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Abstract

In stochastic frontier models, the regression function defines the production frontier and the re-
gression errors are assumed to be composite. The actually observed outputs are assumed to be
contaminated by a stochastic noise. The additive regression errors are composed from this noise
term and the one-sided inefficiency term. The aim is to construct a robust nonparametric estima-
tor for the production function. The main tool is a robust concept of partial, expected maximum
production frontier, defined as a special probability-weighted moment. In contrast to the deter-
ministic one-sided error model where robust partial frontier modeling is fruitful, the composite
error problem requires a substantial different treatment based on deconvolution techniques. To
ensure the identifiability of the model, it is sufficient to assume an independent Gaussian noise.
In doing so, the frontier estimation necessitates the computation of a survival function estimator
from an ill-posed equation. A Tikhonov regularized solution is constructed and nonparametric
frontier estimation is performed. The asymptotic properties of the obtained survival function
and frontier estimators are established. Practical guidelines to effect the necessary computations
are described via a simulated example. The usefulness of the approach is discussed through two
concrete data sets from the sector of Delivery Services.
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1. Introduction

1.1. Deterministic frontier estimation

In deterministic nonparametric frontier models, the data

Yj “ ϕpXjq ´ Uj , j “ 1 . . . , n,

are observed, where Xj P Rp` represents a vector of input factors (e.g., labor, energy, capital) used to

produce an output Yj P R` in a certain firm j, with ϕp¨q being the production function and Uj ě 0 being the

inefficiency term. In contrast to standard regression models, the observation errors pUjq are assumed to be

one-sided instead of centred, and hence the regression function ϕ describes some frontier or boundary curve.
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For a fixed level of inputs-usage x P Rp`, the frontier point ϕpxq gives the achievable maximum output. A

closed form expression of ϕpxq has been introduced by Cazals et al. (2002) in terms of the non-standard

conditional distribution of Y given X ď x. If pΩ,A,Pq denotes the probability space on which the random

vector pX,Y q P Rp`1
` is defined and

FY |Xpy|xq “ PpY ď y |X ď xq with FXpxq :“ PpX ď xq ą 0,

then ϕpxq can be characterized as the conditional right endpoint

ϕpxq “ supty ě 0 |FY |Xpy|xq ă 1u. (1)

This frontier function is isotonic nondecreasing in x. It is actually the lowest monotone function which

envelops the upper extremity, say ϕupxq, of the support of pX,Y q at X “ x. Generally speaking, ϕpxq

equals supx1ďx ϕ
upx1q. Production econometrics leads to the natural assumption that the true upper support

boundary ϕupxq is itself nondecreasing, and hence it coincides with ϕpxq. However, one can use only the

observations in a local strip around x to estimate ϕupxq because of its local nature. Consideration of ϕpxq is

advantageous as it offers estimation at a faster rate. By replacing FY |Xpy|xq in (1) with its empirical version

pFY |Xpy|xq “
n
ÿ

i“1

1IpXi ď x, Yi ď yq{
n
ÿ

i“1

1IpXi ď xq,

where 1Ip¨q stands for the indicator function, Cazals et al. (2002) recover the pioneering Free Disposal Hull

(FDH) estimator of Deprins et al. (1984):

pϕpxq “ supty ě 0 | pFY |Xpy|xq ă 1u “ max
i:Xiďx

Yi. (2)

Its full asymptotic theory has been elucidated in a general setting from the perspective of extreme value

theory in Daouia et al. (2010, 2014). The major drawback of pϕpxq is its lack of robustness to outliers. To

remedy this vexing defect, Cazals et al. (2002) have proposed to first estimate a partial frontier well inside

the joint support of pX,Y q and then to shift the obtained estimate to the true full support boundary. Their

main tool is the partial production function of order m P t1, 2, . . .u defined as

ψmpxq “ E
“

maxpY 1, . . . , Y mq|X ď x
‰

“

ż 8

0

`

1´ rFY |Xpy|xqs
m
˘

dy,

where pY 1, . . . , Y mq are i.i.d. random variables generated by the conditional distribution of Y given X ď x.

