse problem, in particular when the operator to inverse regularizes the initial estimator bmn.
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This point will be explored later, let just remark that solving this differential equation allows to obtain

a function λ whose regularity properties are increased compared to m. This smoothing property can

obviously also be observed for the associated estimated functions bλn and bmn.

As noted in remark (2.4), assume that m is continuously differentiable of order 1 on D; moreover

thanks to assumption [A2(r, s2 = 1)], the estimator bmn is also at least continuously differentiable of

order 1 on D. Therefore, Cauchy-Lipschitz theorem proves that for all n there exists a unique local

solution bλn to the system (3). In particular:

∀n ≥ 0,∃kn,∀ (x, yi) ∈ D, |bmn(x, y1)− bmn(x, y2)| ≤ kn |y1 − y2|

Moreover, under the assumption of uniform convergence a.s of ∂
∂y bmn to ∂

∂ym (the notation ∂
∂y (resp.

∂
∂x) represents the derivative with respect to the 2nd (resp.1st) variable), it is possible to define a

global lipschitz factor for the functions bmn, n ≥ 0, and m. This will be useful to check the stability

of the inverse problem. Let first assume the following properties to ensure the uniform convergence of
∂
∂y bmn to ∂

∂ym :

[A3] (i) The derivative of K, K 0, is bounded and lipchitzian

(ii) For n→ +∞ , σn → 0 and nσ3n
logn → +∞

Lemma 2.2 : Under the assumptions [A1 (s1 = 1)], [A2 (r, s2 = 1)] with r ≥ 2 ,and [A3], there exists
almost surely a real k > 0 which defines a unique Lipschitz factor for all the functions bmn, n ≥ 0,
and m on a compact neighborhood of (0, 0) .

2.3.3 Conclusion on our inverse problem

The last point to check is the stability of our solutions λ and bλn, using the result of the previous
lemma. Introduce another notation, the Picard operator associated to the equation (2):

T :

(
Cb,0(I) → Cb,0(I)

u → T (u)

such that:

∀x ∈ I, T (u)(x) =

Z
0

x

m(s, u(s))ds

and define the estimated associated Picard operator:

³bTnu´ (x) = Z
0

x bmn (s, u(s)) ds

As a consequence of the Cauchy-Lipschitz theorem, λ is a fixed point of T (T (λ) = λ) and bλn is a
fixed point of bTn ( bTn ³bλn´ = bλn ). Then, Lemma (2.2) allows to derive the following result:
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d∞(bλn, λ) ≤ 1

1− c
dΠk(I)(

bTn, T ) (5)

where d∞ and dΠk(I) are uniform norms defined respectively on the subsets I and Cb,0(I):
d∞(u, v) = sup

t∈I
|u(t)− v(t)|

dΠk(I)(T1, T2) = sup
y∈Cb,0(I)

d∞ (T1y, T2y)

and c is a constant that does not depend on n. (See appendix for details).

This inequality is quite interesting since it links known operators bTn and T to unknown functionsbλn and λ. Indeed, bTn represents the integral of the kernel regression and it is easier to study the
convergence of bTn to T . Therefore, this inequality gives a first result of convergence for the interest

parameter λ, under the condition of uniform convergence of bTn to T . This is a first easy result to obtain
without calculating explicitly the function λ. The next section will give results on the asymptotic rate

of convergence of bλn to λ in mean square and in law. So, this relation is a first step in exploiting the
link between m and λ, but of course, this first analysis needs to be investigated.

Moreover, this inequality allows to conclude that the inverse problem is stable, since the perturba-

tion involved in the solution is controlled by the initial perturbation. Therefore, the system (2) defines

a well-posed inverse problem, and there exists a unique solution which is stable.

The last result proves the uniform consistency in probability of our estimator. Indeed, following

equation (5), we have:

sup
x∈I

¯̄̄bλn(x)− λ(x)
¯̄̄
≤ C. sup

(x,y)∈D
|bmn(x, y)−m(x, y)|

where C = a
1−c .

Proposition 2.1 : Assume the following properties [A1 (s1 = 1)], [A2 (r, s2 = 1)], [A3] , IE
¡
Z2
¢
< +∞ .

Then,

sup
x∈I

¯̄̄bλn(x)− λ(x)
¯̄̄
P→ 0

The next sections deal with numerical implementation, which is useful in practice, and results on

the asymptotic convergence of the estimated solution bλn to the true one λ.
3 Numerical implementation

The numerical aspect of this method is quite important in order to implement a numerical approxi-

mation of the solution and of the error of estimation in concrete cases. Indeed, the system to solve is

the following:
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λ0 (x) =

nP
i=1

ZiK
³
x−Xi
σn

´
K
³
λ(x)−Yi

σn

´
nP
i=1

K
³
x−Xi
σn

´
K
³
λ(x)−Yi

σn

´
λ (x0) = λ0

This expression is intentionally simplified by using a 1-dimensional kernel function. The idea is to find

some intuition whether or not the estimated system could transform the initial problem (2) into an

easier one to compute. Unfortunately, restrictions on the form of K to obtain an explicit estimated

solution are not obvious, so the objective is now to stick to a more traditional approach and use some

algorithm to approximate the solution.

Under Cauchy-Lipschitz assumptions, the Euler-Cauchy algorithm, which is a particular one step

method of implementation, can be used. This is not the most impressive method but it is first a very

easy method to implement and moreover as its speed of convergence is the slowest one, it will give

an good idea of the performance that can be reached. Let briefly recall the methodology. The idea

is to subdivide the interval I = [−a, a] with p equidistant points x1, ..., xp where xi+1 = xi + h and

h = 2a/p (assuming that x0 = λ0 = 0). Then, to each xi is associated a λi defined recurrently by the

following equation: (
λi+1 = λi + hmh(xi, λi)

λ0 = 0
(6)

In the particular case of Euler algorithm, mh = bmn. The solution approximated will be the polygonal

map that joins the points (xn, λn) , and it converges to the exact solution, under the assumption that

mh follows the Lipschitz assumption. Let study more precisely the convergence of this solution. Define

ei = λi − λ(xi) the approximation error. If bmn is a continuously differentiable function, then it can

be proved that:

ep = O(h) = O

µ
1

p

¶
Therefore, denote by bλnh the solution of the approximated system above (6). Using an triangular

inequality:

¯̄̄bλnh − λ
¯̄̄
≤
¯̄̄bλnh − bλn ¯̄̄| {z }

A

+
¯̄̄bλn − λ

¯̄̄
| {z }

B

The second term B will be studied in the next section. Moreover, assume that h = O( 1n) (it is possible

since there is no restriction in the choice of h). Then, A = O
¡
1
n

¢
= o

³
1√
n

´
. The result in the next

section will also show that the rate of convergence of B to 0 in mean square is less than 1√
n
.

