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Abstract— An important connection between evolution and
learning was made over a century ago and is now termed as
the Baldwin effect. Learning acts as a guide for an evolutionary
search process. In this study reinforcement learning agents are
trained to solve the robot coverage control problem. These
agents are improved by evolving neuromodulatory gene regula-
tory networks (GRN) that influence the learning and memory
of agents. Agents trained by these neuromodulatory GRNs can
consistently generalize better than agents trained with fixed
parameter settings. This work introduces evolutionary GRN
models into the context of neuromodulation and illustrates some
of the benefits that stem from neuromodulatory GRNs.

I. INTRODUCTION

As biological organisms have evolved, there has been

a general trend that appears to favor the selection of in-

dividuals with plasticity via learning. While basic hard-

coded behaviors can be quite powerful and may even be

complex, such behaviors do not often translate between

environmental contexts. Furthermore, there is evidence from

studies of the interaction between evolution and learning

that, in tandem, both processes can exhibit a synergistic

expediting effect [17], [3]. This has been termed the Baldwin

expediting effect [4], which states that plasticity (learning)

can facilitate genotype improvement by providing gradient

information. We extend this research by evolving an artificial

gene regulatory network (GRN), which dynamically modu-

lates agent learning. In this study the neuromodulatory GRN

allows agents to dynamically regulate learning and memory

according to what the agent senses in its environment.

The interaction between evolution and learning has a long-

standing history [17]. In their pioneering work, Hinton and

Nowlan simultaneously evolve static and learnable neural

network weights. They find that the ability to learn improves

the evolvability of the networks. This improvement is ex-

pected to be primarily caused by the gradient information

that learning provides about how far a network is from the

correct solution. Since this initial finding there have been

a number of studies which explore the Baldwin expediting

effect [39], [3], [2], where a general consensus finds that the

problem domain can have a significant impact on how much

improvement, or even detriment, plasticity provides.

GRNs are a fundamental and pervasive structure in bi-

ology. Many motile bacterial cells use GRNs to modulate

their flagellate motor allowing for chemotaxis, phototaxis,

and other environment seeking behaviors. This property has

been exploited for the control of robots with artificial GRNs
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[41], [27], [19], [10], where robots evolved useful navigation

behaviors. Other research has extended the application of

artificial GRNs to other robot control problems.

Artificial neural networks are one of the most used models

of biologically-plausible learning because of their relation

to biological neural networks. While the field of neural

networks itself has had a tumultuous history, researchers

continued to pursue studies of hierarchical learning struc-

tures, such as the Hinton and Nowlan’s layering of genera-

tional evolution and lifetime learning. During the first neural

network rennaisance a method for learning with cascading

neural networks was proposed [30]. In a two-network cascade

one network acts as a function network while the other

network defines context by specifying the weights of the

function network. In this work we consider an internal

cascading mechanism, whereby a gene regulatory network

produces neuromodulators that alter learning and memory.

Ackley and Littman designed a system to test learning

and evolution with a modified backpropagation network in

an artificial life context [1]. In their study agents evolve

the initial weights of learnable-control neural networks and

fixed reward-estimation networks. Fixed reward-estimation

networks are used to produce a reinforcement signal for an

adapted version of the backpropagation learning algorithm.

The complexity of their environment and relatively open-

ended task require such an estimated reinforcement signal.

However, the robot coverage control problem which we

address (explained in the following section) has a clear

objective with a minimal natural framing in the context of

reinforcement learning. This reduces the number of factors

that may obscure analysis of the resultant behaviors.

We begin this paper with an overview of the robot cov-

erage control problem. We then explain the reinforcement

learning algorithm which is used for robot control. The gene

regulatory networks that are used for neuromodulation are

then introduced. Finally, we present the specific instantiation

of the problem and the algorithms used in our experiments,

and the experiments themselves. We then conclude with a

discussion of the benefits of evolving neuromodulatory gene

regulatory networks that influence learning and memory.

II. COVERAGE CONTROL

Some of the classic examplar problems of artificial in-

telligence involve the control of agents in 2D worlds [32].

