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ABSTRACT

This paper presents a modal logic for modelling individual and col-
lective choices over a set of feasible alternatives. The logic extends
propositional logic with a binary modality so that a formula can
express not only properties of alternatives but also priorities of in-
dividuals over the properties. More importantly, each formula of
this logic determines a preference ordering over alternatives based
on the priorities over properties that the formula expresses. In such
a way, preferences of multiple agents can be represented by a set of
formulas in the same logic. This allows us to treat the problem of
collective choice in a multi-agent system as aggregation of logical
formulas. We further use this language to express a few plausible
collective choice rules. Similar to preference aggregation, we spec-
ify collective choice rules by Arrow’s conditions. Interestingly, all
Arrowian conditions are plausible under the new setting except In-
dependence of Irrelevant Alternatives. This gives us a natural way
to avoid Arrow’s impossibility result. Finally, we develop a model
checking algorithm to automatically generate individual and col-
lective choices in the logic.
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1. INTRODUCTION

Social Choice Theory deals with the problem of how to aggre-
gate individual preferences into a social or collective preference so
as to reach a collective decision [12, 13]. In the simplest setting
when individual preferences are given by orderings over available
alternatives, social choice is to select a rule that maps the set of in-
dividual preference orderings into a social preference ordering over
the same alternatives and then make a collective choice from the al-
ternatives in terms of the social preference ordering. However, in
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many situations, individual’s preference may not be given in the
form of an ordering over alternatives but the “reasons” that lead to
the preference [8, 21]. For instance, when buying a property, we
may express our preference in the way of specifying which loca-
tions we like the house to be, how many bedrooms we want it to
have and which price range we can afford. These reasons not on-
ly induce a preference ordering over the set of alternatives, say a
ranking over the houses available on the market, but also convey
more information than the preference ordering, which is crucial
for understanding rational choice of an agent, i.e., reason-based
choice 6, 8, 21].

Representing reasons for a preference is more primary than rep-
resenting the preference itself. There are a number of ways that the
concept of a reason can be formalized. A simple way is to express
a reason in a propositional formula [18]. For instance, if we wan-
t a four-bedroom house located in Mountain View, the reason can
be represented as Mountain_View A Four_bedroom. Howev-
er, most often not all of the reasons can be satisfied, and we have
to make some sort of compromises. One of the most natural and
convenient methods is to sort reasons. If the best option is unavail-
able, the agent may then be satisfied by the second best option (or
third, efc). For instance, we might want to express that we want
to buy a four-bedroom house located in Mountain View most; if
it is impossible, a four-bedroom house located in Menlo Park is
also fine. There are some logical languages that we can use for
describing the priorities among reasons [4, 17, 19, 21, 22]. For ex-
ample, if we use the language of Brewka et al.’s qualitative choice
logic [4], our reasons of house choice with the above-mentioned
priority over locations can be represented as (M ountain_View A
Four_bedroom,) X (Menlo_Park A Four_bedroom).

Logical representation of reason-based choices does not provide
a solution to the problem of reason-based social choice. One idea
would be that we convert the reason-based preference of each agent
into a preference ordering over alternatives and then apply a con-
ventional preference aggregation rule to deduce the social prefer-
ence ordering. Unfortunately, this does not provide a solution to the
problem because the outcome of the social preference is no longer
reason-based, which does not give reasons for collective choice. In
fact, we need a facility that is more like judgment aggregation with
which we can aggregate individual reasons into collective reason-
s [7].

This paper aims to propose a logical formalism for representing
and reasoning about individual and collective choices based on rea-
sons. Firstly, we extend the language of propositional logic with a
binary modality so that each formula in this language can express
not only reasons for choices (i.e., properties of alternatives) but also
priorities over the reasons. Each formula of this logic determines
a preference ordering over alternatives on the basis of the priority



over the reasons. Secondly, once we represent the preference or-
dering of each agent in a single formula, the problem of collective
choice is reduced to how to aggregate a set of formulas into a single
formula. We then use the same language to define a few plausible
collective choice rules. Thus, not only preferences but also collec-
tive choice rules can be expressed in this logic. This allows us to
employ the standard model checking techniques to generate indi-
vidual and collective choices. Thirdly, similar to preference aggre-
gation, we explore collective choice rules by Arrow’s conditions.
Interestingly, all Arrowian conditions are plausible under the new
setting except Independence of Irrelevant Alternatives (IIA). This
gives us a natural way to circumvent Arrow’s impossibility result
in this logic. We show a possibility result by replacing IIA with
Monotonicity which is inspired by [11].

The rest of this paper is structured as follows. Section 2 estab-
lishes the syntax and semantics of our proposed logical formalism.
Section 3 deals with representation of reason-based choice. Sec-
tion 4 extends the logical formalism to the multi-agent case and
investigates reason-based social choice rules as well as Arrowian
conditions for specifying these rules. Section 5 studies the proper-
ties of the logic including its expressivity, compactness and model-
checking complexity. Section 6 discusses the related work. Finally
we conclude the paper with a discussion of possible applications of
the logic and future work.

2. THE LOGICAL FORMALISM

In this section, we will establish a logical formalism for repre-
senting and reasoning about reason-based choices. In the rest of
the paper, we call this logic reason-based choice logic, denoted by
RCL.

