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We provide a logical investigation of a simple case of com-

munication in a network of agents called the gossip problem.

Its classical version is: given n agents each of which has a

secret—a fact not known to anybody else—, how many calls

does it take to achieve shared knowledge of all secrets, i.e.,

to reach a state where every agent knows every secret? Sev-

eral protocols achieving shared knowledge in 2(n−2) calls

exist and were proved to be optimal: no shorter sequence of

calls exists. We generalize that problem and focus on higher-

order shared knowledge: how many calls does it take to ob-

tain that everybody knows that everybody knows all secrets?

More generally, how many calls does it take to obtain shared

knowledge of order k? This cannot be achieved simply by

communicating facts: the agents also have to communicate

higher-order knowledge of facts. We give an algorithm that

works in (k+1)(n−2) calls. We analyse its properties in a

logic that we have investigated in previous work and that is

based on the concept of observability of propositional vari-

ables by agents: Dynamic Epistemic Logic of Propositional

Assignment and Observation DEL-PAO. This enables us in

particular to give a formal proof of correctness of the algo-

rithm.
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1. Introduction: the gossip problem and its

generalization

The gossip problem is typically introduced in the lit-

erature in the following terms [1,28]:

There are six agents each of which knows some se-

cret not known to anybody else. Two agents can

make a telephone call and exchange all secrets they

know. How many calls does it take to share all se-

crets, i.e., how many calls have to take place until

everybody knows all secrets?

call per couple of agents (i, j). This takes n(n−1) calls.

But one can do much better.

To warm up consider n=3. Let si denote agent i’s

secret. Shared knowledge can be attained in three calls,

as can be seen by inspecting the following protocol:

1. 1 calls 2: 1 tells s1, and 2 tells s2;

2. 1 calls 3: 1 tells s1 and s2, and 3 tells s3;

3. 1 calls 2: 1 tells s3.

After the second call, both 1 and 3 know s1∧s2∧s3. So

1 and 3 are both experts. However, 2 is not an expert

yet because she does not know 3’s secret: she only be-

comes an expert after the third call.

While the cases n=2 and n=3 are special, for n≥4

there is a general result saying that shared knowledge

can be achieved in 2(n−2) calls, and that it is impos-

sible to do better: there is no protocol with less than

2(n−2) calls [8,32,25].

In the present paper we are interested in contexts

where the goal is to achieve higher-order shared knowl-

edge: how many calls does it take to obtain that every-

body knows that everybody knows all secrets? More

generally, how many calls does it take to obtain shared

knowledge of order k? Such higher-order knowledge

is important for social intelligence: social interaction

requires the ability to reason about the other agents’

mental states. In other words, an agent should entertain

a theory of mind: she should have beliefs about other

agents’ beliefs, beliefs about what other agents believe

about her, etc. Epistemic logic is an interesting tool in

the investigation of theory of mind; see e.g. [12,24] for

recent work on the subject.

If we make the hypothesis that there is a global clock

and that everybody knows the protocol then things are

easy: 2(n−2) calls achieve not only shared knowledge

of all secrets, but also common knowledge of all se-

crets. Here we do not make that hypothesis and investi-

gate asynchronous contexts. In such contexts, for n= 2

it still holds that a single call makes all secrets not only

shared knowledge, but also common knowledge; how-

ever, for n > 2 common knowledge cannot be achieved

by a finite number of calls.

We are therefore more modest and consider the goal

of shared knowledge of order k. The original problem

The problem can be generalized to an arbitrary num-

bers of agents n≥2. A straightforward solution has one



is to reach shared knowledge of order k=1. Now con-

sider k=2. There, the agents cannot achieve the goal by

communicating facts alone: they also have to commu-

nicate what they know about the facts. Let us illustrate

this for n=3 agents. We modify the protocol for shared

knowledge of order 1 and let the agents communicate

knowledge instead of facts:

1. 1 calls 2: 1 tells K1s1, and 2 tells K2s2;

2. 1 calls 3: 1 tells K1s1, K1s2, K2s1 and K2s2, and 3

tells K3s3;

3. 1 calls 2: 1 tells K1s3, K3s1, K3s2 and K3s3,

where Kiϕ reads “agent i knows that ϕ is true”. After

the second call, 1 and 3 are both experts of level 1: both

know s1∧s2∧s3. However, none of them is an expert of

level 2 because none of them knows K2s3 (and so for

a good reason: K2s3 is not the case yet). The third call

makes both 1 and 2 experts of level 2. However, agent 3

is not an expert of level 2 yet: although K2s3 is the case,

agent 3 does not know this. To attain that level it takes

a further, fourth call between 1 and 3 (or, alternatively,

between 2 and 3). This shows that the first three calls

are not enough to obtain shared knowledge of order 2.

Our example illustrates that in order to attain shared

knowledge of level 2, it is useful to communicate

knowledge about facts (that is, knowledge of level 1). It

also illustrates that it takes more calls to achieve shared

knowledge of level k+1 than it takes to achieve shared

knowledge of level k.

We note Gossip(k,n) the instance of the general-

ized gossip problem with n≥2 agents and the goal to

achieve depth k≥1 of shared knowledge. So the orig-

inal problem corresponds to the instance Gossip(1,6).
A solution to Gossip(k,n) is a sequence of calls be-

tween agents resulting in shared knowledge of depth k

of all secrets by all agents. We are going to introduce

an algorithm solving Gossip(k,n) in (k+1)(n−2) calls,

for n ≥ 4. Based on results in [18], we moreover estab-

lish that our algorithm is optimal: at least (k+1)(n−2)
calls are necessary to achieve the goal of Gossip(k,n).
Our proofs are formally rigorous: they are couched in

a dynamic epistemic logic that is called DEL-PAO (Dy-

namic Epistemic Logic of Propositional Assignment

and Observation), with epistemic operators Ki, for i

an agent, and dynamic operators [Callij], for i and j

two different agents. Building on previous work on

observability-based knowledge [31,36,35], we had in-

troduced and studied that logic in [26].

The paper is organized as follows. Section 2 defines

some notation. Section 3 presents our algorithm for

n ≥ 4 agents. Section 4 recalls syntax and semantics of

the dynamic epistemic logic DEL-PAO. In Section 5 we

show how to capture the algorithm as a DEL-PAO pro-

gram. In Section 6 we prove in DEL-PAO that the algo-

rithm is correct and in Section 7 that our algorithm is

optimal. In Section 8 we study the special cases of two

and three agents and in Section 9 we briefly discuss a

version of the problem with goals involving ignorance.

Section 10 concludes.

2. Notation

In this section we introduce some notation in order

to be able to formally talk about the agents’ knowledge

and about gossip protocols. In Section 4 we are going

introduce a full-fledged logical language into which

that notation can be embedded.

Let Agt = {1, . . . ,n} be the set of all agents. The se-

cret of agent i is denoted by si. The set of propositional

variables is Prop = {si : i ∈ Agt}. To simplify things

we suppose that si is true. A more general framework

where secrets can be true or false can be found in [5,6].

2.1. Notation for knowledge

We write Kiϕ to express that agent i knows that the

formula ϕ is true.