A high-impact problem in this domain is the control of

robotic vacuum cleaners. The general robotic cleaner market

is currently approaching the billion dollar mark. A robot

vacuum cleaner is an agent that must avoid potentially mobile

obstacles and clean ephemerally accumulating dirt within

some region. Other tasks, such as charging are ignored in
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Fig. 1: The environment for the CCP problem.

this study. The objective of the robot is to clean all the dirt

that has accumulated. In spite of limited sensors and the

inability to maintain a sufficiently accurate internal map, this

challenge of the task is to uniformly covering the region.

Robot coverage problems have a long standing history in

evolutionary computation. One of the first genetic program-

ming (GP) studies was on what has come to be called the

“lawnmower” problem [12]. The lawnmower problem is an

instance of the control coverage problem (CCP) in a uniform

environment, often with turn-based navigation and the ability

to jump. The use of modular structures have been shown to

facilitate solving the lawnmower problem in GP [21]. The

lawnmower problem, and other versions of the CCP, have

been extensively studied in the field of GP, but a review of

GP techniques is beyond the scope of this paper. However,

we highlight an observation that was revealed for a version

of the CCP with obstacles [35]. In this study the meanings

of evolved behavioral modules were investigated, and it was

found that optimal solutions contained modules that encoded

short action sequences which were then iterated to solve the

CCP. This observation suggests that successful agents may

only need to learn a few short, but useful, action sequences.

An example illustration of the CCP is shown in Figure 1.

The CCP has also been studied from a multi-robot per-

spective. In [26], simple hard-coded heuristics, such as wall-

seeking behavior, are used by multiple robots to solve the

CCP in a distributed manner. Optimal control for multi-

robot coverage problems in mobile sensing networks has

been explored analytically [8]. An overview of distributed

algorithms for the CCP can be found in [7].

III. REINFORCEMENT LEARNING

Reinforcement learning is a reward-based learning algo-

rithm that allows agents to learn from experience. More

formally, reinforcement learning (RL) is a mathematical

framework for learning from a reward signal that is derived

from Bellman’s equation for optimal control [38]. One of

the most important forms of RL is temporal-difference (TD)

RL. TD-RL is a method for learning optimal behavior from

changes in state and reinforcement by error prediction [37].

TD-RL agents learn an expected return that will be received

after taking an action in any state. Strong correlations with

this type of error predictive behavior have been found in

studies of dopamine neurons [33]. This line of research has

continued and is now been supported by fMRI data of reward

processing for tastes, money, and love [16].

TD-RL is used to solve Markov decision processes, which

are an extension of Markov chains to problems framed in

terms of state, action, and reward. Reward signals (such as

reinforcement of dirt cleanup) are geometrically encoded in

a table which associates action preferences with states. The

basic TD(γ) algorithm updates one state-action association at

a time which prohibits sequence learning. Eligibility traces

are used to associate reward with sequences of actions by

reinforcing a weighted history of most recent actions. In this

study the online version of TD-RL, SARSA (short for, state-

action-reward-state-action), is used. A review of the nuances

of reinforcement learning can be found in [38].

We include a few of the key equations from the RL

algorithm which are employed. If we are in state, st at time

t, then we will take some action at which will bring us a

reward rt. This action will also cause us to transition to a

new state, st+1. The SARSA algorithm learns a Q-function,

which maps a value to each state-action pair, (st, at). From

each state multiple actions, At, may be taken which may be

a function of st (for example, an obstacle may prevent an

action in a given state). Given an optimal Q-function the best

action to take is

argminat∈At
Q(st, at). (1)

The Q-function is approximated by SARSA with the follow-

ing update rule

Q(st, at)← Q(st, at) +

α
[

rt+1 + γQ(st+1, at+1)−Q(st, at)
]

(2)

where α is the learning rate, and γ is the discounting factor.

Given only this update rule it can be difficult to compute the

Q-value for state-action pairs which indirectly contribute to

obtaining a reward. This update method propagates informa-

tion only to the preceeding state-action pair, for those that

are very distant from the reward, such as in the case of maze

solving problems, this can require a large number of repeated

trials. However, this problem of reward propagation can be



partially aleviated by the use of eligibility traces. Eligibility

traces store an accumulating trace of state-action pairs. The

“memory” of these state-action pairs can be tuned with the

trace decay parameter λ. Eligibility traces are updated with

et(s, a) =

{

γλet−1(s, a) if s 6= st

γλet−1(s, a) + 1 if s = st
(3)

By combining the error predictive capabilities of TD-RL with

the state-action sequence memory of eligibility traces we can

amplify the effects of our reward and speed up the learning

process. When performing on-policy learning it is important

to ensure that a sufficient amount of exploration occurs. To

this end the ǫ-greedy method is used, where a random action

is taken with p(ǫ), otherwise the agent’s most preferred action

is taken. However, the RL algorithm can still fail to capitalize

on rarely experienced rewards.

