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CHAPTER 9

Social Choice and Social Networks

Umberto Grandi

9.1 Introduction

Individuals do not typically reason in isolation when confronted with collective-
decision making, but rather take into consideration the preferences of like-
minded individuals and engage in strategic activities such as influence, per-
suation and information exchange. Consider the example of a vote in a small
committee, like a department meeting or a company board. Members typically
have partial knowledge of other members’ preferences, and before a decision is
taken they will take strategic actions on which piece of information to disclose
and to whom. There are important variables that they take into account: they
know who are the people they can count on, they know who are the people whose
opinion they trust, they also estimate whether their opinion will be influential
and to whom. That is, they reason about the structure of various social networks
that relate the individuals around them, and are able to devise and play complex
strategies to achieve their goals and influence the result of the collective decision.

Similar phenomena are not restricted to collective decisions taken by small
groups of people. Recent elections have shown how echo-chamber effects seem
to polarise the opinions of societies, and how viral content can rapidly shift the
public view, making traditional polls rather unreliable. Moreover, emerging tech-
nologies in the field of e-democracy present new challenges for designing trust-
worthy mechanisms for collective decisions on social media or on the Internet in
general.

Social network analysis (Jackson, 2008; Easley and Kleinberg, 2010) is a bur-
geoning area which provides tools to analyse networks. It has proven very suc-
cessful in many diverse fields, e.g., in the study of virus diffusion in biology, job
market analyses, and targeted marketing. Well-established economic frameworks
such as game theory the market analysis have started considering more complex
models of society based on the study of networks. Social choice theory has been
left relatively untouched by these new developments, and it is only recently that
researchers have started to study the interplay between the networks relating
members of a community and the collective decisions these individuals take.

This chapter provides an overview of novel approaches put forward in the
computational social choice literature on the topic of social choice and social net-
works. References from outside of computer science are reduced to a minimum,
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but the problem is clearly of interest to political scientists and sociologists.
After briefly introducing some basic terminology and definitions in Section 9.2,

we start in Section 9.3 by analysing the effects of social networks on standard
collective decision scenarios. We first focus on the maximum-likelihood approach
to voting, and then move to the setting of iterated strategic voting. Section 9.4
surveys a number of papers in which collective decision processes are designed to
take into consideration the information coming from a network structure relating
the individuals, in order to prevent strategic actions, or simply to obtain a better
collective decision. In Section 9.5 we show how ideas from social choice theory
have been used to devise novel models of opinion diffusion on social networks,
with individual opinion updates defined by means of aggregation procedures.
Section 9.6 concludes the survey pointing at a number of directions for future
research.

9.2 Basic Definitions

We denote with N = {1, . . . , n} the set of voters and A = {a, b, c, . . . } the set of
alternatives. We assume that voters in N are connected by a social network,
represented as a directed graph identified by the set of its edges E ⊆ N × N .
Undirected graphs can be represented as symmetric directed graphs. We denote
the neighbourhood of an individual i as N(i) = {j ∈ N | (j, i) ∈ E}, using a defini-
tion that can be applied to both directed and undirected networks. The structure
of the network E can be constrained, e.g., to be a directed acyclic graph, a chain,
a tree, or a more complex hierarchical structure. Influence or trust networks
(Section 9.4.1) and delegation networks (Section 9.5) are assumed to be directed,
while general social networks representing social acquaintances or information
channels are assumed to be undirected. In the literature on social network analy-
sis, graphs are typically undirected, and statistical assumptions are made on the
distribution of the edges, for instance when considering random graphs or scale-
free networks. While some of the papers referenced in this chapter are based on
simulations and experiments, and hence make use of similar statistical assump-
tions, these properties are typically substituted by discrete graph properties in
most algorithmic and theoretical papers.

Depending on the situation at hand, voters express their preferences in dif-
ferent forms. The classical approach from voting theory is that of a profile
P = (�1, . . . ,�n), where �i is an irreflexive, complete and transitive binary re-
lation over alternatives in A (i.e., a linear order). Another common setting is
that of binary voting, where we will assume A = {0, 1}. A profile in this case is
any P = (p1, . . . , pn) where pi ∈ A is an individual ballot selecting one of the two
alternatives. Further settings represent indidual opinions as real numbers, as
vectors of binary views, or as propositional knowledge bases, and will be briefly
introduced in the relevant sections.

