
Splittable Metamorphic Carrier Robots

Tarek ABABSA
Noureddine DJEDI

LESIA Team, Computer Science Department
University Mohamed Khider of Biskra

ALGERIA
ababsatarek@yahoo.fr,n.djedi@univ-biskra.dz

Yves DUTHEN
Sylvain CUSSAT-BLANC

Vortex Team (IRIT)
University of Toulouse 1-Capitole

FRANCE
Yves.Duthen@irit.fr,sylvain.cussat-blanc@irit.fr

Abstract—Metamorphic modular robots are versatile systems
composed of a set of independent modules. These modules are
able to deliberately change their overall topology in order to
adapt to new circumstances, perform new tasks, or recover from
damage. The modules considered in this paper are cubic shapes,
and we assume that each of them has a separate computational
resources and it is equipped with specialized sensors to perceive
the environment. In this paper, we demonstrate the ability of these
robots to evolve the topology of the whole structure in order to
achieve, surround and transport target objects dispersed in the
environment. While performing its task, the robot may be split
up in order to cope with environmental variations. Our work
integrates a simplified model of biological hormone system to
generate inputs for a finite-state machine (FSM) that controls
the evolution process.

I. INTRODUCTION

Metamorphic self-reconfiguring modular robots are ver-
satile systems that can change their overall shape with the
intention of adapting to the task at hand. These robots are
composed of a number of independent modules usually called
atoms. These atoms are able to connect, disconnect one from
each another, or even push/pull or exchange information and
energy with the neighbor modules in order to form various
structures/patterns dynamically [2,10,5]. Depending on the
atoms degrees of freedom and the basic actions that can be
performed in a coordinated way, several modules can perform
elementary movements from position to an other position
across their neighbors by changing the topology of the modules
connectivity network [4,6,8,11], this action is called robots
reconfiguration. For example, a self-configured modular robot
can reform itself into a thin-linear pattern to cross a tunnel,
reform into an emergency structure such as dam, shield, bridge,
or even surrounding, carrying or manipulating objects.

Compared with conventional robotic systems, self-
reconfigurable robots are believed to be more robust and more
adaptive under dynamic environments, because on the one
hand they are able to reconfigure modules to form more suited
pattern with respect to the task at hand or the current situation.
This property means that such robots can be survived and self
repaired thanks to its ability to expel faulty modules outside
the body [2,3], and in the other hand, the gathering of these
modules forms a distributed system with no central controller
since they are computationally independent, this property is
crucial to make this kind of systems invulnerable to the failure
situations or malfunction of robot modules.

Due to their many degrees of freedom, developing effective

control system for modular robots is recognized as one of
the major challenges in the development of self-reconfigurable
modular robots. These challenges attract several researchers to
investigate the feasibility of providing effective solutions using
the existing approaches and mechanisms, or even propose
others. Some of them focused on issues of modular-robots self-
reconfiguration, while others focused on issues of modular-
robots locomotion. A co-evolution of both configuration and
control has been also the subject of many interesting research.
For example, we can cite the Karl Sims model as the first major
work evolving virtual robots [1], in this work Sims used a
neural network to control a morphology generated by a graph-
based genotype-phenotype map so that the controller was
coevolved with the morphology generator. Later, Komosin-
ski has used this strategy again with L-System morphology
generator [15] to produce artificial robots. Evert Haasdijk
has used HyperNEAT to develop a reactive quadruped mod-
ular robot [16], the controllers of the individual robots act
autonomously and with only local exchange of information.
However, the morphology of the organism is predefined by
the user. More recently, artificial Gene Regulatory Networks
seem to be able to generate complex morphologies when
they control a developmental system [9,12,13,14] or even to
generate oscillations that give artificial creatures a mechanism
to move. However, few of these works have been designed
to actually take advantage of the computational power of the
individual modules.