In this work, we propose to reduce the effect of rarely

experienced rewards by dynamically modifying the RL pa-

rameters according to the local vision of the robot. With this

aim in mind, we propose to use a gene regulatory network

to supervise the adaptation of the coefficient. The end of this

section presents the neuromodulation concept and the GRN

model that we used as a neuromodulator.

IV. NEUROMODULATION

Neuromodulators are neuropeptides or small molecules,

like dopamine and serotonin. The production of these sub-

stances within the cell is controlled by gene regulatory

networks. Neuromodulators change the behavior of neural

networks within individual neurons, amongst neighboring

neurons, or throughout the entire network. Neuromodulation

has been found to be pervasive throughout the brain, and can

have drastic consequences on the behavior of neurons and

neuronal circuits [11], [23], [24]. A particularly applicable

example in the realm of robotics is the neuromodulation of

motor signals produced by central pattern generators in the

brain and spinal cord [20]. It has been found that neuromod-

ulators tune and synchronize neuromuscular signals [40].

We have already noted that the temporal difference learn-

ing algorithm for error prediction has been observed in neural

substrates [33]. Dopamine neurons of the ventral tegmental

area (VTA) and substantia nigra exhibit this error predictive

behavior. The dopamine system is itself a neuromodulatory

system. While the temporal difference learning algorithm

extends ideas of reward processing to engineering, there

are models of the dopamine system with closer ties to

biology [25]. These models also confirm the error predictive

behavior found in the brain for a variety of physiological data

including reaction-time and spatial-choice tasks. Dopamine

is an important neuromodulator, especially in learning, but

it is but one of many neuromodulatory substances found

in the brain. An extensive review of computational models

of neuromodulation can be found in [15], and some recent

models are reviewed in [23]. In this study we focus on

the relationship between evolved neuromodulator-producing

GRNs and learned behaviors.

Computational studies of neuromodulation and neuroen-

docrine systems are becoming a popular method for acheiv-

ing dynamic control and learning. A number of these studies

focus on neuromodulatory subsystems with projections that

have diffuse action on the synapses of more classical neurons

[36], [31], [34], [29]. On the other hand, this study develops

a model of a single neuron (or homogenous nuclei) with

dynamic regulation of learning and memory by an internal

gene regulatory network. The idea of relating neuromodu-

latory substances to properties and learning parameters has

been explored [14], [22], but to the best of our knowledge

has not previously been evolved. As opposed to focusing

on the spatial distribution of neuromodulatory action, our

study focuses on how neuromodulation can be evolved to

act in different ways on a learning system. In a related study,

Benuskova and Kasabov evolve GRNs to tune the behavior

of a biologically comprehensive spiking neural network [6].

In this study, we employ an abstract computational model of

a gene regulatory network to modulate the parameters of a

RL agent.

A. Gene regulatory network

Our model uses an optimized network of abstract proteins.

The inputs of the agent are translated to protein concen-

trations that feed the GRN. Output proteins regulate the

reinforcement learning parameters previously described. This

kind of controller has been used in many developmental

models of the literature [18], [13], [9] and to control virtual

and real robots [41], [27], [19], [10].

We have based our regulatory network on Banzhaf’s model

[5]. It is designed to be as close as possible to a real gene

regulatory network but neither to be evolved nor to control

any kind of agent. However, Nicolau used an evolution

strategy to evolve the GRN to control a pole-balancing

cart [27]. Though this experiment behaved consistently, the

evolution of the GRN has been an issue. We have decided

to modify the encoding of the regulatory network and its

dynamics. In our model, a gene regulatory network is defined

as a set of proteins. Each protein has the following properties:

• The protein tag coded as an integer between 0 and p.

The upper value p of the domain can be changed in

order to control the precision of the GRN. In Banzhaf’s

work, p is equivalent to the size of a site, 16 bits.

• The enhancer tag coded as an integer between 0 and

p. The enhancer tag is used to calculate the enhancing

matching factor between two proteins.

