N° TSE-961

October 2018

“Analyzing the impacts of socio-economic factors on
French departmental elections with CODA methods”

T.H.A. Nguyen, T. Laurent,
C. Thomas-Agnan, A.Ruiz-Gazen

Toulouse

& %® .School

. . of Economics




Noname manuscript No.
(will be inserted by the editor)

Analyzing the impacts of socio-economic factors on
French departmental elections with CODA methods

T.H.A. Nguyen - T. Laurent -
C. Thomas-Agnan - A. Ruiz-Gazen

Received: date / Accepted: date

Abstract The proportions of votes by party on a given subdivision of a terri-
tory form a vector called composition (mathematically, a vector belonging to a
simplex). It is interesting to model these proportions and study the impact of the
characteristics of the territorial units on the outcome of the elections. In the polit-
ical economy literature, such regression models are generally restricted to the case
of two political parties. In the statistical literature, there are regression models
adapted to share vectors including CODA models (for COmpositional Data Anal-
ysis), but also Dirichlet models, Student models and others. Our goal is to use
CODA regression models to generalize political economy models to more than two
parties. The models are fitted on French electoral data of the 2015 departmental
elections.

Keywords political economy - compositional regression models

1 Introduction

Recently, models for elections focus on analyzing impacts of socio-economic factors
for two-party systems using classical regression models [I]. In this paper, we pro-
pose a statistical model for studying the multiparty system using compositional
data analysis (CODA) with departmental level data. The dependent variable will
be the vector of votes shares for the French departmental election in 2015. The
explanatory variables include some compositional and continuous socio-economic
variables.

Among papers concentrating on the relationship between socio-economic vari-
ables and election results, Beauguitte et Colange (2013) [2] study a linear regres-
sion at three levels of aggregation (polling stations, cities and electoral districts)
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and show that the socio-economic variables are significant. Kavanagh et al (2006)
[3] use geographically weighted regression, which produces parameter estimates for
each data point, i.e. for each electoral division. On the other hand in the statistical
literature, people have developped CODA regression models where the dependent
and independent variables may be compositional variables (see Mert et al. (2016)
[13] for a review). Morais et al. (2017) [4] study the impact of media investments
on brand’s market shares with a CODA regression model. Trinh and Morais (2017)
[5] use a CODA regression model to highlight the nutrition transition and to ex-
plain it according to household characteristics. Honaker et al. (2002) [6], Katz and
King (1990) [7] use a statistical model for multiparty electoral data assuming that
the territorial units yield independent observations.

In Section [2| we present the data set. Subsection (resp: recalls the
principles of compositional data analysis (resp: of compositional regression mod-
els). In subsection we implement the CODA model on the election data set
and present several plots to explore the impact of explanatory variables of a clas-
sical type illustrated by the case of unemployment rate as well as variables of a
compositional type illustrated by the diploma variable.

2 Data

Vote share data of the 2015 French departmental election for 95 departments in
France are collected from the Cartelec websitelﬂ and corresponding socio-economic
data (for 2014) have been downloaded from the INSEE website ﬂ Table [1| sum-

marizes our data set.

Table 1: Data description

Variable name  Description Averageﬁ

Vote share Left(L), Right(R), Extreme Right(XR) 0.37, 0.388, 0.242

Age Age_1840, Age_4064, Age_65. 0.313, 0.432, 0.255

Diploma <BAC, BAC, SUP. 0.591, 0.16, 0.239

Employment AZ, BE, FZ, GU, 0Q 0.031, 0.099, 0.049, 0.439, 0.382
unemp the unemployment rate 0.117

employ_evol Mean annual growth rate of employment (2009-2014) -0.145

owner The proportion of people who own assets 0.616

income. tax The proportion of people who pay income tax 0.552

foreign The proportion of foreigners 0.050

Employment has five categories: AZ (agriculture, fisheries), BE (manufacturing
industry, mining industry and others), FZ (construction), GU (business, transport
and services) and OQ (public administration, teaching, human health). Diploma
has three levels: <BAC for people with at most some secondary education, BAC for
people with at least some secondary education and at most a high school diploma,

L https://www.data.gouv.fr/fr/datasets/elections-departementales-2015-resultats-par-
bureaux-de-vote/