So, using the Euler approximation, when

(
n→ +∞
p→ +∞

, bλnh converges to λ with the rate of conver-
gence of B.
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That was an example of numerical resolution. In fact, the Lipschitz assumption will allow to find

various consistent methods, like Heun’s method, Runge -Kutta’s method (see Sibony & Mardon 1984).

These more subtle methods differ by the use of different functions mh, but of course the final rate of

convergence will not change since they have a higher speed of convergence.

4 Asymptotic behavior of the estimated solution

This section gives theorems that establish conditions for convergence in mean square based on some

linearization in probability and asymptotic normality. In what follows, it will always be assumed that

the inverse problem is well-posed.

As noted previously, the system to solve is a nonlinear one that is why the first result concerns

the linearization of the difference bλn − λ in order to study next its asymptotic properties. The

methodology used is closely related to some delta method for functionals of the nonparametric kernel

estimator. In a way, our objective is to use an extension of the classical framework as presented in

van der Vaart and Wellner (1996), and derive properties for functionals of the conditional expectation

kernel estimator.

4.1 Linearization of the problem

The following preliminary result tries to transform the nonlinear equation into a linear problem.

Proposition 4.1 : (i) Under the assumptions of proposition 2.1, it can be proved that:

∀x ∈ I, bλn (x)− λ (x) =

Z
0

x

(bmn −m) (t, λ(t)).e


Z x

t

∂
∂y

m(u,λ(u))du


 dt+R1,n(x)

where R1,n(x) = oP (kbmn −mk∞) and kbmn −mk∞ = sup
(x,y)∈D

|bmn(x, y)−m(x, y)| .
(ii) Assume moreover that m and K are continuously differentiable of order 2, then the previous

decomposition can be transformed:

∀x ∈ I, bλn (x)− λ (x) =

Z
0

x

(bmn −m) (t, λ(t)).e


Z x

t

∂
∂y

m(u,λ(u))du


 dt+R2,n(x)

where R2,n(x) = OP

³
kbmn −mk22

´
and kbmn −mk22 =

ZZ
D
(bmn −m)2 (x, y) dxdy

This preliminary result is crucial for the rest of the paper. Indeed, our problem is splitted into two

parts: a linear one that behaves as the integral of the conditional expectation, and a residual term

that converges to zero. The next step is to study the convergence of each term.
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Remark 4.1 : Both residual terms R1,n(x) and R2,n(x) depend on the argument x, as well as the

functions bλn (x) and λ (x). The results we demonstrate in what follows are pointwise and not uniform
with respect to x. More precisely, kbmn −mk∞ = sup

(x,y)∈D
|bmn(x, y)−m(x, y)| and

kbmn −mk22 =
ZZ

D
(bmn −m)2 (x, y) dxdy are calculated on the compact neighborhood D strictly

included in the definition domain Θ. These norms do not depend on any argument x or y. Both

residual terms can be expressed the following way:

R1,n(x) = oP (kbmn −mk∞)
= kbmn −mk∞ oP (1)

R2,n(x) = OP

³
kbmn −mk22

´
= kbmn −mk22OP (1)

and both oP (1) and OP (1) are functions of one argument x, like the functions λ and bλn.
Remark 4.2 : In order to stick to the most general case, assume that ∂

∂xm 6= 0 and that ∂
∂ym 6= 0 .

Indeed, if ∂
∂ym = 0 , the solution would simply be:

λ (x) =

Z
0

x

m(t)dt

which will be much easier to study. Moreover, when ∂
∂xm = 0 , consider the particular autonomous

equation, that is: (
λ0 (x) = m(λ (x))

λ (0) = 0

This is also a direct application of integration of nonparametric kernel estimators, with a
√
n rate of

convergence, the same result as expected for the case ∂
∂ym = 0 .

The following preliminary result allows us to get rid off the residual term in probability.

[A4] For n→ +∞ , √nσ4+1/2n → 0

Proposition 4.2 : Assume the following properties: [A1 (s1 = 2)], [A2 (r, s2 = 2)], [A3], [A4] and

IE
¡
Z2
¢
< +∞ . Then,

√
nσn kbmn −mk22 P→ 0

The next step is to concentrate on the asymptotic properties of the first term in the decomposition

of proposition 4.1, that is mean square convergence and optimal choice of the bandwidth. The previous

result will be useful at last to conclude for the asymptotic normality of our estimator, since the second

part can be neglected in probability. Let us now concentrate on the first part of our decomposition.
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4.2 Asymptotic mean square properties

The next result can be demonstrated with a second order kernel. This is a usual context for studying

kernel estimators, and it is sufficient to prove the asymptotic consistency of our estimated solution.

Moreover, we assume from now on that m is a continuously differentiable of order 2 function. Thanks

to the assumption [A2(r, s2 = 2)], the associated estimator is also continuously differentiable of order

2. We first derive a convergence in mean square for the linear part bIn(x) of the following expansion:
Z
0

x

(bmn −m) (t, λ(t)).e


Z x

t

∂
∂y

m(u,λ(u))du


 dt =

Z
0

x


Ãbϕn −m. bfn

f

!
(t, λ(t)).e


Z x

t

∂
∂y

m(u,λ(u))du


 dt

+R3,n(x)

= bIn(x) +R3,n(x)

Our purpose is to linearize the initial estimator with respect of the density function in order to

study the asymptotic mean square error. We derive some asymptotic results on bIn(x) and show that
the residual term

√
nσnR3,n(x) converges in probability to zero.

