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ABSTRACT

Genetic Regulatory Networks (GRNs) implementations have a high
degree of variability in their details. Parameters, encoding meth-
ods, and dynamics formulas all differ in the literature, and some
GRN implementations have a high degree of model complexity. In
this paper, we present a comparative study of different implemen-
tations of a GRN and introduce new variants for comparison. We
use a modified Genetic Algorithm (GA) to evaluate GRN perfor-
mance on a number of common benchmark tasks, with a focus on
real-time control problems. We propose an encoding scheme and
set of dynamics equations that simplifies implementation and eval-
uate the evolutionary fitness of this proposed method. Lastly, we
use the comparative modifications study to demonstrate overall
enhancements for GRN models.
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1 INTRODUCTION

Artificial Genetic Regulatory Networks (GRNs) have varied in im-
plementation since their conception, with earlier binary networks
directly encoding connections giving way to proteins that interpo-
late their connection using exponential or other functions. Despite
this diversity, there has been little attempt to compare the different
aspects of GRN models.

Additionally, compared with other networked controllers, such
as artificial neural networks (ANNs) and genetic programs (GP),
GRNs have a number of complex implementation components. The
protein encoding scheme and a concentration normalization step
are focused on in this paper as possible points for simplification.

The complexity of implementation combined with the variety
of GRN models in the literature can be a deterrent from the use of
GRN . This paper evaluates whether or not the GRN model can be
simplified without losing performance quality. We use a set of sig-
nal processing and control tasks, both of which are common prob-
lem types for the GRN. Through our comparison of multiple GRN
implementations, we propose individual improvements as well as
a general best GRN model.

The next section § 2 details other works that use and study GRN?s.
An in-depth explanation of GRN models is given in § 3, and individ-
ual components of the GRN model that were studied in this work
are explained in § 4. The details of the benchmark suite used are
outlined in § 5, and the results of the experiments are presented
in § 6. Lastly, the interpretation of these results and our plans for
future work are detailed in § 7.

2 RELATED WORKS

The capability of GRNs has been displayed in a number of differ-
ent domains. Joachimczak used GRNSs in a robotic foraging prob-
lem [8], where a two-wheeled robot must collect randomly placed
food particles and avoid poisonous ones. Joachimczak also used
GRNss for signal processing [9], showing a GRN’s capability to act
as a signal amplifier or frequency filter.

Cussat-Blanc used GRNs to determine the optimal positions of
turbines in a wind farm [15] and demonstrated competitive perfor-
mance with SARSA on a suite of common reinforcement learning
benchmarks [4], including mountain car, maze navigation, and ac-
robat. Nicolau originally showed the capabilities of a GRN on a
single pole problem in [11].



GRN s have also been used in artificial embryogenesis contexts,
similar to their original biological motivation. Cussat-Blanc used
a cell-based model on the standard French flag problem [3] and
developed mutli-cellular creatures from single cells with individual
GRN controllers [6]. Lastly, in [16], GRNs were used to design
ANNS, and [17] presented a mixed paradigm with spiking neural
networks.

There has also been considerable study into the behavior and
improvement of GRNs. GRN topology is examined in [7] to deter-
mine if evolved networks were scale-free and small-world, which
are considered hallmarks of natural evolution. The timing dynam-
ics of GRNs were studied in [10]. The benefits of variable-length
GRNs are demonstrated in [14]. GRNEAT was presented in [5]; it
is a GA specifically designed for GRNs and showed improvement
on a number of tasks. GRNEAT is used in this paper and is further
discussed in §§ 3.1.

3 GENETIC REGULATORY NETWORKS

The GRN described in this section was designed by Banzhaf in [1],
with modifications made in [2]. The components under review in
this study are further explored in § 4.

A GRN is composed of multiple artificial proteins, which inter-
act via evolved properties. These properties, called tags, are

o The protein identifier, encoded as an integer between 0 and
Usize. Usize can be changed in order to control the preci-
sion of the GRN.

o The enhancer identifier, encoded as an integer between 0
and us;;e. The enhancer identifier is used to calculate the
enhancing matching factor between two proteins.

o The inhibitor identifier, encoded as an integer between 0
and usjze. The inhibitor identifier is used to calculate the
inhibiting matching factor between two proteins.

o The type, either input, output, or regulator. The type is a
constant set by the user and is not evolved.