The quantity ψmpxq gives the expected maximum achievable output among a fixed number of m firms using

less inputs than x. It converges to the true production function ϕpxq as m Ñ 8. Likewise, its empirical

counterpart

pψmpxq “

ż 8

0

`

1´ r pFY |Xpy|xqs
m
˘

dy “ pϕpxq ´

ż

pϕpxq

0

r pFY |Xpy|xqs
m dy

achieves the envelopment FDH frontier pϕpxq as m Ñ 8. Then, the use of pψmpxq instead of pϕpxq, for an

appropriate large value of m, could help the practitioners to achieve their objective of ‘robustification’. Yet,
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this device is not without disadvantages. One of the main criticisms on the partial frontier ψmpxq and its

estimate pψmpxq is their failure to fulfill the monotonicity property of the efficient full frontier ϕpxq. This

property, referred to as non-negative marginal productivity, is a minimal requirement from the point of view

of the axiomatic production theory. Another desirable property of any benchmark partial frontier, as argued

by Wheelock and Wilson (2008), is to closely parallel the true production frontier. However, due to the

conditioning by X ď x, both ψmpxq and pψmpxq diverge from ϕpxq as the input level x increases. Also, for

large values of m, the estimates pψmpxq coincide with the non-robust FDH frontier pϕpxq for small values of

x. In all of these aspects, Daouia et al. (2018) have recently suggested a better alternative by transforming

first the pp`1q-dimensional vector pX,Y q and its independent copies pXi, Yiq into the dimensionless random

variables

Y x “ Y 1IpX ď xq and Y xi “ Yi1I pXi ď xq , i “ 1, . . . , n, (3)

whose common unconditional distribution function FY xp¨q is closely related to FY |Xp¨|xq:

FY xpyq “
 

1´ FXpxqr1´ FY |Xpy|xqs
(

1Ipy ě 0q. (4)

A nice property of these transformed univariate random variables lies in the fact that

ϕpxq ” supty ě 0 |FY xpyq ă 1u,

pϕpxq ” supty ě 0 | pFY xpyq ă 1u “ maxpY x1 , . . . , Y
x
n q, (5)

where pFY xpyq “ p1{nq
řn
i“1 1IpY xi ď yq. Then, Daouia et al. (2018) define the new concept of partial

m-frontier

ϕmpxq “ E
“

maxpY x1 , . . . , Y
x
mq

‰

“

ż 8

0

`

1´ rFY xpyqs
m
˘

dy, (6)

as the expected maximum of m independent copies of Y x. This anchor production function is identical to

the expectation of the FDH estimator based on the m-tuple of observations Y x1 , . . . , Y
x
m. It achieves the

optimal frontier ϕpxq when mÑ8. Its empirical version

pϕmpxq “

ż 8

0

`

1´ r pFY xpyqs
m
˘

dy “ pϕpxq ´

ż

pϕpxq

0

r pFY xpyqs
m dy (7)

converges to the FDH frontier pϕpxq as mÑ8. Both the unconditional expected maximum output frontiers

ϕmpxq and their estimators pϕmpxq share the fundamental property of monotonicity. Their superiority over

the conditional versions ψmpxq and pψmpxq was also established from a robustness theory point of view.

Furthermore, they do not suffer from border and divergence effects for small or large levels of inputs. Also,

the selection problem of an appropriate trimming number m in pϕmpxq tends to be easier than in pψmpxq.

The asymptotic distributional properties of both partial and full frontier estimators have been derived as

well under the deterministic frontier model Yj “ ϕpXjq ´ Uj , j “ 1 . . . , n.
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1.2. Stochastic frontier estimation

For a practitioner it would be more realistic to assume that the outputs are contaminated by an additive

stochastic error. That is, the actually observed outputs are

Zj “ Yj ` εj , j “ 1 . . . , n, (8)

instead of Yj , where εj denotes a stochastic noise. This results in the composite-error model

Zj “ ϕpXjq ´ Uj ` εj , j “ 1 . . . , n. (9)

The issue of frontier estimation in such a model goes back to the works of Aigner et al. (1977) and Meeusen

and van den Broeck (1977). Typically, it is assumed that ϕ has a parametric structure (like Cobb-Douglas or

translog), εj is normally distributed and Uj is generated by some specified parametric one-sided distribution

(often Half-normal, exponential, truncated normal or gamma). Parametric techniques of estimation include

modified least-squares and maximum likelihood methods, see for instance Greene (2008) for a survey. More

recently some attempts have been proposed to relax the parametric restrictions. Of course, a fully nonpara-

metric frontier model allowing convolution of inefficiency and a two-sided noise is not identifiable as shown by

Hall and Simar (2002). Some amount of structure is then required to allow identification. One approach is to

leave only ϕ unspecified, while specifying a parametric density for inefficiency and an independent Gaussian

noise, both being homoskedastic. This semi-parametric approach has been investigated by Fan et al. (1996).

