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Abstract

The Keller-Segel system describes the collective motion of cells which are attracted
by a chemical substance and are able to emit it. In its simplest form it is a conservative
drift-diffusion equation for the cell density coupled to an elliptic equation for the chemo-
attractant concentration. It is known that, in two space dimensions, for small initial mass,
there is global existence of solutions and for large initial mass blow-up occurs. In this
paper we complete this picture and give a detailed proof of the existence of weak solutions
below the critical mass, above which any solution blows-up in finite time in the whole
euclidean space. Using hypercontractivity methods, we establish regularity results which
allow us to prove an inequality relating the free energy and its time derivative. For a
solution with sub-critical mass, this allows us to give for large times an “intermediate
asymptotics” description of the vanishing. In self-similar coordinates, we actually prove
a convergence result to a limiting self-similar solution which is not a simple reflect of the
diffusion.

Résumé

Le systeme de Keller-Segel system décrit le mouvement collectif de cellules qui sont
attirées par une substance chimique et qu’elles sont capables d’émettre. Dans sa forme
la plus simple, il s’agit d’une équation de dérive-diffusion conservative pour la densité des
cellules, couplée a une équation elliptique pour la concentration de chemo-attractant. On
sait que, en dimension deux, il y a existence globale de solutions pour une masse ini-
tiale petite, alors que pour une masse initiale grande, la solution explose en temps fini
dans l'espace euclidien tout entier. Dans cet article, nous précisons cette description et
donnons une preuve détaillée de I'existence de solutions faibles avec masse inférieure a la
masse critique, au-dessus de laquelle toute solution explose en temps fini. En utilisant
des arguments d’hypercontractivité, nous établissons des résultats de régularité qui nous
permettent de prouver une inégalité reliant I’énergie libre et sa dérivée en temps. Pour une
solution avec masse sous-critique, cela nous permet de donner une description des “asymp-
totiques intermédiaires” en temps grand, qui décrivent la convergence locale des solutions
vers zéro. Dans des coordonnées auto-similaires, nous montrons en fait un résultat de

*CEREMADE (UMR CNRS no. 7534), Université Paris Dauphine, Place de Lattre de Tassigny, 75775 Paris
Cédex 16, France. Phone: (33) 1 44 05 46 78, Fax: (33) 1 44 05 45 99.
E-mail: dolbeaul@ceremade.dauphine.fr, Internet: http://www.ceremade.dauphine.fr/~dolbeaul /

fCERMICS, ENPC, 6-8 avenue Blaise Pascal, Champs-sur-Marne, 77455 Marne-la-Vallée Cédex 2, France.
E-mail: blanchet@ceremade.dauphine.fr, Internet: http://www.ceremade.dauphine.fr/~blanchet/

IDMA (UMR CNRS no. 8553), Ecole Normale Supérieure, 45 rue d’Ulm, 75005 Paris Cédex 05, France.
E-mail: Benoit.Perthame@ens.fr, Internet: http://www.dma.ens.fr/users/perthame/



2 A. Blanchet, J. Dolbeault, B. Perthame March 25, 2006

convergence vers une solution auto-similaire limite qui n’est pas simplement donnée par la
diffusion.
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1 Introduction

The Keller-Segel system for chemotaxis describes the collective motion of cells, usually bac-
teria or amoebae, that are attracted by a chemical substance and are able to emit it. For a
general introduction to chemotaxis, see [42, 40]. Various versions of the Keller-Segel system
for chemotaxis are available in the literature, depending on the phenomena and scales one
is interested in. We refer the reader to the very nice review papers [29, 30] and references
therein. The complete Keller-Segel model is a system of two parabolic equations. In this
paper, we consider only the simplified two-dimensional case and assume that the equations
take the form

0

a—?:An—xV-(nV@) r€R?, >0,

—AC:TL $6R2,t>0, (1)
n(,t=0)=mn9g>0 r € R2.

Here n(x,t) represents the cell density, and c(z,t) is the concentration of chemo-attractant
which induces a drift force. A classical parameter of the system is the sensitivity x > 0 of the
bacteria to the chemo-attractant which measures the nonlinearity in the system. Here y is a
constant. Such a parameter can be removed by a scaling, to the price of a change of the total
mass of the system
M = ng dz .
RQ

In bounded domains, it is usual to impose no-flux boundary conditions. Here we are not
interested in boundary effects and for this reason we are going to consider the system in the
full space R?, without boundary conditions. There are related models in gravitation which are
defined in R3, see, e.g., [11]. The relevant case for chemotaxis is rather the two-dimensional
space, although some three-dimensional versions of the model also make sense. The L'-norm
is critical in the sense that there exists a critical mass above which all solution blow-up in
finite time, see [32], and below which they globally exist (see [21] for the a priori estimates
and Theorem 1 below for an existence statement). The critical space is LY?(R%) for d > 2,
see [18, 19] and the references therein. In dimension d = 2, the Green kernel associated to the
Poisson equation is a logarithm, namely ¢ = —% log| - | *x n. When the Poisson interaction
is replaced by a convolution kernel, it is the logarithmic singularity which is critical for the
L'-norm whatever the dimension is, see [14].
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Historically the key papers for this family of models are the original contribution [33] of
E. F. Keller and L. A. Segel, and a work by C. S. Patlak, [49]. The rigourous derivation of
the Keller-Segel system from an interacting stochastic many-particles system has been done
in [57]. Simulations of these can be found in [47]. A very interesting justification of the
Keller-Segel model as a diffusion limit of a kinetic model has recently been published, see
[16]. Related models with prevention of overcrowding, see [27], volume effects [34, 13, 64], or
involving more than one chemo-attractant have also been studied.

As conjectured by S. Childress and J. K. Percus [17] and V. Nanjundiah [46] either the
solution of the complete Keller-Segel system globally exists or it blows-up in finite time, a
phenomenon called chemotactic collapse in the literature. As we shall see, this classification is
valid for the simplified Keller-Segel system (1). A large series of results, mostly in the bounded
domain case, has been obtained by T. Nagai, T. Senba and T. Suzuki. Many of these results
can be found in [55, 58]. Concerning blow-up phenomena, a key contribution has been brought
by M. A. Herrero and J. J. L. Veldzquez [26, 61]. Also see [41] for numerical computations.

The main tool in this paper is the free energy

F[n] ::/ nlogndx—z/ necdx
R2 2 R2

which provides useful a priori estimates. The free energy functional is a well known tool for
gravitational models, see [3, 48, 63, 10] and has been introduced for chemotactic models by
T. Nagai, T. Senba and K. Yoshida in [44], by P. Biler in [7] and by H. Gajewski and K.
Zacharias in [22].

Based on the logarithmic Hardy-Littlewood-Sobolev inequality in its sharp form as estab-
lished in [15, 4], the free energy is bounded from below if x M < 8, see [21]. Here we use this
estimate to prove the global existence of solutions of (1) if x M < 8. We also prove that for
these solutions, the free energy is decaying and use it to study the large time behaviour of the
solutions. The limiting case y M = 87 has recently been studied in the radial case, see [8, 9].

The literature on the Keller-Segel model is huge and it is out of the scope of this paper to
give a complete bibliography. Some additional papers will be quoted in the text. Otherwise,
we suggest the interested reader to primarily refer to the surveys [51, 29, 30].

Our first main result is the following existence and regularity statement.
Theorem 1 Assume that ng € L1 (R?(1+|z|?)dz) and nglogng € L' (R%dz). If M < 87/,

then the Keller-Segel system (1) has a global weak non-negative solution n with initial data ng
such that

t
(1 + |z|* + |logn|)n € LS. (RT, LY (R?)) / / n|Vlogn — xVe*dzdt < oo,
0 Jr?

and |l‘|2n(l‘,t) dr = / |gj|2 no(z) de + 4M (1 — ﬂ) t
R2 R2 &7

for any t > 0. Moreover n € L ((g,00), LP(R?)) for any p € (1,00) and any € > 0, and the

loc

following inequality holds for any t > 0:

Fln(-,t)] +/0 /R2 n |V (logn) — xVe|* dzds < Flng)] . (2)
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This result was partially announced in [21]. Compared to [21], the main novelty is that we
prove the free energy inequality (2) and get the hypercontractive estimate: n(-,t) is bounded
in LP(R?) for any p € (1,00) and almost any ¢ > 0. The equation holds in the distributions
sense. Indeed, writing

An — xV-(nVe) = V-[n(Viegn — xVe)] ,

we can see that the flux is well defined in L*(R} = x R?) since

1/2 1/2
// n]Vlogn—XVc]dxdt§<// ndxdt) (// n\Vlogn—XVc\2dxdt> <00 .
[0,T]xR2 [0,T]xR2 [0,T]xR2

Our second main result deals with large time behavior, intermediate asymptotics and con-
vergence to asymptotically self-similar profiles given in the rescaled variables by the equation

X voo—|2|2/2

Jrez X017 dg

1
Uso = M = —Avy , with vw:—%log|-|*uoo. (3)

In the original variables, the self-similar solutions of (1) take the expression:

Noo (T, 1) ﬁ Uso (log(v1+2t), 2/V1+2t) ,
Coo(T,1) = Voo (10g(\/1 +2t),2/V1+2t) .