2 https://www.insee.fr/fr/statistiques
3 geometric average in the case of compositional variables
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and SUP for people with a university diploma. The Age variable has three levels:
Age_1840 for people from 18 to 40 years old, Age_4064 for people from 40 to 64
years old, and Age_65 for elderly. For the vote share variable, the Cartelec website
provides a very detailed information. The list of political parties which present
candidates at that election is higher than 15. However, at the end of the election,
it is common to present the results by grouping the political parties into three
main components : Left, Right and Extreme-Right

From the CODA point of view, when compositional data have three compo-
nents, they can be represented in a ternary diagram. For instance, the vote shares
of the 95 departments for the Left and Right wings and the Extreme Right party
are the blue points in Figure [} The red triangle corresponding to the Aube de-
partment on Figure [1| shows that its vote shares of the Left wing, the Right wing
and the Extreme Right party are respectively 17.4%, 54.6%, and 28% . Figure
illustrates the positions of the French departments on the ternary diagram whose
components correspond to the three levels of the diploma variable, and the red
triangle figures the geometric mean (adapted mean for compositional data) of all
departments.

Left r\ight

Figure 1: Vote shares in the 95 departments (blue points) with the Aube depart-
ment as the red triangle

4 for more details, see https://fr.wikipedia.org/wiki/Elections_départementales_francaises_de_2015
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<BA - AC

Figure 2: Components of Diploma in the 95 departments (blue points) and their
geometric mean (red triangle)

3 Compositional data analysis approach

In order to analyze the impacts of the socio-economic factors on the election re-
sults, a CODA regression model is proposed where the dependent variable is a
compositional variable (vote shares) and the independent variables are compo-
sitional or classical variables or a mixture of both. This model is based on the
log-ratio transformation approach.

3.1 Principles of compositional data analysis

A composition x is a vector of D parts of some whole which carries relative infor-
mation. A D-composition x lies in the so-called simplex space SP defined by:

D
sP = {x=(21,...,xp) :x; >0,j = 1,...7D;ij =1}
j=1

The simplex S” can be equipped with the Aitchison inner product ([§] and [9])
in order to define distances. Classical regression models cannot be used directly in
the simplex because the constraints that the components are positive and sum up
to 1 are not compatible with their usual distributional assumptions. To overcome
this difficulty, one way out is to use a log-ratio transformation from the simplex
space S to the Euclidean space RP~!. The classical transformations are alr
(additive log-ratio transformation), clr (centered log-ratio transformation), and
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ilr (isometric log-ratio transformation). The coordinates in the clr transformed
vector are linearly dependent, and the coordinates in the alr transformed vector
are not compatible with the geometry (distance between the components in the
simplex space is different from distance between the coordinates in the Euclidean
space). For these reasons people generally use one of the ilr transformation for
compositional regression models.

An isometric log-ratio transformation (ilr) is defined by:

ilr(x) = Vhin(x)

where the logarithm of x is understood componentwise, V% is a transposed con-
trast matrix [J] associated to a given orthonormal basis (ei, -+ ,ep—_1) of sP
by
Vp =clr(er, - ,ep_1).

Note that such a contrast matrix Vp of size D x (D — 1) satisfies the following
property:
1. VDVlTj =1Ip — %1D><D where Ip is the D x D identity matrix, 1pxp is a

D x D matrix of ones.

2. VEVD =1Ip_1 where Ip_; is the identity matrix with dimension (D — 1).

3. ngp =0p_1 where jp is a D x 1 column vectors of ones.

The following D x (D — 1) matrix Vp defined by Egozcue et al (2003) [10] is an
example of contrast matrix for D = 3

2/v/6 0
V3= |-1/V6 1/V2
—1/V6 —1/V2
This particular matrix defines the following ilr coordinates

ilry (x) = i(210ga:1 —Ilnze —logas) = llog 1

V6 6 T2T3

1 1 T2
ilre(x) = —=(logzo — logxs) = — log —

(%) vi( g g x3) 75198

The first ilr coordinate contains information about the relative importance of the
first component x1 with respect to the geometric mean of the second and the
third components g = /xa2x3. The second ilr coordinate contains information
about the relative importance of the second component x2 with respect to the
third component z3. In our case, the first ilr coordinate opposes the Left wing to
the group of the Right wing and the Extreme Right party and the second opposes
the Right wing to the Extreme Right party. The inverse ilr transformation is given
by:

x = ilr 1 (x*) = Cexp(Vpx™)) for z* € RP™*

where the exponential of vector x is understood componentwise and

D D
C(x) = xl/z Tj,- - ,xD/Z x; | is the closure operation.
=1 i=1
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The vector space structure of the simplex S? is defined by the perturbation and
powering operations:

x®y =C(x1y1,...,xpyp), X, y € S”
A@x:C(x%,...,x%), ) is a scalar, x € S”