2.1 Syntax

Consider a propositional modal language £ that consists of: (i) a
non-empty finite set ®o of propositional variables, (ii) proposition-
al connectives — and A and (iii) a binary modality V, representing
priority over reasons. Formulas in £ are generated by the following
BNF:

pu=A|pVep
where A is a standard propositional formula built as follows:
Au=p|-AJANA

where p € ®y. Note that the formulas are in two levels. The
lower level formulas are the standard propositional formulas, used
for describing reasons or properties of alternatives. The other log-
ical connectives, V, —, <+ and the logical constants T, L can be
introduced in the standard way. The higher level formulas are de-
signed to express priorities over reasons. A formula ¢ V2 means
“choose an alternative to make ¢ true; if no alternatives make it
true, choose one to make o true”. In other words, the agent gives a
higher priority to the reason ¢ than to ¢» in the decision making.

Note that we do not allow the prioritized connective being nested
in any propositional connective. The reason is that once this is
allowed, the intuition behind prioritized choice will be lost. For
instance, it is unclear what the prior reasons are determined by the
conjunction of two prioritized choices 1 V1 and p2Vs. There
are many ways to merge prioritized choices. In fact, this is exactly
a problem of choice aggregation, which is the main theme of this
paper.

However, as the BNF shows, nesting prioritized choice formulas
is allowed. For example, (¢1Vp2)V @3 is a well-formed formula
in £. Since V is associative as we will show in next section, the

following abbreviation becomes meaningful:
P12V Vom =def ((P1V2) V--+) V om

2.2 Semantics

The semantics for the classical propositional logic interprets each
propositional variable with a truth value either true or false. For-
mally, an interpretation [ is a function that maps ®q to {true, false}.
Alternatively, an interpretation can also be expressed as a set of lit-
erals', in which the positive literals represent the atomic proposi-
tions that are true under the interpretation while the negative literals
represent the atomic propositions which are false.

Given a decision-making problem, let W be the set of alterna-
tives from which an agent has to choose. Assume that each alter-
native is uniquely specified by its properties/attributes/characters
expressed by atomic propositions. Take the restaurant menu as an
example. Assume a restaurant offers a number of dishes W =
{z,y, 2, ...} for us to choose. Each dish is characterised by its in-
gredients and styles. For instance, Bouillabaisse Royale is a French
dish made up of fish fillets, prawns, scallops, scampi, mussels and
cooked in a fish-and-tomato stock. If each character is expressed
by a propositional variable in &9 = {p, q,r, ...}, a dish can be u-
niquely identified by an interpretation of ®y. In general, we can
simply view each alternative in W as an interpretation over ®¢ if
we represent each property/attribute/character of the alternatives by
an atomic proposition in ®¢. Therefore, W becomes a set of inter-
pretations over ®q, i.e., W C 2% In the following, we assume
any set W of alternatives is non-empty. Note that W is finite and
does not have to contain all interpretations of ®q.

Next we consider how to interpret a propositional formula. Sup-
pose that you want to eat seafood in a restaurant. You will then
choose a dish from the restaurant menu that contains seafood, such
as fish, prawn or others. Assume that, as we mentioned above, we
represent the characters of food in propositional variables. Then
the statement sea food can be expressed in a propositional formu-
la, such as (fish V prawn) A lemon. You choose the dishes (rep-
resented as interpretations of the language) that can satisfy this for-
mula. In general, an alternative w in W is a candidate of our choice
if it satisfies our selection reason represented by A, i.e., w = A.

Finally, we consider the interpretation of a prioritized formula.
As we mentioned above, ¢V means “choose an alternative to
meet p; if it’s impossible, choose one to meet 1)”. Consider an al-
ternative w € W, if w satisfies ¢, it certainly satisfies (V). How-
ever, if none of the alternatives in W satisfies ¢, then an alternative
w’ satisfies V1) only if w’ satisfies 1.

Based on above intuitive discussion, we are now ready to define
the truth conditions for any formula in our language.

DEFINITION |  (TRUTH CONDITIONS). Given a set, W C
2%0_ of alternatives, for any w € W, a formula ¢ € L is true
atw in W, denoted by W, w |= ¢, iff

W,w = p iff pew

W,w = -A iff whEA

WwlkEAAB iff wkEAandw =B
Wiw E o1Vee  iff W,w = o1, or (W,w = 2 and

W,w' & 1 forallw' € W).

We say ¢ is valid in W, denoted by W = o, if W,w = ¢ for
every w € W, ¢ is valid, denoted by |= ¢, if W |= ¢ for any
W C 2%0, Given any ¢, ¢ € L, ¢ is a logical consequence of 1,
denoted by ¢ |= 1, iff for any W and any w € W, if W, w [ ¢,
then W, w = .

' A literal is an atomic proposition or its negation.



The following result shows that the prioritized connective is as-
sociative.

PROPOSITION 1. For any ¢1, @2 and @3 € L, for any W and
foranyw e W,

W,w E o1V (p2Ves) iff W, w = (p1Vp2) Vs

3. EXPRESSING CHOICE

In this section, we first display how to use RCL for representing
choice and then demonstrate with an example to show how to use
the prioritized connective for making a choice. A choice set is a
subset of alternatives that are selected by reasons specified by a
formula ¢ € £. We now introduce the syntactical representation
of a choice set.