It is appealing but still very restrictive: both the homoskedasticity assumption and the choice of a para-

metric density for U may be problematic and could introduce misspecification and statistical inconsistency.

Alternatively, Kumbhakar et al. (2007), Simar and Zelenyuk (2011) and Simar et al. (2017) suggest the

use of local maximum likelihood or least-squares techniques, allowing heteroskasticity and functional forms

for the local parameters. The main drawbacks of these approaches are the computational burden to select

optimal bandwidths and the fact that they still rely on local parametric specifications for the distribution of

Uj .

In this paper we adopt a different strategy based on deconvolution techniques. In the standard deconvo-

lution problem (8), the observed data Zj are used to estimate the unknown density of the latent signal Yj .

Most of the literature in this area supposes that the noise εj has a known density (e.g., Gaussian with known

variance) and presents kernel estimation methods such as, for instance, Carroll and Hall (1988), Stefanski

and Carroll (1990), and Fan (1991a, 1991b). Meister (2006) deals with the density estimation problem based

on a normally distributed error εj whose variance is unknown. These ideas have been applied by Horrace

and Parmeter (2011) to the case of an unknown homoskedastic inefficiency term and independent Gaussian

noise with unknown variance, but the frontier remains fully specified by a parametric model. More recently

in Kneip et al. (2015), the unspecified inefficiency distribution is estimated by simple histograms, then a

simultaneous estimation of the boundary and the variance of the Gaussian noise is performed via a penalized

likelihood method. This procedure provides, however, estimators with disappointing rates of convergence.
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The alternative approach that we propose to address the deconvolution problem is by applying a Tikhonov

regularization technique [see, e.g., Engl et al. (2000)] in conjunction with the ‘robustified’ concept of un-

conditional expected maximum production frontiers tϕmpxqu described in (6). For a prespecified predictor

value of interest x, we only assume that the density of ε given X ď x is known (e.g., Gaussian with known

variance). Before estimating the frontier point ϕpxq under the composite-error model (9), a main tool is to

first estimate the regular partial frontier ϕmpxq which tends to ϕpxq as the trimming order mÑ8. In doing

so, this necessitates the computation of an estimator for the distribution function FY xp¨q in (4) from an

ill-posed equation. A Tikhonov regularized solution is constructed in Section 2 and its asymptotic properties

are derived in Section 3, including the rate of convergence of quadratic risk and the asymptotic normality of

scalar products. Section 4 describes how to estimate in a second stage both ϕmpxq and ϕpxq. We establish

the asymptotic normality for the ϕmpxq estimator and the rate of convergence of quadratic risk for the ϕpxq

estimator. In Section 5 we first indicate how to implement the procedure with a simulated example, then

we estimate the production frontier from two concrete datasets in the sector of Delivery Services. Section 6

concludes and the Appendix collects the proofs.

2. Deconvolution and Tikhonov regularization

Throughout this paper we consider the stochastic model described in (9), namely

Yj “ ϕpXjq ´ Uj , j “ 1 . . . , n,

where pXj , Yjq P Rp` ˆ R` are i.i.d. random vectors, with ϕp¨q being the unknown frontier function and

Uj ě 0 being the inefficiency term, but the actually observed outputs are Zj “ Yj ` εj instead of Yj , where

εj denotes a stochastic noise satisfying the condition that

(C.1) εj is independent of Yj given Xj ď x,

for a prespecified level of inputs x such that FXpxq ą 0. We also assume that

(C.2) the density of εj given Xj ď x is fully known.

Our objective is to first estimate the distribution function FY xp¨q of the dimensionless variable Y x defined

in (3), or equivalently, its survival function SY x :“ 1´FY x from the noisy data tpXj , Zjq|j “ 1, . . . , nu, and

then to use the corresponding plug-in frontier estimators pϕpxq and pϕmpxq described in (5) and (7).

2.1. Deconvolution problem

Let SZxp¨q and Sεxp¨q denote the survival functions of the random variables

Zx “ Z1IpX ď xq and εx “ ε1IpX ď xq.

