OLAP in Multifunction Multidimensional
Databases

Ali Hassan!, Frank Ravat!, Olivier Teste?,
Ronan Tournier!, and Gilles Zurfluh?

! Université Toulouse 1 Capitole, IRIT (UMR 5505),
2 Rue du Doyen Gabriel Marty, 31042 Toulouse cedex 9, France
? Université Toulouse 2 / TUT Blagnac, IRIT (UMR 5505),
1 Place Georges Brassens, BP 60073, 31703 Blagnac cedex, France
{hassan,ravat,teste,tournier,zurfluh}@irit.fr

Abstract. Most models proposed for modeling multidimensional data
warehouses consider a same function to determine how measure values
are aggregated. We provide a more flexible conceptual model allowing
associating each measure with several aggregation functions according
to dimensions, hierarchies, and levels of granularity. This article studies
the impacts of this model on the multidimensional table (MT) and the
OLAP algebra [11]. It shows how the MT can handle several aggrega-
tion functions. It also introduces the changes of the internal mechanism
of OLAP operators to take into account several aggregation functions
especially if these functions are non-commutative.

Keywords: Multidimensional database, OLAP analysis, OLAP opera-
tors, aggregation function, multidimensional table.

1 Introduction

Within multidimensional models, analysis indicators are analyzed according to
several dimensions. Decision-makers can use OLAP operators [11] to study mea-
sures according to different levels of granularity. In this way, data is regrouped
according to selected levels and aggregated using aggregation functions. Clas-
sical multidimensional databases provide the use of only the same aggregation
function to aggregate a measure over all the multidimensional space. This capac-
ity is not sufficient to face situations which require several aggregation functions
to aggregate a same measure. For example, the monthly average temperatures
are obtained from the calculus of the average of daily temperatures. However,
it is possible to calculate the average department (a subdivision of regions in
the French administrative geographical system) temperatures according to two
ways. The first, i.e. simple way, uses the same aggregation that is used by televi-
sion weather forecasts by choosing the main city (‘prefecture’) that is considered
as representative of the considered department. The second, i.e. scientific way,
takes into account all the temperatures of all the cities of the department.

Related Work. Most of the existing works consider that a measure is associ-
ated to one aggregation function that will be used for all the different modeled

aggregation levels. [6, 13] do not specify aggregation functions at the measure
level; however, they leave the possibility to use several aggregation functions
during OLAP data explorations. This provides great flexibility, but allows the
user to do errors by using inappropriate aggregation functions. The authors of
[9] suggest linking each measure to a set of functions that contain only those
which are valid for the measure. However, each function is used uniformly for all
dimensions and all hierarchical levels that compose the multidimensional space.
Recent works [1] allow the use of a different aggregation function for each dimen-
sion but without allowing the function to be changed according to the selected
hierarchical level. This problem was solved by recent aggregation models [10, 2.
These works allow associating each measure with an aggregation function for
each dimension, each hierarchy or each aggregation level. However, they do not
consider non-commutative aggregation functions.

Regarding commercial tools, Business Objects uses a single aggregation func-
tion for each measure. By contrast, Microsoft Analysis Services offers the pos-
sibility of applying a ‘custom rollup’ in a hierarchy [7]. However aggregation
functions are related to neither a specific dimension nor an aggregation level.
They are related to a member (an instance) of an aggregation level in a hierar-
chy (i.e. a line in the dimension table). Therefore, applying this ‘custom rollup’
to a single aggregation level requires repeating it for all the instances of that
level. This causes storage and performance problems [7].

Contribution. In order to overcome these limits, we have developed a con-
ceptual model for representing multidimensional data [8]. This model associates
a measure with different aggregation functions according to dimensions, hier-
archies and aggregation levels called parameters. Moreover, the model controls
the validity of the aggregated values by defining an order of execution for non-
commutative functions. The model considers also the case where an aggregated
measure cannot be calculated using aggregation constraints. These constraints
define the starting level from which the aggregation can be calculated.

The application of this model has several impacts on the resulting multidi-
mensional table (MT) as well as on the OLAP manipulation operators [11]. In
this article, we present modifications that have to be applied to adapt the MT to
present several aggregation functions and the changes on the OLAP operators
to be able to deal with cases of multiple and non-commutative functions.

