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Abstract

In the standard model with two stocks, natural resource and physical cap-

ital, the fundamental efficiency condition is the Hotelling rule. If we add a

third stock, knowledge, as for instance in endogenous growth models, a new

efficiency condition is obtained. This condition highlights the fundamental

public good nature of knowledge. Moreover, we show that if suffices to use

Lindhal prices in a competitive economy to implement optimum.

JEL Classifications: Q32, H41, O31. Keyword: Non-renewable resources,

Innovations, Knowledge, endogenous growth.



1 Introduction

Since the Hotelling’s (1931) seminal paper, the standard literature on non

renewable resources, in particular the literature on growth, has studied a

model with essentially two stocks : the (finite) stock of natural resource and

the stock of physical capital.

In this type of framework, the fundamental efficiency condition, that is

to say the necessary local condition that has to be verified along any ef-

ficient path, is called the Hotelling rule. It says that, at each time, the

marginal productivity of capital has to be equal to the rate of growth of

the marginal productivity of the resource (for more details, see for instance

Withagen (1999)). This condition is the socially optimal solution of the arbi-

trage problem in which the social planner has to choose between keeping the

resource in situ, or extracting and embodying it in physical capital. More-

over, if one considers a decentralized economy in which the resource sector

is competitive, the maximization of the profit function in this sector leads to

the “Hotelling rule at equilibrium”, which says that the interest rate on the

perfect financial market is equal to the rate of growth of the resource price.

This condition implies the preceeding one : in other words, in a competitive

equilibrium, the efficiency Hotelling rule is satisfied, that is in fact a direct

implication of the first welfare theorem.

From the 1980s, some new stocks variables have been introduced in en-

dogenous growth models. For instance, Lucas (1988) introduced human cap-

ital and, some years later, Romer (1990), Grossman-Helpman (1991) and

Aghion-Howitt (1992) introduced knowledge as the main factors of growth.

In the second part of the 1990s, some authors, like Schou (1996), Aghion-

Howitt (1998) and Scholz-Ziemes (1999), have reconsidered the question of

sustainability of growth by introducing non renewable resources in endoge-

nous growth models with knowledge accumulation. With respect to the stan-

dard literature of the 1970s-1980s, this new analysis consider now three stocks
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variables : natural resources, physical capital, and knowledge. Then, new

questions are raised that we try to answer in this paper.

The first question concerns the characterization of efficient paths. We

know that the Hotelling rule is the efficiency condition concerning the arbi-

trage between keeping the resource in situ or enbodying it in physical capital.

What is the new efficiency condition, and what is its economic interpreta-

tion, if we consider the arbitrage between natural resource and knowledge ?

In order to answer this question, we have to take into account two main

characteristics of the problem. First, it is generally assumed that knowledge,

for instance new goods in Romer (1990) or new qualities in Aghion-Howitt

(1992), is produced by using labor (without resource). In this case, it is

not generally possible to directly embody resource in knowledge. Then, the

mechanism that has to be considered is the following : if the social planner

increases the flow of extraction, he releases labor from the final output sector.

This labor can be transfered to the research sector, that allows to increase

knowledge : this transfer of labor allows indirectly to embody resource in

knowledge. Second, contrarily to the physical capital which appears in the

standard Hotelling rule and which is a private good, knowledge is a public

good, that is to say a non rival, or non depletable good (see for instance

Mas-Colell, Whinston, Green (1995), chapter 11), which is simultaneously

used by the firms producing the final output and by the firms of the research

sector. Thus, some features of the new efficiency condition obtained here are

close to the standard Bowen-Lindahl-Samuelson condition.

The second point that we study in this paper concerns the functionning

of a decentralized economy, and the implementation of optimum. Contrarily

to the case of the standard model where the Hotelling rule is satisfied in a

competitive economy, there is here a problem of decentralization due to the

public good nature of knowledge. In standard endogenous growth models, it

is generally assumed that each new good is produced by a monopoly, that

allows to finance ex ante the research activity. In this paper, we proceed in
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two steps. First, we compute the Lindahl prices which allow to implement the

optimal path in a decentralized competitive economy. Second, taking again

the standard assumption of monopolies on intermediate goods, we describe

the general equilibrium, and we compute the exact values of the public tools

which allow to implement the optimum.

Along all the paper, at optimum and at equilibrium, we present the dif-

ferent results in a rather general model, that is to say without particular

specifications. However, at each step, we consider an example in which we

use our general formulas to compute analytically the solutions, in particular

the rates of growth of the different variables at the steady state. In fact,

this example takes again the common model of Schou (1996), Aghion-Howitt

(1998) and Scholz-Ziemes (1999), and their results are progressively recov-

ered, at optimum, then at equilibrium. With respect to the example studied

by theses authors, the new results presented here concern essentially the equi-

librium. First we compute the Lindahl prices in the first type of equilibrium.

Second, in the other type, which is studied by Schou, Aghion-Howitt, and

Sholz-Ziemes, we compute the optimal tools, subsidy to research and sub-

sidy to monopolies, which allow to implement the optimal path obtained in

section 2.

The paper is organized as follows. In section 2, we present the model and

we characterize the efficient paths. In particular, we derive the new efficiency

condition concerning the arbitrage between natural resource and knowledge.

In section 3, we consider a decentralized economy, and we study the two

types of equilibrium mentionned above : the first one with Lindahl prices,

the second one with monopolies on intermediate goods. Finally, we present

our conclusions in section 4.
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2 Efficiency in an economy with a natural re-

source, physical capital and knowledge

2.1 The model

We consider an economy where a final homogeneous good (Y ) is produced

by m firms (i = 1, . . . ,m). Each firm i has a production function

Y i
t = F i

(
Li

t, R
i
t,

∫ nt

0

f i(xi
t(j))dj

)
(1)

where Li
t and Ri

t are the quantities of labor and natural resource used at time

t ; xi
t(j) is the quantity of intermediate good j, with j ∈ [0, nt] : nt is the

measure of the space of intermediate goods (interpreted as the “number” of

goods, namely knowledge). We assume that f i() is an increasing and strictly

concave function of xi(j). We denote by X i
t =

∫ nt

0
f i(xi

t(j))dj the index of

intermediate goods, and by F i
L, F i

R and F i
X the partial derivatives of the

production function.

