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Abstract—Hyperspectral unmixing is a blind source separation
problem that consists in estimating the reference spectral signa-
tures contained in a hyperspectral image, as well as their relative
contribution to each pixel according to a given mixture model. In
practice, the process is further complexified by the inherent spec-
tral variability of the observed scene and the possible presence
of outliers. More specifically, multitemporal hyperspectral images,
i.e., sequences of hyperspectral images acquired over the same area
at different time instants, are likely to simultaneously exhibit mod-
erate endmember variability and abrupt spectral changes either
due to outliers or to significant time intervals between consecutive
acquisitions. Unless properly accounted for, these two perturba-
tions can significantly affect the unmixing process. In this context,
we propose a new unmixing model for multitemporal hyperspec-
tral images accounting for smooth temporal variations, construed
as spectral variability, and abrupt spectral changes interpreted as
outliers. The proposed hierarchical Bayesian model is inferred us-
ing a Markov chain Monte Carlo method allowing the posterior
of interest to be sampled and Bayesian estimators to be approxi-
mated. A comparisonwith unmixing techniques from the literature
on synthetic and real data allows the interest of the proposed ap-
proach to be appreciated.
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I. INTRODUCTION

A
CQUIRED in hundreds of contiguous spectral bands, hy-

perspectral (HS) images have received an increasing in-

terest due to the significant spectral information they convey,

which is somewhat mitigated by their lower spatial resolution

in remote sensing applications. This limitation, combined with

possibly complex interactions between the incident light and the

observed materials, implies that the observed spectra are mix-

tures of several signatures corresponding to distinct materials.

Spectral unmixing then consists in identifying a limited number

of reference spectral signatures composing the data – referred

to as endmembers – and their abundance fractions in each pixel

according to a predefined mixture model. The choice of a spe-

cific model generally reflects the practitioners’ prior knowledge

on the environmental factors possibly affecting the acquisitions,

such as declivity or multiple reflections. Traditionally, a linear

mixing model (LMM) is adopted since it is appropriate to de-

scribe hyperspectral data when the declivity of the scene and

microscopic interactions between the observed materials are

negligible [1]. Depending on the applications, various models

have also been investigated to capture higher order interactions

(i.e., nonlinearities) between the incident light and the observed

materials (see [2], [3] for recent reviews on this topic). However,

varying acquisition conditions, such as local illumination vari-

ations or the natural evolution of the scene, may significantly

alter the shape and the amplitude of the acquired signatures [4],

[5], thus affecting the extracted endmembers. Endmember vari-

ability has hitherto been extensively considered within a single

HS image, either in a deterministic [6]–[9] or a statistical setting

[10]–[12].

Recent works also considered temporal variability by ex-

ploiting the possibilities offered by multitemporal HS (MTHS)

images [13], [14]. From a hyperspectral unmixing perspective,

MTHS images, i.e., sequences of HS images acquired over the

same area at different time instants, can be of interest to ex-

ploit information redundancy between consecutive images (e.g.,

through features exhibiting moderate or smooth temporal vari-

ations as in [15], [16]) while allowing the endmember temporal

evolution to be characterized. For instance,MTHS have been re-

cently exploited to improve endmember unmixing results [13],

[14], [17] and used in a change detection problem involving two

HS images [18], [19].



Even though the approaches proposed in [13], [14], [17]

specifically allow smooth temporal variations of some of the

mixture parameters to be considered, they do not account for

abrupt spectral changes either due to outliers or to possibly

significant time intervals between two consecutive images. In

practice, such situations can be reasonably expected, depend-

ing on the acquisition dates and possible climatic hazards, e.g.,

when vegetation or water is present in the observed scene. Un-

less specifically accounted for, this situation frequently observed

in real datasets has a significant impact on the recovered end-

members, which motivates the present work. Inspired by [13],

[20], [21], and based on an original interpretation of the un-

mixing problem under study, our contribution consists in jointly

accounting for smooth endmember variations – construed as

temporal endmember variability – and abrupt changes inter-

preted as outliers (e.g., significant variability within a single

image or presence of non-linearities) using a carefully designed

hierarchical Bayesianmodel. More precisely, we focus our anal-

ysis on scenes in which mostly the same materials are expected

to be observed from an image to another. In this context, using

the endmembers extracted from the reference scene as a starting

point to unmix the whole MTHS image constitutes a reasonable

attempt to generalize the analyses previously conducted for a

single image. On the one hand, the endmembers identified in

each single image can in fine be considered as time-varying in-

stances of reference signatures shared by the different images,

thus justifying the use of a modified version of the perturbed

linear mixing model (PLMM) proposed in [14]. This formu-

lation will notably allow smooth spectral variations occurring

over time to be captured, leading to competitive results when

compared to methods analyzing the images individually. On the

other hand, the signatures corresponding to materials appearing

in only a few images, which induce abrupt spectral changes,

can be regarded as outliers with respect to the commonly shared

endmembers. This paper studies a newBayesianmodel allowing

both spectral variability and presence of outliers to be consid-

ered in the unmixing of MTHS images. The resulting unmixing

task is solved using a Markov chain Monte-Carlo (MCMC) al-

gorithm allowing the posterior of interest to be sampled and

Bayesian estimators to be approximated.

The paper is organized as follows. The mixing model con-

sidered in this paper is introduced in Section II, and the asso-

ciated hierarchical Bayesian model is developed in Section III.

Section IV investigates a Gibbs sampler to solve the result-

ing mixed integer non-linear problem. The performance of the

proposed approach on synthetic and real data is studied in

Sections V and VI. In particular, the results obtained with the

proposedmethod are compared to those of the VCA/FCLS algo-

rithm [22], [23], the SISAL/FCLS algorithm [24], the algorithm

associated with the robust LMM (RLMM) proposed in [25]

and the MTHS optimization method [14]. Finally, Section VII

concludes this work and outlines further research perspectives.

II. PROBLEM STATEMENT

We consider a sequence of HS images acquired at T differ-

ent time instants over the same area, where mostly the same

materials are expected to be observed over time. In the follow-

ing, at most R endmembers are assumed to be shared between

the T images composing the sequence, where R is a priori

known. Since the observed instances of a given endmember can

be reasonably expected to vary froman image to another,we pro-

pose to account for smooth endmember spectral variations via a

modified version of the perturbed linear mixing model (PLMM)

proposed in [9], [14]. Inspired by the total least squares prob-

lem [26], the PLMM consists in representing each pixel yn,t
by a linear combination of the R endmembers – denoted by

mr – affected by an additive error term dmr,t accounting for

temporal endmember variability. However, this model shows

notable limitations when the vector yn,t is affected by abrupt

changes. Consequently, this paper investigates a new unmix-

ing model jointly accounting for endmember variability and

abrupt changes possibly affecting MTHS images. To this end,

the proposed model is a generalized PLMM, which includes

an additional term xn,t to capture significant deviations from

the LMM, i.e., significant spatial variability or non-linearities

within each image [20], [25]. The resulting observation model

can thus be written

yn,t =

R∑

r=1

ar,n,t

(
mr + dmr,t

)
+ xn,t + bn,t (1)