This paper is organized as follows: Section 2 presents our conceptual model for
integrating several aggregation functions for a same measure. Section 3 discusses
the changes that we make on the OLAP operators and MT to adapt to our model.
Finally, Section 4 details our experiments.

2 Multifunction Conceptual Data Model

Let AL= {n1,n2,...} be a finite set of non redundant names and ¥ = { f1, f2, ...}
a finite set of aggregation functions.

Definition 1. A fact, noted F}, is defined by (nf", M?).

— nf" enis the name that identifies the fact,
— M’ = {myq,...,mp;} is a set of measures.

Definition 2. A dimension, noted D;, is defined by (nP?, A% H?).

— nP? eq(is the name that identifies the dimension,
— At ={al,...,al, Y J{Id", All'} is the set of dimension attributes,
— H' = {H},..., H..} is the set of hierarchies.

Hierarchies organize the attributes of a dimension, called parameters, from the
finest granularity (root parameter noted Id") up to the most general granularity
(the extremity parameter noted All?).

Definition 3. A hierarchy, noted H; (abusive notation of H},Vj € [1..s4]), is
defined by (nl7, PJ, <HJ Weak7).

— nHi €Ais the name that identifies the hierarchy,

- PI={p], ..., pf]j} is the set of attributes of the dimension called parameters,
PJ CA*,

— <Hi={(p],pl) | p € P Ap] € P’} is a binary relation, antisymmetric and
transitive, o

— WeakHi : pi — 24\P’ ig an application that associates to each parameter
a set of attributes of the dimension, called weak attributes.

Assuming M = U?:l Mi’ H = U?;l Hi7 f)Z = Uj;l P‘] and P = U;il PZ

Definition 4. A multidimensional schema, noted S, is defined by (F, D, Star,
Aggregate). This schema is an extension of our previous works [8] where we add
a new type of aggregation (multiple hierarchical) and we revisit the execution
order mechanism in order to allow our model to be more expressive.

— F ={Fy,...,F,} is a set of facts, if | F' |= 1 then the schema is called a star
schema, while if | F' |> 1 then the schema is called a constellation schema
— D ={Ds,...,D,,} is a finite set of dimensions
— Star : F — 2P is a function that associates each fact to a set of dimensions
according to which it can be analyzed
— Aggregate : M — PN XTFx2Px2M X2 XN jgociates each measure to a set of
aggregation functions [8]. It allows defining 4 types of aggregation functions:
e General (if 2P = @, 2/ = @ and 2 = @): aggregates measure values
with any parameter. This function represents the aggregation function
of the classical model,
e Multiple dimensional (if 2 = @ and 2¥ = @): aggregates the measure
on the whole considered dimension,
e Multiple hierarchical (if 2 = @): aggregates the measure on all the
considered hierarchy,
e Differentiated (if 2P # @, 2 # @ and 2F # @): aggregates the measure
between the considered parameter and the one directly above.

When considering the case of non-commutative functions, N* associates to each
function an order number that represents the execution priority. The function
with the lowest order has the highest priority. Commutative functions have the
same order. N~ is used to constrain aggregations by indicating a specific aggre-
gation level from which the considered aggregation must be calculated. A non
constrained aggregation will be associated to 0 while a constrained aggregation
will be associated to a negative value to force the calculation from a chosen level
lower than the considered level.

Using the ‘Star’ function we obtain a structural schema that visualizes struc-
tural elements (facts, dimensions and hierarchies) by hiding the aggregation
mechanism, Fig. 1 (a). The graphical formalism used is inspired by [4, 11, 12].
The schema in Fig. 1 (a) corresponds to the analysis of average temperatures.
The fact ‘Temperature’ is associated to three dimensions: ‘Geography’, ‘Dates’
and ‘Time’. The ‘Geography’ dimension is composed of two hierarchies that cor-
respond to different means for aggregating data: ‘Simple’ and ‘Scientific’. The
‘Time’ dimension has only one hierarchy that orders the hourly granularities
at which temperatures are recorded during the day. The ‘Dates’ dimension has
several hierarchies that organize the granularity levelss of days.