Theorem 4.1 : Assume the following properties: [A1 (s1 = 2)], [A2 (r = 2, s2 = 2)], [A3], [A4] and

IE
¡
Z2
¢
< +∞ . Assume moreover that the partial derivatives of f are bounded. Then:

∀x ∈ I, IE
hbIn(x)i2 = 1

nσn
kKk22

Z
0

x
v(t,λ(t))
f(t,λ(t))γ(x, t)

2dt. (1 + o (1))

+σ4n
4

µZ
u2K(u)du

¶2 
Z
0

x

γ(x, t)

Z ³
z−m(t,λ(t))
f(t,λ(t))

´
.³

∂2fS
∂x2

(t, λ (t) , z) + ∂2fS
∂y2

(t, λ (t) , z)
´
dzdt


2

. (1 + o (1))

where

γ(x, t) = e


Z x

t

∂
∂y

m(u,λ(u))du



and

v (t, λ(t)) =

Z
(z −m (t, λ (t)))2

fS(t, λ(t), z)

f(t, λ(t))
dz

is a version of V ar (Z |X = t, Y = λ(t))

Proposition 4.3 : Under the assumptions of proposition 4.2,

∀x ∈ I,
√
nσnR3,n(x)

P→ 0
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This first theorem shows the consistency in mean square of bIn(x).
Some comparisons can already be derived with the initial nonparametric kernel estimator bmn.

Indeed, recall the expansion of the asymptotic quadratic error for the kernel regression estimator. The

asymptotic variance is of order 1
nσ2n

and the square bias is of order σ4n (Bosq 1998).

The difference is in the variance term and it comes from the fact that there is a gain in dimension

by applying an integral operator to the initial kernel regression. Indeed, the solution λ is in dimension

1 whereas the function m is in dimension 2 .

4.3 Asymptotic optimal choice

The objective of this sub-section is to study more carefully the asymptotic optimal choice of the band-

width parameter by taking into account the particular smoothing properties of our inverse problem.

As it has been proved earlier, solving the differential equation allows to transform a continuous dif-

ferentiable function of order 2, the function m, into a continuous differentiable function of order 3,

the function λ. Therefore, the minimax properties of our estimated interest parameter, bλn, should be
studied within this second class of functions.

The next result simply derives the classical optimal bandwidth, obtained by minimizing the as-

ymptotic mean square error with respect to σn for a fixed n. We will then extend this result and show

that we can derive a smaller optimal bandwidth, more adapted to the C3-class of functions.

Let first present the result of optimality with a second order kernel.

Corollary 4.1 : Under the previous assumptions,

if

Z
0

x

γ(x, t)

Z ³
z−m(t,λ(t))
f(t,λ(t))

´
.
³
∂2fS
∂x2

(t, λ (t) , z) + ∂2fS
∂y2

(t, λ (t) , z)
´
dzdt

 6= 0 , the value of σn which
minimizes the asymptotic mean square error for a fixed n is:

σ∗n =


4 kKk22

Z
0

x
v(t,λ(t))
f(t,λ(t))γ(x, t)

2dt

n

·Z
u2K(u)

¸2 Z
0

x

γ(x, t)

Z ³
z−m(t,λ(t))
f(t,λ(t))

´
.
³
∂2fS
∂x2

(t, λ (t) , z) + ∂2fS
∂y2

(t, λ (t) , z)
´
dzdt

2


1/5

Our next issue is to take into account the properties of the solution λ to achieve a better rate of

convergence, that is the minimax rate of convergence for a given set of functions. Indeed, since m is

assumed to be continuously differentiable of order 2, λ is then continuously differentiable of order 3.

Therefore, the optimality will not reached with a kernel of order 2, but of order 3.

The next results show that, without assuming that m is C3 for the two arguments, but only for

the second one, a better rate of convergence can be achieved, by taking into account the properties of

the integral operator applied to the kernel regressor. Let now present the result of convergence of the

quadratic error with the 3rd order kernel.
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Theorem 4.2 : Assume the following properties: [A1 (s1 = 2)], [A2 (r = 3, s2 = 2)], [A3], [A4] and

IE
¡
Z2
¢
< +∞ . Assume moreover that f is continuously differentiable of order 3 with respect to the

second argument and that the partial derivatives of f are bounded. Then, the following expansion can

be derived:

∀x ∈ I, IE
hbIn(x)i2 = 1

nσn
kKk22

Z
0

x v (t, λ(t))

f(t, λ(t))
γ(x, t)2dt. (1 + o (1))

+γ21(x)
σ6n
36

µZ
u3K(u)du

¶2

.


Z


Z
0

x ³
α(t, z). ∂

∂y3
fS(t, λ (t) , z)

´
dt− α(x, z)

h
∂2

∂x2
fS (x, λ (x) , z)− ∂2

∂x2
fS (0, 0, z)

i
+

Z
0

x
∂
∂xα(t, z)

h
∂2

∂x2
fS (x, λ (x) , z)− ∂2

∂x2
fS (0, 0, z)

i
dt

 dz


2

. (1 + o (1))

where  γ(x, t) = e


Z
0

x

∂
∂y

m(u,λ(u))du−
Z t

0

∂
∂y

m(u,λ(u))du


= γ1(x).γ2(t)

α(t, z) = z−m(t,λ(t))
f(t,λ(t)) γ2(t)

The 3-order kernel reduces the bias term. This difference can be explained by a gain in regularity

for the estimated solution, compared to the bias for the kernel regressor. Indeed, as mentioned before,

the initial function m was continuously differentiable of order 2 and the solution λ is then continuously

differentiable of order 3.

Corollary 4.2 Under the same assumptions,

if A =
Z


Z
0

x ³
α(t, z). ∂

∂y3
fS(t, λ (t) , z)

´
dt− α(x, z)

h
∂2

∂x2
fS (x, λ (x) , z)− ∂2

∂x2
fS (0, 0, z)

i
+

Z
0

x
∂
∂xα(t, z)

h
∂2

∂x2
fS (x, λ (x) , z)− ∂2

∂x2
fS (0, 0, z)

i
dt

 dz 6= 0 ,

the value of σn which minimizes the asymptotic mean square error for a fixed n is:

σ∗n =


36 kKk22

Z
0

x
v(t,λ(t))
f(t,λ(t))γ2(t)

2dt

n

·Z
u3K(u)

¸
2A2


1/7

Again, there is difference with the result for the kernel regression, since the optimal bandwidth

was of order
¡
1
n

¢1/6 .
The interest of this result is to take benefit from all the features of our inverse problem in order to

obtain some better optimal results. Indeed, it has already been proved that the rate of convergence
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for the regression kernel is the best attainable in a minimax sense. Moreover, the optimal bandwidth

σ∗n ∼ n−1/7 leads to the minimax speed of convergence for the continuously differentiable function of

order 3 in dimension 1. The estimated solution then achieves the optimal convergence of order n6/7.