• The inhibitor tag coded as an integer between 0 and

p. The inhibitor tag is used to calculate the inhibiting

matching factor between two proteins.

• The type determines if the protein is an input protein,

the concentration of which is given by the environment

of the GRN and which regulates other proteins but

is not regulated, an output protein, the concentration

of which is used as output of the network and which

is regulated but does not regulate other proteins, or a

regulatory protein, an internal protein that regulates and

is regulated by other proteins.



The dynamics of the GRN is calculated as follow. First,

the affinity of a protein a with another protein b is given by

the enhancing factor u+

ab and the inhibiting u−

ab:

u+

ab = p− |enha − idb| ; u−

ab = p− |inha − idb| (4)

where idx is the tag, enhx is the enhancer tag and inhx is

the inhibiting tag of protein x.

The GRN’s dynamics are calculated by comparing the

proteins two by two using the enhancing and the inhibiting

matching factors. For each protein in the network, the global

enhancing value is given by the following equation:

gi =
1

N

N
∑

j

cje
βu

+

ij
−u+

max ; hi =
1

N

N
∑

j

cje
βu

−

ij
−u−

max

(5)

where gi (or hi) is the enhancing (or inhibiting) value for

a protein i, N is the number of proteins in the network,

cj is the concentration of protein j and u+
max (or u−

max)

is the maximum enhancing (or inhibiting) matching factor

observed. β is a control parameter described hereafter.

The final modification of protein i concentration is given

by the following differential equation:

dci
dt

=
δ(gi − hi)

Φ
(6)

where Φ is a function that keeps the sum of all protein

concentrations equal to 1.

β and δ are two constants that set up the speed of reaction

of the regulatory network. In other words, they modify the

dynamics of the network. β affects the importance of the

matching factor and δ affects the level of production of the

protein in the differential equation. The lower both values,

the smoother the regulation. Similarly, the higher the values,

the more sudden the regulation.

B. GRN-controlled neuromodulation

Neuromodulation is incorporated into RL-controlled

robots according to the model shown in Figure 2. When

evaluating the performance of a GRN, a robot is initialized

with a uniform Q-function and the GRN is first run with

no inputs for 50 steps. The aim of this initialization is to

reach a stable point before exploiting the GRN with inputs.

This phase is necessary because GRNs are known to oscillate

chaotically in their very first steps.

After initialization, the robot is controlled according to the

typical SARSA on-line policy learning mechanism; however,

while the agent chooses an action, the proteins of the GRN

react and tune the concentration of the neuromodulators.

These neuromodulators are used for the learning and memory

parameters, which are explained in sections III and VI.

After observing the reward from taking an action in the

current state, the SARSA update is applied as usual but with

parameters determined by the GRN.

To regulate the RL parameters, the GRN uses the current

state of the environment as inputs. In the CCP problem

addressed in this paper, inputs correspond to the quantity of

dirt in the agent’s von Neumann neighborhood, the number

Action
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GRN module

RL module
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Fig. 2: A diagram of the model of neuromodulatory control

of RL agents.

of obstructed positions in the same neighborhood, and the

current reward (or lack thereof). The GRN is then run for

5 steps with these inputs before the learning and memory

parameters are used within the RL module. These 5 steps

are necessary to reach a new stable state of the GRN with

the new inputs.

V. EXPERIMENT

In this study we show that the performance of RL-

controlled robots on the CCP is exceeded by RL-controlled

robots with neuromodulatory GRNs. The CCP has a natural

framing of reward, which is the dirt that it cleans. The

state of a robot is defined in terms of the robot’s perceived

surroundings. In this way, states are not unique with respect

to the environment; many environments will be perceived

as the same state. At each timestep the robot can choose

between 4 actions of movement along the von Neumann

neighborhood (North, East, South, West), and the world

wraps as a torus. A robot receives a reward of 1 for moving

to a dirty location, and otherwise receives no reward. These

formulations of state, action, and reward are sufficient to

allow RL to control the robot. A diagram of the experimental

environment can be seen in Figure 1.