This allows us to state our second main result, on intermediate asymptotics.

Theorem 2 Under the same assumptions as in Theorem 1, there exists a solution of (3) such
that

tlim [n(-t) = Noo (-, )l 12y =0 and tlim [Ve(,t) = Ve (5 D) 2mey = 0

This paper is organized as follows. Section 2 is devoted to the detailed proof of the
existence of weak solutions with subcritical mass and without any symmetry assumption. A
priori estimates have been derived in [21]. The point here is to establish the result with
all necessary details: regularized problem, uniform estimates, passage to the limit in the
regularization parameter. Compared to [21], we also establish Inequality (2). Proving such an
inequality requires a detailed study of the regularity properties of the solutions, which is done
in Section 3: By hypercontractivity methods, we prove that the solution is bounded in any L?
space for almost any positive t. Using the free energy we study in Section 4 the asymptotic
behavior of the solutions for large times and prove Theorem 2. The main difficulty comes
from the fact that the uniqueness of the solutions to (3) for a given M € (0,87/x) is not
known, although many additional properties (radial symmetry, regularity, decay at infinity)
of the limiting solution in the self-similar variables are known.



March 25, 2006 The two-dimensional Keller-Segel model 5

2 Existence for sub-critical masses

We assume that the initial data satisfies the following asssumptions:

ng € LL(R%(1 + |z[?) da) ,

Ly (4)
nologng € L*(R%dx) .

Because of the divergence form of the right hand side of the equation for n, the total mass is
conserved at least for smooth and sufficiently decay solutions

M = - no(x) de = /R2 n(z,t) dx . (5)

Our purpose here is first to give a complete existence theory in the subcritical case, i.e. in the
case
M <8n/x.

This result has been announced in [21], which was dealing only with a priori estimates. Here,
we give the proofs with all details. More precisely, we prove that under Assumption (4), there
are only two cases:

Case 1. Solutions to (1) blow-up in finite time when M > 87/x,
Case 2. There exists a global in time solution of (1) when M < 87/x.

The case M = 8n/x is delicate and for radial solutions, some results have been obtained
recently, see [8, 9].

Our existence theory completes the partial picture established in [32]. The solution of the
Poisson equation —Ac¢ = n is given up to an harmonic function. From the beginning, we have
in mind that the concentration of the chemo-attractant is defined by

1
o(z,t) = —5- /}R2 log |z —y[n(y,t) dy . (6)

There are other possible solutions, which may result in significantly different qualitative be-
haviors, as we shall see in Section 4.2. From now on, unless it is explicitly specified, we will
only consider concentrations ¢ given by (6). In the following sections, 2.1, 2.2 and 2.3, we
closely follow the presentation given in [21].

2.1 Blow-up for super-critical masses

The case M > 87 /x (Case 1) is easy to understand using moments estimates. The method is
classical and has been repeatedly used for various similar problems. See for instance [50] in the
similar context of the Euler-Poisson system, [31]. Concerning blow-up, we refer to [18, 19, 31]
for recent references on the subject.

Following for instance [53], we can define a notion of weak solution n in L{2, (R*; L*(R?))
using the symmetry in x, y for the concentration gradient, which has interest in case of blow-
up. We shall say that n is a solution to (1) if for all test functions ¢ € D(R?)
r—1Yy
yl?

% Y(x)n(z,t) de = [AY(x)n(x,t) do— X /[V?/)(:E)—V¢(y)]- n(x,t)n(y,t) de dy .

47 R2xR2 |3§‘ -
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Compared to standard distribution solutions, this is an improved concept that can handle
measure solutions because the term [Vi)(z) — V¢(y)]ﬁ is continuous.

Lemma 3 Consider a non-negative L' solution n to (1) in the above sense, on an interval
[0,T] and assume that n satisfies (5), [z |2]* no(z) do < oco. Then it also satisfies

d 9 x M
— t =AM (1 —=—| .
o /R2 |z|” n(z,t) do < 87T>

Proof. Consider a smooth function . (|z|) with compact support that grows nicely to |z|? as
€ — 0. Then we use the definition of weak solutions and get

d (Vee(x) = Vo (y)) - (x —y)

X
— dr = A dr — — t t) dxdy .
dt /RQ Pe N AT /RQ Pe N AT 4r Jpo iz — g2 n(z,t)n(y,t) dvdy

Because we can always choose Ay, bounded and V. (x) Lipschitz continous, we deduce that

d

— <
dt/RQgpgndx_C R2n0dx,

where C' is some positive constant. As ¢ — 0 we find that

/ pendr <cp+cat,
]R2

where ¢; and ¢y are two positive constants and thus
/ |22 n(z,t) de < oo Vite (0,T).
R2

We can pass to the limit using Lebesgue’s dominated convergence theorem and thus complete
the proof of Lemma 3. O

As a consequence, we recover the statement of Case 1, namely that for M > 87/, there
is a finite blow-up time 7™ where solutions become singular measures.

Corollary 4 Consider a non-negative solution n as in Lemma 3 and let [0,T*) be the maz-
imal interval of existence. Assume that the initial data ng € L'(R?) is such that Iy :=
Jgz |12 no(z) do < oco. Then either T* = oo or n(-,t) converges (up to extraction of se-
quences) as t — T* to a measure which is not in L*(R?). If x M > 87, then

v Th
— M(x M — 8m)

As far as we know, it is an open question to decide whether the solutions of (1) with x M > 8«
and Iy = oo also blow-up in finite time. Blow-up statements in bounded domains are available,
see [43, 10, 28, 36, 54] and the references therein. When the solution is radially symmetric
in x, the second z-moment is not needed and the blow-up profile has been explicited, namely

n(x,t) — 8%5+ﬁ(a:,t) ast /' T",
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where 7 is a L'(R? x R*) radial function such that ¢ — 7(-,¢) is measure valued, see [26, 59].
Except that solutions blow-up for large mass, in the general case very little is known on
the blow-up profile (see [53] for concentrations estimates, [41] for numerical computations).
Asymptotic expansions at blow-up and continuation of solutions after blow-up have been
studied by Veldzquez in [61, 60]. The case x M = 8w has recently been investigated by Biler,
Karch, Laurencot and Nadzieja in [8]. In a forthcoming paper, they prove that in the whole
space case and y M = 8r, blow-up occurs only for infinite time, [9]. Here we will focus on the
subcritical regime and prove that solutions exist and are always asymptotically vanishing for
large times.

If the problem is set in dimension d > 3, the critical norm is LP(R?%) with p = d/2. In
dimension d = 2, the value of the mass M is therefore natural to discriminate between super-
and sub-critical regimes. However, the limit of the LP-norm is rather fRZ n logn dx than
ng n dx, which is preserved by the evolution. This explains why it is natural to introduce the
entropy, or better, as we shall see below, the free energy.

2.2 The usual existence proof for not too large masses

The usual proof of existence is due to W. Jager and S. Luckhaus in [32]. Here we follow the
variant [18, 19] which is based on the following computation. Consider the equation for n and
compute % ng nlogn dr. Using an integration by parts and the equation for ¢, we obtain:

4 Jppnlogndr = —4 [0 [VV/n|" dx + X [y Vn-Ve do

= -4 ng ’V\/ﬁﬁ dx + Xng n2 dr .

This shows that two terms compete, namely the diffusion based entropy dissipation term
Jre |V\/ﬁ|2 dz and the hyperbolic production of entropy.

Thus the entropy is nonincreasing if yM < 40(_;1%5, where Cang = C’g%s is the best
constant for p = 4 in the Gagliardo-Nirenberg-Sobolev inequality:

[ull3 g2y < CRes [Vl Faih) Iull igey ¥ ue HYR?), ¥pe[2,00). (7)

The explicit value of Cgns is not known but can be computed numerically (see [62]) and one
finds that the entropy is nonincreasing if yM < 40(_;1%8 ~ 1.862... X (47) < 8m. Such an
estimate is therefore not sufficient to cover the whole range of M for global existence in the
second case.

In [32] it is also shown that equiintegrability (deduced from the nlogn estimate for in-
stance) is enough to propagate any LP initial norm. We will come back on this point in
Section 2.7 and prove later that due to the regularizing effects, the solution is bounded in
time with values in LP(IR?) for all positive times.

2.3 A free energy method and a priori estimates

To obtain sharper estimates and prove a global existence result (Case 2), we use the free
energy which has already been introduced in Section 1:

F[n] ::/ nlogndx—z/ ncdx .
R2 2 R2
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See [7, 22, 44] in the case of a bounded domain. The first term in F is the entropy and
the second one a potential energy term. Such a free energy enters in the general notion of
entropies, and this is why it is sometimes referred to the method as the “entropy method”,
although the notion of free energy is physically more appropriate. See [1] for an historical
review on these notions. For any solution n of (1), F[n(-,t)] is monotone nonincreasing.

Lemma 5 Consider a non-negative CO(RY, L1(R?)) solution n of (1) such that n(1 + |z|?),
nlogn are bounded in LS (R LY (R?)), Vy/n € L _(RY L*(R?)) and Ve € LS (RT x R?).

loc loc
Then p
GFnC0) == [ ¥ (logn) ~xVel do )
RQ

Following a usual denomination in the PDE literature, we will call [p. n |V (logn) — XVC|2 dz
the free energy production term or generalized relative Fisher information.