Each protein has a concentration, representing the use of this
protein and proving state to the network similar to neurotransmit-
ter concentrations in spiking neural networks (SNN). For input pro-
teins, the concentration is given by the environment and is unaf-
fected by other proteins. output protein concentrations are used to
determine actions in the environment; these proteins do not affect
others in the network. The bulk of the computation is performed
by regulatory proteins, an internal protein whose concentration is
influenced by other input and regulatory proteins.

The dynamics of the GRN are calculated as follows. First, the
absolute affinity of a protein a with another protein b is given by
the enhancing factor u;b and the inhibiting u; :

u?} = Usize — |enhj —id;| ; ui_j = Usize — |i”hj - id;| (1
where idy is the identifier, enhy is the enhancer identifier and
inhy is the inhibitor identifier of protein x. The maximum enhanc-
ing and inhibiting affinities between all protein pairs are deter-
mined and are used to calculate the relative affinity, which is here
simply called the affinity:

A; = 'B(ul-ij— B u;i'—’“X) ) AlTj = ﬂ(u:j - u;nax) (2)

B is one of two control parameters used in a GRN, both of which
are described below. Variants of this equation used in this study
are detailed in §§ 4.2.

These affinities are used to then calculate the enhancing and
inhibiting influence of each protein, following

1 h 15
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where g; (resp. h;) is the enhancing (resp. inhibiting) value for a
protein i, N is the number of proteins in the network, c; is the con-
centration of protein j. The use of an exponential in this function,
as opposed to other operations, is examined in §§ 4.3

The final modification of protein i concentration is given by the
following differential equation:

dei _ 6(gi —hi)
a @

where ® is a function that normalizes the output and regulatory
protein concentrations to sum to 1. The use of normalization is
explored in §§ 4.4

p and 6 are two constants that determine the speed of reaction of
the regulatory network. The higher these values, the more sudden
the transitions in the GRN. The lower they are, the smoother the
transitions. For this paper, they are evolved as part of the GRN
chromosome and are both kept within the range [0.5, 2.0].

©

3.1 GRNEAT

Gene Regulatory Network Evolution Through Augmenting Topolo-
gies (GRNEAT) is a specialized Genetic Algorithm for GRN evo-
lution proposed in [5] and based on Stanley’s NeuroEvolution of
Augmenting Topologies (NEAT) algorithm [13]. This algorithm
has been shown to improve evolution performance on neural net-
works, complex pattern producing networks, and GRNs[12]. A ma-
jor contribution is the design of a crossover method for network
controllers, in which structure has a significant influence on over-
all network behavior. GRNEAT uses a similar crossover, and im-
ports three key elements from NEAT:

e the initialization of the algorithm - small networks are gen-
erated that resemble a select subpopulation termed initial
species leaders

e speciation, which limits competition and crossover to sim-
ilar individuals. This both protects some new mutants
from immediately competing with champion individuals
and protects novel solutions by allowing them to optimize
their structures before competing with the whole popula-
tion

e an alignment crossover that compares individual genes be-
fore selection for a new individual

The distance metric in this paper for speciation and alignment
crossover was

alid; — idj| + blenh; — enhj| + clinh; — inhj|

Dprot(i,j) = ()
Usize

where a = 0.75, b = 0.125, and ¢ = 0.125. Proteins were aligned
in each GRN during comparison first based on type and secondly
based on minimum Dp;o¢ (A, B). The distance between GRNs was



then calculated as
Din + Dout + Dreg + Dﬂ +Ds

D(G1,G2) =
(61.G2) max(N1,N2) + 2
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where Nj is the number of proteins in GRN G;, and Dy is the sum
of the difference of all aligned proteins of that type. For regulatory
proteins, where N can differ between two GRNS, the distance for
all non-aligned proteins was taken between the protein parame-
ters and ug;ze. The use of alignment without replacement for the
distance metric is novel in this work and differentiates it from [5].
This was found to improve results in preliminary trials but is not
presented as a part of this study.