The initial situation before the agents start gossiping

is expressed by

∧

i∈Agt

(

si ∧Kisi ∧
∧

j∈Agt, j 6=i

(

¬K jsi ∧¬K j¬si

))

.

The goal of shared knowledge of level 1 is expressed

by the formula

∧

i∈Agt

Ki

( ∧

j∈Agt

s j

)

which says that every agent knows every secret. Let-

ting sJ abbreviate the conjunction
∧

i∈J si of secrets of

agents in J, we can write this more compactly as

∧

i∈Agt

KisAgt.



2.2. Notation for shared knowledge

Let EKJϕ denote the conjunction
∧

i∈J Kiϕ, for non-

empty sets of agents J ⊆ Agt. It describes situations

where ϕ is shared knowledge in J: each agent in J

knows that ϕ.

We can now describe several situations of shared

knowledge in a more convenient way:

– EKAgtsAgt expresses that all secrets are shared

knowledge;

– EKAgtEKAgtsAgt expresses that every agent knows

that all secrets are shared knowledge;

– EKAgt . . .EKAgt
︸ ︷︷ ︸

k times

sAgt expresses that all secrets are

shared knowledge up to depth k ≥ 1.

Let us also introduce an abbreviation for shared

knowledge of level m, for m ≥ 0: we inductively define

EK0
Jϕ = ϕ and EKm+1

J ϕ = EKJEKm
J ϕ. So the goal of

shared knowledge of level k of all agents can be written

EKk
AgtsAgt.

We drop set parentheses and write si1,...,im instead of

s{i1,...,im} and EKi1,...,im instead of EK{i1,...,im}.

2.3. Notation for calls and gossip protocols

We express calls and their consequences by means

of modal operators of action as familiar from dynamic

logic. The action Callij expresses that i and j talk to

each other. (It does not matter who initiates the call.)

The formula [Callij]ϕ expresses that ϕ is true after i and

j talked to each other. So the formula

[Callij]EK{i, j}s{i, j}

expresses that the result of Callij is that the secrets

of i and j become shared knowledge of the group

{i, j}. With the above convention this can be written

[Callij]EKi, jsi, j. More generally, a call between i and j

achieves common knowledge between i and j: we have

[Callij]EKm
i, jsi, j

for arbitrary m.

In the sequence of calls

Call
i1
j1

; . . . ;Call
im
jm
,

i1 calls j1 first, then i2 calls j2, . . . , and finally im calls

jm. The length of the sequence is m.

An instance of the generalized gossip problem, writ-

ten Gossip(k,n), is given by a number of agents n and

the level k of shared knowledge to be attained. A solu-

tion of Gossip(k,n) is a sequence of calls π such that

∧

i∈Agt

(

si ∧Kisi

)

→ [π]EKk
AgtsAgt

holds.

The above statements should be intuitively clear,

even we postpone the semantics of our language to

Section 4. Readers familiar with dynamic epistemic

logics may take the epistemic operators Ki to be oper-

ators of the standard epistemic logic S5 and may take

the actions Callij as private announcements made to

i and j [11,23,22,10,37]. The semantics we adopt is

going to be conceptually and mathematically simpler

than those of dynamic epistemic logics.

3. An algorithm achieving shared knowledge of

depth k

Let Gossip(k,n) be an instance of the generalized

gossip problem, for some k≥1 and n≥4. The following

algorithm generates a sequence of (k+1)(n−2) calls.

Throughout the algorithm, two of the agents, called

left and right, will play a central, fixed role: each of

the other agents only communicates with either left or

right. The n−2 remaining agents will be numbered 0,

1, . . ., n−3.

The algorithm is made up of turns. During each turn,

left and right collect the secrets of other agents. To-

gether with the last agent they talked to in that turn,

they thereby become what we call ‘semi-experts’. A

further call between complementary semi-experts turns

them into full experts. The last agents to which left and

right talked also play a crucial role. These two further

semi-experts alternate: they are permuted at each turn

in a way that will guarantee that the goal is reached.



Algorithm 1. For t = 0..k do

agent left calls agent 0−t (mod n−2);
agent left calls agent 1−t (mod n−2);
...

agent left calls agent n−3;

agent left calls agent 0;

agent left calls agent 1;
...

agent left calls agent n−4−t (mod n−2);
agent right calls agent n−3−t (mod n−2).

In words:

– At the first turn (turn 0), agent left calls agent 0,

then 1, . . . , then n−4, and finally agent right calls

agent n−3;

– At the second turn (turn 1), agent left calls agent

n−3, then 0, then 4, . . . , then n−5, and finally

agent right calls agent n−4;

– ... and so on.

So each turn involves n−2 calls, and overall the algo-

rithm produces a sequence of (k+1)(n−2) calls.

In the rest of the paper, we assume that every agent

index is taken modulo n−2 and omit “(mod n−2)”.

Figure 1 gives a visual representation of Algo-

rithm 1: agents 0, 1, . . ., n−3 are put on a wheel which,

between each turn, rotates clockwise. Agent left calls

everybody in ascending order—his sequence of calls is

depicted by an orange arrow—, except the agent at the

rightmost position of the wheel, then right (sequence

of calls in blue) calls this agent.

Theorem 1. The minimal number of calls needed to

solve the instance Gossip(k,n) of the generalized gos-

sip problem, for k ≥ 1 and n ≥ 4, is (k+1)(n−2).

The main part of the paper is devoted to the proof of

the above theorem. In sections 6 and 7 we prove that

the sequence of calls produced by the algorithm is in-

deed a solution and that the goal cannot be achieved in

less calls. Our proofs will be done in the formal lan-

guage of the logic DEL-PAO; in the next two sections

we introduce the logic and show how to model calls

within its language.

4. Dynamic Epistemic Logic of Propositional

Assignment and Observation DEL-PAO

Dynamic Epistemic Logic of Propositional Assign-

ment and Observation DEL-PAO is grounded on the no-

tion of observability of propositional variables. It re-

fines a logic that was proposed and studied in a series

of papers by van der Hoek, Wooldridge and colleagues

under the names Epistemic Coalition Logic of Proposi-

tional Control with Partial Observability ECL-PC(PO)

[36] and Logic of Revelation and Concealment LRC

[35]. These logics stem from languages used in model

checkers such as MOCHA in order to compactly de-

scribe a distributed system [2,31,33]. The idea is that

each agent has a set of propositional variables she can

observe: no different truth value is possible for her. The

other way round, any combination of truth values of the

non-observable variables is possible for her. We recall

this logic now; more details are in [26]. Further devel-

opments of our work are reported in [14,16,27]. It can

also be related to approaches which aim at grounding

knowledge on a spatial notion of visibility [9,21].

4.1. Observability atoms

The atomic formulas of DEL-PAO are called visibil-

ity atoms and take the form Si1 Si2 ...Sim p, where p is a

propositional variable from a countable non-empty set

Prop and i1, i2, ..., im are agents from a finite non-empty

set Agt. When m=0 then we have nothing but a propo-

sitional variable. For m=1, the atom Si1 p reads “agent

i1 sees the value of the variable p” or “agent i1 sees

whether p is true or not”, and for m=2, the second-

order observation Si1 Si2 p reads “agent i1 sees whether

i2 sees the value of p”; and so on. Beyond individual

observability the language of DEL-PAO also accounts

for joint observability: the atom JSp reads “all agents

jointly see the value of p”. Metaphorically, joint atten-

tion about p is the case when there is eye contact be-

tween the agents when observing p. Joint visibility im-

plies individual visibility: when JS p is true then Si p

should also be true.