for n = 1, . . . , N and t = 1, . . . , T , where yn,t denotes the nth
image pixel at time t, mr is the rth endmember, ar,n,t is the
proportion of the rth endmember in thenth pixel at time t,dmr,t

denotes the perturbation of the rth endmember at time t, and
xn,t denotes the contribution of outliers in the nth pixel at time
t. Finally, bn,t represents an additive noise resulting from the

data acquisition and the modeling errors. The so-called robust

PLMM can be written

Yt = (M + dMt)At + Xt + Bt (2)

whereYt = [y1,t , . . . ,yN,t ] is anL×N matrix containing the

pixels of the tth image, M denotes an L×R matrix contain-

ing the endmembers that are common to all the images of the

sequence, At is an R×N matrix composed of the abundance

vectors an,t , dMt is an L×R matrix whose columns contain

the variability inherent to the tth image, Xt is an L×N ma-

trix whose columns are the outliers present in the image t, and
Bt is an L×N matrix accounting for the noise at time t. The
constraints considered to reflect physical considerations are

At � 0R,N , AT
t 1R = 1N , ∀t ∈ {1, . . . , T}

M � 0L,R , M + dMt � 0L,R , ∀t ∈ {1, . . . , T}

Xt � 0L,N , ∀t ∈ {1, . . . , T} (3)

where � denotes a term-wise inequality. Note that the outlier

termXt is intended to describe abrupt changes due for instance

to the appearance of one or several new endmembers that were

not present in the reference image. This justifies the correspond-

ing non-negativity constraint, similar to the one imposed on the

other endmembers. Note however that different phenomena not

considered in this work, possibly represented by the terms Xt ,

can induce a decrease in the total reflectance, e.g., shadowing

effects or some nonlinearities as detailed in [27]. To address
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this case, the non-negativity constraint on the outlier terms Xt

should be removed.

Given the mixture model (2), the unmixing problem consid-

ered in this work consists in inferring the abundances At , the

endmembers M, the variability dMt and the outliers Xt from

the observationsYt , t = 1, . . . , T . In the next section, this prob-
lem is tackled in a Bayesian framework to easily incorporate all

the prior knowledge available on the mixture parameters.

III. BAYESIAN MODEL

This section details the specific structure imposed on the

parameters to be inferred via appropriate prior distributions.

Note that dependencies with respect to constant parameters are

omitted in the following paragraphs to simplify the notations.

A. Likelihood

Assuming the additive noise bn,t is distributed according to

a Gaussian distribution bn,t ∼ N (0L , σ
2
t IL ), the observation

model (2) leads to

yn,t | M,dMt ,At ,Xt , σ
2
t ∼ N

(
(M + dMt)an,t

+ xn,t , σ
2
t IL

)
.

In addition, assuming prior independence between the pixels

within each image and between the images Yt themselves, the

likelihood function of all images Y = [Y1 , . . . ,YT ] is

p(Y | Θ) ∝
T∏

t=1

(σ2
t )

−NL/2

× exp

(
−

1

2σ2
t

‖Yt − (M + dMt)At − Xt‖
2
F

)
(4)

where the underline notation stands for the overall set of the

corresponding parameters, ‖·‖F is the Frobenius norm, Θ =
{Θp ,Θh} and

Θp = {M,dM,A,X,σ2 ,Z}, Θh = {Ψ2 , s2 ,β} (5)

denote the parameters and hyperparameters whose priors are

defined in the following paragraphs. Note that the independence

assumption between the observed images conditionally on the

unknown parameters is justified by the fact that the sequence

of images has been acquired by possibly different sensors at

different time instants.

Remark: The proposed method can easily accommodate dif-

ferent structures for the noise covariance matrix (e.g., diagonal

or full covariance matrix) in case the correlation between the

spectral bands is significant (see, e.g., [28]). However, this mod-

ification would increase the computational and memory cost of

the estimation algorithm introduced in Section IV.

B. Parameter Priors

1) Abundances: We propose to promote smooth temporal

variations of the abundances between successive time instants

for pixels that are not classified as outliers. To this end, we first

introduce the binary latent variables zt ∈ {0, 1}N to describe

the support of the outliers (i.e., zn,t = 0 in the absence of outliers

in the pixel (n, t), 1 otherwise). With this notation, we introduce

a new abundance prior defined for n = 1, . . . N as

an,1 | zn,1 = 0 ∼ USR (6)

an,t | zn,t = 1 ∼ US̃R
, for t = 1, . . . , T (7)

p
(
an,t | zn,t = 0,A\{an , t }

)
∝ exp

{
−

1

2ε2
n

× ([T 1
n,t 6= ∅]‖an,t − an,τ 1

n , t
‖2

2)

}
1SR (an,t), for t ≥ 2

(8)

where USR denotes the uniform distribution on the set SR , 1SR

is the indicator function of the set SR , [P] denotes the Iverson
bracket applied to the logical proposition P , i.e.,

[P] =

{
1, if P is true;

0, otherwise

and

SR = {x ∈ R
R | ∀i, xi ≥ 0 and xT1R = 1} (9)

S̃R = {x ∈ R
R | ∀i, xi ≥ 0 and xT1R ≤ 1} (10)

T
1
n,t = {τ < t | zn,τ = 0} , τ 1

n,t = max
τ ∈T 1

n , t

τ. (11)

By convention,we setT 1
n,t = ∅when t = 1. To bemore explicit,

consider an image at time t and a pixel n within this image

which is not corrupted by outliers (i.e., zn,t = 0). For t = 1, a
uniform distribution defined in the unit simplex is selected to

reflect the absence of specific prior knowledge while accounting

for the related constraints in (3). For t > 1, smooth variations
of an,t are promoted via a one-dimensional Gaussian Markov

field [12], [29] penalizing the Euclidean distance between an,t
and the abundance of the last corresponding outlier-free pixel

in the preceding images of the sequence, i.e., at time instant

τ 1
n,t . On the contrary, when outliers are present in the pixel

(n, t) (xn,t = 1), the usual abundance sum-to-one constraint is
relaxed (aTn,t1R ≤ 1) so that the prior allows cases in which

the linear model does not exhaustively describe the data to be

addressed. Note that the a priori independence assumptions

between the abundance vectors an,t (conditionally to the labels

zn,t) is reasonable from a physical point of view, since they can

evolve independently from a pixel to another. In the following,

the joint abundance prior is denoted by

p(A | Z) =

N∏

n=1




Jn∏

j=1
tj :zn , t j =1

p(an,tj | zn,tj = 1)




×




In∏

i=1
ti :zn , t i =0

p(an,ti | an,ti−1
, zn,ti = 0)


 (12)

with In = ♯{t : zn,t = 0}, Jn = T − In and ♯ denotes the car-
dinal operator. Note that the events [zn,t = 0] and [xn,t = 0L ]
(respectively [zn,t = 1] and [xn,t 6= 0L ]) are equivalent, which
allows p(A | X) to be defined.



