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Abstract

The Keller-Segel system describes the collective motion of cells which are attracted
by a chemical substance and are able to emit it. In its simplest form it is a conservative
drift-diffusion equation for the cell density coupled to an elliptic equation for the chemo-
attractant concentration. It is known that, in two space dimensions, for small initial mass,
there is global existence of solutions and for large initial mass blow-up occurs. In this
paper we complete this picture and give a detailed proof of the existence of weak solutions
below the critical mass, above which any solution blows-up in finite time in the whole
euclidean space. Using hypercontractivity methods, we establish regularity results which
allow us to prove an inequality relating the free energy and its time derivative. For a
solution with sub-critical mass, this allows us to give for large times an “intermediate
asymptotics” description of the vanishing. In self-similar coordinates, we actually prove
a convergence result to a limiting self-similar solution which is not a simple reflect of the
diffusion.

Résumé

Le système de Keller-Segel system décrit le mouvement collectif de cellules qui sont
attirées par une substance chimique et qu’elles sont capables d’émettre. Dans sa forme
la plus simple, il s’agit d’une équation de dérive-diffusion conservative pour la densité des
cellules, couplée à une équation elliptique pour la concentration de chemo-attractant. On
sait que, en dimension deux, il y a existence globale de solutions pour une masse ini-
tiale petite, alors que pour une masse initiale grande, la solution explose en temps fini
dans l’espace euclidien tout entier. Dans cet article, nous précisons cette description et
donnons une preuve détaillée de l’existence de solutions faibles avec masse inférieure à la
masse critique, au-dessus de laquelle toute solution explose en temps fini. En utilisant
des arguments d’hypercontractivité, nous établissons des résultats de régularité qui nous
permettent de prouver une inégalité reliant l’énergie libre et sa dérivée en temps. Pour une
solution avec masse sous-critique, cela nous permet de donner une description des “asymp-
totiques intermédiaires” en temps grand, qui décrivent la convergence locale des solutions
vers zéro. Dans des coordonnées auto-similaires, nous montrons en fait un résultat de
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convergence vers une solution auto-similaire limite qui n’est pas simplement donnée par la
diffusion.
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logarithmic Hardy-Littlewood-Sobolev inequality, Critical Mass, Aubin-Lions compactness
method, Hypercontractivity, Large time behavior, Time-dependent rescaling, Self-similar vari-
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1 Introduction

The Keller-Segel system for chemotaxis describes the collective motion of cells, usually bac-
teria or amoebae, that are attracted by a chemical substance and are able to emit it. For a
general introduction to chemotaxis, see [42, 40]. Various versions of the Keller-Segel system
for chemotaxis are available in the literature, depending on the phenomena and scales one
is interested in. We refer the reader to the very nice review papers [29, 30] and references
therein. The complete Keller-Segel model is a system of two parabolic equations. In this
paper, we consider only the simplified two-dimensional case and assume that the equations
take the form























∂n

∂t
= ∆n− χ∇·(n∇c) x ∈ R

2 , t > 0 ,

−∆c = n x ∈ R
2 , t > 0 ,

n(·, t = 0) = n0 ≥ 0 x ∈ R
2 .

(1)

Here n(x, t) represents the cell density, and c(x, t) is the concentration of chemo-attractant
which induces a drift force. A classical parameter of the system is the sensitivity χ > 0 of the
bacteria to the chemo-attractant which measures the nonlinearity in the system. Here χ is a
constant. Such a parameter can be removed by a scaling, to the price of a change of the total
mass of the system

M :=

∫

R2

n0 dx .

In bounded domains, it is usual to impose no-flux boundary conditions. Here we are not
interested in boundary effects and for this reason we are going to consider the system in the
full space R

2, without boundary conditions. There are related models in gravitation which are
defined in R

3, see, e.g., [11]. The relevant case for chemotaxis is rather the two-dimensional
space, although some three-dimensional versions of the model also make sense. The L1-norm
is critical in the sense that there exists a critical mass above which all solution blow-up in
finite time, see [32], and below which they globally exist (see [21] for the a priori estimates
and Theorem 1 below for an existence statement). The critical space is Ld/2(Rd) for d ≥ 2,
see [18, 19] and the references therein. In dimension d = 2, the Green kernel associated to the
Poisson equation is a logarithm, namely c = − 1

2π log | · | ∗ n. When the Poisson interaction
is replaced by a convolution kernel, it is the logarithmic singularity which is critical for the
L1-norm whatever the dimension is, see [14].
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Historically the key papers for this family of models are the original contribution [33] of
E. F. Keller and L. A. Segel, and a work by C. S. Patlak, [49]. The rigourous derivation of
the Keller-Segel system from an interacting stochastic many-particles system has been done
in [57]. Simulations of these can be found in [47]. A very interesting justification of the
Keller-Segel model as a diffusion limit of a kinetic model has recently been published, see
[16]. Related models with prevention of overcrowding, see [27], volume effects [34, 13, 64], or
involving more than one chemo-attractant have also been studied.

As conjectured by S. Childress and J. K. Percus [17] and V. Nanjundiah [46] either the
solution of the complete Keller-Segel system globally exists or it blows-up in finite time, a
phenomenon called chemotactic collapse in the literature. As we shall see, this classification is
valid for the simplified Keller-Segel system (1). A large series of results, mostly in the bounded
domain case, has been obtained by T. Nagai, T. Senba and T. Suzuki. Many of these results
can be found in [55, 58]. Concerning blow-up phenomena, a key contribution has been brought
by M. A. Herrero and J. J. L. Velázquez [26, 61]. Also see [41] for numerical computations.

The main tool in this paper is the free energy

F [n] :=

∫

R2

n log n dx− χ

2

∫

R2

n c dx

which provides useful a priori estimates. The free energy functional is a well known tool for
gravitational models, see [3, 48, 63, 10] and has been introduced for chemotactic models by
T. Nagai, T. Senba and K. Yoshida in [44], by P. Biler in [7] and by H. Gajewski and K.
Zacharias in [22].

Based on the logarithmic Hardy-Littlewood-Sobolev inequality in its sharp form as estab-
lished in [15, 4], the free energy is bounded from below if χM ≤ 8π, see [21]. Here we use this
estimate to prove the global existence of solutions of (1) if χM < 8π. We also prove that for
these solutions, the free energy is decaying and use it to study the large time behaviour of the
solutions. The limiting case χM = 8π has recently been studied in the radial case, see [8, 9].

The literature on the Keller-Segel model is huge and it is out of the scope of this paper to
give a complete bibliography. Some additional papers will be quoted in the text. Otherwise,
we suggest the interested reader to primarily refer to the surveys [51, 29, 30].

Our first main result is the following existence and regularity statement.

Theorem 1 Assume that n0 ∈ L1
+(R2, (1+ |x|2) dx) and n0 log n0 ∈ L1(R2, dx). If M < 8π/χ,

then the Keller-Segel system (1) has a global weak non-negative solution n with initial data n0

such that

(1 + |x|2 + | log n|)n ∈ L∞
loc(R

+, L1(R2)) ,

∫ t

0

∫

R2

n |∇ log n− χ∇c|2 dx dt <∞ ,

and

∫

R2

|x|2 n(x, t) dx =

∫

R2

|x|2 n0(x) dx+ 4M

(

1 − χM

8π

)

t

for any t > 0. Moreover n ∈ L∞
loc((ε,∞), Lp(R2)) for any p ∈ (1,∞) and any ε > 0, and the

following inequality holds for any t > 0:

F [n(·, t)] +

∫ t

0

∫

R2

n |∇ (log n) − χ∇c|2 dx ds ≤ F [n0] . (2)



4 A. Blanchet, J. Dolbeault, B. Perthame March 25, 2006

This result was partially announced in [21]. Compared to [21], the main novelty is that we
prove the free energy inequality (2) and get the hypercontractive estimate: n(·, t) is bounded
in Lp(R2) for any p ∈ (1,∞) and almost any t > 0. The equation holds in the distributions
sense. Indeed, writing

∆n− χ∇·(n∇c) = ∇·[n(∇ log n− χ∇c)] ,

we can see that the flux is well defined in L1(R+
loc × R

2) since

∫∫

[0,T ]×R2

n |∇ log n− χ∇c| dx dt ≤
(

∫∫

[0,T ]×R2

n dx dt

)1/2(
∫∫

[0,T ]×R2

n |∇ log n− χ∇c|2 dx dt
)1/2

<∞ .

Our second main result deals with large time behavior, intermediate asymptotics and con-
vergence to asymptotically self-similar profiles given in the rescaled variables by the equation

u∞ = M
eχ v∞−|x|2/2

∫

R2 eχ v∞−|x|2/2 dx
= −∆v∞ , with v∞ = − 1

2π
log | · | ∗ u∞ . (3)

In the original variables, the self-similar solutions of (1) take the expression:

n∞(x, t) :=
1

1 + 2t
u∞
(

log(
√

1 + 2t), x/
√

1 + 2t
)

,

c∞(x, t) := v∞
(

log(
√

1 + 2t), x/
√

1 + 2t
)

.

This allows us to state our second main result, on intermediate asymptotics.

Theorem 2 Under the same assumptions as in Theorem 1, there exists a solution of (3) such
that

lim
t→∞

‖n(·, t) − n∞(·, t)‖L1(R2) = 0 and lim
t→∞

‖∇c(·, t) −∇c∞(·, t)‖L2(R2) = 0 .

This paper is organized as follows. Section 2 is devoted to the detailed proof of the
existence of weak solutions with subcritical mass and without any symmetry assumption. A
priori estimates have been derived in [21]. The point here is to establish the result with
all necessary details: regularized problem, uniform estimates, passage to the limit in the
regularization parameter. Compared to [21], we also establish Inequality (2). Proving such an
inequality requires a detailed study of the regularity properties of the solutions, which is done
in Section 3: By hypercontractivity methods, we prove that the solution is bounded in any Lp

space for almost any positive t. Using the free energy we study in Section 4 the asymptotic
behavior of the solutions for large times and prove Theorem 2. The main difficulty comes
from the fact that the uniqueness of the solutions to (3) for a given M ∈ (0, 8π/χ) is not
known, although many additional properties (radial symmetry, regularity, decay at infinity)
of the limiting solution in the self-similar variables are known.
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2 Existence for sub-critical masses

We assume that the initial data satisfies the following asssumptions:

n0 ∈ L1
+(R2, (1 + |x|2) dx) ,

n0 log n0 ∈ L1(R2, dx) .
(4)

Because of the divergence form of the right hand side of the equation for n, the total mass is
conserved at least for smooth and sufficiently decay solutions

M :=

∫

R2

n0(x) dx =

∫

R2

n(x, t) dx . (5)

Our purpose here is first to give a complete existence theory in the subcritical case, i.e. in the
case

M < 8π/χ .