One can define first- and higher-order knowledge

about literals by means of conjunctions of visibility

atoms. Indeed, for a propositional variable p we have

that agent i knows that p is true when p is true and i

sees p. Similarly i knows that p is false when p is false

and i sees p. The list below collects some equivalences

that will be valid:

Ki p ↔ p∧Si p

Ki¬p ↔¬p∧Si p

¬Ki p∧¬Ki¬p ↔¬Si p

K jKi p ↔ p∧Si p∧S j p∧S j Si p

K jKi¬p ↔¬p∧Si p∧S j p∧S j Si p
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Fig. 1. Graphical representation of the first three turns of Algorithm 1.

Formally, the set of observability operators is

OBS = {Si : i ∈ Agt}∪{JS},

where Si stands for individual visibility of agent i and

JS stands for joint visibility of all agents. The set of

all sequences of visibility operators is noted OBS∗ and

the set of all non-empty sequences is noted OBS+. We

use σ ,σ ′, . . . for elements of OBS∗. Finally, the set of

atomic formulas is

ATM = {σ p : σ ∈ OBS∗, p ∈ Prop}.

The elements of ATM are also called visibility atoms,

or atoms for short. For example, JSS2 q reads “all

agents jointly see whether agent 2 sees the value of

q”; in other words, there is joint attention in the group

of all agents concerning 2’s observation of q. The ele-

ments of ATM are noted α,α′, . . . ,β,β′, . . ..

4.2. Complex formulas

Beyond atomic formulas the language of DEL-PAO

has epistemic operators as well as actions, alias pro-

grams, assigning truth values to visibility atoms. It is

defined by the following grammar:

ϕ ::= α | ¬ϕ | ϕ∧ϕ | Kiϕ | CKϕ | [π]ϕ

π ::=+α | −α | π;π | π⊔π | ϕ?

where α ranges over ATM and i over Agt.

Our atomic programs are assignments of truth val-

ues to atoms from ATM: +α makes α true and −α
makes α false. Complex programs are constructed

with dynamic logic operators: π;π′ is sequential com-

position (“first execute π, then π′”), π ⊔ π′ is non-

deterministic choice (“execute either π or π′, choos-

ing non-deterministically”), and ϕ? is test (“if ϕ is true

then continue the execution, else stop”). Just as in dy-

namic logic, the formula [π]ϕ reads “after every execu-

tion of π, ϕ is true”. The formula Kiϕ reads “i knows

that ϕ is true on the basis of what she observes”, and

CKϕ reads “all agents jointly know that ϕ is true on the

basis of what they jointly observe”. These epistemic

operators account for forms of individual and common

knowledge that are respectively obtained via individual

observation and joint observation of facts. They there-

fore differ conceptually from the classical operators of

individual and common knowledge as studied in the

area of epistemic logic [20].

The other boolean operators ⊤, ⊥, ∨, → and ↔ are

defined as abbreviations, and 〈π〉ϕ (“there exists an ex-

ecution of π after which ϕ is true”) abbreviates ¬[π]¬ϕ.

Moreover, skip abbreviates ⊤? and fail abbreviates ⊥?.

Finally, if ϕ then π abbreviates (ϕ?;π)⊔¬ϕ?.

The set of atomic formulas of ATM occurring in

the formula ϕ is noted ATM(ϕ); the set ATM(π) is

defined similarly. For example, if π = q?;+S2 p and

ϕ = [π]S1 JS p → q, then ATM(π) = {q,S2 p} and

ATM(ϕ) = {q,S2 p,S1 JS p}. (So JS p /∈ ATM(ϕ).)

4.3. Introspective valuations

The models of DEL-PAO are simply sets of visibil-

ity atoms. In order to guarantee positive and negative

introspection we have to ensure that agents are always

aware of what they see: for every agent i and propo-

sitional variable p, Si Si p has to be in every valuation.

More generally, a valuation V is introspective when it

contains every visibility atom having two consecutive

Si, such as S j Si Si Sk p. So in an introspective valuation

an agent is aware of what she sees, every agent sees

this, and every agent sees that every agent sees this, etc.



Formally, a valuation V ∈ 2ATM is introspective if

and only if the following hold, for every α ∈ ATM and

i ∈ Agt:

Si Si α ∈V (C1)

JSJSα ∈V (C2)

JSSi Si α ∈V (C3)

if JSα ∈V , then Si α ∈V (C4)

if JSα ∈V , then JSSi α ∈V (C5)

The set of all introspective valuations is noted INTR.

(C1) is about introspection of individual sight: an

agent always sees whether she sees the value of an

atom. (C2) requires the same for joint sight; indeed,

if JSα is true then JSJSα should be true by intro-

spection, and if JSα is false then all agents jointly see

that at least one of them has broken eye contact. (C3)

forces the first to be common knowledge. (C4) guar-

antees that joint visibility implies individual visibility.

Constraints (C4) and (C5) guarantee that JSα ∈V im-

plies σα ∈ V for σ ∈ OBS+. This motivates the fol-

lowing relation of introspective consequence between

atoms: α ❀ β iff either α = β, or α = JSα′ and β =
σα′ for some σ .

Proposition 1 ([26]). A valuation V ∈ 2ATM is in-

trospective if and only if, for every α,β ∈ ATM and

i ∈ Agt:

σSi Si α ∈V for every σ ∈ OBS∗ (1)

σJSα ∈V for every σ ∈ OBS+ (2)

if α ∈V and α ❀ β then β ∈V (3)

An atom α ∈ ATM is valid in INTR if and only if α
belongs to every valuation in INTR. By Proposition 1,

α is valid in INTR if and only if α is of the form either

σSi Si α with σ ∈ OBS∗, or σJSα with σ ∈ OBS+.

4.3.1. Indistinguishability relations between

valuations

Two valuations are related by the indistinguishabil-

ity relation for agent i, noted ∼i, if every α that i sees

has the same value. Similarly, we have a relation ∼Agt

for joint indistinguishability. They are defined as fol-

lows:

V∼iV
′ iff Si α ∈V implies V (α) =V ′(α)

V∼AgtV
′ iff JSα ∈V implies V (α) =V ′(α)

where we write V (α) = V ′(α) when α has the same

truth value in V and V ′, i.e., when either α ∈ V and

α ∈V ′, or α /∈V and α /∈V ′.

It is proven in [26] that ∼i and ∼Agt are equivalence

relations on the set of introspective valuations INTR

and that no valuation of INTR is ∼i- or ∼Agt-related to

valuations outside of INTR.