In the following paragraph, the latent variables zn,t are as-
signed a specific prior to reflect the fact that outliers are a priori

assumed to represent a limited number of pixels within the se-

quence of image.

2) OutliersX and Label Maps Z: Similarly to [20], outliers

are a priori assumed to be spatially sparse. Different approaches

have been proposed in the literature to include this prior knowl-

edge, either relying on the ℓ1 penalty (such as the LASSO [30])

or on mixtures of probability distributions involving a Dirac

mass at zero and a continuous probability distribution [31] (such

as the Bernoulli-Laplace [32] or Bernoulli-Gaussian distribu-

tions [33], [34], extensively used in the literature [35]–[37]).

In this work, we propose to assign the following prior to the

outliers xn,t to promote spatial sparsity

p(xn,t | zn,t , s
2
t ) = (1 − zn,t)δ(xn,t) + zn,t NRL

+
(0L , s

2
t )

(13)

whereNRL
+
denotes a Gaussian distribution truncated to the set

R
L
+ . Note that zn,t = 1 if an outlier is present in the correspond-

ing pixel, and 0 otherwise. The proposed prior notably allows

outliers to be a priori described by a truncatedGaussian distribu-

tion when zn,t = 1, since the outliers xn,t are mainly due to the
appearance of new endmembers (i.e., that were not present in the

reference image). With this context in mind, we further propose

to promote spatial correlations between the outliers’ support,

since new materials are likely to appear in multiple contiguous

pixels. The binary label maps zt ∈ R
N (t = 1, . . . , T ) are con-

sequently modeled as Ising-Markov random fields [12], [38],

[39], for which the Hammersley-Clifford theorem yields

p(zt | βt) =
1

C(βt)
exp

(
βt

N∑

n=1

∑

k∈V(n)

δ(zn,t − zk,t)

)
(14)

where V(n) denotes the 4-neighbourhood of the pixel n, and
C(βt) is the partition function [40]. In practice, the outlier terms
xn,t can be assumed to be a priori independent conditionally

on zn,t (since the values of outliers are not a priori correlated

over space and time from a physical point of view). A similar

assumption can be made on the labels zt , which leads to

p(X | Z, s2) =
∏

n,t

p(xn,t | zn,t , s
2
t ) (15)

p(Z | β) =
∏

t

p(zt | βt) (16)

with Z ∈ R
N×T and β ∈ R

T . Note that the prior (13) leads to

the following result, which will be useful to sample the label

maps in Section IV-E

p(xn,t | z\n,t , s
2
t , βt) = (1 − ωn,t)δ(xn,t)

+ ωn,t NRL
+
(0L , s

2
t IL )

where z\n,t denotes the label map zt whose nth entry has been
removed, and

ωn,t =
1

C
exp

(
βt

∑

k∈V(n)

δ(1 − zk,t)

)
. (17)

with C =
∑1

i=0 exp
(
βt
∑

k∈V(n) δ(i− zk,t)
)
.

3) Endmembers: A non-informative prior is adopted for the

endmember matrix M to reflect the absence of specific prior

knowledge about the spectral signatures contained in the image.

More precisely, as in previous studies related to hyperspectral

unmixing [12], [20], we consider the following truncated mul-

tivariate Gaussian distribution

mr ∼ NRL
+
(0L , ξIL ), for r = 1, . . . , R (18)

where ξ is set to a sufficiently large value to ensure an unin-

formative prior (e.g., ξ = 1). Assuming the endmembers mr

are independent (which is physically reasonable since the end-

members characterize different materials), the joint prior for the

endmembers can be written as

p(M) =
R∏

r=1

p(mr ). (19)

In addition, the endmembers can be a priori assumed to live in a

subspace of dimension K = R− 1 [41] whose practical deter-
mination can be performed by a principal component analysis

(PCA) or a robust PCA (rPCA) [42]. This dimensionality re-

duction step is essentially aimed at reducing the computational

complexity of the proposed approach. More explicitly, the PCA

applied to the original data Y leads to a decomposition which

can be expressed as [41]

mr = Uer + y̌, y̌ = (IL − UUT)ȳ, UTU = IK (20)

where U denotes a basis of the subspace of dimension K and

ȳ denotes the average spectral signature obtained fromY. Note

that using an rPCA would result in similar expressions (modulo

a simple change of notations). The projected endmembers er
are then assigned the following truncated Gaussian prior, which

ensures the non-negativity of the endmembers

er ∼ NEr (0K , ξIK ), for r = 1, . . . , R (21)

with

Er = [e−1,r , e
+
1,r ] × · · · × [e−K,r , e

+
K,r ] (22)

e−k,r = max
ℓ∈U+

k

(
−
y̌ℓ +

∑
j 6=k uℓ,jej,r

uℓ,k

)
(23)

e+
k,r = min

ℓ∈U−
k

(
−
y̌ℓ +

∑
j 6=k uℓ,jej,r

uℓ,k

)
(24)

U−
k = {r : uk,r < 0}, U+

k = {r : uk,r > 0}. (25)

4) Endmember Variability: We consider a prior for the vec-

tors dmr,t (associated with the endmember variability) pro-

moting smooth temporal variations while accounting for the

term-wise non-negativity of the observed endmembers (i.e.,

mr + dmr,t � 0L,R ), expressed as

dmr,1 | mr ∼ NIr (0L , νIL ) (26)

dmℓ,r,t | mℓ,r , dmℓ,r,(t−1) , ψ
2
ℓ,r ∼ NIℓ , r

(
dmℓ,r,(t−1) , ψ

2
ℓ,r

)

(27)

for ℓ = 1, . . . , L, r = 1, . . . , R, t = 1, . . . , T , where Ir =
I1,r × · · · × IL,r and Iℓ,r = [−mℓ,r ,+∞). Assuming a



priori independence between the different endmember variabil-

ities (since the variability can be independent from a material to

another), the joint variability prior can finally be expressed as

p(dM | M,Ψ2) =

R∏

r=1

[
p(dmr,1 | mr )

×
T∏

t=2

p(dmr,t | mr ,dmr,(t−1) ,ψ
2
r )

]
.