A social choice mechanism will identify, in general, a procedure to obtain a
collective decision from a profile of individual opinions. Examples can range from
quota rules in binary voting, selecting 1 as the collective decision if the number



Social Choice and Social Networks 171

of individual ballots for 1 exceeds a certain quota, or a rating system proposing a
collective ranking of the alternatives from the evaluations of the individuals.

We recall here that there are two complementary views when assessing a social
choice mechanism. In the first approach individuals are supposed to express
their tastes over the set of alternatives, without there being any objective or true
judgment on which alternative is best for the group. Political elections are a
classic example, as well as lower stake decisions such as deciding which movie
to watch among friends. Under this interpretation, the objective of the social
choice mechanism is to guarantee the representativity of the collective choice
with respect to the profile of individuals’ ballots. The evaluation of a procedure
under this interpretation is often done by means of axiomatic properties, with the
most well-know result being Arrow’s Theorem (Arrow, 1963).

The second approach views social choice as a problem of reconstructing an
underlying correct ordering of the alternatives from noisy estimates received from
the voters. These situations can occur, for instance, when the board of a company
needs to judge on what project to invest in, or a committee on which candidate
to choose for a given job, or crowdsourcing applications aiming at collectively
classifying images or texts. Under this interpretation, a social choice mechanism
is assessed by (a) devising a suitable noise distribution, and (b) proving that the
mechanism maximises the probability of recovering the correct ordering of alter-
natives under the given noise distribution. The simplest and most well-known
result in this research area is Condorcet’s Jury Theorem (Condorcet, 1785): in
binary voting, the majority rule is the maximum likelihood estimator for the noise
model that assumes each voter to be correct with probability p > 0.5.

9.3 Effects of Social Networks on Collective Choices

A social network in a voting context acts as an information filter transforming
a global view (the potential winner of an election, the distribution of preferences
among voters, . . . ) into a multiplicity of local realities, each observed by a voter
in the neighbourhood defined by the network. This first observation is well ex-
plained by a simple example known as the majority illusion (Lerman et al., 2016):

Example 9.1. The citizens of a town have to vote in a two-candidate election: those
supporting the first candidate are represented with full nodes in Figure 9.1, and
those supporting the second candidate with empty nodes. A couple of days before
the election takes place, a polling firm asks each voter which candidate she or he
thinks will win. The election will be decided by majority, and each voter’s reply
to the poll is based on her private observation of other voters’ opinions in her own
neighbourhood. That is, we assume that voters are connected by a social network,
and that they only have access to the opinions of their direct neighbours.

The situation depicted in Figure 9.1 results in a surprising failure of the poll:
while only 3 individuals out of 14 support the first candidate (the full nodes), a
majority of the voters respond to the poll that it is the second candidate who will
win the election. To see this, take for instance the rightmost voter, marked with a ∗:
she can see three full nodes and one empty node, reporting a probable victory of
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∗

Figure 9.1: A network showing the “majority illusion”.

the first candidate. The same happens to all 11 empty nodes in the graph, resulting
in a poll which forecasts a victory of the first candidate with 11 votes against 3.

In this section we review a selection of recent papers from the literature on
computational social choice that analyse how the information structure induced
by a social network can affect the functioning of various voting mechanisms.

9.3.1 Noisy Votes

One of the first papers analysing the effects of social networks in computational
social choice is the work of Conitzer (2012). This paper views voting as recon-
structing a ground truth from noisy votes (i.e., the maximum likelihood estima-
tor viewpoint described in Section 9.2), and reaches the following conclusion: if
we see the probability that an individual estimates the correct alternative as an
independent factor from the probability of being influenced by her neighbours’
opinions, then the best mechanism to recover the ground truth simply ignores
the existence of a network. Let us see this result in its simplest form.