This result has been announced in [21], which was dealing only with a priori estimates. Here,
we give the proofs with all details. More precisely, we prove that under Assumption (4), there
are only two cases:

Case 1. Solutions to (1) blow-up in finite time when M > 8π/χ,

Case 2. There exists a global in time solution of (1) when M < 8π/χ.

The case M = 8π/χ is delicate and for radial solutions, some results have been obtained
recently, see [8, 9].

Our existence theory completes the partial picture established in [32]. The solution of the
Poisson equation −∆c = n is given up to an harmonic function. From the beginning, we have
in mind that the concentration of the chemo-attractant is defined by

c(x, t) = − 1

2π

∫

R2

log |x− y|n(y, t) dy . (6)

There are other possible solutions, which may result in significantly different qualitative be-
haviors, as we shall see in Section 4.2. From now on, unless it is explicitly specified, we will
only consider concentrations c given by (6). In the following sections, 2.1, 2.2 and 2.3, we
closely follow the presentation given in [21].

2.1 Blow-up for super-critical masses

The case M > 8π/χ (Case 1) is easy to understand using moments estimates. The method is
classical and has been repeatedly used for various similar problems. See for instance [50] in the
similar context of the Euler-Poisson system, [31]. Concerning blow-up, we refer to [18, 19, 31]
for recent references on the subject.

Following for instance [53], we can define a notion of weak solution n in L∞
loc

(

R
+;L1(R2)

)

using the symmetry in x, y for the concentration gradient, which has interest in case of blow-
up. We shall say that n is a solution to (1) if for all test functions ψ ∈ D(R2)

d

dt

∫

R2

ψ(x)n(x, t) dx =

∫

R2

∆ψ(x)n(x, t) dx− χ

4π

∫

R2×R2

[∇ψ(x)−∇ψ(y)]· x− y

|x − y|2 n(x, t)n(y, t) dx dy .
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Compared to standard distribution solutions, this is an improved concept that can handle
measure solutions because the term [∇ψ(x) −∇ψ(y)]. x−y

|x−y|2
is continuous.

Lemma 3 Consider a non-negative L1 solution n to (1) in the above sense, on an interval
[0, T ] and assume that n satisfies (5),

∫

R2 |x|2 n0(x) dx <∞. Then it also satisfies

d

dt

∫

R2

|x|2 n(x, t) dx = 4M

(

1 − χM

8π

)

.

Proof. Consider a smooth function ϕε(|x|) with compact support that grows nicely to |x|2 as
ε→ 0. Then we use the definition of weak solutions and get

d

dt

∫

R2

ϕε n dx =

∫

R2

∆ϕε n dx− χ

4π

∫

R2

(∇ϕε(x) −∇ϕε(y)) · (x− y)

|x− y|2 n(x, t)n(y, t) dx dy .

Because we can always choose ∆ϕε bounded and ∇ϕε(x) Lipschitz continous, we deduce that

d

dt

∫

R2

ϕε n dx ≤ C

∫

R2

n0 dx ,

where C is some positive constant. As ε→ 0 we find that

∫

R2

ϕε n dx ≤ c1 + c2 t ,

where c1 and c2 are two positive constants and thus

∫

R2

|x|2 n(x, t) dx <∞ ∀ t ∈ (0, T ) .

We can pass to the limit using Lebesgue’s dominated convergence theorem and thus complete
the proof of Lemma 3. �

As a consequence, we recover the statement of Case 1, namely that for M > 8π/χ, there
is a finite blow-up time T ∗ where solutions become singular measures.

Corollary 4 Consider a non-negative solution n as in Lemma 3 and let [0, T ∗) be the max-
imal interval of existence. Assume that the initial data n0 ∈ L1(R2) is such that I0 :=
∫

R2 |x|2 n0(x) dx < ∞. Then either T ∗ = ∞ or n(·, t) converges (up to extraction of se-
quences) as t→ T ∗ to a measure which is not in L1(R2). If χM > 8π, then

T ∗ ≤ 2π I0
M(χM − 8π)

.

As far as we know, it is an open question to decide whether the solutions of (1) with χM > 8π
and I0 = ∞ also blow-up in finite time. Blow-up statements in bounded domains are available,
see [43, 10, 28, 36, 54] and the references therein. When the solution is radially symmetric
in x, the second x-moment is not needed and the blow-up profile has been explicited, namely

n(x, t) → 8π

χ
δ + ñ(x, t) as tր T ∗ ,
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where ñ is a L1(R2 ×R
+) radial function such that t 7→ ñ(·, t) is measure valued, see [26, 59].

Except that solutions blow-up for large mass, in the general case very little is known on
the blow-up profile (see [53] for concentrations estimates, [41] for numerical computations).
Asymptotic expansions at blow-up and continuation of solutions after blow-up have been
studied by Velázquez in [61, 60]. The case χM = 8π has recently been investigated by Biler,
Karch, Laurençot and Nadzieja in [8]. In a forthcoming paper, they prove that in the whole
space case and χM = 8π, blow-up occurs only for infinite time, [9]. Here we will focus on the
subcritical regime and prove that solutions exist and are always asymptotically vanishing for
large times.

If the problem is set in dimension d ≥ 3, the critical norm is Lp(Rd) with p = d/2. In
dimension d = 2, the value of the mass M is therefore natural to discriminate between super-
and sub-critical regimes. However, the limit of the Lp-norm is rather

∫

R2 n log n dx than
∫

R2 n dx, which is preserved by the evolution. This explains why it is natural to introduce the
entropy, or better, as we shall see below, the free energy.

2.2 The usual existence proof for not too large masses

The usual proof of existence is due to W. Jäger and S. Luckhaus in [32]. Here we follow the
variant [18, 19] which is based on the following computation. Consider the equation for n and
compute d

dt

∫

R2 n log n dx. Using an integration by parts and the equation for c, we obtain:

d
dt

∫

R2 n log n dx = −4
∫

R2 |∇
√
n|2 dx+ χ

∫

R2 ∇n·∇c dx

= −4
∫

R2 |∇
√
n|2 dx+ χ

∫

R2 n
2 dx .

This shows that two terms compete, namely the diffusion based entropy dissipation term
∫

R2 |∇
√
n|2 dx and the hyperbolic production of entropy.

Thus the entropy is nonincreasing if χM ≤ 4C−2
GNS, where CGNS = C

(4)
GNS is the best

constant for p = 4 in the Gagliardo-Nirenberg-Sobolev inequality:

‖u‖2
Lp(R2) ≤ C

(p)
GNS ‖∇u‖

2−4/p
L2(R2)

‖u‖4/p
L2(R2)

∀ u ∈ H1(R2) , ∀ p ∈ [2,∞) . (7)

The explicit value of CGNS is not known but can be computed numerically (see [62]) and one
finds that the entropy is nonincreasing if χM ≤ 4C−2

GNS ≈ 1.862... × (4π) < 8π. Such an
estimate is therefore not sufficient to cover the whole range of M for global existence in the
second case.

In [32] it is also shown that equiintegrability (deduced from the n log n estimate for in-
stance) is enough to propagate any Lp initial norm. We will come back on this point in
Section 2.7 and prove later that due to the regularizing effects, the solution is bounded in
time with values in Lp(R2) for all positive times.

2.3 A free energy method and a priori estimates

To obtain sharper estimates and prove a global existence result (Case 2), we use the free
energy which has already been introduced in Section 1:

F [n] :=

∫

R2

n log n dx− χ

2

∫

R2

n c dx .
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See [7, 22, 44] in the case of a bounded domain. The first term in F is the entropy and
the second one a potential energy term. Such a free energy enters in the general notion of
entropies, and this is why it is sometimes referred to the method as the “entropy method”,
although the notion of free energy is physically more appropriate. See [1] for an historical
review on these notions. For any solution n of (1), F [n(·, t)] is monotone nonincreasing.

Lemma 5 Consider a non-negative C0(R+, L1(R2)) solution n of (1) such that n(1 + |x|2),
n log n are bounded in L∞

loc(R
+, L1(R2)), ∇√

n ∈ L1
loc(R

+, L2(R2)) and ∇c ∈ L∞
loc(R

+ × R
2).

Then
d

dt
F [n(·, t)] = −

∫

R2

n |∇ (log n) − χ∇c|2 dx . (8)

Following a usual denomination in the PDE literature, we will call
∫

R2 n |∇ (log n) − χ∇c|2 dx
the free energy production term or generalized relative Fisher information.

Proof. Because the potential energy term
∫

R2 n c dx =
∫∫

R2×R2 n(x, t)n(y, t) log |x− y| dx dy
is quadratic in n, using Equation (1), the time derivative of F [n(·, t)] is given by

d

dt
F [n(·, t)] =

∫

R2

[

(

1 + log n− χ c
)

∇ ·
(∇n
n

− χ∇c
)]

dx .

An integration by parts completes the proof. �

From the representation (6) of the solution to the Poisson equation, we deduce that

d

dt
F [n(·, t)] =

d

dt

[
∫

R2

n log n dx+
χ

4π

∫∫

R2×R2

n(x, t)n(y, t) log |x− y| dx dy
]

≤ 0 .

On the other hand, we recall the logarithmic Hardy-Littlewood-Sobolev inequality.

Lemma 6 [15, 4] Let f be a non-negative function in L1(R2) such that f log f and f log(1 +
|x|2) belong to L1(R2). If

∫

R2 f dx = M , then

∫

R2

f log f dx+
2

M

∫∫

R2×R2

f(x)f(y) log |x− y| dx dy ≥ − C(M) , (9)

with C(M) := M(1 + log π − logM).

This allows to prove a priori estimates on the two terms involved in the free energy.

Lemma 7 Consider a non-negative C0(R+, L1(R2)) solution n of (1) such that n(1 + |x|2),
n log n are bounded in L∞

loc(R
+, L1(R2)),

∫

R2
1+|x|
|x−y| n(y, t) dy ∈ L∞

(

(0, T ) × R
2
)

, ∇√
n ∈

L1
loc(R

+, L2(R2)) and ∇c ∈ L∞
loc(R

+ × R
2). If χM ≤ 8π, then the following estimates hold:

(i) Entropy:

M logM −M log[π(1 + t)] −K ≤
∫

R2

n log n dx ≤ 8π F0 + χM C(M)

8π − χM

with K := max
{∫

R2 |x|2 n0(x) dx,
M
2π (8π − χM)

}

and F0 := F [n0].
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(ii) Fisher information: For all t > 0, with C1 := F0 + χ M
8π C(M) and C2 := χ M−8π

8π ,

0 ≤
∫ t

0
ds

∫

R2

n(x, s) |∇ (log n(x, s))−χ∇c(x, s)|2 dx ≤ C1 + C2

[

M log

(

π(1 + t)

M

)

+K

]

Proof. From (8), with n(·) = n(·, t) for shortness, we get that the quantity

(1 − θ)

∫

R2

n log n dx+ θ

[
∫

R2

n log n dx+
χ

4πθ

∫∫

R2×R2

n(x)n(y) log |x− y| dx dy
]

is bounded from above by F0. We choose

χ

4πθ
=

2

M
⇐⇒ θ =

χM

8π

and apply (9):

(1 − θ)

∫

R2

n(x, t) log n(x, t) dx− θ C(M) ≤ F0 .