It is easily seen that, for all z P R,

SZxpzq ´ Sεxpzq “
“

SZ|Xpz|xq ´ Sε|Xpz|xq
‰

FXpxq,
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where SZ|Xpz|xq :“ PpZ ą z|X ď xq and Sε|Xpz|xq :“ Ppε ą z|X ď xq. On the other hand, since

SY |Xpy|xq “ 1 for all y ď 0, simple calculations lead to the following equation defining the convoluted

conditional survivor function of Z, for any z P R,

SZ|Xpz|xq ´ Sε|Xpz|xq “

ż z

´8

SY |Xpz ´ ε|xq ¨ fε|Xpε|xq dε,

with SY |Xpy|xq :“ 1´ FY |Xpy|xq and fε|Xp¨|xq being the density function of ε given X ď x. It follows that,

for all z P R,

SZxpzq ´ Sεxpzq “

ż 8

0

SY |Xpy|xq ¨ FXpxq ¨ fε|Xpz ´ y|xq dy

“

ż 8

0

SY xpyq ¨ fε|Xpz ´ y|xq dy. (10)

By the assumption (C.2) that the density fε|Xp¨|xq is fully known, the problem reduces to solving the

integral equation (10) in SY xp¨q in terms of SZxpzq ´ Sεxpzq. Given that

Sεxpzq “

$

&

%

Sε|Xpz|xqFXpxq if z ě 0

Sε|Xpz|xqFXpxq ` 1´ FXpxq if z ă 0,

our estimator would then be obtained by plugging the empirical pSn,Zxp¨q and pSn,εxp¨q survivors given by

pSn,Zxpzq “
1

n

n
ÿ

j“1

1IpZxj ą zq, where Zxj :“ Zj1IpXj ď xq, for each j “ 1, . . . , n,

pSn,εxpzq “ Sε|Xpz|xq pFXpxq ` r1´ pFXpxqs1Ipz ă 0q, with pFXpxq “
1

n

n
ÿ

j“1

1IpXj ď xq.

Technically we have actually to solve the integral equation (10) in SY xp¨q in terms of pSn,Zxp¨q and pSn,εxp¨q.

This is a deconvolution problem which is well known to be an ill-posed inverse problem. One way to see

this is by trying to solve (10) via characteristic functions. Denote by ψY xp¨q and ψY |Xp¨|xq the characteristic

functions for Y x and Y given X ď x, respectively. We have

ψY xptq “ ´

ż 8

´8

eity dSY xpyq ” FXpxq ¨ ψY |Xpt|xq,

where i2 “ ´1. If ψY xptq would be known, then by Fourier inversion [see, e.g., Lukacs (1960)], SY xpyq could

be computed as

SY xpyq “ 1´
1

2π

ż 8

´8

1´ e´ity

it
ψY xptq dt.

Thus what we need is to determine ψY xptq. Since Y is independent of ε given X ď x, we directly get

ψY |Xpt|xq “
ψZ|Xpt|xq

ψε|Xpt|xq
,

where ψZ|Xp¨|xq and ψε|Xp¨|xq are the characteristic functions of Z and ε given X ď x, respectively. This

leads to

ψY xptq ” FXpxq ¨
ψZ|Xpt|xq

ψε|Xpt|xq
,
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with ψε|Xp¨|xq being known. Therefore good estimates of ψY xptq could be obtained from accurate estimates

of ψZ|Xpt|xq and the empirical marginal distribution function pFXpxq of X. However, for large values of |t|,

ψε|Xpt|xq converges to zero making the estimation of ψY xptq notoriously difficult even if good estimates of

ψZ|Xpt|xq are available.

In order to regularize this ill-posed problem, we can use for instance truncation methods or deconvoluted

kernel methods [see, e.g., Fan (1991a) for details]. Yet, given that the support of SY xp¨q is bounded with

upper endpoint ϕpxq, it is more natural to solve the equation (10) by staying in the space of survivor functions.

Of course this remains an ill-posed inverse problem as described below, and so some regularization will be

needed. Built on the ideas of Hall and Meister (2007) and Carrasco and Florens (2009), we propose in the

next section to pose the deconvolution problem in the usual Tikhonov regularization framework. The main

advantage of this procedure is its computational expedience. We refer to Van Rooij and Ruymgaart (1999),

and the references therein, for more thorough discussion of the rationale for this elegant device.