Proof. Because the potential energy term [ponc dz = [[go, pe n(x,t) n(y,t) log |z — y| dz dy
is quadratic in n, using Equation (1), the time derivative of F[n(-,t)] is given by

G0 = [ [<1+logn—xc) v. <%_Xwﬂ .

An integration by parts completes the proof. O

From the representation (6) of the solution to the Poisson equation, we deduce that

iF[n(,t)] _4 / nlogn dm—l——// n(x,t)n(y,t) log |z — y| dedy| <0 .
dt dt R2xR2

On the other hand, we recall the logarithmic Hardy-Littlewood-Sobolev inequality.

Lemma 6 [15, 4] Let f be a non-negative function in L'(R?) such that flog f and flog(l +
|z|?) belong to LY(R?). If [go fdx = M, then

/flogfalx+—//]RZ . y)log |z —y| dvdy > — C(M) (9)

with C(M) :== M (1 + logm — log M).
This allows to prove a priori estimates on the two terms involved in the free energy.

Lemma 7 Consider a non-negative CO(RY, L*(R?)) solution n of (1) such that n(1 + |z|?),
nlogn are bounded in L{S (RY, L*(R?)), [g. ﬁ;'ﬁ (y,t) dy € L>((0,T) x R?), Vy/n €

L (RT L?(R?)) and Ve € L (RT x ]R2) If x M < 8r, then the following estimates hold:

loc
(i) Entropy:

87TFO+XMC(M)
8T —x M

M log M — M log[m(1 +t)] —Kg/ nlogn dr <
R2

with K := max { [ |2|* no(z) dz, 2 (87 — x M)} and Fy := F[ny).

’ 2
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(11) Fisher information: For all t > 0, with Cy := Fy + Xs_])r/[ C(M) and Cy := Xﬂgw &

0< /Otds /R2n(:17, $) |V (log n(z, 5))—x Vel s)|* dz < Cy + Cs [M log (”(1M+ t)> —I—K]

Proof. From (8), with n(-) = n(-,t) for shortness, we get that the quantity

(1—0)/nlogndm+9[/ nlognd:ﬂ+—// y) log |z —y |d$dy]
R2 R2 470 R2><R2

is bounded from above by Fjy. We choose

2 x M
40~ M = 0= 8

and apply (9):
(1-— 0)/ n(z,t)logn(z,t) de — 0 C(M) < Fy .
R2
If x M < 8n, then 6 < 1 and

/ n(z,t)logn(z,t) dx < Fo+0C(M) _
R2 1—0

This estimate proves the upper bound for the entropy. We can also see that fR2 n logndx is
bounded from below. By Lemma 3,

1
— 2P n(z,t)de <K Yt>0.
1+1 Jpe
Thus
1
/ n(z,t)logn(x,t) > —— 22 n(z,t) de — K +/ n(z,t)logn(x,t) d
R2 14+t Jgre R2
:/ n(z,t)log <n(x,t2)> de — K
RQ _ﬂ
e 1+t

= /11%2 n(z,t)log <ZE§:2> dr — M log[n(1+1t)] — K

_ /R n(z,t) log <"(”“”t)> p(z,t)de — M log[n(1+1t)] — K

2 /L($7t) /L($7t)
_le? : .
with p(z,t) = (1+t) e~ 1+t . By Jensen’s inequality,
n(z,t) <n(a:,t)> n(z,t)
log wlx,t)der > X log X where X = wlx,t)de =M .
fosrn e i) e o ey Y

This gives the lower estimate for the entropy term.
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Now, from (8) and (9), we get

(1-0) [M log <%> —K} +0C(M)

t
+/ ds/ n(z,s) |V (logn(z,s)) — xVe(z, s)|* de < Fy .
0 R2

This proves that v/n |V (logn) — xVc| is bounded in L2 (RY L?(R?)) and gives the estimate

on the energy. O

The a priori upper bound on fR2 n logn dx combined with the |z|?> moment bound of
Lemma 3 shows that n logn is bounded in L (R, LY(R?)).

loc

Lemma 8 For any u € LY (R?), if [po |z udz and [p ulogudz are bounded from above,
then u logu is uniformly bounded in L= (R;" , L'(R?)) and

loc?
9 2
ullogu| dx < u(logu—|—|$| )dm—|—210g(27r) udr+ — .
R2 R2 R2 e
Proof. The proof goes as follows. Let @ := ul,<;y and m = fR2 udxr < M. Then
_ 1
a (logu+ =|z|* | de= [ UlogU du — mlog (2m)
R2 2 R2

where U := @/p, du(x) = p(z) dz and p(z) = (2r) e l#*/2. By Jensen’s inequality,

/UlogUd,uE(/ Ud,u) log</ Ud,u)zmlogm,
R2 R2 R2

1 1
/ﬂlogﬂdaczmlog(E)—— |:L"|2udx>———Mlog27r /|:17|2ud1‘.
R2 2w 2

/u|10gu|d1‘:/ ulogud$—2/ u logu dz ,
R2 R2 R2

this completes the proof. O

Using

2.4 Existence of weak solutions up to critical mass

Using the informations collected in Sections 2.1, 2.2 and 2.3, in the spirit of [18], we can now
state, in the subcritical case M < 87/, the following existence result of weak solutions, which
is essentially the one stated without proof in [21].

Proposition 9 Under Assumption (4) and M < 8r/x, the Keller-Segel system (1) has a
global weak non-negative solution such that, for any T > 0,

(1+ |z|? 4 |logn|)n € L>=(0,T; L*(R?)) and / n|Vlogn — xVe*drdt < oo .
[0, T]xR2
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Propostion 9 strongly relies on the estimates of Lemmata 3 and 7. To establish a complete
proof, we need to regularize the problem (Section 2.5) and then prove that the above estimates
hold uniformly with respect to the regularization procedure (Section 2.6). This allows to pass
to the limit in the regularization parameter (Section 2.7) and proves the existence of a weak
solution with a well defined flux. To prove Theorem 1, we need additional regularity properties
of the solutions. This is the purpose of Section 3. Hypercontractivity and the free energy
inequality (2) will be dealt with in Sections 3.4 and 3.3 respectively.

2.5 A regularized model

The goal of this section is to establish the existence of solutions for a regularized version
of the Keller-Segel model, for which the logarithmic singularity of the convolution kernel
KO(2) :== —5 log |z| is appropriately truncated.

There are indeed two difficulties when dealing with £°. It is unbounded and has a sin-
gularity at z = 0. First of all, the unboundedness from above of the kernel is not difficult to
handle. For R > /e, R+ R?/log R is an increasing function, so that

2 log R
0< // log |x — y| n(z,t) n(y,t) dedy < ng M / \z|? n(z,t) do .
le—y|>R R R2

Since ff1<|x_y _ploglz —yln(z, t)n(y,t) dedy < M? log R, we only need to take care of a
uniform bound on

// log |z — y| n®(z,t) n°(y,t) drdy and / n®(x,t) logn®(x,t) dx .
|lz—y|<1 R2

for an approximating family (n®).>o.

The other difficulty concerning the convolution kernel K is the singularity at z = 0.
This is a much more serious difficulty that we are going to overcome by defining a truncated
convolution kernel and deriving uniform estimates in Section 2.6. To do so, we first need to
find solutions of the model with a truncated convolution kernel. Let K¢ be such that

Ke(z) == K? <E>

€
where K! is a radial monotone non-decreasing smooth function satisfying
Kl(z) = ——log|s|  if || > 4,
27 -
K'(z)=0 if 2| <1.

Moreover, we can assume without restriction that

1
2m |z|

0< -VK!(z) < K1) < —2i10g 2] and  — AKY(z) >0 (10)
™

for any z € R2. Since K¢(z) = K!'(z/¢), we also have

1

< — € <
0<-VK:(z) < o7 7]

V2 e R (11)
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If we replace (1) by the following regularized version

on®
— = An® — xV:(n°V<¢°)
ot reR?, >0, (12)

CE — ,CE * n&
written in the distribution sense, then we can state the following existence result.

Proposition 10 For any fized positive e, under Assumptions (4), if ng € L*(R?), then for
any T > 0 there exists n® € L2(0,T; H*(R?)) N C(0,T; L?(R?)) which solves (12) with initial
data ng.

To prove Proposition 10, we will first fix a functional framework, then solve a linear problem
before using it to make a fixed point argument in order to prove the existence of a solution to
the regularized system (12).

2.5.1 Functional framework

We will use the Aubin-Lions compactness method, (see [39], Ch. IV, §4 and [2], and [56] for
more recent references). A simple statement goes as follows:

Lemma 11 (Aubin Lemma) TakeT >0, p € (1,00) and let (fn)nen be a bounded sequence
of functions in LP(0,T; H) where H is a Banach space. If (fn)nen is bounded in LP(0,T;V),
where V' is compactly imbedded in H and 0f, /0t is bounded in LP(0,T;V') uniformly with
respect to n € N, then (fn)nen is relatively compact in LP(0,T; H).

