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Abstract

We introduce a wavelet-based model of local stationarity. This model en-

larges the class of locally stationary wavelet processes and contains processes

whose spectral density function may change very suddenly in time. A notion

of time-varying wavelet spectrum is uniquely defined as a wavelet-type trans-

form of the autocovariance function with respect to so-called autocorrelation

wavelets. This leads to a natural representation of the autocovariance which

is localised on scales. We propose a pointwise adaptive estimator of the time-

varying spectrum. The behaviour of the estimator is studied in homogeneous

and inhomogeneous regions of the wavelet spectrum.
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1 Introduction

The spectral analysis of time series is a large field presenting a great interest from

both theoretical and practical viewpoints. The fundamental starting point of this

analysis is the Cramér representation, stating that all zero-mean second-order sta-

tionary processes Xt, t ∈ Z may be written

Xt =

∫

[−π,π)
A(ω) exp(iωt)dZ(ω), t ∈ Z , (1.1)

where A(ω) is the amplitude of the process Xt and dZ(ω) is an orthonormal in-

crement process, i.e. E(dZ(ω)dZ(µ)) = dωδ0(ω − µ), see Brillinger (1975). Cor-

respondingly, under mild conditions, the autocovariance function can be expressed

as

cX(τ) =

∫ π

−π
fX(ω) exp(iωτ)dω,

where fX is the spectral density of Xt.

There is not a unique way to relax the assumption of stationarity, i.e. to define

a second-order process with a time-depending spectrum. However, this modelling

is a theoretical challenge which may be helpful in practice, since a lot of studies

have shown that models with evolutionary spectra or time-varying parameters are

necessary to explain some observed data, even over short periods of time. Examples

may be found in numerous fields, such as economics (Swanson and White, 1997;

Los, 2000), biostatistics (Ombao et al., 2002) or meteorology (Nason and Sapatinas,

2002) to name but a few.

Among the different possibilities for modelling nonstationary second-order pro-

cesses, we can emphasize the approaches consisting in a modification of the Cramér

representation (1.1). Different modifications of (1.1) are possible. First, we can

replace the process dZ(ω) by a nonorthonormal process, leading for instance to the

harmonizable processes (Lii and Rosenblatt, 2002). A second possibility is to replace

the amplitude function A(ω) by a time-varying version At(ω) and to assume a slow

change of At(ω) over time. Such approach is followed to define oscillatory processes

(Priestley, 1965). However, a major statistical drawback of the oscillatory processes

is the intrinsic impossibility to construct an asymptotic theory for consistency and

inference. To overcome this problem, Dahlhaus (1997) introduced the class of locally

stationary processes, in which the transfer function is rescaled in time. In this

approach, a doubly-indexed process is defined as

Xt,T =

∫

[−π,π)
A

(

t

T
, ω

)

exp(iωt)dZ(ω), t = 0, . . . , T − 1, T > 0 , (1.2)
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where the transfer function A(z, ω) is defined on (0, 1) × [−π, π). Dahlhaus (1997,

2000) investigated statistical inference for such processes, with a discussion on max-

imum likelihood, Whittle and least squares estimates, and showed that asymptotic

results when T tends to infinity can be considered. However, in this setting, let-

ting T tends to infinity has not the usual meaning of “looking into the future”, but

means that we have in the sample X0,T , . . . ,XT−1,T more information about the

local structure of A(z, ω). This formalism is analogous to nonparametric regression,

for which “asymptotic” means an ideal knowledge about the local structure of the

underlying curve.

In this article, we focus on a class of doubly-indexed locally stationary processes

defined by replacing the harmonic system {exp(iωt)} in (1.2) by a wavelet system.

By this way, we move from a time-frequency representation to a time-scale represen-

tation of the nonstationary process. Because wavelets systems are well localized in

time and frequency, they appear more natural to model the time-varying spectra of

nonstationary processes. As wavelets decompose the frequency domain into discrete

scales, they offer a well-adapted system to achieve the trade-off resolution between

time and frequency (Vidakovic, 1999).

The class of locally stationary wavelet processes studied in this article was ini-

tially introduced by Nason, von Sachs and Kroisandt (2000). Their definition of

wavelet processes involves a time-varying amplitude which is smoothly varying and

continuous as a function of time. One first goal of this article is to extend this defi-

nition to the case of time-varying amplitudes with possibly discontinuous behaviour

in time. This adds some technical difficulties in the proof of our results but we

believe the gain due to this extension to be crucial. Our new definition now includes

more important examples of nonstationary processes. For instance, this extension of

the definition is needed if we wish to model a nonstationary process built as a con-

catenation of different processes, such as the Haar processes defined in Nason et al.

(2000). Moreover, wavelet processes can now be used for the analysis of intermittent

phenomena, such as transients followed by regions of smooth behaviour.

Our definition of wavelet processes is presented in Section 2, where we also de-

fine their evolutionary spectrum. This spectrum is a function of time and scales,

and measures the power of the process at a particular time and scale. The main

goal of the present article is to provide a pointwise adaptive estimation of the evo-

lutionary spectrum. The estimation procedure follows the local adaptive method of

Lepski (1990). The main differences with the latter is that we are now estimating a
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spectral density function, i.e. the second-order structure of correlated observations.

Moreover, our statistical model is allowed to be nonstationary, and the behavior of

its evolutionary spectrum may be very inhomogeneous in time.

In Section 3, we present a preliminary estimator of the evolutionary spectrum

and derive some useful properties that are needed in order to derive the adaptive

estimator in the next Section 4. The behaviour of this estimator is discussed for

the two cases where the evolutionary wavelet spectrum is either regular or irregular

near the point of estimation. These results explain the good performance of the

algorithm in practice. Section 5 concludes with the result of a brief simulation

study. All details and specific questions related to the practical implementation of

our procedure have been considered in a separate paper (Van Bellegem and von

Sachs, 2004), where a more exhaustive study of simulations and a real data analysis

are provided.

Proofs and technical derivations are deferred to the appendices. Our estimator

takes the form of a quadratic form of the increments, which are assumed to be

Gaussian. Our estimator is the sum of a quadratic form of the increments that

are assumed to be Gaussian, and an additive, independent linear form of Gaussian

variables. Thus, the main technical goal is to study the behaviour of the (quadratic +

linear) form of Gaussian variables. There exists a large family of results on quadratic

forms of Gaussian variables. Recent developments include Rudzkis (1978); Neumann

(1996); Laurent and Massart (2000); Spokoiny (2001); Comte (2001); Dahlhaus and

Polonik (2002). The exponential inequality proved in the latter reference is the

starting point of some important results of the present article. On the other hand,

we also present in the appendices some original results on quadratic forms that are

needed to prove our results.

2 Locally stationary wavelet processes

The wavelet system used to build locally stationary processes is a non-decimated

system of compactly supported and discrete wavelets. We first briefly recall some

points about this system of wavelets, and then give a definition of the wavelet

processes and wavelet spectra.
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2.1 Discrete nondecimated wavelet system

The local functions used in the representation of LSW processes are a set of discrete

non-decimated wavelets {ψjk, j = −1,−2, . . . ; k ∈ Z}. We refer to Vidakovic (1999)

for a review on wavelet theory and its applications in statistics, and to Nason and

Silverman (1995) for a detailed introduction to the non-decimated wavelet transform.

Let us simply recall that, in contrast to the discrete wavelet transform, the discrete

non-decimated wavelets at all scales j < 0 can be shifted to any location defined

by the finest resolution scale, determined by the observed data. As a consequence,

this construction leads to an overcomplete system of the space of square summable

sequences ℓ2(Z). The wavelets considered in this article are assumed to be compactly

supported in time and we will denote by Lj the length of the support of ψj0, i.e.

Lj := | suppψj0|. This automatically implies | suppψjk| = Lj = (2−j−1)(L−1−1)+1

for all j < 0. Observe also that, as in Nason et al. (2000), we departed from the

usual wavelet numbering scheme. The data live on scale zero, and scale −1 is the

scale which contains the finest resolution wavelet detail. Then, the support of the

wavelet on the finest scale remains constant with respect to T .

For ease of presentation, recall the simplest discrete non-decimated system, called

the Haar system, given by

ψjk = 2j/2
I{0,1,...,2−j−1−1}(k)−2j/2

I{2−j−1,...,2−j−1}(k) for j = −1,−2, . . . and k ∈ Z,

where IA(t) is 1 if t ∈ A and 0 otherwise. The shifted version of ψjk is given by

ψjk(t) = ψj,k−t for all k ∈ Z.

2.2 The process and its evolutionary wavelet spectrum

As we will note below, our definition of locally stationary wavelet processes differs

from the original definition of Nason et al. (2000) as we only impose a total variation

condition on the amplitudes instead of a Lipschitz condition. See also Fryźlewicz

and Nason (2006) for discussion on that definition.

Definition 1. A sequence of doubly-indexed stochastic processes Xt,T (t = 0, . . . , T−
1, T > 0) with mean zero is in the class of locally stationary wavelet processes (LSW

processes) if there exists a representation

Xt,T =

−1
∑

j=−∞

T−1
∑

k=0

wjk;T ψjk(t) ξjk, (2.1)
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where the infinite sum is to be understood in the mean square sense, {ψjk(t) =

ψj,k−t}jk with j < 0 is a discrete non-decimated family of wavelets based on a

mother wavelet ψ(t) of compact support, and such that:

1. ξjk is a random orthonormal increment sequence such that Eξjk = 0 and

Cov (ξjk, ξℓm) = δjℓ δkm for all j, ℓ, k,m, where δjℓ = 1 if j = ℓ and 0 elsewhere;

2. For each j 6 −1, there exists a function Wj(z) on (0, 1) possessing the follow-

ing properties:

(a)
∑−1

j=−∞ |Wj(z)|2 6 C <∞ uniformly in z ∈ (0, 1),

(b) There exists a sequence of constants Cj such that for each T

sup
k=0,...,T−1

∣

∣

∣

∣

wjk;T −Wj

(

k

T

)∣

∣

∣

∣

6
Cj

T
, (2.2)

(c) The total variation of W 2
j (z) is bounded by Lj, i.e.

TV
(

W 2
j

)

:= sup

{

I
∑

i=1

∣

∣

∣W 2
j (ai) −W 2

j (ai−1)
∣

∣

∣ : 0 < a0 < . . . < aI < 1, I ∈ N

}

6 Lj, (2.3)

(d) The constants Cj and Lj are such that

−1
∑

j=−∞
Lj(LjLj + Cj) 6 ρ <∞ (2.4)

where Lj = | suppψj0| = (2−j − 1)(L−1 − 1) + 1.

LSW processes use wavelets to decompose a stochastic process with respect to

an orthogonal increment process in the time-scale plane. Due to the overcomplete-

ness of the non-decimated system, a given LSW processes does not determine the

sequence {wjk;T} uniquely. However, we can build a theory which ensures the exis-

tence of a unique wavelet spectrum (in a sense defined after Proposition 1 below).

This property is a consequence of the local stationarity setting which introduces a

rescaled time z = t/T ∈ (0, 1) on which Wj(z) is defined. The rescaled time per-

mits increasing amounts of data about the local structure of Wj(z) to be collected

as the observed time T tends to infinity. Even though a given LSW process does

not determine the sequence {wjk;T} uniquely, the model allows to identify (asymp-

totically) the model coefficients determined by uniquely defined W 2
j (z). Then, the
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evolutionary wavelet spectrum of an LSW process {Xt,T }t=0,...,T−1, with respect to

ψ, is given by

Sj(z) = |Wj(z)|2 , z ∈ (0, 1) (2.5)

and is such that, by definition of the process,
∑−1

j=−∞ Sj(z) < ∞ uniformly in

z ∈ (0, 1).

The evolutionary wavelet spectrum Sj(z) is related to the time-depending auto-

correlation function of the LSW process. Observe that the autocovariance function

of an LSW process can be written as

cX,T (z, τ) = Cov
(

X[zT ],T ,X[zT ]+τ,T

)

for z ∈ (0, 1) and τ in Z, and where [ · ] denotes the integer part of a real number.

The next result shows that this autocovariance converges asymptotically to a local

autocovariance defined by

cX (z, τ) =
−1
∑

j=−∞
Sj(z)Ψj (τ) (2.6)

where Ψj(τ) =
∑∞

k=−∞ ψjk(0)ψjk(τ) is the autocorrelation wavelet function.

Proposition 1. Under the assumptions of Definition 1, if T → ∞
∞
∑

τ=−∞

∫ 1

0
dz |cX,T (z, τ) − cX (z, τ)| = O

(

T−1
)

for all LSW process.

Appendix A presents some properties of the autocorrelation wavelet system ap-

pearing in (2.6). Like wavelets themselves, this system enjoys good localisation

properties. Consequently, we observe that equation (2.6) is a multiscale decom-

position of the autocovariance structure of the process over time: The larger the

wavelet spectrum Sj(z) is at a particular scale j and point z in the rescaled time,

the more dominant is the contribution of scale j in the variance at time z. Thus,

the evolutionary wavelet spectrum describes the distribution of the (co)variance at

a particular scale and time location.