2.2. Tikhonov regularization

Our main objective here is to estimate the unconditional survivor function SY x . Survivor functions are

typically assumed to belong to some Hilbert space of square-integrable functions with respect to appropriate

weight functions:

(H.1) SY xp¨q P E :“ L2
`

r0,8q
˘

,

where E is endowed with the norm ||g|| “
`ş8

0
g2puqdu

˘1{2
ă 8, for all g P E . Note that this condition is

explicitly satisfied in our setup, since ||SY xp¨q||
2 ď

ş8

0
SY xpuqdu ď ϕpxq. We shall need also the following

condition on the noise density:

(H.2) fε|Xp¨|xq is square integrable, i.e.,
ş8

´8
f2ε|Xpu|xq du ă 8.

Consider now the Hilbert space F “ L2pR, wq, where w stands for a probability measure. It is easily

seen that SZxp¨q ´ Sεxp¨q P F by using (10) and applying the fact that

ż 8

´8

„
ż 8

0

SY xpyq ¨ fε|Xpz ´ y|xq dy

2

wpzq dz ď

ż 8

´8

ż 8

0

S2
Y xpyq f

2
ε|Xpz ´ y|xqwpzq dy dz (11)

in conjunction with (H.2), which also implies that

ż 8

´8

ż 8

0

f2ε|Xpz ´ y|xqwpzq dy dz ă 8. (12)

Hence, the basic integral equation (10) involves the operator K : E Ñ F defined as

KSY x “ SZx ´ Sεx , (13)

or equivalently
`

KSY x
˘

pzq “

ż 8

0

SY xpyq ¨ fε|Xpz ´ y|xq dy. (14)
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This is an integral operator with kernel fε|Xpz ´ y|xq P L
2
`

Rˆ R, 1Ipx ě 0qwpzq
˘

, in view of (12). As such,

K is a Hilbert-Schmidt integral operator allowing a discrete Singular Value Decomposition (SVD), which is

also compact [see, e.g., Kreiss (1999) for mathematical details and Carrasco et al. (2007) for econometrics

considerations]. We also note that this operator is injective, since φ P E such that Kφ “ 0 implies φ “ 0.

This follows immediately when looking to (14).

Let now K˚ be the adjoint operator of K. By definition, for any g P E and ψ P F , the scalar products

xKg,ψyF in F and xg,K˚ψyE in E are equal, so we have

xKSY x , ψyF “

ż 8

´8

ψpzq

"
ż 8

0

SY xpyq ¨ fε|Xpz ´ y|xq dy

*

wpzqdz

“

ż 8

0

SY xpyq

"
ż 8

´8

ψpzq fε|Xpz ´ y|xqwpzqdz

*

dy

“ xSY x ,K
˚ψyE .

This allows to identify the adjoint operator as

`

K˚ψ
˘

pyq “

ż 8

´8

ψpzq fε|Xpz ´ y|xqwpzqdz. (15)

It is well known that the equation (13) is ill-posed in the sense that the problem

SY x “ argmin
SPE,S:RÑr0,1s

||KS ´ pSZx ´ Sεxq||
2 (16)

has not a well-defined solution. The rationale behind this ill-posedness can be explained by making use of

the discrete SVD of K. We know that there exists a sequence pλj , φj , ζjqjě1, with λj P R` and tφjuj (resp.

tζjuj) being an orthonormal basis of E (resp. of F), such that for all j,

Kφj “ λjζj , K˚ζj “ λjφj .

Since K is compact, the sequence of λj ’s may be ranked so that λ1 ě λ2 ě . . . ą 0, with zero being an

accumulation point of the λj ’s. Note that K˚Kφj “ λ2jφj , which indicates that the inverse of the operator

K˚K will be unstable as many of the λj are near zero. Accordingly, there is no hope to solve the normal

equations K˚KSY x “ K˚pSZx ´ Sεxq [first order conditions] coming from the problem (16). This also

appears when writing equivalently

SZx ´ Sεx “
ÿ

j

xSZx ´ Sεx , ζjyζj , (17)