We are in the setting of binary voting, with A = {0, 1} as the set of alternatives,
and we assume that one of the two alternatives in A is the correct one (i.e., the
ground truth), and we denote it with c ∈ A. A population of voters N connected
by an undirected network E receives a noisy distribution of opinions supporting
either candidate 0 or candidate 1, generating a profile of binary opinions P . In the
maximum likelihood approach we are interested in the probability of observing
profile of votes P given that the correct alternative is c, i.e., estimating Prob(P | c).

The first important assumption made by Conitzer (2012) is that such prob-
ability can be factored as Prob(P | c) =

∏
i∈N fi(pi, PN(i) | c), where pi is agent i’s

opinion and PN(i) the restriction of profile P to i’s influencers. That is, the overall
probability of observing profile P can be factored into independent probability
functions fi, one for every individual, calculating the probability of observing
opinion pi and neighbouring opinions PN(i) given that the correct alternative is c.
Assume now that the probability of observing an agent’s ballot can be factored
into (a) the probability of observing her ballot given that the correct alternative is
c, and (b) the probability of observing her ballot given the profile of her influ-
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encers’ opinions. In formulas, for every voter i there exist functions gi and hi
such that fi(pi, PN(i) | c) = gi(pi | c) · hi(pi, PN(i)).

We can now proceed to look for the maximum likelihood alternative, i.e., the
ĉ ∈ A maximising Prob(P | ĉ). By the formulation above, this is equivalent to
maximising the product of functions hi and gi in c. However, since function hi
does not depend on the alternative c under consideration it can be ignored in the
maximisation process. Hence, the maximum likelihood alternative can be found
by only looking at functions gi, which are independent from the structure of the
network since they only depend on the current opinion pi of individual i.

The assumptions that led to the previous result are clearly strong ones, in
particular the one assuming that individuals form their views independently al-
beit being on a network. In a follow-up paper, Conitzer (2013) introduces a noise
model for profile generation which has similarities with the models of opinion dif-
fusion that will be introduced in Section 9.5. Such noise model is also defined for
two alternatives, and assumes that the network E is such that each voter has an
odd number of neighbours.1 In the independent conversation model, voters have
conversations with all of their neighbours, each one resulting in an argument in
favour of one of the two alternatives, and will vote according to the majority of
the arguments received.

In formulas, we associate with each edge e = (i, j) ∈ E a random alternative
Ae ∈ {0, 1}, representing the result of the conversation between i and j: if Ae = 0,
for instance, the two voters after the conversation will end up with an argument in
favour of 0. A profile of conversations AE = (Ae | e ∈ E) is the profile of alternatives
Ae ∈ A associated with edges e ∈ E, and n(c, Ae) = |{e ∈ E | Ae = c}| is the number
of edges associated with alternative c ∈ A. With every profile of conversations
AE, we can associate a profile of votes P such that pi = maj({A(j,i) | j ∈ N(i)}),
with each voter supporting the alternative for which they obtained a majority of
arguments supporting it. Assuming that alternative Ae is the correct one with
probability p > 0.5, and is the incorrect one with probability 1 − p, we can obtain
the probability of observing a profile P given that the correct alternative is c as
Prob(P | c) =

∑
AE

pn(c,AE) × (1 − p)|E|−n(c,AE), where AE ranges over all profiles
of conversations that are consistent with the observed profile, i.e., such that
pi = maj({A(j,i) | j ∈ N(i)}). The maximum likelihood alternative c is therefore
the one that maximises the expression above. Considering all profiles AE that
are consistent with the observed profile of votes P clearly leads to an exponential
explosion and to computationally intractable problems. For instance, computing
the figure above is #P -hard (Conitzer, 2013).

The independent conversation model explained above has been refined and
extended in related work. Tsang et al. (2015) include the assumption that agents
are more easily convinced by arguments supporting the correct alternative than
by those supporting the incorrect one. Procaccia et al. (2015) include multiple
alternatives and a more sophisticated process of individual response to conver-
sations, testing whether two families of voting rules are accurate in the limit, i.e.,
whether their probability of recovering the ground truth tends to 1 when the

1In social choice theory it is commonplace to assume that a collective decision is taken by an odd
number of individuals. This assumption is less natural when applied to a social network, but can
still be considered as realistic when the number of individuals on the network is sufficiently large.
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number of voters tends to infinity (an approach in line with the Condorcet’s Jury
Theorem mentioned in Section 9.2).