If χM < 8π, then θ < 1 and

∫

R2

n(x, t) log n(x, t) dx ≤ F0 + θ C(M)

1 − θ
.

This estimate proves the upper bound for the entropy. We can also see that
∫

R2 n log n dx is
bounded from below. By Lemma 3,

1

1 + t

∫

R2

|x|2 n(x, t) dx ≤ K ∀ t > 0 .

Thus
∫

R2

n(x, t) log n(x, t) ≥ 1

1 + t

∫

R2

|x|2 n(x, t) dx−K +

∫

R2

n(x, t) log n(x, t) dx

=

∫

R2

n(x, t) log

(

n(x, t)

e−
|x|2

1+t

)

dx−K

=

∫

R2

n(x, t) log

(

n(x, t)

µ(x, t)

)

dx−M log[π(1 + t)] −K

=

∫

R2

n(x, t)

µ(x, t)
log

(

n(x, t)

µ(x, t)

)

µ(x, t) dx −M log[π(1 + t)] −K

with µ(x, t) := 1
π(1+t) e

−
|x|2

1+t . By Jensen’s inequality,

∫

R2

n(x, t)

µ(x, t)
log

(

n(x, t)

µ(x, t)

)

µ(x, t) dx ≥ X logX where X =

∫

R2

n(x, t)

µ(x, t)
µ(x, t) dx = M .

This gives the lower estimate for the entropy term.



10 A. Blanchet, J. Dolbeault, B. Perthame March 25, 2006

Now, from (8) and (9), we get

(1 − θ)

[

M log

(

M

π(1 + t)

)

−K
]

+ θ C(M)

+

∫ t

0
ds

∫

R2

n(x, s) |∇ (log n(x, s)) − χ∇c(x, s)|2 dx ≤ F0 .

This proves that
√
n |∇ (log n) − χ∇c| is bounded in L2

loc(R
+, L2(R2)) and gives the estimate

on the energy. �

The a priori upper bound on
∫

R2 n log n dx combined with the |x|2 moment bound of
Lemma 3 shows that n log n is bounded in L∞

loc(R
+, L1(R2)).

Lemma 8 For any u ∈ L1
+(R2), if

∫

R2 |x|2 u dx and
∫

R2 u log u dx are bounded from above,
then u log u is uniformly bounded in L∞(R+

loc, L
1(R2)) and

∫

R2

u | log u| dx ≤
∫

R2

u
(

log u+ |x|2
)

dx+ 2 log(2π)

∫

R2

u dx+
2

e
.

Proof. The proof goes as follows. Let ū := u 1l{u≤1} and m =
∫

R2 ū dx ≤M . Then

∫

R2

ū

(

log ū+
1

2
|x|2
)

dx =

∫

R2

U logU dµ−m log (2π)

where U := ū/µ, dµ(x) = µ(x) dx and µ(x) = (2π)−1e−|x|2/2. By Jensen’s inequality,

∫

R2

U logU dµ ≥
(
∫

R2

U dµ

)

log

(
∫

R2

U dµ

)

= m logm ,

∫

R2

ū log ū dx ≥ m log
(m

2π

)

− 1

2

∫

R2

|x|2 ū dx ≥ −1

e
−M log(2π) − 1

2

∫

R2

|x|2 ū dx .

Using
∫

R2

u | log u| dx =

∫

R2

u log u dx− 2

∫

R2

ū log ū dx ,

this completes the proof. �

2.4 Existence of weak solutions up to critical mass

Using the informations collected in Sections 2.1, 2.2 and 2.3, in the spirit of [18], we can now
state, in the subcritical case M < 8π/χ, the following existence result of weak solutions, which
is essentially the one stated without proof in [21].

Proposition 9 Under Assumption (4) and M < 8π/χ, the Keller-Segel system (1) has a
global weak non-negative solution such that, for any T > 0,

(1 + |x|2 + | log n|)n ∈ L∞(0, T ;L1(R2)) and

∫∫

[0,T ]×R2

n |∇ log n− χ∇c|2 dx dt <∞ .
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Propostion 9 strongly relies on the estimates of Lemmata 3 and 7. To establish a complete
proof, we need to regularize the problem (Section 2.5) and then prove that the above estimates
hold uniformly with respect to the regularization procedure (Section 2.6). This allows to pass
to the limit in the regularization parameter (Section 2.7) and proves the existence of a weak
solution with a well defined flux. To prove Theorem 1, we need additional regularity properties
of the solutions. This is the purpose of Section 3. Hypercontractivity and the free energy
inequality (2) will be dealt with in Sections 3.4 and 3.3 respectively.

2.5 A regularized model

The goal of this section is to establish the existence of solutions for a regularized version
of the Keller-Segel model, for which the logarithmic singularity of the convolution kernel
K0(z) := − 1

2π log |z| is appropriately truncated.
There are indeed two difficulties when dealing with K0. It is unbounded and has a sin-

gularity at z = 0. First of all, the unboundedness from above of the kernel is not difficult to
handle. For R >

√
e, R 7→ R2/ log R is an increasing function, so that

0 ≤
∫∫

|x−y|>R
log |x− y|n(x, t)n(y, t) dx dy ≤ 2 log R

R2
M

∫

R2

|x|2 n(x, t) dx .

Since
∫∫

1<|x−y|<R log |x − y|n(x, t)n(y, t) dx dy ≤ M2 logR, we only need to take care of a
uniform bound on

∫∫

|x−y|<1
log |x− y|nε(x, t)nε(y, t) dx dy and

∫

R2

nε(x, t) log nε(x, t) dx .

for an approximating family (nε)ε>0.

The other difficulty concerning the convolution kernel K0 is the singularity at z = 0.
This is a much more serious difficulty that we are going to overcome by defining a truncated
convolution kernel and deriving uniform estimates in Section 2.6. To do so, we first need to
find solutions of the model with a truncated convolution kernel. Let Kε be such that

Kε(z) := K1
(z

ε

)

where K1 is a radial monotone non-decreasing smooth function satisfying










K1(z) = − 1

2π
log |z| if |z| ≥ 4 ,

K1(z) = 0 if |z| ≤ 1 .

Moreover, we can assume without restriction that

0 ≤ −∇K1(z) ≤ 1

2π |z| , K1(z) ≤ − 1

2π
log |z| and − ∆K1(z) ≥ 0 (10)

for any z ∈ R
2. Since Kε(z) = K1(z/ε), we also have

0 ≤ −∇Kε(z) ≤ 1

2π |z| ∀ z ∈ R
2 . (11)
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If we replace (1) by the following regularized version











∂nε

∂t
= ∆nε − χ∇·(nε∇cε)

cε = Kε ∗ nε

x ∈ R
2 , t > 0 , (12)

written in the distribution sense, then we can state the following existence result.

Proposition 10 For any fixed positive ε, under Assumptions (4), if n0 ∈ L2(R2), then for
any T > 0 there exists nε ∈ L2(0, T ;H1(R2)) ∩ C(0, T ;L2(R2)) which solves (12) with initial
data n0.

To prove Proposition 10, we will first fix a functional framework, then solve a linear problem
before using it to make a fixed point argument in order to prove the existence of a solution to
the regularized system (12).

2.5.1 Functional framework

We will use the Aubin-Lions compactness method, (see [39], Ch. IV, §4 and [2], and [56] for
more recent references). A simple statement goes as follows:

Lemma 11 (Aubin Lemma) Take T > 0, p ∈ (1,∞) and let (fn)n∈N be a bounded sequence
of functions in Lp(0, T ;H) where H is a Banach space. If (fn)n∈N is bounded in Lp(0, T ;V ),
where V is compactly imbedded in H and ∂fn/∂t is bounded in Lp(0, T ;V ′) uniformly with
respect to n ∈ N, then (fn)n∈N is relatively compact in Lp(0, T ;H).

For our purpose, we fix T > 0, p = 2 and define H := L2(R2), V := {v ∈ H1(R2) :
√

|x| v ∈
L2(R2)}, V ′ its dual, V := L2(0, T ;V ), H := L2(0, T ;H) and W(0, T ) := {v ∈ L2(0, T ;V ) :
∂v/∂t ∈ L2(0, T ;V ′)}. In this functional framework, the notion of solution we are looking for
is actually more precise than in the distribution sense:

0 =

∫ T

0

{

〈nt, ψ〉V ′×V +

∫

R3

(∇n+ χn∇c) · ∇ψ dx
}

dt ∀ψ ∈ V .

Notice that V is relatively compact in H, since the bound on |x| |v|2 in L1(R2) allows to
consider only compact sets, on which compactness holds by Sobolev’s imbeddings: Lemma 11
applies.

2.5.2 Estimates for a linear drift-diffusion equation

We start with the derivation of some a priori estimates on the solution of the linear problem

∂n

∂t
= ∆n−∇ · (n f) (13)

for some function f ∈ (L∞((0, T ) × R
2))2. We assume in this section that the initial data n0

belongs to L2(R2). By a fixed-point method, this allows us to prove the

Lemma 12 Assume that (4) holds and consider f ∈ L∞((0, T ) × R
2). If n0 ∈ L2(R2), for

any T > 0, there exists n ∈ W(0, T ) which solves (13) with initial data n0.
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Proof. Consider the map T : L∞(0, T ;L1(R2)) → L∞(0, T ;L1(R2)) defined by

T [n](·, t) := G(·, t) ∗ n0 +

∫ t

0
∇G(·, t− s) ∗ [n(·, s) f(·, s)] ds ∀ (x, t) ∈ [0, T ] × R

2 ,

where ∗ denotes the space convolution. Here G(x, t) := (4πt)−1e−
|x|2

4t is the Green function
associated to the heat equation. Notice that ‖∇G(·, s)‖L1(R2) ≤ C s−1/2. We define the
sequence (nk)k∈N by nk+1 = T (nk) for k ≥ 1. For any t ∈ [0, T ], we compute

‖nk+1(t) − nk(t)‖L1(R2) ≤
∫

R2

∣

∣

∣

∣

∫ t

0
∇G(·, t− s) ∗ [(nk(·, s) − nk−1(·, s)) f(·, s)] ds

∣

∣

∣

∣

dx

≤ ‖f‖L∞([0,T ]×R2)

∫ t

0
‖∇G(·, t − s) ∗ (nk(·, s) − nk−1(·, s)) ‖L1(R2)

≤ ‖f‖L∞([0,T ]×R2)

∫ t

0
‖∇G(·, t − s)‖L1(R2) ‖nk(s) − nk−1(s)‖L1(R2)

≤ C ‖f‖L∞([0,T ]×R2)

√
t ‖nk − nk−1‖L∞(0,t;L1(R2)) .