Moreover, we recall in Appendix A that {Ψj} is a linearly independent system.

Therefore, since the autocovariance function converges to the local autocovariance

in the sense of Proposition 1, the coefficients Sj(z) in (2.6) are asymptotically the

unique wavelet representation of the second-order structure of the time series.
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It is worth mentioning that a stationary process with an absolutely summable

autocovariance function is an LSW process (Nason et al., 2000, Proposition 3).

Stationarity is characterized by a wavelet spectrum which is constant over time:

Sj(z) = Sj for all z ∈ (0, 1). However, our motivation to study LSW processes lies

in the modelling of time-varying spectra. The regularity of the wavelet spectrum

in time is determined by the smoothness of Wj(z) with repect to z. In Nason

et al. (2000), this function is assumed to be Lipschitz continuous in time. In

our definition of LSW processes, we only require the total variation of W 2
j to be

bounded. This weaker assumption is not only considered in order to work with

less strict assumptions, but also to allow a discontinuous evolution of the wavelet

spectrum in time. Figure 1 shows a simulated example of such a nonstationary

process.

Figure 1 about here

3 A first estimator of the wavelet spectrum

3.1 The corrected wavelet periodogram

An estimator of the wavelet spectrum is constructed by taking the squared empirical

coefficients from the non-decimated transform:

Ij;T

(

k

T

)

=

(

T−1
∑

t=0

Xt,Tψjk(t)

)2

j = −1, . . . ,− log2 T ; k = 0, . . . , T − 1.

Ij;T (z) is called the wavelet periodogram, as it is analogous to the formula for the

classical periodogram in traditional Fourier spectral analysis of stationary processes

(Brillinger, 1975).

Some asymptotic properties of this estimator have been studied by Nason et al.

(2000), who showed that the wavelet periodogram is not an asymptoticaly unbiased

estimator of the wavelet spectrum. Indeed, Proposition 4 of Nason et al. (2000)

states that, for all fixed scales j < 0,

EIℓ;T (z) −
−1
∑

ℓ=− log2 T

AjℓSℓ(z) = O(T−1), (3.1)

uniformly in z ∈ (0, 1), where the matrix A = (Ajℓ)j,ℓ<0 is defined by

Ajℓ := 〈Ψj ,Ψℓ〉 =
∑

τ

Ψj(τ)Ψℓ(τ).

7



Note that the matrix Ajℓ is not simply diagonal since the autocorrelation wavelet

system {Ψj} is not orthogonal. Nason et al. (2000) proved the invertibility of A if

{Ψj} is constructed using Haar wavelets. If other compactly supported wavelets are

used, numerical results suggest that the invertibility of A still holds, but a complete

proof of this result has not been established yet. As we need the invertibility of

A in our following results, from now on we restrict ourselves to Haar wavelets, but

we conjecture that all results remain valid for more general Daubechies wavelets

(Daubechies, 1992).

Equation (3.1) motivates the definition of a corrected wavelet periodogram

Lj;T

(

k

T

)

=

−1
∑

ℓ=− log2 T

(AT )−1
jℓ

(

T−1
∑

t=0

Xt,Tψℓk(t)

)2

(3.2)

where AT = (Ajℓ)− log2 T6j,ℓ,6−1. The corrected wavelet periodogram Lj;T is a

preliminary tool for constructing an asymptotically consistent estimator of the evo-

lutionary wavelet spectrum. To this end it needs to be smoothed in time. This

question is addressed in the following.

Remark 1. The asymptotic bias of the wavelet periodogram is a consequence of

the overcompleteness of the non-decimated wavelet system {ψjk}. One could ask

if it would not be easier to define LSW processes using a decimated wavelet sys-

tem because, for this system, the matrix A reduces to the identity. Unfortunately,

the answer is negative: The use of non-decimated wavelets, as described in von

Sachs et al. (1997), would not allow to write the local autocovariance function as a

wavelet-type transform of an evolutionary spectrum, as in (2.6). Moreover, classical

stationary processes are not included in the model based on decimated wavelets.

3.2 The preliminary estimator and its properties

Suppose we want to estimate Sj(z0) from observations XT = (X0,T , . . . ,XT−1,T )′.

The estimator studied below takes the following form:

Qj,R;T = |RT |−1
∑

k∈RT

{

Lj;T

(

k

T

)

+ zj,k;T

}

, j = −1,−2, . . . , (3.3)

where zj,k;T are iid Gaussian random variables of mean zero and variance C22j

independent from XT for a given constant C2, R is an interval in (0, 1) that contains

the point z0, and where k ∈ RT means that k/T ∈ R. The estimator (3.3) is

essentially the average of the corrected wavelet periodogram over the interval R.
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The reason for adding a “noise process” zj,k;T in our estimator is for the sake of

regularization, since the process XT is not guaranteed to be invertible. In other

words, the presence of the additive Gaussian variable in the estimator Qj,R;T allows

to estimate consistently more general processes for which the wavelet spectrum

Sj(z) is not bounded away from zero. Note that this regularization technique does

not add any systematic bias to the resulting estimator since in (3.3) an average is

taken over the zero-mean Gaussian variables zj,k;T . That procedure is analogous to

the regularization techniques for ill-posed inverse problems such as, for instance, in

ridge regression or Tikhonov regularization. See also Neumann (1996) for a similar

technique in the context of stationary time series.

Of course, the choice of the interval R around z0 is crucial in this estimation.

This question will be addressed in the next section. Before, we derive some useful

properties of Qj,R;T as an estimator of

Qj,R = |R|−1

∫

R
dz Sj(z) . (3.4)

The statistical properties of Qj,R;T are now derived under a set of assumptions.

Assumption 1. The autocovariance function cX,T and the local autocovariance

function cX of the LSW process are such that

‖cX,T ‖1,∞ :=

∞
∑

τ=−∞
sup

t=0,...,T−1

∣

∣

∣
cX,T

(

t

T
, τ

)

∣

∣

∣
is bounded independently of T, (3.5)

and

‖cX‖1,∞ :=

∞
∑

τ=−∞
sup

z∈(0,1)
|cX(z, τ)| <∞. (3.6)

This assumption is needed to control the spectral norm of the covariance matrix

of the process (Lemma 5 in Appendix B). For a stationary process, it reduces to

absolute summability of the autocovariance of the process (short memory property).

Assumption 2. There exists an ε > 0 such that, for all z ∈ (0, 1),
∑−1

j=−∞ Sj(z) >

ε.

According to equation (2.6), the sum over scales of Sj(z) is the local variance

of the process at time [zT ], and this assumption says that the local variance of the

process is bounded away from zero.

Assumption 3. The increment process {ξjk} in Definition 1 is Gaussian.
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This assumption allows substantial simplifications in the proofs. It is also as-

sumed to establish some results in Nason et al. (2000) and Fryźlewicz et al. (2003).

Assumption 4. The evolutionary wavelet spectrum Sj(z) is such that

− log2(T )−1
∑

ℓ=−∞
sup

z∈(0,1)
Sℓ(z) = O

(

T−1
)

.

In the definition of the corrected wavelet periodogram (3.2), all scales 0 > j >

−∞ are implicitely included due to the definition of Xt,T . The last assumption is

used in order to control the remainder of the estimation bias at all scales lower than

− log2 T .

The following proposition describes the asymptotic properties of Qj,R;T .

Proposition 2. Suppose Assumption 1 to 4 hold true. For all LSW process (Defi-

nition 1), and for all R ⊆ (0, 1),

EQj,R;T −Qj,R =
K0 2j/2

√
T

|RT |
−1
∑

m=− log2 T

Lm TV (Sm) +O
(

2j/2 |RT |−1
)

(3.7)

= O

(

2j/2

√
T

)

,

for all j = −1, . . . ,−JT with JT = O(log2 T ), and where K0 is a constant in-

dependent of j, T and |R|. Moreover, under Assumptions 1 to 4, the variance

σ2
j,R;T = VarQj,R;T is such that

C22j

|RT | 6 σ2
j,R;T 6

(

C2 +
c2

|R|

)

2j

|RT |

for all T , for all j = −1, . . . ,−JT with JT = oT (log2 T ), and c2 = 2K2
2‖cX‖2

1,∞
where K2 is a constant that depends on the wavelet ψ only.

The proof of this proposition is in Appendix B.3. Note that the squared bias and

the variance of the estimator have the same rate of convergence. This phenomenon is

due to the nonstationary behaviour of the process. Indeed, for a stationary process,

the total variation of Sm is zero at all scales, and then the rate of the bias is T−1.

This is not the case for a general nonstationary process: When the wavelet spectrum

is not constant over time, an additional term resulting from nonstationarity reduces

considerably this rate of convergence. Moreover, even if we are dealing with a local

estimator of the wavelet spectrum at a fixed scale j < 0 and a fixed time interval
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R, the nonstationarity term in the bias involves the variation of the global wavelet

spectrum. This may be observed in equation (3.7), which involves a sum over all

scales m = −1, . . . ,− log2 T and the total variation of all Sm over the whole rescaled

time interval (0, 1).

This slow rate of convergence of the bias poses a problem to establish the asymp-

totic normality of Qj,R;T . In the next proposition, we circumvent this problem and

derive a non asymptotic exponential bound for the deviation of Qj,R;T .

Proposition 3. Assume that Assumption 1 to 4 hold. If σ2
j,R,T = VarQj,R;T , then,

for all η > 0 and for all scales j = −1, . . . ,−JT , where JT = O(log2 T ),

Pr (|Qj,R;T −Qj,R| > 2σj,R,Tη) 6 c0 exp











− 1

16
· η2

1 +
2ηLj

|RT |σj,R,T
+

2j/2η(K2‖cX‖1,∞+K3)

|R|
√

Tσj,R,T











with the positive constants c0 = 3+ e, K2 as in Proposition 2, and K3 depending on

the wavelet ψ and the constants ρ,C given in Definition 1.

The proof of this proposition is to be found in Appendix B.4. This proposition

gives a non asymptotic approximation for the deviation of Qj,R;T . This result is

exploited in the next Section 4 in order to choose the interval R in an adaptive

way. From an asymptotic viewpoint, i.e. as T → ∞, we note that this exponential

bound does not tend to zero, meaning that the standardised statistic Qj,R,T is

asymptotically non degenerated. This phenomenon is well-known in the context of

pointwise estimation, see Lepski (1990) and Brown and Low (1996). In order to

have a consistent result when T → ∞, it is then necessary to impose that η = ηT

grows with T . The appropriate rate for ηT is derived in the next corollary. The

proof is given in Appendix B.4 and is essentially based on the bounds derived in

Proposition 2.

Corollary 1. Under the assumptions of Propositions 2 and 3, if kT tends to infinity

and is such that JT · exp(−kT ) = oT (1), then there exists a T0 > 1 such that, for all

T > T0,

Pr

(

sup
−JT 6j<0

|Qj,R;T −Qj,R| > kT

√

(1 + c2/|R|)/|RT |
)

= oT (1)

where c2 is as in the assertion of Proposition 2.

Remark 2. An example of admissible rates is JT ∼ log2 T and kT ∼ log2 T . The

sequence kT will play a crucial role in Section 4.
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Remark 3. The results are proved under the assumption that the increments con-

sidered in the definition of LSW processes are Gaussian (Assumption 3). This as-

sumption allows substantial simplifications in the proofs. For practical applications,

we believe that this assumption is not unrealistic and the class of Gaussian LSW

processes is rich enough, as we can observe from the wide range of applications that

are treated in Nason et al. (2000); Fryźlewicz et al. (2003); Oh et al. (2003); Woyte

et al. (2007); Van Bellegem and von Sachs (2004) for instance. However, it still

seems interesting to see how the above results can be extended to the non-Gaussian

case. A careful reading of the proof of Proposition 3 shows that the crucial point is

to establish an exponential inequality for quadratic forms of the increments. In our

proof of Proposition 3, we use the inequality established by Dahlhaus and Polonik

(2002) on the quadratic form of Gaussian random variables. Other exponential in-

equalities have been established for non-Gaussian random variables, see for instance

Dahlhaus (1988) or Spokoiny (2001, 2002). Another example of an exponential

inequality for dependant data is derived in van de Geer (2002).

3.3 Estimation of the variance

The main drawback of Proposition 3 is that the deviation result depends on the

variance σ2
j,R,T = VarQj,R;T which is typically unknown. The goal of the following

derivation is to propose a preliminary estimator σ̃2
j,R,T of σ2

j,R,T such that Proposi-

tion 3 can still be used with σ̃2
j,R,T .

The variance σ2
j,R,T depends on the unknown autocovariance function of the

LSW process in the following way (see Lemma 3 with equation (B.9)):

σ2
j,R,T = 2 ‖U ′

j,R;TΣT ‖2
2 +

C22j

|RT | ,

where ΣT is the T × T (non-Toeplitz) covariance matrix of the LSW process (X0,T ,

. . . ,XT−1,T )′, and Uj,R;T is the T × T matrix with entry (s, t) equal to

U
(j)
st = |RT |−1

−1
∑

ℓ=− log2 T

A−1
jℓ

∑

k∈RT

ψℓk(s)ψℓk(t).