The final good is used for consumption (ct) and investment (K̇t). Thus

we have

Yt =
m∑

i=1

Y i
t = ct + K̇t (2)

Following for instance Grossman-Helpman (1991) and Romer (1990), we

assume that, in the R&D sector, M firms (h = 1, . . . ,M) produce innova-

tions along with

ṅh
t = qh(nt, `

h
t ), q

h
n > 0, qh

` > 0, (3)

where ṅh
t and `h

t are respectively the number of innovations produced at t

and the labor used in research by firm h. As it is usual in this type of model,

we assume that the total number of goods, nt, is also an input. Note that,

at each time t, the total number of innovations in the economy is

ṅt =
M∑

h=1

ṅh
t =

M∑
h=1

qh(nt, `
h
t ).
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Normalizing labor supply to one, we have at each time t

m∑
i=1

Li
t +

M∑
h=1

`h
t = 1. (4)

We assume that, once a new good is invented, it is produced by capital

alone : one unit of capital is needed for each unit of intermediate good. Thus,

at each date t, we have

xt(j) = Kt(j), for all j ∈ [0, nt] (5)

where xt(j) =
∑m

i=1 xi
t(j) is the total quantity of intermediate good j. Recall

(see (2) above) that Kt =
∫ nt

0
Kt(j)dj is the total stock of capital.

If we denote by S0 the initial stock of resource, the stock at t is given by

St = S0 −
∫ t

0

Rνdν (6)

where Rt =
∑m

i=1 Ri
t is the total flow extracted at t. We assume that there is

no extraction cost.

2.2 Efficient paths

Our first objective is to characterize the efficient paths. We consider an

interval of time (t0, t1). Let be {ct}t1
t0 a given profile of consumption on this

interval, and let be Kt0 and Kt1 the given levels of capital at t0 and t1. Then

the program of the social planner is to minimize the flow of extraction under
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the constraints (1) to (6). After reorganization, this program can be written

min

∫ t1

t0

(
m∑

i=1

Ri
t

)
dt

subject to K̇t =
m∑

i=1

F i

(
Li

t, R
i
t,

∫ nt

0

f i(xi
t(j))dj

)
− ct

Ṡt = −
m∑

i=1

Ri
t

ṅt =
M∑

h=1

qh(nt, l
h
t ) (7)

∫ nt

0

(
m∑

i=1

xi
t(j)

)
dj −Kt = 0

m∑
i=1

Li
t +

M∑
h=1

lht = 1

Proposition 1 An efficient path of the economy is characterized by the two

following conditions :

ḞR

FR

= Fx (8)

where FR = F i
R ∀i, is the marginal productivity of the resource, and Fx =

F i
Xf i′(xi(j)) ∀i, j, is the marginal productivity of any intermediate good j;

ḞR

FR

=
ḞL

FL

− q̇e

q`

+
M∑

h=1

qh
n +

q`

FL

(
m∑

i=1

F i
Xf i(xi(n)

)
− Fx

m∑
i=1

xi(n)), (9)

where FL = F i
L, ∀i, and q` = qh

` , ∀h, are respectively the marginal productiv-

ities of labor in the final output sector and in the research sector.

Proof : see appendix A.

Observe that, since each unit of intermediate good is produced with one

unit of capital, Fx can also be interpreted as the marginal productivity of
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capital. Then, condition (8) says that the marginal productivity of capital

must be equal to the rate of growth of the marginal productivity of the nat-

ural resource : it is the standard Hotelling rule which concerns the arbitrage

between resource (R) and physical capital (K).

Condition (9) is a new efficiency condition which appears in this type

of endogenous growth model, and which concerns the arbitrage between re-

source (R) and knowledge (n). We can already observe that the fundamental

public good nature of knowledge (n) appears in the right side of the equation

where we see the symbols
∑M

h=1() and
∑m

i=1(), as for instance in the classic

optimality condition derived by Samuelson (1954 ; 1955).

Let us give an intuitive interpretation of these two conditions.

2.2.1 Natural resource and physical capital : the Hotelling rule

First, in order to interpret the Hotelling rule, we consider an elementary

interval of time (t, t+∆t). At t, the social planner faces the following arbitrage

concerning any unit of natural resource : either he keeps it in situ at t

and he extracts it at (t + ∆t) in order to increase the final output ; or

he extracts it at t, he uses it to accumulate more capital, that allows to

produce more of any intermediate good, and thus to produce more output.

In the first case, the increase in output at t + ∆t is ∆Y 1
t+∆t = FR(t + ∆t) '

ḞR(t)∆t+FR(t) = FR(t)

(
ḞR(t)

FR(t)
∆t + 1

)
. In the second one, the new capital

at t is ∆Kt = FR(t), and the new output at t + ∆t (new capital and new

production) is ∆Y 2
t+∆t = ∆Kt + Fx(t)∆Kt∆t = FR(t) + Fx(t)FR(t)∆t =

FR(t)(Fx(t)∆t + 1). It is clear that we have ∆Y 1
t+∆t = ∆Y 2

t+∆t if and only if

ḞR(t)/FR(t) = Fx(t) : it is the Hotelling rule. If ḞR(t)/FR(t) < Fx(t), the

social planner has to extract more today in order to accumulate more capital.

If ḞR(t)/FR(t) > Fx(t), he has to extract less today.
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2.2.2 Natural resource and knowledge : the new condition

Now, we interpret the second efficiency condition (a more formal interpreta-

tion is given in Appendix B). In the Hotelling rule, the arbitrage concerns

the choice between keeping the natural resource in situ or embodying it in

physical capital. In the new condition, it is between keeping it in situ or in-

directly embodying it in knowledge. As we said above, in this type of model,

the natural resource is only used in the final sector. Thus, it is not possible

to directly embody it in knowledge. If the social planner increases the flow of

extraction, he can transfer labor from the final sector to the research activity,

that allows to increase knowledge accumulation. This is the reason why we

speak of indirect embodying.

We again consider an interval of time (t, t + ∆t). As before, if one unit of

resource is kept in situ at t and extracted at t+∆t, the increase in output at

t + ∆t is ∆1
t+∆t = FR(t)

(
ḞR(t)

FR(t)
∆t + 1

)
. Assume that this unit is extracted

at t. This extraction allows to stimulate research by three channels.

First, assuming that the total output is unchanged, it allows to decrease

the labor (L) used in the final sector by FR(t)/FL(t). If this labor is devoted

to research (dlt = −dLt), knowledge (n) increases by dn1 =
FR(t)

FL(t)
q`(t).

Second, the intertemporal cumulative effect of n on ṅ (remember that

ṅt =
∑M

h=1 qh(nt, `
h
t )) leads to an increase in knowledge,

dn2 =
FR(t)

FL(t)
q`(t)

M∑
h=1

qh
n(t)∆t, on (t, t + ∆t).

