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ABSTRACT

This paper starts from a simple model of strategic reasoning
in situations of social influence. Agents express binary views
on a set of propositions, and iteratively update their views
by taking into account the expressed opinion of their influ-
encers. We empower agents with the ability to disclose or
hide their opinions, in order to attain a predetermined goal.
We study classical game-theoretic solution concepts in the
resulting games, observing a non-trivial interplay between
the individual goals and the structure of the underlying net-
work. By making use of different logics for strategic reason-
ing, we show how apparently simple problems in strategic
opinion diffusion require a complex logical machinery to be
properly formalized and handled.
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1. INTRODUCTION
Social influence can be seen as a process where an agent
forms her opinion on the basis of the opinions expressed by
agents she trusts [3, 10, 18]. Recent work in multi-agent
systems proposed formal models of opinion diffusion which
combined methods and techniques from social network anal-
ysis with those of belief merging and judgment aggregation
[22, 13, 5, 23]. These frameworks built on classical mod-
els of opinion diffusion on networks such as the De Groot
or Lehrer-Wagner model [9, 16] and threshold models [14],
adapting them to more complex representations of individ-
ual opinions: belief bases, preferences, and binary judgments
over interconnected issues. The focus has been on studying
how agents’ opinions evolve over time due to the influence
of other agents in the society. Namely, an agent’s opinion at
a given time instant results from aggregating the opinions
(at the previous time instant) of the agents she trusts and
the trust relationship is modeled via a network.

In the present paper, we build on this work by looking at
social influence from a strategic perspective. We introduce
a new class of infinite repeated games, the games of influ-

ence. At each stage an agent can choose whether to make her
opinions public, and she updates her opinion according to
the public opinions of the agents she trusts and to some ag-
gregation procedure. Moreover, to each agent is associated
a goal she wants to achieve — in line with previous work
on representation of agent’s motivations [15], expressed in
a variant of Linear Temporal Logic LTL to consider agents’
future opinions.
Influence games provide a simple abstraction to explore

the effects of a trust network on agents’ behavior, as well as
allowing us to study game-theoretic solution concepts such
as winning strategy, weak dominance and Nash equilibrium.
First, we analyze the interplay between the network struc-
ture and a player’s strategic ability, focussing on two goal
schemas: that of reaching consensus among a group of agents
and that of influencing individuals towards one’s own opin-
ion. Since most of these results are of a limitative nature,
pointing at the difficulties of introducing a network into an
apparently simple problem, we move to explore the exis-
tence of game-theoretic solutions as a computational prob-
lem. We study its complexity by devising translations into
existing logical formalisms for strategic reasoning, such as
Alternating-time Temporal Logic [1] and Strategy Logic [17].
Previous work on logic-based models for social influence

include the Facebook logic [24] and the preference and re-
liability models (which do not, however, consider strategic
aspects in the update) [11]. Other known models differen-
tiating private and public information have not focussed on
strategic aspects [7, 8]. Problems close to opinion diffusion
are those of information cascades and knowledge diffusion,
which have been given formal treatment in a logical setting
[20, 4]. Moreover, influence games can be considered as a
variation of iterated boolean games [15] in which individ-
uals do not have direct control over all the variables, but
they concurrently participate in changing their truth val-
ues. Iterated boolean games have recently been extended
with a social network structure where agents choose actions
depending on the actions of their neighbors [25].
The remainder of the paper is organized as follows. Sec-

tion 2 presents the basic definitions of private and public
opinions, as well as our model of opinion diffusion. More-
over, we introduce state transitions given by agents’ actions
and the variant of LTL with which we express agents’ goals.
Section 3 introduces influence games, and presents the main
results about the effects of the network structure on solu-
tion concepts from game theory. Section 4 studies complex-
ity problems related to the solution concepts for influence
games, and Section 5 concludes the paper.



2. OPINION DIFFUSION
In this section we present the model of opinion diffusion
which is the starting point of our analysis. We generalize
the model of propositional opinion diffusion introduced in
related work [13] by separating private and public opinions
with a notion of visibility, and we adapt the diffusion process
through aggregation to this more complex setting.

2.1 Private and public opinions
Let I = {p1, . . . , pm} be a finite set of propositions or is-
sues and let N = {1, . . . , n} be a finite set of individuals or
agents. Agents have opinions on issues in I in the form of a
propositional evaluation or, equivalently, a binary vector:

Definition 1 (private opinion). The private opinion
of agent i is a function Bi : I → {1, 0} where Bi(p) = 1 and
Bi(p) = 0 express, respectively, the agent’s opinion that p is
true and the agent’s opinion that p is false.

Let B = (B1, . . . , Bn) denote the profile of private opin-
ions of agents in N . Propositional evaluations can be used
to represent ballots in a multiple referendum, expressions of
preference over alternatives, or judgements over correlated
issues [6, 12]. Depending on the application at hand, an
integrity constraint can be introduced to model the propo-
sitional correlation among issues. For the sake of simplicity
we do not introduce any such constraint in this paper.
We also assume that each agent has the possibility of

declaring her private opinion on each issue.

Definition 2 (visibility function). We call visibil-
ity function of agent i any map Vi : I → {1, 0} where
Vi(p) = 1 expresses that agent i’s opinion on p is visible.

We denote by V = (V1, . . . , Vn) the profile composed of
the agents’ visibility functions. By combining the private
opinion with the visibility function of an agent, we can build
her public opinion as a three-valued function on the issues.