4.3.2. Truth conditions and validity

Given an introspective valuation V , update opera-

tions add or remove atoms from V . This requires some

care: the resulting valuation should also be introspec-

tive. For example, removing Si Si p should be impossi-

ble. Another example is when V does not contain Si p:

then V ∪{JS p} would violate (C4). So when adding

an atom to V one also has to add all its positive conse-

quences. Symmetrically, when removing an atom one

also has to remove its negative consequences. Let us

define the following:

Eff+(α) = {β ∈ ATM : α ❀ β}

Eff−(α) = {β ∈ ATM : β ❀ α}

Clearly, when V is introspective then both V ∪Eff+(α)
and V \Eff−(α) are so, too (unless α is valid in INTR).

Now the truth conditions are as follows:

V |= α iff α ∈V

V |= ¬ϕ iff V 6|= ϕ

V |= ϕ∧ψ iff V |= ϕ and V |= ψ

V |= Kiϕ iff V ′ |= ϕ for all V ′ such that V ∼i V ′

V |= CKϕ iff V ′ |= ϕ for all V ′ such that V ∼Agt V ′

V |= [π]ϕ iff V ′ |= ϕ for all V ′ such that V RπV ′

where Rπ is a binary relation on valuations that is de-

fined (by mutual recursion with the definition of |=)

by:

V R+αV ′ iff V ′ =V ∪Eff+(α)

V R−αV ′ iff V ′ =V \Eff−(α) and

α is not valid in INTR

V Rπ1;π2
V ′ iff there is U such that V Rπ1

U and URπ2
V ′

V Rπ1⊔π2
V ′ iff V Rπ1

V ′ or V Rπ2
V ′

V Rϕ?V
′ iff V =V ′ and V |= ϕ

The relation Rπ is defined just as in PDL for

the program operators ;, ⊔ and ?. The interpreta-

tion of assignments is designed in a way such that

we stay in INTR: the program +α adds all the pos-

itive consequences of α; the program −α fails if α
is valid in INTR and otherwise removes all the nega-

tive consequences of α. For example, we never have

V R−S1 S1 pV ′, i.e., the program −S1 S1 p always fails.



In contrast, the program −S1 S2 p always succeeds,

and we have V R−S1 S2 p (V \ {S1 S2 p,JSS2 p,JS p})
because the only atoms—beyond S1 S2 p itself—whose

consequence is S1 S2 p are JSS2 p and JS p. Therefore

V 6|= [−S1 S2 p]JS p for every V .

Similarly to the relations ∼i and ∼Agt, it is proven

in [26] that each Rπ only relates valuations in INTR to

valuations in INTR. Therefore there is no risk to leave

the set of introspective valuations when interpreting a

modal operator.

When V |= ϕ we say that V is a model of ϕ. The set

of (not necessarily introspective) models of ϕ is noted

‖ϕ‖. A formula ϕ is satisfiable in INTR if ϕ has an in-

trospective model, i.e., if ‖ϕ‖∩ INTR 6= /0; it is valid in

INTR if INTR ⊆ ‖ϕ‖. In this case, we also say that ϕ

is a validity of DEL-PAO. A formula ϕ is plainly sat-

isfiable if it has a model, i.e., if ‖ϕ‖ 6= /0; it is plainly

valid if ϕ is true in all models, i.e., if ‖ϕ‖= 2ATM . For

example, JS p∧¬Si p is plainly satisfiable but not sat-

isfiable in INTR. On the other hand, ¬[−S1 S2 p]JS p is

valid in INTR (and even plainly valid).

4.4. Relevant atoms

For atoms, the connection between visibility and

knowledge is clear: the equivalences

Kiα ↔ Si α∧α

Ki¬α ↔ Si α∧¬α

are plainly valid. This motivates the notion of rele-

vant atoms of a formula ϕ and of a program π, noted

RATM(ϕ) and RATM(π), that is defined recursively as

follows:

RATM(α) = {α}

RATM(¬ϕ) = RATM(ϕ)

RATM(ϕ∧ϕ′) = RATM(ϕ)∪RATM(ϕ′)

RATM(Kiϕ) = RATM(ϕ)∪{Si α : α ∈ RATM(ϕ)}

RATM(CKϕ) = RATM(ϕ)∪{JSα : α ∈ RATM(ϕ)}

RATM([π]ϕ) = RATM(π)∪RATM(ϕ)

RATM(+α) = {α}

RATM(−α) = {α}

RATM(π;π′) = RATM(π)∪RATM(π′)

RATM(π⊔π′) = RATM(π)∪RATM(π′)

RATM(ϕ?) = RATM(ϕ)

For example,

RATM(q∧CKKi p) = {q, p,Si p,JS p,JSSi p}

This illustrates that RATM(ϕ) includes ATM(ϕ): we

have ATM(q∧CKKi p) = {q, p}.

In the gossip problem, we will mainly be interested

in (conjunctions of) formulas of the form Ki1 . . .Kimα.

Here are two useful properties of such formulas.

Lemma 1. The equivalence

Ki1 . . .Kimα ↔
( ∧

β∈RATM(Ki1
...Kim α)

β
)

is plainly valid, for m ≥ 0.

Proof. We use induction on m. For m = 0 we have

RATM(α) = α and the equivalence is obvious. For

m ≥ 1, suppose

Ki1 . . .Kimα ↔
( ∧

β∈RATM(Ki1
...Kim α)

β
)

is plainly valid. Take V ∈ 2ATM . Then:

V |= KiKi1 . . .Kimα

iff V |= Ki

( ∧

β∈RATM(Ki1
...Kim α)

β
)

iff V |=
( ∧

β∈RATM(Ki1
...Kim α)

Kiβ
)

iff V |=
( ∧

β∈RATM(Ki1
...Kim α)

(β∧Si β)
)

iff V |=
( ∧

β∈RATM(Ki1
...Kim α)

β
)

∧
( ∧

β∈RATM(Ki1
...Kim α)

Si β
)

iff V |=
( ∧

β∈RATM(Ki1
...Kim α)

β
)

∧
( ∧

β∈{Si γ:γ∈RATM(Ki1
...Kim α)}

β
)

iff V |=
( ∧

β∈RATM(Ki1
...Kim α)∪

{Si γ:γ∈RATM(Ki1
...Kim α)}

β
)

iff V |=
( ∧

β∈RATM(KiKi1
...Kim α)

β
)

,

hence the result.

We write 〈r1, . . . ,rp〉 ⊑ 〈1, . . . ,m〉 when 〈r1, . . . ,rp〉
is a subsequence of {1, . . . ,m}. For example, we have

〈1,3,4〉 ⊑ 〈1,2,3,4,5〉 and 〈〉 ⊑ 〈1,2,3,4,5〉 but not

〈1,4,3〉 ⊑ 〈1,2,3,4,5〉.



Lemma 2. We have, for m ≥ 0:

RATM(Ki1 . . .Kimα) =

{Sir1
. . .Sirp

α : 〈r1, . . . ,rp〉 ⊑ 〈1, . . . ,m〉}

Proof. We use induction on m. The case m = 0 is obvi-

ous since RATM(α) = {α} and the only subsequence

of 〈〉 is 〈〉. For m ≥ 1, suppose

RATM(Ki1 . . .Kimα) =

{Sir1
. . .Sirp

α : 〈r1, . . . ,rp〉 ⊑ 〈1, . . . ,m〉}.