For our purpose, we fix T > 0, p = 2 and define H := L?(R?), V := {v € H'(R?) : /|z]v €
L3(R?)}, V' its dual, V := L*(0,T;V), H := L*(0,T; H) and W(0,T) := {v € L*(0,T;V) :
Ov/ot € L*(0,T;V')}. In this functional framework, the notion of solution we are looking for
is actually more precise than in the distribution sense:

T
O:/ {(nt,z@vzxv—i-/ (Vn+anc)-V¢dx}dt Yy ey.
0 R3

Notice that V is relatively compact in H, since the bound on |z||v]? in L'(R?) allows to
consider only compact sets, on which compactness holds by Sobolev’s imbeddings: Lemma 11
applies.

2.5.2 Estimates for a linear drift-diffusion equation
We start with the derivation of some a priori estimates on the solution of the linear problem

%:An—v-(nf) (13)
for some function f € (L%((0,T) x R?))2. We assume in this section that the initial data ng

belongs to L?(R?). By a fixed-point method, this allows us to prove the

Lemma 12 Assume that (4) holds and consider f € L>¥((0,T) x R?). If ng € L*(R?), for
any T > 0, there exists n € W(0,T) which solves (13) with initial data ng.
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Proof. Consider the map T : L>(0,T; L*(R?)) — L®°(0,T; L' (R?)) defined by

Tnl(-,t) := G(-,t) xng —I—/O VG(-,t —s)*[n(-,s) f(-,8)] ds ¥ (z,t) € [0,T] x R?

) 2 .
where * denotes the space convolution. Here G(xz,t) := (4nt)~'e™ 4r is the Green function
associated to the heat equation. Notice that ||[VG(:,s)|lp1(re) < Cs~1/2. We define the
sequence (ng)ren by ngr1 = 7 (ng) for kK > 1. For any t € [0,T], we compute

/0 VGt — 8) % [(n(r8) — () f(9)] ds| da

Iea®) — mOlls < [
R2

t
< Il (o) /O VG-t — 5) 5 (m(-r8) — e () 11 oy

IA

t
I /0 VGt — )l ge) () — mor ()] 1 o)
< O\ lleqorxr2) VEIng — ni—1llpoo o401 (r2)) -

For T' > 0 small enough, (ng)rey is a Cauchy sequence in L>(0,T; L*(R?)), which converges
to a fixed point of 7. Iterating the method, we prove the existence of a solution of (13) on an
arbitrary time interval [0, T']. O

Next, let us establish some a priori estimates. The solution n is bounded in L*°(0, T; L?(R?))
as a consequence of the following computation:

1
1 i/ in(z, )2 dz = —/ V(e O de+ [ Vo) -nat) f@.1) do
2 dt Jpe R2 R2

The right hand side can be written [p, a - b f do with a :== \/1/AVn and b := VAn. It is
therefore bounded by ([g2 a® dx + § [g2 b% dz) || f | oo (0, 7)xr2), Which provides the estimate

3 dt e In|® dz < <—1 + XHfHLOO([O,T}XRZ)> /R2 |Vn|” dr + 1 1 £1l oo (jo,7)x®2) /R? n|® dx .

In case A = || f|| oo ([0,7] xr2), We obtain
2
/ In|? dz < / Ino|? dx M zoe o) T2y e 0,T) .
R2 R2

Hence n is bounded in L*°(0,T; L?(R?)) = H. Similarly, in case A\ = %HfHLoo([O7T]XR2), we
obtain L d ) 5

3 EH”(’J)HQL%R% < —gﬂvnHQLz(R% +t3 £ 17 o,y ey PG ) T2 ey -

This also proves that Vn is bounded in L?((0,7T) x R?), and n is therefore also bounded in
L?(0,T; HY(R?)). Next, we need a moment estimate, which is achieved by

d

1/2 1/2
pr lz|? n(z,t) do < 4/ n dz + 2 || f |l oo (jo,7) xR2) (/ n dx> ( 22 n(z,t) dx> .
R2 R2 R2 R2
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As a conclusion, this proves that [, |z|2 n(z,t) dr is bounded and therefore shows that n is
bounded in V. On the other hand, On /0t is bounded in V' as can be checked by an elementary
computation. We can therefore apply Aubin’s Lemma (Lemma 11) to n:

If (nlg)keN is a sequence of initial data with uniform bounds, then the corresponding se-
quence (n*)en of solutions of (13) with f replaced by fy, for a sequence (f*)pen uniformly
bounded in (L*°([0, T] x R?))2, is contained in a relatively compact set in L*(0,T;V).

We will make use of this property in the next section.

2.5.3 Existence of a solution of the regularized problem

This section is devoted to the proof of Proposition 10, using a fixed point method.
Define the truncation function h(s) := min {1, hy/s}, for some constant hy > 1 to be fixed
later and consider the map 7 : L?(0,T; H) — L?(0,T; H) such that

1. To a function n € L?(0,T; H), we associate V¢* := VK * n.

2. With V¢, we construct the truncated function
F=h(IVE |l Le(o1)xr2)) VE

3. The function f is bounded in L*°((0,T") x R?) by hg, so we may apply Lemma 12 and
obtain a new function 7 =: 7 [n] which solves (13).

The continuity of 7 is straightforward. As noticed in Section 2.5.2, we may apply the
Aubin-Lions compactness method, which gives enough compactness to apply Schauder’s fixed
point theorem (Theorem 8.1 p. 199 in [38]) to a ball in W(0,T'). Hence we obtain a solution of

ont
ot

f6 =h (||VCEHL°°((O,T)XR2)) V& 5 & =Kfxn®.

= Anf — \V-(n® f7)

Assuming that ho > [|[VK®|| oo (r2) |70 1 (r2), We realize that n® is a solution of (12). [

Notice that one can also easily prove a uniqueness result, using an appropriate Gronwall
lemma. We refer for instance to [52] for similar results in a ball.

2.6 Uniform a priori estimates

In this section, we prove a priori estimates for the regularized problem which are uniform with
respect to the regularization parameter €. These estimates correspond to the formal estimates
of Section 2.3.

Lemma 13 Under Assumption (4), consider a solution n® of (12). If xM < 8w then, uni-
formly as e — 0, with bounds depending only upon [ (1 + |z|2) ng dx and Jgz no log ng dz,
we have:

(i) The function (t,z) — |z|*n®(x,t) is bounded in L=(R;" ; L'(R?)).

loc?

(i) The functions t — [po n®(z,t)logn®(z,t) dx and t — [po n®(z,t) (2, t) dx are bounded.
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(i1i) The function (t,z log(n®(x,t)) is bounded in L (R ; L'(R?)).

loc?

n—>n(xt
— Vv/ne

(t, ) )

(iv) The function (t,z)

(v) The function (t,x) — n(z,t) is bounded in L*(R;} x R?).
(t,x) )
(t, )

(z,t) is bounded in L*(Rf  x R?).
(vi) The function (t,x) — n®(z,t) Ac®(z,t) is bounded in L' (R} x R?).
(vii) The function (t,z) — v/n¢(z,t) Ve (z,t) is bounded in L*(R} x R?).

Proof.
(i) The integral [p. |z|? n®(z,t) do can be estimated as in the proof of Lemma 3 because K°
is radial and satisfies (11), so

a4 |z|? n®(z,t) de = 4M + 2x// nf(z,t)n(y,t)x - VK (x — y) dzdy
dt Jgr2 R2xR2

= M [ wa (et (@ - ) VK@ - y) dedy
R2 xR2

4M——// (Y, )d dy < 4M .
R2xR2 |x—y|

IN

(ii) We compute

d
— / n®logn® dr — z/ n®c dr| = —/ n®|V(logn®) — xVc|* da .
dt R2 2 R2 R2

Then by (10) and the logarithmic Hardy-Littlewood-Sobolev inequality, see Lemma 6, it fol-
lows by Lemma 7 that both terms of the right hand side are uniformly bounded.

(73) It is a direct consequence of Lemma 8.

(iv) A simple computation shows that

i/ n® logn® dx < —4/
dt Jpe R2

Up to the common factor x, we can write the last term of the right hand side as

2
vVvne

dx + x/ n® - (—Ac°) dx
R2

/ n® - (—Ac) dx = / n® - (—=A(K® xn)) de = (I) + (II) + (I1I)
R2 R2
with
(1) = / ne - (—AKE #nf)),  (IT) = / ne - (—AKE # ) — () and () = [ [P
nf<K nf>K ne>K
We define ¢q such that )
—2¢1(;) YN
£ £

This gives an easy estimate of (I), namely

1 _
ms [ x| S () wt)ayae=x.
ne<
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Notice that ]
6—2¢1<g> = —AKf—§ inD, (14)

which heuristically explains why (II) should be small. Let us prove that this is indeed the
case. By (10), ¢1 is non-negative. Using |[¢1]|z1(r2) = 1, we get

M = [ nwn) [ et ) 6a(y) dyda

[t [ Ve e - V)] V)
ne>K R2
X [\/ne(x —ey,t) — \/ne(x,t) +2 \/ne(x,t)} \/¢1(y) dydz .