§ ALE
ﬁl @
o A
] @ OALL
» T
R_Surface {DAVG_W(Tem_Avg, R_Surface) -1
Region R_Surface
Region
D_Surface g
Department

AVG_W(Tem_Avg, D_Surface) -1
D_Surface

Administrative level

City (Adm_lev)

Geography

HTime (a) (b)

P g
|3 : execution order ‘ : aggregation function f() @ : aggregation constraint]

Fig. 1. Graphical representation of the multidimensional schemas

For each measure, an aggregation schema can be obtained using the ‘Aggre-
gate’ function. This schema details the aggregation mechanism that applies to
the measure by simplifying the structural elements as much as possible. Fig. 1 (b)
shows the aggregation schema of the average temperatures measure ‘Tem_Avg’.
It has a general aggregation function ‘Avg’ and a multiple hierarchical function
‘Select_centre’ on the hierarchy ‘Hgeo_simp’. It has also differentiated functions
‘Avg’ and ‘Avg_W’ on the hierarchy ‘Hgeo_Scien’. ‘Avg_W’ aggregates the values
from the level directly below the considered one (constraint -1).

The function Select_centre(I, M) takes two numeric inputs. It returns the
value M that corresponds to Max(I). For example, if one applies Select_center
(administrative_level, Tem_Avg) at the region level, it returns the temperatures
of the region prefecture (the city that has the highest administrative level).

The function Avg-W(X, Y) takes two numeric inputs. It returns the average of

the X values weighed by Y. In other words, a weighted average Avg_W(X,Y) =

ST(XXY)
v -

Within the aggregation schema the hierarchies are presented in a disjoint way
(each hierarchy is represented by a complete path from the root parameter to the
extremity parameter ALL) contrarily to the structural schema where they are
represented in a compact way (the common parts of the hierarchies are fused,
forming a tree-like structure of parameters). Aggregation functions are modeled
by diamonds. Each diamond shows the execution order and the aggregation
constraint. Aggregations with constraints set at -1 are calculated using the level
directly below; for example, the average temperature ‘Tem_Avg’ for each region
must be calculated from department average temperatures. In the hypothesis
where we would have chosen to calculate this average temperature by region
using the city temperatures, the constraint would have been set to -2.

3 OLAP Manipulation

In the next parts of this article, we concentrate our study on OLAP multidimen-
sional analysis [3] applied to a multifunction multidimensional database.

In previous works [11], we have defined a decision-maker oriented algebra
to express on-line analytical process. This algebra uses the concept of a mul-
tidimensional table (MT). An MT is a two dimensional table used as source
and target for the algebraic operators, thus ensuring closure of the OLAP al-
gebra. This choice is justified by the fact that during analyses decision-makers
usually manipulate data through bi-dimensional tables (lines and columns) due
to their simplicity of understanding and their precision [6]. Our multifunction
model changes the MT and some of these operators. These changes do not al-
ter their functionality; however, they may impact the definition or the internal
mechanism. Before studying these changes we present our motivating example.

3.1 Motivating Example

Table 1 contains a simplified data sample consistent with our example above.
In this example, temperature is recorded twice a day in the department ‘Rhone’
while being recorded once in the department ‘Isere’.

Table 1. Average temperatures of departments by day and time

Region Department D_Surface Date Time Tem_Avg

Rhone-Alpes ~ Rhone 3249 1/1/2012 00:00 -1
Rhone-Alpes ~ Rhone 3249 1/1/2012 12:00 1
Rhone-Alpes Isere 7431 1/1/2012 12:00 2
Rhone-Alpes ~ Rhone 3249 2/1/2012 00:00 0
Rhone-Alpes ~ Rhone 3249 2/1/2012 12:00 2
Rhone-Alpes Isere 7431 2/1/2012 12:00 2

If the user wishes to analyze the average temperatures of regions by month,
then two aggregation functions must be used:

— ‘Avg_W(Tem_Avg, D_Surface)’ to calculate the average temperatures of re-
gions from the temperatures of departments weighted by the surfaces of the
departments ‘D_Surface’,

— ‘Avg(Tem_Avg)’ to calculate the average monthly temperatures from the
daily temperatures.

If the function ‘Avg W(Tem_Avg, D_Surface)’ is applied first, we obtain the
average temperatures of regions by day and time (Table 2). If we apply the
function ‘Avg(Tem_Avg)’ after we obtain the required average temperatures of
regions by month (Table 3).