Third, the increase in knowledge leads to more final output, that allows

to save more labor (L) and thus to produce more knowledge. From (1), the

gross increase in output is
FR(t)

FL(t)
q`(t)

m∑
i=1

F i
Xf i(xi(n))∆t. However, since in-

termediate goods are produced from capital, we have Kt =
∫ nt

0

∑m
i=1 xi

t(j)dj.
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Thus we need a quantity of capital given by
FR(t)q`(t)

FL(t)

m∑
i=1

xi(n). This quan-

tity of capital can be obtained by decreasing the corresponding quantity

of any intermediate good j, that yields a decrease in final output given by

Fx(t)
FR(t)q`(t)

FL(t)

m∑
i=1

xi(n)∆t. Finally, the net increase in output is

FR(t)

FL(t)
q`(t)

(
m∑

i=1

F i
Xf i(xi(n))− Fx

m∑
i=1

xi(n)

)
∆t.

If the social planner uses this new output to save more labor (L) and to

transfer it to the research sector, this yields to an increase in knowledge,

dn3 =
FR(t)q`(t)

FL(t)

q`(t)

FL(t)

(
m∑

i=1

F i
Xf i(xi(n))− Fx

m∑
i=1

xi(n)

)
∆t.

Summing up dn1, dn2 and dn3, we obtain the new knowledge produced

after the extraction of one unit of resource :

dn = dn1 + dn2 + dn3 =

FR(t)q`(t)

FL(t)

[
1 +

(
M∑

h=1

qh
n(t) +

q`(t)

FL(t)

(
m∑

i=1

F i
Xf i(xi(n))− Fx

m∑
i=1

xi(n)

))
∆t

]

This increase in knowledge allows to obtain an increase in the final out-

put at (t + ∆t) given by ∆Y 2
t+∆t ' dn

FL(t + ∆t)

q`(t + ∆t)
, where

q`(t)FL(t + ∆t)

FL(t)q`(t + ∆t)
is

approximatively equal to 1 +

(
ḞL(t)

FL(t)
− q̇`(t)

q`(t)

)
∆t. Finally, we have

∆Y 2
t+∆t '

FR(t)

{
1 +

[
ḞL

FL

− q̇`

q`

+
M∑

h=1

qh
n +

q`

FL

(
m∑

i=1

F i
Xf i(xi(n))− Fx

m∑
i=1

xi(n)

)]
∆t

}
,

where we neglect the second-order terms.

Equalizing this quantity to ∆Y 1
t+∆t = FR

(
1 +

ḞR

FR

∆t

)
, we find again

exactly the arbitrage condition (9), whose we have now an interpretation.
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In brief, in the Hotelling rule, the social planner can extract more today,

embody this resource in capital, that allows to produce more tomorrow and

thus to economize resource. In the new efficiency condition, if he extracts

more today, he can allocate the released labor to the research sector, that

allows to accumulate more knowledge, and thus to produce more tomorrow

and to economize resource. The main point here is that each increase in

knowledge has a cumulative effect that comes from the specific form of the

research sector technology.

If ∆Y 1
t+∆t < ∆Y 2

t+∆t, the social planner has to extract more today, in

order to transfer labor from the final output sector to the research one, and

thus in order to produce more innovations.

If ∆Y 1
t+∆t > ∆Y 2

t+∆t, the social planner has to extract less today, and thus

to produce less innovations.

Remark 1 : consider the standard neoclassical model, where the final

good (Y ) is produced by using the natural resource and physical capital

along with Yt = F (Kt, Rt) and characterize the efficient paths. In this case,

the social planner minimizes the flow of extraction
∫ t1

t0
Rtdt, subject to the

constraints K̇ = F (Kt, Rt)− ct and Ṡt = −Rt. This program easily leads to

the Hotelling rule : ḞR/FR = FK . Indeed, the Hamiltonian is

H = R + λ(F (K,R)− c)− µR

The first order conditions are 1 + λFR − µ = 0,−µ̇ = 0 and −λ̇ = λFK .

Differentiating the first one with respect to t and using the two others give

immediately the Hotelling rule : ḞR/FR = FK .

Remark 2 : until now, we have only been interested by efficiency. As-

sume that we want characterize the optimal paths. More precisely, inside

the efficient paths, we select those which maximize the intertemporal util-

ity
∫ t

0
u(ct)e

−ρtdt. Then we obtain in addition the Ramsey-Keynes condi-
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tion, which is ρ − u′′ċ/u′ = Fx in the first model (with knowledge) and

ρ− u′′ċ/u′ = FK in the standard neoclassical model.

Example 1 : we consider the model studied by Aghion-Howitt ((1998),

chapter 5), Schou (1996) and Scholz-Ziemes (1999), which is a particular case

of the above model.

The m firms in the final sector have the same technology :

Y i
t = (Li

t)
β(Ri

t)
ν

∫ nt

0

xi
t(j)

αdj,

with α + β + ν = 1. The M firms in the research sector have also the same

technology : ṅh
t = δntl

h
t , with δ > 0.

From the proof of proposition 1 (see appendix A), we have xi(j) = xi

for all i and all j, xi/Ri =
∑

i x
i/

∑
i R

i = x/R for all i, and xi/Li =∑
i x

i/
∑

i L
i = x/L for all i. Then, each individual production function can

be written Y i = (Li
t)

β(Ri
t)

νn(xi)α = n(L/x)β(R/x)νxi. Finally, the aggregate

production function is Y = nLβRνxα = Kαn1−αLβRν , with K = xn : see

Schou (equation (2.3)), Scholz-Ziemes (equation (2.11)), and Aghion-Howitt

(p. 163).

The total number of innovations at t is

ṅt =
M∑

h=1

ṅh
t = δnt

M∑
h=1

`h
t = δnt`t :

see Schou (equation (2.5)), Scholz-Ziemes (equation (2.13)), and Aghion-

Howitt (p. 163).

First, consider the Hotelling rule (equation (8)) : ḞR/FR = Fx, where

FR = F i
R and Fx = F i

x, for all i (see proposition 1). Differentiating the

production function of firm i with respect to Ri, we get :

F i
R = ν(Li)β(Ri)ν−1

∫ n

0
xi(j)αdj = ν(Li)β(Ri)ν−1n(xi)α

= νn(Ri/Li)ν−1(xi/Li)α = νn(R/L)ν−1(x/L)α = νnLβRν−1xα

= νY/R = ∂Y/∂R,

since Y = nLβRνxα. Thus, we have ḞR/FR = gY − gR (where gy is the rate

of growth of any variable y).
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Similary, differentiating this production function with respect to xi(j),

we get : ∂Y i/∂xi(j) = F i
x = α(Li)β(Ri)ν(xi)α−1 = α(Ri/Li)ν(xi/Li)α−1 =

α(R/L)ν(x/L)α−1 = αLβRνxα−1.

Finally, the Hotelling rule is

gY − gR = αLβRνxα−1 (10)

Secondly, consider the second efficiency condition (equation (9). We know

that ḞR/FR = gY − gR. Similary, it is easy to see that ḞL/FL = gY − gL.