For T > 0 small enough, (nk)k∈N is a Cauchy sequence in L∞(0, T ;L1(R2)), which converges
to a fixed point of T . Iterating the method, we prove the existence of a solution of (13) on an
arbitrary time interval [0, T ]. �

Next, let us establish some a priori estimates. The solution n is bounded in L∞(0, T ;L2(R2))
as a consequence of the following computation:

1

2

d

dt

∫

R2

|n(x, t)|2 dx = −
∫

R2

|∇n(x, t)|2 dx+

∫

R2

∇n(x, t) · n(x, t) f(x, t) dx .

The right hand side can be written
∫

R2 a · b f dx with a :=
√

1/λ∇n and b :=
√
λn. It is

therefore bounded by (
∫

R2 a
2 dx+ 1

4

∫

R2 b
2 dx) ‖f‖L∞([0,T ]×R2), which provides the estimate

1

2

d

dt

∫

R2

|n|2 dx ≤
(

−1 +
1

λ
‖f‖L∞([0,T ]×R2)

)
∫

R2

|∇n|2 dx+
λ

4
‖f‖L∞([0,T ]×R2)

∫

R2

|n|2 dx .

In case λ = ‖f‖L∞([0,T ]×R2), we obtain

∫

R2

|n|2 dx ≤
∫

R2

|n0|2 dx e
‖f‖2

L∞([0,T ]×R2)
T/2 ∀ t ∈ (0, T ) .

Hence n is bounded in L∞(0, T ;L2(R2)) = H. Similarly, in case λ = 3
2 ‖f‖L∞([0,T ]×R2), we

obtain
1

2

d

dt
‖n(·, t)‖2

L2(R2) ≤ −1

3
‖∇n‖2

L2(R2) +
3

8
‖f‖2

L∞([0,T ]×R2)‖n(·, t)‖2
L2(R2) .

This also proves that ∇n is bounded in L2((0, T ) × R
2), and n is therefore also bounded in

L2(0, T ;H1(R2)). Next, we need a moment estimate, which is achieved by

d

dt

∫

R2

|x|2 n(x, t) dx ≤ 4

∫

R2

n dx+ 2 ‖f‖L∞([0,T ]×R2)

(
∫

R2

n dx

)1/2 (∫

R2

|x|2 n(x, t) dx

)1/2

.
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As a conclusion, this proves that
∫

R2 |x|2 n(x, t) dx is bounded and therefore shows that n is
bounded in V. On the other hand, ∂n/∂t is bounded in V ′ as can be checked by an elementary
computation. We can therefore apply Aubin’s Lemma (Lemma 11) to n:

If (nk
0)k∈N is a sequence of initial data with uniform bounds, then the corresponding se-

quence (nk)k∈N of solutions of (13) with f replaced by fk, for a sequence (fk)k∈N uniformly
bounded in (L∞([0, T ] × R

2))2, is contained in a relatively compact set in L2(0, T ;V ).

We will make use of this property in the next section.

2.5.3 Existence of a solution of the regularized problem

This section is devoted to the proof of Proposition 10, using a fixed point method.
Define the truncation function h(s) := min {1, h0/s}, for some constant h0 > 1 to be fixed

later and consider the map T : L2(0, T ;H) → L2(0, T ;H) such that

1. To a function n ∈ L2(0, T ;H), we associate ∇cε := ∇Kε ∗ n.

2. With ∇cε, we construct the truncated function

f := h
(

‖∇cε‖L∞((0,T )×R2)

)

∇cε .

3. The function f is bounded in L∞((0, T ) × R
2) by h0, so we may apply Lemma 12 and

obtain a new function ñ =: T [n] which solves (13).

The continuity of T is straightforward. As noticed in Section 2.5.2, we may apply the
Aubin-Lions compactness method, which gives enough compactness to apply Schauder’s fixed
point theorem (Theorem 8.1 p. 199 in [38]) to a ball in W(0, T ). Hence we obtain a solution of











∂nε

∂t
= ∆nε − χ∇·(nε f ε)

f ε = h
(

‖∇cε‖L∞((0,T )×R2)

)

∇cε , cε = Kε ∗ nε .

Assuming that h0 > ‖∇Kε‖L∞(R2)‖n0‖L1(R2), we realize that nε is a solution of (12). �

Notice that one can also easily prove a uniqueness result, using an appropriate Gronwall
lemma. We refer for instance to [52] for similar results in a ball.

2.6 Uniform a priori estimates

In this section, we prove a priori estimates for the regularized problem which are uniform with
respect to the regularization parameter ε. These estimates correspond to the formal estimates
of Section 2.3.

Lemma 13 Under Assumption (4), consider a solution nε of (12). If χM < 8π then, uni-
formly as ε → 0, with bounds depending only upon

∫

R2(1 + |x|2)n0 dx and
∫

R2 n0 log n0 dx,
we have:

(i) The function (t, x) 7→ |x|2nε(x, t) is bounded in L∞(R+
loc;L

1(R2)).

(ii) The functions t 7→
∫

R2 n
ε(x, t) log nε(x, t) dx and t 7→

∫

R2 n
ε(x, t) cε(x, t) dx are bounded.
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(iii) The function (t, x) 7→ nε(x, t) log(nε(x, t)) is bounded in L∞(R+
loc;L

1(R2)).

(iv) The function (t, x) 7→ ∇
√
nε(x, t) is bounded in L2(R+

loc × R
2).

(v) The function (t, x) 7→ nε(x, t) is bounded in L2(R+
loc × R

2).

(vi) The function (t, x) 7→ nε(x, t)∆cε(x, t) is bounded in L1(R+
loc × R

2).

(vii) The function (t, x) 7→
√
nε(x, t)∇cε(x, t) is bounded in L2(R+

loc × R
2).

Proof.
(i) The integral

∫

R2 |x|2 nε(x, t) dx can be estimated as in the proof of Lemma 3 because Kε

is radial and satisfies (11), so

d

dt

∫

R2

|x|2 nε(x, t) dx = 4M + 2χ

∫ ∫

R2×R2

nε(x, t)nε(y, t)x · ∇Kε(x− y) dx dy

= 4M + χ

∫ ∫

R2×R2

nε(x, t)nε(y, t) (x − y)∇Kε(x− y) dx dy

≤ 4M − χ

2π

∫ ∫

R2×R2

nε(x, t)nε(y, t)

|x− y| dx dy ≤ 4M .

(ii) We compute

d

dt

[
∫

R2

nε log nε dx− χ

2

∫

R2

nε cε dx

]

= −
∫

R2

nε |∇(log nε) − χ∇cε|2 dx .

Then by (10) and the logarithmic Hardy-Littlewood-Sobolev inequality, see Lemma 6, it fol-
lows by Lemma 7 that both terms of the right hand side are uniformly bounded.

(iii) It is a direct consequence of Lemma 8.

(iv) A simple computation shows that

d

dt

∫

R2

nε log nε dx ≤ −4

∫

R2

∣

∣

∣
∇
√
nε
∣

∣

∣

2
dx+ χ

∫

R2

nε · (−∆cε) dx .

Up to the common factor χ, we can write the last term of the right hand side as
∫

R2

nε · (−∆cε) dx =

∫

R2

nε · (−∆(Kε ∗ nε)) dx = (I) + (II) + (III)

with

(I) :=

∫

nε<K
nε · (−∆(Kε ∗ nε)) , (II) :=

∫

nε≥K
nε · (−∆(Kε ∗ nε))− (III) and (III) =

∫

nε≥K
|nε|2 .

We define φ1 such that
1

ε2
φ1

( ·
ε

)

= −∆Kε .

This gives an easy estimate of (I), namely

(I) ≤
∫

nε<K
K

∫

R2

1

ε2
φ1

(

x− y

ε

)

nε(y) dy dx = MK .
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Notice that
1

ε2
φ1

( ·
ε

)

= −∆Kε ⇀ δ in D′ , (14)

which heuristically explains why (II) should be small. Let us prove that this is indeed the
case. By (10), φ1 is non-negative. Using ‖φ1‖L1(R2) = 1, we get

(II) =

∫

nε≥K
nε(x, t)

∫

R2

[nε(x− εy, t) − nε(x, t)] φ1(y) dy dx

≤
∫

nε≥K
nε(x, t)

∫

R2

[

√

nε(x− εy, t) −
√

nε(x, t)
]

√

φ1(y)

×
[

√

nε(x− εy, t) −
√

nε(x, t) + 2
√

nε(x, t)
]

√

φ1(y) dy dx .

By the Cauchy-Schwarz inequality and using (a+ 2b)2 ≤ 2a2 + 8b2 we obtain

(II) ≤
∫

nε≥K
nε(x, t)

[

‖φ1‖L∞(R2)

∫

1/2≤y≤2

∣

∣

∣

√

nε(x− εy, t) −
√

nε(x, t)
∣

∣

∣

2
dy

]1/2

·
[
∫

R2

[

2
∣

∣

∣

√

nε(x− εy, t) −
√

nε(x, t)
∣

∣

∣

2
+ 8 |nε(x, t)|

]

φ1(y) dy

]1/2

dx .

Using the Poincaré inequality we get

(II) ≤
∫

nε≥K
nε(x, t) ‖φ1‖1/2

L∞(R2)
CP ‖∇

√
nε‖L2(R2)

·
[√

2 ‖φ1‖1/2
L∞(R2)

CP ‖∇
√
nε‖L2(R2) + 2

√
2
√

|nε(x, t)| ‖φ1‖1/2
L1(R2)

]

dx .

Recall the Gagliardo-Nirenberg-Sobolev inequality (7):

∫

nε≥K
|nε|2 dx ≤ C2

GNS

∫

nε≥K

∣

∣

∣
∇
√
nε
∣

∣

∣

2
dx

∫

nε≥K
nε dx .

The left hand side can therefore be made as small as desired using:
∫

nε≥K
nε dx ≤ 1

logK

∫

nε≥K
nε log nε dx ≤ 1

logK

∫

R2

nε | log nε| dx =: η(K) ,

for K > 1, large enough. Then
∫

nε≥K
|nε|2 dx ≤ η(K)C2

GNS

∥

∥

∥
∇
√
nε
∥

∥

∥

2

L2(R2)
. (15)

By the Cauchy-Schwarz inequality

∫

nε≥K
|nε(x, t)|3/2 dx ≤

(
∫

nε≥K
|nε| dx

)1/2

·
(
∫

nε≥K
|nε|2 dx

)1/2

≤ η(K)CGNS ‖∇
√
nε‖L2(R2) .

From this, it follows that

(II) + (III) ≤ B η(K) ‖∇
√
nε‖2

L2(R2)
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with
B := C2

GNS +
√

2 ‖φ1‖L∞(R2) C
2
P + 2

√
2 ‖φ1‖1/2

L∞(R2)
‖φ1‖1/2

L1(R2)
CP CGNS .