(28)

5) Noise Variance: A non-informative inverse-gamma con-

jugate prior is selected for the noise variance

σ2
t ∼ IG(aσ , bσ ) (29)

for t = 1, . . . , T , with aσ = bσ = 10−3 in order to ensure a

weakly informative prior. The noise variances σ2
t can be as-

sumed to be a priori independent (given the absence of a

priori correlation between the noise in different images), thus

leading to

p(σ2) =
∏

t

p(σ2
t ). (30)

C. Hyperparameters

In order to complete the description of the proposed hier-

archical Bayesian model, we consider the following generic

priors for the different hyperparameters. Note that the a priori

independence assumptions made in this section are more of a

computational nature, i.e., aimed at simplifying the estimation

procedure detailed in the next section.

i) Non-informative conjugate inverse-gamma priors for the

variability variances Ψ2 and the outlier variances s2 , i.e.,

for ℓ = 1, . . . , L, r = 1, . . . , R and t = 1, . . . , T

ψ2
ℓ,r ∼ IG(aΨ , bΨ ), s2

t ∼ IG(as , bs) (31)

where IG(aΨ , bΨ ) denotes the inverse gamma distri-

bution and aΨ = bΨ = as = bs = 10−3 . Classical inde-

pendence assumptions for the different hyperparameters

lead to

p(Ψ2) =
∏

ℓ,r

p(ψ2
ℓ,r ), p(s2) =

∏

t

p(s2
t ). (32)

ii) A uniform prior for the granularity parameter of a Potts-

Markov random field (a fortiori of an Ising-Markov ran-

dom field). Previous studies have shown that it is reason-

able to constrain the granularity parameter to belong to

the interval [0, 2] [43], leading to

βt ∼ U[0,2], for t = 1, . . . , T. (33)

Assuming the granularity parameters are a priori inde-

pendent for different time instants finally yields

p(β) =
∏

t

p(βt). (34)

Fig. 1. Directed acyclic graph associated with the proposed Bayesian model
(fixed parameters appear in boxes).

D. Joint Posterior Distribution

Applying Bayes’ theorem, the joint posterior distribution of

the parameters of interest is given by

p(Θ | Y) ∝ p(Y | Θ)p(A | X)p(X | Z, s2)p(s2)

× p(Z | β)p(β)p(dM | M,Ψ2)p(M)p(Ψ2)p(σ2).
(35)

The complexity of the proposed Bayesian model summarized

in the directed acyclic graph of Fig. 1 and its resulting posterior

(35) prevent a simple computation of the maximum a posteri-

ori (MAP) or minimum mean square (MMSE) estimators. For

instance, the optimization problem associated with the deter-

mination of the MAP estimator of Θ is clearly complex, since

the negative log-posterior is non-convex and parameterized by

mixed continuous and discrete variables. In this context, classi-

cal matrix factorization techniques such as [25] cannot be used

efficiently. An MCMC method is consequently adopted to sam-

ple the posterior (35) and to build estimators of the parameters

involved in the proposed Bayesian model using the generated

samples.

IV. GIBBS SAMPLER

This section studies a Gibbs sampler, which is guaranteed to

produce samples asymptotically distributed according to the

target distribution (35). This sampler described in Algo. 1

consists in generating samples distributed according to the



conditional distribution of each parameter of interest. Sec-

tion IV-A introduces the proposed sampling method, and the

conditional distributions of all the parameters of interest (see

Fig. 1) are detailed in the following paragraphs.

A. Bayesian Inference and Parameter Estimation

The main steps of the proposed Gibbs sampler are summa-

rized in Algo. 1. Similarly to [20], the sequence {Θ(q)}NMC

q=Nbi+1

generated by the proposed sampler (i.e., after Nbi burn-in it-

erations) is used to approximate the MMSE estimators of

the different unknown parameters M, At , dMt and Xt by

replacing the expectations by empirical averages.

M̂MMSE ≃
1

NMC −Nbi

NMC∑

q=Nbi+1

M(q) (36)

ÂMMSE
t ≃

1

NMC −Nbi

NMC∑

q=Nbi+1

A
(q)
t (37)

d̂M
MMSE

t ≃
1

NMC −Nbi

NMC∑

q=Nbi+1

dM
(q)
t (38)

X̂MMSE
t ≃

1

NMC −Nbi

NMC∑

q=Nbi+1

X
(q)
t . (39)

This choice is justified by the fact that MAP estimators com-

puted using MCMC algorithms are often less accurate when

the number of unknown parameters is relatively large [44]. Fi-

nally, the following marginal maximum a posterior (mMAP)

estimator is considered for the label maps

ẑmMAP
n,t = arg max

zn , t ∈{0,1}
p
(
zn,t | yn,t ,Θ\{zn , t }

)
. (40)

It is approximated by

ẑmMAP
n,t ≃

{
0, if ♯{q > Nbi : z

(q)
n,t = 0} ≤ NMC−Nbi

2

1, otherwise.
(41)

B. Sampling the Abundances A

The likelihood function Section III-A combined with the

prior given in Section III-B1 leads to the following conditional

distribution for the abundances

an,t | yn,t ,Θ\{an , t } ∼ NSR (µ
(A)
n,t ,Λn,t) (42)

Λ−1
n,t =

1

σ2
t

MT
t Mt +

1

ε2
n

(
[T 1

n,t 6= ∅] + [T 2
n,t 6= ∅]

)
IR (43)

Mt , M + dMt (44)

µ
(A)
n,t = Λn,t

[
1

σ2
t

MT
t (yn,t − xn,t)

+
1

ε2
n

(
[T 1

n,t 6= ∅]an,τ 1
n , t

+ [T 2
n,t 6= ∅]an,τ 2

n , t

)]
(45)

where NSR (µ,Λ) denotes a Gaussian distribution truncated to
the set SR and

T
2
n,t = {τ > t | zn,τ = 0} , τ 2

n,t = min
τ ∈T 2

n , t

τ (46)

with the convention T 2
n,t = ∅ if t = T .

Samples distributed according to the above truncated mul-

tivariate Gaussian distributions can be generated by a Gibbs

sampler described in [45, Sec. IV.B.] [46], by an Hamiltonian

Monte-Carlo procedure [47], [48] or by the general method re-

cently proposed in [49]. In this work, the Gibbs sampler [45,

Sec. IV.B.] has been adopted to sample the parameters of in-

terest. Note that the abundance vectors an,t can be sampled in

parallel to accelerate the algorithm.

C. Sampling the Endmembers M

Combining Section III-A and the endmember prior given in

Section III-B3 leads to

mℓ,r | Y,Θ\{m ℓ , r } ∼ N[bℓ , r ,+∞)(µ
(M )
ℓ,r , κ2

ℓ,r ) (47)

bℓ,r = max
{

0,max
t

(−dmℓ,r,t)
}

(48)

µ
(M )
ℓ,r = κ2

ℓ,r

∑

t

1

σ2
t

[
ỹℓ,t − x̃ℓ,t − m̃l,\rA\r,t

− d̃mℓ,tAt

]
ãTr,t (49)

κ2
ℓ,r =

[∑

n,t

a2
r,n,t

σ2
t

+
1

ξ

]−1

(50)

where d̃mℓ,t is the ℓth row of dMt , m̃ℓ,\r is the ℓth row of

M whose rth entry has been removed,A\r,t denotes the matrix

At without its rth row and ãr,t is the rth row of At . Samples

distributed according to the above truncated Gaussian distribu-

tions can be efficiently generated using the algorithm described

in [50]. When using a PCA as a preprocessing step (20), the

projected endmembers er , for r = 1, . . . , R have a truncated

multivariate Gaussian distribution [41]

er | Y,Θ\{er } ∼ NEr (µ
(E)
r ,Λr ) (51)

where Er ,µ
(E)
r andΛr have been reported in Appendix A. Note

that the rows ofM (resp. of the projected endmember matrixE)

can be sampled in parallel to decrease the computational time

required by the algorithm.