Table 2. Average temperatures of regions by day and time

Region Date Time Tem_Avg
Rhone-Alpes 1/1/2012 00:00 -1
Rhone-Alpes 1/1/2012 12:00 1.7
Rhone-Alpes 2/1/2012 00:00 0
Rhone-Alpes 2/1/2012 12:00 2

Table 3. Average temperatures of regions by month

Region Month Tem_Avg
Rhone-Alpes 2012-1 0.67

But if the function ‘Avg(Tem_Avg)’ is applied first, we obtain the average
temperatures of departments by month (Table 4). If we apply the function
‘Avg_W(Tem_Avg, D_Surface)’ afterwards, we obtain the average temperatures
of regions by month (Table 5).

Table 4. Average temperatures of departments by month

Region Department D_Surface Month Tem_Avg
Rhone-Alpes Rhone 3249 2012-1 0.5
Rhone-Alpes Isere 7431 2012-1 2

Table 5. Average temperatures of regions by month

Region Month Tem_Avg
Rhone-Alpes 2012-1 1.54

The difference between the results obtained in Table 3 and Table 5 proves
the need to use the execution order. The key role of the execution order in our
model is to force the execution of aggregation functions in a specific order so as
not to have an erroneous result due to non-commutativity. The choice of a valid
execution order depends on the requirements of the user. It may differ from one
case to another, even if the functions are the same in both cases. Our model
allows setting the order which gives a valid result for the user. In this example,
the result that correspond to the user’s requirements are in Table 3. This justifies
why we give a value of 1 for the execution order of the function ‘Avg_W’ while
we give 2 for the execution order of the function ‘Avg’ Fig. 1 (c).

We conclude from the previous example that the application of an aggregation
function with an execution order lower after an aggregation function with an
execution upper give an erroneous result.

For RollUp! and Rotate? operators, the aggregation level has to be changed
from the current level to another higher level.

— For the RollUp operator: from the current level to the targeted level
— For the Rotate operator: from the current level to the ALL level of the
dimension that will be removed from the MT

In order to do that, it is necessary to apply new aggregation functions after
having applied the previous functions that built the current MT (before applying
the RollUp and Rotate operators). But, the execution orders of the previous
functions can be higher than those of the new functions, i.e. it is not possible to
apply the new functions after having applied the previous functions. This requires
setting up costly internal mechanisms for these RollUp and Rotate operators.
We study these mechanisms in the following section.

3.2 Extended OLAP

Within this section, we study the RollUp operator as it is not only one of the
most emblematic OLAP manipulation operator and but also one of the most
used. First the classical RollUp operator is presented, then changes required for
this operator to work within our multifunction model are described.

Classical RollUp. In order to study this operator, let us have an MT that
analyses average temperatures of departments by months (Fig. 2(a)). From this
MT, a RollUp operator will be used to analyze the average temperatures by
regions instead of departments (Fig. 2(b)).

To study the classical RollUp operator, we take into account the classical
multidimensional model where there is only one function for aggregating the

! RollUp(Tsre, D, pi) [11]: modifies the granularity level on the current hierarchy of
the dimension (D) towards an upper level or less detailed level (p;) by removing one
(or several) parameters in line or column of an MT (Tgsrc).

? Rotate(Tsrc, Dotd, Dnew [;Hnew]) [11]: allows changing an analysis axis (Do) by
another one (Dpew) in an MT (Tgsre). It is possible to specify the hierarchy (Hnew)
of the new dimension to use it in the resulting MT.