3.2 Evolution

Apart from the differences listed above, GRNEAT functions as a
standard GA. The mutation operations available during this work
were

o Modify (probability ppeqify = 0.25)
e Add a new regulatory protein with random parameters,
Padd = 0-5
e Delete pyerere = 0.25
When mutating a genome, a random mutation operation was se-
lected with probability psejec;. The delete mutation operation was
not allowed when selected for input and output genes.

During the crossover mutation, aligned proteins are randomly
selected from either parent with probability peross = 0.5. If the
parent genomes are of different lengths, the unaligned regulatory
proteins from the longer parent genome are appended to the child
genome with probability psppena = 0.5.

4 DYNAMICS

In this work, we focused on specific improvements to the GRN
that either vary in the literature or could be used to simplify GRN
implementation. These modifications impact the GRN encoding
e, affinity metric a, the influence function f, the and the normal-
ization step n. For each of these modifications, we evaluate the
potential fitness contribution in § 6.

Equation 4 can be generalized with f, a, and n as follows:

&—n(ﬁic'(f(f(i ) - f(a (i,}))) (6)
dt = N 5 / ! X

with the encoding e changing the evolution dynamics, the param-
eter and the possible range of u;;. e, a, f, and n are all described
below.

4.1 Encoding

In early versions of GRNSs, and in some modern implementations,
proteins were encoded in binary format. The affinity between two
proteins was defined by the number of bits in common, and muta-
tion and crossover operations happened at a binary level. [1] For
this reason, integer encodings of GRNs often use 32 as the max-
imum identifier size, usjze, as proteins were 32 bits long. Here

we strive to simplify this model by proposing real values between
[0,1] for the protein tags. The mutation operation is altered as
a result, as the distance change from a mutation can be smaller
than an integer step size. The aligned crossover operation is also
affected, as the distance between proteins operates on real values.
Lastly, usize is set to 1.0 in this encoding, which affects the affinity
metric.

4.2 Affinity metric

In [1] and in many works since, the affinity metric uses the max-
imum affinity metric, umqy, as a scaling factor. This is the maxi-
mum of the relative affinity metric, usize — |enhj — id;|, (resp inh)
across all (i, j). However, for a reasonably large network, in which
two protein tags will become arbitrarily close, t;4x Will approach
Usize. For this reason, we propose the following novel affinity met-
ric, which reduces complexity by removing the maximization fac-
tor:

hj —id; inh; — id;
A;:_ﬁlen j id;| ;AT:_ﬁlm j id;| )

Usize Y Usize
In comparison with the original equation, it was noted that on
some implementations, only u;; was multiplied by f. This results
in the following equation:

AF; = Blusize — lenhj — idi]) = upax

z . . - ®)
Ay = Blusize — linhj = idi|) = upax
Lastly, the original affinity metric is evaluated:
A;';. = P(usize — lenhj — id;| - u,tax) o)

Ai_j = ﬁ(usize — |inhj — idi| — u;mx)

4.3 Influence function

In [1], [7], and many others, an exponential function of the affinity
is used to determine the influence of one protein onto an other.
This is the first influence function we evaluate:

f(Aij) = et (10)

In [10], a hyperbolic tangent function is used. The constants of
this implementation were modified to provide the same results as
Equation 10 at A;; = 0:

f(Aij) = tanh(Aij) +1 (11)

[9] uses an inverse exponential, and also decreases the protein

concentration by this influence instead of increasing. As such, the

inverse exponential in this work is modified to match the same rela-

tionship as the other metrics, and the constants are again modified
to provide the same results as Equation 10 at A;; = 0:

2
f(Aij) = T oA (12)

4.4 Normalization

An important component of GRN dynamics is the normalization of
protein concentrations at each step, such that the output and reg-
ulatory protein concentrations sum to 1. This makes the output



Table 1: GRN modifications evaluated and their
corresponding labels

s =0 integer encoding scheme

s=1 real encoding scheme

a=o0 Equation 7, simply using u;;

a=1 Equation 8, with u;4x outside s influence
a= Equation 9, the original from [1]

f =0 Equation 10, e

f =1 Equation 11, tanh

f =2 Equation 12, inverse e

n =0 normalization of concentrations by their sum
n=1 constraining all concentrations to [0.0, 1.0]

layer of the GRN function similarly to the softmax layer of mod-
ern ANNSs, and is often useful in problem implementation. How-
ever, it can also be a difficult concept to grasp when understand-
ing GRNs, increases implementation and computation complexity,
and requires a knowledge of common GRN inputs and outputs for
good problem design. For example, in the experiments in § 5, some
of the control problem outputs are designed with normalization in
mind by forcing an action only when one output concentration ex-
ceeds another, favoring the periodic dynamics resultant from this
normalization step.