Moreover we have −q̇`/q` +
∑M

h=1 qh
n = 0, since

∑M
h=1 qh

n = δ
∑

h `h = δ` and

q` = δn, that implies q̇`/q` = ṅ/n = δ`. We can also compute the last term :

∑
i

F i
Xf i(xi(n))− Fx

∑
i

xi(n) =
∑

i

(Li)β(Ri)ν(xi)α − αLβRνxα−1x

=
∑

i

Li(R/L)ν(x/L)α − α(R/L)ν(x/L)α−1x

= L(R/L)ν(x/L)α − αL(R/L)ν(x/L)α = L(1− α)(R/L)ν(x/L)α

The term q`/FL is equal to δnL/βY. Replacing Y by nLβRνxα, the last

term of equation (9) is equal to δ(1−α)L)/β. Finally, this efficiency condition

becomes

−gR = −gL +
δ(1− α)L

β
(11)

At steady state, all variables grow at constant rate. Thus, from (11),

L is constant, that implies gR = −δ(1 − α)L/β. Frome (10), we obtain

νgR+(α−1)gx = 0. Then using the expression of gR, we obtain gx = −νδL/β.

Since K = nx, we have gK = gn + gx = δ(1−L)− νδL/β = δ− δL(1 + ν/β),

that is also the expression of gY , since gY = gK . Finally, for a given level of

labor L used in the final sector (and thus a given level of labor ` = 1 − L

used in research) the two efficiency conditions give the rates of growth of Y

and R at steady state : gY = δ − δL(1 + ν/β) and gR = −δ(1− α)L/β.

Assume that we want to characterize the steady state optimal growth

path with an (isoelastic) instantaneaous utility function : u(c) = (c1−ε −
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1)/(1− ε), ε > 0. Then the Keynes-Ramsey condition is gY − gR = ρ + εgc.

Since gc = gY , we have gY = (ρ + gR)/(1− ε). Using this condition and the

two efficiency conditions, we obtain finally :

L =

(
ρ

1− ε
+ δ

)
β(1− ε)

δε(1− α)

gR = −ρ

ε
+ δ

1− ε

ε
: see Schou (equation (3.12)) and

Aghion-Howitt (chapter 5, Appendix 2, p. 169)

and gY =
δ − ρ

ε
: see Schou (equation (3.10)) and

Aghion-Howitt (p. 169)

Growth is positive if δ−ρ > 0, and the condition gR < 0 imposes δ−ρ <

δε. Thus a balanced optimal growth path with positive growth rate exists if

0 < δ − ρ < δε : see Aghion-Howitt (p. 164).

3 Equilibria in a market economy

After the optimum characterization, we have to construct equilibria. We

claim that the fundamental difficulty to implement the optimum in a decen-

tralized economy is that knowledge is a public good which is simultaneously

used in the final sector and in the research sector. In order to stress this

point, we consider successively two types of equilibria.

First, we construct an equilibrium which is an analytical benchmark : we

assume that all markets are competitive, and we compute the Lindhal prices

with which the research is financed and that allow to implement the optimal

path. However, we are conscious that this type of equilibrium is not totally

convincing. In particular, as it is explained in many text-books, price-taking

behavior on markets with personalized prices is unlikely to occur. That is

probably why this type of equilibrium is not generally studied, in particular

in endogenous growth models with innovations.

Second, we consider a more usual equilibrium. We assume that, once an

innovation has occured, the investor of the new good retains a perpetually
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monopoly right over the production and the sale of this good. Then, the

expected profits of the monopolist allow to finance the research. The new

problem is that, by introducing these new institutions in the model, we also

introduce new distorsions that have to be corrected if we want implement

the optimal path. In particular, on each intermediate good market, the price

is higher than the marginal cost, that requires for instance to subsidy the

demand of these goods.

In this section, the price of good Y is normalized to one and wt, p
R
t and

rt are respectively the wage, the price of the resource and the interest rate

on a perfect financial market. Moreover, since the intermediate goods are all

identical, they have the same price : pt(j) = pt, j ∈ [0, nt].

We assume that the market of the natural resource is competitive. Then,

the maximization of the profit function∫ ∞

t

pR
s Rse

− ∫ s
t rududs, for all t,

subject to the constraint Ṡs = −Rs, leads to the standard “Hotelling rule at

equilibrium”

ṗR
t

pR
t

= rt, ∀ t. (12)

This condition can be interpreted as the efficiency condition (8) (see 2.2.1

above). Consider an elementary interval of time (t, t+∆t). If the owner firm

extracts one unit of resource at t, sells it at price pR
t , and invest pR

t on the

financial market, the return of this operation at (t+∆t) is pR
t rt∆t. If the firm

keeps the resource in situ, the return at t+∆t is (dpR
t /dt)∆t = ṗR

t ∆t. The two

returns have to be equal, that gives pR
t rt∆t = ṗR

t ∆t, and thus ṗR
t /pR

t = rt.

A direct consequence of (12) it that, in the standard neoclassical model

where the production function is Yt = F (Kt, Rt), if all markets are competi-

tive, we have FK = rt and FR = pR
t (that implies ḞR = ṗR

t ). Thus, (12) can be

written ḞR/FR = FK , that is exactly the “Hotelling rule at optimum” : this

result is a particular case of the first theorem of welfare, that holds here in
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particular because physical capital is a private good. As we have said above,

our problem in the present model is that it is not the case for knowledge.

3.1 Lindhal equilibria

We first consider an equilibrium in which innovations are financed by Lindhal

prices. More precisely, we denote by vi
t and vh

t the Lindhal prices paid at t

by each firm i and each firm h for any innovation. When a firm uses one

particular innovation, it pays the Lindhal price to the investor. Thus the total

Lindhal prices paid at time t by a firm, for instance firm i, is equal to ntv
i
t.

Let us observe that the Lindhal price paid by a firm for a given innovation

is independant of the quantity of the intermediate good corresponding to

this innovation. In this type of equilibrium, contrarily to that is generally

done in endogenous growth models, we distinguish innovations, which are

financed by Lindhal prices, and the intermediate goods in which they are

embodied, which are sold on competitive markets (and not by monopolists,

as in sub-section 3.2).

3.1.1 Agents behaviors

a) In the final sector, at each time t, the profit of each firm i is

πi
t = F i(Li

t, R
i
t,

∫ nt

0

f i(xi
t(j))dj)− wtL

i
t − pR

t Ri
t −

∫ nt

0

ptx
i
t(j)dj − ntv

i
t

As we said above, the two last terms correspond to the payments for

intermediate goods and the payments (Lindahl prices) for innovations.