Geography|Hgeo_Scien
Temperature - N .
Tem Awg Region Rhone-Alpes Temperature Geography|Hgeo_Scien
B Department |Rhone |Isére Tem_Avg Region |[Rhone-Alpes
Dates| | Year |MonthN Dates| |Year |MonthN
Hmonth 2012-1 1 2 Hmonth 2012-1 1.
2012 0 2012 0 Ll
2012-2 5 4 2012-2 43
(@)T)T

Fig. 2. RollUp

measure. The SQL query that performs the analysis of the average temperatures
by departments and by months (Fig. 2(a)) is the following:

R1:Resultl =

SELECT G.REGION, G.DEPARTMENT, D.YEAR, D.MonthN,
AVG(TT.TEM_AVG) AS TEM_AVG, SUM(TT.TEM_AVG) AS sum_Tem_Avg,
COUNT(TT.TEM_AVG) AS count_Tem_Avg

FROM DATES D, GEOGRAPHY G, TEMPERATURE TT

WHERE TT.ID_CITY = G.ID_CITY AND TT.ID_DATE = D.ID_DATE

GROUP BY G.REGION, G.DEPARTMENT, D.YEAR, D.MonthN;

To execute the desired drilling operation (RollUp), one may profit from the re-
sults of the previous MT, if the aggregation function is distributive or algebraic
(in this later case, intermediate values have to be stored) [5]. In our example,
the aggregation function (Avg) is algebraic. Intermediate values required are
the sum of the temperatures of cities (sum_Tem_Avg) for each department and
the number of occurrences (count_-Tem_Avg). Thus, the R2 query that performs
the RollUp and corresponds to the MT in Fig. 2(b), benefits from the interme-
diate values of the results (Resultl) of the previous query R1. In other words,
in order to perform a RollUp operation, it is not necessary to load the original
base measure values, as the MT values can be used as an intermediate values.

R2:

SELECT REGION, YEAR, MonthN,
SUM(sum_Tem_Avg)/SUM(count_Tem_Avg) AS TEM_AVG

FROM Resultl

GROUP BY REGION, YEAR, MonthN;

Extended RollUp. The changes of the RollUp are due to the difference be-
tween the execution orders of the aggregation functions of a measure. In this
multifunction model, as there are several functions that aggregate the measure
in the multidimensional space, the SQL query that performs the analysis of the
average temperatures by departments (on the hierarchy ‘Hgeo_scien’) by month
(Fig. 2 (a)) becomes more complex:

R3: Result2 =

SELECT REGION, DEPARTEMENT, YEAR, MonthN, AVG(TEM_AVG) AS TEM_AVG

FROM (SELECT G.REGION, G.DEPARTEMENT, D.YEAR, D.MonthN, D.DayN,
T.EVERY_3_HOURS, AVG(TT.TEM_AVG) AS TEM_AVG

FROM DATES D, GEOGRAPHY G, TEMPERATURE TT, TIME T

WHERE TT.ID_TIME = T.ID_TIME AND TT.ID_CITY = G.ID_CITY

AND TT.ID_DATE = D.ID_DATE
GROUP BY G.REGION, G.DEPARTEMENT, D.YEAR, D.MonthN, D.DayN,
T.EVERY_3_HOURS)
GROUP BY REGION, DEPARTEMENT, YEAR, MonthN;

To perform a RollUp in a multifunction model, we can distinguish two cases
according to aggregation functions that correspond to the requeste RollUp:

Case 1. All the execution orders of the aggregation functions that aggregate
the measure between the current parameters and the requested parameters are
higher or equal to the execution orders of the aggregation functions that ag-
gregate the measure between the base parameters and the current parameters
(including the ALL levels of the non-shown dimensions in the MT).

For example, if we want to perform a RollUp to analyze the average tem-
peratures of departments by year, the function that aggregates the average
temperatures between the level ‘MonthN’ and ‘Year’ is the general function
‘Avg(Tem_Avg)’. This function has an execution order of 2 that is greater or
equal to the execution orders of aggregation functions that aggregate the aver-
age temperatures between the base levels and the levels ‘Department’, ‘MonthN’
and ‘ALL’ of the ‘Time’ dimension. In this case, in the same way as the classic
RollUp, we can benefit from the values already in the MT, as in query RA4.

R4:
SELECT REGION, DEPARTEMENT, YEAR,
SUM(sum_Tem_Avg) /SUM(count_Tem_Avg)AS TEM_AVG
FROM Result2
GROUP BY REGION, DEPARTEMENT, YEAR;

Case 2. The execution order of an aggregation function that aggregates the
measure between a current parameter and a requested parameter is less than an
execution order of an aggregation function that aggregates the measure between
a base parameter and a current parameter.