In this work, we propose the simple use of boundaries [0, 1] for
protein concentrations as an alternative to normalization. We refer
to this method as capping.

4.5 Simplification

In review, the modifications proposed, and the variables used to
denote them, are as listed in Table 1. We propose the model corre-
spondingtos = 1,a =0, f = 0, n = 1 as a simplified GRN The
dynamics of this GRN implementation are, according to its modi-
fications:

N
dc;

i ¢j (e~ Plenhi=idi| _ ~plinh;-idi])

s
T NZL

J

des
ci,t+1 = max(min(ci s + %, 1.0),0.0)

This GRN formula reduces complexity by using the simplest
affinity metric, a = 0, which does not include determining u;qx.
It is a real encoding, which removes the determination of the ug;z¢
parameter. Finally, it uses a min-max step, n = 1, instead of
normalization of protein concentrations, which is computationally
complex and another implementation step. We evaluate the perfor-
mance of this model to determine if it is equally capable, as well as
evaluating all modifications independently.

5 EXPERIMENT

To evaluate the impact of each modification mentioned above, we
have used standard problems from a broad spread of the literature.
More specifically, GRNs are often used as real-time controllers,
as they are in the following signal processing, robot control, and
game problems.

Table 2: GRNEAT parameters used in all experiments

initial population 500
generations 300
tournament size 3
minimum species size 15
number of elites per species 1
speciation threshold 0.3

maximum speciation threshold 0.8

minimum speciation threshold 0.01
mutation rate 0.75
crossover rate 0.25

For each problem, all 36 GRN modification combinations (2 en-
coding schemes, 3 affinity equations, 3 influence functions and 2
normalization methods) were evaluated over 40 runs. The param-
eters of the evolutions can be found in Table 2.

The code used for all following experiments, including the prob-
lems and the details of their parameters, the GRN and GRNEAT,
are available in C++ on GitHub!. Video of the best performing
GRN on the Ship Escape problem is also available.

5.1 Doubling input frequency

In this first problem, from [9], a sinusoidal signal of frequency F;
is fed to the GRN by varying the concentration of its only input
protein. The goal of the GRN is to make the concentration of its
output protein to vary at twice the input frequency, i.e F, = 2 =
F;, with F, being the variation frequency of the output protein.
We used the same fitness function as in § 5, being the sum of the
absolute distances between the desired and obtained signal at each
time step, divided by the absolute distance between F, and F;. The
input signal is divided into three sequences of equal length (1000
time steps) and at frequencies equals to 125Hz, 500Hz and finally
OHz (flat signal). The proteins concentrations are reset between
each sequence.

5.2 Low pass frequency filter

In another classic signal treatment problem from [9], the GRN must
act as a low pass filter, meaning it must strip the input signal of any
frequency greater than the cut-off frequency F. = 50Hz. Here, the
fitness is the average squared distance between the output signal
(scaled by a constant factor C = 5 in order to not penalize the
normalized concentrations implementations).

The input signal is divided into three sequences of equal length
(1000 time steps):

e A signal composed of 3 combined subsignals: one at 7THz
with an amplitude of 0.7, another at 250Hz with an ampli-
tude of 0.2 and the last one at 1250Hz and an amplitude
of 0.1. The desired output signal should have a frequency
of 7THz with an amplitude of 0.7

e A signal composed of 4 combined subsignals: one at 17Hz
with an amplitude of 0.4, another at 350Hz with an am-
plitude of 0.2n, a third one with a frequency 1100Hz and
an amplitude of 0.2 and the last one at 2000Hz and an

!https://github.com/jdisset/grnbenchmarks/



amplitude of 0.1. The desired output signal should have a
frequency of 17Hz with an amplitude of 0.4

o A flat "zero” signal, which should be exactly reproduced
at the output.