Definition 3 (public opinion). Let Bi be the opin-
ion of agent i and Vi her visibility function. The public
opinion of i is a function Pi : I → {1, 0, ?} such that

Pi(p) =

{

Bi(p) if Vi(p) = 1

? if Vi(p) = 0

Again, P = (P1, . . . , Pn) is the profile of public opinions
of all the agents in N . We denote by PC the restriction of
public profile P to individuals in C ⊆ N .

Definition 4 (state). A state is a tuple S = (B,V )
where B is a profile of private opinions and V is a profile
of visibility functions. The set of all states is denoted by S.

States are the building blocks of the model of strategic
reasoning in opinion dynamics that we present in Section 2.3.

2.2 Unanimous opinion diffusion
We here define the influence process that is at the heart of
our model. Our definition generalizes the model of proposi-
tional opinion diffusion [13] to take into account the visibility
function. First, we assume that individuals are linked by an
influence network modeled as a directed graph:

Definition 5 (influence network). We call an in-
fluence network a directed irreflexive graph E ⊆ N × N ,
where (i, j) ∈ E reads “agent j is influenced by agent i”.

We also refer to E as the influence graph and to individ-
uals in N as the nodes of the graph. Let Inf (i) = {k ∈ N |
(k, i) ∈ E} be the set of influencers of agent i in the net-
work E. Given a state S, this definition can be refined by
considering Inf S(i, p) = {k ∈ N | (k, i) ∈ E and Pk(p) 6= ?}
to be the subset of i’s influencers that are actually showing
their private opinion about issue p.
Given a profile of public opinions and an influence net-

work, we model the process of opinion diffusion by means of
an aggregation function, which shapes the private opinion
of an agent from the public opinions of other agents.

Definition 6 (Aggregation procedure). An aggre-
gation procedure for agent i is a class of functions

Fi,C : {0, 1}I × {0, 1, ?}I×C −→ {0, 1}I for all C ⊆ N \ {i}

that maps agent i’s individual opinion and the public opin-
ions of a set of agents C to agent i’s individual opinion.

We drop C from the subscript when clear from the con-
text, to simplify notation. Many aggregation procedures
have been considered in the literature on judgment aggre-
gation, and they can be adapted to our setting. Notable
examples are quota rules, where agents change their opinion
if the number of people disagreeing with them is higher than
a given quota, such as the majority rule (cfr. the class of
threshold models studied in the literature on opinion diffu-
sion [14, 21]). Unanimity is another instance of a quota rule,
which we adapt here:

Definition 7. The unanimous issue-by-issue aggregation
procedure is defined as follows:

F
U
i (Bi,PC)(p) =











Bi(p) if C = ∅

x ∈ {0, 1} if Pk(p) = x for all k ∈ C

Bi(p) otherwise

That is, an individual will change her private opinion about
issue p if and only if all agents in C (usually among her
influencers) publicly expressing their opinion are unanimous
in disagreeing with her own. For the sake of simplicity, in
the remainder of the paper we will consider that all agents
use the unanimous aggregation procedure.

2.3 Strategic actions and state transitions
In our model, agents can make their opinions visible or in-
visible by specific actions of type reveal(J) — i.e., action
of showing the opinion on issues in J , and hide(J) — i.e.,
action of hiding the opinion on issues in J . We allow for
simultaneous disclosure on multiple propositions. Let thus:

A = {(reveal(J), hide(J ′)) | J, J ′ ⊆ I and J ∩ J ′ = ∅}

be the set of individual actions. Each joint action a =
(a1, . . . , an) ∈ An induces a deterministic transition func-
tion between states:

Definition 8 (transition function). The transition
function succ : S ×An −→ S associates to each state S and
joint action a a new state S′ = (B′,V ′) as follows, for all
i ∈ N and p ∈ I. For ai = (reveal(J), hide(J ′)) ∈ A:



• V ′
i (p) =











1 if p ∈ J

0 if p ∈ J ′

Vi(p) otherwise

• B′
i = FU

i (Bi,P
′
Inf (i)S )

Where P ′ is the public profile obtained from private profile
B and visibility profile V ′.

By a slight abuse of notation we denote with a(S) the
state succ(S,a) obtained from S and a by applying the tran-
sition function. We also use the following abbreviations:
skip = (reveal(∅), hide(∅)) for doing nothing, reveal(J) =
(reveal(J), hide(∅)), hide(J) = (reveal(∅), hide(J)), and we
drop curly parentheses in reveal({p}) and hide({p}). Our
definition assumes that the influence process occurs after the
actions have changed the visibility of the agents’ opinions.
Specifically, first, actions affect the visibility of opinions, and
then each agent modifies her private opinion on the basis of
those opinions of her influencers that have become public.

We are now ready to define the concept of history, de-
scribing the temporal aspect of agents’ opinion dynamic:

Definition 9 (history). Given a set of issues I, a set
of agents N , and aggregation procedures Fi for i ∈ N over
a network E, an history is an infinite sequence of states
H = (H0, H1, . . .) such that for all t ∈ N there exists a joint
action at ∈ An such that Ht+1 = at(Ht).

Let H = (H0, H1, . . .) be an history: the set of all histories
is denoted by H. Observe that our definition restricts the
set of all possible histories to those that correspond to a run
of the influence dynamic described above. For notational
convenience, for any i ∈ N and for any t ∈ N, we denote
with HB

i,t agent i’s private opinion in state Ht and with HV
i,t

agent i’s visibility function in state Ht.

Example 1. Consider the example in Figure 1, where the
initial state is H0 and the agents are N = {i, j, k} such that
Inf (i) = {j, k}. Let a0 = (skip, skip, reveal(p)) and a1 =
(skip, hide(p), skip) be the joint actions of the agents at the
first two states. Namely, agent k reveals her opinion on p,
and at the next step j hides hers. If all individuals are using
the unanimous aggregation procedure, then states H1 and H2

result from applying the joint actions from state H0. In state
H1, agent i’s private opinion about p has changed to 1, as
all her influencers are publicly unanimous on p, while in H2

no opinion is updated.