Observe that, in this particular problem, each innovation is an indivis-

ible public good : each firm i has to decide if it uses an intermediate

good j, or if it doesn’t. If it uses it, it pays vi
t to the inventor and

ptx
i
t(j) on the market. Differentiating with respect to the quantities of

inputs, Li
t, R

i
t, x

i
t(j), and the number of innovations nt, and equating to

15



zero, give the following first-order conditions :

F i
L − wt = 0, (13)

F i
R − pR

t = 0, (14)

F i
x(j) − pt = 0, j ∈ [0, nt], (15)

where F i
x(j) = F i

Xf i′(xi
t(j)) is the marginal productivity of the interme-

diate good j,

F i
Xf i(xi

t(nt))− ptx
i
t(nt)− vi

t = 0. (16)

From (13) and (14), we see that the marginal productivities of labor

and resource are independant of i (as at optimum) : we can write

F i
L = FL and F i

R = FR, for all i, these productivities. From (15), we

have also F i
Xf i′(xi

t(j)) = Fx, for all i and all j : all the intermediate

goods have the same productivity in all firms (see (8) for the same

propriety at optimum). Moreover, we have xi
t(j) = xi

t (each firm i uses

the same quantity of intermediate goods), and thus xt(j) =
∑

i x
i
t(j) =∑

i x
i
t = xt, for all j : at equilibrium, intermediate goods are produced

in the same quantity. Finally, (16) gives the Lindahl price paid by each

firm i for a marginal increase in knowledge, that is to say for any new

innovation.

b) In the intermediate goods sector, the constant returns to scale technol-

ogy (see (5)) and the perfect competition assumption leads to

pt = rt. (17)

c) Now we consider the research sector. We define the value of an inno-

vation j at t as the sum of the present values of all the expected prices

paid for this innovation. This value is

Ht =

∫ ∞

t

vse
− ∫ s

t rududs, (18)
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where vs =
∑

i v
i
s +

∑
h vh

s is the sum of the Lindhal prices paid at s by

all firms in the final sector and in the research sector. Differentiating

(18) with respect to t gives Ḣt = −vt + rtHt, and thus

rt =
Ḣt

Ht

+
vt

Ht

. (19)

The profit on one innovation by a firm h in the research sector is

πh
t = qh(nt, `

h
t )Ht − wt`

h
t − ntv

h
t

Maximizing πh
t with respect to `h

t and nt gives the two following first

order conditions :

∂πh
t

∂`h
t

= qh
` Ht − wt = 0 (20)

∂πh
t

∂nt

= qh
nHt − vh

t = 0 (21)

From (20), we see that qh
` is independant of h : we write it qh

` = q`.

Differentiating the equality Ht = wt/q` with respect to t gives

Ḣt

Ht

=
ẇt

wt

− q̇`

q`

. (22)

d) Finally, the maximization of the intertemporal utility gives the stan-

dard condition :

ρ− u′′(ct)ċt

u′(ct)
= rt. (23)

Remark : this paragraph has been written assuming that firms of the

final sector and of the research sector directly pay the Lindhal prices. This

is possible only if their technologies exhibit constant or decreasing returns

to scale. If it is not the case, as for instance in standard endogenous growth

models where there are increasing returns to scale, it is necessary to make

other assumptions. The more simple is to assume that the Lindhal prices are

financed by public funds. An other possibility would be to assume that there

is imperfect competition in these sectors, but this assumption is beyond the

scope of this paper.
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3.1.2 Equilibrium and optimum

Our objective now is to show that the two characteristic efficiency conditions

obtained in section 2 are verified in this decentralized economy.

First it is easy to show that, as in the standard neoclassical model, the

Hotelling rule (8) is here also verified. From (15), Fx = pt, and (17), rt = pt,

we have Fx = rt. From (12), ṗR
t /pR

t = rt, and (14), FR = pR
t , that gives

ḞR/FR = ṗR
t /pR

t , we have rt = ḞR/FR. Finally, we otbain Fx = ḞR/FR, that

is the Hotelling rule.

Second, we can also show that the new efficiency condition (9) is verified,

and we can compute the Lindhal prices paid by each agent.

Using (12), (14), (22), (13) (that gives ḞL/FL = ẇt/wt), and the condition

q`Ht = wt, (19) can be written

ḞR

FR

=
ḞL

FL

− q̇`

q`

+ vt
q`

FL

,

where vt =
m∑

i=1

vi
t +

M∑
h=1

vh
t .

From (16), (17) and (15), we have vi
t = F i

Xf i(xi
t(nt)) − Fxx

i
t(nt), and

from (20) and (21) we have vh
t = qh

nFL/q`. After substitution, the previous

condition becomes

ḞR

FR

=
ḞL

FL

− q̇`

q`

+
M∑

h=1

qh
n +

q`

FL

(
m∑

i=1

F i
Xf i(xi(n))− Fx

m∑
i=1

xi(n)

)
,

that is exactly the efficiency condition (9). These results confirm our claim

that the main difficulty to decentralize this economy comes from the fact

that knowledge is a public good.

Remark : if we assume that a representative household maximizes the

intertemporal utility
∫∞

0
u(ct)e

−ρtdt, it is easy to verify that the standard

Ramsey-Keynes condition is also verified, since from (23), (17) and (15), we

have ρ− u′′ċ
u′

= Fx.
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Example 2 : Let us go back to the Aghion-Howitt, Schou and Scholz-

Ziemes model used in the example 1. From this example, we know that the

sum of the Lindhal prices paid by the final sector is
∑

i v
i =

∑
i F

i
Xf i(xi(n))−

Fx

∑
i x

i(n) = L((1 − α)(R/L)ν(x/L)α. Similary, it is easy to obtain the

sum of the Lindhal prices paid by the research sector :
∑

h vh = β(1 −
L)(R/L)ν(x/L)α. Finally, we have the Lindhal price received by each inno-

vator :

v =
∑

i

vi +
∑

h

vh = (R/L)ν(x/L)α(β + νL).

Let us note that all these Lindhal prices decrease at the same rate :

gv = νgR = ν

(−ρ

ε
+ δ

1− ε

ε

)
< 0 (see example 1).

3.2 Equilibrium with patents and optimal public poli-
cies

We assume now that the markets of the final good (Y ), labor (L) and the

natural resource (R) are competitive. Concerning the intermediate goods

sector we make the standard assumption that, once a new good is invented,

it is produced by a monopoly. In order to implement the optimal path

obtained in section 2, we use two tools : first, a subsidy (τ) for the demand

of each intermediate good ; secondly, a subsidy (σ) to the research.

3.2.1 Agents behaviors

a) In the final sector, the firm i profit is

πi
t = F i(Li

t, R
i
t

∫ nt

0

f i(xi
t(j))dj)− wtL

i
t − pR

t Ri
t −

∫ nt

0

pt(1− τ)xi
t(j)dj.