The objective of our work is to evolve the structure of a
metamorphic self-reconfiguring robot to perform the task at
hand by taking advantage of the computational power of the
individual modules. The research presented in this paper is
grounded in our previous work [7] in which we demonstrated
how simple local sensing, local communication and control
rules achieve useful emergent behaviors of crystalline meta-
morphic robots. In particular in this work, we are interested
in evolving the configuration of metamorphic modular robot
to transport sliding objects from their current positions to
specific target positions, this process can be subdivided in
three successive steps: (1) evolve dynamically the structure
configuration to find and surround the objects, we use mor-
phogen gradients to locate these objects, (2) evolve the current
structure configuration to be able to transport the surrounded
objects, (3) release the sliding objects whenever the final
position is achieved. These steps are coded in a simple finite-
state machine (FSM) that denotes all the states in which every
unit of the system may be, and the possible transitions can
be performed according to the required conditions, a basic

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

blriley
Typewritten Text
DOI: http://dx.doi.org/10.7551/978-0-262-32621-6-ch129

hormone system is used to control the inputs of the FSM.

II. THE CONTROL MODEL

A. The Modular Robot and its Environment

To reduce the simulation’s complexity, we consider a static
environment modeled with a lattice (grid) of 2D cells, where
each of these cells may be in one of the following states: empty,
occupied with a single module, occupied with an obstacle.
Basically, all the modules are the same size. Each of them
is controlled by the evolutionary approach shown in figure 1,
perceives the environment thanks to its specialized sensors and
communicates with its nearby modules [7].

Fig. 1: Diagram of the evolutionary approach used to evolve
the modular robot structure

The genetic algorithm used in this approach evolves a
population of genomes that represent feasible configurations.
Each of them is encoded as illustrated by figure 2.

Fig. 2: Encoding a solution, (a): a genome that encod a
configuration, (b): genotype-phenotype mapping

To encode an arbitrary configuration we used the adjacency
matrix to denote which modules are adjacent to which other

modules. Since we use Von Neumann neighborhood, a single
module may have at least one adjacent module (zero adjacent
is excluded) and at most four adjacent modules (respectively
modules A,C in figure 2b). With this idea in mind, the
adjacency matrix can be transformed into 5n size array (n
is the number of modules) as illustrated in figure 3.

Fig. 3: simplified form of adjacency matrix

The crossover operation is applied to two different
genomes that represent feasible configurations. Commonly, a
point called crossover site along their length is selected, and the
information after the crossover site of the two parent strings are
swapped. As a result, two new children are created. However,
this operation doesn’t work directly with the genomes shown
in figure 2. The next four additional actions are required:

1) From the first parent G1, eliminate (n−m) modules
so that m < n and ∀Mi ∈ G1 / Adjacency(Mi) 6= φ.

2) From the second parent G2, eliminate (n − k)
modules so that n = m + k and ∀Mi ∈ G2 /
Adjacency(Mi) 6= φ.

3) From G1 (respectively G2), sellect two modules
x1, x2 that have not a full adjacency list {∀genomei
∃ module xj ∈ genomei / ‖ Adjacency(xj) ‖< 4}
so that the translation of every module of the remain-
ing part in G2 by the vector −−−−→px1

px2
(px: denotes

the position of the module (x), figure 2.a) should
respect the next constraint: ∀xj ∈ SubGenome2
@xi ∈ SubGenome1 / pxi = Translate−−−−→px1px2

(pxj)

Where, SubGenomei is the remaining part of
Genomei.

4) Translate all the modules (update the p vectors) of
SubGenome2 by the vector −−−−→px1px2 , then update the
adjacency list of (x1, x2) and integrate them together
into new children genome as shown in figure 4.

Fig. 4: The crossover operation

The mutation operation is applied to one genome from
which a gene is chosen to be mutated. Except the part
that encodes the module position, the remaining parts of the

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

selected gene should not be mutated. This operation proceeds
as following:

1) Randomly select a genome G from the population.
2) Randomly select two genes (g1, g2) from the genome

G so that g2 has not a full adjacency list and the
translation of the module specified by g1 to fill a
random free neighbor of the module specified by g2
should not produce a fragmented phenotype.