The compositional inner product (C-inner product) of x and y in SP is defined
by

D-1 D
Yi T Yi
; Z log—-log;—glogm-log@

where g(x) = {/Z1x2...xp is the geometric mean of the components.
The compositional distance (C—distance) between x and y in S” is derived from
the inner product

1 D—-1 D yi 2 1/2
aley) = (5 X 3 (to T —1og ™)
i=1 j=i+1 J

D . i \? 1/2
(; (o8 5~ s 5 )
The expected value E®Y of a simplex-valued random composition Y € S” (Pawlowsky
[9]) is defined by
argmin, go E(d2(Y,z))
and it is equal to
E®Y = C(exp(Elog Y)) = clr ™ ' (Eclr(Y)) = ilr  (Eilr(Y)) = ilr " (EY™)
where Y* = ilr(Y).

3.2 Compositional regression models

The notations used in this paper are summarized in Table

Variable Notation Coordinates
Dependent Y, =M,...,YL) ilr(Y;) =Y;
Compositional explanatory Xl(.q) = (Xi(f), e XZ.(E))Q) ilr(XEg)) = ng)*
Classical explanatory Zik

General notations

L Number of components of the dependent variable

i=1,...,n Index of observations (n = 95 )

g=1,...,Q Index of compositional explanatory variables (Q = 3)

p=1,...,Dq Index of the coordinates for the compositional explanatory variables

k=1,....K Index of classical explanatory variables (K = 5)

Table 2: Notations
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We now describe the CODA regression model. Y; € S© denotes the compositional
response value of the ith observation, and ng) e SPs g=1,...,Q, denotes the
value of the gth compositional covariate for the ith observation, where Y € S%
and X9 ¢ SPa g=1,...,Q, belong to the simplex spaces ST and SP. Z;p,, k =
1,..., K, denotes the kth classical covariate of the ith observation. Let [ be the
compositional matrix product, which corresponds to the matrix product in the
coordinate space through the ilr transformation

D D

by b

BOx=C | [[z". - ]]="
j=1 ‘

Jj=1

T

where x € SP and B = ((bi;)), i=1,...,L, j=1,...,D, is a parameter matrix
such that the column vectors belong to S, j¥B = 0p, Bjp = 01, where j;, is a
L x 1 column vector of ones, and J% is the transposed of jr..

Let us first introduce the CODA regression model in the ilr coordinate space
as follows:

Q K
iIr(Y:) =bo" + > ilf(X{)Bj + Y Zixch + ilr(e:) (1)
q=1 k=1

where ilr(Y};), ilr(XEq)) are the ilr coordinates of Y5, Xl(-q) (¢g=1,...,Q) respec-
tively; bo*, Bj, ci are the parameters in the coordinate space, and ilr(e;) are
the residuals. The distributional assumption is that ilr(e) follows the multivariate
normal distribution with zero mean and covariance matrix X

This regression model can be written in the simplex as

Q K
Yi:bo@B(q)DXEq)@ZkQCkEBei, t=1,...,n (2)

q=1 k=1
where bo, B(l)7 .. ,B(Q), ci,...,Cx are the parameters satisfying bg € Sk, B ¢

SPa g=1,...,Q, c, € S*, k=1,...,K, jIBY = 0p,, B@jp, = 0, The
distributional assumption is that €; € ST follows the normal distribution on the
simplex (see [g]).

It is classical to estimate model (2) using OLS thus assuming the independence
between the ilr coordinates. Chen et al (2016) [11] give different formulas relating
the parameters in the simplex to the parameters in the coordinate space. Following
Chen et al.(2016) [11] (Property 2.1 and Property 2.3(3)), we extend this result
to the case of an additional non-compositional covariate: we calculate the sum
of the squared norm of the residuals and derive the estimators from the normal
equations. We obtain that:

Theorem 1 In model —@, the relationship between the parameters in the sim-
plex and their counterpart in coordinate space is given by
bo = eXp(bo*TVL) = ’L‘lril(bo*)
B, =V} BV, (3)
cr = exp(ciVy) = ilr—*(c})

where Vi, and Vp,, ¢q=1,...,Q are contrast matrices associated to the selected
ilr transformations.
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3.3 Impact of compositional and classical explanatory variables