The primary complexity of the environments in our exper-

iments stems from obstacles, which we expect only requires

the learning of short sequences of actions. Vision extends

for a radius of 2 in a cross about the von Neumann neigh-

borhood. Each location in the discrete 10x10 training grid

is represented with a ternary variable encoding: clean, dirty,

or obstructed. The GRN perceives the environment through

three signals: the current reward, fraction of visual field that

is dirty, and the fraction of the visual field that is obstructed.

Output proteins of the GRNs are used to specify the α, γ,

and λ learning and memory parameters of the reinforcement

learning algorithm, as well as a threshold protein used to



normalize the previously mentioned outputs. This integra-

tion of a neuromodulatory GRN and reinforcement learning

algorithm is biologically plausible as well. In this way the

GRN acts as a teacher for the robot, by guiding memory

formation, and retention. Parameters are shown in Table I.

The evolutionary algorithm used to evolve the GRNs

is similar to a (µ+λ)-evolution strategy, where subsequent

generations are selected from both a population of parents

and children. An initial population of randomly generated

GRNs is created and evaluated. Half of the initial population

is initialized with GRNs which have been filtered to ensure

some stability in their output proteins. Stable networks pass

2 of 3 criteria which are applied to the parameter values

produced by the network. Each critereon tests that the stan-

dard deviation of a given parameter has a standard deviation

less than 0.25 with a mean centered at 0.75 for α, γ and

0.25 for λ. Populations are iteratively updated by creating

a candidate child program for each parent, via mutation or

crossover. The child is then evaluated and compared to its

parent. If the child has a lower error than its parent, then

it replaces its parent. The fitness used for evolution is the

integral of error over all training episodes.

Generalization is tested by constructing a set of hypothet-

ical test scenarios for 6 classes. These scenarios are states

that the robot might otherwise encounter during training, but

are only used to test the robot’s behavior in a single state. By

only considering a single state-action transition, it becomes

tractable to derandomize the Markovian process and thus

consider all possible outcomes. For a scenario state, sc1, the

agent may take any action ac1 ∈ Ac1. The generalization

score is then

scoreg = (1− 3/4ǫ)r(sc1, âc1) + ǫ/4
∑

a∈Âc1

r(sc1, a) (7)

where â is the agent’s preferred action and Âc1 is all actions

excluding â. 5 of the 6 scenario classes correspond to 0-

4 dirty squares surrounding the robot, and the 6th class is

random. Scenarios are generated to contain typical distri-

butions of dirt and obstacles encountered over the course

of a training episode. The inclusion of these generalization

scenarios allow the robot to be tested on its response to a

wide range of environmental conditions that may not appear

during a training episode.

VI. ANALYSIS OF PARAMETERS

In this analysis we investigate the core parameters of the

temporal difference learning algorithm on the CCP problem

for 0 obstacles or various maps with 30 obstacles. The

main question we would like to answer is, how do the RL

parameters affect the performance of learning agents on the

CCP? In order to do this we perform a uniform sampling

of the three parameters: α, γ, and λ from [0.1, 1] with an

interval of 0.1. The result of this sampling is a 4D space

where the 3 parameter coordinates are matched with the

fitness achieved by RL agents with these parameters. Agents

are trained for 50 training episodes, where the environment

Parameter Value

Sensor radius 2
World dimensions 10 x 10
ǫ, p(random move) 0.1

Training episodes 50
Steps per episode 200

Generalization cases 600 (6 classes)

Input proteins 3
Output proteins 4

GRN steps per action 5
Population size 50

Max. generations 50
Tournament size 7
Number of runs 25

TABLE I: Parameters used in experiments.
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Fig. 3: Generalization score for the CCP trained with 0

obstacles with α = 0.1, 0.7, the modal best alpha found

during parameter analysis. The remaining RL parameters γ
and λ are shown on the X- and Y-axes. Bigger score is better.

is repopulated with dirt at the end of each episode. In order

to display the parameter maps in a readable fashion we find

the best parameter set from all sampling runs and focus on

modal parameter values. While the subject parameters have

highly non-linear effects on the behavior of RL agents, we

articulate some of the general properties they can have.