9.3.2 Iterative Voting

Strategic voting, i.e., the possibility of misrepresenting one’s vote to influence
the result of an election in one’s favour, is typically considered as a one-shot
strategic game with perfect information. Iterative voting relaxes some of these
assumptions (see, e.g., Chapter 4 of this book). In this model, an initial pro-
file of votes is gathered, let it be P 0. Such profile can be assumed to consist of
the agents’ truthful preferences, but can also be a completely random preference
profile. Summary information about P 0 is then broadcast to voters, for instance
in the form of a poll giving the percentage of voters supporting each of the can-
didates. Voters can then respond to this information by submitting a new vote,
to form a new profile P 1. The process is repeated until a stable state is reached,
i.e., a state in which no voter has an incentive to change her voting ballot. A
social network in the setting of iterative voting has the effect of filtering the infor-
mation available to voters, who will then take into consideration only the partial
information observed in their neighbourhood when updating their vote.

Tsang and Larson (2016) generalise the model of iterative voting by giving each
voter access only to the ballots of her neighbouring voters. By associating nu-
merical values (cardinal preferences) to voters’ ordinal preferences, they monitor
experimentally the evolution of a number of parameters such as the price of sta-
bility and the price of honesty, as well the effects of iterative strategic voting on
the ranking of less popular alternatives.

The same underlying principle is used by Sina et al. (2015): voters in the net-
work can see how their neighbours voted at each stage, and this information can
also be complemented by a summary poll obtained from the entire profile. The
authors show that a central authority that is in control of the network structure
is able to easily influence the result of an election. Technically, they present
a polynomial-time algorithm that makes a chosen candidate the winner of the
election by only adding a linear number of edges to the network. The existence
of such a central authority should not be viewed as unrealistic: consider for in-
stance the Facebook feed, that has the ability to block the information flow from
certain connections or to suggest new ones.

9.3.3 Coalitional Games and Voting Equilibria

The presence of a social network has effects on a number of other collective deci-
sion processes. One example is studied in the work of Elkind (2014) and Igarashi
(2017), who analyse coalitional games on a network in which coalition formation
is restricted to connected subsets of players. A similar approach is taken by
Igarashi et al. (2017), who study problems of group activity selection where the
allocation of activities can only consider connected subgroups of individuals, as
well as by Gourvès et al. (2016), who refine the notion of equilibrium in strategic
voting by restricting deviations to coalitions of players that form a clique of the
network and by including a form of empathy in the behaviour of the agents.
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9.4 Social Choice Mechanisms over Networks

A social choice problem typically consists in taking a collective decision start-
ing solely from the voters’ preferences. When this input is complemented with
knowledge of the social network that relates the voters, novel mechanisms can
be conceived to take this additional information into consideration. In this sec-
tion we survey a variety of procedures for collective choice that are designed to
be implemented on a network of voters.

9.4.1 Liquid Democracy

The road from representative democracy, in which voters elect representatives
that later take decisions on their behalf, to direct democracy, where voters di-
rectly take decisions on the issues at stake, is full of hybrid voting systems. One
of these is proxy voting or liquid democracy.

Consider a set N of voters who need to take a decision on one single issue, and
who are connected by an undirected social network E. Voters are allowed to either
vote directly in favour (1) or against (0) the issue, or to delegate their vote to any
other voter in their neighbourhood N(i) who will act as their proxy.2 The crucial
assumption here is that delegations are transitive, i.e., a voter who received 4
delegations can in turn delegate her vote together with the extra 4 delegations to
another voter.3 The input of this particular social choice problem consists then
of a profile P of ternary ballots, with each individual i specifying a vote for 0 or
1, or a proxy j ∈ N(i), inducing a delegation network on N which we shall call
EP . Observe that every node in the delegation graph EP has outdegree at most
one, since every voter can delegate to only one person, restricting considerably
the type of graphs that can be encountered in this setting.