4.4 Asymptotic normality

Let now derive an asymptotic normality theorem. This result is less new and has already been proved

by Hausman and Newey (1995). In particular, the faster convergence rate for the solution is analogous

to the results on averaging kernel estimators over some arguments that are given in Linton and Nielsen

(1995) and Newey (1994).

Two theorems are presented, with the two different assumptions for the kernel order.

Theorem 4.3 : Assume the following properties: [A1 (s1 = 2)], [A2 (r = 2, s2 = 2)], [A3], [A4], and

IE
¡
Z4
¢
< +∞ . Assume moreover that the partial derivatives of f are bounded, that nσ5n → 0 .

Therefore,
√
nσn

³bλn − λ
´
(x) converges in law to a centered Gaussian distribution with an as-

ymptotic variance term equal to:

V = kKk22
Z
0

x v (t, λ(t))

f(t, λ(t))
γ(x, t)2dt

Remark 4.3 : Under the assumptions of the previous theorem, the asymptotic distribution of
√
nσn

³bλn − λ
´
(x) is centered to zero. An asymptotic bias equal to zero would have been obtained

by undersmoothing the estimator and so by assuming that σn converges faster to zero (than the optimal

one). Under the assumption of optimal bandwidth choice, the asymptotic bias term is then equal to:

1

2

µZ
u2K(u)du

¶
Z
0

x

γ(x, t)

Z ³
z−m(t,λ(t))
f(t,λ(t))

´
.³

∂2

∂x2 fS (t, λ (t) , z) +
∂2

∂y2 fS (t, λ (t) , z)
´
dzdt


Theorem 4.4 : Assume the following properties: [A1 (s1 = 2)], [A2 (r = 3, s2 = 2)], [A3], [A4], and

IE
¡
Z4
¢
< +∞ . Assume moreover that f is continuously differentiable of order 3 with respect to the

second argument and that the partial derivatives of f are bounded. Under the additinal assumption

nσ7n → 0 , it can be proved that
√
nσn

³bλn − λ
´
(x) converges in law to a centered Gaussian distribu-

tion with an asymptotic variance term equal to:

V = kKk22
Z
0

x v (t, λ(t))

f(t, λ(t))
γ(x, t)2dt

Remark 4.4 : Under the assumption of optimal bandwidth choice, the asymptotic bias term is then
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equal to:

γ1(x)

6

µZ
u3K(u)du

¶

.


Z


Z
0

x ³
α(t, z). ∂

∂y3 fS(t, λ (t) , z)
´
dt− α(x, z)

h
∂2

∂x2 fS (x, λ (x) , z)− ∂2

∂x2 fS (0, 0, z)
i

+

Z
0

x
∂
∂xα(t, z)

h
∂2

∂x2
fS (x, λ (x) , z)− ∂2

∂x2
fS (0, 0, z)

i
dt

 dz


The asymptotic variance given previously V = kKk22

Z
0

x
v(t,λ(t))
f(t,λ(t))γ(x, t)

2dt is very clearly depending

on x through the second integral. In particular, when x is very close to zero, the variance is also close

to zero. This is a logical property since the solution at point 0 is known and equal to 0. Therefore,

around this point, there is less incertitude about the estimated solution.

The asymptotic variance estimation has also been discussed by Hausman and Newey (1995) and

Newey (1994). It is indeed useful for inference based on the asymptotic normality result and con-

struction of confidence intervals. The asymptotic variance term can of course be estimated by be

replacing the unknown parameters by kernel estimators in order to study the consistence of this es-

timated variance (like Newey 1994). An alternative approach to variance estimation, or confidence

intervals, is the bootstrap technique. The idea is then to sample the data randomly with replacement,

to estimate several times the solution bλn and calculate the empirical variance of these solutions. Thus,
the bootstrap provides a way to substitute computation for mathematical analyisi if calculating the

asymptotic distribution of an estimator is difficult (see for example Horowitz 2001).

Remark 4.5 : In the classical studies of density kernel estimation and conditional expectation kernel

estimation, the covariance term can be neglected since its rate of convergence to zero is faster than

the variance one. In this particular problem, let analyse the covariance between bIn(x) and bIn(y) for
x 6= y .

cov
³bIn(x), bIn(y)´ = cov

Z
0

x ³³bϕn−m. bfn
f

´
(t, λ(t)).γ(x, t)

´
dt,

Z
0

y ³³bϕn−m. bfn
f

´
(s, λ(s)).γ(y, s)

´
ds


= 1

nσ2n
cov

 Z−m(X,λ(X))
f(X,λ(X)) γ(x,X)1I0≤X≤xK

³
λ(X)−Y

σn

´
, Z−m(X,λ(X))

f(X,λ(X)) γ(y,X)1I0≤X≤yK
³
λ(X)−Y

σn

´  . (1 + o (1))

= 1
nσn

kKk22 .
Z
0

min(x,y)
γ(x,t)γ(y,t)
f(t,λ(t)) v(t, λ(t))dt. (1 + o (1))

Therefore, contrary to the usual results, as pointed by Horowitz (2001), the covariance term cannot

be neglected in this case. An explanation of this result is that both arguments of the conditional

expectation function m (t, λ (t)) depend on the same variable t. Under a more general hypothesis like

m (x, y) , the covariance term would have been neglected compared to the variance one.
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5 Conclusion

This paper has been concerned with estimating the solution of a differential equation depending on

the law of distribution of the dataset. Some empirical examples can illustrate this problem. One of

them is an article from Florens Vanhems (2000) which deals with a physical case of measuring the

ionosphere thickness. Another could be an economical extension of Hausman and Newey ’s work with

the measure of profit variation of a firm. For example, it can be used to measure the impact of new

postal tariffing over a customer firm (denoted by (C)). Let then study the impact of a factor’s price

variation on the surplus of (C). It can be shown that the relation between the profit variation of (C)

and the function of demand factor is also a differential equation of order 1 (like the relation found

by Hausman and Newey between the variation of consumer surplus and the demand function). The

previous results can then be applied to obtain an asymptotic study of the estimated solution.