The learning rate, α, controls how much the agent learns

from the error of its Q-function relative to the observed re-

ward. Large values of α can bias the agent towards behavioral

feedback loops, by placing emphasis on rewards experienced

early in training. The parameter maps for fixed values of α
are shown in Figure 3. With a fixed value of alpha we see that

there can be a wide range in behavior as we vary the values

of γ and λ. The parametric performance surface suggests

that there may be multiple optima with these fixed α values
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Fig. 4: Generalization score for the CCP trained with 0

obstacles with γ = 0.1, 0.3, the modal best gamma found

during parameter analysis. The remaining RL parameters α
and λ are shown on the X- and Y-axes. Bigger score is better.
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Fig. 5: Generalization score for the CCP trained with 0, 30

obstacles with λ = 0.7, 0.5, the modal best lambda found

during parameter analysis. The remaining RL parameters α
and γ are shown on the X- and Y-axes. Bigger score is better.
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Fig. 6: Training (top) and generalization (bottom) scores for

RL and neuromodulation per random seed for 0 obstacles.

for both the 0 and 30 obstacles cases. We will return to this

observation after examining the remaining parameters.

The discounting factor γ encodes the discounting factor of

future rewards such that a reward 5 timesteps in the future

is discounted by a factor of γ4. Agents with low values of γ
are relatively short sighted, favoring actions that return larger

immediate rewards at the cost of longer-term considerations.

The parameter maps for fixed values of γ are shown in

Figure 4. As we keep the values of γ fixed we see that

for 0 obstacles large values of α and λ lead to the best

agent behavior. On the other hand, in the case of 30 obstacles

the best values of α and λ are unclear, with most pairings

performing equivalently.

The trace decay λ is used to discount the significance of

actions leading up to a reward. Larger values of λ imply that

the reward an agent receives was highly dependent on a long

sequence of actions that led to the reward. The parameter

maps for fixed values of λ are shown in Figure 5. Again, we

see different behavior for 0 and 30 obstacles. In the case of

0 obstacles it is fairly clear that large values of γ and small

values of α are best. However, in the case of 30 obstacle

maps the performance of parameters is again noisier. The

highest peak is for α = 0.7 and γ = 0.5. The non-uniformity

that is observed over the distribution of parameters leads

us to consider that the idea of choosing an optimal set of
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Fig. 7: Training (top) and generalization (bottom) scores for

RL and GRN per random seed for 30 obstacles.

parameters is not only non-trivial, but may not be possible.

We see that parameter space can contain multiple optima

and becomes more complex as environmental complexity

is increased. One might suspect that these multiple optima

correspond to different types of behavior that are learned

by the RL agent. Regardless of how the optima manifest in

terms of behavior, the possibility of dynamically adjusting

the learning parameters to the RL agent may be a way of

harnessing the some of the properties of RL parameters over

the course of a series of training episodes. In the following

section we present results for the dynamic control of the

learning parameters by a GRN.

VII. EVOLVED NEUROMODULATION

In these experiments we present a comparison of the

performance of uniformly sampled RL parameters with

the performance of GRN-controlled neuromodulation of the

same RL parameters. The dynamic control of learning and

memory parameters by this neuromodulatory process pro-

vides the agent with the means for adaptive control of its own

learning process. We show that agents who have been trained

with neuromodulatory GRNs controlling their learning and

memory parameters, outperform RL agents that have been

trained with fixed parameters.

In Table II, we see a comparison of RL agents that

have been trained with the best fixed parameters found with

uniform sampling, and RL agents that have been trained with

neuromodulatory GRNs. Best fixed parameters are a tuple of

(α, γ, λ) that produce the highest score at the end of training.

Performance is compared on the training map, as well as on a

set of hypothetical scenarios designed to test generalization.

In the experiments with 0 obstacles, neuromodulatory GRNs

outperform fixed parameters in both training and test scores.

The CCP with 0 obstacles is a relatively easy problem

that can be solved with simple patterns such as row-by-row

cleaning. The improved performance with neuromodulation

suggests that the evolved GRN is guiding the reinforcement



# Obstacles Type scoretraining scoretest
0 RL 0.99006(stdev 0.0022557) 0.50496(stdev 0.0041289)

0 GRN 0.9945(stdev 0.0020109) 0.52914(stdev 0.010029)

30 RL 0.43441(stdev 0.052902) 0.49056(stdev 0.008722)

30 GRN 0.44452(stdev 0.047907) 0.52326(stdev 0.014845)

TABLE II: Results for performance of RL with the best sampled parameters and evolved GRN-controlled learning.

scoretraining represents the fraction of dirt cleaned over all training episodes (including initially naive behavior). scoretest
represents the dirt that is cleaned during a set of hypothetical scenarios. In both cases bigger is better.
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Fig. 8: Example of neuromodulation of learning and memory parameters α, γ, and λ by an evolved neuromodulatory GRN.