The GRN proteins concentrations aren’t reset between each se-
quences.

5.3 Coverage control

This is a classic coverage problem where the GRN controls a robot
in a 2D grid. It has 8 inputs: the number of obstacles on the next
3 grid cells in each four directions (north, south, east, west), one
protein per direction, and the number of unexplored cells in each
directions. It has 4 output proteins (one for each direction), the
protein with the highest concentrations deciding the direction in
which the robot will move at the next time step. Each GRN runs
for 200 steps on 3 different 10 by 10 maps with 20 obstacles and the
fitness is the average of the discovered portions of the maps.

5.4 Flappy Bird

In order to challenge the capabilities of a GRN as a game Al con-
troller, we implemented a version of the famous small game Flappy
Bird. In this game, a small bird progresses through an horizon-
tal world, bounded by a ceiling and a floor. It must pass through
gates whose positions and aperture height are randomly generated.
The only control the player has over the bird is the timing of its
wings’ flaps, which provide upward thrust. The horizontal speed
increases over time. Here, we defined three input proteins for our
GRN, whose concentrations respectively corresponds to:

o the bird’s height, normalized by the height of the world

o the next gate’s position, normalized by the length of the
screen

o the next gate’s aperture height, normalized by the height
of the world

The flap’s timings are controlled by concentrations c,1 and ¢o2 of
its two output proteins. The bird flaps its wings each time co1 >
co2. The fitness is equal to the average horizontal distance at which
the bird first hit a gate, the floor, or the ceiling.

5.5 Ship Escape

The last problem requires the most inputs and outputs. Here, the
GRN must learn to drive a ship in a vertical world bounded by walls
and filled with randomly placed obstacles. The goal is to drive the
ship as far as possible without hitting anything, with the added
dificulty of gates slowly closing ahead of the ship. The distance
between two gates increases after each passed one, and the next
gate starts to close as soon as the previous one has been passed
through. This puts pressure on the ship to go accelerate while still
avoiding the obstacles. For this problem, we used 13 inputs: 11 of
them represented laser beams casted by the ship in 11 evenly dis-
tributed directions, from % to —% relatively to the ship direction,
each beam directly setting the concentration of an input protein C;
as equal to %, i.e the distance betweed the ship and the nearest
obstacle in the direction of the beam, normalized by a maximum
distance H. The remaining two inputs are indications of the ship’s

orientation, being set respectively as sin(6) and cos(0), with 6 the
current oriented angle of the ship.

The ship also needs to have output that allow it to control its
direction and its propulsion. To do so, we add 3 pairs of output
proteins: one pair that will allow the ship to turn left when the
concentration of the first protein of the pair goes above the concen-
tration of the other, one pair to turn right using the same principle,
and one pair to turn the engine on using again the same principle.

Figure 1: The Ship Escape problem. The lines from the ship
show the laser beams used for input

6 RESULTS

To independently compare the impact of each modification, we
first compare pairs of implementations with only one modifica-
tion, suchase = 0,a = 0, f = 0,n = 1toe = 0,a = 0,
f =2, n = 1. For each pair, the 40 runs were used to fit two nor-
mal distributions using maximum likelihood estimation, N (p1,01)
and N(u2,02). The probability that values from one distribution
are greater than the values from the second distribution is used
to compute a Competitive Probability Score (CPS). The CPS of a
modification is the summed probability difference for each modi-
fication pair. To determine this, first the competitive probabilities
for implementations with all but one modification in common are
summed, here shown for f:

H2 — 1
Prli,j] = Zzl m

ifsi == sj,a;j == aj,n; == n;