Differentiating πi
t with respect to Li

t, R
i
t and xi

t(j) gives the following
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first order conditions :

F i
L − wt = 0, (24)

F i
R − pR

t = 0, (25)

F i
x(j) − pt(1− τ) = 0, (26)

where we always have F i
x(j) = F i

Xf i′(xi
t(j)).

These conditions are exactly the conditions (13)-(14)- (15) above, ex-

cept the term (1− τ) in (26). Thus, as in the first equilibrium, we have

F i
L = FL, F i

R = FR and F i
x(j) = Fx, for all i and all j. Moreover, we

have as above xi
t(j) = xi

t and xt(j) =
∑

i x
i
t(j) = xt, for all j.

Observe that (26) implicitely defines the demand of good j by firm i,

the slope of which is

∂xi
t(j)

∂pt

=
1− τ

F i
xx

, for all j, (27)

where F i
xx is the second derivative of F i with respect to any interme-

diate good.

b) In the intermediate goods sector, the profit at each time t of the mo-

nopolist which produces any good j is

πm
t = (pt − rt)xt =

(
Fx

1− τ
− rt

)
xt, (28)

where xt =
∑

t x
i
t is the total quantity of good.

Using (27), the maximization of πm
t leads to

xt +

(
Fx

1− τ
− rt

) m∑
i=1

1− τ

F i
xx

= 0, (29)

that gives the profit at its maximum level :

πm
t =

−x2
t∑

i ((1− τ)/F i
xx)

(30)
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The value of a firm at t is Vt =
∫∞

t
πm

s e−
∫ s

t rududs. Differentiating with

respect to t and rearranging gives

rt =
V̇t

Vt

+
πm

t

Vt

(31)

c) In the research sector, the profit of a firm h is πh
t = qh(nt, `

h
t )Vt−wt(1−

σ)`h
t . The maximization of πh

t with respect to `h
t gives qh

` Vt−wt(1−σ) =

0. Thus, qh
` is independant of h and we write it q`. The first-order

condition becomes

Vt =
(1− σ)wt

q`

(32)

d) Finally, the maximization of the intertemporal utility gives the condi-

tion (23) : ρ− u
′′
ċt

u′
= rt.

3.2.2 Implementation of optimum

In section 2, we have characterized an efficient path by two conditions : the

Hotelling rule (8), and the “new” condition (9). It is possible to obtain two

similar conditions at equilibrium.

From (25) and (12), we have ḞR/FR = ṗR
t /pR

t = rt. Simultaneously, from

(29) we obtain

rt =
1

1− τ

(
Fx +

xt∑
i(1/F

i
xx)

)
.

Thus, we obtain a first condition similar to the Hotelling one :

ḞR

FR

=
1

1− τ

(
Fx +

xt∑
i(1/F

i
xx)

)
. (33)

Now we start from (31), rt = V̇t/Vt+πm
t /Vt (remember that rt = ḞR/FR).

From (32), Vt = (1−σ)wt/q`, we know that V̇t/Vt = ẇt/wt− q̇`/q` = ḞL/FL−
q̇`/q`. Finally, using (30) and (32) that give πm

t and Vt, we obtain a second

condition similar to the second efficiency condition :

ḞR

FR

=
ḞL

FL

− q̇`

q`

− x2
t q`

(1− τ)(1− σ)FL

∑
i(1/F

i
xx)

. (34)
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It is now possible to write the system of two equations with which we can

compute the two optimal tools, τ and σ. For that, it is necessary that (8)

and (33) on one hand, and that (9) and (34) on the other hand, are identical.

We obtain

τ =
−xt

Fx

∑
i(1/F

i
xx)

(35)

and

M∑
h=1

qh
n +

q`

FL

(
m∑

i=1

F i
Xf i(xi

t)− xtFx

)
=

−xtq`

(1− τ)(1− σ)FL

∑
i(1/F

i
xx)

(36)

These two equations allow to compute the two optimal tools, σ and τ, as

it is shown in the following example.

Example 3 : we come back to the Aghion-Howitt, Schou and Scholz-

Ziemes model, and we study the equilibrium balanced growth paths.

First, as at optimum (Example 1), we verify that we obtain their results

in this particular case at equilibrium. At optimum, the Hotelling rule (8)

became (10) in the example, and the second efficiency condition (9) became

(11). Here, the two equilibrium conditions (33) and (34) become

gY − gR =
1

1− τ
(α2LβRνxα−1) (37)

and gR = gL + δ(1− L)− α(1− α)δL

(1− τ)(1− σ)β
(38)

From the resource sector behavior, we know that ḞR/FR = gY − gR = r.

From the household behavior, we have also εgY + ρ = r. Thus, gR = gY (1−
ε)− ρ.

From the production function Y = Kαn1−αLβRν , we obtain gY = δ(1 −
L) + νgR/(1 − α) (remember that gL = 0 at steady state). Plugging these

results in (38), we have after some calculations

gY =
α(1− α)δ − αρν + (1− σ)(1− τ)βρ(1 + ν/(1− α))

α(β + νε) + (1− σ)(1− τ)β(1− ν(1− ε/ε(1− α)))
(39)
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If σ = τ = 0 (no public intervention), we obtain the same formula than

Schou (formula (4.13)) and Scholz-Ziemes (formula 3.32). However, we can

go further because we can now compute the tools which allow to implement

the optimal path obtained in the Example 1.

Comparing (10) and (37), we immediately obtain the optimal rate of

subsidy to the demand of intermediate goods :

τ = 1− α (40)

that is a standard result in this type of model (see for instance Barro-Sala-

I-Martin (1995)). Now, since the optimal rate of growth is (δ − ρ)/ε (see

example 1), we obtain from (39) the optimal rate of subsidy to the research

σ =
εδν + β(δ − ρ)

εδ(1− α) + ν(εδ + ρ− δ)
(41)

We can see that, under the condition 0 < δ − ρ < δε (see example 1),

we have 0 < σ < 1 (σ is a positive subsidy, and not a tax). In some sense,

this result confirms the result of Schou saying that “the market growth rate

is smaller than the optimal growth rate” (Appendix 6.3 of Schou’s paper).

4 Conclusion

The first objective of this paper was to characterize the efficient paths in

an economy including three stocks : a natural resource, physical capital

and knowledge. We obtained two condition. The first one is the standard

Hotelling rule ; it concerns the arbitrage between natural resource and phys-

ical capital. The second one, which concerns the arbitrage between natural

resource and knowledge, highlights some characteristics of knowledge. First,

knowledge is a public good. Second, it is generally assumed (for instance, in

endogenous growth models with innovations) that new knowledge is produced

by using several factors, among which labor and the existing stock of knowl-

edge, but not natural resources. Then the new efficiency condition has spe-
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cific features which bring it nearer the standard Lindhal-Bowen-Samuelson

condition, and which takes into account the auto-accumulation of knowledge.