D. Sampling the Variability Terms dM

Similarly, the likelihood function Section III-A and the prior

given in Section III-B4 lead to

dmℓ,r,t ∼ N[−m ℓ , r ,+∞)(µ
(dM )
ℓ,r,t , η

2
ℓ,r,t) (52)



with

1

η2
ℓ,r,t

=
1

σ2
t

∑

n

a2
r,n,t +

1

ν

[
t = 1

]

+
1

ψ2
ℓ,r

(
1 +

[
1 < t < T

])
(53)

µ
(dM )
ℓ,r,t =

[
1

σ2
t

(
ỹℓ,t − d̃mℓ,\r,tA\r,t − m̃ℓan,t − xℓ,n,t

)
ãTr,t

+
1

ψ2
ℓ,r

(
[t<T ]dmℓ,r,(t+1) +[t>1]dmℓ,r,(t−1)

)]
η2
ℓ,r,t

(54)

where d̃mℓ,\r,t denotes the ℓth row of dMt whose rth element
has been removed, m̃ℓ is the ℓth row ofM andA\r,t is thematrix

At without its rth row. The rows of each variability matrixdMt

can be sampled in parallel to reduce the computational time of

the sampler.

E. Sampling the Label Maps Z and the Outliers X

According to Sections III-A and III-B2, the outliers admit the

following group-sparsity promoting conditional distributions

p(xn,t | yn,t ,Θ\{zn , t ,xn , t }) = (1 − wn,t)δ(xn,t)

+ wn,t NRL
+
(µ

(X)
n,t , ϑ

2
t IL ) (55)

which are mixtures of a Dirac mass at 0 and of truncated multi-

variate Gaussian distributions, where

wn,t =
w̃n,t

w̃n,t + (1 − ωn,t)
, ϑ2

t =
σ2
t s

2
t

σ2
t + s2

t

(56)

w̃n,t =
ωn,t

(s2
t )
L/2

(ϑ2
t )
L/2 exp

(
1

2ϑ2
t

‖µ
(X)
n,t ‖

2
2

)
(57)

µ
(X)
n,t =

s2
t

σ2
t + s2

t

[
yn,t − (M + dMt)an,t

]
. (58)

In practice, the labels zn,t are first sampled according to

a Bernoulli distribution to select one of the two models for

xn,t , with probability P [zn,t = 1 | yn,t ,Θ\{zn , t ,xn , t }] = wn,t .
Note that the labels zn,t can be sampled in parallel by using

a checkerboard scheme. In addition, the outliers xn,nt can be

sampled in parallel to decrease the computational time.

F. Sampling the Outlier Variances s2

According to Sections III-B2 and III-C, we can easily identify

the conditional law of s2
t for t = 1, . . . , T as the following

inverse gamma distribution

s2
t | Θ\{s2

t }

∼ IG
(
as +

♯{n : zn,t = 1}L

2
, bs +

1

2
‖Xt‖

2
F

)
. (59)

G. Sampling the Noise Variances σ2

Using Sections III-B5 and III-C, we obtain for t = 1, . . . , T

σ2
t | Yt ,Θ\{σ 2

t }
∼ IG

(
aσ +

LN

2
, bσ

+
1

2
‖Yt − (M + dMt)At − Xt‖

2
F

)
.

(60)

H. Sampling the Variability Variances Ψ2

Similarly, Sections III-B4 and III-C lead to

ψ2
ℓ,r | Θ\{ψ 2

ℓ , r }
∼ IG

(
aΨ +

T − 1

2
, bΨ

+
1

2

T∑

t=2

(dmℓ,r,t − dmℓ,r,t−1)
2
)
. (61)

I. Sampling the Granularity Parameters βt

Provided square images are considered, the partition func-

tions C(βt) have the closed-form expressions [40], [51]

C̃(βt) =
1

2
log(2 sinhβt) +

1

2N

N∑

n=1

acosh ∆n (βt) + βt

∆n (βt) = v(βt) − Cn , v(βt) =
cosh2 βt
sinhβt

C̃(βt) =
1

N
logC(βt), Cn = cos

(
2n − 1

2N
π

)
.

The exact partition function can then be used to sample the

parameters βt using Metropolis-Hastings steps. In this work,

new values of the granularity parameters have been proposed

by the following Gaussian random walk

β∗
t = β

(q)
t + εt , εt ∼ N

(
0, σ2

β (t)
)

(62)

where the parameters σ2
β (t) are adjusted during the burn-in

iterations to yield acceptance rates in the interval [0.4, 0.6].

J. Computational Complexity

Assuming elementary arithmetic operations and scalar

pseudo-random number generations are O(1) operations, the

overall computational complexity is dominated by matrix prod-

ucts needed to compute the parameters related to the conditional

distribution of the variability vectors. Since R≪ L≪ N and

T ≪ L, the per-iteration computational cost of the proposed

algorithm is O(LR2NT ) per iteration. As detailed in the pre-
ceding paragraphs, many parameters can be sampled in parallel

to reduce the computational time of the proposed algorithm. In

comparison, the computational complexity of VCA isO(R2N)
[22] per image, and the per iteration complexity of the other al-

gorithms for a single image are respectively: O(N 2) for FCLS
[23], O(RN) for SISAL [24], O(LRN) for rLMM [25] and

O(R2(L+N)) for OU [14].



V. EXPERIMENTS WITH SYNTHETIC DATA

The proposed method has been applied to an MTHS im-

age composed of 10 acquisitions of size 50 × 50 with L = 413
bands. The first scenario deals with the appearance of a new

material in specific regions of a few images. To this end, 4

images out of the 10 have been corrupted by spatially sparse

outliers, corresponding to a new endmember extracted from a

spectral library. Each image of the sequence corresponds to a lin-

ear mixture of 3 endmembers affected by smooth time-varying

variability, and the synthetic abundances vary smoothly from

one image to another.

First, so-called reference abundance maps corresponding to

the first time instant have been generated (e.g., for the dataset

composed of 3 endmembers, we have taken the abundance

maps obtained by VCA/FCLS on the widely studied Moffett

dataset [41]). Then, the abundance maps corresponding to the

remaining time instants have been generated by multiplying

the reference maps with trigonometric functions to ensure a

sufficiently smooth temporal evolution. For the first dataset

composed of R = 3 endmembers, the reference maps asso-

ciated with the first two endmembers have been respectively

multiplied by cos
(

π
100 + t 48π

100

)
and sin

(
π

100 + t 48π
100

)
, with

t ∈ {1, . . . , T}. The temporal evolution of the last abundance
map has finally been obtained by leveraging the sum-to-one

condition. With these abundance maps, the contribution of a

given endmember (assumed to punctually disappear) has been

replaced at specific time instants by a new endmember signature

in pixels originally corresponding to its highest abundance

coefficients (e.g., above 0.8).

Themixtures have finally been corrupted by an additive white

Gaussian noise to ensure a resulting signal-to-noise ratio (SNR)

between 25 and 30 dB. Similarly, two complementary scenarii
involving 5 HS images, of size 100 × 100, composed of 6 and
9 endmembers, have been considered to analyze the perfor-

mance of the method in the presence of a larger number of

endmembers. Note that a larger image size has been considered

for these two datasets to reflect the fact that a larger number

of endmembers is expected to be observed in larger scenes. In

addition, the images of this experiment do not satisfy the pure

pixel assumption to assess the proposed method in challenging

situations.