3) Perform the translation and update the neighbor lists
of (g1, g2) as shown in figure 5.

Fig. 5: The mutation operation

In this work we use the same software architecture dis-
cussed in [7], with a slight change in the sensing system (figure
6). Actually the cell-robot has no idea about the positions
of the target objects, however it can sense some particular
informations called morphogens diffused by these objects.

Fig. 6: Scheme of a cell-robot in an artificial environment. It
has a ring of sensors (half-circles) to perceive the morphogens
concentrations (hexagons)

We assume that the environment contains different mor-
phogens. They are gradually spreading on the grid (figure 7) so
that the variation on their concentrations between the neighbor
cells emerges a guidance system that gives an implicit infor-
mation about directions that should be followed to reach the
source of these morphogens. This change improves the control
model for taking advantages of not using global information
and makes the system more realistic.

Our model integrates a basic diffusion algorithm to spread
morphogens on each cell in the environment with respect to
the following rules:

1) Each of the morphogens has a unique identifier.
2) Each of the target objects is considered as a mor-

phogen source, it diffuses a unique morphogen on
the environment.

Fig. 7: Spreading a morphogen on the environment, the size
of the circle represents the quantity of the morphogen, while
the arrows represent the direction of spreading

3) The concentration of morphogeni is maximal at the
position of its source (the biggest circle in figure 7).

4) The concentration of morphogeni changes across the
grid, it decreases as we move away from its source.

Algorithm 1 Spread Morphogeni

ListA : list of empty cells.
ListB : list of marked cells.
ListA ← ListB ← ∅
Set to (-1) all CMori for each of the empty cells.
Insert the target position cell into ListA and set CMori to
MaxV alue.
while ListA 6= ∅ do

if ListA.F irst.CMor ≥ 4Mor then
Foreach(e ∈ Neighbor(ListA.F irst)) do
if e /∈ ListB then
e.CMor←max(e.CMor, ListA.F irst.CMor–
4Mor).

end if
if e /∈ ListA then
Insert e into ListA.

end if
EndForeach

end if
InsertListA.F irst into ListB .
Delete(ListA.F irst).

end while

In this algorithm:
CMori : denotes the concentration of morphogeni
CMor: denotes the overall morphogens concentrations.
4Mor: denotes the change in morphogen concentration
through neighbor cells.
Neighbor(X): returns the list of Von Neumann neighbor cells
of CellX .

Fig. 8: Result of applying Spread Morphogeni algorithm,
black squares represent obstacles, red square represents a target
object, green squares represent mobile robots, values from 1
to 17 represent the concentrations of Morphogeni across the
empty cells.

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

Figure 8 shows the result of applying Spread Morphogen
algorithm to spread a single morphogen across all the empty
cells in the environment. The green squares represent mobile
robots that have a desire to reach the position of the morphogen
source while the red square represents a morphogen source,
so in this position the concentration of the corresponding
morphogen is set to its maximum value (17 in this example).
The algorithm ensures a gradient diffusion of the morphogen
across each empty cell. So to find the source position, the robot
will just have to follow any path that increases the morphogen
concentration (red paths in figure 8).
In fact, we developed this algorithm in hope to improve our
previous model [7] in which we used euclidean distance to
locate target objects and to drive the system evolution (blue
dashed path in figure 8). In such a model, all the units are
supposed to know the exact position of all the target objects
as a global information. Besides that, using euclidean distance
makes the metamorphic robot unable to get out from some
situations, in particular avoiding obstacles that are parabolic
in shape (figure 8). To resolve this problem, we introduce
fmoving fitness (equation 1) that should be performed by the
robot to acquire morphogens as much as possible. Maximizing
fmoving , the robot will track the morphogens concentrations
from low to high level of concentration.

fmoving =

m∑
i=1

n∑
j=1

Morphogeni(mj) (1)

In this equation, Morphogeni(mj) denotes the concentration
of Morphogeni perceived by the module mj and n denote
the number of the modules, m denotes the number of the
morphogens sources.