The second objective was to construct equilibria in a decentralized econ-

omy. We studied two equilibria. In the first one, we assume that the new

knowledge, that is to say innovations, is financed by Lindhal prices. We show

that the two characteristics efficiency conditions are satisfied. In some sense,

this result confirms that the fundamental problem of decentralization in this

economy is the public good nature of knowledge. In the second one, which

corresponds to the standard theory, we assume that once a new good is in-

vented, it is produced by a monopoly. Then we show that it suffices to use

two tools, a subsidy to the demand of each intermediate good and a subsidy

to the research activity, to implement the efficient path.

Along the paper, all the results are obtained in a rather general model.

However, using the standard specifications of Schou (1996), Aghion-Howitt

(1998) and Scholz-Ziemes (1999), we show that their results are found again.

Moreover, we obtain some new results in their example : for instance, we

compute the Lindhal prices in the first type of equilibrium, and we give the

exact values of the two optimal subsidies in the second type.
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Appendices

Appendix A : Efficient paths

The Hamiltonian of the program (7) is

H =
m∑

i=1

Ri + λ

(∑
i

F i(Li, Ri,

∫ n

0

f i(xi(j))dj)− c

)
− µ

m∑
i=1

Ri + ν
M∑

h=1

qh(n, `h)

+θ

[∫ n

0

(
m∑

i=1

xi(j))dj −K

]
+ η

(
m∑

i=1

Li +
M∑

h=1

`h − 1

)

The first order conditions ∂H/∂Ri = 0, ∂H/∂xi(j) = 0, ∂H/∂Li = 0, and

∂µ/∂`h = 0 yield :

1 + λF i
R − µ = 0 (A.1)

λF i
Xf i′(xi(j)) + θ = 0 (A.2)

λF i
L + η = 0 (A.3)

νqh
` + η = 0 (A.4)

Moreover, ∂H/∂S = −µ̇, ∂H/∂K = −λ̇ and ∂H/∂n = ν̇ yield

−µ̇ = 0 (A.5)

−θ = −λ̇ (A.6)

λ
∑

i [F
i
Xf i(xi(n))] + ν

∑
h qh

n + θ
∑

i x
i(n) = −ν̇ (A.7)

A.1 and A.3 show that F i
R and F i

L are independant of i; thus we write

them FR and FL. Similary, A.2 shows that F i
Xf i′(xi(j)) is independant of

i and j; we write it Fx. Finally, A.4 shows that qh
` is independant of h; we

write it q`.

Differentiating A.1 with respect to t, and using A.5, yield ḞR/FR = −λ̇/λ.

From A.2 and A.6, we have Fx = −λ̇/λ. Thus, we obtain a first condition,

that is the standard Hotelling rule :

ḞR

FR

= Fx (A.8)
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This condition concerns the arbitrage between natural resource and phys-

ical capital.

Dividing the two sides of A.7 by λ, we can replace ν/λ by FL/q` (from

A.3 and A.4), and θ
∑

xi(n)/λ by −Fx

∑
i x

i(n) (from A.2), that yields

∑
i

(
F i

Xf i(xi(n))− Fxx
i(n)

)
+

FL

q`

∑
h

qh
n = − ν̇

λ

From A.3 and A.4, we have λFL = νq`. Differentiating with respect to t

gives λḞL + λḞL = ν̇q` + νq̇`, and thus

− λ̇

λ
=

ḞL

FL

− ν̇q`

λFL

− νq̇L

λFL

Combining these two equations (remember that −λ̇/λ = ḞR/FR and

ν/λ = FL/q`) yield the second efficiency condition :

ḞR

FR

=
ḞL

FL

− q̇`

q`

+
M∑

h=1

qh
n +

q`

FL

(
m∑

i=1

F i
Xf i(xi(n))− Fx

m∑
i=1

xi(n)

)
(A.9)

This condition concerns the arbitrage between natural resource and knowl-

edge.
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Appendix B : Arbitrage between resource and

knowledge

The main objective of this appendix is to give a formal interpretation of the

efficiency condition (9) :

ḞR

FR

=
ḞL

FL

− q̇`

q`

+
M∑

h=1

qh
n +

q`

FL

(
m∑

i=1

F i
Xf i(xi(n))− Fx

m∑
i=1

xi(n)

)

We consider two dates, t and t + η, and two intervals of time, (t − dt, t)

and (t + η, t + η + dt), with dt ¿ η. The social planner faces initial profiles

of the different variables, denoted by {Yt}, {Kt}, {ct}, {Rt}, {Lt}, {`t}, {nt},
and, xt(j) for j ∈ [0, nt]. In order to characterize the efficient paths, he

modifies the initial profiles in the following manner (see Figure 1).

On (t − dt, t), he increases the labor used in research and he decreases

the labor used in the final sector. To maintain constant the level of output,

he has to extract more resource. However, the increase in labor devoted to

research allows to increase knowledge.

On (t, t + η), the first increase in knowledge leads to an acceleration of

the auto-accumulation of this good, because the flow of new knowledge at

each date depends on the existing stock (see equation (3)). Then, if the

profile of final output is always kept unchanged, the increase in knowledge

leads to a progressive release of labor that can be also used to accelerate the

accumulation of knowledge.

On (t + η, t + η + dt), the social planner brings back knowledge to its

original trajectory, by decreasing the labor used in this sector. Transfering

this labor to the final output sector, and keeping always constant this output,

he is now able to decrease the flow of extraction.

Finally, an efficient path of the economy is obtained if the initial increase

in the flow of extraction is equal to the final decrease in this flow.
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a) On (t−dt, t), the social planner increases the labor devoted to research

and he decreases the labor used in the final sector. Formally, we have

(∆Lt)dt = (−∆`t)dt < 0. This transfer has two consequences.

First, in order to maintain constant the level of output (Yt), it is nec-

essary to increase the flow of extraction. We obtain

(∆Rt)dt = (∆`t)dt
FL(t)

FR(t)
(B.1)

Second, the trajectory of knowledge is modified. Since ṅt =
∑

h qh(nt, `
h
t ),

we obtain the new trajectory

ñt = nt + q`(t)(∆`t)dt, (B.2)

where q` is the marginal productivity of labor in any firm of this sector.

b) On (t, t+ η), the social planner keeps unchanged all the initial profiles,

except {nt} and {`t}.
The problem is to calculate ñt+η, that is to say the new level of knowl-

edge at the end of this sub-period.