There are several possibilities to take a collective decision on such input pro-
files. If the principle of "one man, one vote" needs to be kept, then a weighted
majority rule will be used, defining the weight of a proxy as the number of voters
that have delegated their vote, either directly or via a chain of delegations, to the
proxy. Formally, let a proxy be a voter i that expressed a direct vote either for 0
or for 1. Its weight can then be computed as wi = |{j ∈ N | j E∗P i}|, where jE∗P i
is the reflexive and transitive closure of the delegation graph EP . Christoff and
Grossi (2017b) analyse this setting through the lens of judgment aggregation, as-
suming that there are multiple interconnected binary issues at stake. Among the
numerous problems they consider, there is the existence of cycles of delegations,
which may cause a failure of the "one man, one vote" principle. They also observe
that computing the result of a liquid democracy vote can be performed by finding
a stable state of a suitable opinion diffusion model on the delegation network, a
problem that we will analyse in detail in Section 9.5.

An alternative direction is to use off-the-shelf spectral ranking techniques to

2The assumption that delegates must be part of the social neighbourhood of a voter can be relaxed,
but it is often assumed in practice to guarantee a minimal level of trust in the delegation process.

3Non-delegable proxy voting has been studied in the social choice literature by, e.g., Miller (1969).
Moreover, recent work in computational social choice assess the use of non-delegable proxies in
elections with a small number of active voters (Cohensius et al., 2017).
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compute the weight of each proxy on the delegation network. This includes the
well-known PageRank algorithm (Boldi et al., 2009) and the Katz index (Boldi
et al., 2011). In the latter paper, the authors introduce a damping factor to limit
the effect of long chains of transitive delegations. Their idea is the following:
every delegation path leading to a proxy contributes to its weight with a sum that
is inversely proportional to the path length. Clearly, the “one man, one vote”
principle is lost, but in various settings (such as voting on online social media)
the trust relation underlying a delegation may not be strong enough to justify the
transfer of voting power. If α ∈ (0, 1) is a damping factor, and we denote with |p| the
length of a path p,4 we can define the weight of a proxy i as wi =

∑
p∈Path(−,i) α

|p|,
where Path(−, i) is the set of delegation paths ending in i. Once the weights of
the proxies have been computed, a vote by weighted majority can be staged to
compute the winning alternative. These methods have also been proposed and
tested to construct a personalised recommender system (Boldi et al., 2015).

Non-binary versions of proxy voting give rise to a variety of other problems,
as pointed out by the work of Behrens et al. (2014). For instance, when a large
number of alternative proposals need to be considered and voted on, the ordering
in which these competing alternatives are presented to the voters is of crucial im-
portance. Skowron et al. (2017) mention this problem as a potential application
of their work on proportionality, in which a ranking of alternatives needs to be
constructed from individual approval ballots.

9.4.2 Ratings and Recommendations

Obtaining a collective rating for products or objects (classical example: the rat-
ing application TripAdvisor) is a collective decision problem that is close to that
of obtaining recommendations for users (classical example: Netflix or Amazon’s
recommender systems). Both problems are typically solved at a global scale, con-
sidering preferences and calculating similarities over the whole of the users’ data.
In this section we look at three examples of how a social network can play a role
in obtaining more meaningful and robust recommendations.

Let us first set some definitions. As before, let N be a set of individuals con-
nected by a social network E. A subset of individuals V ⊆ N , called voters, ex-
press their opinions over a set of alternatives A, which we assume by simplicity
consists of a single object. These opinions, which we denote opinion(i) for i ∈ N ,
can take different forms, e.g., a like/dislike, a numerical rating, or an evaluation
on a discrete scale. The problem of recommendation is then the following: given
a target non-voter v∗ ∈ N \ V and the vector of individual opinions from voters in
V , should the product be recommended to v∗?