We can choose K large enough such that η(K) < 4/B. Collecting the estimates, we have
shown that

d

dt

∫

R2

nε log nε dx ≤MK + (−4 +B η(K))X(t)

with
X(t) := ‖∇

√
nε(t)‖2

L2(R2) ,

and so

(4 −B η)

∫ T

0
X(s) ds ≤M K T +

∫

R2

n0 log n0 dx−
∫

R2

nε(x, T ) log nε(x, T ) dx .

(v) follows from the Gagliardo-Nirenberg-Sobolev inequality (7).

(vi) is a straightforward consequence of (iv). Notice that −∆cε is non-negative as a convolution
of two non-negative functions φ1 and nε.

(vii) A computation shows that

d

dt

∫

R2

1

2
nε cε dx =

∫

R2

cε (∆nε − χ∇ · (nε ∇cε)) dx =

∫

R2

nε ∆cε dx+ χ

∫

R2

nε |∇cε|2 dx .

This proves that

∫∫

[0,T ]×R2

nε |∇cε|2 dx dt ≤ 1

2χ

∣

∣

∣

∣

∫

R2

nε cε dx−
∫

R2

n0 (Kε ∗ n0) dx

∣

∣

∣

∣

+
1

χ

∫ T

0

∫

R2

nε (−∆cε) dx .

The last term of the right hand side is controlled by (vi), while the previous one is bounded
by (ii). �

2.7 Passing to the limit

All estimates of Lemma 13 are uniform in the limit ε → 0. The fact that n0 is assumed to
be bounded in L2(R2) in Lemma 10 does not play any role. In this section, n0 is assumed
to satisfy Assumption (4) and we consider the solution nε of (12) with a non-negative initial
data nε

0 = min{n0, ε
−1}. We want to pass simultaneously to the limit as ε → 0 in nε

0 → n0

and in Kε(z) → K0(z) = − 1
2π log |z|.

Lemma 14 Assume that n0 satisfies Assumption (4) and consider the solution nε of (12)
with a non-negative initial data nε

0 = min{n0, ε
−1}. Then up to the extraction of a sequence

εk of ε converging to 0, nεk converges to a function n solution of (1) in the distribution sense.
Furthermore the flux n |∇(log n) − χ∇c| is bounded in L1([0, T ) × R

2).

Proof. Assertion (vii) of Lemma 13 allows to give a sense to the equation in the limit εց 0.
The term which is difficult to handle is nε ∇cε. It is first of all bounded in L1((0, T ) × R

2)
uniformly with respect to ε, as shown by the Cauchy-Schwarz inequality:

(

∫∫

[0,T ]×R2

nε |∇cε| dx dt
)2

≤
∫∫

[0,T ]×R2

nε dx dt

∫∫

[0,T ]×R2

nε |∇cε|2 dx dt = M T

∫∫

[0,T ]×R2

nε |∇cε|2 dx dt ,
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where the last term is controlled according to (vii) of Lemma 13.

Actually, nε ∇cε converges to n∇c in the sense of distributions. By the Gagliardo-
Nirenberg-Sobolev inequality (7), for any p > 2, for t ∈ R

+ a.e.,

∫

R2

|nε|p/2 dx ≤
(

C
(p)
GNS

)p/2
M

(
∫

R2

∣

∣

∣
∇
√
nε
∣

∣

∣

2
dx

)
p

2
−1

,

which proves that nε is bounded in Lq(R+
loc × R

2) for any p/2 = q ∈ [1,+∞), and that, up to
the extraction of a sequence (εk)k∈N which converges to 0, nεk weakly converges to n in any
Lq

loc(R
+ × R

2), q ≥ 1. Next,

∇cεk −∇c = − 1

2π

∫

R2

x− y

|x− y|2 (nεk(y, t) − n(y, t)) dy

+

∫

|x−y|≤2εk

(

1

εk
∇K1

(

x− y

εk

)

+
x− y

2π |x− y|2
)

nεk(y, t) dy .

Since 1
εk

∇K1
(

z
εk

)

+ z
2π |z|2

can be bounded by 1
2π |z| , all terms converge to 0 for almost any

(x, t) ∈ R
2×R

+ and the convergence of nεk to n is strong in Lq
loc(R

+×R
2) for any q ∈ (2,∞),

which is enough to prove that

nεk∇cεk ⇀ n∇c in D′(R+ × R
2) .

As a consequence, we also get by weak semi-continuity that
∫∫

[0,T ]×R2

n |∇c|2 dx dt ≤ lim inf
εk→0

∫∫

[0,T ]×R2

nεk |∇cεk |2 dx dt ,
∫∫

[0,T ]×R2

n2 dx dt ≤ lim inf
εk→0

∫∫

[0,T ]×R2

|nεk |2 dx dt .

Since the functional n 7→
∫

R2 |∇
√
n|2 dx is convex, we also get

∫∫

[0,T ]×R2

|∇
√
n|2 dx dt ≤ lim inf

εk→0

∫∫

[0,T ]×R2

|∇
√
nεk |2 dx dt .

The proof of the convexity goes as follows. Let n(τ) = n0 + τ ν, τ > 0. Then

d2

dτ2

∫

R2

∣

∣

∣
∇
√

n(τ)
∣

∣

∣

2
dx∣
∣

τ=0

=
1

2n3
0

∫

R2

∣

∣ν∇√
n0 − n0∇

√
ν
∣

∣

2
dx ≥ 0 .

See [5, 6] for more details. Now, since
∫∫

[0,T ]×R2

nεk |∇(log nεk) − χ∇cεk |2 dx dt

= 4

∫∫

[0,T ]×R2

|∇
√
nεk |2 dx dt − 2χ

∫∫

[0,T ]×R2

|nεk |2 dx dt + χ2

∫∫

[0,T ]×R2

nεk |∇cεk |2 dx dt

is bounded uniformly with respect to εk by (8),
∫∫

[0,T ]×R2

n |∇(log n) − χ∇c|2 dx dt
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is also finite. Notice that this is not enough to prove that (8) holds if n is a solution of (1),
even with an inequality instead of the equality. This is however enough to prove that the
flux n |∇(log n) − χ∇c| is bounded in L1([0, T ) × R

2), simply by using the Cauchy-Schwarz
inequality. This concludes the proof of Lemma 14. �

As a consequence of the approximation procedure and of Lemma 14, we have also proved
Proposition 9. To establish Inequality (2) in Theorem 1, we only need to prove that

∫∫

[0,T ]×R2

n2 dx dt = lim inf
εk→0

∫∫

[0,T ]×R2

|nεk |2 dx dt ,

but this requires some additional work on the regularity properties of the solutions of (1).

3 Free energy inequality and regularity properties

In this section, we give some additional regularity properties of the solutions when χM < 8π.

3.1 Weak regularity results

The following result is due to Goudon, see [24].

Theorem 15 [24] Let nε : (0, T ) × R
N → R be such that for almost all t ∈ (0, T ), nε(t)

belongs to a weakly compact set in L1(RN ) for almost any t ∈ (0, T ). If ∂tn
ε =

∑

|α|≤k ∂
α
x g

(α)
ε

where, for any compact set K ⊂ R
n,

lim sup
|E|→0

E⊂R is measurable

(

sup
ε>0

∫ ∫

E×K
|g(α)

ε | dt dx
)

= 0 ,

then (nε)ε>0 is relatively compact in C0([0, T ];L1
weak(R

N ).

This result immediately applies to the solution of (12).

Corollary 16 Let nε be a solution of (12) with initial data nε
0 = min{n0, ε

−1} such that
n0 (1 + |x|2 + | log n0|) ∈ L1(R2). If n is a solution of (1) with initial data n0, such that,
for a sequence (εk)k∈N with limk→∞ εk = 0, nεk ⇀ n in L1((0, T ) × R

2), then n belongs to
C0(0, T ;L1

weak(R2)).

Proof. We are able to apply Theorem 15 to nε where g
(1)
ε := −χnε ∇cε = −χ

√
nε ·

√
nε ∇cε

and g
(2)
ε := nε. Notice indeed that as a consequence of Lemma 18, we have, uniformly with

respect to ε,

lim sup
t1→t2

sup
ε
g(1)
ε ≤ χ lim sup

t1→t2
M(t2 − t1)

∫ t2

t1

∫

R2

nε|∇cε|2 dx ds = 0 ,

lim sup
t1→t2

sup
ε
g(2)
ε ≤ lim sup

t1→t2

∫ t2

t1

∫

R2

nε dx = 0 .

�
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3.2 L
p uniform estimates

Here we prove that if the initial data n0 is bounded in Lp(R2), then it is also the case for the
solution n(·, t) for any finite positive time t. By uniform, we mean estimates that hold up to
t = 0.

Proposition 17 Assume that (4) and M < 8π/χ hold. If n0 is bounded in Lp(R2) for some
p > 1, then any solution n of (1) is bounded in L∞

loc(R
+, Lp(R2)).

Proof. We formally compute

1

2(p − 1)

d

dt

∫

R2

|n(x, t)|p dx = −2

p

∫

R2

|∇(np/2)|2 dx+ χ

∫

R2

∇(np/2) · np/2 · ∇c dx

= −2

p

∫

R2

|∇(np/2)|2 dx+ χ

∫

R2

np (−∆c) dx

= −2

p

∫

R2

|∇(np/2)|2 dx+ χ

∫

R2

np+1 dx .

Using the following Gagliardo-Nirenberg-Sobolev inequality:

∫

R2

|v|2(1+1/p) dx ≤ Kp

∫

R2

|∇v|2 dx
∫

R2

|v|2/p dx ,

or equivalently, with n = v2/p,

∫

R2

|n|p+1 dx ≤ Kp

∫

R2

|∇(np/2)|2 dx
∫

R2

|n| dx ,

we get the estimate

1

2(p − 1)

d

dt

∫

R2

np dx ≤
∫

R2

|∇(np/2)|2 dx
(

−2

p
+Kp χM

)

,

which proves the decay of
∫

R2 n
p dx if M < 2

p Kp χ . Otherwise, we can rely on the entropy
estimate to get a bound: Let K > 1 be a constant, to be chosen later.

∫

R2

np dx =

∫

n≤K
np dx+

∫

n>K
np dx .

The first term of the right hand side is bounded by Kp−1M . Concerning the second one,
define first

M(K) :=

∫

n>K
n dx .