Then:

RATM(KℓKi1 . . .Kimα)

= RATM(Ki1 . . .Kimα) ∪

{Sℓ α′ : α′ ∈ RATM(Ki1 . . .Kimα)}

= {Sir1
. . .Sirp

α : 〈r1, . . . ,rp〉 ⊑ 〈1, . . . ,m〉} ∪

{Sℓ α′ : α′ ∈ {Sir1
. . .Sirp

α :

〈r1, . . . ,rp〉 ⊑ 〈1, . . . ,m〉}}

= {Sir1
. . .Sirp

α : 〈r1, . . . ,rp〉 ⊑ 〈1, . . . ,m〉} ∪

{Sℓ Sir1
. . .Sirp

α : 〈r1, . . . ,rp〉 ⊑ 〈1, . . . ,m〉}

= {Sir1
. . .Sirp

α : 〈r1, . . . ,rp〉 ⊑ 〈ℓ,1, . . . ,m〉},

hence the result.

Lemma 1 tells us that relevant atoms provide a link

between visibility atoms—that are modified by the

calls—and epistemic operators. Lemmas 1 and 2 will

be useful in the next section when we will study prop-

erties of gossip calls.

5. Expressing calls in the language of DEL-PAO

Our logic provides the resources we need to model

calls between agents and to reason about the evolution

of their knowledge. Before proving that our algorithm

is correct we show how to express calls and we estab-

lish their properties.

In the standard version of the gossip problem, agents

only communicate their factual knowledge. As we

have seen, they also have to tell what they know about

others in order to achieve higher-order knowledge: for

shared knowledge of level k they have to exchange all

their knowledge up to depth k−1.

Let k be the level of shared knowledge to be attained.

Let i and j be two agents. For a given integer m, we

note {Si,S j}
≤m the set all non-empty sequences of vis-

ibility operators Si and S j of length at most m. For ex-

ample:

{Si,S j}
≤2 = {Si,S j,Si Si,Si S j,S j Si,S j S j}.

Then Callij is the sequential composition of programs

of the form:

if KiKi1 · · ·Kims∨K jKi1 · · ·Kims

then +σ1Si1 · · ·Sim s; . . . ;+σℓSi1 · · ·Sim s

for secret s in Prop, integer m≤ k−1, agents i1, . . . , im ∈
Agt and sequences {Si,S j}

≤k−m = {σ1, . . . ,σℓ}. For

example, for k = 3 the following is an element of the

sequence:

if KiKℓs∨K jKℓs

then +Si Sℓ s;+S j Sℓ s;+Si Si Sℓ s;+Si S j Sℓ s;

+S j Si Sℓ s;+S j S j Sℓ s

That piece of program tests whether Kℓs is known by i

or j and if so makes Sℓ s visible for both i and j and i’s

observation of Sℓ s visible for j, and vice versa. (Ob-

serve that the additions +Si Si Sk s and +S j S j Sk s are

trivial because they are introspectively valid.)

Some properties of the program Callij and its inter-

action with the shared knowledge operator via the rel-

evant atoms will be useful in our proofs.

First of all, the dynamic operators [Callij] and the

shared knowledge operators EKJ are normal modal op-

erators. So in particular

[Callij]ϕ∧ [Callij]ψ ↔ [Callij](ϕ∧ψ)

and

(EKJϕ∧EKJψ)↔ EKJ(ϕ∧ψ)

are plainly valid. Moreover, we can put coalitions to-

gether: the schema

(EKJ1
ϕ∧EKJ2

ϕ)↔ EKJ1∪J2
ϕ

is plainly valid for every J1,J2 ⊆ Agt. (To see this re-

duce EK according to its definition.) Finally, calls pre-

serve positive knowledge and produce shared knowl-

edge, which is a property that we state formally:

Proposition 2. Let s ∈ {si : i ∈ Agt} and m ≥ 0. Let

ϕ be of the form either Ki1 . . .Kims or EKJ1
. . .EKJms.

Then the formulas:



ϕ → [Callij]ϕ (Prsv)

Kiϕ → [Callij]EKk−m
i, j ϕ (Incr)

are plainly valid.

Proof. We prove each implication thanks to properties

of DEL-PAO.

The proof of (Prsv) is straightforward: it is plainly

valid because ϕ does not contain negations and calls

only make atoms true.

The proof of (Incr) is a bit more involved. We only

prove the case where ϕ = Ki1 . . .Kims; the case ϕ =
EKJ1

. . .EKJms is similar since EKJ is a conjunction of

Ki. We have seen in Lemma 1 that

ϕ ↔
( ∧

β∈RATM(ϕ)

β
)

is plainly valid. Moreover, we have:

RATM(EKm
i, jϕ) = {σα : α ∈ RATM(ϕ),

σ ∈ {Si,S j}
≤m}

by the definition of RATM(.). Therefore we want to

prove that:

Kiϕ → [Callij]
( ∧

β∈{σα:α∈RATM(ϕ),σ∈{Si,S j}≤k−m}

β
)

.

We have:

KiKi1 . . .Kims → KiKir1
. . .Kirp

s,

for every 〈r1, . . . ,rp〉 ⊑ 〈1, . . . ,m〉, by axiom T of stan-

dard epistemic logic. Since KiKir1
. . .Kirp

s obviously

implies KiKir1
. . .Kirp

s∨K jKir1
. . .Kirp

s, for every sub-

set 〈r1, . . . ,rp〉 ⊑ 〈1, . . . ,m〉, we have:

KiKi1 . . .Kims → [Callij]
( ∧

β∈{σSir1
...Sirp

s:σ∈{Si,S j}≤k−p}

β
)

,

by the definition of the programs composing Callij.

This means that:

KiKi1 . . .Kims → [Callij]
( ∧

β∈{σSir1
...Sirp

s:σ∈{Si,S j}≤k−m}

β
)

,

because p ≤ m. Since this is true for any 〈r1, . . . ,rp〉 ⊑
〈1, . . . ,m〉, we can apply Lemma 2 and obtain:

KiKi1 . . .Kims → [Callij]
( ∧

β∈{σα:α∈RATM(Ki1
...Kim s),

σ∈{Si,S j}
≤k−m}

β
)

,

which is our result.

Formally, the program corresponding to the turn t of

Algorithm 1 is therefore:

turnt = Call
left
n−2−t ; . . . ;Call

left
n−3;Call

left
0 ; . . . ;Call

left
n−4−t ;

Call
right
n−3−t .

6. Correctness of the algorithm

We now prove that the algorithm returns a solution.

Let us write the set of agents as

Agt = {left,right,0, . . . ,n−3}.

Remember that Prop= {si : i∈Agt} is the set of propo-

sitional variables. The initial state is modelled by the

valuation

V0 = {si : i ∈ Agt} ∪ {Si si : i ∈ Agt} ∪

{α : α is valid in INTR}.

So all secrets are true, each agent knows her own se-

cret, and moreover the introspectively valid atoms are

true (so V0 is introspective). We have:

V0 |=
∧

i∈Agt

(

Kisi ∧
∧

j∈Agt, j 6=i

¬K jsi

)

.

An agent is an expert for depth t if her personal goal

for depth t is reached. Precisely, agent i is an expert for

depth t ≥ 1 if and only if we have:

KiEKt−1
Agt sAgt.