One of the simplest solutions is to first calculate a collective rating for the
object, perhaps as the average or the median of all the ratings expressed by vot-
ers, and recommend the object to the non-voter if the collective rating exceeds
a certain threshold. This approach is not ideal for a number of reasons, one
of which being its vulnerability to a variety of attacks by strategic agents. Con-
sider for instance the problem of false-name manipulations: by opening multiple

4For ease of explanation we discard the case of infinite paths.
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fake accounts providing the same rating as her own, a voter is able to influence
both the median and the average towards her evaluation. When the social net-
work connecting the individuals is known, a simple idea can however be used
to obtain more robust rating mechanisms: instead of computing a global collec-
tive rating, recommendations should be based on a personalised form of rating,
computed from the opinions of those voters that belong to a suitable notion of
neighbourhood of the target user v∗. We now review three papers that formalised
and studied a personalised approach to ratings and recommendations.

Andersen et al. (2008) carry out an axiomatic study of trust-based recom-
mender systems, assuming that voters express binary opinions (like/dislike) on
a single object. Let v∗ be a non-voter and v a voter, and let Prob(v∗, v) be the
probability of reaching voter v from v∗ with a random walk on the trust net-
work E. Their random walk system will then recommend the product to v∗ if
the probability of reaching a voter from v∗ whose opinion is "like" is higher than
the probability of reaching a voter whose opinion is "dislike". Hence, they base
recommendations on the ratings of all individuals in the connected component of
E containing v∗, weighted by the network structure.

Grandi and Turrini (2016) focus instead on real-valued or discrete-scale opin-
ions on a single object. Rather than presenting the overall average rating to all
agents, the authors propose the use of personalised ratings, obtained by com-
puting for each agent i the average rating of her direct neighbours on the trust
network E. The strategic problem studied is that of bribery, in which an external
agent tries to influence the rating of the object by bribing individuals to increase
their ratings. Compared to providing the overall average of ratings, personalised
ratings make bribery by an external agent more costly and, under some specific
assumptions, not profitable.

Brill et al. (2016a) refine this idea by considering a broader notion of neigh-
bourhood than the direct connections on the trust network. Their idea is the
following one: let F (u) be the set of users that are disconnected from the target
user v∗ as a result of removing node u from the network. A voter v is called legiti-
mate if it does not belong to F (u) for any u ∈ N , that is, if v is still reachable from
v∗ after the deletion of any node. They propose a recommender system based on
this notion of neighbourhood, showing that it is false-name strategy-proof, i.e., it
cannot be manipulated by the addition of fake users.

9.4.3 Social Polls and Empathetic Preferences

Gaspers et al. (2013) study the computational complexity of determining possible
and necessary winners in the context of social polling. The key aspect of their
model is that agents vote following a sequential order, observing the ballots that
were previously cast by voters in their direct neighbourhood.

While voters are typically assumed to be influenced by the decisions of their
neighbours, Salehi-Abari and Boutilier (2014) propose a different model in which
voters’ utilities on collectively decided alternatives depend positively on the util-
ities of their neighbours, to represent voters’ desire to see others satisfied with
the chosen alternative.
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9.5 Opinion Diffusion

As in the introductory example of a committee decision, the addition of a net-
work in a social choice problem is typically done to take into consideration phe-
nomena such as social influence and the information diffusion that takes place
before (or during) the decision process. The literature on social network anal-
ysis abounds with models of influence-based opinion diffusion. Two classical
examples are threshold models (Granovetter, 1978), with more recent generali-
sations by Kempe et al. (2003, 2005), and the De Groot or Lehrer-Wagner model
(de Groot, 1974; Lehrer and Wagner, 1981). With the notable exception of the
recent work of Friedkin et al. (2016), these models are based on a simple rep-
resentation of individual opinions as either a binary view on a single issue, or
a real-valued opinion in the interval [0, 1]. We do not survey this literature here,
pointing at the classical references in social network analysis for a detailed survey
(Jackson, 2008; Easley and Kleinberg, 2010).