We also denote by σs,s+u the entry (s, s+ u) of the matrix ΣT .

We will estimate σ2
j,R,T by:

σ̃2
j,R,T = 2 ‖U ′

j,R;T Σ̃T‖2
2 +

C22j

|RT |

12



where Σ̃T is an estimate of the covariance matrix ΣT . A first idea is to define the

elements σ̃s,s+u of Σ̃T by plugging Qj,R;T into the local autocovariance function

(2.6), i.e.

σ̃s,s+u =

−1
∑

j=− log2 T

Qj,R(s);TΨj(u),

where R(s) denotes an interval which contains the time point s/T . However, the

convergence in probability of σ̃s,s+u to σs,s+u is not faster than the rate of σs,s+u

itself, and we need to modify the estimator in two ways.

(i) Assumption 1 indicates that the covariance |σs,s+u| is small for large |u|. We

set σ̃s,s+u to zero when |u| > MT , for an appropriate sequence MT tending to

infinity with T ;

(ii) It is necessary to control the distance in rescaled time between the spectrum

Sj(z), for z ∈ R(s), and Sj(s/T ). To do so, we allow the window R(s) to

depend on T , which is denoted by RT (s), in such a way that its length |RT |
shrinks to zero when T tends to infinity. This is analogous to the estimation of

a regression function by kernel smoothing, where the window usually depends

on the length of the data set.

With these two ingredients, we propose to estimate σs,s+u by

σ̃s,s+u =
−1
∑

j=− log2 T

Qj,RT (s);T Ψj(u)I|u|6MT
, (3.8)

and the following assumption makes precise the appropriate rates for the sequences

|RT | and MT .

Assumption 5. The sequence JT is such that JT = oT (log2 T ). The length of

RT tends to zero such that 2JT |RT | = oT (1). The sequence kT (which appears in

Corollary 1) tends to infinity such that JT exp(−kT

√

|RT |) = oT (1). Finally, the

sequence MT (involved in the preliminary estimator for the variance, see (3.8)) tends

to infinity such that

2JT |RT |−1T−1/2MTkT log3
2 T = oT (1).

Admissible rates for this last assumption are for example JT ∼ log2 log2
2 T , kT ∼

log2 T , |RT | ∼ log−3
2 T and MT ∼ logα

2 T with α > 0. It is worth mentioning that,

13



with this assumption, |RT | shrinks to zero in the rescaled time, whereas, in the

observed time, the interval length |TRT | tends to infinity. This means that our

estimate of Sj(s/T ) is built using an increasing amount of data in the observed

time, but, at the same time, with an average around Sj(s/T ) in the rescaled time

on a shrinking segment around s/T .

The next proposition shows that on the random set where the estimator Qj,RT (s);T

is near Qj,RT (s), the estimator (3.8) has a good quality. Our proof of this proposition

may be found in Appendix B.5 and needs the following technical assumption, which

is a slightly stronger condition than the point 2(a) of Definition 1, in the sense that

we need to control the decay of Sj(z) with respect to j and uniformly in z.

Assumption 6. The local autocovariance function c(z, τ) is such that

∞
∑

u=−∞
sup

z
|cX(z, u)|I|u|>MT

= oT

(

2−JT
)

.

This last assumption on the decay of the local autocovariance function uniformly

in z is very sensible in a context of short-memory stationary processes (in that case,

c(z, u) does not depend on z). With the rates specified above, a typical condition is

to assume |cX(z, u)| 6 c · r|u| uniformly in z ∈ (0, 1) with 0 6 r < 1.

Proposition 4. Suppose Assumptions 1 to 6 hold. Then, there exists a positive

number T0 and a random set A independent of j and such that Pr(A) > 1 − oT (1)

and

|Qj,RT (s);T −Qj,RT (s)| 6 K2‖cX‖1,∞kT

√
T |RTT |−1

for all T > T0. Moreover, on A,

2JT −j T |σ̃2
j,R,T − σ2

j,R,T | = oP (1) (3.9)

holds for all j = −1, . . . ,−JT , where oP (1) does not depend on R.

Finally, Proposition 4 together with Proposition 3 leads to the following result,

which will be used to construct the pointwise adaptive estimator in Section 4.

Theorem 1. Suppose Assumptions 1 to 6 hold. Then, there exists a γT = oT (1)

and a positive number T0 such that, for all T > T0,

Pr
(

|Qj,R;T −Qj,R| > 2σ̃j,R,T η
′)

6 c0 exp











− 1

16
· η2

1 +
2ηLj

|RT |σj,R,T
+

2j/2η(K2‖cX‖1,∞+K3)

|R|
√

Tσj,R,T











+ oT (1)
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for all j = −1, . . . ,−JT , where η′ = η
√

1 − γT , and the positive constants c0,K2,K3

are defined in the assertion of Propositions 2 and 3.

Remark 4. Theorem 1 gives an approximation of the distribution of the normalized

loss |Qj,R;T − Qj,R|/σ̃j,R,T . This depends on the unknown quantities ‖cX‖1,∞ and

ρ, cf. (2.4). These two quantities may be understood as nuisance parameters of the

problem, depending on the global spectrum. The estimation of these quantities is

based on a preliminary smoothing of Lj;T (z) with respect to z, which we denote

by L∗
j;T (z). Here, we think about using a kernel smoothing procedure, or a wavelet

transform shrinkage as studied in Nason et al. (2000). Then, a preliminary estimate

of ‖cX‖1,∞ is obtained by plugging L∗
j;T (z) into ‖cX‖1,∞, cf. (2.6) and (3.6). Next,

the preliminary estimation of ρ necessitates the estimation of TV(Sj), cf. (2.3). We

estimate TV(Sj) by
∑

i |L∗
j;T (zmax

i )−L∗
j;T (zmin

i )|+ |L∗
j;T (zmax

i )−L∗
j;T (zmin

i+1 )|, where

the sum is over the local minima and maxima of L∗
j;T (z), with zmax

i < zmin
i+1 < zmax

i+1

for all i.

Remark 5. The estimator (3.3) also involves a constant C2. In view of Propo-

sition 2 on the variance of the estimator, that constant should be ideally close to

c2 = 2K2
2‖cX‖1,∞. Because ‖cX‖1,∞ is unknown, it is estimated in practice by

∑

s supu σ̃s,s+u.

4 Pointwise adaptive estimation

The question of how to choose the best segment R in the estimator (3.3) arises, and

the goal of this section is to provide a data-driven procedure to select R automati-

cally.

The proposed method goes back to the pointwise adaptive estimation theory of

Lepski (1990), see also Lepski and Spokoiny (1997) and Spokoiny (1998). Suppose

that the wavelet spectrum Sj(z0) is well approximated by the averaged spectrum

Qj,U for a given interval U containing the reference point z0. The idea of the pro-

cedure is to consider a second interval R containing U and to test if Qj,R differs

significantly from Qj,U . As we describe below, this test procedure is based on Propo-

sition 3 or Theorem 1. If there exists a subset U of R such that |Qj,R − Qj,U | is

significantly different from zero, then we reject the hypothesis of homogeneity of the

wavelet spectrum Sj(z) on z ∈ R. Finally, the adaptive estimator corresponds to

the largest interval R such that the hypothesis of homogeneity is not rejected.
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This section contains a formal description of this algorithm and derives some

properties of the estimator.

4.1 Testing homogeneity

Let R be an interval containing z0, U a subset of R and define

∆j(R,U) = |Qj,R −Qj,U |. (4.1)

Under Assumptions 1 to 4, Proposition 3 implies

Pr [|Qj,R,T −Qj,U ,T | > ∆j(R,U) + 2η (σj,R,T + σj,U ,T ) kT ] 6 h(U , η) + h(R, η)

with

h(R, η) = c0 exp







− 1

16
· η2k2

T

1 + 2ηkT

|RT |σj,R,T
Lj + 2j/2ηkT

|R|
√

Tσj,R,T
(K2‖cX‖1,∞ +K3)







and where the sequence kT is such that JT · exp(−kT ) = oT (1) (see Corollary

1). Under the assumption that the wavelet spectrum Sj is homogeneous on the

segment R, the difference ∆j(R,U) is negligible. Then, as a test rule, we re-

ject the homogeneity hypothesis on R if there exists a subset U ⊂ R such that

|Qj,R;T −Qj,U ;T | > 2η(σj,R,T + σj,U ,T )kT for a given η.

In the case where the variances σj,R,T and σj,U ,T are unknown, they may be

estimated as in Section 3.3 above.

In practice, we choose a set Λ of interval-candidates R. Then, for each candidate

R, we apply the homogeneity test with respect to a given set ℘(R) of subintervals

U of R.

Assumption 7. In the estimation procedure described below, we assume the fol-

lowing properties on the test sets Λ and ℘(R):

1. For all R, the shortest interval of ℘(R) is of length at least δ > 0,

2. The cardinality of ℘(R) is such that ♯(℘(R)) 6 |RT |
α
√

δK1
K2‖cX‖1,∞+K3 for some

0 < α < 1,

3. When we test the homogeneity of the wavelet spectrum on R, we assume that

there exists a subinterval U ∈ ℘(R) such that U ⊂ R and U contains z0.
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Remark 6 (Test sets). In this remark, we give one example of sets Λ and ℘(R).

For each scale j < 0, the corrected wavelet spectrum (3.2) is evaluated on a grid

k/T , r = 0, . . . , T − 1 in time. Then, we can choose the set Λ as

Λ = {[r0/T, r1/T ] : r0 < [z0T ] < r1}

for r0, r1 ∈ {0, T − 1}. Nevertheless, in order to reduce the computational effort, we

shrink the cardinality of Λ following the method of Spokoiny (1998). More precisely,

we first select two sets Km = {rm : rm 6 [z0T ]} and Kn = {rn : rn > [z0T ]} which

both contain less than T points, and we set

Λ = {[rm/T, rn/T ] : rm ∈ Km, rn ∈ Kn} .

Then, one possibility to define ℘(R) is to consider

℘(R) = {[r−/T, r+/T ] : r−, r+ ∈ Km ∪Kn} .

We refer to Spokoiny (1998) for details about this construction.

4.2 The estimation procedure

The estimation procedure simply starts with the smallest interval in Λ, assuming

that the wavelet spectrum is homogeneous on this short interval. Then, it selects

iteratively longer intervals in Λ until the homonegeneity assumption is rejected.

Finally, the adaptive segment R̃ is the longest segment R of Λ for which the homo-

geneity test is not rejected:

R̃ = arg max
R∈Λ

{|R| such that |Qj,R;T −Qj,U ;T |

6 2η(σj,R,T + σj,U ,T )kT for all U ⊂ ℘ (R)} . (4.2)

The adaptive estimator of Sj(z0) is then defined by

S̃j(z0) = Qj,R̃,T . (4.3)

In the case where the variances σj,R,T and σj,U ,T are unknown, they may be

estimated as in Section 3.3 above. In that case, the homogeneity test is based on

Theorem 1 and the modification of the following results is straightforward. The

proofs are however longer, but use the technique in the proof of Theorem 1 to

transfer the problem with estimated variances to the problem with known variances

σj,R,T and σj,U ,T .
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4.3 Properties of the estimator in homogeneous regions

The next result quantifies the ℓp risk (p > 2) when the wavelet spectrum Sj(z) is

homogeneous on z ∈ R. To define this concept of homogeneity, we introduce the

bias

b(R) := sup
z∈R

|Sj(z) −Qj,R|,

which measures how well the wavelet spectrum Sj is approximated by Qj,R on z ∈ R.

We say that the spectrum is homogeneous (or regular) on R, if the inequality

b(R) 6 Cj σj,R,T kT (4.4)

holds with

Cj = 2−j/2√α+ p (4.5)

for a positive real constant α. In the inequality (4.4), σj,R,T is the square root of the

variance of the estimator Qj,R;T of Sj(z), z ∈ R. As in Spokoiny (1998), (4.4) can be

viewed as a balance relation between the bias and the variance of this estimate. The

kT term then appears as the correction term necessary in the pointwise estimation in

order to bound the normalized loss (see Lepski (1990), Lepski and Spokoiny (1997)).

In the following results, we set kT proportional to log2 T .

Proposition 5. Let R be an interval of (0, 1) and consider the test rule (4.2). If the

wavelet spectrum Sj is regular on R in the sense of conditions (4.4)—(4.5), then,

with 2λ = 2η = 2−j/25(2α + p) and kT ∼ log2 T ,

Pr (R is rejected) = O
(

T−Kp
√

δ
)

for some positive constant K depending on K2,K3 and ‖c‖1,∞ only.

We can also evaluate an upper bound for the ℓp risk associated to our estimator.