From ṅt =
∑

h qh(nt, `
h
t ), we have ñt+η = ñt +

∫ t+η

t

∑
h qh(ñτ , ˜̀

τ )dτ,

where ˜̀
τ is the new trajectory of `t. This equality can be written

ñt+η = ñt +
∑

h

∫ t+η

t

qh(nτ + ñτ − nτ , `
h
τ + ˜̀h

τ − `h
τ )dτ

Neglecting the second-order terms, we can approximate this expression

by

ñt+η ' ñt

+
∑

h

∫ t+η

t

qh(nτ , `
h
τ )dτ +

∑
h

∫ t+η

t

(ñτ − nt)q
h
n(nτ , `τ )dτ

+
∑

h

∫ t+η

t

˜̀h
τ − `h

τ )q
h
` (nτ , `τ )dτ
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Since qh
` = q` for all h, the last term can be written∫ t+η

t

q`(nτ , `τ )
∑

h

(˜̀hτ − `h
τ )dτ =

∫ t+η

t

(˜̀τ − `τ )q`(nτ , `τ )dτ

From (B.2), ñt = nt+q`(t)(∆`t)dt, and since nt = nt+η−
∑

h

∫ t+η

t
qh(nτ , `

h
t )dτ ,

we obtain finally

ñt+η = nt+η + q`(t)(∆`t)dt +
∑

h

∫ t+η

t

(ñτ − nτ )q
h
n(nτ , `τ )dτ

+

∫ t+η

t

(˜̀τ − `τ )q`(nτ , `τ )dτ (B.3)

Our problem now is to calculate (˜̀τ − `τ ). This can be done by differ-

entiating the production function Y i
τ = F i(Li

τ , R
i
τ ,

∫ nτ

0
f i(xi

τ (j)dj). We

obtain

dY i
τ = F i

LdLi
τ + F i

RdRi
τ + F i

Xf i(xi
τ (nτ))dnτ + F i

X

∫ nτ

0

f i′(xi
τ (j))dxi

τ (j)dj

Since {Yt} and {Rt} are unchanged, we have dY i
τ = 0 and dRi

τ = 0.

Moreover, we use the fact that F i
L does not depend on i, and we denote

it by FL. Then we obtain the new labor devoted to research, ˜̀
τ − `τ =∑

h(
˜̀h
τ − `h

τ ) = −∑
i dLi

τ , given by

˜̀
τ − `τ =

∑
i F

i
Xf i(xi

τ (nτ )dnτ +
∑

i F
i
X

∫ nτ

0
f i′(xi

τ (j))dxi
τ (j)dj

FL

,

where we also have dnτ = ñτ − nτ .

In order to calculate the second term in numerator, let us observe that,

since xi
τ (j) = xi

τ for all j, we have

∑
i

F i
X

∫ nτ

0

f i′(xi
τ (j))dj =

∑
i

F i
Xf i′(xi

τ )

∫ nτ

0

dxi
τ (j)dj = Fx

∑
i

∫ nτ

0

dxi
τ (j)dj,

where F i
Xf i′(xi

τ ) = Fx, for all i, is the marginal productivity of any

intermediate good in the economy.
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Now we remember that each unit of intermediate good is produced with

one unit of capital (see (5) above), that gives Kτ =
∫ nτ

0
(
∑

i x
i
τ (j))dj.

Differentiating this equality with respect to nτ and xi
τ (j), for all j ∈

[0, nτ ], and keeping Kτ constant, gives

∑
i

xi
τ (nτ )dnτ +

∫ nτ

0

∑
i

dxi
τ (j)dj = 0.

Then, the second term in numerator above, Fx

∑
i

∫ nτ

0
dxi

τ (j)dj, be-

comes −Fx

∑
i x

i
τ (nτ )dnτ , where dnτ = ñτ−nτ . The new labor devoted

to research is now given by

˜̀
τ − `τ =

(ñτ − nτ )(
∑

i F
i
Xf i(xi

τ (nτ ))− Fx

∑
i x

i
τ (nτ )

FL

Plugging this expression in (B.3), we obtain

ñt+η = ñt+η + q`(t)(∆`t)dt +
∑

h

∫ t+η

t

(ñτ − nτ )q
h
n(nτ , `τ )dτ

+

∫ t+η

t

q`

FL

(ñτ − nτ )(
∑

i

F i
Xf i(xi

τ (nτ ))− Fx

∑
xi

τ (nτ ))dτ,

and thus

ñτ+η = nτ+η + q`(t)∆`tdt

+

∫ t+η

t

(ñτ − nτ )

[∑
h

qh
n +

q`

FL

(
∑

i

F i
Xf i(xi

τ (nτ ))− Fx

∑
i

xi
τ (nτ ))

]
dτ

(B.4)

c) On (t + η, t + η + dt), n comes back to its original trajectory, that is

to say from ñt+η to nτ+η+dt. This decrease in n allows to release labor

from the research sector. The released labor is given by

∆(`t+η)dt =
nt+η+dt − ñt+η

q`(t + η)
,

where nt+η+dt− ñt+η is approximatively given by (B.4). This labor can

be devoted to the final sector. In other words, we have (∆Lt+ηdt =
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−(∆`t+η)dt, that gives a decrease in the flow of extraction given by

(∆Rt+η)dt = −(∆Lt+η)dt
FL(t + η)

FR(t + η)

=
nt+η+dt − ñt+η

q`(t + η)

FL(t + η)

FR(t + η)
(B.5)

Before comparing (B.1) and (B.5), we can give a simplified expression

of (B.4). When η is little, we can approximate ñτ − nτ by q`(t)(∆`t)dt

(see (B.2)). Then from (B.4), we obtain

ñτ+η − nτ+η '

q`(t)(∆`t)dt

[
1 +

(∑
h

qh
n(t) +

q`(t)

FL(t)

) (∑
i

F i
Xf i(xi

t(nt))− Fx

∑
i

xi
t(nt)

)
η

]
.

Plugging this expression in (B.5), we write the arbitrage equation that

has to be verified along any efficient path, and which says that the

initial increase (∆Rt)dt, given by (B.1), has to be equal to the final

decrease (∆Rt+η)dt, given by (B.4). We obtain

FL(t)

FR(t)
=

q`(t)

q`(t + η)

[
1 +

( ∑
h

qh
n(t) +

q`(t)

FL(t)
(
∑

i

F i
Xf i(xi

t(nt))

−Fx

∑
i

xi
t(nt)

)
η

]
FL(t + η)

FR(t + η)
.

Since η is little, the term

(
FR(t + η)

FR(t)

q`(t + η)

q`(t)

)
/
FL(t + η)

FL(t)
can be ap-

proximated by 1 +

(
ḞR(t)

FR(t)
+

q̇`(t)

q`(t)
− ḞL(t)

FL(t)

)
η.

Finally, the arbitrage equation becomes

ḞR

FR

=
ḞL

FL

− q̇`

q`

+
∑

h

qh
n +

q`

FL

(∑
i

F i
Xf i(xi(n))− Fx

∑
i

xi(n)

)
,

that is exactly the efficiency condition (9) which concerns the arbitrage

between resource and knowledge.
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