In this section, instead, we focus on a number of recent papers that borrowed
techniques from social choice theory and knowledge representation to model the
diffusion of complex opinions: multiple binary issues, linear orders, and belief
bases. Such models are founded on the observation that influence on a social
network is itself a social choice problem, since every individual uses some form of
aggregation when updating her opinion based on the opinions of her influencers
(e.g., her direct neighbours). This gives rise to a discrete-time iterative process
in which at each point in time a number of agents on the network update their
opinion using an aggregation procedure Fi that takes into account the opinions of
the neighbours as well as her own one. Typical problems that can be studied are
the termination of the iterative processes, characterising those networks or initial
profiles of opinions on which the process is guaranteed to reach a stable state,
and convergence, obtaining a characterisation of termination states. A typical
example of the latter problem is convergence to consensus, i.e., the identification
of properties of the network that guarantee that all agents will have unanimous
opinions at the end of the diffusion process.

Example 9.2. Consider the following example from Brill et al. (2016b). Let there be
four agents on the influence network described below, and let each agent express
her preferences in the form of a linear order over three alternatives a, b and c:

a �1 b �1 c

c �2 a �2 b

b �3 c �3 a

b �4 a �4 c

Figure 9.2: The influence of a Condorcet cycle.

The preferences of agents 1, 2, and 3 form what is known as a Condorcet cycle, i.e.,
the majority relation of their preferences is cyclic. Assume now that opinion update
process follows the opinion of the majority of an agent’s influencers, by swapping
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adjacent pairs of alternatives in her preferences accordingly. In the example above,
we can devise a sequence of asynchronous (i.e., sequential) updates that termi-
nates (albeit not to consensus). First, we let agent 4 update on pair ab, moving to
preference a �4 b �4 c. After that, no further updates are possible: even though
agent 4 disagrees with its influencers on pair ac, this pair cannot be swapped since
it is no longer adjacent in �4. In the same example, if we consider synchronous
updates by the agents, then we can devise a sequence that does not terminate,
namely the one where agents 1 and 4 update repeatedly on pair ab. Observe that
in any update sequence agents 2 and 3 never update their preferences.

Let us start from the case of individual opinions over multiple binary issues.
Consider a set of agents N on a directed network E, each one having a binary
opinion over a set of issues I. Let for instance agent i express her opinion as
pi = (0, 1, 0, 0) on a domain composed of four issues. At each point in time, an indi-
vidual i has access to the opinions of its direct neighbours or influencers in N(i),
and updates her opinion using an aggregation function F . If P t is the profile of
individual profiles at time t, then pt+1

i = F (P t
|N(i), p

t
i), where P t

|N(i) is the restriction
of profile P to the individuals in N(i). The process can be synchronous, when all
individuals update at the same time, or asynchronous, when individuals update
one after the other. Grandi et al. (2015) provide algorithms and characterisation
results for the termination of synchronous opinion diffusion models on multi-
ple binary issues described above. Some of these results have been subsumed
by the recent work of Christoff and Grossi (2017a), which focuses on aggregation
procedures F that satisfy some natural choice-theoretic properties. When the ag-
gregation procedure F is a quota rule (Dietrich and List, 2007), these models are
equivalent to Granovetter’s threshold functions. Goles and Olivos (1980) show
that under such assumptions, every sequence of synchronous updates always
terminates to a stable state or cycles with period 2. Different opinion diffusion
models over multiple binary issues can be defined from any rule from the judg-
ment aggregation literature (Endriss, 2016). Slavkovik and Jamroga (2016), for
instance, explore the use of a distance-based procedure to reach consensus on
a network. Finally, the addition of an integrity constraint relating the multiple
issues is not a trivial generalisation, and initial results in this directions have
been obtained by Botan et al. (2017).

In a voting setting, individual opinions are typically assumed to be linear or-
ders over a set of alternatives, inducing more complex diffusion models studied
by Brill et al. (2016b) and by Farnoud et al. (2013) (the latter for the case of a
complete network). The main problem faced in these models is the presence of
intransitive majorities, as presented in Example 9.2: three influencers with pref-
erences a �1 b �1 c, c �2 a �2 b, and b �3 c �3 a, influencing a fourth individual
with preferences b �4 a �4 c. Aggregating the three linear orders by majority
results in a cycle: how should then the fourth agent update her preferences?
One possible solution is to restrict individual updates to swapping pairs that are
already adjacent in the individual ordering that is being updated. For instance,
in the previous example, the fourth agent may update on pair (b, a), switching to
a �4 b �4 c, which agrees on all adjacent pairs with the (intransitive) majority of
her influencers. In this model, Brill et al. (2016b) provide a termination result on
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arbitrary networks under additional assumptions on the profile of individual pref-
erences, and show that on directed acyclic graphs the diffusion model preserves
classical domain restrictions from voting theory such as single-peakedness.