Fig. 9: The most concentrated cells ≡ equipotential area, the
dark red squares represent the modular robot, the blue squares
represent the target objects, values from 36 to 49 represent
morphogens concentrations

Using fmoving as a fitness, our GA may have a tendency
to converge towards local optima in which it is not defined
how to sacrifice short-term fitness to gain longer-term fitness.
As a result, the robot gets stuck in an equipotential area from
which it can not get out anymore. This particular circumstance
strongly depends on the shape of fmoving landscape that
depends itself on the way of spreading morphogens.
In order to alleviate this problem, we introduced an activa-
tor/inhibitor coefficient (δi) to control the fitness fmoving as

illustrated in equation 2.

FMoving =

m∑
i=1

δi

n∑
j=1

Morphogeni(mj) (2)

In this equation δi is used to activate or inhibit Morphogeni.
Using FMoving , the robot can performe the task at hand either
sequentially by activating a single morphogen at a time, or in
parallel by dividing the whole structure into m parts, where
m > 1 is the number of morphogens sources (target objects).
To divide the whole structure, we used the following three
rules:

1) Cluster the modules into m classes, using their per-
ceived morphogens as an input data (refer to section
3 for more details), and assign each of the modules
the appropriate class-identifier.

2) Each of the modules keeps the link with the same-
class modules and disconnect from the others.

3) For each class Ci, δi gets value as shown in the
following equation 3, where idCi is the identifier of
Ci.

δi =

{
1 ifi = idCi
0 ifi 6= idCi

(3)

Once the structure divides, each part behaves as an entirely
autonomous modular robot in which only one morphogen is
activated where the others are inhibited. In such a case, no
equipotential area appears and each part can successfully track
and surround a unique morphogen source.

B. Generate Cyclic Locomotions

The GA used in this work is basically designed for evolving
the structure of modular robots as discussed in [7], it gives
only the next configuration that improves the fitness at hand.
However, it can be used to develop facilities for generating
locomotions.
Actually, the modules can generate various motions as a
combination of each module micro-movement. In particular,
they are able to generate an earthworm-like locomotion as a
loop of simple cyclic locomotion.

Fig. 10: Cyclic locomotion, green cells: moving modules, red
cells: stopped modules

Figure 10, shows a loop of simple cyclic locomotion that can
be generated using the folowing rules:
(1): Define a direction for the movement.
(2): Arrange the modules so that each of them can disconnect
from its neighbor modules that are perpendicular to its direc-
tion without leaving any isolated module.
(3): The module is able to move one step position (green mod-
ules in figure 10) once the folowing conditions are satisfied:
(3.1): The neighbor cell to the direction of movement is empty.

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

(3.2): The disconnection from neighbor modules that are
perpendicular to the direction of its movement should not leave
any isolated module.
(3.3): All the module faces are contracted.
In this work, the direction of movement is defined by using
the variation of morphogen concentration around the space
occupied by the modules, while the modules arrangement is
defined by using GA since it is a particular configuration.

C. Encapsulation into the modules

As mentioned in the introduction, we are interesting to
evolve the configuration of metamorphic modular robot to
transport sliding objects from their current positions to specific
target positions. This process can be subdivided in three
successive steps:
Step1 Track and surround the objects: the modules run a
GA for evolving the whole structure in order to acquire
morphogens as much as possible (using FMoving as a fitness
where δi = 1 ∀i = 1..m). This evolution drives the modular
robot towards an equipotential area in which it gets stuck and
can not completely converge towards any of the target objects.
(at this moment 4FMoving = 0).
Each module on the system can either produce two artificial
hormones H1 and H2 (equations 4,6) or diffuse an amount of
them (H1