IA

By the Cauchy-Schwarz inequality and using (a + 2b)? < 2a% + 8b? we obtain

) 1/2
<[ rw [H¢1HL«>(R2> / e [VIEE =T = G dy]

9 1/2
(L e v =a - v s sl e a) - a
R
Using the Poincaré inequality we get
W< [ nt) 1]} o) Cr 19Vilogee
V21O o) Cr 19V 2a2) + 2 V2V 0@ D] 61 gy |

Recall the Gagliardo-Nirenberg-Sobolev inequality (7):

2
/ [n|? de < Céns / ‘V né| dx / n® dr .
ne>K ne>K ne>K

The left hand side can therefore be made as small as desired using:

1 1
n® dr < n® lognadwg—/ n® |logn®| dx =: n(K) ,
/nEZK log K /o> log K Jre | | (%)

for K > 1, large enough. Then

2

2 2
/ e <) Cls [0

By the Cauchy-Schwarz inequality

1/2 1/2
0P do < ([ elae) ([ an) < n) Cons IVVF e

ne>K ne>K ne>K

From this, it follows that

(IT) + (111) < B(K) [VVn#|| 2 (g2
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with
B = Clxs + V241l L=(re) CF +2V2 61112 2oy 0nll}i7ge) Cp Cans -

We can choose K large enough such that n(K) < 4/B. Collecting the estimates, we have
shown that

% n® logn® de < M K + (—4+ Bn(K))X(t)
R2

with
X(t) = [ VVnE ()72 e
and so

(4—B77)/0TX(s)ds §MKT+/

no logng dzx —/ n®(z,T) logn®(x,T) dx
R2

RZ

(v) follows from the Gagliardo-Nirenberg-Sobolev inequality (7).

(vi) is a straightforward consequence of (iv). Notice that —Ac® is non-negative as a convolution
of two non-negative functions ¢ and nc.

(vii) A computation shows that

i/ 1necsdgnz/ & (An® — x V- (n° Vo)) dx:/ neAcsdﬂf—FX/ n® Ve de .
dt R22 R2 R2 R2

This proves that
/ nacadx—/ ng (K % ng) dz| + / /
R2 R2 R2

// n® |Vef|? da dt < 1
[0T]><]R2 2x

The last term of the right hand side is controlled by (vi), while the previous one is bounded
by (ii). O

2.7 Passing to the limit

All estimates of Lemma 13 are uniform in the limit € — 0. The fact that ng is assumed to
be bounded in L?(R?) in Lemma 10 does not play any role. In this section, ng is assumed
to satisfy Assumption (4) and we consider the solution n® of (12) with a non-negative initial
data n§ = min{ng,e7'}. We want to pass simultaneously to the limit as ¢ — 0 in ng — no
and in K(z) — K%(2) = — 5= log|2].

Lemma 14 Assume that ng satisfies Assumption (4) and consider the solution n® of (12)
with a non-negative initial data ng = min{ng,e'}. Then up to the extraction of a sequence
e of € converging to 0, n°* converges to a function n solution of (1) in the distribution sense.
Furthermore the flur n |V (logn) — xVe| is bounded in L'([0,T) x R?).

Proof. Assertion (vii) of Lemma 13 allows to give a sense to the equation in the limit € \ 0.
The term which is difficult to handle is n® Vc®. It is first of all bounded in L'((0,7) x R?)
uniformly with respect to e, as shown by the Cauchy-Schwarz inequality:

// n® |Vé| dxdt // n da:dt// n |Vef|? dedt = MT// n |V drdt
[0,T]xR2 [0,T]xR2 [0,T]xR2 [0,T]xR2
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where the last term is controlled according to (vii) of Lemma 13.

Actually, n®Vc® converges to n Ve in the sense of distributions. By the Gagliardo-
Nirenberg-Sobolev inequality (7), for any p > 2, for t € RT a.e.,
p

5 b1
[nf|P/2 da < (Cg’lzls)p/ M </ dw) i ,
R? R?

which proves that n¢ is bounded in L‘I(ngC x R?) for any p/2 = q € [1, +0c0), and that, up to
the extraction of a sequence (e)reny which converges to 0, n°¢ weakly converges to n in any
LI (Rt x R?), ¢ > 1. Next,

loc

1 r—y
ek _ - _ — 7 (nfk(y.t) — t)) d
Vet — Ve 27 e T o2 (n*(y,t) —n(y,t)) dy

1 _ _
+ / <— \ % <$ y> 4V 2> n(y,t) dy .
le—y|<2e, \Ek €k 21 |z — y|

Since &+ VK! (é) + 3 | 227 Can be bounded by -

€k

‘Z‘, all terms converge to 0 for almost any

(z,t) € R? x R" and the convergence of n°* to n is strong in L{ (R x R?) for any ¢ € (2, 00),
which is enough to prove that

n Vet =~ nVe in D'(RT x R?) .

As a consequence, we also get by weak semi-continuity that

// n|Ve|? dz dt < hmlnf // nk |V |? dx dt
[0, T]><R2 €, —0 0,7 ><]R2

// n? dx dt Sliminf// |n* |2 da dt .
[0,T] xR2 ex—0 [0,T] xR2

Since the functional n — [p. IV/n|* dz is convex, we also get

|Vv/n|? de dt < liminf \Vvner 2 da dt .
é‘k—>0 0

[0,T]xR2 [0,T]xR2

The proof of the convexity goes as follows. Let n(7) =ng + 7v, 7 > 0. Then

“

See [5, 6] for more details. Now, since

// n®k |V (logn*) — x Vet |2 da dt

[0,T]xR2

:4// |V\/n5k|2dxdt—2x// In* % da dt + x> // nk |Vt |2 da dt
[0,T]xR2 [0,T]xR2 [0,T]xR2

is bounded uniformly with respect to e by (8),

// n|V(logn) — xVe|? dz dt
0,7 xR2

d:n

. 2n0/ |uv\/_0—n0vf| dr > 0.
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is also finite. Notice that this is not enough to prove that (8) holds if n is a solution of (1),
even with an inequality instead of the equality. This is however enough to prove that the
flux n|V(logn) — xVe| is bounded in L([0,7T) x R?), simply by using the Cauchy-Schwarz
inequality. This concludes the proof of Lemma 14. O

As a consequence of the approximation procedure and of Lemma 14, we have also proved
Proposition 9. To establish Inequality (2) in Theorem 1, we only need to prove that

// n? dx dt zliminf// |n* |2 da dt |
[0,T] xR2 €x—0 [0,T] xR2

but this requires some additional work on the regularity properties of the solutions of (1).

3 Free energy inequality and regularity properties

In this section, we give some additional regularity properties of the solutions when xy M < 8.

3.1 Weak regularity results

The following result is due to Goudon, see [24].

Theorem 15 [24] Let n° : (0,T) x RN — R be such that for almost all t € (0,T), n°(t)
belongs to a weakly compact set in L' (R™) for almost any t € (0,T). If Oyn® = Z\a|§k agg§“>
where, for any compact set K C R™,

lim sup <sup// 4] dt dac) =0,
|E|—0 e>0J JExK

ECR is measurable

then (nf)esq is relatively compact in C°([0,T); L ., (RN).

weak

This result immediately applies to the solution of (12).

Corollary 16 Let n° be a solution of (12) with initial data n§ = min{ng,e~'} such that
no (1 + |z|? + |logno|) € LY(R?). If n is a solution of (1) with initial data ng, such that,
for a sequence (e)peny with limg_ooex = 0, n°* — n in L'((0,T) x R?), then n belongs to
CO(O T Lweak(R2))'

Proof. We are able to apply Theorem 15 to n® where gél) = —xn° Ve = —xVnf - VnE Ve
)

and g:~' := nf. Notice indeed that as a consequence of Lemma 18, we have, uniformly with
respect to g,

t2
limsupsupg£)<thsupM 2—t1/ / nf|Vef|Pdx ds =0,

t1—to £ t1—t2

to
lim sup sup g!?) < lim sup / / n°dr=0.

t1—to € t1—to
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3.2 [P uniform estimates

Here we prove that if the initial data ng is bounded in LP(R?), then it is also the case for the
solution n(-,t) for any finite positive time ¢. By uniform, we mean estimates that hold up to
t=0.

Proposition 17 Assume that (4) and M < 87/x hold. If ng is bounded in LP(R?) for some
p > 1, then any solution n of (1) is bounded in L° (R, LP(R?)).

loc
Proof. We formally compute

1 d 2

= P dr = YV (n?/?)? d /V P2y P2 . e d
1) i R2\n(m, )P dx - R2\ (nP7))% dx + x - (nP%) - n cdx
2
= \V(n”/2 |2 dx+x/ nP (—
p R2
2
= —— |V (nP/2)|? dm—l—x/ nP*l dz .
b Jr2 R2

Using the following Gagliardo-Nirenberg-Sobolev inequality:
/ []20+1/P) gz < K, / |Vo|? da / [v|?/P da
R2 R2 R2

or equivalently, with n = v?/?,

/ In[Pt! dz < K, / |V (nP/2)? da:/ In| dz |
R? R? R?

we get the estimate

1 d 2
- Py < p/2y|2 2O K vM
2 1) dt/R2n dx < R2|V(n )| dm( p-l— X )

which proves the decay of fRZ nP dx if M < [? . Otherwise, we can rely on the entropy

estimate to get a bound: Let K > 1 be a constant to be chosen later.