Because the interpretation of the parameters of these models is not so straight-
forward [12], we rather concentrate on illustrating graphically the relationship
between the predicted vote shares and the explanatory variables. The prediction
of the dependent variable for the above models are given by (4):

Q K
YAvZ':E)o@BqE’XEQ)@Zik O¢x i=1,...,n (4)
q=1 k=1

where bo, B, and & are the estimated parameters. We can rewrite (4) as

. . (8 B LS
Y.=cC <b0. (H X ") . ( éfk)) i=1,...n (5)
q=1 k=1

In order to illustrate these formulas, we will focus on graphing the predicted values
of the dependent variable as a function of one specific variable of interest: two
cases must be considered depending on whether the specific variable is classical or
compositional. In both cases, we will create a grid of potential values of the specific
explanatory and fix the other explanatory variables at the values they take for one
selected point of the dataset (we repeat for several selected points). For the sake
of simplicity let us take L = 3.

For the case when the specific variable is a classical covariate Z; , from
there exists 49 € S” (this term contains the impacts of all other explanatory but
is constant when Z;j, alone varies) such that

S A N JU . ik
Y; = aO@Zik oec=C_C <G/01C11k7"' ,GOLCL”‘)

With T = bo1¢Z%* + - - - 4 bop.éZ*, we get

~ ~Z: ~ N ~ ~Z
g amEt o aods™ o doréf”
il_Ta iQ_TW”a iL—T

Now for the case when the specific variable is a compositional variable Xi(q),
let us take for the sake of simplicity D, = 3. As before, from , there exists
ap € St (this term contains the impacts of all other explanatory but is constant

when X fq) alone varies) such that

N B,
Y =aoPX
ACH S Bl G pla) pla)
= Clam X7 X X a0 X X X
pla) pla) bl

&OBX,‘(f) 31 Xz(g) 32 Xz(g) 33 )

We now fit a CODA regression model describing the impacts of socio-economic
factors on vote shares in the 2015 French departmental election.
After including all explanatory variables from our data set in the regression model,

and eliminating one by one the variables which are not significant, we obtain the
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results in Table 3] This model shows that the age of people, the proportion of
people who own assets, the proportion of foreigners do not have any impact on the
vote shares. However, the levels of education, the working areas, the unemployment
rate and the proportion of people who pay income tax really affect the result of
the French departmental election in 2015.

Dependent variable:

y.ilt[, 1] y.ilt], 2]
Diplomeilr1 —2.06(0.54)**  —1.51(0.46)**
Diplome_ilr2 —1.28(0.80) —2.07(0.67)**
Employ._ilrl —0.05(0.30) —2.12(0.34)
Employ_ilr2 +0.12(0.37) —2.62(0.46)**
Employilr3 +0.30(0.30) —2.12(0.34)
Employ_ilr4 40.13(0.11) —2.62(0.46)-
unemp._rate —7.65(3.16)* —2.12(0.34)***
income_tax_rate +2.04(1.37) —2.62(0.46)***
Constant —2.324(1.15)* —4.80(0.97)***
R? 0.30 0.62
Adjusted R? 0.23 0.59
Residual Std. Error (df = 86)  0.30 0.26
F Statistic (df = 8; 86) 4.602*** 17.85%**
Note: *p<0.1; **p<0.05; ***p<0.01