((0, 1, 1), (1, 1, 0))

H0

((1, 1, 1), (1, 1, 1))

H1

((1, 1, 1), (1, 0, 1))

H2

a0 a1

Figure 1: The first states of a history.

2.4 Individual goals
By revealing or hiding her opinion, an agent influences oth-
ers towards the satisfaction of her goal. To account for the
temporal aspect of our model, we follow recent work on iter-
ated boolean games [15] and we define a language LLTL–I to
express individual goals using Linear Temporal Logic LTL.

Let therefore LLTL–I be defined as follows:

ϕ ::= op(i, p) | vis(i, p) | ¬ϕ | ϕ ∧ ϕ | ©ϕ | ϕUϕ

where i ranges over N and p ranges over I. We read op(i, p)
as “agent i’s opinion is that p is true”, while ¬op(i, p) has
to be read “agent i’s opinion is that p is not true” (since
agents have binary opinions). Moreover, vis(i, p) has to be
read “agent i’s opinion about p is visible”.
The reading of ©ϕ is “ϕ is going to be true at the next

state” and of ϕ1Uϕ2 is “ϕ1 will be true until ϕ2 is true”:
they are the standard LTL operators ‘next’ and ‘until’. As
usual, we can define the temporal operators ‘eventually’ (✸)
and ‘henceforth’ (✷) as ✸ϕ = ⊤Uϕ and ✷ϕ = ¬✸¬ϕ.
The interpretation of LLTL–I-formulas relative to histories

is defined as follows.

Definition 10 (Truth conditions). Let H be a his-
tory, let ϕ be a formula of LLTL–I and let k, k′, k′′ ∈ N. Then:

H, k |= op(i, p) ⇔ H
B
i,k(p) = 1

H, k |= vis(i, p) ⇔ H
V
i,k(p) = 1

H, k |= ¬ϕ ⇔ H, k 6|= ϕ

H, k |= ϕ1 ∧ ϕ2 ⇔ H, k |= ϕ1 and H, k |= ϕ2

H, k |= ©ϕ ⇔ H, k + 1 |= ϕ

H, k |= ϕ1Uϕ2 ⇔ ∃k′ : (k ≤ k
′ and H, k′ |= ϕ2 and

∀k′′ : if k ≤ k
′′
< k

′ then H, k′′ |= ϕ1)

Formulas of LLTL–I will be used to express agents’ goals
on the iterative diffusion process. As individuals do not
have any influence on the initial state of the history, we will
consider only goals of the form ©ϕ and ϕUψ, for any ϕ and
ψ in LLTL–I, which we denote as goal formulas.
For some subset of agents C ⊆ N and some issues J ⊆ I

consider the following goals on consensus and influence in
situations of opinion diffusion:

cons(C, J) := ✸✷(pcons(C, J) ∨ ncons(C, J))

influ(i, C, J) := ✸✷

∧

p∈J

(

(op(i, p) → ©pcons(C, p))

∧(¬op(i, p) → ©ncons(C, p))
)

where:

pcons(C, J) :=
∧

i∈C

∧

p∈J

op(i, p)

ncons(C, J) :=
∧

i∈C

∧

p∈J

¬op(i, p).

Intuitively, an agent holding the first goal wants at some
point in the history to reach a stable consensus either for or
against the issues in J with the agents in C. The second goal
expresses instead the idea that agent i wants to eventually
gain a stable influence over the people in C about the issues
in J (i.e., they will always hold her opinion at the next step).

3. GAMES OF INFLUENCE
We are now ready to combine all concepts introduced in the
previous sections to give the definition of an influence game:

Definition 11 (Influence game). An influence game
is a tuple IG = (N , I, E, Fi, S0, γ1, . . . , γn) where N , I, E
and S0 are, respectively, a set of agents, a set of issues, an



influence network, and an initial state, Fi for i ∈ N is an
aggregation procedure, and γi is agent i’s goal formula.

Given an influence game, our agents will build their strate-
gies in order to attain their goals. We first introduce two
kinds of strategies available to agents, namely memory-less
and perfect-recall strategies, then we study the existence of
basic solution concepts from game theory when agents use
influence or consensus goals (see Section 2.4).

3.1 Strategies
The first type of simple individual strategies we define is
based on states, and thus memory-less.

Definition 12 (memory-less strategy). A memory-
less strategy for player i is a function Qi : S → A that
associates an action to every state.

A strategy profile is a tuple Q = (Q1, . . . ,Qn). For no-
tational convenience, we also use Q to denote the function
Q : S −→ An such that Q(S) = a if and only if Qi(S) = ai,
for all S ∈ S and i ∈ N .

The second definition we provide is the full-blown notion
of perfect-recall strategy, which assigns an action to each
partial history that has been observed by the player. Let H+

denote the set of all partial histories — i.e., finite sequences
of states satisfying Definition 9.

Definition 13 (perfect-recall strategy). We call
a perfect-recall strategy for player i a function Qi : H

+ → A
that associates an action to every finite history.

As the following definition highlights, every strategy pro-
file (of either type) induces a history if combined with an
initial state:

Definition 14 (Induced history). Let S0 be an ini-
tial state and let Q be a strategy profile. The induced history
HS0,Q ∈ H is defined as follows:

H0(S0,Q) = S0

Hn+1(S0,Q) = succ(Sn,Q(Sn)) for all n ∈ N

The two definitions allow us to differentiate the study
among more or less sophisticated agents. It is important to
observe, however, that we study influence games as repeated
games of complete information. This is to be considered as
a simplifying assumption — a more realistic model would
require the use of uniform strategies and the corresponding
indistinguishability relation. The hide action can alterna-
tively be interpreted in our model as “not exercising one’s
own influence”, without any epistemic interpretation, and
the reveal action as “persuade”.