Controlled spectral variability has been introduced by using

the product of reference endmembers with randomly generated

piecewise-affine functions as in [9], where different affine func-

tions have been generated for each endmember at each time

instant. Typical instances of the signatures used in this exper-

iment are depicted in Fig. 2. The robustness of the proposed

method to moderate spatial variability, i.e., endmember vari-

ability occurring within single images, has also been evaluated.

The corresponding results can be found in the technical report

[52, Appendix E] due to space constraints.

A. Compared Methods

The results of the proposed algorithm have been compared

to those of several unmixing methods from the literature, some

of which are specifically designed to unmix a single HS image.

Fig. 2. Endmembers (mr , red lines) and their variants affected by variabil-
ity (mr + dmr,t , blue dotted lines) used to generate the synthetic mixtures
withR = 3. Signatures corresponding to different time instants are represented
in a single figure to better appreciate the variability introduced in the data.
(a) Endmember 1. (b) Endmember 2. (c) Endmember 3.

TABLE I
FIXED PARAMETERS, AND INITIAL VALUES ASSOCIATED IN THE EXPERIMENTS

TO PARAMETERS LATER INFERRED FROM THEMODEL

Synthetic data Real data

ε2
n 10−3 10−2

ξ 1 1

ν 10−3 10−5

Fixed parameters as , aΨ , aσ 10−3 10−3

bs , bΨ , bσ 10−3 10−3

Nbi 350 450
NMC 400 500

σ2
t 10−4 10−4

Initial values s2
t 5 × 10−3 5 × 10−3

ψ2
ℓ,r 10−3 10−2

βt 1.7 1.7

In the following lines, the most relevant implementation details

specific to each method are briefly recalled.

1) VCA/FCLS (no variability, single image): the endmem-

bers are first extracted on each image using the vertex

component analysis (VCA) [22], which requires pure pix-

els to be present. The abundances are then estimated for

each pixel by solving a fully constrained least squares

problem (FCLS) using the alternating direction method

of multipliers (ADMM) [23]. Note that the estimates pro-

vided by the VCA algorithm vary from one run to another,

given its stochastic nature;

2) SISAL/FCLS (no variability, single image): the endmem-

bers are extracted on each image by the simplex identifi-

cation via split augmented Lagrangian (SISAL) [24], and

the abundances are estimated for each pixel by FCLS. The

tolerance for the stopping rule has been set to 10−3 ;

3) RLMM (no variability, single image): the unmixing

method associated with the robust linear mixing model

(RLMM) proposed in [25] has been applied to each im-

age of the series independently. The algorithm has been

initialized with SISAL/FCLS, and the regularization pa-

rameter specific to this method is set as in [25];

4) OU: the endmembers are estimated using the online un-

mixing (OU) algorithm introduced in [14] with endmem-

bers initialized by the output of VCA applied to the first

image of the sequence. The abundances are initialized by

FCLS, and the variability matrices are initialized with all

their entries equal to 0. The other parameters are set to the

same values as those given in [14, Table I];



Fig. 3. Second endmember (m2 , red lines) and its variants affected by vari-
ability (m2 + dm2 , t , blue dotted lines) recovered by the different methods
from the syntheticmixtureswithR = 3. Due to space restrictions, the signatures
extracted for the other two endmembers have been included in the associated
supplementary material. Signatures corresponding to different time instants are
represented on a single figure to better appreciate the variability recovered from
the data. The spectra represented in black correspond to signatures corrupted by
outliers. (a) VCA. (b) SISAL. (c) RLMM. (d) OU. (e) Proposed.

Fig. 4. Abundance map of the first endmember recovered by the different
methods (in each row) at the first five time instants (given in column) for the
experiment with R = 3 [the different rows correspond to the true abundances,
VCA/FCLS, SISAL/FCLS, RLMM, OU and the proposed method]. The images
delineated in red show that several methods are highly sensitive to the presence
of outliers, and the time instants represented with ∗ denote images containing
outliers. Due to space restrictions, the abundance maps obtained at each time
instant for each endmember have been included in the supplementary material.

5) Proposed approach: the endmembers are initialized with

VCA applied to the first image of the sequence, within

which the observed materials are well represented (i.e.,

with sufficiently high abundance coefficients for each ma-

terial). In this context the VCA algorithm, which requires

pure pixels to be present in the data, has been observed to

yield relevant results for the initialization. However, other

endmember extraction techniques might be used to initial-

ize the proposed algorithm if needed. The abundances are

TABLE II
SIMULATION RESULTS ON SYNTHETIC DATA (ASAM(M) IN (°),

GMSE(A)×10−2 , GMSE(dM)×10−4 , RE ×10−4 , TIME IN (S))

aSAM
(M)

GMSE
(A)

GMSE
(dM)

RE time

VCA/FCLS 6.07 2.32 / 3.91 1

SISAL/FCLS 5.07 1.71 / 2.28 2
R = 3 RLMM 5.13 2.04 / 0.31 463

OU 1.90 0.42 3.22 2.61 98
Proposed 2.03 0.15 1.85 2.00 2530

VCA/FCLS 3.81 1.57 / 3.09 2

SISAL/FCLS 5.76 0.91 / 4.49 3
R = 6 RLMM 2.73 1.26 / 0.29 1453

OU 2.74 0.38 3.70 1.13 420
Proposed 1.48 0.16 2.84 0.51 8691

VCA/FCLS 3.74 0.65 / 6.83 4

SISAL/FCLS 5.91 0.36 / 5.56 5
R = 9 RLMM 2.48 0.54 / 0.31 1447

OU 6.08 0.47 2.19 0.89 1024
Proposed 2.23 0.15 8.38 0.82 17151

Fig. 5. Evolution over time of the abundance associatedwith the first endmem-
berin a given pixel. The similarity between the recovered result and theground
truth illustrates the relevance of the proposed abundance prior to mitigatethe
errors induced by the presence of outliers in the image (time instants 2,5, 6 and
10).

initialized by FCLS, and the variability matrices and label

maps are initialized with all their entries equal to 0 (i.e.,

the images are a priori assumed to contain no outlier). The

values chosen for the other parameters are summarized in

Table I. Further details on these values can be found in the

supplementary material provided by the authors.

Performance assessment has been conducted in terms of

i) endmember estimation through the average spectral angle

mapper (aSAM)

aSAM(M) =
1

R

R∑

r=1

arccos

(
mT

r m̂r

‖mr‖2‖m̂r‖2

)
; (63)

ii) abundance and variability estimation through the global

mean square errors (GMSEs)

GMSE(A) =
1

TRN

T∑

t=1

‖At − Ât‖
2
F (64)

GMSE(dM) =
1

TLR

T∑

t=1

‖dMt − d̂Mt‖
2
F; (65)



Fig. 6. Outlier labels zt estimated for each image of the synthetic dataset with 3 endmembers (the different rows correspond to the true labels, and the
estimatedlabels) [0 in black, 1 in white].

iii) quadratic reconstruction error (RE)

RE =
1

TLN

T∑

t=1

‖Yt − Ŷt‖
2
F (66)

where Ŷt is the matrix composed of the pixels recon-

structed with the estimated parameters.