For example, if we want to perform a RollUp to analyze the average tem-
peratures of regions by months from the average temperatures of departments
by months, the function that aggregates the average temperatures between the
levels ‘Department’ and ‘Region’ on the hierarchy ‘Hgeo_Scien’ is the function
‘Avg-W(Tem_Avg, D_Surface)’. This function has an execution order of 1 that is
less than the execution order of the general function that aggregates the average
temperatures between the base level and the ‘MonthN’ level. This means that
it is necessary to calculate the average temperature by region before calculating
the average temperatures by months. In this case, it is not possible to benefit

from the values of the measure displayed within the MT. Base values of the
measure have to be used to get the aggregated values as in query R53.

R5:

SELECT REGION, YEAR, MonthN, AVG(TEM_AVG) AS TEM_AVG

FROM (SELECT REGION, YEAR, MonthN, DayN, EVERY_3_HOURS,

AVG_W(DATA_WEIGHTED(TEM_AVG, D_SURFACE)) AS TEM_AVG

FROM (SELECT G.REGION, G.DEPARTEMENT, D.YEAR, D.MonthN, D.DayN,
T.EVERY_3_HOURS, G.D_SURFACE, AVG(TT.TEM_AVG) AS TEM_AVG

FROM DATES D, GEOGRAPHY G, TEMPERATURE TT, TIME T

WHERE TT.ID_TIME = T.ID_TIME AND TT.ID_CITY = G.ID_CITY

AND TT.ID_DATE = D.ID_DATE

GROUP BY G.REGION, G.DEPARTEMENT, D.YEAR, D.MonthN, D.DayN,
T.EVERY_3_HOURS, G.D_SURFACE)

GROUP BY REGION, YEAR, MonthN, DayN, EVERY_3_HOURS)

GROUP BY REGION, YEAR, MonthN;

3.3 Extended Multidimensional Table

Within the scope of this article, we extend the concept of the MT in order to
support the multifunction principles of our multidimensional model, especially
by integrating the associated aggregation functions within its definition. An ex-
tended MT is thus defined as follows:

TM = (F7 <(DL7 hLa <PrL1; PL2, >)7 (DC7 hC7 <pc1, Pc2, >)>7
<{Aggregate(m;)}, {Aggregate(ms)}, ...>, Pred)

— F: analyzed fact,

— Dy, D¢t dimensions displayed in lines and columns respectively,

— hp, he: hierarchies, used to respectively navigate in lines or columns,

— PL1, PL2---, PC1, PO2, -..: displayed parameters,

— mj, ms...: displayed measures,

— Aggregate(m;), Aggregate(ms,)...: aggregation functions respectively associ-
ated to measure mp, mo...

— Pred: selection predicate on the fact and/or dimension(s) to limit the set of
analyzed values.

The following example specifies the definition of a multidimensional table for
analyzing the average temperature by month and department in the Rhone-
Alpes region:

TM = (Temperature,
<(Dates, Hmonth, <Year, MonthN>),
(Geography, Hgeo_Scien, <Region, Department>)>,

3 The customized aggregation function ‘AVG_W’ calculates a weighted average. It
receives a parameter (TYPE DATA_WEIGHTED AS OBJECT (value NUMBER,
weight NUMBER)) that consists in the data and its associated weight.

<{(2, Avg(Tem_Avg), {}, {}, {}, 0),
(1, Avg(Tem_Avg), {Geography}, {Hgeo_Scien}, {City}, 0)}>,

GEOGRAPHY.Region = ‘Rhone-Alpes’)

The graphical representation of this specification is shown in Fig. 3 (b):

Geography|Hgeo_Scien Geography|Hgeo_Scien
Temperature Region Rhoéne-Alpes Temperature Region Rhone-Alpes
AVG(Tem_Avg) |Department |Rhone [Isére <2>AVG(Tem_Avg) |pepartment Rhone (Isére
<1>AVG(Tem_Avg)
Dates| |Year [MonthN Dates| | Year |MonthN
Hmonth 2012-1 1 2 Hmonth 2012-1 1
2012 2012
2012-2 5 4 2012-2 5
Geography.Region = ‘Rhone-Alpes’ Geography.Region = ‘Rhone-Alpes’
(a) classic (b) extended

Fig. 3. Graphical representation of a multidimensional table

In order to adapt the visualization of the MT to display several aggregation
functions that can be used by a unique measure Fig. 3(b), the MT allows dis-
playing the aggregation functions (along with their inputs, their execution orders
and their constraints) used to obtain the displayed elements.