Theorem 2. Assume that the wavelet spectrum at scale j, Sj(z), is homogeneous

on the segment R in the sense of (4.4)–(4.5) with

kT ∼ log2 T.

If S̃j(z) is the pointwise estimator of the wavelet spectrum obtained by the estimation

procedure (4.2)–(4.3) with

η = 2−j/25(2α + p),
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then there exists T0 such that the pointwise ℓp-loss is bounded as follows

E|S̃j(z) − Sj(z)|p 6 Kδ−pT−p/2
(

2j/2δ−1 + kT

)p

for p > 2 with a positive constant K and T > T0.

The proof is to be found in Appendix B.8.

4.4 Properties of the estimator in inhomogeneous regions

We now describe the behaviour of our estimator near a breakpoint located at a time

point z⋆.

For a fixed scale j ∈ {−1, . . . ,−JT }, assume the evolutionary wavelet spectrum

to be homogeneous on R0 = [z0, z⋆) and on R1 = (z⋆, z1]. We denote R = R0∪R1 =

[z0, z1] and

θT := E(Qj,R0;T −Qj,R1;T )

and we assume that θT > 0. The value of θT > 0 precisely quantifies a change in

the spectrum between regions R0 and R1.

To prove the next proposition, we assume that the estimation procedure is such

that R0 and R1 are in ℘(R).

Proposition 6. If the evolutionary wavelet spectrum at scale j contains a breakpoint

at z⋆ (i.e. θT > 0) and if kT ∼ log2 T , then

Pr (R is not rejected)

= O

(

exp

{

−Tθ
2
T (|R0|2 ∧ |R1|2)

log2
2 T

}

+ exp

{

−
√
T |θT |(|R0| ∧ |R1|)

log2
2 T

})

.

where c is a positive constant and x ∧ y = min(x, y).

The proof of this proposition is given in Appendix B.9. Proposition 6 informs

about the consistency of the test of homogeneity. Moreover, it allows to discuss the

local alternative of this test. We first note that the alternative hypothesis, i.e. the

definition of the inhomogeneous region, depends on the level of the jump θT and

the length of the two segments R0 and R1. In consequence, in order to study the

local alternative, we need to investigate both cases θT → 0 and (|R0| ∧ |R1|) → 0.

It is interesting to note that Proposition 6 depends on the product |θT |(|R0|∧ |R1|),
and then the local alternative of the test is studied when this product tends to 0 as

T → ∞. From the proof of Proposition 6, it is straightforward to see that if
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log2
2 T

|θT |(|R0| ∧ |R1|)
√
T

→ 0,

as T → ∞, then the estimation procedure is consistent in the sense that Pr(R is

not rejected) is asymptotically zero.

5 Simulation

We conclude with a brief simulation study. We consider the evolutionary wavelet

spectrum plotted in Figure 1 (upper plot). The first scale of this spectrum is given

by S−1(z) = 1[0.25,0.575](z) + (sin2(2πz − π/4) + 0.5)1[0.75,1](z). The second scale is

inactive. The other active scales are S−3(z) = (sin(πz − π/4)2 + 0.5)1[0,0.25](z) and

S−4(z) = (sin2(5πz− π/4) + 0.5)1[0.375,1](z). We apply the estimation procedure on

100 different time series of length 1000 generated from this spectrum with Gaus-

sian increments and Haar wavelets. For the sake of brevity, we only consider the

estimation at the scale j = −1. The results of the 100 simulations are summarized

on the upper plot of Figure 2. At each point of the 39 points of estimation, the

vertical segment represents the median and the 90 % interquantile interval from

the 100 estimators. The bottom figure shows the estimator (bullet) from the sin-

gle simulation given in Figure 1. The continuous line gives the estimator obtained

from the ewspec function of the WaveThresh 3 software (Nason, 1998) using the

recommendations suggested in this software for the choice of the parameters (other

configurations performed quite similarly or worse). This estimator is a smoothing

of the corrected wavelet periodogram using TI-wavelet soft thresholding, see Nason

et al. (2000) for details. Note that this method is limited to dyadic sample sizes.

As our simulation contains 1000 data, we repeat the last observation 24 times.

Figure 2 about here

The mean square error for the local adaptive estimator is lower (0.063) than for

the nonlinear wavelet estimator (0.074). The mean absolute deviation is also lower

(0.152 against 0.189 for the wavelet estimator). The lower plot of Figure 2 clearly

shows the high variability of the ewspec estimator in the last part of the spectrum.

We explain this phenomenon by the cross-correlation between the corrected wavelet

periodograms at scale −1 and −4. It is interesting to note that our method seems

to be more stable with respect to this phenomenon. This has been observed in

comparison with ewspec using different wavelet families for smoothing.
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In our simulation, it is worth mentioning that the local adaptive estimator is

computed using the estimated variance, as explained in Section 3.3. Of course,

there are a set of global parameters which must be chosen. For the example treated

in this section, we set MT = 2 and |RT | = 9 (see (3.8)). With this we have followed

the guidelines given in the companion paper, Van Bellegem and von Sachs (2004)

(Sections 2.3 and 2.4 therein) on the choice of the nuisance parameters for the

quadratic part of the estimator. In particular, two remaining global parameters

have been chosen to equal the numerical values given for the (different) example of

Section 2.5 therein. This paper also derives a new test of covariance stationarity

and presents some applications to medical data analysis.

APPENDICES

A Properties of the autocorrelation wavelet system

This section summaries useful results on the system {Ψj} and the operator A. Recall

that we have denoted by Lj the length of | suppψj0| for all j = −1,−2, . . . and then

it holds Lj = (2−j − 1)(L−1 − 1) + 1 6 2−jL−1. We also recall the definition of the

autocorrelation wavelet system {Ψj ; j = −1,−2, . . .} which is the convolution of the

non-decimated wavelet system:

Ψj(τ) =

∞
∑

k=−∞
ψjk(0)ψjk(τ).

It is straightforward to check that Ψj is compactly supported for all j < 0 and the

length of its support is bounded by 2Lj − 1.

The following Lemma recalls other useful results on the autocorrelation wavelet

system.

Lemma 1. (a) For all scales j and for all τ , Ψj(τ) = Ψj(−τ).

(b) The autocorrelation wavelet system {Ψj ; j = −1,−2, . . .} is linearly independent.

(c) The identity
−1
∑

j=−∞
2jΨj(τ) = δ0(τ) (A.1)

holds for all τ ∈ Z.
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Property (a) is obvious and implies the symmetry of the local autocovariance

function, i.e. c(z, τ) = c(z,−τ), as expected. Property (b) is proved in Nason et

al. (2000, Theorem 1) and shows that the local autocovariance function is univo-

quely defined. Finally, property (c) is proved in Fryźlewicz et al. (2003, Lemma

6) and implies, for instance, that the wavelet spectrum of a White Noise process is

proportional to 2j for all scales j < 0.

As the autocorrelation wavelet system is not orthogonal, we introduce the Gram

matrix A defined by Ajℓ =
∑

τ Ψj(τ)Ψℓ(τ). The following properties of A are used

thereafter.

Lemma 2. For Haar and Shannon wavelets, there exists a finite positive constant

ν such that the matrix A fulfills the following properties for all j = −1, . . . ,− log2 T :

−1
∑

ℓ=− log2 T

A−1
jℓ = 2j +O

(

2j/2T−1/2
)

(A.2)

−1
∑

ℓ=− log2 T

|A−1
jℓ | 6 ν(1 +

√
2)2j/2 (A.3)

−1
∑

ℓ=− log2 T

2−ℓ/2|A−1
jℓ | 6 ν · 2j/2 log2 T,

−1
∑

ℓ=− log2 T

2−ℓ|A−1
jℓ | 6 ν(2 +

√
2)2j/2T 1/2.

(A.4)

For all compactly supported wavelets, the matrix A fulfills the following property:

Ajℓ 6 (2Lj − 1) ∧ (2Lℓ − 1) ∧
√

LℓLm (A.5)

where x ∧ y = min(x, y).

Proof. The following argument shows that the main term in (A.2) is 2j : Using that

Ψℓ(0) = 1 for all ℓ < 0 and the identity (A.1), we may write

−1
∑

ℓ=−∞
A−1

jℓ =

−1
∑

ℓ=−∞
A−1

jℓ

∞
∑

m,u=−∞
2mΨm(u)Ψℓ(u) =

−1
∑

m=−∞
2mδ0(j −m) = 2j

from the definition of A. Observe that this argument holds for all compactly sup-

ported wavelets. To compute the remainder of (A.2), we introduce the auxiliary

matrix Γ = D′ ·A ·D with diagonal matrix D = diag(2ℓ/2)ℓ<0, i.e. Γjℓ = 2j/2Ajℓ2
ℓ/2.

Nason et al. (2000, Theorem 2) have proven that the spectral norm of Γ−1 is bounded

for Haar and Shannon wavelets. Then, we get

− log2(T )−1
∑

ℓ=−∞
A−1

jℓ = 2j/2

− log2(T )−1
∑

ℓ=−∞
2ℓ/2Γ−1

jℓ = O
(

2j/2T−1/2
)
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To prove (A.3),
∑−1

ℓ=− log2 T |A−1
jℓ | =

∑−1
ℓ=− log2 T 2j/22ℓ/2|Γ−1

jℓ | 6 2j/2(1+
√

2)ν, using

supjℓ |Γ−1
jℓ | 6 ν. (A.4) is obtained similarly, using the approximation

∑−1
j=− log2 T 2−j/2

6 (2 +
√

2)
√
T . (A.5) follows from the definition of Ajℓ and the support of the au-

tocorrelation wavelets, using |Ψj(τ)| 6 1 uniformly in j and τ . �

B Proofs

Suppose M is an n× n matrix and M
′
is the conjugate transpose of M . We denote

‖M‖2 :=

√

tr
(

M
′
M
)

the Euclidean norm of M and

‖M‖spec := max{
√
λ : λ is eigenvalue of M⋆M}

the spectral norm of M . If M is symmetric and nonnegative definite, by standard

theory we have ‖M‖spec = sup{‖Mx‖2 : x ∈ C
n, ‖x‖2 = 1}. We will also use the

following standard relations which hold for all symmetric matrices B,C:

‖B‖spec 6 ‖B‖2 (B.1)

‖B‖spec = max{λ : λ is eigenvalue of B} (B.2)

‖BC‖spec 6 ‖B‖spec‖C‖spec (B.3)

‖BC‖2 6 ‖B‖spec‖C‖2 6 ‖B‖2‖C‖2 (B.4)

In the sequel, we use the convention wjk;T = 0 for k < 0 and k > T , which leads

to helpful simplifications in the following proofs.

B.1 Proof of Proposition 1

On one hand, due to Definition 1, and equation (2.2), we have

cX,T (z, τ) = Cov
(

X[zT ],T ,X[zT ]+τ,T

)

=

−1
∑

j=−∞

∞
∑

k=−∞
|wj,k+[zT ];T |2ψjk(0)ψjk(τ)

=
−1
∑

j=−∞

∞
∑

k=−∞
Sj

(

k + [zT ]

T

)

ψjk(0)ψjk(τ) + RestT (z, τ)

where the remainder is such that

|RestT (z, τ)| = O(T−1)
∑−1

j=−∞
∑∞

k=−∞Cj |ψjk(0)ψjk(τ)| by Assumption (2.2). On
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the other hand, we have cX(z, τ) =
∑−1

j=−∞
∑∞

k=−∞ Sj (z)ψjk(0)ψjk(τ). Then,

∞
∑

τ=−∞

∫ 1

0
dz|cX,T (z, τ) − cX(z, τ)|

6

∞
∑

τ=−∞

∫ 1

0
dz

−1
∑

j=−∞

∞
∑

k=−∞

∣

∣

∣
Sj

(

k + [zT ]

T

)

− Sj (z)
∣

∣

∣
|ψjk(0)ψjk(τ)|

+

∞
∑

τ=−∞

∫ 1

0
dz|RestT (z, τ)|

With appropriate changes of variables, this bound may be written

∞
∑

τ=−∞

−1
∑

j=−∞

∞
∑

k=−∞

T−1
∑

t=0

∫ 1/T

0
dz
∣

∣

∣
Sj

(

k + [zT ] + t

T

)

− Sj

(

z +
t

T

)

∣

∣

∣
|ψjk(0)ψjk(τ)|

+

∞
∑

τ=−∞

∫ 1

0
dz|RestT (z, τ)|

which is bounded by

T−1
∞
∑

τ=−∞

−1
∑

j=−∞

∞
∑

k=−∞
|k|TV (Sj) |ψjk(0)ψjk(τ)| +

∞
∑

τ=−∞

∫ 1

0
dz|RestT (z, τ)|

where we have used the following property of the total variation:

T−1
∑

t=0

∣

∣

∣Sj

(

t

T
+
α

T

)

− Sj

(

t

T
+
β

T

)

∣

∣

∣ 6 |α− β|TV (Sj) for all α, β ∈ N. (B.5)

As the support of ψjk(0) is of length Lj , we get |k| 6 Lj in the first term. Together

with condition (2.3) of Definition 1, this finally leads to

∞
∑

τ=−∞

∫ 1

0
dz|cX,T (z, τ) − cX(z, τ)| 6 O(T−1)

−1
∑

j=−∞
(Cj + LjLj)

∞
∑

τ,k=−∞
|ψjk(0)ψjk(τ)|.