r , H
2
r) to control their desires to switch between the

three steps.
Once the modular robot reaches an equipotential area, each of
the modules starts to lose H1 since4FMoving = 0 according to
equation 4. An intermodular compensation is fired (equation 7)
to ensure the homogeneity of H1 through all the modules and
while 4FMoving = 0, H1 keeps decreasing until it reaches
a lower threshold. At this moment, a clustering method is
used for determining a division scheme using the informations
perceived by the modules as an input data. The whole structure
is then divided into several parts where each part will be
attracted by only one target object that matches with its class
identifier.
Step2 Transport the objects: As a result of step (1), each target
object is surrounded by several modules of the same class.
Again, FMoving achieves a maximum level and 4FMoving
converges towards 0, at this moment, every module of the class
starts to lose H2. The modules that are in interaction with the
target object lose H2 faster than the others (ϕ in equation 6).
Once H2 gets lower, the modules define the direction of move-
ment using the variation in concentration of the morphogen
that denotes the final position, then a GA is called to evolve
a structure that can generate a cyclic locomotion towards the
defined direction.
Each substructure can push ahead the sliding object or pull
it from the back while the sliding object moves from low
concentration level to high concentration level of morphogen
that denotes the final position. Otherwise, the modules in
interaction with the sliding object stop the movement and
diffuse a hormone H3 to switch to Step2 and redefine a new
direction.
Step3 Release the objects: Once the sliding object arrives at
the final position, it is expelled as if an obstacle or a failed
module.
The dynamic of these steps can be modeled by a finite state
machine as shown in figure 11, where:
Start: denotes the initial state of the system.

Fig. 11: FSM modeling the global task

States (A,B,C): denote respectivelly steps 1,2,3.
(Th1, Th2): denote respectively thresholds of hormones
(H1, H2).
In this work we integrate a highly simplified model of biolog-
ical hormone system to generate inputs for FSM.
The dynamics of the hormones H1 and H2 are modeled as in
equations 4–6:

H1 = H1
r + α1 4fit −β1f(4fit) (4)

f(x) =

{
0 ifx 6= 0
1 ifx = 0

(5)

H2 = H2
r + α2 4fit −ϕβ2f(4fit) (6)

Where, 4fit = |F (t)− F (t− 1)|: denotes the change of the
fitness over the time. (α1, α2): are two coefficients used to
accelerate the production of H1 and H2. (H1

r , H
2
r): represent

the received hormones. (β1, β2): are two coefficients used to
decelerate the production of H1 and H2. ϕ: is a coefficient
used to enhance the deceleration of producing H2.
The function Di

x,y(t) models the diffusion of the hormone Hi

at time t as described in the following equation 7, where di
represents the diffusion coefficient of Hi:

Di
x,y(t) = di|x− y|Hi(t) (7)

III. CLUSTERING THE MODULES

Clustering is the task of finding natural groupings among
objects in such a way that objects in the same group (called a
cluster) share similar values [18]. In our work we use clustering
for partitioning modules into several groups so that the whole
structure of the modular robot will be split up in order to cope
with environmental variations. From this point of view, the
perceived information of each module is considered as a data
point.
In this section we discuss three clustering methods in the aim
of choosing the more efficient of them for our study. These
methods are applied to the same data inputs.

A. K-means Clustering

K-means is a well known algorithm commonly used to
solve clustering problems, it is based on minimizing the overall
sum of the squared errors between each pattern and the corre-
sponding cluster center. This can be written as minimization
of the following objective function:

E =

K∑
i=1

∑
x∈Ci

‖x−mi‖2 (8)

K-means clustering proceeds as shown in algorithm-2, where
mi represents the center of the cluster Ci. This algorithm
converges when there is no further change in assignment of

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

Algorithm 2 K-means

while ∃ 4mi 6= 0 do
(1): Initialize the k cluster centers.
(2): Assign each input data point to one of the existing
clusters according to the closest Euclidean distance from
the clusters.
(3): Compute the mean of each cluster to update its center.

end while

instances to clusters. In such situation, all the centers mi are
stable in values (4mi = 0).
Depending on the first initialization of the clusters, k-means
algorithm converges in 3–8 iterations, and gives a good data-
classification quality (a low overall error).