DEFINITION 2. Given a set W of alternatives and a formula
¢ € L, the choice set specified by ¢ in W, denoted by C(W, @), is
defined as follows:

CW,p) ={weW: Wwl= ¢}

Intuitively, a choice set C'(W, ¢) includes all the alternatives in W
that satisfy ¢.

To illustrate how to use prioritized connectives for making choic-
es, let us consider the following example.

EXAMPLE 1. Three friends Ann, Kate and Bill are going to
watch a movie together. Ann is a super fan of cartoon comedies
therefore is eager to find one. If nothing, other comedies are ok
or a fiction as the least option. Kate also likes cartoons but only
non-fiction cartoons. If nothing, she picks a comedy or a fiction if
nothing else. Finally, Bill will surely go for a fiction and a non-
cartoon is also ok. If nothing, any movie seems fine for him. They
find three movies are on show: Gravity, Flipped and Frozen. It
is known that:

o Gravity is a fiction but not a comedy or cartoon;
o Flipped is a comedy but not a fiction or cartoon;
e F'rozen is a cartoon comedy but not a fiction.

Let us first formalize this example. The set of atomic properties is
&y = {Fiction, Comedy, Cartoon}. The set of feasible alter-
natives is W = {Gravity, Flipped, Frozen} where

Gravity = {Fiction, ~Comedy, ~Cartoon}
Flipped = {=Fiction, ~Cartoon, Comedy}
Frozen = {—=Fiction, Comedy, Cartoon}

The reasons with priorities of Ann, Kate and Bill are described as
Jollows:

Yann = (Comedy A Cartoon) Vv Comedy V Fiction
Yrate = (Cartoon A —Fiction) V Comedy V Fiction
PRIl = Fliction Vv —Cartoon vV T

According to their individual reasons, Ann and Kate both choose
the movie Frozen, and Bill chooses the movie Gravity. This
intuitive judgment is validated by the model, that is

o W, Frozen = @ann
o W, Frozen = ¢kate
o W,Gravity = ¢piu

Then it follows that

o C(W,0ann) = {Frozen}.
o C(W,¢Krate) = {Frozen}.
o C(W,¢pi) = {Gravity}.

As they would like to watch a movie together, then a natural ques-
tion arises: which movie should they choose collectively? We will
deal with this issue in the next section.

Before handling the collective dimension, we show that the ap-
proach to use prioritized connectives for making choices is rational,
that is, this approach satisfies the two standard rationality condi-
tions: the contraction condition and the expansion condition [13].

(Contraction Condition). Given two sets of alternatives W, W'
with W C W', forallw € W and forall ¢ € L, if w €
C(W', ), then w € C(W, ). This condition requires that
if you choose some alternative from a set of alternatives and
this alternative remains available in a more restricted set, then
you also choose it from the restricted one.

(Expansion Condition). Given two sets of alternatives W, W’
with W C W', for all alternatives w,w’ € W and for any
formula ¢ € L, if (w € C(W,p) and w' € C(W,p)),
then (w € C(W', ) iff w' € C(W’',y)). This condition
requires that if you choose two alternatives from a set of al-
ternatives, then you choose them or not choose them at the
same time from a lager set.

PROPOSITION 2. For any set W of alternatives and any for-
mula ¢ € L, the choice set C(W, ) satisfies the contraction con-
dition and the expansion condition.

4. COLLECTIVE CHOICE

Let us now extend the logical formalism to the multi-agent case,
explore the desirable conditions for collective choice under the reason-
based setting, and further define plausible collective choice rules
based on aggregation of reasons.

4.1 Setting

We consider a finite set of agents N = {1,2,--- ,n}. Each
agent i € N has her own reasons which are specified by a formula
i € L of the form A]VA5V --- VA;, such that

(Individual Completeness) W |= \/ AL.
k=1

Individual completeness means each individual takes all the alter-
natives in W into consideration, that is, her priority over these
reasons induces a rank for every alternative in W, which corre-
sponds to the completeness requirement in preference aggregation.
This requirement guarantees that each individual has a non-empty
choice set, i.e., C(W, ¢;) # 0. In the following, we call a formu-
la that satisfies individual completeness individual choice. Given
each individual’s choice ¢;, the vector (p;):ecn is called a profile.

Finally, a collective choice rule is a function f that assigns to
each profile (p;)ien of individual choices a single formula ¢ € £
of the form A1V A3V ---VA,, such that

(Collective Completeness) W |= \/ Aj.
k=1

Similarly, this condition guarantees that the aggregate formula should
always determinate a collective alternative, i.e., C(W, ) # 0, and
induce a collective preference ordering over alternatives based on



the priority over reasons. The set of admissible profiles is called
the domain of f, denoted by Dom(f).

Similar to preference aggregation [13], a collective choice rule
must behave in a rational way and few constraints or conditions
have to be set for enforcing this rationality. The very first require-
ment is that equivalent formulas should determine the same most
preferable alternatives. However, the collective choice is not com-
pletely dependent on the set of individual most preferable alterna-
tives. In fact, most of the time individuals have to make some com-
promises, and the second, the third, or even the last most preferred
alternatives are taken into consideration. As the standard notions
of logical consequence and equivalence are defined based on the
most preferable alternatives, thus they are insufficient for handling
collective choice and need to be strengthened.