The compact support of ψjk limits the sums over k and τ as follows:

∞
∑

τ,k=−∞
|ψjk(0)ψjk(τ)| =

Lj−1
∑

τ=−Lj+1

∞
∑

k=−∞
|ψjk(0)ψjk(τ)| 6 2Lj − 1 (B.6)

by the Cauchy-Schwarz inequality for the sum over k. We get the result by (2.4). �
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B.2 Preliminary results

Define XT = (X0,T , . . . ,XT−1,T )′. By definition, Qj,R;T can be decomposed into the

sum of a quadratic and a linear form:

Qj,R;T = Q◦
j,R;T + q◦j,R;T (B.7)

where

Q◦
j,R;T = X ′

TUj,R;TXT (B.8)

is a quadratic form with the T × T matrix Uj,R;T whose entry (s, t) is

Ust = |RT |−1
−1
∑

ℓ=− log2 T

A−1
jℓ

∑

k∈RT

ψℓk(s)ψℓk(t)

and q◦j,R;T = |RT |−1
∑

k∈RT zj,k;T is the linear form. For notational convenience, we

omit the dependence of Ust in j and R. Assuming that the orthonormal increment

processes {ξjk} in Definition 1 are Gaussian, XT is a multivariate Gaussian random

variable with covariance matrix ΣT = Cov(XTX
′
T ). Therefore we can write

Qj,R;T = Z ′
TMj,R;TZT + q◦j,R;T

where ZT = (Z1, . . . , ZT )′ be a vector of iid Gaussian random variables with zero

mean and VarZ1 = 1, and

Mj,R;T = Σ
′1/2
T Uj,R;TΣ

1/2
T (B.9)

is the matrix of the quadratic form.

In our proofs, we use the following Lemma quoted from Neumann (1996).

Lemma 3. Let Zn = (Z1, . . . , Zn)′ be a vector of iid Gaussian random variables

with zero mean and VarZ1 = 1. If Mn is an n× n real matrix, then

E
(

Z ′
nMnZn

)

= trMn,

Var
(

Z ′
nMnZn

)

= 2 trM ′
nMn = 2‖Mn‖2

2,

and, for all r > 2, if Cumr denotes the rth cumulant, we have

|Cumr

(

Z ′
nMnZn

)

| 6 2r−1(r − 1)! ‖Mn‖2
2 {λmax (Mn)}r−2 .

The following lemmas derive some bounds for the Euclidean and the spectral

norm of Uj,R;T and ΣT .
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Lemma 4. With fixed R ⊆ (0, 1), there exists a T0 such that, uniformly in T > T0,

‖Uj,R;T‖2
2 6 K2

2 2j|R|−2T−1

for all j = −1, . . . , JT = oT (log2 T ), where K2 depends on the mother wavelet ψ

only.

Proof. If we denote R = (r1, r2) ⊆ (0, 1), then we can write Ust = U
(2)
st −U (1)

st , where

U
(1)
st := |RT |−1

∑

ℓA
−1
jℓ

∑[r1T ]−1
k=0 ψℓk(t)ψℓk(s) is the element (s, t) of a matrix U

(1)
j,R;T

and U
(2)
st := |RT |−1

∑

ℓA
−1
jℓ

∑[r2T ]
k=0 ψℓk(t)ψℓk(s) is the element (s, t) of a matrix

U
(2)
j,R;T . Note that the compact support of the wavelet ψ implies that U

(1)
st = 0 when

s or t > [r1T ] and, similarly, U
(2)
st = 0 when s or t > [r2T ]. We also introduce the

matrix U
⋆(1)
j,R;T whose entry (s, t) is U

⋆(1)
st := |RT |−1

∑

ℓA
−1
jℓ Ψℓ(s− t)I06s,t<[r1T ] and

we define U
⋆(2)
j,R;T similarly. We now have the decomposition

‖Uj,R;T‖2
2 6 2‖U (1)

j,R;T − U
(1)⋆
j,R;T‖2

2 + 4‖U (2)
j,R;T − U

(2)⋆
j,R;T‖2

2 + 4‖U (1)⋆
j,R;T − U

(2)⋆
j,R;T‖2

2.

From the definition of the autocorrelation wavelet Ψ, the first term is

‖U (1)
j,R;T − U

(1)⋆
j,R;T‖2

2

= |RT |−2
−1
∑

ℓ,m=− log2 T

A−1
jℓ A

−1
jm

[r1T ]−1
∑

s,t=0

∞
∑

k,n=[r1T ]

ψℓk(t)ψℓk(s)ψmn(t)ψmn(s).

The compact support of ψℓk(s) implies that s > k − Lℓ > ([r1T ] − Lℓ) ∨ 0. Using

the same argument on ψmn(t), we have t > ([r1T ] − Lm) ∨ 0. Using twice the

Cauchy-Schwarz inequality for the sums over k and n, we get the bound

‖U (1)
j,R;T − U

(1)⋆
j,R;T‖2

2 6 |RT |−2





−1
∑

ℓ=− log2 T

Lℓ|A−1
jℓ |





2

6 |RT |−2ν2(2 +
√

2)22jTL2
−1

using (A.4). The second term is bounded similarly. The third term is bounded by

2‖U (1)⋆
j,R;T ‖2

2 + 2‖U (2)⋆
j,R;T ‖2

2 and each term of this last sum can be bounded as

‖U (1)⋆
j,R;T ‖2

2 6 |RT |−2
T−1
∑

s=0

∞
∑

t=−∞

∑

ℓ,m

A−1
kℓ A

−1
jmΨℓ(s− t)Ψm(s− t) = T |RT |−2A−1

jj

which leads to the result. �

Finally the proof of the following Lemma is similar to the proof of Lemma 5.9

in Dahlhaus and Polonik (2006).

Lemma 5. Under Assumption (3.5) ‖ΣT ‖spec = ‖Σ1/2
T ‖2

spec 6 ‖cX‖1,∞ <∞.
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B.3 Proof of Proposition 2

Expectation

In decomposition (B.7), we first note that Eq◦j,R;T = 0. Next, a straightforward

expansion leads to

EQ◦
j,R;T = |RT |−1

∑

k∈RT

−1
∑

ℓ=− log2 T

A−1
jℓ

T−1
∑

s,t=0

ψℓk(s)ψℓk(t)

−1
∑

m=−∞

∞
∑

n=−∞
w2

mn;Tψmn(s)ψmn(t)

= |RT |−1
∑

k∈RT

−1
∑

ℓ=− log2 T

A−1
jℓ

−1
∑

m=−∞

∞
∑

n=−∞
w2

mn;T

(

T−1
∑

s=0

ψℓk(s)ψmn(s)

)2

.

Defining u := n− k. We can write

EQ◦
j,R;T = |RT |−1

∑

k∈RT

−1
∑

m=−∞

∞
∑

u=−∞
w2

m,u+k,T

−1
∑

ℓ=− log2 T

A−1
jℓ

( ∞
∑

s=−∞
ψℓk(s)ψm,u+k(s)

)2

.

By Definition 1, we can write w2
m,u+k,T = Sm(k/T ) +RT (m,u, k) with

|RT (m,u, k)| 6

∣

∣

∣Sm

(

u+ k

T

)

− Sm

(

k

T

)

∣

∣

∣+
CCm

T

which leads to

EQ◦
j,R;T = |RT |−1

∑

k∈RT

−1
∑

m=−∞
Sm

(

k

T

) −1
∑

ℓ=− log2 T

A−1
jℓ

∞
∑

u=−∞

( ∞
∑

s=−∞
ψℓk(s)ψm,u+k(s)

)2

+ RestT

By construction of the matrix A, we observe that

Aℓm =
∞
∑

u=−∞

( ∞
∑

s=−∞
ψℓk(s)ψm,u+k(s)

)2

(B.10)

which implies by Assumption 4

EQ◦
j,R;T = |RT |−1

∑

k∈RT

Sj

(

k

T

)

+ RestT = |R|−1

∫

R
dz Sj (z) +O

(

|RT |−1Lj

)

+ RestT

(B.11)

where the last equality is a standard result on the total variation (see Brillinger

(1975, Lemma P5.1) for instance).
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We now bound |RestT |. As s goes from −∞ to ∞, we have

|RestT | 6

−1
∑

m=−∞

−1
∑

ℓ=− log2 T

|A−1
jℓ |

∞
∑

u=−∞
|RT |−1

∑

k∈RT

{

∣

∣

∣
Sm

(

u+ k

T

)

− Sm

(

k

T

)

∣

∣

∣
+
CCm

T

}

( ∞
∑

s=−∞
ψℓ0(s)ψmu(s)

)2

.

Using (B.5) for the sum over k, |RestT | is bounded by

−1
∑

m=−∞

∞
∑

u=−∞

{

|u|TV (Sm)

|RT | +
CCm

T

} −1
∑

ℓ=− log2 T

|A−1
jℓ |
( ∞
∑

s=−∞
ψℓ0(s)ψmu(s)

)2

In this last expression, the compact support of ψℓ0 and ψmu implies that |u| 6

Lℓ ∨ Lm, where x ∨ y = max(x, y). Together with (B.10), we get

|RestT | 6 |RT |−1
−1
∑

m=−∞

−1
∑

ℓ=− log2 T

{

TV(Sm)(Lℓ ∨ Lm) + CCm

}

|A−1
jℓ |Aℓm

which, with (A.5), leads to

|RestT | (B.12)

6 |RT |−1
∑

m,ℓ

{

TV(Sm)Lℓ(2Lm − 1) + TV(Sm)Lm(2Lℓ − 1) + CCm(2Lm − 1)
}

|A−1
jℓ |

= 2(2 +
√

2)ν2j/2|RT |−1
√
TL−1

−1
∑

m=−∞
(2Lm − 1)TV(Sm) +O

(

2j/2|RT |−1
)

using (A.4) and (2.4).

Variance

Using decomposition (B.7), the variance is decomposed as VarQj,R;T = VarQ◦
j,R;T +

Var q◦j,R;T , where Var q◦j,R;T = C22j/|RT |. Using Lemma 3 with (B.4), we can write

VarQ◦
j,R;T = 2‖Mj,R;T ‖2

2 6 2‖Σ1/2
T ‖4

spec‖Uj,R;T‖2
2 and the result follows from Lemma

4 and Lemma 5. �

B.4 Proof of Proposition 3 and its consequences

Our proof of Proposition 3 needs the use of an exponential bound for linear and

quadratic forms of Gaussian random variables. For sake of presentation, we sum-

marize here the results we use.
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Proposition 7. Let Z be a Gaussian random variable with mean zero and unit

variance. Then, for all λ > 0,

Pr(|Z| > λ) 6

(

1 ∧ 1

λ
√

2π

)

e−λ2/2

where a ∧ b = min(a, b).

Let Zn = (Z1, . . . , Zn)′ be a vector of iid Gaussian random variables with zero

mean and VarZ1 = 1. If Mn is an n × n matrix such that ‖Mn‖spec 6 τ∞ and

σ2
n = 2‖Mn‖2

2, then for all λ > 0

Pr
(

(Z ′
nMnZn − trMn) > σnλ

)

6 2 exp

(

−1

4
· λ2

1 + 2λ τ∞
σn

)

.

Moreover, if Y is a Gaussian random variable with mean zero and variance

σ2 6 σ2
n, then

Pr
(

(Z ′
nMnZn + Y − trMn) > σnλ

)

6 3 exp

(

−1

4
· λ2

1 + 2λ τ∞
σn

)

.

Proof. We prove the first inequality. On the one hand, by Tchebychev inequality,

Pr(Z > λ) 6 inf
t>0

exp
{

−tλ+ log E(etZ)
}

where E(etZ) = e−t2/2. The minimum is reached for t = λ and we get Pr(|Z| > λ) 6

e−λ2/2. On the other hand, a straightforward calculation leads to

Pr(Z > λ) =

∫ ∞

λ

1√
2π
e−t2/2dt 6

∫ ∞

λ

λ√
2π
e−t2/2dt =

1

λ
√

2π
e−λ2/2

and the result follows. The second inequality follows the proof of Proposition A.1

in Dahlhaus and Polonik (2006). The last inequality is derived from the two former

inequalities. �

As in the proof of Proposition 2, equation (B.9), we write Qj,R;T as a quadratic

form of Gaussian variables in order to apply Proposition 7 withMj,R;T = Σ
′1/2
T Uj,R;TΣ

1/2
T

and prove the assertion.