Table 3: Regression with compositional and classical variables

In order to illustrate the impact of unemployment on the predicted shares,
we choose three departments Ariege, Cantal and Bas-Rhin with different charac-
teristics: Ariege has the maximum Left wing share, Cantal the maximum Right
wing share and Bas Rhin has the minimum Left wing share. We fix the values of
the covariates at the values of each of the three departments and create a grid
of fictive values of unemployment rates. Figure [3| shows the predictions of vote
shares in these departments Ariege, Cantal and Bas-Rhin as a function of unem-
ployment rate (its minimum and maximum in the data base are figured by the
dotted vertical lines). We first of all see the non linear nature of the relationship,
and the fact that they differ from one department to the other. Note that the
predicted shares using this model satisfy the constraint of unit sum and it clearly
shows on the graph. In all cases, when the unemployment rate increases up to a
given threshold of around 15%, the Left wing and the Extreme Right party gain
votes at the expense of the Right wing. However, if unemployment keeps increas-
ing beyond 15%, the Left wing starts loosing votes while the Right wing keeps
decreasing and the Extreme Right keeps increasing. Overall, we can say that as
unemployment rate varies, the Left wing proportion is more stable than the other
two parties and that the other two parties affect each other like interconnecting
pipes. Even though the three departments curves have the same general shape,
we note differences: the maximum of the Left wing share is the highest in Ariege
and lowest in Bas-Rhin; it is striking that the point at which the Left wing share
and the Right wing share are equal is obtained at approximately the same value
of unemployment rate in the three department but corresponds to different values
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of the common Left wing- Right wing share; this value is lower than the maximum
Left wing share in Ariége whereas it is slightly higher in Bas-Rhin. A major differ-
ence between the three departments is revealed when one looks at the highest of
the three predictions: in Ariege, all realistic scenarios (between two vertical lines)
result in a victory of the Left wing, in Cantal, all three parties may win depending
on the value of unemployment and finally in Bas-Rhin there is no scenario leading
to a victory of the Left wing . To represent this differently, we plot on Figure [d a
ternary diagram showing the curve of predicted shares as a function of unemploy-
ment rates together with a small square figuring the observed position of the given
department in the triangle and a small diamond the corresponding prediction on
the curve. The curve, a line in the simplex, is colored according to the value of
unemployment rate. The Cantal department is better predicted than the Ariege
and Bas-Rhin departments. We also note that the maximum predicted proportion
for the Left wing is lower in the Bas-Rhin than in the other two departments.
Finally, the triangle is divided in three parts with respect to the highest shares to
highlight the winning party as in Figure

Ariege Cantal Bas-Rhin

| Right
| Left
@ XR

0.4 \

0.2+

04 T T T T T 2 T T
0.00 005 010 01s 0.20 025 0.00 005 010 015 020 0.25 0.00 005 010 015 020 025
Unemployment rate Unemployment rate Unemployment rate

T o T

Figure 3: The vote share prediction curves in three departments: Ariege, Cantal,
Bas-Rhin respectively (the grey dotted line show the minimum and the maximum
observed unemployment rates)
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Ariége Cantal Bas-Rhin

Unemployment rate = Observed
XR XR XR
O [0:0.03( 4 Predicted
O [0.03,0.06]

O [0.06:0.08] /
O [0.08:0.11] H

B [0.11;0.14] H i i
B (014017
m (017019
W [0190.22]
m [0.22:0.25(

Left Right Left Right Left Right

Figure 4: The vote share prediction ternary diagrams for fixed covariates given
by three departments: Ariege, Cantal, Bas-Rhin respectively as a function of the
unemployment rate. The green squares show the observed vote share of these de-
partments and the green triangles on the red curve the corresponding predictions.

Let us now turn attention to the case of a compositional explanatory variable
impact. F igure presents the vote share predictions according to the Diploma vari-
able in the same three departments (Ariége, Cantal and Bas-Rhin). The principle
is the same: all explanatory variables are fixed to the value of the given depart-
ment except Diploma. We create of grid in the Diploma triangle and compute the
predicted shares at each point of this grid. However since it is impossible to plot
a function from the simplex to the simplex, we choose to summarize the predicted
shares by the winning party (corresponding to the highest share) and color the
triangle in the Diploma space according to the winning party color. The observed
shares are also figured by black points in this ternary diagram thus showing the re-
alistic values. This figure shows that there is a large proportion of fictive situations
(in terms of diploma proportions) where the Left party would win.

Ariége Cantal
B Right up
| Left
@ XR

<BAC

Figure 5: Predictions of vote shares according to Diploma for fixed covariates
given by the departments Arige (left plot), Cantal (middle plot) and Bas-Rhin
(right plot)



12 T.H.A. Nguyen et al.

4 Conclusion

The above analysis demonstrates that the CODA regression models can be useful
in the context of political economy. We analyze how the predicted values in these
models vary with the predictors and propose new graphical tools to explore the
impact of some socio-economic variables on election results. Our future perspec-
tives are to introduce the geographical dimension in the model and to use the
Student distribution (Katz and King, 1999 [7]) instead of the normal distribution.
At last, we plan to compute the elasticities as in [I2] to characterize the impacts
of the covariates in a more quantitative way.

Acknowledgments. We thank professor Le Breton for introducing us to this
topic of political science and for nice discussions.
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