Using the fact that |n log n| is bounded in L∞(R+
loc;L

1(R2)), we can estimate M(K) by

M(K) ≤ 1

logK

∫

n>K
n log n dx ≤ 1

logK

∫

R2

|n log n| dx
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and choose it arbitrarily small on any given time interval (0, T ). Following [32], compute now

d

dt

∫

R2

(n−K)p+ dx+
4

p
(p− 1)

∫

R2

|∇((n −K)
p/2
+ )|2 dx

= p

∫

R2

(n−K)p−1
+ [∆n− χ∇(n∇c)] dx+

4

p
(p− 1)

∫

R2

|∇((n −K)
p/2
+ )|2 dx

= −pχ
∫

R2

(n−K)p−1
+ [∇(n−K) · ∇c+ n∆c] dx

= −χ

∫

R2

(n−K)p−1
+ [(n−K)+ (−∆c) − p n (−∆c)] dx

= (p− 1)χ

∫

R2

(n−K)p+1
+ dx+ (2p − 1)χK

∫

R2

(n−K)p+ dx+ pχK2

∫

R2

(n−K)p−1
+ dx

The term involving
∫

R2(n−K)p−1
+ dx can be estimated as follows:

∫

R2

(n−K)p−1
+ dx =

∫

K<n≤K+1
(n−K)p−1

+ dx+

∫

n>K+1
(n−K)p−1

+ dx ,

∫

K<n≤K+1
(n−K)p−1

+ dx ≤
∫

K<n≤K+1
1 dx ≤ 1

K

∫

K<n≤K+1
n dx ≤ M

K
,

∫

n>K+1
(n−K)p−1

+ dx ≤
∫

n>K+1
(n−K)p+ dx ≤

∫

R2

(n−K)p+ dx .

By choosing K sufficiently large, we obtain

−4

p
(p− 1)

∫

R2

|∇((n−K)
p/2
+ )|2 dx+ (p− 1)χ

∫

R2

(n−K)p+1
+ dx ≤ 0

using again the Gagliardo-Nirenberg-Sobolev inequality but with M replaced by M(K), small.
Summarizing, for a fixed interval (0, T ) with T arbitrarily large, we have found K such that

d

dt

∫

R2

(n −K)p+ dx ≤ C1

∫

R2

(n−K)p+ dx+ C2

for some positive constants C1 and C2. A Gronwall estimate shows that
∫

R2(n − K)p+ dx is
finite on (0, T ).

To justify this estimate, one has as above to establish it for the regularized problem and
then pass to the limit. This is purely technical but not difficult and we leave it to the reader.

To conclude, we still need to check that the bound on
∫

R2(n−K)p+ dx is enough to control
∫

n>K np dx. Using the estimate

xp ≤
( λ

λ− 1

)p−1
(x− 1)p

for any x ≥ λ > 1, we get
∫

n>K
np dx =

∫

K<n≤λK
np dx+

∫

n>λ K
np dx

≤ (λK)p−1M +
( λ

λ− 1

)p−1
Kp

∫

n>λ K

( n

K
− 1
)p

dx

≤ (λK)p−1M +
( λ

λ− 1

)p−1
∫

R2

(n −K)p+ dx .



22 A. Blanchet, J. Dolbeault, B. Perthame March 25, 2006

�

Notice that very similar estimates have been derived, without the knowledge of the optimal
bound χM < 8π, by W. Jäger and S. Luckhaus in [32] in R

d, d = 2 (also see [18, 19] if d ≥ 2),
by working directly in an Lp-framework, instead of the free energy framework.

3.3 The free energy inequality in a regular setting

Using the a priori estimates of the previous section for p = 2 + ε, we can prove that the free
energy inequality (2) holds.

Lemma 18 Let n0 be in a bounded set in L1
+(R2, (1 + |x|2)dx) ∩ L2+ε(R2, dx), for some

ε > 0, eventually small. Then n0 satisfies Assumption (4), the solution n of (1) found in
Theorem 1, with initial data n0, is in a compact set in L2(R+

loc × R
2) and moreover the free

energy production estimate (2) holds:

F [n] +

∫ t

0

(
∫

R2

n |∇ (log n) − χ∇c|2 dx
)

ds ≤ F [n0] .

Proof. We split the proof in three steps.

First Step: n is bounded in L2(R+
loc × R

2). To apply Theorem 1, we need to prove that
n0 log n0 is integrable. By Hölder’s inequality we have

‖u‖Lq(R2) ≤ ‖u‖α
Lp(R2) ‖u‖1−α

Lr(R2)

with α = p
q

r−q
r−p , p ≤ q ≤ r. Take the logarithm of both sides:

α log

(

‖u‖Lq(R2)

‖u‖Lp(R2)

)

+ (α− 1) log

(

‖u‖Lr(R2)

‖u‖Lq(R2)

)

≤ 0 .

Since this inequality trivializes to an equality when q = p, we may differentiate it with respect
to q at q = p and get that for any u ∈ Lp(Rd) ∩ Lr(Rd), 1 ≤ p < r < +∞, we have

∫

up log

(

|u|
‖u‖Lp(R2)

)

dx ≤ r

r − p
‖u‖p

Lp(R2)
log

(

‖u‖Lr(R2)

‖u‖Lp(R2)

)

.

With u = n0, p = 1 and r = 2 + ε, by applying Lemma 8, we obtain

∫

R2

n0

∣

∣ log n0

∣

∣ dx

≤ M

1 + ε

[

(2 + ε) log(‖n0‖L2+ε(R2)) − log M + 2 log(2π)
]

+

∫

R2

|x|2 n0 dx+
2

e
<∞ .

Since n0 ∈ L1 ∩ L2+ε(R2), by Hölder’s inequality, n0 is initially in any Lq(R2) for all
q ∈ [1, 2 + ε], and as a special case in L2(R2):

‖n0‖2
L2(R2) ≤ ‖n0‖ε/(1+ε)

L1(R2)
‖n0‖1/(1+ε)

L2+ε(R2)
.
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Hence by Theorem 1, the solution n of (1) is bounded in L∞(R+
loc;L

1∩L2+ε(R2)). As a special
case n is bounded in L2(R+

loc × R
2).

Second Step: ∇n is bounded in L2(R+
loc × R

2). The following computation

d

dt

∫

R2

n2 dx = −2

∫

R2

|∇n|2 dx+ 2χ

∫

R2

∇n · n∇c dx

shows that X := ‖∇n‖L2((0,T )×R2) satisfies the estimate

2X2 − 2χ ‖n∇c‖L∞(0,T ;L2(R2))X ≤ ‖n‖2
L∞(0,T ;L2(R2)) + ‖n0‖2

L2(R2) .

This implies that X is bounded if ‖n∇c‖L∞(0,T ;L2(R2)) is bounded. Let us prove that this is
indeed the case. The drift force term takes the form

∇c(x, t) =
1

2π

∫

R2

x− y

|x− y|2 n(y, t) dy .

Since n0 ∈ L2+ε(R2), by Theorem 1, the solution n of is bounded in L∞(R+
loc;L

2+ε(R2)).
As a consequence of the Hardy-Littlewood-Sobolev inequality (see below), for any (p1, q1) ∈
(2,+∞) × (1, 2) such that 1

p1
= 1

q1
− 1

2 , there exists a constant C = C(p1) > 0 such that for
almost any t > 0,

‖∇c(·, t)‖Lp1 (R2) ≤ C ‖n(·, t)‖Lq1 (R2) .

We can indeed evaluate ‖f ∗ | · |−λ‖Lp1 (Rd) by

‖f ∗ | · |−λ‖Lp1 (Rd) = sup
g ∈ Lq1(Rd)

‖g‖Lq1 (Rd) ≤ 1

∫

Rd

(

f ∗ | · |−λ
)

g dx

with 1
p1

+ 1
q1

= 1. The right hand side is bounded, up to a multiplicative constant, by ‖f‖Lp(R2)

according to the Hardy-Littlewood-Sobolev inequality, if 1
p + 1

q1
+ λ

d = 2 and 0 < λ < d. This

inequality, see, e.g., [37], indeed states that: For all f ∈ Lp(Rd), g ∈ Lq(Rd), 1 < p, q < ∞
such that 1

p + 1
q + λ

d = 2 and 0 < λ < d, there exists a constant C = C(p, q, λ) > 0 such that

∣

∣

∣

∣

∫

Rd×Rd

1

|x− y|λ f(x) g(y) dx dy

∣

∣

∣

∣

≤ C‖f‖Lp(Rd) ‖g‖Lq(Rd) .

Applied with λ = 1, d = 2, this proves that ‖n∇c‖L∞(0,T ;L2(R2)) is bounded.
Applying this estimate with p1 = 2(1 + 2/ε) and q1 = 2 − ε/(1 + ε), and using Hölder’s

inequality, we can write

‖n(·, t)∇c(·, t)‖L2(R2) ≤ ‖n(·, t)‖L2+ε(R2)‖∇c(·, t)‖Lp1 (R2) ≤ C ‖n(·, t)‖L2+ε(R2)‖n(·, t)‖Lq1 (R2) .

which is bounded as q1 ∈ [1, 2 + ε]. Thus, if n is a solution of (1), n∇c is bounded in
L∞(R+

loc;L
2(R2)).

Third Step: Compactness. As a consequence of Hölder’s inequality with p := (1 + ε)/ε,
q := 1 + ε:

∫

R2

|x|
2 ε
1+ε n2 dx =

∫

R2

(n |x|2)
ε

1+ε · n
2+ε
1+ε dx ≤

(
∫

R2

n |x|2 dx
)

ε
1+ε
(
∫

R2

n2+ε dx

)
1

1+ε

,
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the function (x, t) 7→ |x|
ε

1+ε n is bounded in L∞(R+
loc;L

2(R2)). The imbedding of the set

V := {u ∈ H1 ∩ L1
+(R2) : |x|

ε
1+ε u ∈ L1(R2)} into L2(R2) =: H is compact and by the

Aubin-Lions compactness method (see Lemma 11) as in Section 2.5, it results that n belongs
to a compact set of L2(R+

loc × R
2).

Let (nk)k∈N := (nεk)k∈N be an approximating sequence defined as in the proof of Theo-
rem 1. Compared to the results of Lemma 14, we have

∫∫

[0,T ]×R2

|∇n|2 dx dt ≤ lim inf
k→∞

∫∫

[0,T ]×R2

|∇nk|2 dx dt ,
∫∫

[0,T ]×R2

n |∇c|2 dx dt ≤ lim inf
k→∞

∫∫

[0,T ]×R2

nk |∇ck|2 dx dt ,
∫∫

[0,T ]×R2

n2 dx dt = lim inf
k→∞

∫∫

[0,T ]×R2

|nk|2 dx dt ,

where the only difference lies in the last equality, a consequence of the above compactness
result. This proves the free energy estimate using
∫∫

[[0,T ]×R2

n |∇ (log n) − χ∇c|2 dx dt = 4

∫∫

[[0,T ]×R2

|∇
√
n|2 dx dt+χ2

∫∫

[[0,T ]×R2

n |∇c|2 dx dt−2χ

∫∫

[[0,T ]×R2

n2 dx dt .

�

3.4 Hypercontractivity

Much more regularity can actually be achieved as follows. All computations are easy to justify
for smooth solutions with sufficient decay at infinity. Up to a regularization step, the final
estimates certainly hold if the initial data is bounded in L∞(R2), which is the case for the
regularized problem of Section 2.5 with truncated initial data nε

0 = min{n0, ε
−1}. However,

we will see that the L∞(R+
loc;L

p(R2))-estimates hold for any p > 1 independently of ε, so that
we may pass to the limit and get the result for any solution of (1) with initial data satisfying
only (4) and χM < 8π. To simplify the presentation of the method, we will therefore do the
computations only at a formal level, for smooth solutions which behave well at infinity.