The dynamic modalities of DEL-PAO nicely allow to

express that a further call would turn an agent i into an

expert, i.e., that i is a semi-expert. Indeed, two agents i

and j are complementary for depth t (‘semi-experts’),

noted complt(i, j), if a call between i and j would make

them both experts for depth t. More formally:

complt(i, j)
def
= [Callij]EKi, jEKt−1

Agt sAgt.

Furthermore, two pairs of agents (i1, i2) and ( j1, j2) are

complementary for depth t if and only if we have:



complt(i1, j1)∧ complt(i1, j2) ∧

complt(i2, j1)∧ complt(i2, j2).

We will prove that at each turn, two pairs of agents

are complementary: the first pair is agent left along

with the last agent she called at this turn, and the sec-

ond is agent right along with the last (and only agent)

she called at this turn.

The first turn is a special case where semi-experts of

depth 1 are produced.

Lemma 3. We have:

V0 |= [turn0]
(
EKleft,n−4sleft,0,...,n−4 ∧

EKright,n−3sright,n−3

)
.

Proof. Let us simply write “i j” for the call between i

and j in proofs. The first turn (turn 0) of Algorithm 1

produces the following sequence of calls:

left0; left1; . . . ; left(n−4);right(n−3).

By formula (Incr) of Proposition 2 we have:

V0 |= [Call
left
0 ]EKleft,0sleft,0

and therefore:

V0 |= [Call
left
0 ]Kleftsleft,0.

We do the same for the next call:

V0 |= [Call
left
0 ;Call

left
1 ]EKleft,1sleft,0,1

⇒ V0 |= [Call
left
0 ;Call

left
1 ]Kleftsleft,0,1.

And so on until:

V0 |= [Call
left
0 ;Call

left
1 ; . . . ;Call

left
n−4]

EKleft,n−4sleft,0,1,...,n−4.

In the same vein we also have:

V0 |= [Call
right
n−3 ]EKright,n−3sright,n−3.

By (Prsv) of Proposition 2 we then obtain:

V0 |= [Call
left
0 ; . . . ;Call

left
n−4;Call

right
n−3 ]

(
EKleft,n−4sleft,0,...,n−4 ∧

EKright,n−3sright,n−3

)

which is the same as:

V0 |= [turn0]
(
EKleft,n−4sleft,0,...,n−4 ∧

EKright,n−3sright,n−3

)
,

hence the result.

We now characterize the turns after turn0.

Lemma 4. For t ≥ 1, we have:

V0 |= [turn0; . . . ; turnt ]
(
EKleft,n−4−tEKleft,0−t,...,n−4−tEKt−1

Agt sAgt ∧

EKright,n−3−tEKright,n−3−tEKt−1
Agt sAgt

)
.

Proof. We use induction on t. Both cases resemble the

proof of Lemma 3.

Base case: t = 1. Turn 1 of Algorithm 1 produces the

following sequence:

left(n−3); left0; left1; . . . ; left(n−5);right(n−4).

By Lemma 3 and (Incr) of Proposition 2 we have:

V0 |= [turn0][Call
left
n−3]EKleft,n−3EKleft,n−3sAgt

⇒ V0 |= [turn0][Call
left
n−3]KleftEKleft,n−3sAgt.

Then again by (Incr):

V0 |= [turn0][Call
left
n−3;Call

left
0 ]EKleft,0EKleft,n−3,0sAgt

⇒ V0 |= [turn0][Call
left
n−3;Call

left
0 ]KleftEKleft,n−3,0sAgt,

and for the next call:

V0 |= [turn0][Call
left
n−3;Call

left
0 ;Call

left
1 ]

EKleft,1EKleft,n−3,0,1sAgt

⇒V0 |= [turn0][Call
left
n−3;Call

left
0 ;Call

left
1 ]

KleftEKleft,n−3,0,1sAgt,

and so on until:

V0 |= [turn0][Call
left
n−3;Call

left
0 ;Call

left
1 ; . . . ;Call

left
n−5]

EKleft,n−5EKleft,n−3,0,1,...,n−5sAgt.

Similarly we have:

V0 |= [turn0][Call
right
n−4 ]EKright,n−4EKright,n−4sAgt.



Finally we obtain the result by (Prsv) of Proposi-

tion 2:

V0 |= [turn0][Call
left
n−3;Call

left
0 ; . . . ;Call

left
n−5;Call

right
n−4 ]

(
EKleft,n−5EKleft,n−3,0,1,...,n−5sAgt ∧

EKright,n−4EKright,n−4sAgt

)
,

that is:

V0 |= [turn0; turn1]
(
EKleft,n−5EKleft,n−3,0,1,...,n−5sAgt ∧

EKright,n−4EKright,n−4sAgt

)
.

Inductive case. The reasoning is similar, but general-

ized to turn t+1. Suppose the formula is true for turn t.

The turn t +1 is:

left(n−3−t); left(0−t); . . . ; left(n−5−t);right(n−4−t).

By our induction hypothesis and (Incr) of Proposi-

tion 2 we have:

V0 |= [turn0; . . . ; turnt ][Call
left
n−3−t ]

EKleft,n−3−tEKleft,n−3−tEKAgtEKt−1
Agt sAgt,

that is:

V0 |= [turn0; . . . ; turnt ][Call
left
n−3−t ]

EKleft,n−3−tEKleft,n−3−tEKt
AgtsAgt,

which implies:

V0 |= [turn0; . . . ; turnt ][Call
left
n−3−t ]

KleftEKleft,n−3−tEKt
AgtsAgt.

Then by (Prsv) of Proposition 2:

V0 |= [turn0; . . . ; turnt ][Call
left
n−3−t ;Call

left
0−t ]

EKleft,0−tEKleft,n−3−t,0−tEKt
AgtsAgt

⇒V0 |= [turn0; . . . ; turnt ][Call
left
n−3−t ;Call

left
0−t ]

KleftEKleft,n−3−t,0−tEKt
AgtsAgt,

. . . and so on until:

V0 |= [turn0; . . . ; turnt ][Call
left
n−3−t ;Call

left
0−t ; . . . ;

Call
left
n−5−t ]

EKleft,n−5−tEKleft,n−3−t,0−t,...,n−5−tEKt
AgtsAgt.

Moreover, by (Incr):

V0 |= [turn0; . . . ; turnt ][Call
right
n−4−t ]

EKright,n−4−tEKright,n−4−tEKAgtEKt−1
Agt sAgt,

that is:

V0 |= [turn0; . . . ; turnt ][Call
right
n−4−t ]

EKright,n−4−tEKright,n−4−tEKt
AgtsAgt.

We end as usual with (Prsv):

V0 |= [turn0; . . . ; turnt ][Call
left
n−3−t ; . . . ;

Call
left
n−5−t ;Call

right
n−4−t ]

(
EKleft,n−5−tEKleft,n−3−t,...,n−5−tEKt

AgtsAgt ∧

EKright,n−4−tEKright,n−4−tEKt
AgtsAgt

)

⇔V0 |= [turn0; . . . ; turnt ; turnt+1]
(
EKleft,n−5−tEKleft,n−3−t,...,n−5−tEKt

AgtsAgt ∧

EKright,n−4−tEKright,n−4−tEKt
AgtsAgt

)
,

which is our result for t+1.