3.2 Solution concepts
The first solution concept we study is that of winning strat-
egy. Intuitively, Qi is a winning strategy for player i if and
only if i knows that, by playing this strategy, she will achieve
her goal no matter what the other players do.

Definition 15 (Winning strategy). Let IG be an in-
fluence game and let Qi be a strategy for player i. We say
that Qi is a winning strategy for player i in state S0 if

HS0,(Qi,Q−i)
|= γi

for all profiles Q−i of strategies of players other than i.

Example 2. Let Ann, Bob and Jesse be three agents and
suppose that BAnn(p) = 1, BBob(p) = 0, BJesse(p) = 0 for
p ∈ I. Their influence network is as in this picture:

Ann

Bob

Jesse

Suppose Ann’s goal is ✸✷op(Jesse, p). Her winning memory-
less strategy is to play reveal(p) in all states. Bob will be
influenced to believe p at the second stage in the history and
similarly for Jesse at the third stage, since her influencers
are unanimous even if Bob plays hide(p).

As we will show in the following section, the concept of
winning strategy is rather strong for our setting. Let us then
define the less demanding notion of weak dominance:

Definition 16 (Weakly dominant strategy). Let
IG be an influence game and Qi a strategy for player i. We
say that Qi is a weakly dominant strategy for player i and
initial state S0 if and only if for all profiles Q−i of strategies
of players other than i and for all strategies Q ′

i we have:

HS0,(Q
′

i
,Q

−i)
|= γi ⇒ HS0,(Qi,Q−i)

|= γi

Example 3. Suppose that in the previous example Ann
still believes p, but does not influence Jesse any longer. Here,
Ann does not have a winning strategy: if neither Bob nor
Jesse believe p, it is sufficient for Bob to play hide(p) to
make sure that she will never satisfy her goal. However,
playing action reveal(p) is weakly dominant for Ann.

Finally, we introduce the concept of Nash equilibrium for
influence games:

Definition 17 (Nash equilibrium). Let IG be an in-
fluence game and let Q be a strategy profile. We say that Q
is a Nash equilibrium for initial state S0 if and only if for
all i ∈ N and for all Q ′

i ∈ Qi:

HS0,(Qi,Q−i)
|= γi or HS0,(Q

′

i
,Q

−i)
6|= γi.

Problems of membership, existence and uniqueness of Nash
equilibria will be studied in Section 4.

3.3 Influence network and solution concepts
In this section we analyze the interplay between network
structure and existence of solutions concepts for the goals
defined in Section 2.4. We assume memory-less strategies.

Proposition 1. If E is a directed acyclic graph (DAG)
such that |Inf (i)| ≤ 1 for all agents i ∈ N , and if agent a
has goal γa := cons(Ca, J) where J ⊆ I and Ca := {k ∈ N |
a ∈ Inf (k)} ∪ {a}, then agent a has a winning strategy.

Proof. (sketch) Consider a DAG E and an agent a with
goal γa. Let Qa be the strategy associating to every state S
action reveal(J). We want to show that HS0,(Qa,Q−a)

|= γa
holds for all S0 and Q−a. Consider the position of agent a
in the graph for arbitrary S0. In case there is no agent b
such that a ∈ Inf (b), the goal reduces to cons({a}, J) which
is always trivially satisfied. In case Inf (a) = ∅, by playing
reveal(J) in S0 and since every agent uses the unanimous
aggregation rule, at stage 1 all child nodes of a will update



their beliefs on J by copying a’s opinion (she is their only
influencer). Moreover, they can’t change their opinions on
J later on in the history.

On the other hand, suppose there is some agent b such that
a ∈ Inf (b) and some agent c ∈ Inf (a). By assumption on E
we thus have that Inf (a) = {c} and Inf (b) = {a}. Hence,
either at some point k in the history all ancestors of a will
have reached consensus, such that by playing reveal(J) from
point k + 1 onwards the consensus among a and her child
nodes will be maintained, or there is no such k. Since there
is a unique path linking a to one of the source nodes of E,
if her ancestors always disagree in the history it means that
there is some agent among them who has a different opinion
and who will never play reveal(J). Therefore, the opinion of
a will nonetheless be stable and γa will be attained.

The assumption of acyclicity in the above result rules out
the situation where all nodes in a cycle play reveal(J) and
they start in S0 by having alternating positive and negative
opinions on the issues in J . In the second place, having at
most one influencer per agent ensures each agent to have full
control over their child nodes.

Observe also that Proposition 1 implies the same result
to hold for γa := ✷✸(pcons(Ca, J) ∨ ncons(Ca, J)). In fact,
since eventually a will reach a stable consensus with her
child nodes, this implies that it is always true that we can
find some later point in the history where consensus holds.
In general, however, Proposition 1 shows us how winning
strategies are too strong of a solution concept, so that the
type of goals which can be attained have a narrow scope.

If we move to the less demanding concept of weak domi-
nance, we may intuitively think that a strategy associating
action reveal(J) to all states is weakly dominant for an agent
a having goal γa := influ(a,C, J) for C ⊆ N , regardless of
the network E or the initial state S0. In fact, all agents use
the monotonic aggregation rule FU

i . Yet, we show in the fol-
lowing example that to satisfy goals of type γa as described,
an agent could sometimes benefit from hiding her opinion.