B. GA-Based Clustering

The goal of using GA to solve clustering problem is to
enhance the quality of clusters. In fact the GA works with a
population of feasible solutions called genomes, each genome
encodes a solution and is assigned a fitness value to describe
how good solution it represents.
Starting from a random initial population, the GA stochasti-
cally selects a set of individuals (based on their fitness) and
modifies their genetic codes by means of operators: mutation
and crossover to form a next evolved population.
The genome that encodes the clusters is shown in figure 12,
where id represents the data point identifier and c represents
its corresponding cluster.

Fig. 12: Genome that encodes the clusters

A feasible solution assigns each element of the data point to
a cluster. The center of each cluster is determined and the
overall error E of the solution is calculated using equation 8.
The fitness should be inversely proportional to the overall error
of the corresponding genome, in this paper we adopt a basic
form shown in equation 9.

Fitness =
1√
E

(9)

Fig. 13: GA-Clustering

As shown in figure 13, the GA improves the quality of
the clusters in each generation. However it seems to be of
little interest for our work since it needs an average of 1025
generations to converge around k-means solution.

C. SOM-Based Clustering

Kohonen Self Organizing Map, or SOM, is an artificial
neural network based on an issue of unsupervised learning
with the aim of mapping a high-dimensional data to a low-
dimensional space (figure 14) which is formed by arranging
the computational neurons into a grid [17,19].

Fig. 14: Global sheme for SOM clustering

The way that SOM goes about organizing itself describes a
self organization process, during this process a competition
between neurons is invoked, and each neuron is allowed to
change its weight vector to become more like samples in hopes
to win the next competition. The general steps of the learning
process are described in algorithm 3:

Algorithm 3 SOM

(1)-Initialization:
Randomly initialize the weight vectors of the map
(2)-Begin training:
while t ≤ 1 do

An input weight vector is applied to the map
The node most like the input is selected (Best Matching
Unit).
The weight vectors of BMU and surrounding neighbor-
hood nodes are scaled towards the input.
The Learning rate and the ray of neighborhood are
decreased.

end while
(3)-Apply input vector:
The BMU now is the node most like that provided.

In first stage, the best matching unit (BMU) should be selected,
usually as the unit matching to the shortest euclidean distance
(equation 10) between the input vector and the units of the
map.

D(v2,v1) =

√√√√ n∑
i=1

(v2i − v1i)2 (10)

Next, the neighboring weights should be scaled, so firstly we
should select the units considered as neighbors to the winner
unit, then we should determine how much each weight can
become more like the input vector. The neighbors of a winning
unit can be determined using a number of different methods.

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

In this paper we opted to use a gaussian function (equation
11) where every point with a value above zero is considered
as a neighbor.

G(x, y) = αe−
x2+y2

β (11)

Fig. 15: Overall error of k-means, SOM, GA clustering meth-
ods

To compare these clustering methods, a data set is captured
from a random robot configuration. The captured informations
represent the morphogen diffusion across the cells occupied
by the robot modules.
As shown in figure 15, we note that k-means is not just the
easiest algorithm to be realized, but also our natural choice
since it gives a high quality of data clustering (for the purpose
of our work) and has low computation cost (converges in 3 to
8 iterations).

IV. RESULTS

In this experiment, the environment is modeled as a 2D
grid composed of 25x10 cells as shown in figure 17, where,
the shaded cells represent obstacles, the blue cells represent
sliding objects, and the 16 unit modular robot is represented
by the red cells. Each of the sliding objects produces a unique
morphogen that is spreaded gradually on the environment.
The mission should be performed by the modular robot is to
track the sliding objects that are randomly dispersed in the
environment and transport them into a predefined final position
(we assume that the final position diffuse a unique morphogen
called MorphFinal).

The following parameters are used to set up the simulation:
Max morphogen concentration = 50, hormone accelerators
(α1, α2) = (0.8,0.8), hormone decelerator (β1, β2) = (0.3,0.3),
hormone diffusion coefficient di=0.5, the cumulation of any
hormon Hi can not exceed 10 (otherwise the additional value
is ignored except for the non divided structure). This setup has
been empirically determined, through a set of tests.