Proof of Proposition 3. We use the last exponential inequality of Proposition 7

because Qj,R;T can be decomposed (see (B.7)) into Q◦
j,R;T + q◦j,R;T where Q◦

j,R;T =

Z ′
TMj,R;TZT and q◦j,R;T ∼ N (0, C22j/|RT |). Note that Lemma 4 and 5 imply with

(B.1) and (B.3):

‖Mj,R;T‖spec 6 2j/2K2‖cX‖1,∞|R|−1T−1/2 . (B.13)
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Therefore, Proposition 7 leads to

Pr ((Qj,R;T −Qj,R) > ησj,R,T )

6 Pr ((Qj,R;T − EQj,R;T ) > ησj,R,T/2) + exp

(

1 − ησj,R,T

2|EQj,R;T −Qj,R|

)

6 3 exp



− 1

16
· η2

1 + η
2j/2K2‖cX‖1,∞

|R|T 1/2σj,R,T



+ exp

(

1 − ησj,R,T

2|EQj,R;T −Qj,R|

)

.

To bound the second probability, we observe that (B.11) and (B.12) lead to |EQj,R;T−
Qj,R| 6 |RT |−1

(

Lj +K32
(j/2)−1

√
T
)

with K3 = 4ν(2 +
√

2)(2ρ − 1)(C ∨ 1)L−1.

This implies

Pr ((Qj,R;T −Qj,R) > ησj,R,T )

6 3 exp



− 1

16
· η2σj,R,T

σj,R,T + η
2j/2K2‖cX‖1,∞

√
T

|RT |



+ exp



1 − 1

2η

η2σj,R,T

Lj+K32(j/2)−1
√

T
|RT |





and the result follows. �

Proof of Corollary 1. In the following proof, K denotes a generic constant

and kT is an increasing function of T . By Proposition 2, σ2
j,R,T := VarQj,R;T 6

(C2 + c2/|R|)2j/|RT | uniformly in j, which implies

Pr

(

sup
−JT 6j<0

|Qj,R;T −Qj,R| > kT

√

(C2 + c2/|R|)/|RT |
)

6

−1
∑

j=−JT

Pr
(

|Qj,R;T −Qj,R| > 2−j/2kTσj,R,T

)

.

Using Proposition 3, this probability is bounded by

c0 JT max
−JT 6j<0

exp







− 1

16
· 2−jk2

T /2

1 +
2kT 2−j/2Lj

|RT |σj,R,T
+ kT

√
T

|RT |σj,R,T
(K2‖cX‖1,∞ +K3)







.

Proposition 2 shows that, for T sufficiently large, σj,R,T >
√

2j/|RT |. This leads

to the bound

c0 JT max
−JT 6j<0

exp











− 1

16
· k2

T /2

2j +
kT 2−j/2Lj√

|RT |
+ 2j/2kT√

|R|
(K2‖cX‖1,∞ +K3)











.

By assumption (2.4), there exists a positive constant ρ′ such that Lj 6 2j/2ρ′. Then,

asymptotically, the rate of convergence of the dominant terms in this exponential

are given by JT · exp(−kT ) which is oT (1) by the assumption on kT . �
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B.5 Proof of Proposition 4

Lemma 6. If U
(j)
ts = |RT |−1

∑−1
ℓ=− log2 T A

−1
jℓ

∑

k∈RT ψℓk(s)ψℓk(t), then

∞
∑

t=−∞

∞
∑

s,u=−∞
|U (j)

ts U
(j)
tu |I|s−u|6NT

6 2j+1L−1ν
2TNT log2

2 T

|RT |2 = O

(

2jNT log2
2 T

T

)

.

Proof. Direct calculations yields

∞
∑

t=−∞

∞
∑

s,u=−∞
|U (j)

ts U
(j)
tu |I|s−u|6NT

6 |RT |−2
−1
∑

ℓ,m=− log2 T

|A−1
jℓ ||A−1

jm|
∞
∑

s,u=−∞
I|s−u|6NT

∞
∑

t=−∞

(

∑

k∈RT

|ψℓk(s)ψℓk(t)|
)(

∑

n∈RT

|ψmn(u)ψmn(t)|
)

.

Using the Cauchy-Schwarz inequality for the sum over t, we get a product between

two terms similar to (
∑

t(
∑

k ψℓk(s)ψℓk(t))
2)1/2 6

√
2Lℓ − 1. Then

∞
∑

t=−∞

∞
∑

s,u=−∞
|U (j)

ts U
(j)
tu |I|s−u|6NT

6 TNT |RT |−2
∑

ℓ,m

|A−1
jℓ ||A−1

jm|
√

2Lℓ − 1
√

2Lm − 1

and we obtain the result by (A.4). �

In the proof of Proposition 4, we need a modification of Corollary 1, in which R
is replaced by RT . The proof of the following result is along the lines of the proof

of Corollary 1.

Lemma 7. Under the assumptions of Propositions 2 and 3, there exists T0 > 1 such

that, for all T > T0,

Pr

(

sup
−JT 6j<0

|Qj,RT (s);T −Qj,RT (s)| >
kT

|RT |

√

C2 + c2

T

)

= oT (1)

provided that JT · exp(−kT

√

|RT |) = oT (1).

Proof of Proposition 4. Define σ̄s,s+u :=
∑−1

ℓ=− log2 T Qℓ,RT (s)Ψℓ(u)I|u|6MT
the

entries of a matrix Σ̄, and define σ̄2
j,R,T := 2‖U ′

j,R;T Σ̄T‖2
2 + C22j/|RT |. Our proof

is based on the decomposition

σ̃2
j,R,T − σ2

j,R,T =
(

σ̃2
j,R,T − σ̄2

j,R,T

)

+
(

σ̄2
j,R,T − σ2

j,R,T

)

where the first term is stochastic while the second term is deterministic.
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We will first show that the deterministic term |σ̄2
j,R,T − σ2

j,R,T | is o(2j−JTT−1).

Using (B.4), we can write

1

2

(

σ̄2
j,R,T − σ2

j,R,T

)

= ‖U ′
j,R;T Σ̄T ‖2

2 − ‖U ′
j,R;TΣT ‖2

2

6 ‖U ′
j,R;T (Σ̄T − ΣT )‖2

2 + 2 · ‖U ′
j,R;T ΣT‖2 · ‖U ′

j,R;T (Σ̄T − ΣT )‖2

6 ‖Uj,R;T‖2
2 · ‖Σ̄T − ΣT‖2

spec + 2 · ‖Uj,R;T ‖2
2 · ‖ΣT ‖spec · ‖Σ̄T − ΣT ‖spec

where we know by Lemmas 4 and 5 that ‖Uj,R;T‖2
2 = O(2jT−1) and ‖ΣT ‖spec 6

‖cX‖1,∞. Moreover, we can write:

‖Σ̄T − ΣT‖spec 6

∞
∑

u=−∞
sup

s
(σs,s+u − σ̄s,s+u)

=

∞
∑

u=−∞
sup

s

−1
∑

ℓ=−∞

∞
∑

n=−∞

(

w2
ℓn;T −Qℓ,RT (s)

)

· ψℓn(s)ψℓn(s+ u) + R1 + R2

(B.14)

where

R1 =

∞
∑

u=−∞
sup

s

−1
∑

ℓ=−∞
Qℓ,RT (s)Ψℓ(u) I|u|>MT

,

R2 =

∞
∑

u=−∞
sup

s

− log2(T )−1
∑

ℓ=−∞
Qℓ,RT (s)Ψℓ(u) I|u|<MT

.

As

∞
∑

u=−∞
sup

s

−1
∑

ℓ=−∞
Qℓ,RT (s)Ψℓ(u) =

∞
∑

u=−∞
sup

s
|RT |−1

∫

RT (s)
dz cX (z, u) ,

the rate of R1 is oT (2−JT ) by Assumption 6. Next, using |Ψℓ(u)| 6 1 uniformly in

ℓ < 0, we get

|R2 | 6

∞
∑

u=−∞
sup

s
|RT |−1

∫

RT (s)
dz

− log2(T )−1
∑

ℓ=−∞
Sℓ(z) I|u|<MT

6 2MT

− log2(T )−1
∑

ℓ=−∞
sup

z
Sℓ(z) = O(MT /T )

using Assumption 4. Assumption 5 on the rate of the truncating sequence MT

implies |R2 | = oT (2−JT ). The main term of (B.14) is bounded by

∞
∑

u=−∞
sup

s

−1
∑

ℓ=−∞

∞
∑

n=−∞
|RT |−1

∫

RT (s)
dz |w2

ℓn;T − Sℓ(z)| · |ψℓn(s)ψℓn(s+ u)|. (B.15)
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By Definition 1, we can write

|w2
ℓn;T − Sℓ(z)| 6

CCℓ

T
+
∣

∣

∣
Sℓ

(n

T

)

− Sℓ

(

n− s

T
+ z

)

∣

∣

∣
+
∣

∣

∣
Sℓ(z) − Sℓ

(

n− s

T
+ z

)

∣

∣

∣

which, when plugged in (B.15), leads to three terms. By (B.6) and (2.4), the first

term is O(T−1). For the second term, with a change of variable z to z + s/T , we

get:

∞
∑

u=−∞
sup

s

−1
∑

ℓ=−∞

∞
∑

n=−∞
|RT |−1

∫

RT (0)
dz
∣

∣

∣
Sℓ

(n

T

)

− Sℓ

(n

T
+ z
) ∣

∣

∣
· |ψℓn(s)ψℓn(s+ u)|,

where RT (0) denotes the interval RT (s) shifted by −s. If we use that |ψℓn(s)|
is uniformly bounded and

∑∞
u=−∞ |ψℓn(s + u)| = O(Lℓ), the second term is then

bounded (up to a multiplicative constant) by

|RT |−1
−1
∑

ℓ=−∞
Lℓ

∫

RT (0)
dz

∞
∑

n=−∞

∣

∣

∣
Sℓ

(n

T

)

− Sℓ

(n

T
+ z
) ∣

∣

∣

6 |RT |−1
−1
∑

ℓ=−∞
Lℓ

∫

RT (0)
dz |z|TV(Sℓ) = O(|RT |)

−1
∑

ℓ=−∞
LℓLℓ = O(|RT |)

by assumptions (2.3) and (2.4). The third term is

∞
∑

u=−∞
sup

s

−1
∑

ℓ=−∞

∞
∑

n=−∞
|RT |−1

∫

RT (s)
dz
∣

∣

∣Sℓ(z) − Sℓ

(

n− s

T
+ z

)

∣

∣

∣ · |ψℓn(s)ψℓn(s+ u)|.

If s0 denotes the infimum of RT (s), we decompose the integral as follows:

∞
∑

u=−∞
sup

s

−1
∑

ℓ=−∞

∞
∑

n=−∞
|RT |−1

|RT T |−1
∑

k=0

∫ s0+ k+1
T

s0+
k
T

dz
∣

∣

∣Sℓ(z) − Sℓ

(

n− s

T
+ z

)

∣

∣

∣

|ψℓn(s)ψℓn(s+ u)|

which can be rewritten with the change of variable y := z − s0 − k/T ,

∞
∑

u=−∞
sup

s

−1
∑

ℓ=−∞

∞
∑

n=−∞
|RT |−1

|RT T |−1
∑

k=0

∫ 1/T

0
dy
∣

∣

∣
Sℓ

(

y + s0 +
k

T

)

−Sℓ

(

y + s0 +
n− s+ k

T

)

∣

∣

∣
·|ψℓn(s)ψℓn(s+u)|.

Assumption (2.3) for the sum over k with (B.5) leads to the bound

∞
∑

u=−∞
sup

s

−1
∑

ℓ=−∞
Lℓ

∞
∑

n=−∞
|RTT |−1|n− s||ψℓn(s)ψℓn(s+ u)|.
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The compact support of ψℓn(s) implies |n − s| < Lℓ. Therefore, (B.6), (2.3) and

(2.4) imply that this last term is O(|RTT |−1). Finally, we summarize all the rates

of convergence for the deterministic term:

2−jT ·
(

σ̄2
j,R,T − σ2

j,R,T

)

= O(T−1 + |RT | + |RTT |−1) + |R1 | + |R2 |
= O(T−1 + |RT | + |RTT |−1) + oT (2−JT ) + oT (2−JT )

= oT (2−JT )

by Assumption 5.