B. Results

The endmembers estimated by the proposed algorithm are

compared to those of VCA/FCLS, SISAL/FCLS, RLMM and

OU in Fig. 3, whereas the corresponding abundance maps are

displayed in Fig. 4. Note that the abundance maps and the

endmembers obtained for the mixtures of 6 and 9 endmembers

are included in a separate technical report [52, Appendix D] due

to space constraints (see [52, Figs. 17–24] for R = 6, and [52,
Figs. 26–37] for R = 9). The unmixing performance of each

method, reported in Table II, leads to the following conclusions.

a) Endmember estimation: the proposed method shows an

interesting robustness with respect to spatially sparse out-

liers in the sense that the estimated signatures (Fig. 3(e),

see the supplementary material for the two other endmem-

bers) are very close to the corresponding ground truth

(Fig. 2). In comparison, the shape of the endmembers re-

covered by VCA, SISAL and RLMM and the variability

extracted by OU are significantly affected by outliers, as

exemplified in Fig. 3(a), (b), (c) and (d) respectively. These

qualitative results are confirmed by the quantitative per-

formance measures of each method provided in Table II.

Note that the endmembers recovered by the SISAL and

RLMM methods are very sensitive to the VCA initializa-

tion, as illustrated by the similarity between the signatures

estimated by these methods (Fig. 3(a)–(c)).

b) Abundance estimation: the abundance maps estimated by

FCLS, RLMM and SISAL reflect the high sensitivity of

VCA (used to initialize SISAL and RLMM) to the pres-

ence of outliers (see the figures delineated in red in Fig. 4).

On the contrary, the abundances recovered by OU and the

proposed approach are much closer to the ground truth.

These observations are confirmed by the abundance es-

timation performance reported in Table II. The proposed

abundance smoothness prior appears to mitigate the er-

rors induced by the presence of outliers as can be seen in

Fig. 5. More precisely, for images corrupted by outliers,

the abundance coefficients estimated by the proposed ap-

proach are closer to the ground truth than the results of

TABLE III
ENDMEMBER NUMBER R ESTIMATED BY NWEGA [53] ON EACH

IMAGE OF THE REAL DATASET

04/10/
2014

06/02/
2014

09/19/
201

11/17/
2014

04/29/
2015

10/13/
2015

NWEGA 3 3 3 4 3 4

the other methods. A more detailed version of Table II,

along with a complementary figure illustrating the inter-

est of the proposed abundance prior can be found in the

supplementary material.

c) Overall performance: the performance measures reported

in Table II are globally favorable to the proposed approach.

It is important to mention that the price to pay with the

good performance of the proposed method is its computa-

tional complexity, which is common with MCMC meth-

ods.

As a complementary output, the proposed algorithm is able to

recover the location of the outliers within each image, as illus-

trated in Fig. 6. Up to a few false detections, the estimated labels

are very close to the ground truth. The label errors observed for

t = 7, 8 and 9 partly result from the different abundance con-

straints considered when an outlier is detected or not.

VI. EXPERIMENT WITH REAL DATA

A. Description of the Dataset

We consider a real sequence of AVIRIS HS images acquired

over the Lake Tahoe region (California, United States of Amer-

ica) between 2014 and 2015.1 The scene of interest (100 × 100),
composed of a lake and a nearby field, has been unmixed with

R = 3 endmembers based on the results of the noise-whitened
eigengap algorithm (NWEGA) [53] applied to each image of the

series (see Table III). This choice is further supported by results

obtained from a previous analysis conducted on the same dataset

[54, Appendix E]. ForR = 4 and 5, the signatures of water, soil
and vegetation were split into two or more components by the

different algorithms, suggesting R = 3 is more appropriate for
this study. Note that prior studies led in [14] revealed that this

dataset contains outliers (area delineated in red in Fig. 7(e)).

After removing the seemingly corrupted bands and the water

1The images from which the scene under study is extracted are freely avail-
able from the online AVIRIS flight locator tool at http://aviris.jpl.nasa.gov/
alt_locator/.



Fig. 7. Scenes used in the experiment, given with their respective acquisition date. The area delineated in red in (e) highlights a region known to contain outliers
(this observation results from a previous analysis led on this dataset in [14]). (a) 04/10/2014. (b) 06/02/2014. (c) 09/19/2014. (d) 11/17/2014. (e) 04/29/2015.
(f) 10/13/2015.

Fig. 8. Endmembers (mr , red lines) and their variants affected by variability
(mr + dmr,t , blue dotted lines) recovered by the different methods from the
real dataset depicted in Fig. 7. The spectral gaps in the recovered signatures cor-
respond to the low SNR bands which have been removed prior to the unmixing
procedure. Signatures corresponding to different time instants are represented
in a single figure to better appreciate the variability recovered from the data.
The spectra represented in black correspond to signatures corrupted by outliers,
while those given in green represent endmembers which have been split into
several components by the associated estimation procedure. (a) Soil (VCA).
(b) Water (VCA). (c) Veg. (VCA). (d) Soil (SISAL). (e) Water (SISAL).
(f) Veg. (SISAL). (g) Soil (RLMM). (h) Water (RLMM). (i) Veg. (RLMM).
(j) Soil (OU). (k) Water (OU). (l) Veg. (OU). (m) Soil (Prop.). (n) Water (Prop.).
(o) Veg. (Prop.).

absorption bands, 173 out of the 224 spectral bands were finally

exploited. The initial parameters used for the proposed algo-

rithm are given in Table I. The other methods have been run

with the same parameters as in Section V. Note that the VCA

results reported in this section are representative of those ob-

tained over multiple runs (no significant differences have been

observed from one run to another).

TABLE IV
SIMULATION RESULTS ON REAL DATA (RE ×10−4 )

RE time (s)

VCA/FCLS 45.05 1

SISAL/FCLS 1.65 2
R = 3 rLMM 2.51 390

OU 2.50 508
Proposed 0.34 23608

Fig. 9. Soil abundance map recovered by the different methods (in each row)
at each time instant (given in column) for the experiment on the real dataset
[the different rows correspond to VCA/FCLS, SISAL/FCLS, RLMM, OU, and
the proposed method]. The images delineated in red suggest that some of the
methods are particularly sensitive to the presence of outliers.