Other applications and extensions can also be studied. For example, the next step could be to

study random differential equations, that is equations depending on a unknown function FS and also

on an error term ε which perturbed the equation.(
λ0(x) = φ(x, λ(x), FS , ε)

λ(x0) = λ0

A natural application is to consider for example the microeconomic problem of Hausman and Newey on

the variation of exact consumer surplus and to assume that the residual in the underlying econometric

model contains heterogeneity between individuals. Therefore, the error term cannot be neglected

anymore as a measurement error but has to be taken into account into the differential equation. In

particular, this perturbation will have to be estimated before solving the equation. Moreover, an

interesting issue could be to compare the unperturbed solution with an aggregated solution with

respect to ε, and to link it with the theory of representative consumer.( this problem is developed in

Vanhems 2001)

Another extension to study is the case of endogenous variables. This is a direct application of the

general relation: (
λ0(x) = m(x, λ(x))

λ(x0) = λ0

where m will no more represent a conditional expectation but something more complex defined with

instrumental variables. Such a problem has been in particular studied in Loubes Vanhems (2002).

6 Mathematical appendix

6.1 Inversion of operator and Picard contraction mapping

This section presents the mathematical tools used in the article.
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A solution to the initial problem satisfies the equivalent integral equation:

λ(x) = λ0 +

Z
x0

x

m (s, λ(s)) ds

The Picard operator T associated with the system (2) is defined as:

(Tu) (x) = λ0 +

Z
x0

x

m (s, u(s)) ds (7)

Let I = [x0 − a, x0 + a] fora > 0 and C(I) be the Banach space of continuous functions x(t) on I

with the sup norm kxk∞ = max
t∈I

|x(t)| . Then T : C(I)→ C(I) . Furthermore, a solution λ(t) to (2) is

a fixed point of T .

In what follows, as before, let x0 = λ0 = 0 , so that I = [−a, a] .
Recall that D = {(x, y) ; |x| ≤ a, |y| ≤ b} and Cb,0(I) = {u ∈ C(I);u(0) = 0, kuk∞ ≤ b} .
Define now a metric on Cb,0(I) that is:

d∞(u, v) = ku− vk∞ = sup
t∈I

|u(t)− v(t)| , ∀u, v ∈ Cb,0(I)

(Cb,0(I), d∞) is a complete metric space.

Another way to write lemma 2.1 is to present the following result:

Lemma 6.1 Under assumptions [a] and [b], T is a Cb,0(I)-valued contraction map, with c as contrac-

tion factor.

The common proof for those two lemmas is the following:

Proof. Lemmas 6.1 and 2.1

∀u, v ∈ Cb,0(I):

d∞(Tu, Tv) = sup
x∈I

¯̄̄̄
¯̄Z
0

x

(m (s, u(s))−m (s, v(s))) ds

¯̄̄̄
¯̄

≤ sup
x∈I

¯̄̄̄
¯̄Z
0

x

|(m (s, u(s))−m (s, v(s)))| ds
¯̄̄̄
¯̄

≤ sup
x∈I

¯̄̄̄
¯̄Z
0

x

k |u(s)− v(s)| ds
¯̄̄̄
¯̄

≤ akd∞(u, v)

≤ cd∞(u, v)

So, T is a contraction since 0 < c < 1.
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Thanks to Banach’s fixed point theorem, there exists a unique fixed point λ ∈ Cb,0(I) , and there-

fore, a unique solution to (2). The compact set D is usually called the ”the safety cylinder”. Denote

Πk(I) the set of all Picard operators T : Cb,0(I)→ Cb,0(I) as defined in (7) where m satisfies the two

assumptions above. In particular, all the functions belonging to Πk(I) are contractions, with the same

contraction factor c = ka < 1 .

Recall now a general result that will be useful for what follows.

Theorem 6.1 : Under [a] and [b], let T1, T2 ∈ Πk(I), with c as contraction factor. Define the

following metric on Πk(I):

dΠk(I)(T1, T2) = sup
y∈Cb,0(I)

d∞ (T1y, T2y)

If λ1 and λ2 denote the respective fixed points of T1 and T2, then

d∞(λ1, λ2) ≤ 1

1− c
dΠk(I)(T1, T2)

Proof. Indeed:

d∞(λ1, λ2) = d∞(T1λ1, T2λ2)

≤ d∞(T1λ1, T1λ2) + d∞(T1λ2, T2λ2)

≤ cd∞(λ1, λ2) + dΠk(I)(T1, T2)

≤ 1

1− c
dΠk(I)(T1, T2)

Thus, the result is proved.

Remark 6.1 : Let check that the metric dΠk(I) is well defined on Cb,0(I). In particular let verify that:

dΠk(I)(T1, T2) < +∞, T1, T2 ∈ Πk(I)

So:

sup
u∈Cb,0(I)

kT1u− T2uk∞ = sup
u∈Cb,0(I)

°°°°°°
Z
0

x

[m1(s, u(s))−m2(s, u(s))] ds

°°°°°°
∞

≤ sup
u∈Cb,0(I)

max
x∈I

¯̄̄̄
¯̄Z
0

x

|m1(s, u(s))−m2(s, u(s))| ds
¯̄̄̄
¯̄

≤ a max
(x,y)∈D

|m1(x, y)−m2(x, y)|
≤ 2b

Thus, without restriction, it is possible to define dΠk(I)(T1, T2), T1, T2 ∈ Πk(I).

Remark 6.2 : Another way to demonstrate this is to recall that the set of lipschitzian functions with

the same lipschitz factor k defined from real compact sets to real compact sets is compact for the

uniform convergence topology (see Choquet 1964 p.94).