Lemma 5. After turn t−1 of Algorithm 1, the pairs

(left,n−3−t) and (right,0−t) are complementary for

depth t.

Proof. From Lemma 4 we can deduce:

V0 |= [turn0; . . . ; turnt−1]
(
KleftEKleft,1−t,...,n−3−tEKt−2

Agt sAgt ∧

KrightEKright,0−tEKt−2
Agt sAgt

)
.

Applying (Incr) of Proposition 2 we obtain:

V0 |= [turn0; . . . ; turnt−1][Call
left
right]

EKleft,rightEKAgtEKt−2
Agt sAgt,

that is:

V0 |= [turn0; . . . ; turnt−1][Call
left
right]

EKleft,rightEKt−1
Agt sAgt,

which is equivalent to:

V0 |= [turn0; . . . ; turnt−1]complt(left,right).

By the same reasoning for left and 0−t, right and

n−3−t, and finally n−3−t and 0−t, we obtain that

each of them are complementary, hence the result.



Lemma 6. The goal for depth t, EKt
AgtsAgt, is reached

after turn t of Algorithm 1.

Proof. Turn t of Algorithm 1 is:

left(0−t), left(1−t), . . . , left(n−4−t),right(n−3−t).

By Lemma 5, after turn t−1 and the first call left(0−t)
of turn t, agents left and 0−t become experts for depth

t. (Thus EKleft,0−tEKt−1
Agt sAgt.) Then after the n−4 calls

left(1−t), . . . , left(n−4−t) we get by (Incr) of Propo-

sition 2:

K1−tEKt−1
Agt sAgt ∧ . . .∧Kn−4−tEKt−1

Agt sAgt,

that is, 1−t, . . ., n−4−t are all experts for depth t.

Finally, after the last call right(n−3−t), and also by

Lemma 5, agents right and n−3−t become experts for

depth t. (Thus EKright,n−3−tEKt−1
Agt sAgt.) Hence after the

n−2 calls of turn t we have EKAgtEKt−1
Agt sAgt, which is

equivalent to EKt
AgtsAgt.

Proposition 3. The sequence resulting from Algo-

rithm 1 gives a solution to the generalized gossip prob-

lem for k≥1 and n≥4.

Proof. By Lemma 6, the goal for depth t is reached

after turn t of Algorithm 1. Thus the goal for depth k is

reached after turn k (k+1 turns), i.e., at the end of the

algorithm.

Proposition 3 implies that at most (k+1)(n−2) calls

are required to solve the instance Gossip(k,n) of the

generalized gossip problem.

7. Optimality of the algorithm

In this section, we prove that the sequence of calls

returned by our algorithm has an optimal length. Our

optimality result is derived from that of [18].

We first prove a property of the gossip problem that

may seem obvious but that we prefer to clarify.

Lemma 7. Suppose m agents know a fact ϕ not known

to the remaining agents. Then it takes at least n−m

calls for the remaining agents to learn ϕ.

Proof. It suffices to prove that a call Callij increases

the knowledge on a fact ϕ of at most one agent. We

distinguish four cases, depending on the knowledge of

i and j about ϕ.

– Neither i nor j know ϕ. Then Kiϕ∨K jϕ is false

and no agent knows ϕ after Callij.

– i knows ϕ but j does not know ϕ. Then Kiϕ∨
K jϕ is true and both agents know ϕ after Callij,

but only j learned it.

– i does not know ϕ but j knows ϕ. Then Kiϕ∨
K jϕ is true and both agents know ϕ after Callij,

but only i learned it.

– i and j know ϕ. Then Kiϕ∨K jϕ is true and both

agents know ϕ after Callij, but no one learned it.

Therefore n−m calls are necessary to spread a piece of

gossip to n−m agents.

Proposition 4. The minimal number of calls needed to

solve the instance Gossip(k,n) of the generalized gos-

sip problem, for k≥1 and n≥4, is at least (k+1)(n−2).

Proof. We use induction on k.

Base case: k=1. As we have seen, for k=1 the lower

bound 2(n−2) was established in the literature [8,32,

25].

Inductive case. Suppose that at least (k+1)(n−2)
calls are needed to achieve the goal for depth k. This

implies that after (k+1)(n−2)− 1 calls, at least one

agent, let us call her i, does not know a piece of infor-

mation of depth k−1:

V0 |= [Call
i1
j1

; . . . ;Call
i(k+1)(n−2)−1

j(k+1)(n−2)−1
]¬KiKℓ1

· · ·Kℓk−1
s.

Remark that i could also ignore facts of a lower depth;

in this case she would also ignore facts of depth k−1

by the truth axiom T. For example, suppose that i does

not know the secret of 1; then she cannot know that 2

knows the secret of 1, and that 1 knows that 2 knows

the secret of 1, and so on.

Then the (k+1)(n−2)-th call involves i (otherwise

her knowledge does not evolve) and another agent, say

j. It establishes not only KiKℓ1
· · ·Kℓk−1

s and thus the

goal for depth k:

V0 |= 〈Call
i1
j1

; . . . ;Call
i(k+1)(n−2)−1

j(k+1)(n−2)−1
〉〈Callij〉

EKk
AgtsAgt,

but also the fact that i and j both know this:

V0 |= 〈Call
i1
j1

; . . . ;Call
i(k+1)(n−2)−1

j(k+1)(n−2)−1
〉〈Callij〉

EKi, jEKk
AgtsAgt,

while no other agent does:



V0 |= [Call
i1
j1

; . . . ;Call
i(k+1)(n−2)−1

j(k+1)(n−2)−1
][Callij]

( ∧

ℓ∈Agt\{i, j}

¬KℓEKk
AgtsAgt

)

.

To establish the goal for depth k+1, i.e., to establish

EKAgtEKk
AgtsAgt, it is necessary to distribute EKk

AgtsAgt

from i and j to all other agents. By Lemma 7, we know

that this takes at least n−2 calls. Therefore, we need

(k+1)(n−2)+n−2=(k+2)(n−2) calls to achieve the

goal for depth k+1.

Propositions 3 and 4 together ensure Theorem 1, i.e.,

that the minimal number of calls needed to solve the in-

stance Gossip(k,n) of the generalized gossip problem,

for k ≥ 1 and n ≥ 4, is exactly (k+1)(n−2).

8. The case of two and three agents

Our algorithm only works when four or more agents

are involved; it cannot be applied when there are only

two and three agents.

The former case is easy: only one call is necessary

for two agents to reach knowledge on their secrets of

level k, whatever k is. (This is ensured by formula

(Incr) of Proposition 2.) Obviously, less calls are not

sufficient given the agents’ initial ignorance about the

other’s secret.

Consider the case of three agents, say 0, 1 and 2. We

give an algorithm that takes k+2 turns of one call each.

Algorithm 2. For t = 0..k do

agent 0 calls agent (t (mod 2))+1.