DEFINITION 3. Given a set W of alternatives, let p = A1V - - -
VA and ) = B1V -+ -V By,. Then 1 is a strong consequence of
o with respect to W, denoted by o |Fw ), iff

1. m > n, and

k
2. WE A, — V Biforanyl <k <n.
i=1
The intuitive meaning behind this notion is the following: first,
the length of the priority over reasons specified by ¢ is at least as
large as that by ¢. This means the number of ranks of alternatives
generated by ¢ is at least as large as that given by 1) (Condition 1);
secondly, for any alternative in W, its rank given by % is at least
as high as the one given by ¢ (Condition 2). For instance, when
k = 1, the most important reason in ¢ implies the most important
reason in 1. This means the most preferred alternative of ¢ if exists
is also a most preferred alternative of .

EXAMPLE 2. Suppose three alternatives, W = {x,y,z} s.t.
x =A{p,~q,~r}, y={q,—p,r}and z = {r,—q,~p}. Let p =
pVqVrandy = (pVr)Vq. Thenplbw YasW E=p— (pVr)
and W |= q — (pVr\Vq). Figure 1 illustrates the relation between
the ranks for each alternative (the higher, the better).

Wy

Figure 1: 1) (right) is a strong consequence of ¢ (left)

Furthermore, the strong notion of equivalence is defined as follows:

DEFINITION 4. Given a set W of alternatives, and for any o,
€ L, o is strongly equivalent to 1 with respect to W, denoted by

Fw o =, iff ¢ Ibw ¥ and ¥ IFw .

This definition says that two strongly equivalent formulas have the
same priority over reasons. In the other words, they assign the
same rank to every alternatives in W. Let us continue Example
2. Consider another formula y = —¢Vgq, then IFy ¢ = x, as
Wik g+ (pVr)and W | q < —(pVr)Aq. Figure 2
illustrates this strong equivalence.

The following proposition restates the strong equivalence in terms
of the standard logical equivalence. In fact, it also serves as an im-
portant lemma for proving our main result, e.g., Theorem 1.

PROPOSITION 3. Given a set W of alternatives, let o = Ay
V---VA, andp = B1V ---VBy,. ThenlFw ¢ = ¢ iff

Figure 2: 1) (left) is strongly equivalent to y (right)

1. m=n,

2. W ':A1 (—)Bl, and

k—1 k—1
3. W':(/\ —\A,/\Ak)<—>(/\ —\Bi/\Bk)foranyQSk’g
i=1 i=1

n.

Note that the strong consequence (equivalence) and the standard
consequence (equivalence) are the same if ¢ is a propositional for-
mula. However, once ¢ is a formula with prioritized connectives,
these two versions become different. As we will see in the next sec-
tion, the strong version is designed for specifying collective choice
conditions.

4.2 Conditions on Collective Choice Rules

Now we are in the position to provide the conditions which a
collective choice rule is expected to satisfy. Let f be a collective
choice rule.

U (Unrestricted domain). For any profile (©i)ien, {¢i)icn €
Dom(f). The domain of the collective choice rule f includes
all profiles of individual choices.

A (Anonymity). For any profile {p;)icn, and any permutation
oc: N — N, |FW f(<§02>1€N) = f(<900'(i)>i€N)- This
requires that the ordering among the agents does not affect
the collective result and the collective rule should treat each
individual neutrally.

M (Monotonicity). For any two profiles ® = (p;)ien, ® =
(ph)ien, foralli € N, if p; IFw @}, then f(®) Ik f(D').
This condition is the qualitative counterpart of monotonici-
ty condition in [11]. It specifies that for any two preference
profiles and any alternative if for each individual the rank of
the alternative in one profile is at least as high as that in the
other, then its collective rank of the former is at least as high
as that of the later.

P (Pareto principle). For any profile ® = {(p;)icn and for any
formula ¢ € L, if lFw wi = ¢ for any i € N, then
lFw f(®) = . Intuitively, if all individual priorities over
reasons are the same, then this condition requires that the col-
lective priority over reasons is the same as each individual’s
one.

The following proposition says Non-dictatorship can be derived
from Anonymity.

PROPOSITION 4. Every collective choice rule f satisfying A is
non-dictatorial, i.e., there is no i € N such that lFw ¢; = f(P)

for any profile ®.

Under this reason-based setting Universal Domain, Non-dictatorship
and Pareto principle correspond to their counterparts of Arrowian
conditions in preference aggregation except Independence of Irrel-
evant alternatives which is replaced by Monotonicity. It turns out
that different from Arrow’s impossibility result, as we will show
in the next section, there are collective choice rules that satisfying
UAMP.



o1 = AivA%v e W%’”
w2 = AJVA3V---VAL,
@i = AIVALV---VAL,
Yon = ATVAIV---VAL

Table 1: The profile of individual choices

4.3 The Collective Choice Rules

‘We now show that RCL can not only represent individual prefer-
ences but also express collective choice rules.

Suppose a finite set N = {1,--- ,n} of agents and a profile of
individual choices ® = (p;);en detailed by Table 1. Without loss
of generalization, let mi < ma < -+ < mp.