Doubling Lowpass Coverage Flappy Bird Ship Escape
s=0 ]0306 0327 0306 |0.516 0.492 0.504 | 0.413 0.425 0.419 | 0451 0421 0.446 | 0418 0421 0.426
s=1 10693 0.672 0.693 | 0.483 0.507 0.496 | 0.586 0.575 0.581 | 0.548 0.578 0.553 | 0.581 0.578 0.573
a=0|0421 0411 0423 | 0.522 0.517 0.518 | 0.463 0.471 0.474 | 0.500 0.500 0.498 | 0.513 0.511 0.512
a=1 0528 0541 0.532 | 0.492 0.508 0.505 | 0.546 0.530 0.534 | 0.533 0.522 0.529 | 0.494 0.501 0.498
a=2|0.550 0.546 0.544 | 0.485 0.474 0.476 | 0490 0.497 0491 | 0.465 0.476 0472 | 0.491 0.486 0.488
f=0]0434 0445 0443 | 0502 0.515 0.508 | 0.538 0.518 0.524 | 0.500 0.496 0.502 | 0.484 0.488 0.484
f=1]0548 0.542 0.544 | 0.503 0.496 0.499 | 0.493 0.501 0.499 | 0.508 0.514 0.511 | 0.494 0.492 0.493
f=2]0517 0512 0512 | 0494 0487 0492 | 0.468 0.480 0475 | 0491 0489 0.486 | 0.521 0.518 0.521
n=0 | 0.563 0.564 0.563 | 0.498 0.495 0.497 | 0.590 0.592 0.591 | 0.504 0.519 0.513 | 0.521 0.516 0.520
n=1]0436 0435 0436 | 0.501 0.505 0.502 | 0.410 0.407 0.408 | 0.495 0.480 0.486 | 0.478 0.483 0.479

Table 3: Independent modification CPS over all 5 problems, on an early generation g, the final generation, and the average
over all generations. The best modification for each type is highlighted.

s a f n
0.738265 1 1 0 O
0.726697 1 0 1 0
0.710317 1 0 0 O
0703542 1 1 2 0
0697183 1 2 1 0

Table 4: The top five implementations based on CPS

n is the number of implementations in the sum, and & is the cu-
mulative distribution function of the normal distribution N(0, 1),
making Py[i, j] the average probability that modification f = iis
greater than f = j. The CPS is then simply the sum:

CPS(f =1i) = ) Pr[i. ] (13)
J

The CPS for each modification is presented in Table 3, with the
most rewarding modification of each type highlighted. The CPS
is presented at generation g = 100, g = 300, and the normalized
sum over all g, to evaluate whether some modifications lead to bet-
ter early convergence or overall performance.

The global best GRN implementation was determined by the
same process as the CPS, only over entire implementations. Each
of the 36 implementations were compared and a normal distribu-
tion was fit to the results from their last generation. The probability
of each one exceeding the other was summed and the implementa-
tion with the highest average probability over all other implemen-
tations was chosen. The top 5 implementations using this metric
are shown in Table 4.

The clear trends from Table 3 and Table 4 are the advantage of
the real encoding and the necessity of the normalization step. The
best implementation, s = 1,a = 1, f = 0, n = 0is surprising to us
given the use of a = 1, which uses a non-scaled u;,4x. We believe
this result to be sensitive to the f range, and that a clear affinity
metric is not determined by the results. Similarly, it seems that
f = 0 is the best influence function, but this is not as conclusive
as the advantages of s = 1 and n = 0.

Analysis of variance (ANOVA) tests were also conducted for
each problem. Groups were constructed for each implementation

s a f n
doubling  9.176e-38  1.069e-08 1.215e-03  1.597e-07
lowpass ~ 3.044-16  0.012 0.725 0.544
coverage 2.572e-18 0.046 0.080 3.645e-17
flappy 8.808e-20  0.089 0.233 0.062
ship 1.196e-16  0.175 0.715 0.150

Table 5: One-way ANOVA p values between the different
implementations for each method on the 5 problems

within a method, such as a group corresponding to s = 0 and an-
other to s = 1, and the variance of fit distributions to the groups
were evaluated. The p values from this analysis are presented in
Table 5. The findings of this analysis show a clear difference across
problems in s and low p values for most problems on a and n. These
results demonstrate that the implementations can be significantly
different depending on the problem.

While the simplified GRN proposed,s = 1,a =0, f =0,n =1,
was overall the seventh best implementation, the second best and
third best implementations use a = 0, the simplest affinity metric,
and all of the top implementations use s = 1, which simplifies
encoding and reduces parameters.