Example 4. For four agents N = {1, 2, 3, 4} and one is-
sue I = {p} consider the network E = {(1, 2), (2, 3), (3, 4)}
Suppose agent 1 and 2 associate action reveal(p) to all states,
and agent 3 associates action hide(p) only to those states
where 1, 2 and 3 agree on p. Suppose that the goal of agent
2 is γ2 = influ(2, {4}, {p}). Consider the history below for
these strategies, where goal γ2 is not attained (we only rep-
resent B):

(0, 1, 0, 1)

H0

(0, 0, 1, 0)

H1

(0, 0, 0, 1)

H2

a0 a1

From state H2 onwards, given the strategies of the agents,
the profile of opinions B = (0, 0, 0, 1) won’t change. On the
other hand, consider a strategy for agent 2 identical to the
previous one, but for the fact that it associates to state H0

action hide(p). This is what would happen:

(0, 1, 0, 1)

H0

(0, 0, 0, 0)

H1

a0

From state H1 onwards, given the strategies of the agents,
the profile of opinions won’t change. Thus, we found a net-
work, an initial state H0, and strategies for the other agents,

such that agent 2 is sometimes better off by hiding her opin-
ion on p to satisfy her influence goal γ2.

We can now see an easy example of how the network struc-
ture and the agents’ goals can yield a Nash equilibrium in
the spirit of anti-coordination games [19].

Proposition 2. Let E be a cycle for N = {1, 2}. If γ1 =
γ2 = cons(N , J), where J ⊆ I, then there exists a Nash
equilibrium for any initial state S0.

Proof. (sketch) To attain their goal the agents must co-
ordinate on the issues in J on which they disagree in S0. In
fact, in case at some stage k of the history they both play
hide(p) for p ∈ J their private opinion would stay the same
at stage k+1. If they both play reveal(p), at the next stage
they would just swap their opinions on p (since they are
each other’s only influencers and they both use the unani-
mous rule). Hence, agent 1 has to play reveal(p) whenever
the other agent is playing hide(p) so that at the next stage in
the history he will have copied her opinion, while she would
have not changed hers — and similarly if the other agent is
playing reveal(p).
Consider thus an arbitrary strategy Q1 for agent 1 and

some initial state S0. Construct now strategy Q2 for agent
2 associating action reveal(JS) to all states where strategy
Q1 associates action hide(JS) for JS = {p ∈ J | b1p =
1 − b2p in S}, and viceversa for action reveal(JS). By the
above reasoning, the strategy profileQ = (Q1, Q2) generates
a history that satisfies both γ1 and γ2, and therefore is a
Nash equilibrium. The same construction can be done for
an arbitrary strategy of agent 2 as well.

4. COMPUTATIONAL COMPLEXITY AND

SOLUTION CONCEPTS
In this section we provide complexity results for a variety
of computational problems for the solution concepts intro-
duced in Section 3.2. We start by studying the complexity
of deciding whether a certain memory-less strategy profile
of an influence game is a Nash equilibrium.
Then, we present two logics of strategic reasoning that

have been studied in the area of logics for multi-agent sys-
tems: Alternating-time Temporal Logic ATL [1] and the
graded variant of Strategy Logic SL [17, 2]. We then fo-
cus on perfect-recall strategies for influence games and we
reduce the problem of checking existence of a winning strat-
egy to the model checking problem of the former, and the
problem of checking existence or uniqueness of a Nash equi-
librium to the model checking problem of the latter.

4.1 Problem definitions
We now provide the formal definitions of the complexity
problems we are interested in studying for influence games.

INPUT: IG = (N , I, E, F, S0, γ1, . . . , γn), Q.
M-NASH(F ): Is Q a Nash equilibrium of IG?

This problem is out of reach for perfect-recall strategies,
since the size of the input (i.e., the size of a perfect-recall
strategy profile) would already be exponential in the size
of the initial game. We will thus focus on the problems
E-NASH(F ) and U-NASH(F ), defined below.

INPUT: IG = (N , I, E, F, S0, γ1, . . . , γn).
E-NASH(F ): Is there some Nash equilibrium Q of IG?

U-NASH(F ): Is there a unique Nash equilibrium Q of IG?



Observe that F is not part of the input but a parameter of
the problems defined above, since, as we shall see later, dif-
ferent aggregation functions may give rise to computational
problems in different complexity classes.

4.2 Memory-less Nash equilibrium
We begin by translating a memory-less strategy in the lan-
guage of the logic LTL–I (see Section 2.4). The algorithm
presented in the setting of iterated boolean games [15] can-
not be directly applied to ours for two reasons. First, our
histories are generated by an aggregation function F that
models opinion diffusion — i.e., agents have a concurrent
control over a set of propositional variables. Second, in this
section we focus on memory-less strategies only.

A conjunction of literals α(S) can be defined to uniquely
identify a state S: α(S) will specify the private opinion of
all individuals and their visibility function. For an action
a = (reveal(J), hide(J ′)), let βi(a) be the following formula:

βi(a) =
∧

p∈J

©vis(i, p) ∧
∧

q∈J′

©¬vis(i, q).

In case a = skip we let βi(a) = ⊤. Given a memory-less
strategy Qi, we construct the following formula:

τi(Qi) =
∧

S∈S

α(S) → βi(Qi(S)).