We first define a naive rule Fy,.q called the grounded rule® as
follows:

Fura(®) = (V ADY(V A

V(l\z/l A:Tbl)

The intuition behind the grounded rule is that the collective choice
should be a best choice for at least one of the agents. The rule
works in this way: first check whether there is any alternative sat-
isfying one of individual’s most important reasons, if yes, simply
choose this alternative; Otherwise, go on and check whether there
is any alternative satisfying one of the individual’s second most
important reasons. Continue this procedure until an alternative is
found. This rule is simple and easy to be executed. However, it has
drawbacks as it naively selects one of the individual’s most pre-
ferred alternatives to be the collective choice without taking into
account the ranks of this alternative in the others’ preference order-
ings. Consider again, Example 1, then, according to F};;,.4, movie
Gravity is a possible output for collective choice as Bill likes it
most. However, this is counter-intuition as both Ann and Kate like
Gravity the least. Hence, the worst-off dimension should be more
considered.

The next rule Fi,q. called the maximal rule solves this problem.
It is defined as follows:

Frae(®) = (A ADT(A (41 v 4)7
7AWV ADT(ANV 4
v( A CV (¥ a

The idea behind the maximal rule F,q. 1S to maximize the situa-
tion of the worst-off. This rule guarantees that an alternative has
to be collectively selected only if its lowest rank in all individual
preference orderings is the highest among the lowest ranks of all
the other alternatives. This specification rules out the possibility of
movie Gravity to a collective choice in Example 1. The maximal
rule proceeds as follows:

1. Check whether or not there is some alternative satisfying the
most important reasons of all individuals (the conjunction of
the first prioritized disjunct of each formula). Yes, choose
that alternative and halt; No, go to the next step.

2. Check whether or not there is some alternative satisfying ei-
ther the first or the second important reasons of all individ-
uals (the conjunction of all the disjunctions of the first two

The notion ’groundedness’ is borrowed from [23].

prioritized disjuncts of each individual formula). Yes, choose
that alternative and halt; No, go to the next step.

3. Continue above procedure until there is k such that some
alternative satisfies the disjunction of first k prioritized dis-
juncts of all individual formulas.

Since each individual formula is complete and its length is finite,
so such £ exists. Note that the last two lines take care of the case
that individual formulas may have different lengths. This rule is
the qualitative counterpart of Fagin’s Algorithm in database sys-
tem which is an efficient data aggregation algorithm with elegant
mathematical properties [9].

Finally, we define a family of uniform quota rules [7]. Given a
collective choice threshold 7 € {1,2,--- ,n}, the corresponding
uniform quota rule, denoted by F, is defined as follows:

F (@) = | A ANV
CCN,|C|=T1i€C

Vo A (A1 VAV
CCN,|C|=ri€C
my .
V A (V A))v
CCN,|C|=7i€C j=1

AV AD)v

(

( |
CCN\{1},|C|=7—-11i€C j=1

(

(

ms

AV AD)v-
CCN\{1,2},|C|=1-21i€C j= lmT
AV 4))

CCON\{1,-,7—1},[C|=1i€C j=1

The rule proceeds in this way (the process is similar to Fiqz): it
checks if there is any subset of agents C' C N such that (i) the
size of this subset is equal to 7 and (ii) the most important reasons
of every agent belonging to C' is satisfied. All possible subsets are
evaluated (disjunction appearing in the first line). If no subset has
been satisfied then we repeat the process except that we consider
their first two most important reasons (Second line). The process
continues until some alternative satisfies 7 agents (lines 3 and fur-
ther). The last three lines consider the case that individual formulas
may have different lengths. This rule is a generalization of the ma-
jority rule as well as the other two rules.

e The simple majority rule, denoted by F,q;, can be encoded
by setting® quota 7 = ["T“]

e The grounded rule can be encoded by setting 7 = 1.
e The maximal rule can be encoded by setting 7 = n.
To illustrate how these rules work, let us back to Example 1.

Example 1 (continued) The model of this example is given as fol-
lows: ®y = {Fiction, Comedy, Cartoon} and N = {Ann,
Kate, Bill}. The set of feasible alternatives W = {Gravity,
Flipped, Frozen} where

e Gravity = {Fiction, ~Comedy, ~Cartoon},
e Flipped = {—~Fiction, ~Cartoon, Comedy},
e Frozen = {—Fiction, Comedy, Cartoon}.
The reason with priority of each agent is described as follows:

® Yann := (Comedy N Cartoon) Vv Comedy V Fiction

3[p] is defined as the smallest integer greater or equal to number
p-



e viate := (Cartoon A —~Fiction) V Comedy V Fiction
e g = Fiction Vv ~Cartoon V T

The collective formulas generated by the grounded rule, the max-
imal rule and the simple majority rule are calculated respectively
as follows: let ® denote the profile (p ann, 0B, PJim), then

[ ] Fgrd(q)) =

(Fiction V Cartoon)V(Comedy V ~Cartoon)V Fiction

e Fraz(®) = LV(Comedy A (Fiction V =Cartoon))
V(Comedy V Fiction V Cartoon)

o Faj(P) = (Comedy A Cartoon)vComedy
V(Comedy V Fiction V Cartoon)

It follows that the three aggregate formulas determine the following
choice sets.

o C(W, Fyrq(®)) = {Gravity, Frozen};
o C(W, Frau(®)) = {Flipped};
o C(W, Fraj(®)) = {Frozen}.