/npd:r:/ npdzr—l—/ n? dz .
R2 n<K n>K

The first term of the right hand side is bounded by KP~! M. Concerning the second one,
define first

Using the fact that |n logn| is bounded in L>®(R;" ; L'(R?)), we can estimate M (K) by

loc?

M(K) < L

1
1 dx < 1 d
S 1K n>Kn ogn dx lOgK/Rz |n logn| dx



March 25, 2006 The two-dimensional Keller-Segel model 21

and choose it arbitrarily small on any given time interval (0,T). Following [32], compute now

G LK de+ S o=1) [ 9= KR da

— p/RQ(n—K)ﬂ_l [An — xV(nVc)] daz—i—%(p— 1)/R2 |V((77J—K)Ijr/2)|2 dx
- _pX/R2(n—K)ﬁ—1 [V(n—K)-Ve+nAd dr
= x| = K [0~ ) (-0 —pn (-A0)] da

= (p—l)X/R2(n—K)§r+1 de+ 2p—1)xK | (n—K)L dl‘—l—pXK2/ (n—K)Ijr_1 dx

R2 R2

The term involving [p.(n — K )P~" dz can be estimated as follows:

/ (n— K)2" da :/ (n— K" da:—i—/ (n— K" de
R2 K<n<K+1 n>K+1

_ 1 M
/ (n—K)‘ild:ES/ 1d:1:§—/ ndr < —,
K<n<K+1 K<n<K+1 K Jgon<k+1 K

[ wewptas [ kg des [ 0o K)ds.
n>K-+1 n>K+1 R?

By choosing K sufficiently large, we obtain

4
-1 [ V(- KR dok - )x [ - K de <0
p R2 R2
using again the Gagliardo-Nirenberg-Sobolev inequality but with M replaced by M (K), small.
Summarizing, for a fixed interval (0,7") with T arbitrarily large, we have found K such that
d

pn 2(n—K)ﬁdx§Cl/(n—K)ﬁ_da:+C2
R

RQ
for some positive constants C; and Cy. A Gronwall estimate shows that [p.(n — K)f dx is
finite on (0,7).

To justify this estimate, one has as above to establish it for the regularized problem and
then pass to the limit. This is purely technical but not difficult and we leave it to the reader.

To conclude, we still need to check that the bound on fRZ (n— K)% dz is enough to control
fn>K nP dzx. Using the estimate

os () e

for any x > A > 1, we get

/ nPdr = / npdm—l—/ n? dz
n>K K<n<\K n>AK
A \p-1 n P
p—1 14 - _
(\K) M+</\_1> K/n»K(K 1)" da

AK)P~V M + (%)p_l /R2(n - K)! dx .

IA

IA
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O

Notice that very similar estimates have been derived, without the knowledge of the optimal
bound x M < 8r, by W. Jiger and S. Luckhaus in [32] in R?, d = 2 (also see [18, 19] if d > 2),
by working directly in an LP-framework, instead of the free energy framework.

3.3 The free energy inequality in a regular setting

Using the a priori estimates of the previous section for p = 2 4+ &, we can prove that the free
energy inequality (2) holds.

Lemma 18 Let ng be in a bounded set in L1 (R? (1 + |z|?)dz) N L**5(R?,dx), for some
e >0, eventually small. Then ng satisfies Assumption (4), the solution n of (1) found in
Theorem 1, with initial data ng, is in a compact set in L2(Rﬂ;c x R?) and moreover the free
energy production estimate (2) holds:

Fln] + /Ot </R n |V (log n) — Vel dm) ds < Fln] .

Proof. We split the proof in three steps.

First Step: n is bounded in Lz(ng o X R?). To apply Theorem 1, we need to prove that
ng log ng is integrable. By Holder’s inequality we have

lull Larz) < ullfo ey 1l Gz
with a = g =4 p < g <r. Take the logarithm of both sides:
u ul|
alog [l pa(r2) (o 1)log [l o (m2) <0.
HUHLP(R2) HUHL‘Z(R2)

Since this inequality trivializes to an equality when ¢ = p, we may differentiate it with respect
to ¢ at ¢ = p and get that for any u € LP(R?) N L"(R%), 1 < p < r < 400, we have

|u [ull o (r2)
Pl — | de < —— I — | .
[ °g<uuum<R2> w < o Pl 2 | ol

With u =ng, p=1 and r = 2 + ¢, by applying Lemma 8, we obtain

/ n0|log no‘ dr
]R2

<

2
[(2+¢) log(|lnoll g2+ (r2)) — log M + 2 log(2m)] +/ |z|? ng d + S <.
R2

—

+ée

Since ng € L' N L**¢(R?), by Holder’s inequality, ng is initially in any L9(R?) for all
q € [1,2 + €], and as a special case in L%(R?):

(1+e) 1/(1+4¢)
Imol17 ey < lmollZh{a5) Inoll 45, -
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Hence by Theorem 1, the solution n of (1) is bounded in L>(R! ; L'NL?T¢(R?)). As a special
case n is bounded in L?(R; x R?).

Second Step: Vn is bounded in L? (ngc x R?). The following computation

i/ n? dr = —2 ]Vn]zda:+2x/ Vn-nVedx
dt Jgr2 R2 R2

shows that X := [|[Vn|r2((o,1)xr?) satisfies the estimate

2X* —2x |n Vel g orr2mey X < HHH%OO(O,T;LZ(RQ)) + H"0”2L2(R2) :

This implies that X is bounded if ||n V|| Lo (0,T;22(R?)) 18 bounded. Let us prove that this is
indeed the case. The drift force term takes the form

1 ]
t) = — t)dy .
Ve(z,t) = o /RQ P— n(y,t) dy

Since ng € L**¢(R?), by Theorem 1, the solution n of is bounded in L>®(R; ; L2+¢(R?)).

loc?

As a consequence of the Hardy-Littlewood-Sobolev inequality (see below), for any (p1,q1) €
(2,400) x (1,2) such that p% = q% — £, there exists a constant C = C(p;) > 0 such that for
almost any ¢ > 0,

Vel )l gy < Clin( )l o r2) -

We can indeed evaluate ||f * |- ||| .01 (rd) by

1851 Pl = s [ (g g
g€ Ln(RY IR

19/l ar ey < 1

with pil + q% = 1. The right hand side is bounded, up to a multiplicative constant, by || f|| L»®2)
according to the Hardy-Littlewood-Sobolev inequality, if % + qil + 3 =2and 0 < A < d. This

inequality, see, e.g., [37], indeed states that: For all f € LP(R%), g € LI(RY), 1 < p, ¢ < o0
such that % + % + 3 =2 and 0 < A < d, there exists a constant C = C(p,q, \) > 0 such that

1
—— f(x) g(y) de dy| < C||f a |9 4y -
Lo oo fe) e 17 ey gl e
Applied with A = 1, d = 2, this proves that [|n Vel| g (o 1;2(r2)) is bounded.

Applying this estimate with p; = 2(1 4+ 2/¢) and ¢1 = 2 — /(1 + ¢), and using Holder’s
inequality, we can write

[n(-t) Ve(, )| L2 @ey < InC, Ol pote @) Vel )l o w2y < ClIn(s )l 2ve@eyIn( ) | Lo 2y -
which is bounded as ¢1 € [1,2 4+ ¢]. Thus, if n is a solution of (1), nVe is bounded in
LOO(R"F L2(R2))

loc?

Third Step: Compactness. As a consequence of Holder’s inequality with p := (1 + ¢)/e,
qg:=1+¢:

e 1
i+ i+
’x‘% n? dr :/ (n ]g;\z)ﬁ nf_ﬁ dx < </ n]a:\z da:> : </ n2te da:> ) )
R2 R2 R2 R?2



24 A. Blanchet, J. Dolbeault, B. Perthame March 25, 2006

the function (z,t) — ]aj\ﬁ n is bounded in L®(R;" ;L?(R?)). The imbedding of the set

= {u e H' NnLL(R? : |x|1i+su € L'(R?)} into L?(R?) =: H is compact and by the
Aubin-Lions compactness method (see Lemma 11) as in Section 2.5, it results that n belongs
to a compact set of L2(R;" x R2).

loc

Let (ng)gen := (n°*)ren be an approximating sequence defined as in the proof of Theo-
rem 1. Compared to the results of Lemma 14, we have

// \Vn|?dz dt < hmmf // (V| dzdt |

[0,T] xR2 0,T]xR2

// n|Ve|? dz dt < hmlnf // ny, |Veg|? de dt
[0, T]><R2 0,T]xR?