The general function is displayed instead of the corresponding measure,
The multiple dimensional function is displayed besides the name of the cor-
responding dimension,

The multiple hierarchical function is displayed besides the name of the cor-
responding hierarchy;,

The differentiated function is displayed besides the name of the correspond-
ing parameter,

The function inputs are displayed between parentheses ‘()’ after the function
name,

The function execution order is displayed between ‘<>’ before the function
name,

The function constraints are displayed after the inputs, at the end of the
function.

This visualization is based on the simplification of the functions as much as
possible:

Simplifying aggregation constraints: if a function is not constrained (the
constraint value is 0), the MT does not display this constraint Fig. 3
Simplifying execution orders: if all displayed aggregation functions have the
same execution order, the MT hides all these execution orders. For example,
if we analyze the average temperatures by department (using the ‘Hgeo_simp’
hierarchy) and by month, the functions used (the general ‘AVG(Tem_Avg)’
and the multiple hierarchical ‘Select_center(Adm_lev, Tem_Avg)’) have the
same execution order (2). The resulting MT is shown in Fig. 4,

— Reduce the number of displayed functions:

o [f all the displayed parameters on a dimension have a differentiated func-
tion, the MT displays neither the multiple hierarchical function nor the
multiple dimensional function on the considered dimension,

e If a displayed hierarchy has an aggregation function, the M'T does not
display the multiple dimensional function of the considered dimension,

e If the two displayed dimensions have a multiple dimensional function
or a multiple hierarchy function for the displayed hierarchy or even a
differentiated function for each displayed parameter, the MT does not
display the general function.

Geography|Hgeo_Simp
Temperature Select_center(Adm_lev, Tem_ Avg)

AVG(Tem_Avg) Region Rhone-Alpes
Department Rhone |Isere
Dates| |Year |MonthN
Hmonth 2012-1 2 2
2012 0
2012-2 4

Geography.Region = ‘Rhone-Alpes’

Fig. 4. MT with simplified execution orders

4 Experiments

Our proposal is implemented in the prototype ‘OLAP-Multi-Functions’. We use
Java 7 on top of Oracle 11g DBMS. It allows the definition of a constellation
with multiple and differentiated aggregations, as well as visualizing and querying
multidimensional data. Aggregation functions are described in a meta-schema.
This meta-schema also describes the structures of the multidimensional schema
(facts, dimensions and hierarchies). To oversee the analysis, the prototype has
a generator of SQL queries. The analyst selects the desired measure and aggre-
gation levels. The prototype translates interactions by generating an executable
SQL script in the context of a R-OLAP implementation.

In this section, we study the additional execution time required by the ex-
tended operators compared to classical operators.

Collection: We use the example shown in Fig. 1, where temperatures are
recorded eight times a day (every three hours). Size grouping for the geography
dimension is set to 5. This means that each instance of a higher level corresponds
to five instances of lower level (for example, each department has five cities).

Protocol: We observe the execution time of the five queries above in accordance
with the number of tuples of the fact (from two to eight millions). The fifth query
includes a customized function ‘Avg_w’ that affects the execution time because
the function is not optimized contrary to the standard functions (Sum, Avg,
Count, Max, Min); therefore, we also study a sixth query (R6) identical to the
fifth query but using a standard function: ‘Avg’ instead of ‘Avg_w’.

Results: Figure 5 shows the curves corresponding to the six queries. The time
required to execute query R3 (the basic analysis of the average temperatures
of departments by month for the extended operator) is greater than the time
required to execute query R1 (the basic analysis using the classical operator)
because of the complexity of the query (using several functions) that uses the
extended operator.

The time required to execute the queries R2 and R4 (that benefit from the
intermediate values of the results Resultl and Result2 of the previous queries
R1 and R3 respectively) is remarkably low (about 0.1 seconds) because the data
has previously been highly aggregated. Here, we do not notice any difference
between the classical operator and the extended operator.