22



Remark 6.3 : Thanks to the theorem just proved, our problem is a well-posed one under the compact

set D since existence and uniqueness of a solution stable under small variations have been proved.

This remark is very important since it is posssible now to try to inverse the differential operator.

6.2 Proofs

6.2.1 Proof of Lemma 2.2

Consider the smallest Lipschitz factors for m and bmn, n ≥ 0. Therefore:

∀n,∀ (x, yi) ∈ D, |bmn (x, y1)− bmn (x, y2)| ≤ kn |y1 − y2|
kn = max

D

¯̄̄̄
∂

∂y
bmn

¯̄̄̄
and

∀ (x, yi) ∈ D, |m (x, y1)−m (x, y2)| ≤ k0 |y1 − y2|
k0 = max

D

¯̄̄̄
∂

∂y
m

¯̄̄̄
These factors kn and k0 exist since we maximize continuous functions on a compact set.

Moreover, since ∂
∂y bmn converges uniformly to ∂

∂ym:

∀ε,∃n0,∀n ≥ n0,∀(x, y) ∈ D,

¯̄̄̄
∂

∂y
bmn (x, y)− ∂

∂y
m (x, y)

¯̄̄̄
≤ ε as

So:

∀ε,∃n0,∀n ≥ n0,∀(x, y) ∈ D,

¯̄̄̄
∂

∂y
bmn (x, y)

¯̄̄̄
≤ ε+

¯̄̄̄
∂

∂y
m (x, y)

¯̄̄̄
and

∀ε,∃n0,∀n ≥ n0, kn ≤ ε+ k0

Let now define

k = max(ε+ k0, (kj)j≤n0)

Then, it will always be possible to find a compact neighborhood I = [−a, a] around 0, a > 0 , such
that ak < 1 .

For example, let use:

a = inf

½
1

2 (k + ε)
,
1

2kn
, n ≤ n0

¾
The constraints that allow to use to uniform convergence are provided by Bosq (1998) theorem 3.2

p.73 .

Thus, T ∈ Πk0(I) ⊂ Πk(I) and bTn ∈ Πk(I). The result is demonstrated.
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6.2.2 Proof of proposition 2.1

The result follows directly from the inequality:

sup
x∈I

¯̄̄bλn(x)− λ(x)
¯̄̄
≤ C. sup

(x,y)∈D
|bmn(x, y)−m(x, y)|

The convergence of kbmn −mk∞ is proved using the assumption [A3] (indeed, the assumptions for

the uniform convergence of ∂
∂y bmn to ∂

∂ym are stronger).

6.2.3 Proof of proposition 4.1

Under the previous assumptions [A1] and [A2], there exists a unique solution to (2) λ(x) = Φ [m] (x) .

The objective is to try to characterize the functional Φ that is the exact dependance between λ and

m. The methodology used is in particular very close to the well-known Delta method (as detailed for

example in van der Vaart and Wellner 1996).

The objective is to study the following function:

A :

(
C1(D)× C1b,0(I) → C(I)

(u, v) 7→ A(u, v)

where C1(D) = {u ∈ C(D) and continuously differentiable} and
C1b,0(I) = {v ∈ Cb,0(I), continuously differentiable and kv0k∞ < b/a}.¡
C1(D), k.k∞

¢
and (C(I), k.k∞) are Banach spaces.

Moreover define k.k0∞ = max (kvk∞ , kv0k∞) on C1b,0(I). Then
³
C1b,0(I), k.k

0
∞
´
is a Banach space.

To demonstrate it, use the uniform convergence of functions and its application to derivability. The

use of such a norm allows to have the continuity and linearity of the following function:

D :


³
C1b,0(I), k.k

0
∞
´
→ (C(I), k.k∞)

y 7−→ y0

So: ∀x ∈ I,A(u, v)(x) = v0(x)− u(x, v(x)) . Denote by W , an open subset of C1(D)× C1b,0(I) and

(m,λ) ∈W . Then A is continuous on W (it is a sum of continuous functions) and A(m,λ) = 0 . Let

check the hypothesis of the implicit function theorem. A is in fact continuously differentiable (thanks

to the same argument) so it is possible to take its derivative with the second variable d2A(m,λ).

Moreover:

∀h ∈ C1b,0(I),∀x ∈ I, d2A(m,λ)(h)(x) = h0(x)− ∂

∂y
m(x, λ(x)).h(x)

The next step is then to prove that d2A(m,λ) is a bijection. Let show first the surjectivity:

∀v ∈ C(I),∃?h ∈ C1b,0(I);∀x ∈ I, h0(x)− ∂

∂y
m(x, λ(x)).h(x) = v(x)
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This is a linear differential equation that can be solved in order to find:

∀x ∈ I, h(x) =

Z
0

x

v(s).e


Z
s

x

∂
∂y

m(t,λ(t))dt


 ds

Therefore, d2A(m,λ) is surjective. The next step is then to demonstrate the injectivity of the function,

that is Ker (d2A(m,λ)) = {0} . For that purpose, let solve d2A(m,λ) (h) = 0, h ∈ C1b,0(I) . A linear

differential equation is then also obtained and its solution is equal to:

∀x ∈ I, h(x) = ce

Z
0

x

∂
∂y

m(t,λ(t))dt

and h(0) = 0

Therefore, c = 0 . Thus, d2A(m,λ) is bijective.

Then at last, it is necessary to demonstrate the bi-continuity of d2A(m,λ). In the usual implicit

function theorem, this assumption is not required, but here the use of infinite dimension spaces requires

a more general theorem with further assumptions to satisfy. The continuity of d2A(m,λ) has already

been proved since A is continuously differentiable. The continuity of the reversible function is given

by an application of Baire Theorem: if an function is linear continuous and bijective on two Banach

spaces, the reversible function is continuous.

Therefore, it is possible now to apply the implicit function theorem: ∃U an open subset around m

and V an open subset around λ such that:

∀u ∈ U,A(u, y) = 0 has a unique solution in V

Note: y = Φ [u] this unique solution for u ∈ U . By construction, Φ is continuously differentiable of

order 1 on U .