This GRN is the best-of-run for a 30 obstacle map. These are the first 12 training episodes, where spikes at intervals of 200

indicate a resetting of the environment.

learning algorithm in meaningful ways in response to en-

vironmenal cues. This is particularly visible in Figure 6

where neuromodulation is always better than pure RL during

training and for most tests.

In experiments with 30 obstacles the results are not as

clear-cut as in the case of 0 obstacles. Figure 7 details these

result per environment seed. Although the mean and standard

deviation of training score for neuromodulatory GRNs is

slightly lower than those of fixed parameter RL, it is not

significant with respect to the standard deviation. However,

agents trained with neuromodulatory GRNs perform better

on the set of hypothetical test scenarios. This suggests that

GRNs are not only guiding the RL algorithm in meaningful

ways, but that the GRN is helping the RL agent to learn

generalizable behaviors.

An example of one of the best-of-run GRNs from a 30

obstacle map is shown in Figure 8. This figure shows an ex-

ample training session with a neuromodulatory GRN. While

fixed parameter RL experiments maintain constant values for

α, γ, and λ, the neuromodulatory GRN dynamically modu-

lates these learning and memory parameters. This particular

GRN uses a strategy of a high γ value at the beginning

of each training episode, which decays over the course of

the episode. λ values are maintained near unity, which will

heavily reinforce actions that have indirectly contributed to

receiving a reward. Of particular interest is the increase of α
in response to decreases in γ. This dynamic will cause agents

to initially populate their Q-function relatively quickly, and

then will lead them to learn from their immediate rewards.

This behavior can be particularly significant after most of

the dirt has been removed from the environment. Systematic

errors which repeatedly leave dirt in similar situations, such

as those hard to reach corners that continually accumulate

dust, can be learned by these agents which begin to learn

more from immediate rewards.

VIII. DISCUSSION AND CONCLUSIONS

In this study we have introduced the evolution of neu-

romodulatory GRNs into the framework of reinforcement

learning by modulating both learning and memory during

on-line learning. Evolved neuromodulatory GRNs train RL

agents that consistently have improved generalization abili-

ties relative to RL agents trained with fixed parameter sets

on the coverage control problem. The GRNs dynamically

adjust learning parameters relative to environmental inputs,

this dynamic adjustment allows agents to regulate changes

in the behavior by altering how behaviors are learned.

The Baldwin effect is a process in which learning allows

an individual to probe possible strategies. Successful strate-

gies can then be evolved and incorporated into the genome

by selective pressures. However, this study approaches the

Baldwin effect from a different perspective than those of

Hinton and Nowlan where learning and evolution act on the

same substrate, such as the weights of a neural network. In

our case an evolved neuromodulatory GRN purely controls

the learning process. This is distinct from the Hinton and

Nowlan class of experiments where learning, in a sense,

preceeds evolution which eventually learns fixed encodings

of information that would otherwise be learned.

RL agents that are trained with neuromodulatory GRNs



can outperform fixed parameter RL agents in training envi-

ronments in some cases; however, these GRNs consistently

train agents that have improved generalization capabilities.

In this sense, the neuromodulatory GRN serves as an ex-

cellent teacher to the RL agent, by guiding the learning

process in response to environmental variation. This may

allow neuromodulated RL agents to utilize multiple phases

of learning, whereby it is possible to learn how to correct

previous mistakes. These reasons suggest that it may be in-

teresting to consider neuromodulatory GRNs within dynamic

environments, where learning on-the-fly can be critical.

Future work should investigate the effect of neuromodu-

latory GRNs in dynamic environments, as well as in long-

term evolution experiments. Extensions to include additional

neuromodulators, like those of [14], may further improve

performance. The enhanced generalization abilities of agents

trained with neuromodulatory GRNs suggests that this frame-

work may be useful in highly complex environments. There-

fore, testing neuromodulatory GRNs in other foraging tasks,

such as hunting with high-dimensional visual input [28], may

prove fruitful. Ultimately, neuromodulatory GRNs should be

studied in neural substrates of higher-order complexity.
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