If Q is a strategy profile, let τ(Q) =
∧

i∈N τi(Qi). We now
need to encode the aggregation function into a formula as
well. Consider the following formula unan(i, p):

© op(i, p) ↔
(

[

∧

j∈Inf (i)

©¬vis(j, p) ∧ op(i, p)
]

∨

[

∨

j∈Inf (i)

© vis(j, p) ∧
∧

j∈Inf (i)

(© vis(j, p) → op(j, p))
]

∨

[

∨

j,z∈Inf (i):

(© vis(j, p) ∧© vis(z, p)∧

op(j, p) ∧ ¬op(z, p)) ∧ op(i, p)
]

)

.

as well as the following formula unan(i,¬p):

©¬op(i, p) ↔
(

[

∧

j∈Inf (i)

©¬vis(j, p) ∧ ¬op(i, p)
]

∨

[

∨

j∈Inf (i)

© vis(j, p) ∧
∧

j∈Inf (i)

(© vis(j, p) → ¬op(j, p))
]

∨

[

∨

j,z∈Inf (i):

(© vis(j, p) ∧© vis(z, p)∧

¬op(j, p) ∧ op(z, p)) ∧ ¬op(i, p)
]

)

.

This formula ensures that if the influencers of agent i are
unanimous, then agent i’s opinion should be defined accord-
ing to the three cases described in Definition 7. Recall that,
while actions take one time unit to be performed — hence
the © operator in front of vis(j, p), the diffusion of opinions
is simultaneous. Let now:

τ(FU
i ) =

∧

{i∈N|Inf (i) 6=∅}

∧

{p∈I}

(unan(i, p) ∧ unan(i,¬p))

be the formula encoding the transition process defined by the
opinion diffusion. τ(FU

i ) is polynomial in both the number
of individuals and the number of issues — in the worst case
it is quadratic in the number of agents and linear in the
number of issues. We are now ready to prove the following:

Theorem 1. Let FU
i be the unanimous issue-by-issue ag-

gregator. M-NASH(FU
i ), E-NASH(FU

i ) and U-NASH(FU
i )

for memory-less strategies are in PSPACE.

Proof. We begin withM-NASH(FU
i ). LetQ be a memo-

ry-less strategy profile for game IG. The following algorithm
can be used to check whether Q is a Nash equilibrium. For
all individuals i ∈ N , we first check the following entailment:

τ(Q) ∧ τ(Fi) |=LTL γi

in the language of LTL built out of the set of propositions
{op(i, p) | i ∈ N and p ∈ I} ∪ {vis(i, p) | i ∈ N and p ∈ I}.
If this is not the case, we consider all the possible strate-

gies Q′
i 6= Qi for agent i — there are exponentially many of

them, but each one can be specified in space polynomial in
the size of the input — and check the following entailment:

τ(Q−i, Q
′
i) ∧ τ(Fi) |=LTL γi

If the answer is positive we output NO, otherwise we pro-
ceed until all strategies and all individuals have been consid-
ered. The entailment for LTL can be reduced to the problem
of checking validity in LTL. Indeed, the following holds:

ψ |=LTL ϕ iff |=LTL ✷ψ → ϕ

Since the problem of checking validity in LTL can be solved
in PSPACE [26], we obtain the desired upper bound.
Similar algorithms can then be devised to solve E-NASH

and U-NASH. To see this, it is sufficient to consider one
strategy profile Q at the time, and use M-NASH with Q in
the input as a PSPACE-oracle. For E-NASH the algorithm
can stop at the first Nash equilibria that is found, while for
U-NASH the entire set of strategy profiles eventually needs
to be visited — again, there are exponentially many profiles,
but each one can be specified in space polynomial in the size
of the input.

As for completeness, a reduction from similar results in
iterated boolean games [15] is likely to be obtained. We
leave a more careful study of the relations between these
two settings for future work. Observe also that Theorem 1
can easily be generalised to all aggregation procedures that
can be axiomatized by means of polynomially many LTL–I
formulas, such as quota rules. This is not the case for all ag-
gregation procedures: the majority rule would for instance
require an exponential number of formulas, one for each sub-
set of influencers forming a relative majority. The study of
the axiomatization of aggregation procedures for opinion dif-
fusion also constitutes a promising direction for future work.

4.3 Alternating-time temporal logic
We recall here the syntax and semantics of Alternating-time
Temporal Logic ATL. The language of ATL is defined by the
following BNF:

ϕ ::= q | ¬ϕ | ϕ ∧ ϕ | 〈〈C〉〉© ϕ | 〈〈C〉〉(ϕUϕ)



where C ranges over 2N and q ranges over a set of atomic
propositions Atm. The formula 〈〈C〉〉©ϕ is read“coalition C
has the capability to ensure that ϕ is going to be true in the
next state regardless of what the agents outside C decide to
do”, and the formula 〈〈C〉〉(ϕ1Uϕ2) is read “coalition C has
the capability to ensure that ϕ1 will be true until ϕ2 is true,
regardless of what the agents outside C decide to do”.

We here consider the standard ATL semantics in terms of
concurrent game structures.

Definition 18 (concurrent game structure). A
concurrent game structure is a tuple G = (W,M, R, T,Val)
where W is a set of worlds or states, M is a set of moves,
function R : N×W −→ 2M\∅ defines a nonempty repertoire
of moves for each agent at each world, T : W×Mn −→ W is
a transition function mapping a world w and a move profile
m = (m1, . . . ,mn) to the successor world T (w,m), and Val :
W −→ 2Atm is a valuation function.

In ATL, a strategy for player i is a function fi that maps
every finite sequence of worlds π = w0 . . . wn in W+ (i.e.,
a path) to a move fi(π) ∈ R(i, wn) available to agent i at
the end of path π.1 A strategy for coalition C is a function
GC that maps every agent i ∈ C to a strategy GC(i) for i.
The set of strategies for coalition C is denoted by StrC . We
write G instead of GN , and Str instead of StrN .
A move profile is used to determine a successor of a world

using the transition function T . We define the set of avail-
able move profiles at world w as follows:

P(w) = {(m1, . . . ,mn) ∈ Mn | mi ∈ R(i, w) for all i ∈ N}

The set of possible successors of w is the following:

Succ(w) = {T (w,m) | m ∈ P(w)}.