// n? dz dt —hmlnf// |ng|? de dt |
[0,T]x R2 0,T] xR2

where the only difference lies in the last equality, a consequence of the above compactness
result. This proves the free energy estimate using

// IV (logn) — xVe? dxdt = 4/ \V/n|? dz dt 4 x> // |Ve|? da dt — 2x// n?dx dt .
0,T]xR2 [[0,T] xR2 0,T]xR2 0,T]xR2
O

3.4 Hypercontractivity

Much more regularity can actually be achieved as follows. All computations are easy to justify
for smooth solutions with sufficient decay at infinity. Up to a regularization step, the final
estimates certainly hold if the initial data is bounded in L®(R?), which is the case for the
regularized problem of Section 2.5 with truncated initial data ng = min{ng,e~'}. However,
we will see that the L™ (ng o LP (R2))-estimates hold for any p > 1 independently of ¢, so that
we may pass to the limit and get the result for any solution of (1) with initial data satisfying
only (4) and y M < 8. To simplify the presentation of the method, we will therefore do the
computations only at a formal level, for smooth solutions which behave well at infinity.

Theorem 19 Consider a solution n of (1) with initial data ng satisfying (4) and x M < 8.
Then for any p € (1,00), there exists a continuous function hy, on (0,00) such that for almost
any t >0, [|n(-, )| Lr g2y < hp(t).

Notice that unless ng is bounded in LP(R?), limy_q, hy(t) = +00. Such a result is called an
hypercontractivity result, see [25], since to an initial data which is originally in L'(R?) but
not in LP(R?), we associate a solution which at almost any time ¢ > 0 is in LP(R?) with p
arbitrarily large.

Proof. Fix t > 0 and p € (1,00), and consider ¢(s) := 1+ (p — 1) §, so that ¢(0) = 1 and
q(t) = p. Exactly as in the proof of Theorem 1, for an arbitrarily small n > 0 given in advance,
we can find K > 1 big enough such that M(K) := supe(g ) [,,» i 7(-; 8) da is smaller than 7).
It is indeed sufficient to notice that

1 1
< - 8) 1 < - 8) 1 . .
| ntorde <o [ e tognt0) de < o | inte o) (- o)
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Since x M < 87, n|logn| is bounded in L*°(0,¢; L' (R?)). This proves that for K big enough,
we may assume

/ (”_K)+d$§777
R2

for an arbitrarily small n > 0.
Next, we define

F(s) == [ /[R 2 (n— )" (2, 5) dx} 1/q(s)

for the function s — ¢(s) defined above. A derivation with respect to s gives

/ _ K)q
F’Fq‘lzq—/ ) Lo (B / Kyt
(]2 R? (n )+ og 4 + R? ny (Tl )+

If n is a solution to (1), then

— -1 -1
/(n—K)ilntdx:—élq 5 / \V((n—K)im)de—i-xq—/ (n— K) dx
R2 q R2 q Jr2

and we get

! q
'Firl= L -K)i (n— Ky _ya-1 _\4/2y (2 (q—_l)/ _K)itt
F'F q2/Rgn K)+log< Ta 4 7z RJV((n K)Y7 ) +x . Rgn K)& .

Using the assumption ¢’ > 0, we can apply the logarithmic Sobolev inequality [25]

2
2 v 2 2
/]RQU 10g<fR2v2d:E> dr <20 RQWUI da:—(2+log(27ra))/RQv dx

for any ¢ > 0, and the Gagliardo-Nirenberg-Sobolev inequality

w2419 gy < K(q) HVUH%Q(RQ) / W% dx, Vqe 2 0)
R2 R2

tov:=(n— K)'i/Z, and get

qg—1 q

20¢ -1 q
— +x T/C(q) ?7) IVl 72 (ge) — e (2+log(2ma)) F9.

4
¢ q?

F Fi—1 < <

With the specific choice of o := (¢—1)/q’ and provided 7 is chosen small enough in order that

1 1
= 11 sup [K(r)]n <0,

q q re(1,p)

this shows that
Fl
rF

The function G is integrable on (0, t), which proves that F'(t) can be bounded in terms of F'(0).
(]

< —Z—; (24 1log(2mo)) =: G(t) .



26 A. Blanchet, J. Dolbeault, B. Perthame March 25, 2006

3.5 The free energy inequality for weak solutions

As a consequence of Lemma 18 and Theorem 19, we have the following result.

Corollary 20 Let (n*)ien be a sequence of solutions of (1) with initial data nf satisfying
Assumption (4) with uniform corresponding bounds. For any tg > 0, T € RT such that
0 <ty <T, (nF)ren is relatively compact in L*((to,T) x R?), and if n is the limit of (n*)pen,
then n is a solution of (1) such that the free energy inequality (2) holds.

Proof. By Theorem 19, for t > to > 0, n¥ is bounded in L*(ty,t; L>*¢(R?)), for any & > 0.
We can therefore apply Lemma 18 with initial data n*(-,ty) at t = to:

Flnk (1) + /t </R | (togn*) - ch’f(z da:) ds < Flnk (- 10)] .

to

The compactness in L?([tg,t] x R?) follows from Lemma 11. Passing to the limit as k — oo,
we get
t
Fln(-,t)] +/ (/ n |V (logn) — xVe|* dx) ds < Fln(-,to)] -
to R2
Since, as a function of s, [5.n(-,5)|V (logn(-,s)) — xVe(-, s)[* dz is integrable on (0,t), we

can pass to the limit tg — 0. By convexity of n — nlogn, it is easy to check that
limto_)m F[n(~,t0)] < F[no] O

Apply Corollary 20 with nlg = min{ng,e;~!} as in the regularization procedure of Sec-
tion 2.5-2.7. This completes the proof of Theorem 1.

4 Intermediate asymptotics and self-similar solutions

In this section, we investigate the behavior of the solutions as time ¢ goes to infinity and prove
Theorem 2. The key tool is the free energy written in rescaled variables, F¥, which is defined
below. The main difficulty comes from the fact that the uniqueness of the solutions to (3) for
a given M € (0,87 /x) is not known. This is not crucial for the proof of Theorem 2 because,
in the self-similar variables, the decay of the entropy selects a unique solution to (3). In this
section, we will anyway prove several additional properties (radial symmetry, regularity, decay
at infinity) of the solution of (3) and comment on related issues.

4.1 Self-similar variables

Assume that x M < 8, consider a solution of (1) and define the rescaled functions v and v by:

X

n(a,t) = R%(t) " (mm(to and  c(z,t) = v <%,T(t)> (16)

with

R(t)=+v1+2t and 7(t)=1logR(t) .
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The rescaled system is

ou

E:AU—V-(u(x—vaq))) r€ER?, >0,
1

v=—5=log| |*u reR?, >0, (17)
2m

u(-,t=0)=mng >0 r €R?.

The free energy now takes the form

1
FER) ::/RQUlogudzn—%/R2uvdac+§/RQ|$|2udx.

If (u,v) is a smooth solution of (17) which decays sufficiently at infinity, then

d
— FRlu(-,t)] = —/ u |Viogu — xVou + x| dr .
dt R2

Because of the hypercontractivity, the above inequality holds as an inequality for the solution

of Theorem 1 after rescaling:

iFR[u(-,t)] < —/ u |Viogu — xVou + z|* dx .
dt R2

For a rigorous proof, one has to redo the argument of Section 3.4. Since there is no additional
difficulty this is left to the reader.

4.2 The self-similar solution

System (17) has the interesting property that for x M < 8, it has a stationary solution which
minimizes the free energy.

Lemma 21 The functional F'® is bounded from below on the set

{u c LL(R?) : |z[*u € LY(R?), /

RZ

u logu dx < oo}

if and only if X [[ullp1(rey < 8.

Proof. If X ||lul[1r2) < 87, the result is a straightforward consequence of Lemma 6. Notice
that by Lemma 13, (iii), v logu is then bounded in L'(R?).

The functional F%[u] has an interesting scaling property. For a given u, let uy(z) =
A" 2u(A712). It is straightforward to check that |uxllpr(r2y =@ M does not depend on A > 0
and

M A—1
FRluy] = FRlu] — 2M (1 - X—) log A + ?/ |22 u dz .
R2

8T
As a function of A, F®[u,] is clearly bounded from below if x M < 8, and not bounded from
below if x M > 8m, which completes the proof. O

The free energy has a minimum which is a radial stationary solution of (17), see [12].
Such a solution is of course a natural candidate for the large time asymptotics of any solution
of (17). In [12], there are also indications that (3) should have a unique solution for any
given M, and there are strong numerical evidences supporting this fact. However, we are not
able to discard the possibility that more than one solution to (3) exists for any given M.
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Lemma 22 Let x M < 8w. If u is a solution of (17), with initial data ug satisfying As-
sumptions (4), corresponding to a solution of (1) as given in Theorem 1, then as t — oo,
(s,2) — u(z,t+5) converges in L>°(0,T; L' (R?)) for any positive T to a solution of (3) which
is a stationary solution of (17) and moreover satisfies:

lim 2|2 u(z, t) do = / 2|2 oo dzz = 2M (1 - ﬂ) . (18)
R2

t—oo Jp2 8

Proof. We use the free energy production term:

t
FEug] — liminf FE[u(-,t)] = lim </ u |Viogu — xVu + z|? dx) ds .
0 \JR2

t—o0 t—o00

As a consequence,

lim (/ u |Viogu — xVu + z|* dx) ds =0, (19)
t R2

t—o0

which shows that, up to the extraction of subsequences, the limit u, of u(-,t+-), which exists
for the same reasons as in the proof of Theorem 1, satisfies

1
Vioguse — XV + =0, voo:—2—log|-|*uoo,
0

where the first equation holds at least a.e. in the support of us,. This is equivalent to write
that (e, Voo ) solves (3). Notice that the limit is unique because of (19) even if the uniqueness
of the solutions of (3) is not established. Because of (19), we also know that u., does not
depend on the choice of the subsequence.