The algorithm consists in sequences of the form

Call01;Call02;Call01;Call02; . . ., k+2 times. Hence each

turn contains one call: turn0 = Call01, turn1 = Call02,

turn2 = Call01, and so on. We prove that the algorithm

is correct and optimal.

Theorem 2. The minimal number of calls to solve the

instance Gossip(k,3) of the generalized gossip prob-

lem, for k ≥ 1, is k+2.

Proposition 5. The sequence resulting from Algo-

rithm 2 gives a solution to the generalized gossip prob-

lem for k≥1 and n=3.

Proof. We use induction on k.

Base case: k=1. It is easy to check that the sequence

Call01;Call02;Call01 establishes the goal for depth 1.

Inductive case. Suppose k+2 turns of the algorithm

achieve the goal for depth k:

V0 |= [turn0; turn1; . . . ; turnk+2]EKk
AgtsAgt.

Because turnk+2 = Call0(k+2 (mod 2))+1, we also have:

V0 |= [turn0; turn1; . . . ; turnk+2]

EK0,(k+2 (mod 2))+1EKk
AgtsAgt,

which implies:

V0 |= [turn0; turn1; . . . ; turnk+2]

K0EKk
AgtsAgt,

and hence by (Incr) of Proposition 2:

V0 |= [turn0; turn1; . . . ; turnk+2][turnk+3]

EK0,(k+3 (mod 2))+1EKk
AgtsAgt.

since turnk+3 = Call0(k+3 (mod 2))+1. Therefore, be-

cause 0, (k+2 (mod 2)) + 1 and k+3 (mod 2)) + 1

are all different, we obtain by formula (Prsv) of Propo-

sition 2:

V0 |=[turn0; turn1; . . . ; turnk+2][turnk+3]

EKAgtEKk
AgtsAgt,

that is:

V0 |=[turn0; turn1; . . . ; turnk+2; turnk+3]

EKk+1
Agt sAgt,

which is our goal for depth k+1.

Proposition 6. The minimal number of calls needed to

solve the instance Gossip(k,3) of the generalized gos-

sip problem, for k≥1, is at least k+2.

Proof. This proof is similar to the proof of optimality

for n ≥ 4 (see Proposition 4).

Base case: k=1. It was proven—and it is easy to

check—that 3 calls are necessary, in the original prob-

lem, when three agents are involved [8,32,25].



Inductive case. Suppose that at least k+2 calls are

necessary to achieve the goal for depth k. Then after

k+1 calls, at least one agent i does not know a piece

of information of depth k−1. The k+2-th call, between

i and j, makes i know this piece of information, and i

and j be aware of this. At least one call is necessary

to inform the third agent that the goal for depth k was

reached, establishing the goal for depth k+1 in k+3

calls.

This establishes Theorem 2, i.e., the minimal num-

ber of calls needed to solve the instance Gossip(k,3)
of the generalized gossip problem is exactly k+2.

9. Gossiping with ignorance goals

In the gossip problem, we aim at full knowledge of

every agent. We could also consider scenarios where

we want that some agents do not learn some secrets.

Assuming agents are obliged to tell all the secrets they

know (say, for example, because they do not know

the goal), the ordering of calls might be influenced by

these ‘ignorance goals.’ This section discusses some

aspects of this variant which, to the best of our knowl-

edge, was not investigated before. Unlike the version

with the ‘full knowledge’ goal, we do not provide a re-

sult on the number of calls or a generic algorithm, but

rather protocols for some specific cases and general re-

marks.

Let us start with the original gossip problem where

the goal is to achieve shared knowledge of order k=1.

Suppose we do not want agent 1 to know the secret of

2, and full knowledge otherwise. Our goal is:

(
EKAgt\{1}sAgt

)
∧
(
K1sAgt\{2}∧¬K1s2

)
.

While this is obviously unsolvable for 2 agents, for

at least 3 agents a successful protocol is one where 1

calls every other agent but 2, and then all agents but 1

call each other until their knowledge is shared. Slightly

more generally, if 1 must not know the secret of 2, . . .,
m then she should call m+1, . . ., n before they call any

of 2, . . ., m, then 2, . . ., m, m+1, . . ., n can freely share

their knowledge.

Things get quickly complicated, even for k=1, when

we require several agents to be ignorant. For example,

suppose n=4 and suppose agent 1 should not know the

secret of agent 3, while 2 should not know the secret of

4. Then 1 should call 2 first, before she calls 4 and be-

fore 2 calls 3. Then 1 can call 4, 2 can call 3 and 3 can

call 4. Now suppose that 1 should not know the secret

of 3, while 3 should not know the secret of 1. Then no

sequence of calls leads to a solution, since every agent

that 1 calls cannot be called by 3 and conversely.

Now consider higher-order order goals. Take k=2

and suppose we want 1 not to know whether 2 knows

the secret of 3 (but we do want 2 to know the secret

of 3). This means that the goal is:

(
EKAgt\{1}EKAgtsAgt

)
∧

(
(K1EKAgt\{2}sAgt ∧K1K2sAgt\{3})∧¬K1K2s3

)
.

Then the following protocol is a solution:

1. Agent 2 calls every agent but 3;

2. All agents but 2 call each other until full knowl-

edge of depth 2 is acquired;

3. Agent 2 calls every agent but 1.

After the second step, every agent i different from 2

has almost reached her goal, except that she does not

know whether 2 knows the secret of 3 (because it is not

the case yet). At the third step, 2 calls everyone but 1

in order to learn 3’s secret, acquire the required depth

of knowledge and inform every other agent.

Remark that if we increase the depth k, the goal that

only 1 does not know whether 2 knows the secret of 3

becomes unsolvable. Indeed, by the truth axiom T of

epistemic logic, we have, for example:

K1K4K2s3 → K1K2s3,

and hence the latter cannot be false without the former

being false. Therefore for k>2, the correct specifica-

tion will be that every goal of the form:

K1Ki1 . . .KimK2K j1 . . .K jps3

is false, for m+p+2 ≤ k.

10. Conclusion

We have provided a logical analysis of the gossip

problem, focusing on how higher-order shared knowl-

edge can be obtained. We did so in a particular dy-

namic epistemic logic: Dynamic Epistemic Logic of

Propositional Assignment and Observation DEL-PAO.

Its integration of knowledge modalities and dynamic

modalities provides a handy language in order to rea-

son about concepts such as an agent being a semi-

expert, which is pivotal in our algorithm. With DEL-



PAO, we were able to prove both the correctness and

optimality of our algorithm, generalizing the results

from [8,32,25] on the minimal number of calls.

The gossip problem recently attracted quite some

attention in the dynamic epistemic logic community

[4,5,38]. The version that we have studied here has a

central scheduler telling each agent when to act and

what to do. Other versions where the protocol is dis-

tributed were investigated recently [3,19]. We believe

that our generalization—as well as further variations

where e.g. calls can only be made according to some

graph structure—provide interesting, canonical multi-

agent planning problems that can be compared to the

blocksworld in classical planning. This is the subject

of ongoing work; first steps are reported in [17,30]. We

believe that our visibility-based approach is an interest-

ing alternative to dynamic epistemic logic-based plan-

ning that was proposed in [13]: indeed, it was shown

that such planning problems are undecidable [7], and

so even for simple instances [15].
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