Now differentiate the relation: A(u,Φ [u]) = 0,∀u ∈ U and apply it in (m,λ = Φ [m]). Then, the

result is:

∀h ∈ C1(D)× C1b,0(I) ,

dA(m,λ)(h)(x) = d1A(m,λ)dm(h)(x) + d2A(m,λ)dλ(h)(x)

= −dm(h)(x, λ(x)) + (dλ(h))0 (x)− ∂

∂y
m(x, λ(x))dλ(h)(x)

The differential of A leads to a linear differential equation in dλ(h) that can be solved. Now apply it

with dm(h) = bmn −m and dλ(h) = dΦ [m] (bmn −m) in order to find:

dΦ [m] (bmn −m)0(x) =
∂

∂y
m (x,Φ [m] (x)) .dΦ [m] (bmn −m)(x) + (bmn −m) (x,Φ [m] (x))

Solving it leads to:
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dΦ [m] (bmn −m)(x) =

Z
0

x


(bmn −m) (t,Φ [m] (t)).

e


Z
0

x

∂
∂y

m(u,Φ[m](u))du−
Z
0

t

∂
∂y

m(u,Φ[m](u))du


 dt

=

Z
0

x

(bmn −m) (t, λ(t)).e


Z
t

x

∂
∂y

m(u,λ(u))du


 dt

=

Z
0

x

((bmn −m) (t, λ(t)).γ(x, t)) dt

where γ(x, t) = e


Z
t

x

∂
∂y

m(u,λ(u))du


.

At last, the definition of the differentiability of Φ gives:³bλn − λ
´
(x) = (Φ [bmn]−Φ [m]) (x)

= dΦ [m] (bmn −m)(x) +R1,n(x)

where R1,n(x) is the remainding term of the Taylor development R1,n(x) = oP (kbmn −mk∞) .
The last point (ii) is to replace the usual residual term by OP

³
kbmn −mk22

´
, which is a stronger

requirement than the usual definition (but still weaker than second-order differentiability). Assuming

that m and K are continuously differentiable of order 2 implies that the operator A and then Φ are

also continuously differentiable of order 2, so it is possible to replace the usual neglected term by:

R2,n(x) = OP

³
kbmn −mk2∞

´
= OP

³
kbmn −mk22

´
6.2.4 Proof of proposition 4.2

The proof follows directly from the result in mean square convergence of the conditional expectation.

Indeed, we integrate over the compact neighborhood D which is strictly included in the definition

domain Θ. This property allows us to avoid the usual boundary effects, and the use of generalized

kernels to correct them (for example).

6.2.5 Proof of theorem 4.1

Let us derive the convergence in mean square of the linearized term: bIn(x) .
IE
hbIn(x)2i = var

³bIn(x)´+ ³IE hbIn(x)i´2
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The first term can be developed:

var
hbIn(x)i = var

·ZZ
(z −m (t, λ (t)))

f (t, λ (t))
1I0≤t≤xγ(x, t) bfSn (t, λ (t) , z) dzdt¸

and by definition:

var
hbIn(x)i = var

"
1

nσ2n

nX
i=1

Z
(Zi −m (t, λ (t)))

f (t, λ (t))
1I0≤t≤xγ(x, t)K

µ
t−Xi

σn

¶
K

µ
λ (t)− Yi

σn

¶
dt

#

= var

"
1

nσn

nX
i=1

(Zi −m (Xi, λ (Xi)))

f (Xi, λ (Xi))
1I0≤Xi≤xγ(x,Xi)K

µ
λ (Xi)− Yi

σn

¶#
. (1 + o (1))

=
1

nσn
kKk22 .

ZZ
(z −m (t, λ (t)))2

f (t, λ (t))
1I20≤t≤xγ(x, t)

fS (t, λ (t) , z)

f(t, λ (t))
dtdz + o

µ
1

nσn

¶
=

kKk22
nσn

Z
0

x v (t, λ(t))

f(t, λ(t))
γ(x, t)2dt+ o

µ
1

nσn

¶
where v (t, λ(t)) = var (Z |X = t, Y = λ (t)) .

Therefore, the calculus gives:

var
hbIn(x)i = 1

nσn
kKk22

Z
0

x v (t, λ(t))

f(t, λ(t))
γ(x, t)2dt+ o

µ
1

nσn

¶
Let consider now the bias term.

IE
hbIn(x)i = IE

Z
0

x
Ãbϕn −m. bfn

f

!
(t, λ(t)) γ(x, t)dt


=

Z
0

x

IE

"Ãbϕn −m. bfn
f

!
(t, λ(t))

#
γ(x, t)dt

Therefore, using classical results on the bias decomposition for the conditional expectation, it can

be proved that:

³
IE
hbIn(x)i´2 = σ4n

4

µZ
u2K(u)du

¶2 
Z
0

x

γ(x, t)

Z ³
z−m(t,λ(t))
f(t,λ(t))

´
³

∂2

∂x2
fS (t, λ (t) , z) +

∂2

∂y2
fS (t, λ (t) , z)

´
dzdt


2

+ o(σ4n)

6.2.6 Proof of proposition 4.3

By definition, we have:

√
nσnR3,n(x) =

√
nσn

Z
0

x
ÃÃbϕn −m. bfn

f2

!
(t, λ(t)).

h³ bfn − f
´
(t, λ(t)) + oP

³°°° bfn − f
°°°
∞

´i
γ(x, t)

!
dt

=
√
nσn

Z
0

x
Ãbϕn −m. bfn

f2

!
(t, λ(t)).

³ bfn − f
´
(t, λ(t))γ(x, t)dt

+
√
nσn

Z
0

x
Ãbϕn −m. bfn

f2

!
(t, λ(t)).oP

³°°° bfn − f
°°°
∞

´
γ(x, t)dt
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Using the results of proposition 4.2 and theorem 4.1, we can prove that both terms converge in

probability to zero.

6.2.7 Proof of Theorem 4.2

The idea is to take into account the integral of (bmn −m) (t, λ(t)) with respect to t in order to obtain

a quicker rate of convergence of the bias term.

The bias is defined as follows:

IE
hbIn(x)i = IE

Z Z
z −m(t, λ(t))

f(t, λ(t))
γ(x, t)1It≤xbfSn(t, λ(t), z)dtdz

where bfSn(t, λ(t), z) = 1
nσ3n

nP
i=1

K
³
t−Xi
σn

´
K
³
λ(t)−Yi

σn

´
K
³
z−Zi
σn

´
.