The time required to execute the query R5 (that uses the extended operator
in the absence of the possibility of using intermediate values) is greater than
the time required to execute R3 (the basic analysis for the extended operator).
However, a large part of that time is due to the fact that the customized function
‘Avg_W’ is not optimized, this is what we see clearly in the difference between the
time required to execute R5 and R6 These results show that the additional time
required to execute extended operators is relatively large, thus it is necessary
to optimize queries and the used functions and benefit as much as possible of
previously calculated values.

120 /
)
< 100
g / —&=R1
(&}
(]
E 60 = R3
= —=R4
S 40
o == R5

20 —u —®—R6

— ——
O T ! T ‘ T ‘ 1

2000000 4000000 6000000 8000000
Number of tuples of fact

Fig. 5. Execution time of 6 queries according to the number of aggregated tuples

5 Conclusion

In this paper, we have studied the impact of our conceptual data representation
model on the multidimensional table and the associated multidimensional alge-
bra. This model allows associating to each measure several aggregation functions
according to the dimensions, hierarchies and parameters. The non-commutative
aggregation functions necessitate the use of execution orders as these later may
influence the internal mechanism of OLAP operators (especially Rotate and
RollUp). In order to adapt the visualization of the multidimensional table to

our multifunction model, the multidimensional table allows displaying the ag-
gregation functions with their inputs, execution orders and constraints; however,
the multidimensional table simplifies the presentation of the functions in terms
of aggregation constraints, execution order and number of displayed functions.

We are developing our prototype to benefit from intermediate values and
temporary results of OLAP operators to improve the performance. We are also
considering optimizing the extended operators algorithms and performing ex-
periments based on our prototype.

References

1]
2]

[11]

[12]

Abells, A., Samos, J., Saltor, F.: YAM2: A multidimensional conceptual model
extending UML. Information Systems 31, 541-567 (2006)

Boulil, K., Bimonte, S., Pinet, F.: Un modele UML et des contraintes OCL
pour les entrepots de données spatiales. De la représentation conceptuelle a
I'implémentation. Ingénierie des Systémes d’Information (IST) 16(6), 11-39 (2011)
(in French)

Codd, E.F.: Providing OLAP (on-line analytical processing) to user analysts: an
IT mandate. Technical Report, E.F. Codd and Associates (1993)

Golfarelli, M., Maio, D., Rizzi, S.: Conceptual Design of Data Warehouses from
E/R Schemes. In: Intl. Conf. HICSS 1998, vol. 7, pp. 334-343 (1998)

Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data Cube: A Relational Ag-
gregation Operator Generalizing Group-By, Cross-Tab, and Sub-Total. In: Intl.
Conf. ICDE, vol. 96, pp. 152-159 (1996)

Gyssens, M., Lakshmanan, L.V.S.: A Foundation for Multi-Dimensional
Databases. In: Intl. Conf. VLDB., vol. 97, pp. 106-115 (1997)

Harinath, S., Zare, R., Meenakshisundaram, S., Carroll, M., Guang-Yeu Lee, D.:
Professional Microsoft SQL Server Analysis Services 2008 with MDX. Wiley Pub-
lishing, Indianapolis (2009)

Hassan, A., Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Differentiated Multiple
Aggregations in Multidimensional Databases. In: Cuzzocrea, A., Dayal, U. (eds.)
DaWaK 2012. LNCS, vol. 7448, pp. 93-104. Springer, Heidelberg (2012)
Pedersen, T., Jensen, C., Dyreson, C.: A foundation for capturing and querying
complex multidimensional data. Information Systems 26(5), 383-423 (2001)
Prat, N., Wattiau, I., Akoka, J.: Representation of aggregation knowledge in
OLAP systems. In: The 18th European Conference on Information Systems, ECIS
(2010)

Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Algebraic and graphic languages
for OLAP manipulations. International Journal of Data Warehousing and Min-
ing 4(1), 17-46 (2008)

Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Graphical Querying of Multidi-
mensional Databases. In: Toannidis, Y., Novikov, B., Rachev, B. (eds.) ADBIS
2007. LNCS, vol. 4690, pp. 298-313. Springer, Heidelberg (2007)

Vassiliadis, P., Skiadopoulos, S.: Modelling and Optimisation Issues for Multidi-
mensional Databases. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS,
vol. 1789, pp. 482-497. Springer, Heidelberg (2000)