During the convergence of the genetic algorithm, it is
interesting to observe the evolution of the structure towards
the best solution. As it is shown in figure 17(a.b), the modular
robot starts form its initial position and evolves its structure
to aquire morphogens as much as possible. As a result, the
modular robot converges more and more towards the most
concentrated cells (red-brick cells in figure 17(a.b.c)), at this

Fig. 16: Hormones concentrations during the time of simula-
tion, (a,b,c): parts of the global task

Fig. 17: The modular robot during the evolution

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

moment, the structure is not yet divided, and only H1 is
produced. Once the structure reaches the equipotential area
(figure 17c), 4FMoving approaches to 0 and H1 starts to
decrease (blue curve in figure 16).
When the H1 concentration gets down under the threshold 2.5
(empirically determined), the structure is believed to be steady
for a long time and is ready to be divided into several parts. A
k-means algorithm is called to cluster the dataset (informations
perceived by the modules) and to assign each module to a class
preparing to the separation process. Next, each module tests its
neighbors and disconnects from those that have not the same
class identifier. As a result, the modules are separated in two
classes and the structure is divided in two parts (figure 17c),
where these parts should not be divided anymore and each
of them converges only to the object attracted with, then it
surrounds this object and evolves its configuration to be able
to perform a cyclic locomotion to the direction by which the
concentation of MorphFinal is being increased (subsript b
in figure 16), otherwise, a hormone H3 is diffused to evolve
an other configuration to move toward a new direction. As a
result, the sliding object gets closer to the final position.
The global system dynamic is already modeled by a FSM that
is encapsulated in every module to switch between steps (parts
of the global task) a,b,c in figure 16 while the hormon system
produces H1, H2, H3 to generate inputs to this FSM. Coupling
between the hormone system and the FSM is illustrated as
following:
(State = Start ∧H1 < 0.3) 7→ (State← A,H2 ←Max)
(State = A ∧H2 < 0.3) 7→ (State← B)
(State = B ∧H3 > 0) 7→ (State← A,H2 ←Max)
Observing these rules, we notice that the second and the third
rules, create such an interesting cycle that can be used to create
a generalized process for more complex tasks.

V. CONCLUSION

In this paper, we presented a decentralized approach that
evolves the ability of metamorphic robots to perform the task
at hand. This approach is based on our previous work [7] in
which we used a GA coupled with a PackMan-like algorithm
for evolving the structure of a modular robot. In this study the
genetic algorithm is used to generate the next better configu-
ration of the modular robot, while the PackMan-like algorithm
is used to drive the self-reconfiguration process. Switching
between generating better configuration and reforming to the
new configuration emerges an adaptive locomotion for the
modular robot.
A more complex task is considered in this work, and a new
evolutionary approach is presented.

The first improvement we can talk about is the ability of
our approach to drive the modular robot into the target objects
without being stuck by obstacles that are parabolic in shape
(figure 8). In fact, using a gradient of morphogens instead of
euclidean distance is not just a natural choice since the modules
are not supposed to have global informations but it gets also
a significant improvement to the quality of objects-tracking in
our system.

The experiment presented in this paper shows the capacity
of the artificial hormone system to control the finite state
machine (FSM) that schedules the steps to perform the global
task. To do that, the global system task dynamic is modeled

by a FSM , and then an artificial hormone system is used to
control transitions between the FSM states. As a result, the
robot’s behavior is controlled by the hormone system.
An other interesting property of our approch is the ability to
generate a separation strategy for the modules according to
some circumstances. It should be interesting to investigate the
feasibility of biological cell division techniques as well as the
multi-objective techniques for generating such strategy.

REFERENCES

[1] K. Sims. Evolving 3d morphology and behavior by competition. Artificial
Life IV, pages 28-39, 1994.