Consider (E1, E2, E3) ∼ h such that:
E1 = X

E2 = λ(X)− Y

E3 = Z

Then, by a change of variables, the expression can be replaced by:

IE
hbIn(x)i = IE

Z Z
z −m(t, λ(t))

f(t, λ(t))
γ(x, t)1It≤xbhn(t, 0, z)dtdz

with bhn(t, 0, z) = 1
nσ3n

nP
i=1

K
³
t−E1i
σn

´
K
³
0−E2i
σn

´
K
³
z−E3i
σn

´
So:

IE
hbIn(x)i =

1

σ3n

Z Z
0

x z −m(t, λ(t))

f(t, λ(t))
γ(x, t)K

µ
t− e1
σn

¶
K

µ
0− e2
σn

¶
K

µ
z − e3
σn

¶
.

h (e1, e2, e3) de1de2de3dtdz

=

Z Z
0

x z −m(t, λ(t))

f(t, λ(t))
γ(x, t)K (u1)K (u2)

. [h (t− σnu1,−σnu2, z)− h(t, 0, z)] du1du2dtdz

Recall that γ(x, t) = e


Z
0

x

∂
∂y

m(u,λ(u))du−
Z
0

t

∂
∂y

m(u,λ(u))du


= γ1(x).γ2(t) . Moreover, in order to sim-

28



plify the equations, denote by α(t, z) = z−m(t,λ(t))
f(t,λ(t)) γ2(t) . So, the relation can be rewritten:

IE
hbIn(x)i = γ1(x)

Z
K (u1)K (u2)

Z
0

x

α(t, z) [h (t− σnu1,−σnu2, z)− h(t, 0, z)] dt

 dzdu1du2
= γ1(x)

Z
K (u1)K (u2)

Z
0

x

α(t, z) [h (t− σnu1,−σnu2, z)− h(t,−σnu2, z)] dt
 dzdu1du2| {z }

=A1

+γ1(x)

Z
K (u2)

Z
0

x

α(t, z) [h (t,−σnu2, z)− h(t, 0, z)] dt

 dzdu2| {z }
=A2

The density h is assumed to be C2 for the first two arguments and C3 only for the second one (as

the density f). Then use a Taylor expansion to simplify this equation. Since the kernel K is of order

3, the second term becomes:

A2 =
σ3n
6

µZ
u3K(u)du

¶Z
0

x Z z −m(t, λ(t))

f(t, λ(t))
γ(x, t).

·
∂

∂y3
h(t, 0, z)

¸
dtdz + o

¡
σ3n
¢

Moreover, in order to study A1, let use an integration by parts for the integral with respect to x:

I =

Z
K (u1)

Z
0

x

α(t, z) [h (t− σnu1,−σnu2, z)− h(t,−σnu2, z)] dtdu1

=

Z
K (u1)

α(t, z)

Z
0

t

h (s− σnu1,−σnu2, z)− h(s,−σnu2, z)ds| {z }
J




x

0

du1

−
Z

K (u1)

Z
0

x ∂

∂x
α(t, z)

Z
0

t

h (s− σnu1,−σnu2, z)− h(s,−σnu2, z)ds
 dtdu1

Then, using the notation Ψ(t,−σnu2, z) =
Z
0

t

h(s,−σnu2, z)ds , the equation is simplified:

J = Ψ (t− σnu1,−σnu2, z)−Ψ (−σnu1,−σnu2, z)−Ψ (t,−σnu2, z) +Ψ(0,−σnu2, z)

By assumption, Ψ is continuously differentiable of order 3 with respect to the first variable, so a

Taylor expansion can be used to obtain:

I = −σ
3
n

6

Z
u3K (u) du.α(x, z)

·
∂3

∂x3
Ψ (x,−σnu2, z)− ∂3

∂x3
Ψ (0,−σnu2, z)

¸
+
σ3n
6

Z
u3K (u) du

Z
0

x ∂

∂x
α(t, z)

·
∂3

∂x3
Ψ (t,−σnu2, z)− ∂3

∂x3
Ψ (0,−σnu2, z)

¸
dt+ o

¡
σ3n
¢
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Therefore:

A1 = γ1(x)
σ3n
6

Z
u3K (u) du.

Z 
−α(x, z)

h
∂3

∂x3
Ψ (x, 0, z)− ∂3

∂x3
Ψ (0, 0, z)

i
+

Z
0

x
∂
∂xα(t, z)

h
∂3

∂x3
Ψ (t, 0, z)− ∂3

∂x3
Ψ (0, 0, z)

i
dt

 dz + o
¡
σ3n
¢

and at last:

IE
hbIn(x)i2 = γ21(x)

σ6n
36

µZ
u3K(u)du

¶2

.


Z


Z
0

x ³
α(t, z). ∂

∂y3
h(t, 0, z)

´
dt− α(x, z)

h
∂2

∂x2
h (x, 0, z)− ∂2

∂x2
h (0, 0, z)

i
+

Z
0

x
∂
∂xα(t, z)

h
∂2

∂x2
h (t, 0, z)− ∂2

∂x2
h (0, 0, z)

i
dt

 dz


2

+ o
¡
σ6n
¢

that is to say

IE
hbIn(x)i2 = γ21(x)

σ6n
36

µZ
u3K(u)du

¶2

.


Z


Z
0

x ³
α(t, z). ∂

∂y3
f(t, λ (t) , z)

´
dt− α(x, z)

h
∂2

∂x2
f (x, λ (x) , z)− ∂2

∂x2
f (0, 0, z)

i
+

Z
0

x
∂
∂xα(t, z)

h
∂2

∂x2
f (x, λ (x) , z)− ∂2

∂x2
f (0, 0, z)

i
dt

 dz


2

+o
¡
σ6n
¢

where  γ(x, t) = e


Z
0

x

∂
∂y

m(u,λ(u))du−
Z
0

t

∂
∂y

m(u,λ(u))du


= γ1(x).γ2(t)

α(t, z) = z−m(t,λ(t))
f(t,λ(t)) γ2(t)
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