Let us now turn to the stochastic term |σ̃2
j,R,T − σ̄2

j,R,T |. Lemma 7 implies the

existence of a random set A which does not depend on j and such that Pr(A) >

1 − oT (1) and |Qj,RT (s);T − Qj,RT (s)| 6 (kT /|RT |)
√

(C2 + c2)/T almost surely on

A, for all T > T0 and j = −1, . . . ,−JT . We can write

|σ̃2
j,R,T − σ̄2

j,R,T | 6 2
T−1
∑

h,t=0

∣

∣

∣

T−1
∑

s,u=0

U
(j)
ts U

(j)
tu

−1
∑

ℓ,m=− log2 T

(

Qℓ,RT (s);TQm,RT (u);T

−Qℓ,RT (s)Qm,RT (u)

)

Ψℓ(s− h)Ψm(u− h)
∣

∣

∣ · I|s−h|6MT
I|u−h|6MT

(B.16)

almost surely on A. Using the decomposition

Qℓ,RT (s);TQm,RT (u);T −Qℓ,RT (s)Qm,RT (u) =
(

Qm,RT (u);T −Qm,RT (u)

)

Qℓ,RT (s)

+
(

Qℓ,RT (s);T −Qℓ,RT (s)

)

Qm,RT (u)+
(

Qℓ,RT (s);T −Qℓ,RT (s)

) (

Qm,RT (u);T −Qm,RT (u)

)

,

in the right hand side of (B.16), we get three terms. On A, the first of these terms

is bounded as follows (the other terms are bounded similarly):

2
∑

h,t,s,u

∣

∣

∣U
(j)
ts U

(j)
tu

∑

m

(

Qm,RT (u);T −Qm,RT (u)

)

Ψm(u− h)
∑

ℓ

Qℓ,RT (s)Ψℓ(s− h)
∣

∣

∣I|s−u|62MT

6 2
√

1 + c2
kT log2 T

|RT |
√
T

∑

h,t,s,u

|U (j)
ts U

(j)
tu | ·

∣

∣

∣

∑

ℓ

Qℓ,RT (s)Ψℓ(s− h)
∣

∣

∣
I|s−u|62MT

6 2
√

1 + c2
kT log2 T

|RT |
√
T

∑

t,s,u

|U (j)
ts U

(j)
tu |I|s−u|62MT

∑

h

sup
z

∣

∣

∣

∑

ℓ

Sℓ(z)Ψℓ(h)
∣

∣

∣

= O
(

2jMT kT |RTT |−1 T−1/2 log3
2 T
)

a.s. on A

using Assumption 1 and Lemma 6. The result follows from Assumption 5. �

B.6 Proof of Theorem 1

By Proposition 4 and for T large enough, there exists of a random set A such that

1 − Pr (A) = oT (1) and (3.9) holds on A. Then, if Ac denotes the complementary
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random set of A, we can write:

Pr (|Qj,R;T −Qj,R| > 2σ̃j,R,Tη) = Pr (|Qj,R;T −Qj,R| > 2σ̃j,R,Tη|A) Pr (A)

+ Pr (|Qj,R;T −Qj,R| > 2σ̃j,R,Tη|Ac) (1 − Pr (A)) .

The second term of this sum is oT (1) by Proposition 4. To bound the first term,

we observe that Proposition 4 implies σ̃2
j,R,T > σ2

j,R,T − ϕT on A with ϕT =

oT (2j−JT T−1). Together with Proposition 2, this implies

σ̃2
j,R,T

σ2
j,R,T

> 1 − ϕT

σ2
j,R,T

= 1 − oT (1) → 1 (B.17)

for all j = −1, . . . ,−JT , as T tends to infinity. Then, we can write:

Pr (|Qj,R;T −Qj,R| > 2σ̃j,R,Tη) 6 Pr



|Qj,R;T −Qj,R| > 2σj,R,T η

√

1 − ϕT

σ2
j,R,T

∣

∣

∣
A





+ oT (1).

and Proposition 3 leads to the result with γT = ϕT /σ
2
j,R;T . �

B.7 Proof of Proposition 5

Let U be a segment of ℘(R). Consider the a.s. inequality

|Qj,R;T −Qj,U ;T | 6 |Qj,R;T −Qj,R| + |Qj,U ;T −Qj,U | + ∆j(R,U)

where ∆j(R,U) is defined in (4.1). In the regular case, ∆j(R,U) 6 b(U) + b(R) 6

Cj(σj,U ,T + σj,R,T )kT . Consequently, in the regular case,

Pr (R is rejected) 6
∑

U∈℘(R)

Pr {|Qj,U ;T −Qj,R;T | > 2 (ησj,U ,T + ησj,R,T ) kT }

6
∑

U∈℘(R)

Pr (|Qj,R;T −Qj,R| > −Cjσj,R,TkT + 2ησj,R,TkT )

+
∑

U∈℘(R)

Pr (|Qj,U ;T −Qj,U | > −Cjσj,U ,TkT + 2ησj,U ,TkT )

Proposition 3 implies

Pr (R is rejected) 6 (♯℘(R)) c0 exp











− 1

16
· η2

T

1 +
2ηT Lj

|RT |σj,R,T
+

2j/2ηT (K2‖cX‖1,∞+K3)

σj,R,T |R|
√

T











+ c0
∑

U∈℘(R)

exp











− 1

16
· η2

T

1 +
2ηT Lj

|UT |σj,U,T
+

2j/2ηT (K2‖cX‖1,∞+K3)

σj,U,T |U|
√

T
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with ηT := 2ηkT − CjkT = kT 2−j/2 (5(2α + p) −√
α+ p) .

Proposition 2 leads to σ−1
j,R;T 6 C−12−j/2

√

|RT | and similarly for σ−1
j,U ,T . As

δ 6 |U| 6 |R| 6 1, we consider the dominant terms in the sum, and we can write,

for T large enough, and with 2−j/2Lj 6 ρL−1,

Pr (R is rejected) 6 2c0 (♯℘(R)) exp











− 1

16
· η2

T

1 + 2ηT ρL−1√
K1δT

+
ηT (K2‖cX‖1,∞+K3)√

2jK1δ











.

Replacing ηT , using 2α+ p >
√
α+ p and kT ∼ log2 T , the asymptotic order of this

bound is

(♯℘(R))O

(

T
−

√
δK1

K2‖cX‖1,∞+K3
(α+ p

2
)

)

and the result follows for T large enough by Assumption 7(2). �

B.8 Proof of Theorem 2

For reader’s convenience, we first state two technical lemmas. The first lemma is

a consequence of Rosenthal’s inequality (see, e.g. Härdle, Kerkyacharian, Picard,

and Tsybakov (1998)).

Lemma 8. Let Y ∼ N (0, σ2) with σ2 > 0. Then, E|Y |p 6 C(p)σp where C(p) is a

function of p only.

Lemma 9. Let ZT = (Z1, . . . , ZT )′ be a vector of iid Gaussian random variables

with zero mean and VarZ1 = 1. If Mj,R;T is the matrix (B.9), v is a positive

constant and p > 2, then, there exists T0 such that

E
(

Z ′
TMj,R;TZT − trMj,R;T + vkTT

−1/2
)p

6 C (κ, ‖cX‖1,∞, p)T
−p/2

(

21+j/2|R|−1 + vkT

)p

for all T > T0.

Proof. First, we write

E
(

Z ′
TMj,R;TZT − trMj,R;T + vkTT

−1/2
)p

=

p
∑

r=0

(

p

r

)

E
(

Z ′
TMj,R;TZT − trMj,R;T

)r
vp−rkp−r

T T−(p−r)/2 . (B.18)
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Due to the relationship between the centered moments of a random variable and its

cumulants, we can write

E
(

Z ′
TMj,R;TZT − trMj,R;T

)r
=

r
∑

m=0

∑

C(p1, . . . , pm,m, π1, . . . , πm, r)κ
π1
p1
. . . κπm

pm
,

where the second sum is over p1, . . . , pm, π1, . . . , πm in {1, . . . , r} such that
∑m

i=1 piπi =

r, κpi is the pith cumulant of Z ′
TMj,R;TZT and C denotes a generic constant in this

proof. From Lemma 3, (B.13) and Proposition 2, κpi 6 2pi(pi−1)!Kpi
2 ‖cX‖pi

1,∞2jpi/2

|R|−piT−pi/2 and, consequently, E (Z ′
TMj,R;TZT − trMj,R;T )

r
6 C(κ, ‖cX‖1,∞, r)

2r(1+j/2)|R|−rT−r/2. Using this inequality in (B.18) leads to the result. �

Proof of Theorem 2. In this proof, C denotes a generic constant. Let R̃ be the

interval selected by the estimation procedure. We consider two cases: |R̃| < |R| or

|R̃| > |R| and split the expectation into two parts:

E|S̃j(z0) − Sj(z0)|p = E|S̃j(z0) − Sj(z0)|p 1|R̃|<|R| + E|S̃j(z0) − Sj(z0)|p 1|R̃|>|R|.

First term (|R̃| < |R|). In the first case, we make use of the inequality |a − b|p 6

2p−1|a|p + 2p−1|b|p and write

E|S̃j(z0) − Sj(z0)|p 1|R̃|<|R|

6 2p−1E|Sj(z0) −Qj,R̃|p1|R̃|<|R| + 2p−1E|Qj,R̃;T −Qj,R̃|p1|R̃|<|R|.

As |R̃| < |R|, the evolutionary wavelet spectrum is homogeneous over R and R̃ and

property (4.4) holds for R̃. Then, using Proposition 2 on the variance, and the first

point of Assumption 7, the first term of the right hand side is bounded as follows:

2p−1E|Sj(z0) −Qj,R̃|p1|R̃|<|R| 6 2p−1E(Cjσj,R̃,TkT )p

6 2p−1Cp
j k

p
T 2jp/2(Tδ2)−p/2(1 + c2)p/2

= 2p−1(α+ p)p/2kp
TT

−p/2δ−p(1 + c2)p/2 (B.19)

by definition of Cj (see Equation (4.5)). Now, if we denote GT = Z ′
TMj,R̃;TZT +

|R̃T |−1
∑

k∈R̃T zj,k;T − trMj,R̃;T , then the second term may be written

2p−1E|GT + biasT |p1|R̃|<|R| 6 22p−2
{

E
(

|GT |p1|R̃|<|R|

)

+ |biasT |p
}

where, using Proposition 2 for T large enough,

|biasT |p 6 Cp2
jp/2(δT )−p/2 (B.20)
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with a constant Cp depending on p only. Finally, we now show that E|GT |p is

uniformly bounded in T . Using δ < |R̃| < |R|, we first note that Propositions 2 and

7 imply

Pr

(

|GT | >
λ

δ

√

(C2 + c2)
2j

T

)

6 3 exp

(

−1

4
· λ2

1 + 2λτ∞
√

|RT |/2j

)

(B.21)

where τ∞ 6 2(j−1)/2c/(δ
√
T ) by (B.13). We now truncate the integral E|GT |p =

∫∞
0 dx Pr (|GT |p > x) at the point µ

p/2
T which is such that µT = 2j(C2 + c2)/(δ2T ).

With the change of variable x = ypµ
p/2
T , this leads to

E|GT |p 6 µ
p/2
T + p µ

p/2
T

∫ ∞

1
dy yp−1 Pr

(

|GT | > yµ
1/2
T

)

6 µ
p/2
T + p µ

p/2
T

∫ ∞

1
dy yp−1 exp

(

−1

2
· y2

1 + 2yτ∞
√

|RT |/2j

)

.

For computing the integral, we note that 1 6 y, and we evaluate
∫∞
1 dyyp−1 exp(−αT y).

This leads to the bound

E|GT |p 6 µ
p/2
T + epµ

p/2
T

(

2 + 4τ∞

√

|RT |
2j

)p

6 Cpδ
−pT−p/2.

In conclusion, in the first case, we get the bound E|S̃j(z0) − Sj(z0)|p 1|R̃|<|R| 6

Cpδ
−pT−p/2kp

T from (B.19) and (B.20).

Second term (|R̃| > |R|). We consider now the second case. Select a subinterval U
in ℘(R̃) included in R and containing z0. Then, consider the decomposition

E|S̃j(z0)−Sj(z0)|p 1|R̃|>|R| 6 E

{

|Qj,U−Sj(z0)|+|Qj,U ;T−Qj,U |+|Qj,R̃;T−Qj,U ;T |
}p

.

As the wavelet spectrum is regular on U ⊂ R, the term |Qj,U − Sj(z0)| is bounded

by Cjσj,U ,TkT . On the other hand, using Proposition 2, |Qj,U ;T −Qj,U | = |Qj,U ;T −
trMj,U ;T | + RT with RT = O(2j/2T−1/2). Moreover, as R̃ is selected by the esti-

mation procedure, it holds |Qj,R̃;T −Qj,U ;T | 6 2(ησj,R̃,T +λσj,U ,T )kT almost surely.

With 2α+ p >
√
α+ p, we can write

Cjσj,U ,TkT + 2
(

ησj,R̃,T + λσj,U ,T

)

kT 6 11
√

2(2α + p)kT (1 + c2)T−1/2δ−1

using |R̃| > |U| > δ. Then, Lemmas 8 and 9 proves the existence of a constant c5

depending on κ, ν, p,K2 and on ‖cX‖1,∞, such that, for T > T0,

E
{

|Qj,U ;T − trMj,U ;T | +RT + Cjσj,U ,TkT + 2
(

ησj,R̃,T + λσj,U ,T

)

kT

}p

6 Cpδ
−pT−p/2

(

2j/2|U|−1 + kT

)p
+ Cp2

jp/2|UT |−p/2

and the result follows using |U| > δ. �
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B.9 Proof of Proposition 6

We first prove the following lemma, stating an exponential inequality for quadratic

forms of Gaussian random variables.