An infinite sequence λ = w0w1w2 . . . of worlds from W is
called a computation if wk+1 ∈ Succ(wk) for all k ≥ 0. The
k-th component wk in λ is denoted by λ[k]. Moreover, for
every computation λ = w0w1w2 . . . and for every positive
integer k, Prf (λ, k) = w0 . . . wk denotes the prefix of λ of
length k.

The set O(w,GC) denotes the set of all computations λ =
w0w1w2 . . . such that w0 = w and, for every k ≥ 0, there
is m = (m1, . . . ,mn) ∈ P(wk) such that GC(i)(w0 . . . wk) =
mi for all i ∈ C, and T (w,m) = wk+1. Notice that O(w,G)
is a singleton.
Truth conditions of ATL are defined relative to a CGS

G = (W,M, R, T,Val) and a world w ∈ W; we omit the
standard definition of truth conditions for Boolean formulas.

G, w |= 〈〈C〉〉© ϕ ⇔ there exists GC ∈ StrC such that

G, λ[1] |= ϕ for all λ ∈ O(w,GC)

G, w |= 〈〈C〉〉(ϕ1Uϕ2) ⇔ there is GC ∈ StrC such that for

all λ ∈ O(w,GC) there is k ≥ 0

such that G, λ[k] |= ϕ2 and

G, λ[h] |= ϕ1 for all 0 ≤ h < k.

1Observe that ATL does not distinguish a semantics based on
perfect-recall strategies from a semantics based on memory-
less strategies in which a strategy is a function mapping a
world to the set of moves available in this world. Specif-
ically, the set of ATL validities with a semantics based on
perfect-recall strategies and the set of ATL validities with a
semantics based on memory-less strategies are the same.

4.4 Graded strategy logic
Strategy logic SL is a logic of strategic reasoning that embeds
ATL [17], but it allows to quantify over strategies in a more
flexible way. The flexibility of SL is mainly due to the fact
that it has variables for strategies that are associated to
specific agents with a binding operator.
An extension of SL by graded quantifiers over tuples of

strategy variables has also been presented [2]. We here focus
on this SL extension, denoted by G− SL, whose language is
defined by the following BNF:

ϕ ::= q | ¬ϕ | ϕ ∧ ϕ | ©ϕ | ϕUϕ | 〈〈x1, . . . , xℓ〉〉
≥kϕ |

[i 7→ x]ϕ

where q ranges overAtm, i ranges overN , k and ℓ range over
the set of positive integers, x1, . . . , xℓ range over a countable
infinite set of variables Var with the additional constraint
that xh 6= xh′ for all 1 ≤ h, h′ ≤ ℓ such that h 6= h′.
〈〈x1, . . . , xℓ〉〉

≥kϕ is read “there exist at least k different ℓ-
tuples of strategies ensuring ϕ” while [i 7→ x]ϕ is read “if
agent i selects strategy x then ϕ will hold”. Formulas ©ϕ
and ϕ1Uϕ2 have the same reading as in LTL. Moreover, the
basic SL operator 〈〈x〉〉 abbreviates 〈〈x〉〉≥1 in G− SL.
Like ATL, SL semantics is based on the concept of con-

current game structure G = (W,M, R, T,Val). However,
to provide an interpretation of SL some extra-components
are needed. We denote with X a function mapping agents
and variables in N ∪ Var to strategies in Str . We call X
an assignment function. For every assignment function X,
strategy G ∈ Str and e ∈ N ∪ Var, we write X[e 7→ G]
to denote the assignment function that differs from X only
in the fact that e maps to G. We extend this definition to
tuples of agents or variables −→e = (e1, . . . , eℓ) and tuples of

strategies
−→
G = (G1, . . . , Gℓ) with eh 6= eh′ for h 6= h′, by de-

noting with X[−→e 7→
−→
G ] the assignment function that differs

from X only in that eh maps to Gh for each 1 ≤ h ≤ ℓ.
Furthermore, for every assignment function X, we write

GX to denote the strategy in Str generated by the assign-
ment function X. That is, GX is the strategy in Str such
that, for all i ∈ N , GX(i) = X(i)(i).
Moreover, for every world w ∈W , we write λw,X to denote

the computation starting in w generated by the assignment
function X. More precisely, λw,X denotes the computation
w0w1 . . . such that O(w,GX) = {(w0w1 . . .)}. Finally, for
every path π, we writeXπ to denote the assignment function
obtained by shifting all strategies in the image of X by π.
For all e ∈ N ∪ Var, i ∈ N and π, π′ ∈W+, we thus have:

Xπ(e)(i)(π
′) = X(e)(i)(π · π′)

Any G− SL formula ϕ is evaluated relative to a CGS G,
a world w ∈ W and assignment function X.
Let −→x = (x1, . . . , xℓ). Then:

G, w,X |= [i 7→ x]ϕ ⇔ G, w,X[i 7→ X(x)] |= ϕ

G, w,X |= 〈〈−→x 〉〉≥k
ϕ ⇔ there exists k many ℓ-tuples

−→
G1, . . . ,

−→
Gk of strategies

such that for all 1 ≤ h, h
′ ≤ k

if
−→
Gh 6=

−→
Gh′ then h 6= h

′

and G, w,X[−→x 7→
−→
Gh] |= ϕ



G, w,X |= ©ϕ ⇔ G, λw,X [1], XPrf (λw,X ,1) |= ϕ

G, w,X |= ϕ1Uϕ2 ⇔ there exists k ≥ 0 such that

G, λw,X [k], XPrf (λw,X ,k) |= ϕ2

and for all 0 ≤ h < k we have

G, λw,X [h], XPrf (λw,X ,h) |= ϕ1

4.5 Perfect-recall Nash equilibrium
We now introduce the problem of checking the existence of
a winning strategy for an agent i ∈ N in an influence game
IG as follows:

INPUT: IG = (N , I, E, F, S0, γ1, . . . , γn), i ∈ N .
E-WINNINGi(F ): Is there a winning strategy Qi in IG?