[2] U. P. Schultz, M. Bordignon, K. Stoy, Robust and Reversible Self-
Reconfiguration. The 2009 IEEE/RSJ International Conference on In-
telligent Robots and Systems, St. Louis, USA, October 2009.

[3] D. Christensen. Experiments on Fault-Tolerant Self-Reconfiguration and
Emergent Self-Repair. In IEEE Symposium on Artificial Life (AL-
IFE’07), pages 355-361, 2007.

[4] D. Christensen, A Unified Simulator for Self-Reconfigurable Robots,
In 2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Nice, France, pp. 22-26, 2008.

[5] M. Yim, W. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins,
and G. Chirikjian. Modular self-reconfigurable robot systems [grand chal-
lenges of robotics]. IEEE Robotics and Automation Magazine, 14(1):43-
52, 2007.

[6] S. Vassilvitskii, J. Kubica, E. Rieffel, J. Suh, M. Yim. On the General
Reconfiguration Problem for Expanding Cube Style Modular Robots. In
IEEE Intl. Conf. on Robotics and Automation (ICRA), 2002.

[7] T. Ababsa, N. Djedi, Y. Duthen, S. Cussat-Blanc. Dencentralized Ap-
proach to Evolve the Structure of Metamorphic Robots (regular paper).
In : IEEE Symposium on Artificial Life (IEEE-ALife 2013), april 2013.

[8] M. Vona, D. Rus. A Physical Implementation of the Self-reconfigurable
Crystalline Robot. In Proc. of the IEEE Intl Conf. on Robotics and
Automation 2000, San Francisco, CA, Apr. 24-28, 2000, p. 1726-1733.

[9] J. Bongard and R. Pfeifer. Evolving complete agents using artificial
ontogeny. Morpho-functional machines: The new species (designing
embodied intelligence), pages 237-258, 2003.

[10] A.C. Van Rossum, J. H. Van Den Herik, Designing Robotic Metamor-
phosis. In Proc. of the 22nd Benelux Conference on Artificial Intelligence
(BNAIC-2010), Luxembourg, 2010.

[11] G. S. Chirikjian, Kinematics of a metamorphic robotic system. In
IEEE International Conference on Robotics and Automation Proceedings,
Volume 1, pp. 449-455, 1994.

[12] L. Schramm, Y. Jin, and B. Sendho. Emerged coupling of motor control
and morphological development in evolution of multi-cellular animats.
Advances in Artificial Life: Darwin Meets von Neumann, pages 27-34,
2011.

[13] Sylvain Cussat-Blanc, Jordan Pollack. A Cell-based Developmental
Model to Generate Robot Morphologies (regular paper). In : Genetic
and Evolutionary Computation COnference (GECCO 2013).

[14] Meng, Y, Zheng, Y and Jin, Y. A Morphogenetic Approach to Self-
Reconfigurable Modular Robots using a Hybrid Hierarchical Gene Reg-
ulatory Network. On Artificial Life XII, 2010.

[15] Komosinski M, Rotaru-Varga A. From directed to openended evolution
in a complex simulation model. In: Bedau MA, McCaskill JS, Packard
NH, Rasmussen S, editors. Artificial Life 7. Cambridge, MA: The MIT
Press, 2000. p. 2939.

[16] Haasdijk, E., Rusu, A.A., Eiben, A.: Hyperneat for locomotion control
in modular robots. In: 9th International Conference on Evolvable Syste
ms (ICES 2010). pp. 169180 (2010)

[17] Balakrishnan, P. V., M. C. Cooper, V.S. Jacob, P.A. Lewis. A Study of
the Classification Capabilities of Neural Networks using Unsupervised
Learning, Psychometrika 59(4): 509-525 (1994).

[18] Jain, A.K., M.N. Murty, P. Flynn. Data Clustering: A review. ACM
Computing Surveys 31(3): 264-323. (1999)

[19] K.Mehrotra, C. Mohan, and S. Ranka. Elements of Artificial Neural
Networks. MIT Press, (1996)

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