As in the proof of Lemma 3, consider a smooth function ¢.(]z|) with compact support
that grows nicely to |z|? as e — 0. If (u,v) is a solution to (17), we compute

d
= d
dt Jgo 75

= [ Ap.udr— l/ (Vee(w) = Vo)) - ( = ) u(z,t) u(y,t) de dy — 2/ 2|2 u de .
R? A JR2 |z —y|? R2

As ¢ vanishes we may pass to the limit and obtain

M
i/ ]az\2udx:4M<1—X—>—2/ |z|? u dz .
dt R2 8 R2

This proves that for any ¢ > 0,

M
|z|? u(z, t) de = / |z|? ng dz e™ 4+ 2M (1 - %) (1—e 2y,
R2 s

RQ

Passing to the limit ¢ — oo, we get

M
/ 12| Uoo dz < 2M (1—X—> .
R2 8w



March 25, 2006 The two-dimensional Keller-Segel model 29

However, uq, is a solution of Equation (17), which satisfies the same assumptions as ng. Since
it is a stationary solution with finite second moments, we have

M
/ 2|2 Uoo dz = 2M <1—X—> .
R2 8w

O

Notice that under the constraint |[uc||f1(r2)=M, uc is a critical point of the free energy.
If we knew that (3) has at most one solution for a given M > 0, us would automatically be
the unique minimizer of the free energy. This result is not known although one can establish
that us is radially symmetric. This is done using the two following results, Lemmata 23
and 24.

Lemma 23 Let u € LY (R?, (1 + |z|?) dz) with M = [go u dz, such that [ge u logu dz < oo,
and define

1
v(w) = = log |z — y|u(y) dy .

Then there exists a positive constant C such that, for any x € R? with |x| > 1,

<C.

M
— 1
o(a) + 5 logal

Notice that as a straightforward consequence, v is non-positive outside of a ball.
Proof. We estimate

o(@) + L log |2]| = '% /R log (’”“’ - y’) u(y) dy‘ < (1) + (I) + (111)

27 |z
by
(I := —L/ log il u(y) dy with Qp:= { (z,y) € R? : ] <1
27 x ’ | T2
Qr
1 |z —y| , 2 1 _|r—yl
I = |— 1 d th Qpr := eER”: =< <2
) = gz [ o (T )uw ] win o= {@ e <
1 / !w—y!> , 2 |z —yl
I = — 10g< u(y) dy  with Qqpr := ¢ (z,y) € R* : >25 .
(1) 27 Jo, || () (@9) 2]

Using |z — y|? < 2(|z]*> + |y|?) and log(1 + ) < ¢, we get

s () = [ 10g (124 < [og (24214 dy < M+ 2 2u(y) d
7 (I11) = Qog PE u(y) dy < og |2+ W u(y) dy < +W ly[“u(y) dy .

111 Qi Qi

On Qq, |log (|z — y|/|z|)| is bounded by log2: (II) < M%. For the last term, denote

|z|

%) = gy

1
_271' Qr

(I log (22(y)) u(y) dy -
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By Jensen’s inequality

we get

Jo, uly) dy
27 (I) < /QI u(y)log (u(y)) dy — /QI u(y)log (W) dy -

The right hand side is bounded since ulog u is bounded in L!(R?) by Lemma 8,

i
/Zx(y)dyz/ il dy = |z|*,
Qr Ql\x—y\

4
/U(y) dyé—Q/ ly[Pu(y) dy .
Qr ’l’\ o

Hence we can control (I) because fQI u(y) dylog (fQI 22 (Y) dy) < ‘—45 log (7 |z[?). O

z|

and

This is enough to prove that the solution is radially symmetric, see [45].

Lemma 24 [45] Assume that V is a non-negative non-trivial radial function on R? such that
lim ;o0 [2]* V(2) < 00 for some o > 0. If u is a solution of

Au+V(z)et =0 z¢cR?

such that uy € L°°(R?), then u is radially symmetric about the origin and x - Vu(x) < 0 for
any = € R?.

Notice here that because of the asymptotic logarithmic behavior of v, the result of Gidas,
Ni and Nirenberg, [23], does not directly apply. The boundedness from above is essential,
otherwise non-radial solutions can be found, even with no singularity. Consider for instance
the perturbation ©(z) = 0 (2% —23) for any z = (21, z2), for some fixed 6 € (0,1), and define

the potential ¢(z) = % |2|* — ©(z). By a fixed-point method we can find a solution of

wla) = ~5; logl 1+ M T m

since, as |z| — oo, ¢(x) ~ 3 [(1 — 0)x} + (1 + )23] — ~+oo. This solution is such that
w(z) ~ —3% log |z| for reasons similar to the ones of Lemma 23. Hence v(z) := w(z)+©O(x)/x
is a non-radial solution of the above equation with logV(z) = —3 |z[%, which behaves like

O©(x)/x as |x| — oo with |z1] # |x2|. This gives a non radial solution of Equation (3).

Lemma 25 If M > 8w, Equation (17) has no stationary solution (uee,Veo) Such that
[ucollrrzy = M and [po |x]? e dx < oo. If x M < 8w, Equation (17) has at least one
radial stationary solution given by (3). This solution is C*° and u, is dominated as |x| — oo
by e~ (1=9)lz|*/2 for any € € (0,1).
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Proof. The existence of a stationary solution if x M < 8= is easy. It follows from Lemma 22
but can also be achieved by minimizing the free energy, see [12]. If the initial condition is
radial or if the minimization is done among radial solutions, then the stationary solution is also
radial. Direct approaches (fixed-point methods, ODE shooting methods) can also be used.

If x M > 87 and if there was a stationary solution with finite second moment, we could

write
d M
0:% R2\x]2uoo dx = 4M <1_X8—7T> —2/]R2 2% oo dz .
Since the right hand side is negative, this is simply impossible. O

In the rescaled variables, the solution of (17) converges to a radial stationary solution
Uso of (3). It is not difficult to check that n(z,t) := & un (3 log(2t),z/v/2t) and &(z,t) :=
Uso (5 log(2t),z/V/2t) gives a self-similar solution of (1), which is supposed to describe the
large time asymptotics of (1), and this is what we are going to clarify in the last section.

4.3 Intermediate asymptotics

Lemma 26 Under the assumptions of Lemma 22,

lim FEu(., -+ 1)] = FRus .

t—o00
Proof. By (18), we already know that limy_.oc [po |22 u(2,t) dz = [go [2[*uss dz. Using
the estimates of Sections 2.5-2.7 and Lemma 11, we know that u(-,- + t) converges to us in
L?((0,1) x R?) and that [go u(-,-+t)v(-,- +t) dz converges to [ps Uso Voo dz. Concerning the
entropy, it is sufficient to prove that u(,-+t) logu(-, - +t) weakly converges in L'((0, 1) x R?)
t0 Uso 108 Uso. By Lemma 8, there is a uniform L' bound. Concentration is prohibited by
the convergence in L%((0,1) x R?). Vanishing or dichotomy cannot occur either: Take indeed
R > 0, large, and compute f| ullogu| = (I) + (II), with

z|>R
1
(I = / ulogudxg—/ lu|? dz
|z|>R, u>1 2 |z|>R, u>1
1
(I = - ulogu dr < = |z|? u dz — mlog Yy
2 2
|z|>R, u<l |z|>R, u<l u

In the first case, we have used the inequality ulogu < u?/2 for any u > 1, while the second
estimate is based on Jensen’s inequality in the spirit of the proof of Lemma &:

1
m::/ udr < —5 2|2 u dz .
lz|>R, u<1 R lz|>R, u<l

Because of the convergence of the two quantities f\x\>R wet lul? dz and f|x|>R wer P udz to 0
as R — oo, we have the uniform estimate

lim ullogu| =0,
R—00 Jig|>R

which completes the proof. O
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The result we have shown above is actually slightly better, since it proves that all terms in
the free energy, namely the entropy, the energy corresponding to the potential % |z|? and the
self-consistent potential energy, converge to the corresponding values for the limiting stationary
solution.

As noted above, u is a critical point of F* under the constraint [|u/|;1 g2y = M. We can

therefore rewrite F'R[u] — Ff[uy] as

FR[u]—FR[uoo]:/ ulog( “ > da:—z/ Vo — Vueo|? da
R2 2 R2

Uoco

and both terms in the above expression converge to 0 as t — oo, if u is a solution of (1). Since
for any nonnegative functions f, g € L'(R?) such that Jgo [ dx = [go g de =M,

1 f
2
Hf—QHLl(W) < 4M/sz log <§> dx

by the Csiszar-Kullback inequality, [20, 35], this proves the

Corollary 27 Under the assumptions of Lemma 22,
m [[u(-, - +1) = vooll ey =0 and  lim [[Vou(-,- +1) = Vug|lp2mey = 0.
t—00 t—00

Undoing the change of variables (16), this proves Theorem 2.
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