Theorem 19 Consider a solution n of (1) with initial data n0 satisfying (4) and χM < 8π.
Then for any p ∈ (1,∞), there exists a continuous function hp on (0,∞) such that for almost
any t > 0, ‖n(·, t)‖Lp(R2) ≤ hp(t).

Notice that unless n0 is bounded in Lp(R2), limt→0+ hp(t) = +∞. Such a result is called an
hypercontractivity result, see [25], since to an initial data which is originally in L1(R2) but
not in Lp(R2), we associate a solution which at almost any time t > 0 is in Lp(R2) with p
arbitrarily large.

Proof. Fix t > 0 and p ∈ (1,∞), and consider q(s) := 1 + (p − 1) s
t , so that q(0) = 1 and

q(t) = p. Exactly as in the proof of Theorem 1, for an arbitrarily small η > 0 given in advance,
we can find K > 1 big enough such that M(K) := sups∈(0,t)

∫

n>K n(·, s) dx is smaller than η.
It is indeed sufficient to notice that

∫

n>K
n(·, s) dx ≤ 1

logK

∫

n>K
n(·, s) log n(·, s) dx ≤ 1

logK

∫

R2

|n(·, s) log n(·, s)| dx .
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Since χM < 8π, n | log n| is bounded in L∞(0, t;L1(R2)). This proves that for K big enough,
we may assume

∫

R2

(n−K)+ dx ≤ η ,

for an arbitrarily small η > 0.

Next, we define

F (s) :=

[
∫

R2

(n−K)
q(s)
+ (x, s) dx

]1/q(s)

for the function s 7→ q(s) defined above. A derivation with respect to s gives

F ′ F q−1 =
q′

q2

∫

R2

(n−K)q+ log

(

(n−K)q+
F q

)

+

∫

R2

nt (n−K)q−1
+ .

If n is a solution to (1), then

∫

R2

(n−K)q−1
+ nt dx = −4

q − 1

q2

∫

R2

|∇((n−K)
q/2
+ )|2 dx+ χ

q − 1

q

∫

R2

(n−K)q+1
+ dx ,

and we get

F ′ F q−1 =
q′

q2

∫

R2

(n−K)q+ log

(

(n−K)q+
F q

)

−4
q − 1

q2

∫

R2

|∇((n−K)
q/2
+ )|2+χ

(q − 1)

q

∫

R2

(n−K)q+1
+ .

Using the assumption q′ ≥ 0, we can apply the logarithmic Sobolev inequality [25]

∫

R2

v2 log

(

v2

∫

R2 v2 dx

)

dx ≤ 2σ

∫

R2

|∇v|2 dx− (2 + log(2π σ))

∫

R2

v2 dx

for any σ > 0, and the Gagliardo-Nirenberg-Sobolev inequality

∫

R2

|v|2(1+1/q) dx ≤ K(q) ‖∇v‖2
L2(R2)

∫

R2

|v|2/q dx , ∀ q ∈ [2,∞)

to v := (n−K)
q/2
+ , and get

F ′ F q−1 ≤
(

2σ q′

q2
− 4

q − 1

q2
+ χ

q − 1

q
K(q) η

)

‖∇v‖2
L2(R2) −

q′

q2
(2 + log(2π σ))F q .

With the specific choice of σ := (q−1)/q′ and provided η is chosen small enough in order that

−2
q − 1

q2
+ χ

q − 1

q
sup

r∈(1,p)
[K(r)] η ≤ 0 ,

this shows that
F ′

F
≤ − q′

q2
(2 + log(2π σ)) =: G(t) .

The function G is integrable on (0, t), which proves that F (t) can be bounded in terms of F (0).
�
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3.5 The free energy inequality for weak solutions

As a consequence of Lemma 18 and Theorem 19, we have the following result.

Corollary 20 Let (nk)k∈N be a sequence of solutions of (1) with initial data nk
0 satisfying

Assumption (4) with uniform corresponding bounds. For any t0 > 0, T ∈ R
+ such that

0 < t0 < T , (nk)k∈N is relatively compact in L2((t0, T )×R
2), and if n is the limit of (nk)k∈N,

then n is a solution of (1) such that the free energy inequality (2) holds.

Proof. By Theorem 19, for t > t0 > 0, nk is bounded in L∞(t0, t;L
2+ε(R2)), for any ε > 0.

We can therefore apply Lemma 18 with initial data nk(·, t0) at t = t0:

F [nk(·, t)] +

∫ t

t0

(
∫

R2

nk
∣

∣

∣
∇
(

log nk
)

− χ∇ck
∣

∣

∣

2
dx

)

ds ≤ F [nk(·, t0)] .

The compactness in L2([t0, t] × R
2) follows from Lemma 11. Passing to the limit as k → ∞,

we get

F [n(·, t)] +

∫ t

t0

(
∫

R2

n |∇ (log n) − χ∇c|2 dx
)

ds ≤ F [n(·, t0)] .

Since, as a function of s,
∫

R2 n(·, s) |∇ (log n(·, s)) − χ∇c(·, s)|2 dx is integrable on (0, t), we
can pass to the limit t0 → 0. By convexity of n 7→ n log n, it is easy to check that
limt0→0+ F [n(·, t0)] ≤ F [n0]. �

Apply Corollary 20 with nk
0 = min{n0, εk

−1} as in the regularization procedure of Sec-
tion 2.5–2.7. This completes the proof of Theorem 1.

4 Intermediate asymptotics and self-similar solutions

In this section, we investigate the behavior of the solutions as time t goes to infinity and prove
Theorem 2. The key tool is the free energy written in rescaled variables, FR, which is defined
below. The main difficulty comes from the fact that the uniqueness of the solutions to (3) for
a given M ∈ (0, 8π/χ) is not known. This is not crucial for the proof of Theorem 2 because,
in the self-similar variables, the decay of the entropy selects a unique solution to (3). In this
section, we will anyway prove several additional properties (radial symmetry, regularity, decay
at infinity) of the solution of (3) and comment on related issues.

4.1 Self-similar variables

Assume that χM < 8π, consider a solution of (1) and define the rescaled functions u and v by:

n(x, t) =
1

R2(t)
u

(

x

R(t)
, τ(t)

)

and c(x, t) = v

(

x

R(t)
, τ(t)

)

(16)

with

R(t) =
√

1 + 2t and τ(t) = logR(t) .
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The rescaled system is


























∂u

∂t
= ∆u−∇·(u(x+ χ∇v)) x ∈ R

2 , t > 0 ,

v = − 1

2π
log | · | ∗ u x ∈ R

2 , t > 0 ,

u(·, t = 0) = n0 ≥ 0 x ∈ R
2 .

(17)

The free energy now takes the form

FR[u] :=

∫

R2

u log u dx− χ

2

∫

R2

u v dx+
1

2

∫

R2

|x|2 u dx .

If (u, v) is a smooth solution of (17) which decays sufficiently at infinity, then

d

dt
FR[u(·, t)] = −

∫

R2

u |∇ log u− χ∇v + x|2 dx .

Because of the hypercontractivity, the above inequality holds as an inequality for the solution
of Theorem 1 after rescaling:

d

dt
FR[u(·, t)] ≤ −

∫

R2

u |∇ log u− χ∇v + x|2 dx .

For a rigorous proof, one has to redo the argument of Section 3.4. Since there is no additional
difficulty this is left to the reader.

4.2 The self-similar solution

System (17) has the interesting property that for χM < 8π, it has a stationary solution which
minimizes the free energy.

Lemma 21 The functional FR is bounded from below on the set
{

u ∈ L1
+(R2) : |x|2 u ∈ L1(R2) ,

∫

R2

u log u dx <∞
}

if and only if χ ‖u‖L1(R2) ≤ 8π.

Proof. If χ ‖u‖L1(R2) ≤ 8π, the result is a straightforward consequence of Lemma 6. Notice
that by Lemma 13, (iii), u log u is then bounded in L1(R2).

The functional FR[u] has an interesting scaling property. For a given u, let uλ(x) =
λ−2u(λ−1x). It is straightforward to check that ‖uλ‖L1(R2) =: M does not depend on λ > 0
and

FR[uλ] = FR[u] − 2M

(

1 − χM

8π

)

log λ+
λ− 1

2

∫

R2

|x|2 u dx .

As a function of λ, FR[uλ] is clearly bounded from below if χM < 8π, and not bounded from
below if χM > 8π, which completes the proof. �

The free energy has a minimum which is a radial stationary solution of (17), see [12].
Such a solution is of course a natural candidate for the large time asymptotics of any solution
of (17). In [12], there are also indications that (3) should have a unique solution for any
given M , and there are strong numerical evidences supporting this fact. However, we are not
able to discard the possibility that more than one solution to (3) exists for any given M .
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Lemma 22 Let χM < 8π. If u is a solution of (17), with initial data u0 satisfying As-
sumptions (4), corresponding to a solution of (1) as given in Theorem 1, then as t → ∞,
(s, x) 7→ u(x, t+s) converges in L∞(0, T ;L1(R2)) for any positive T to a solution of (3) which
is a stationary solution of (17) and moreover satisfies:

lim
t→∞

∫

R2

|x|2 u(x, t) dx =

∫

R2

|x|2 u∞ dx = 2M

(

1 − χM

8π

)

. (18)

Proof. We use the free energy production term:

FR[u0] − lim inf
t→∞

FR[u(·, t)] = lim
t→∞

∫ t

0

(
∫

R2

u |∇ log u− χ∇v + x|2 dx
)

ds .

As a consequence,

lim
t→∞

∫ ∞

t

(
∫

R2

u |∇ log u− χ∇v + x|2 dx
)

ds = 0 , (19)

which shows that, up to the extraction of subsequences, the limit u∞ of u(·, t+ ·), which exists
for the same reasons as in the proof of Theorem 1, satisfies

∇ log u∞ − χ∇v∞ + x = 0 , v∞ = − 1

2π
log | · | ∗ u∞ ,

where the first equation holds at least a.e. in the support of u∞. This is equivalent to write
that (u∞, v∞) solves (3). Notice that the limit is unique because of (19) even if the uniqueness
of the solutions of (3) is not established. Because of (19), we also know that u∞ does not
depend on the choice of the subsequence.

As in the proof of Lemma 3, consider a smooth function ϕε(|x|) with compact support
that grows nicely to |x|2 as ε→ 0. If (u, v) is a solution to (17), we compute

d

dt

∫

R2

ϕε u dx

=

∫

R2

∆ϕε u dx− χ

4π

∫

R2

(∇ϕε(x) −∇ϕε(y)) · (x− y)

|x− y|2 u(x, t)u(y, t) dx dy − 2

∫

R2

|x|2 u dx .