In the signal processing benchmark problems, the top imple-
mentations were not significantly different and all performed sim-
ilarly to results found in [5]. While some implementations fared
very poorly, we found these results not independently conclusive
for determining implementation fitness. While the low pass ex-
periment has the only best implementation using s = 0, it was
not a significant advantage over the other implementations on this
rather simple problem.

The implementations used here show improvement on the cov-
erage control problem over [5], but performance didn’t vary signif-
icantly over different implementations. On this problem, the best
implementation is also the global best.

The results on the Flappy Bird problem are impressive for their
variety and for the best performance. A human user scored an
average of 20.349 over 20 trials, and we find it difficult to believe
that a human player could achieve the same scores as the best GRN.

As in the Flappy Bird problem, the GRN performance on the
Ship Escape problem rivals or outperforms human capability.
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Figure 2: The best implementations = 1,a=0,f =0,n=1
and the worst implementations =0,a =0,f =2,n =1 of
the doubling frequency problem compared to the global
best and the proposed simplified GRN.

Lowpass Filter
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Figure 3: Comparison with the best implementation
s=0,a=1,f =0,n =1 and the worst implementation
s=0,a=0,f =1,n=0 of the low pass filter problem

7 DISCUSSION AND CONCLUSION

In this paper we have reviewed several variations of GRNs and
tried new combinations of various literature implementations. The
clear advantages found are the use of real numbers for proteins co-
ordinates and the normalization of proteins concentrations. How-
ever, we note that the normalization step may have received a bias
in this work due to the problem output definitions. One of the
complexities introduced by the normalization step is the need for
output protein design compatible with normalization. The design
of the Flappy Bird and Ship Escape outputs, in particular, use a
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Figure 4: Comparison with the best implementation
s=1,a=1,f =0,n=1 and the worst implementation
s=0,a=0,f =0,n=1 of the coverage control problem
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Figure 5: Comparison with the best implementation
s=1,a=0,f =1,n =0 and the worst implementation
s=0,a=2,f=0,n=1 of the Flappy Bird problem

common mechanism of comparison of two output proteins to de-
termine action, which is done with normalization in mind. It is
possible that n = 1, the capping method instead of normalization,
would have fared better with different problem design.

Other than these two important points, it is difficult to draw
significant conclusions on an “overall best” GRN implementation,
as different GRNs dominated each different problem. However,
an overall simplification can be proposed with the use of the real
encoding scheme, and we encourage use of the simpler a = 0 affin-
ity metric scheme as well, as it achieves similar results to the best
across the used benchmarks.
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Figure 6: Comparison with the best implementation
s=1,a=2,f =1,n =0 and the worst implementation
s=0,a=2,f =0,n=0 of the ship escape problem

It is also important to note that this paper focused only on dif-
ferent GRN implementations in an attempt to see more clearly
through the variations. While a comparison of GRNs on these
benchmark problems to other controllers, such as Genetic Program-
ming, ANNs, or HyperNEAT[12], is of interest, it was not in the
scope of this work. We welcome the use of these benchmarks and
results as a basis of comparison.

Overall, the experiments here demonstrated, as has been done
before, the quality performance of GRNs as controllers, but it also
highlight the difficulties inherent to their use. On complex prob-
lems especially, the observed high standard deviations for the best
fitnesses highlight the troubles one can stumble upon trying to reli-
ably and efficiently evolve good GRNs. This seems to be especially
the case with problems where a large number of inputs and/or out-
puts are needed, such as the Ship Escape problem.

Given the performance of the global best GRN implementation
in this paper over the five problems proposed, an interesting next
step is to use the same GRN on multiple problems. The top im-
plementations all show consistent performance across this set of
problems, so we are interested in pursuing an evolution method
that matches this performance using a single GRN. Furthermore,
we could expand this to use benchmark suites that are gaining pop-
ularity in the deep learning field.

Lastly, while attempts to greatly simplify the GRN were some-
what thwarted in this work, there is still more to be done to de-
crease the usage complexity of GRNs, specifically in their interface
design. With a real valued encoding, a positional interface scheme
could be used in embedded controller scenarios, where physical
interface location matches GRN input and output design. The ex-
ploration of this scheme and its potential for simplification is left
to future discussion.
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