This says that according to the grounded rule, the three friends are
expected to choose either Gravity or Frozen, and according to
the maximal rule, F'lipped is the collective choice, while according
to the simple majority rule, they should choose Frozen.

As stressed by the Example, the behavior of these rules are d-
ifferent, and thus deciding which rule to use is usually situation-
dependent. Let us now provide the main result: uniform quo-
ta rules satisfy Universal Domain, Anonymity, Monotonicity and
Pareto principle.

THEOREM 1. The uniform quota rule F; satisfies UAMP.

PROOF. (Sketch) It is straightforward that F’- satisfies collective
completeness and universal domain. F- satisfies Monotonicity by
Definition 3, and F’- satisfies Anonymity and Pareto principle by
Proposition 3. [

COROLLARY 1. The grounded rule Fy,q and the maximal rule
Froax both satisfy UAMP.

Therefore, as we expect, different from Arrow’s impossibility
result, there are collective choice rules satistfying UAMP. At last,
we would like to mention that the size of an aggregate formula
can be significantly reduced via the following two ways. First, any
aggregate formula represents a preference ordering over alterna-
tive, and thus its size is virtually determined only by the number
of alternatives as well as their properties, and has nothing to do
with the number of individuals. As shown in Example 1, priori-
tized disjuncts can be extremely simplified by equivalence laws of
propositional logic. Secondly, there are many reasons that none
of the alternatives in W satisfies, and if we remove such “dum-
my" reasons, the collective preference ordering over alternatives
will not be changed, as they correspond to the empty set of alterna-
tives. For instance, in Example 1, the normal form of the aggregate
formula Frax ({0 Ann, 0B, pim)) is (Comedy A (Fiction V
=Cartoon)) V(ComedyV FictionV Cartoon) which represents
the same preference ordering as itself, i.e., Gravity and Frozen
are indifferent, and F'lipped is better than any of them. We leave
the precise complexity result for future work.

4.4 Relation with Preference Aggregation

In this subsection, we discuss the relationship between the col-
lective choice in RCL and the preference aggregation in social choice.
In particular, we will compare our possibility result with Arrow’s
impossibility theorem.

We first show that the Condorcet’s paradox [14] can be naturally
avoided in RCL due to the character of its language. As we will
see in Proposition 5, any formula generates a preference ordering
over the alternatives on the basis of the priority over reasons. This
guarantees that all collective rules in RCL always induce a prefer-
ence ordering over alternatives. For example, given the set of atom-
ic properties ®9 = {p, q,r}, suppose we have three candidates
W = {w1, w2, ws} where w1 = {p, ~q, 1}, w2 = {-p,q,—r}
and wsz = {—p, —q, r}. There are three voters 1, 2 and 3 with their
voting reasons given as follows: 1 = pVqVr, p2 = qVrVp, and
(3 = rVpVgq. According to the simple majority rule (7 = 2), we
get the collective result as follows:

Finaj((p1,02,3)) = [(PAQ V (PAT) V(g A)]V[((PV ) A
(qvr)V(eVa)AlpVr)V(gVr)A(pVr)vipVaeVr)
This aggregate formula would result in a tie with three alternatives
are indifferent, i.e., C(W, F2({p1, 2, ¢3))) = {w1, w2, w3} in-
stead of a cyclic (intransitive) preference ordering.

On the other hand, all Arrowian conditions are plausible under
the new setting except Independence of irrelevant alternatives (I-
IA). The main reason is that this condition requires for any two
alternatives w and w’, the collective preference between w and w’
depends only upon individual preferences over that pair. Differen-
t from other Arrowian conditions, IIA is a specification about the
order of two particular alternatives. Such a local property is incon-
sistent with the global property of RCL. As a RCL-formula always
specifies a priority over reasons which further induces a preference
ordering over whole alternatives, thus it is impossible for a RCL-
formula to describe two particular alternatives. This gives us a nat-
ural way to circumvents Arrow’s impossibility result in RCL.

In addition, we consider another condition Monotonicity which
is the qualitative counterpart of the monotonicity in database aggre-
gation algorithm [11]. This condition is an important property for
rank aggregation rules. In fact, our proposed rules may be regard-
ed as rank aggregation rules as they aggregate reasons according to
their priorities layer by layer. It turns out that all other Arrowian
conditions are consistent with Monotonicity.

5. PROPERTIES OF RCL

In this section, we first analyze the expressivity and succinctness
of our language for preference representation, and then investigate
the model-checking complexity of this logic.

5.1 Expressivity

We now consider how to extend the priority over reasons to a
preference ordering over alternatives. A preference ordering over
alternatives is a reflexive, total and transitive relation over alterna-
tives. Hereafter, we show that the proposed language is simple, yet
expressive enough to describe any preference ordering over alter-
natives.

Informally speaking, we generate a preference ordering over W
in terms of a formula ¢, denoted by <, in this way: an alternative
w is preferred to an alternative w’, denoted by w =, w/’, if the
maximal important reason that w satisfies is given at least a similar
priority as the maximal important reason that w’ satisfies.

DEFINITION 5. Given ¢ € L of the form A1V A3V ---VA,,
and an alternative w € W, let h(w) = Min{i | w = A} if w =



\/ Ai; otherwise h(w) = m + 1. Then for any two alternatives
i=1
w,w € W, w <, w' iff h(w) < h(w").