Belief bases are sets of formulas in propositional logic that are used to com-
pactly represent the beliefs of an agent about the current state of the world. For
example, if p stands for "it is raining" and q stands for "it is cold", an agent with a
belief base of p∨q believes that it is raining or it is cold, or both. These mathemat-
ical objects have been used as individual opinions by Schwind et al. (2015) and
Cholvy (2016), to define diffusion processes in line with those described above.
Individuals on a network are assumed to have access to the belief bases of their
direct neighbours, and to use this information to update their current belief base
using a belief merging operator (see, e.g., Chapter 7 of this book). In particular,
Schwind et al. (2015) analyses the axiomatic properties of this model, varying the
belief merging technique that is used for the update of individuals’ belief bases.

The strategic aspects of the diffusion models described above are of clear in-
terest, both for individual strategic actions such as misrepresenting one’s own
opinion, and for external actions such as bribery or control. Some of these prob-
lems are just beginning to be explored in the case of belief bases (Schwind et al.,
2016) and binary issues (Grandi et al., 2017; Bredereck and Elkind, 2017).

9.6 Conclusions

In this chapter we surveyed recent work in the computational social choice liter-
ature on social choice and social networks.

First, we saw how social-network-related phenomena, such as social influence
and an asymmetric distribution of information, can impact the result of standard
procedures for collective decision-making. When taking a maximum likelihood
approach to social choice, the structure of a network can be exploited to create
novel noise models and new maximum likelihood estimators. An open question
is then whether opinion diffusion models such as those defined in Section 9.5
can be interpreted as noise models, and what are the maximum likelihood esti-
mators for them. The setting of iterative voting, when voters respond iteratively
to a sequence of polls or elections, is also affected by individuals responding to
local information filtered through the network. Political elections provide numer-
ous examples to observe the consequences of network-related processes, from
the majority illusion discussed in Section 9.3, to echo-chamber effects, to polari-
sation. Assessing the effects of social networks on the ability of taking collective
decisions in society is a crucial topic for modern social choice, and a rich source
of computational problems.

We then considered the problem of designing mechanisms for collective choice
that are implemented on networks of voters. The classical example here is proxy
voting, in which voters can delegate their voting power to a neighbour, inducing
a delegation network. Various notions from spectral ranking can be used to
compute the weights of voters and arrive at a collective decision. While classical
weight functions from social network analysis have been tested, novel measures
may be defined that are specific to a voting context. We also saw applications
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to the problem of obtaining ratings and recommendations of objects to users. In
this setting, suitable notions of neighbourhood on the network can be used to
provide personalised ratings and recommendations that are more robust against
malicious strategic actions by both users and external agents.

Finally, we showed how social choice can contribute to the definition of novel
models of opinion diffusion, based on the idea that individuals aggregate the
views they receive from their neighbours on a social network. Depending on
the application at hand, these models can be constructed using voting rules
from classical social choice theory, aggregation procedures from judgment ag-
gregation, or belief merging operators. These models present a number of open
algorithmic challenges, most notably the characterisation of networks guarantee-
ing termination, and provide a computation-friendly representation of diffusion
whose effects on social choice methods still need to be assessed.

Strategic aspects of collective decision-making on social networks are still
largely unexplored. Agents may have multiple actions available, from adding
or severing links on the network, to misrepresenting their opinion in different
ways to different agents, to exercising their influence at various degrees. This
new layer of strategic reasoning may have a significant impact on the problem
of equilibrium selection in voting games, and we have seen some first studies in
this direction in the area of iterative voting. Many of the ideas discussed in this
chapter also have the potential to contribute to real-world applications: from rat-
ings and recommendations on networks, to the rise of platforms for democracy
and online decision making (see, e.g., Chapter 20 of this book).
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