The following theorem studies the complexity of the prob-
lem E-WINNINGi(F ) for perfect-recall strategies and for
the unanimous aggregation procedure.

Theorem 2. E-WINNINGi(F
U
i ) for perfect-recall strate-

gies is in EXPTIME.

Proof. (sketch) We reduce E-WINNINGi(F
U
i ) to the

model checking problem of ATL where Atm = {op(i, p) | i ∈
N and p ∈ I}∪{vis(i, p) | i ∈ N and p ∈ I}. First of all, ob-
serve that we can generate the CGSGIG = (W,M, R, T,Val)
corresponding to the influence game IG as follows:

• W = S,

• M = A,

• for all i ∈ N and w ∈ W, R(i, w) = M,

• for all w ∈ W and a ∈ An, T (w,a) = succ(w,a),

• for all op(i, p), vis(i, p) ∈ Atm and w ∈ W, op(i, p) ∈
Val(w) iff Bi(p) = 1, vis(i, p) ∈ Val(w) iff Vi(p) = 1.

Secondly, it is easy to verify that the answer to the problem
E-WINNINGi(F

U
i ) is YES if and only if GIG , w0 |= 〈〈{i}〉〉γi

with w0 = S0. In [1, Theorem 5.2] it is shown that the model
checking problem for ATL can be solved in time O(m · l)
where m is the number of transitions in the CGS (which is
polynomial in the size of W and M) and l is the size of the
formula. Since the number of states S is exponential in the
size of an influence game (more precisely, it is O(2|I| × |N |)
where I is the set of issues and N is the set of agents), we
obtain the above upper bound.

The following theorem highlights the high complexity of
checking existence and uniqueness of Nash equilibria in in-
fluence games.

Theorem 3. E-NASH(FU
i ) and U-NASH(FU

i ) for per-
fect-recall strategies are both in 3EXPTIME.

Proof. (sketch) As in the proof of Theorem 2, we gen-
erate the CGS GIG corresponding to the influence game
IG. Following [2], we reduce E-NASH(F ) and U-NASH(F )
to the problems of checking GIG , w0 |= E-NASHIG and
GIG , w0 |= U-NASHIG respectively, with w0 = S0, where:

E-NASH = 〈〈x1, . . . , xn〉〉
≥1
ψNash

U-NASH = E-NASH ∧ ¬〈〈x1, . . . , xn〉〉
≥2
ψNash

with:

ψNash =[1 7→ x1] . . . [n 7→ xn]
∧

1≤i≤n

(

(〈〈y〉〉[i 7→ y]γi) → γi
)

.

In [2, Theorems 3.1] it is shown that the model checking
problems for the G− SL formulas E-NASH and U-NASH can
be decided in 2EXPTIME (with respect to the size of the
CGS and the size of the agents’ temporal goals γ1, . . . , γn).
As in the proof of Theorem 2, we obtain the desired bound
by recalling that the size of the GCS generated by an influ-
ence game is exponential in the size of the game.

Note that existence and uniqueness of Nash equilibria have
been proved to be in 2EXPTIME in the context of iter-
ated boolean games [15]. We believe that the discrepancy
between these results and Theorem 3 is due to the differ-
ent representations of strategies we use. Our perfect-recall
strategies may not have a finite representation, while in the
setting of iterated boolean games strategies are deterministic
finite state machines which have a finite representation.

5. CONCLUSIONS AND FUTURE WORK
We have extended a simple model of opinion diffusion on net-
works [13] with a strategic component (i.e., the possibility
for the agents to hide or show their opinions) and individ-
ual goals, which allowed us to define influence games. We
found that agents were greatly empowered by these basic
actions, as reflected by our results on the interaction be-
tween goals, network structure and solution concepts (see
Section 3). Interestingly, we found that for influence goals
and the unanimous rule, playing a strategy always revealing
the agent’s opinion was not necessarily weakly dominant.
We then approached the study of influence games and so-

lution concepts from a computational point of view. Specifi-
cally, we found that for memory-less strategies the problems
of checking whether a given strategy profile is a Nash equi-
librium, checking whether a Nash equilibrium exists and is
unique are all in PSPACE. On the other hand, for perfect-
recall strategies the problems of checking existence of a win-
ning strategy is in EXPTIME, while existence and unique-
ness of Nash equilibrium are both in 3EXPTIME.
There are multiple directions to expand the present work.

In the first place, following the work by Christoff and Hansen
[7], we might provide our agents with additional actions to
allow them to lie about their private opinions. This will
give them more sophisticated strategies to attain their goals.
Secondly, we plan to explore the use of different aggrega-
tion procedures to perform the update of opinions, studying
the novel game-theoretic structures that may arise in this
setting. Last but not least, we are interested in a deeper
analysis of the relationship between influence games and it-
erated boolean games [15]. We conjecture that the latter
can be embedded into the version of the former with perfect-
recall strategies by only considering atomic formulas of type
vis(i, p), whose truth values are under the direct control of
the agents and do not depend on the aggregation procedure.
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