As usual, w <, W =gy w <, w’ and not (w' =<, w), and
W~y W =gef w S, w' and w’ <, w. We next use a simple
example to illustrate this definition.

EXAMPLE 3. Given ®o = {p,q,7,s} and o = (p A\ q)V(r —
s), let W = {wn1, w2, w3, ws} where wi = {p,q, 7,8}, wa =
{p,q,r, s}, ws = {—p,q,r,~s} and wy = {p, —q,r, s}. We have
h(wi) = h(w2) = 1, h(ws) = 3 and h(ws) = 2, hence w1 ~,
W2 <y Wq <y W3.

The following proposition says the language £ can not only gener-
ate a preference ordering over W, but also express any preference
ordering over W.

PROPOSITION 5. Given a set W of alternatives,
1. forany formula p € L, =, is a preference ordering over W .

2. for any preference ordering = over W, there is a formula
¢ € L such that R==.

5.2 Succinctness

‘We next investigate another property of this language: the rela-
tive space efficiency. In particular, we will show that one of the
standard and compact languages called the goal-based language
RY¢sto% in [5] can be translated to our language in polyminal-size,
and vice versa.

DEFINITION 6. A goal base GB is a tuple ({G1,--+ ,Gpn},r)
where

o {G1, -+ ,Gn} is afinite set of propositional formulas;
e 1 is an associated function from N to N.

If r(¢) = 7, then j is called the rank of the formula G;. By conven-
tion, a lower rank means a higher priority. The priority on goals can
be extended to a preference ordering over alternatives via best-out
ordering [2].

DEFINITION 7. Let rap(w) = Min{r(i) | w & G:}, then
for any w,w’ € W, w 25 w' iff ras(w) > rep(w).

Then we have the following result saying that our language has the
same degree of succinctness with RESE 4!

PROPOSITION 6. There is a polynominal-size translation from
L 1o REE°%, and vice versa.

This means RCL and R%:°“t have the same space efficiency for
preference representation, and the succinctness results of RS54t
in [5] hold for RCL as well.

5.3 Model Checking

One of the advantages of RCL is that the collective choice rules
are built in the language, which allows us to use the model-checking
techniques to automatically generate collective choices. The model-
checking problem for RCL is the problem of determining: for a
given RCL formula ¢, a set W of alternatives and an alternative
w € W, whether W, w [= ¢ or not.

PROPOSITION 7. There is an algorithm that runs in time O(|W|
x|¢|) to check, given any set W C 2%°, any world w € W and
any formula ¢ € L, whether W,w |= @, where || denotes the
size of @, i.e., the number of symbols occurring in .

Algorithm 1: computeTruth(WV, )

input : W C 2% andp € £

output: the set {w € W : W, w |= ¢}
begin

switch ¢ do

case p, where p € ®g

T+ {weW:pewh
break;

case —), where ) € L

T <+ computeTruth(W, v);
T+ WN\T;

break;

case 1 A\ Ya, where 1,12 € L
T < computeTruth(W, ¢1);
T < T N computeTruth(W, 12);
break;

case 1V P2, where 1,102 € L
T <+ computeTruth(W, ¢1);

if 7 = ( then
| T « computeTruth(W, 2);
break;
otherwise
L T « 0;
r;turn T,

PROOF. (Sketch) It suffices to develop an algorithm that runs in
time O(|W| x |¢|) to compute the set of worlds w’ € W such that
W,w' = ¢. We implement this computation by Algorithm 1. The
general idea is to compute the desired world sets for all subformulas
of ¢ recursively. Given any subformula ¢ of ¢, assuming that the
mentioned world sets for all proper subformulas of v are available,
the computation on 1) can be done in time O(|W|). The number of
subformulas of ¢ is clearly not greater than |¢|. Thus, Algorithm 1
must terminate in time O(|W| X |¢|). According to the semantics,
it is also easy to verify the correctness of this algorithm. [

6. RELATED WORK

In recent years, many logical frameworks have been proposed for
representing and reasoning about choices and preferences [3, 4, 17,
19, 21, 22, 24, 25, 26]. Most of the previous work on representing
and reasoning about preferences takes preferences as fundamental
and primitive concepts and typically treats them as modal operators
[25, 26]. On the one hand, these preference logics mainly focus on
investigating logical properties of preferences with little concern
about how preferences are formed or where they come from. On
the other hand, formulas in these logics are all interpreted by an
arbitrary given (utilitarian or ordinal) preference relation and thus
have no facility to represent different preference orderings.

Recent work [4, 19, 21, 22] takes a different angle and explores
how preferences come into being.

[19] introduces a priority base that is ordered by importance and
mainly discusses the ways to rationally derive preferences from it.
However, the priority base is defined in the semantical level and the
priority operator itself is not part of the language.