As ε vanishes we may pass to the limit and obtain

d

dt

∫

R2

|x|2 u dx = 4M

(

1 − χM

8π

)

− 2

∫

R2

|x|2 u dx .

This proves that for any t > 0,

∫

R2

|x|2 u(x, t) dx =

∫

R2

|x|2 n0 dx e
−2t + 2M

(

1 − χM

8π

)

(1 − e−2t) .

Passing to the limit t→ ∞, we get

∫

R2

|x|2 u∞ dx ≤ 2M

(

1 − χM

8π

)

.
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However, u∞ is a solution of Equation (17), which satisfies the same assumptions as n0. Since
it is a stationary solution with finite second moments, we have

∫

R2

|x|2 u∞ dx = 2M

(

1 − χM

8π

)

.

�

Notice that under the constraint ‖u∞‖L1(R2) =M , u∞ is a critical point of the free energy.
If we knew that (3) has at most one solution for a given M > 0, u∞ would automatically be
the unique minimizer of the free energy. This result is not known although one can establish
that u∞ is radially symmetric. This is done using the two following results, Lemmata 23
and 24.

Lemma 23 Let u ∈ L1
+(R2, (1 + |x|2) dx) with M :=

∫

R2 u dx, such that
∫

R2 u log u dx < ∞,
and define

v(x) := − 1

2π

∫

R2

log |x− y|u(y) dy .

Then there exists a positive constant C such that, for any x ∈ R
2 with |x| > 1,

∣

∣

∣

∣

v(x) +
M

2π
log |x|

∣

∣

∣

∣

≤ C .

Notice that as a straightforward consequence, v is non-positive outside of a ball.

Proof. We estimate
∣

∣

∣

∣

v(x) +
M

2π
log |x|

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2π

∫

R2

log

( |x− y|
|x|

)

u(y) dy

∣

∣

∣

∣

≤ (I) + (II) + (III)

by

(I) := − 1

2π

∫

ΩI

log

( |x− y|
|x|

)

u(y) dy with ΩI :=

{

(x, y) ∈ R
2 :

|x− y|
|x| ≤ 1

2

}

(II) :=

∣

∣

∣

∣

1

2π

∫

ΩII

log

( |x− y|
|x|

)

u(y) dy

∣

∣

∣

∣

with ΩII :=

{

(x, y) ∈ R
2 :

1

2
<

|x− y|
|x| ≤ 2

}

(III) :=
1

2π

∫

ΩIII

log

( |x− y|
|x|

)

u(y) dy with ΩIII :=

{

(x, y) ∈ R
2 :

|x− y|
|x| > 2

}

.

Using |x− y|2 ≤ 2(|x|2 + |y|2) and log(1 + t) ≤ t, we get

4π (III) =

∫

ΩIII

log

( |x− y|2
|x|2

)

u(y) dy ≤
∫

ΩIII

log

(

2 + 2
|y|2
|x|2

)

u(y) dy ≤M +
2

|x|2
∫

ΩIII

|y|2u(y) dy .

On ΩII, | log (|x− y|/|x|) | is bounded by log 2: (II) ≤ M log 2
2 π . For the last term, denote

zx(y) = |x|
|x−y| :

(I) =
1

2π

∫

ΩI

log (zx(y)) u(y) dy .
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By Jensen’s inequality

∫

ΩI

u(y) log

(

u(y)

zx(y)

)

dy ≥
∫

ΩI

u(y) log

( ∫

ΩI
u(y) dy

∫

ΩI
zx(y) dy

)

dy ,

we get

2π (I) ≤
∫

ΩI

u(y) log (u(y)) dy −
∫

ΩI

u(y) log

(
∫

ΩI
u(y) dy

∫

ΩI
zx(y) dy

)

dy .

The right hand side is bounded since u log u is bounded in L1(R2) by Lemma 8,

∫

ΩI

zx(y) dy =

∫

ΩI

|x|
|x− y| dy = π |x|2 ,

and
∫

ΩI

u(y) dy ≤ 4

|x|2
∫

ΩI

|y|2u(y) dy .

Hence we can control (I) because
∫

ΩI
u(y) dy log

(

∫

ΩI
zx(y) dy

)

≤ 4
|x|2 log

(

π |x|2
)

. �

This is enough to prove that the solution is radially symmetric, see [45].

Lemma 24 [45] Assume that V is a non-negative non-trivial radial function on R
2 such that

lim|x|→∞ |x|α V (x) <∞ for some α ≥ 0. If u is a solution of

∆u+ V (x) eu = 0 x ∈ R
2

such that u+ ∈ L∞(R2), then u is radially symmetric about the origin and x · ∇u(x) < 0 for
any x ∈ R

2.

Notice here that because of the asymptotic logarithmic behavior of v∞, the result of Gidas,
Ni and Nirenberg, [23], does not directly apply. The boundedness from above is essential,
otherwise non-radial solutions can be found, even with no singularity. Consider for instance
the perturbation Θ(x) = 1

2 θ (x2
1−x2

2) for any x = (x1, x2), for some fixed θ ∈ (0, 1), and define
the potential φ(x) = 1

2 |x|2 − Θ(x). By a fixed-point method we can find a solution of

w(x) = − 1

2π
log | · | ∗M eχw−φ(x)

∫

R2 eχw(y)−φ(y) dy

since, as |x| → ∞, φ(x) ∼ 1
2

[

(1 − θ)x2
1 + (1 + θ)x2

2

]

→ +∞. This solution is such that

w(x) ∼ −M
2π log |x| for reasons similar to the ones of Lemma 23. Hence v(x) := w(x)+Θ(x)/χ

is a non-radial solution of the above equation with log V (x) = −1
2 |x|2, which behaves like

Θ(x)/χ as |x| → ∞ with |x1| 6= |x2|. This gives a non radial solution of Equation (3).

Lemma 25 If χM > 8π, Equation (17) has no stationary solution (u∞, v∞) such that
‖u∞‖L1(R2) = M and

∫

R2 |x|2 u∞ dx < ∞. If χM < 8π, Equation (17) has at least one
radial stationary solution given by (3). This solution is C∞ and u∞ is dominated as |x| → ∞
by e−(1−ε)|x|2/2 for any ε ∈ (0, 1).



March 25, 2006 The two-dimensional Keller-Segel model 31

Proof. The existence of a stationary solution if χM < 8π is easy. It follows from Lemma 22
but can also be achieved by minimizing the free energy, see [12]. If the initial condition is
radial or if the minimization is done among radial solutions, then the stationary solution is also
radial. Direct approaches (fixed-point methods, ODE shooting methods) can also be used.

If χM > 8π and if there was a stationary solution with finite second moment, we could
write

0 =
d

dt

∫

R2

|x|2 u∞ dx = 4M

(

1 − χM

8π

)

− 2

∫

R2

|x|2 u∞ dx .

Since the right hand side is negative, this is simply impossible. �

In the rescaled variables, the solution of (17) converges to a radial stationary solution
u∞ of (3). It is not difficult to check that n̄(x, t) := 1

2t u∞
(

1
2 log(2t), x/

√
2t
)

and c̄(x, t) :=

v∞
(

1
2 log(2t), x/

√
2t
)

gives a self-similar solution of (1), which is supposed to describe the
large time asymptotics of (1), and this is what we are going to clarify in the last section.

4.3 Intermediate asymptotics

Lemma 26 Under the assumptions of Lemma 22,

lim
t→∞

FR[u(·, · + t)] = FR[u∞] .

Proof. By (18), we already know that limt→∞

∫

R2 |x|2 u(x, t) dx =
∫

R2 |x|2 u∞ dx. Using
the estimates of Sections 2.5–2.7 and Lemma 11, we know that u(·, · + t) converges to u∞ in
L2((0, 1)×R

2) and that
∫

R2 u(·, ·+ t) v(·, ·+ t) dx converges to
∫

R2 u∞ v∞ dx. Concerning the
entropy, it is sufficient to prove that u(·, ·+ t) log u(·, ·+ t) weakly converges in L1((0, 1)×R

2)
to u∞ log u∞. By Lemma 8, there is a uniform L1 bound. Concentration is prohibited by
the convergence in L2((0, 1) × R

2). Vanishing or dichotomy cannot occur either: Take indeed
R > 0, large, and compute

∫

|x|>R u | log u| = (I) + (II), with

(I) =

∫

|x|>R, u≥1
u log u dx ≤ 1

2

∫

|x|>R, u≥1
|u|2 dx ,

(II) = −
∫

|x|>R, u<1
u log u dx ≤ 1

2

∫

|x|>R, u<1
|x|2 u dx−m log

(m

2π

)

.

In the first case, we have used the inequality u log u ≤ u2/2 for any u ≥ 1, while the second
estimate is based on Jensen’s inequality in the spirit of the proof of Lemma 8:

m :=

∫

|x|>R, u<1
u dx ≤ 1

R2

∫

|x|>R, u<1
|x|2 u dx .

Because of the convergence of the two quantities
∫

|x|>R, u<1 |u|2 dx and
∫

|x|>R, u<1 |x|2 u dx to 0
as R→ ∞, we have the uniform estimate

lim
R→∞

∫

|x|>R
u | log u| = 0 ,

which completes the proof. �
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The result we have shown above is actually slightly better, since it proves that all terms in
the free energy, namely the entropy, the energy corresponding to the potential 1

2 |x|2 and the
self-consistent potential energy, converge to the corresponding values for the limiting stationary
solution.

As noted above, u∞ is a critical point of FR under the constraint ‖u‖L1(R2) = M . We can

therefore rewrite FR[u] − FR[u∞] as

FR[u] − FR[u∞] =

∫

R2

u log

(

u

u∞

)

dx− χ

2

∫

R2

|∇v −∇v∞|2 dx ,

and both terms in the above expression converge to 0 as t→ ∞, if u is a solution of (1). Since
for any nonnegative functions f , g ∈ L1(R2) such that

∫

R2 f dx =
∫

R2 g dx = M ,

‖f − g‖2
L1(R2) ≤

1

4M

∫

R2

f log

(

f

g

)

dx

by the Csiszár-Kullback inequality, [20, 35], this proves the

Corollary 27 Under the assumptions of Lemma 22,

lim
t→∞

‖u(·, · + t) − u∞‖L1(R2) = 0 and lim
t→∞

‖∇v(·, · + t) −∇v∞‖L2(R2) = 0 .

Undoing the change of variables (16), this proves Theorem 2.
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erman, P. A. Markowich, G. Toscani, and C. Villani, Entropies and equilibria of
many-particle systems: an essay on recent research, Monatsh. Math., 142 (2004), pp. 35–
43.
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des systèmes stellaires auto-gravitants, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001),
pp. 903–908.

[53] T. Senba and T. Suzuki, Weak solutions to a parabolic-elliptic system of chemotaxis,
J. Funct. Anal., 191 (2002), pp. 17–51.

[54] , Blowup behavior of solutions to the rescaled Jäger-Luckhaus system, Adv. Differ-
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