B. Results

In the absence of any ground truth, the performance of the

unmixing methods is assessed in terms of RE (Table IV) while

taking into account the consistency of the estimated endmem-

bers and abundancemaps reported in Figs. 8–11.More precisely,

the abundances associated with the vegetation area are expected

to be very high for t = 1, 3, 5 (corresponding to Fig. 7(a), (c)
and (e)) where the vegetation visually appears to be sufficiently

irrigated (hence well represented). On the contrary, the abun-

dance coefficients are supposed to be much lower for t = 2, 4, 6
(corresponding to Fig. 7(b), 7(d) and 7(f)), where the vegetation

is visually drier or almost absent. Concerning the presence of

water in the bottom left-hand corner of the images, the latent



Fig. 10. Water abundance map recovered by the different methods (in each
row) at each time instant (given in column) for the experiment on the real dataset
[the different rows correspond to VCA/FCLS, SISAL/FCLS, RLMM, OU, and
the proposed method]. On the one hand, the images delineated in red suggest
that some of the methods are particularly sensitive to the presence of outliers.
On the other hand, the images delineated in green represent the abundance maps
associated with signatures which have been split into two components by the
corresponding unmixing procedures.

Fig. 11. Vegetation abundance map recovered by the different methods (in
each row) at each time instant (given in column) for the experiment on the real
dataset [the different rows correspond to VCA/FCLS, SISAL/FCLS, RLMM,
OU, and the proposed method]. The images delineated in red suggest that some
of the methods are particularly sensitive to the presence of outliers.

variables introduced in Section III-B2 are expected to reflect the

abrupt variations in the presence of water observed at t = 3, 4
and 5. These observations, combined with the extracted signa-

tures (Fig. 8) and the estimated abundances (Figs. 9–11) lead to

the following comments.

a) Endmember estimation: the signature recovered for the

soil by VCA, SISAL and RLMM at time t = 5 shows an
amplitude which is significantly greater than the ampli-

tude of the signatures extracted at the other time instants,

and a shape incompatible with what can be expected based

on physical considerations (see the black signatures in

Fig. 8(a), (d) and (g)). This is a clear indication that outliers

are present in the corresponding image. A similar obser-

vation can be made for the vegetation signature obtained

by VCA, SISAL and RLMM at time t = 5. On the con-

Fig. 12. mMAP estimates of the label maps recovered by the proposed ap-
proach, displayed at each time instant (the different rows correspond to: the
estimated label map (pixels detected as outliers appear in white), the outlier
energy map re-scaled in the interval [0, 1] obtained by the proposed method,
and by RLMM).

trary, the endmembers recovered by OU and the proposed

approach are much more consistent from this point of

view.

b) Abundance estimation: the estimated abundances globally

reflect the previous comments made on the extracted end-

members. Notably, the abundance coefficients estimated

at t = 5 by VCA, SISAL and RLMM (delineated in red

in Figs. 9–11) are visually inconsistent with the temporal

evolution of the materials observed in the true color com-

position given in Fig. 7. More explicitly, the soil is not

supposed to be concentrated on a few pixels as suggested

by the corresponding abundance maps in Fig. 9. Similarly,

the water is not supposed to be present in high proportions

in all the pixels of the image as indicated in Fig. 10. These

results, in contradiction with Fig. 7, suggest that outliers

are present at t = 5. In addition, the abundance maps es-
timated at t = 4 and 6 by FCLS for the water and the

vegetation (delineated in green in Figs. 9 and 10) sug-

gest that the water contribution has been split into two

spectra. The corresponding signatures are represented in

green in Fig. 8(a) and (c). On the contrary, the results

reported for OU and the proposed method are consistent

with the expected evolution of water and vegetation over

time (abundance values close to 1 at time t = 1, 3, 5,
lower values at time t = 2, 4, 6). Finally, the vegetation
abundance maps estimated by the proposed method glob-

ally presents a better contrast than those obtained with OU

(Fig. 11).

The previous comments, along with the lower reconstruction

error reported in Table IV, suggest that the proposed approach is

robust to spatially sparse outliers while allowing smooth tempo-

ral variations to be exploited. Indeed, the pixels corresponding

to abrupt variations of the water signature have been properly

detected. Furthermore, the outliers previously detected in this

dataset [14] for t = 5 (highlighted in red in Fig. 7(e)) are well

captured by the latent variables Z (see Fig. 12). In addition, the

spatial distribution of the estimated outlier labels (Fig. 12) is in

agreement with the results of the RLMM (in terms of the spa-

tial distribution of the outlier energy) and with the non-linearity

detector [55] applied to each image of the sequence with the

SISAL-estimated endmembers (see Fig. 13). Concentrated on

regions where non-linear effects can be reasonably expected, the



Fig. 13. Non-linearity maps estimated by the detector [55] applied to each
image with the SISAL-extracted endmembers, with a probability of false alarm
of 10−3 (pixels detected as non-linearities appear in white).

active latent variables Z tend to capture the spatial distribution

of the non-linearities possibly occurring in the observed scene.

VII. CONCLUSION AND FUTURE WORK

This paper introduced a Bayesian model accounting for both

smooth and abrupt variations possibly occurring in multitempo-

ral hyperspectral images. The adopted model was specifically

designed to handle datasets in which mostly the same materials

were expected to be observed at different time instants, thus

allowing information redundancy to be exploited. An MCMC

algorithm was derived to solve the resulting unmixing problem

in order to precisely assess the performance of the proposed ap-

proach onmultitemporal HS images of moderate size (i.e., mod-

erate spatial and temporal dimensions). This algorithmwas used

to sample the posterior of the proposed hierarchical Bayesian

model and to use the generated samples to build estimators of

the unknown model parameters. Given its computational cost,

the proposed approach is not intended to be applied to large

datasets, for which different unmixing methods can provide a

rougher analysis at a smaller computational cost. The proposed

approach is rather meant to be used as a complementary tool to

carry out an in-depth analysis of scenes of moderate size. Future

research perspectives include the use of relaxation methods to

the Ising field to tackle similar problems with online optimiza-

tion techniques, and the development of distributed unmixing

procedures to efficiently unmix larger datasets. Designing un-

mixing methods scaling with the problem dimension while si-

multaneously accounting for temporal and spatial endmember

variability is another interesting prospect.

APPENDIX A

SAMPLING THE PROJECTED ENDMEMBERS E

When using a PCA as a preprocessing step, the projected

endmembers er , for r = 1, . . . , R, are distributed according to
the following truncated Gaussian distributions

er | Y,Θ\{er } ∼ NEr (µ
(E)
r ,Λr ) (67)

with Er = [c1,r , d1,r ] × . . . × [cK,r , dK,r ], and for k =
1, . . . ,K

ck,r = max
ℓ∈U+

k

(
−
y̌ℓ +

∑
j 6=k uℓ,jej,r + bℓ,r

uℓ,k

)

dk,r = min
ℓ∈U−

k

(
−
y̌ℓ +

∑
j 6=k uℓ,jej,r + bℓ,r

uℓ,k

)

bℓ,r = min
{

0,min
t

(dmℓ,r,t)
}

Λ−1
r =

[
1

ξ
+
∑

n,t

a2
r,n,t

σ2
t

]
IR−1

µ(E)
r = ΛrU

T

[
∑

t,n

1

σ2
t

(
yn,t − xn,t − dMtan,t

−y̌ar,n,t −
∑

j 6=r

aj,n,tmj

)
ar,n,t

]
. (68)
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