[21] and [22] focus on logical representations of reason-based
preferences. Pedersen et al [22] develop a modal logic for reason-
ing about Dietrich and List’s framework [8] and show how to use a
standard modal logic for reasoning about reason-based preferences.
Different from RCL, they use the standard modal language and just



encode the priority (weighing relation) over reasons into the seman-
tical model. It is worth mentioning that they have generalized their
work to multi-agent case mainly for modelling non-trivial proper-
ties such as disagreement, consensus in a multi-agent setting rather
for aggregating preferences. Moreover, they assume that all agents
share the same priority over reasons. This means all agents have the
same preference ordering over alternatives, which is unsuitable for
preference aggregation. Meanwhile, Osherson and Weinstein [21]
develop a non-standard modal logic for reasoning about reason-
based preferences. Different from our qualitative approach, their
formalism is developed in the context of utility and each world can
be evaluated according to various utility scales. They consider dif-
ferent ways to combine utilities induced by different reasons in the
context of single agent without generalizing their work to multi-
agent dimension.

One of the closest related work is probably Brewka et al’s frame-
work [4] where an extension of propositional logic for representing
qualitative choices, called Qualitative Choice Logic (QCL), is de-
veloped. The non-standard part of this logic is a new logical con-
nective X called ordered disjunction. It is worth mentioning that
the intuition behind the binary operator V is similar to that of the
ordered disjunction. Also, the same idea, though applied to deontic
reasoning, was independently developed in [15]. The semantics of
QCL is based on the degree of satisfaction of a formula in a partic-
ular model. However, their motivation and approaches are different
from ours. They propose a nonmonotonic formalism for represent-
ing reason-based choices, while we provide a modal logic not only
for representing reason-based choices but also for representing and
generating reason-based social choice.

Based on above analysis, we may notice that few logical for-
malisms can provide a logical language which is not only com-
pact and expressive for representing preferences, but also equipped
with efficient decision procedures so as to automatically generate
individual and collective choices based on reasons. To our best of
knowledge, [17] is the only one that deals with both aspects. It us-
es weighted logics for representing preferences, that is, each agent
expresses her preferences by means of logical formulas weighted
by importance degrees, and then generates the collective result by
calculating the utility of each agent into a collective utility func-
tion. Compared to this work, the major difference is that we use a
qualitative approach, and show that preferences as well as collec-
tive rules are expressed in a standard modal logic, and thus model-
checking algorithm is developed for modal logics for generating
individual choices and collective choices. The relationship to such
formalism is left for future work.

7. CONCLUSION

In this paper, we have proposed a modal logic for representing
and reasoning about individual and collective choices based on rea-
sons. It has been shown that this language can not only describe
reasons and the priorities over reasons, but also represent prefer-
ence orderings over alternatives. We then use the same language to
define a few collective choice rules. So, not only preferences but al-
so the aggregation rules can be expressed with the same language.
We further develop a model checking algorithm to generate indi-
vidual and collective choices. Meanwhile, we have demonstrated
with proposed collective choice rules that all Arrowian conditions
are plausible under this new setting except Independence of Irrele-
vant Alternatives. These collective rules have been encoded in RCL
in an elegant way and the specifications of these rules have shown
how powerful the language is for representing and reasoning about
collective choice problems.

We do believe that Reason-based Choice Logic is general enough

for handling applications out of the classical scope of social choice
of theory. Let us mention two typical problems where RCL is rele-
vant.

e In database systems, prioritized queries can be used to de-
scribe suboptimal results [10]. For instance, one may start
with a query like: find a second-hand house less than 5 years
near subway, if subway is unavailable then near bus stop.
A compound prioritized query which consists of at least t-
wo prioritized queries can be dealt with by collective rules.
Moreover, the data aggregation algorithm combines informa-
tion that may be provided by different agents so as to produce
a top-k list. The combination of prioritized results issued
from multiple agents can then be reduced to the aggregation
of individual formulas. The proposed collective choice rules
are likely to play a role in this process.

e In belief merging [16], the aim is to combine several pieces
of information coming from different sources in a unique
one. The aggregation procedure in belief merging faces prob-
lems close to those addressed in social choice theory. Key
difference is that beliefs are flat and no priority are expressed
among them. However, priorities are still somewhere: the
output should be as close as possible from the individual set
of beliefs. Closeness is usually represented through an ap-
propriate notion of distance which is used to define distance-
based merging operators. The notion of distance can be eas-
ily translated in RCL for representing what statements an a-
gent prefers if her belief cannot be included in the output.
Hence each flat set of belief can be transformed in a priori-
tized formula and our collective rules can be considered for
combining them.

As RCL can encode preferences and collective choice rules at
the same time, our long term goal is to enable intelligent agent to
reason about collective choices. To this end, several extensions
have to be considered as follows:

Firstly, to keep our logical formalism as simple and intuitive as
possible, we currently do not allow the prioritized connective to
interplay with the other classical connectives. Consequently, the
context dependent preferences are beyond the expressivity power
of this language. It would be interesting to remove some syntactical
limitations of the language for being in position to represent more
general preferences.

Secondly, in this paper we have assumed that one agent’s choice
is given without any influence from others. However, in many situ-
ations, beliefs about other agents’ choices might affect the agent’s
own decision, and consequently change the collective choice. Thus,
it’s worth extending the language with epistemic operators so as to
study the effect of beliefs on individual and collective choices. In
particular, it’s possible to introduce a hierarchy operator over for-
mulas so as to express the hierarchy over the individual’s prefer-
ences and study collective choice rules under hierarchic environ-
ment [1].

Finally, we want to investigate the representation results for the
proposed collective choice rules. Though it is a difficult problem in
social choice theory to provide characterization results for specific
aggregation rules, based on some existing results [1, 7, 20], this is
not impossible.
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