Lemma 10. Let ZT = (Z1, . . . , ZT )′ be a vector of iid Gaussian random variables

with zero mean and VarZ1 = 1. If MT is a T × T symmetric and positive definite

matrix, then

Pr
(

Z ′
TMTZT 6 η

)

6 exp

(

−(η − trMT )2

4‖MT ‖2
2

)

provided that η 6 trMT .

Proof. By assumption on the matrix MT , the decomposition MT = O′
T ΛTOT holds

with a diagonal T × T matrix ΛT and an orthonormal matrix OT . If we denote

Y T = O′
TZT , then Y T is a vector of iid Gaussian random variables with zero

mean and Var Y1 = 1. We can write Z ′
TMTZT = Y ′

T ΛTY T =
∑T

i=1 λiY
2
i with

λi > 0. Moreover, trMT = tr ΛT , tr Λ2
T = trM2

T = ‖MT ‖2
2 and ‖MT ‖spec =

max{λ1, . . . , λT }. The Chernoff inequality (Ross, 1998) on Y T leads to

Pr
(

Z ′
TMTZT 6 η

)

= Pr
(

Y ′
T ΛTY T 6 η

)

6 exp

{

inf
t<0

(

−tη + log E exp(tY ′
T ΛTY T )

)

}

= exp

{

inf
t<0

(

−tη +
T
∑

i=1

log E exp(λitY
2
i )

)}

and, using that log E exp(αiY
2
i ) = −1

2 log(1 − 2αi) 6 αi + α2
i holds for αi 6 0, we

get

Pr
(

Z ′
TMTZT 6 η

)

6 exp

{

inf
t<0

(

−tη + t tr ΛT + t2 tr Λ2
T

)

}

.

The result follows by taking t = (η − tr ΛT )/(2 tr Λ2
T ). �

Lemma 10 is not directly applicable on the quadratic formQj,R;T = Z ′
TMj,R;TZT

because the matrix Mj,R;T is not definite positive in general. In the next lemma,

we show how this matrix can be approximated by the matrix M⋆
j,R;T , defined as

M⋆
j,R;T = Σ

1/2 ′
T U⋆

j,R;TΣ
1/2
T ,

where the entry (s, t) of the matrix U⋆
j,R;T is given by

u⋆
st = 2γ0|RT |−1

−1
∑

ℓ=− log2 T

2ℓ/2Ψℓ(s− t),
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with γ0 > supj<0 supℓ<0 2−ℓ/2|A−1
jℓ | > 0. The matrix M⋆

j,R;T is clearly symmetric.

It is also positive definite because U⋆
j,R;T is positive definite: For all sequences x =

(x0, . . . , xT−1)
′ of ℓ2, the quadratic form

x′U⋆
j,R;Tx = γ0|RT |−1

−1
∑

ℓ=− log2 T

2ℓ/2
∑

s

(

∑

k

xsψℓk(s)

)2

is strictly positive.

Lemma 11. Assume that Assumptions 1 to 4 hold true. Define γ1 such that

0 < γ1 6 γ0 inf
m<0

−1
∑

ℓ=− log2 T

2ℓ/2Amℓ.

The following properties hold true for T sufficiently large:

γ1|R|−1ε 6 tr(M⋆
j,R;T −Mj,R;T ) 6 6‖cX,T ‖1,∞γ0|R|−1 (B.22)

where ε is defined in Assumption 2,

‖M⋆
j,R;T −Mj,R;T‖2

spec 6 ‖M⋆
j,R;T −Mj,R;T‖2

2

6 8L−1γ
2
0 |R|−2‖cX‖2

1,∞T
−1 log2

2(T ) +O(T−1), (B.23)

and, if ZT = (Z1, . . . , ZT )′ is a vector of iid Gaussian random variables with zero

mean and VarZ1 = 1, then

Pr
(

Z ′
T (M⋆

j,R;T −Mj,R;T )ZT > λT

)

= O

(

exp

{

−
√
T trMj,R;T

log2
2 T

})

(B.24)

where λT = trM⋆
j,R;T − trMj,R;T + trMj,R;T log−1

2 T .

Proof. 1. We prove (B.22). Write tr(M⋆
j,R;T −Mj,R;T ) = tr(M⋆

j,R;T )−tr(Mj,R;T ),

where the second term is E(Z ′
TMj,R;TZT ) = Qj,R+O(2j/2T−1/2) from Lemma

3 and Proposition 2. Moreover,

tr(M⋆
j,R;T ) = tr

(

Σ′
TU

⋆
j,R;T

)

= 2γ0|RT |−1
∞
∑

s,u=−∞
cX,T

( s

T
, u
)

−1
∑

ℓ=− log2 T

2ℓ/2Ψℓ(u) (B.25)

= 2γ0|RT |−1
∞
∑

s,u=−∞
cX

( s

T
, u
)

−1
∑

ℓ=− log2 T

2ℓ/2Ψℓ(u) + RestT . (B.26)
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We now derive a bound for RestT . Denote ∆T (s/T, u) := cX,T (s/T, u) −
cX(s/T, u). We first show that TV(∆T (·, u)) is uniformly bounded in u. For

all I ∈ {1, . . . , T} and for every sequence 0 < a1 < a2 < . . . < aI < 1, we can

write

∆T (ai, u) − ∆T (ai−1, u) =

−1
∑

j=−∞

∞
∑

k=−∞

{

Sj

(

k

T

)

− Sj (ai)

}

ψjk([aiT ])ψjk([aiT ] + u)

−
−1
∑

j=−∞

∞
∑

k=−∞

{

Sj

(

k

T

)

− Sj (ai−1)

}

ψjk([ai−1T ])ψjk([ai−1T ]+u)+O(T−1) ,

where the O(T−1) term comes from the approximation (2.2). Now, replace k

by k+ [aiT ] in the first sum, and by k+ [ai−1T ] in the second one. The main

term becomes

−1
∑

j=−∞

∞
∑

k=−∞

{

Sj

(

k

T
+ ai

)

− Sj

(

k

T
+ ai−1

)

+ Sj (ai−1) − Sj (ai)

}

ψjk(0)ψjk(u)

Consequently, using the Cauchy-Schwarz inequality and Definition 1,

I
∑

i=1

{∆T (ai, u) − ∆T (ai−1, u)} 6 2

−1
∑

j=− log2 T

Lj

∞
∑

k=−∞
|ψjk(0)ψjk(u)| +O(IT−1)

6 2ρ+K,

where K is a constant (because I 6 T ), leading to TV(∆T (·, u)) 6 2ρ + K

uniformly in u. We can now bound RestT in (B.26) as follows:

RestT = 2γ0|RT |−1
∞
∑

s,u=−∞
∆T

( s

T
, u
)

−1
∑

ℓ=− log2 T

2ℓ/2Ψℓ(u)

=
2γ0

|R|
∑

s,u

∫ s+1
T

s
T

dz
{

∆T (z, u) + ∆T

( s

T
, u
)

− ∆T (z, u)
}

∑

ℓ

2ℓ/2Ψℓ(u)

6
2γ0

|R|

∫ 1

0
dz
∑

u

|∆T (z, u)| + 2γ0

|R|
∑

s,u

∫ 1
T

0
dz
∣

∣

∣
∆T

( s

T
, u
)

− ∆T

(

z +
s

T
, u
)∣

∣

∣
.

as |Ψℓ(u)| is uniformly bounded by 1. From Proposition 1, the first term is

O(|RT |−1). Using (B.5) and that TV(∆T (·, u)) is uniformly bounded in u,

the second term is also O(|RT |−1).
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In (B.26) we now expand cX(s/T, u) using (2.6). By definition of the matrix

A we get

tr(M⋆
j,R;T −Mj,R;T ) > |RT |−1

∑

s

∑

m

Sm

( s

T

)

∑

ℓ

(2γ0 − 2−ℓ/2A−1
jℓ )2ℓ/2Amℓ

for T large enough. The lower bound is derived from the definition of γ0, γ1

and Assumption 2. The upper bound is derived using tr(M⋆
j,R;T −Mj,R;T ) 6

tr(M⋆
j,R;T ) from (B.25), using Assumption 1, and |Ψℓ(u)| 6 1 uniformly in

ℓ < 0 and u ∈ Z.

2. We prove (B.23). The first inequality is (B.1). From (B.4), we write ‖M⋆
j,R;T −

Mj,R;T‖2
2 6 ‖Σ1/2‖4

spec‖U⋆
j,R;T − Uj,R;T‖2

2. Then, using Lemma 4, (A.5) and
√LℓLm 6 2−(ℓ+m)/2L−1,

1

2
‖U⋆

j,R;T − Uj,R;T‖2
2 6 ‖U⋆

j,R;T‖2
2 + ‖Uj,R;T‖2

2

6 4γ2
0 |R|−2T−1

−1
∑

m,ℓ=− log2 T

2(ℓ+m)/2Aℓm +K2
22j |R|−2T−1

6 4L−1γ
2
0 |R|−2T−1 log2

2(T ) +O(T−1).

The result follows from Lemma 5.

3. We prove (B.24). For T large enough, λT is strictly positive. Using Proposition

7 and if we define p2
T = Var(Z ′

T (M⋆
j,R;T −Mj,R;T )ZT ) = 2‖M⋆

j,R;T −Mj,R;T‖2
2

and qT = ‖M⋆
j,R;T −Mj,R;T‖spec, then we can write

Pr
(

Z ′
T (M⋆

j,R;T −Mj,R;T )ZT > λT

)

6 exp

(

−1

2
· (trMj,R;T )2

p2
T log2

2 T + 2qT tr(Mj,R;T ) log2 T

)

.

(B.23) gives the rates for pT and qT , leading to the result. �

Proof of Proposition 6. By Proposition 2 we have θT = Qj,R0 − Qj,R1 +

O(2j/2/{
√
T (|R0| ∧ |R1|)}). This shows that the sign of θT is determined by the

sign of (Qj,R0 −Qj,R1) for T large enough. Then we consider the two cases θT > 0

and θT < 0.

If θT > 0, define µT = E(Qj,R0;T −Qj,R;T ) > 0 and λT = tr(M⋆
j,R0;T

−M⋆
j,R;T )−

µT (1 − 1/ log2 T ), where the matrices M⋆ are defined as in Lemma 11. Define the

random set PT = {Z ′
T (M⋆

j,R0;T −M⋆
j,R;T −Mj,R0;T +Mj,R;T )ZT 6 λT } where ZT =

(Z1, . . . , ZT )′ is a vector of iid Gaussian random variables. As for the derivation of
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(B.24), we can use Proposition 7 to derive

Pr(Pc
T ) = O

(

exp

{

−µT

√
T

log2
2 T

(

1

|R0|2
+

1

|R1|2
)−1/2

})

.

Using decomposition (B.7) and by conditioning on PT ,

Pr (R is not rejected|PT ) 6 Pr
{

Z ′
T (M⋆

j,R0;T −M⋆
j,R;T )ZT + q◦j,R0;T − q◦j,R;T

6 2η(σj,R0,T + σj,R,T )kT + λT |PT } .

Note that the first inequality of Proposition 7 implies that Pr{|q◦j,R0;T
− q◦j,R;T | >

(σj,R0;T + σj,R;T )λkT } 6 2 exp(−λ2k2
T /2). Therefore, by definition of η,

Pr (R is not rejected|PT ) 6 O(T−1)

+ Pr
{

Z ′
T (M⋆

j,R0;T −M⋆
j,R;T )ZT 6 η(σj,R0,T + σj,R,T )kT + λT |PT

}

.

Lemma 10 can now be used to bound this probability because M⋆
j,R0;T

−M⋆
j,R;T is

a definite positive matrix and η(σj,R0,T +σj,R,T )kT +λT 6 tr(M⋆
j,R0;T −M⋆

j,R;T ) for

T large enough. This leads to the rate O

(

− µ2
T T

log2
2 T

(

1
|R0|2 + 1

|R|2
)−1

)

.

If θT < 0, we apply the same reasoning with µT = E(Qj,R1;T − Qj,R;T ) and

λT = tr(M⋆
j,R1;T −M⋆

j,R;T )+µT (1− 1/ log2 T ). The result follows after the addition

of all terms. �
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Figure 1: The first figure is an example of theoretical spectrum Sj(z). This spectrum

is used in the second figure to simulate a locally stationary wavelet process of length

T = 1000. This simulation uses Gaussian innovations ξjk and non-decimated Haar

wavelets.

47



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Figure 2: The bold line in both pictures is the first scale of the evolutionary wavelet

spectrum considered in Figure 1. The upper figure summarizes the results given from

100 simulations of the LSW process. In this figure, each vertical interval represents

the 90 % interquantile range from the 100 results and the bullet is the median. The

bottom figure presents the local adaptive estimator (bullets) from the realisation of

the process showed in Figure 1 (lower plot). The continuous line is the estimator of

Nason et al. (2000).

48