SY x “
ÿ

j

xSY x , φjyφj , (18)

which leads to KSY x “
ř

j λjxSY x , φjyζj . Solving (16) would yield the identification of SY x via the equations

xSY x , φjy “
xSZx ´ Sεx , ζjy

λj
,

and then we would obtain SY x by (18). Again, this is rather unstable when λj are near zero. Instead,

the Tikhonov regularization consists in replacing the ratios 1{λj in the latter equation by λj{pα ` λ2j q for
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some α ą 0. It is not hard to verify that this corresponds to replace the least squares problem (16) by the

following regularized version

SαY x “ argmin
SPE,S:RÑr0,1s

 

||KS ´ pSZx ´ Sεxq||
2 ` α||S||2

(

,

where the parameter α ą 0 is actually introduced in order to regularize the behavior of pK˚Kq´1. The

solution is given by the normal equations

αSαY x `K
˚KSαY x “ K˚pSZx ´ Sεxq,

so that the regularized solution has the usual form

SαY x “ pαI `K
˚Kq´1K˚pSZx ´ Sεxq. (19)

This motivates us to estimate SY x by the empirical version pSαY x : RÑ r0, 1s defined as

pSαY x “ argmin
SPE,S:RÑr0,1s

!

||KS ´ ppSn,Zx ´ pSn,εxq||
2 ` α||S||2

)

“ pαI `K˚Kq´1K˚ppSn,Zx ´ pSn,εxq. (20)

The practical computation of this estimator requires first the characterization of K˚K. For any g P E , we

have

pKgqpzq “

ż 8

0

gpξqfε|Xpz ´ ξ|xq dξ,

and hence

pK˚Kgqpyq “

ż 8

´8

fε|Xpz ´ y|xq

"
ż 8

0

gpξqfε|Xpz ´ ξ|xq dξ

*

wpzqdz “

ż 8

0

gpξq cpy, ξq dξ,

where

cpy, ξq :“

ż 8

´8

fε|Xpz ´ y|xqfε|Xpz ´ ξ|xqwpzqdz (21)

defines the kernel of K˚K, which is symmetric in both y and ξ. The normal equation to be solved can then

be formulated, for any y ě 0, as

αpSαY xpyq `

ż 8

0

pSαY xpξq cpy, ξq dξ “ bpy|xq, (22)

with

bpy|xq “

ż 8

´8

ppSn,Zxpzq ´ pSn,εxpzqqfε|Xpz ´ y|xqwpzqdz. (23)

A numerical solution to this equation can be achieved in practice via discretization. Consider a regular grid

of fixed values yj for j “ 1, . . . , k, with constant spacing ∆y, covering the range of Y . We shall need to

choose a value of k sufficiently large so that the numerical error due to discretization has lower order than

the statistical error. Equation (22) can then be formulated into the discrete version

αSi `∆y

k
ÿ

j“1

Sj Cij “ bi, i “ 1, . . . , k,
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where Si “ pSαY xpyiq, bi “ bpyi|xq and Cij “ cpyi, yjq. Equivalently, this translates in terms of simplified

matrix notations to

αS `∆yCS “ b

whose exact solution is

S “ pαIk `∆yCq
´1b, (24)

with S “ pS1, . . . , Skq
T , b “ pb1, . . . , bkq

T , and C being the k ˆ k matrix of coefficients Cij . Thus, the

regularized estimator of the survivor function is very easy and fast to compute over the chosen grid of values

for Y . Note that the evaluation of b and C only requires the calculation of univariate integrals. It should

also be clear that the regularization comes from the Tikhonov step and not from the projection on the finite

set of values for Y that we can choose as large as we want.

3. Properties of the estimated survival function

This section presents (i) an indicative rate of convergence of the quadratic risk for the regularized esti-

mator pSαY x , (ii) sufficient conditions for its asymptotic normality, and (iii) practical guidelines to select the

regularization parameter α via an iterated Tikhonov technique.

3.1. Quadratic risk Ep||pSαY x ´ SY x ||2q

To derive the rate of convergence of the quadratic risk for the regularized estimator pSαY xp¨q, we shall

need the extra “source regularity assumption” on the signal SY xp¨q, which is standard in the Tikhonov

regularization framework:

(H.3) For some β P p0, 2s, SY x P Range
`

K˚K
˘β{2

.

This means that SY x “
`

K˚K
˘β{2

δ, for a certain function δ P E . This Hölder type condition is needed

to control SαY x ´ SY x , the bias introduced by the regularization. We give in Appendix A.2 two examples

illustrating (H.3).

Theorem 1. Let x P Rp` be fixed such that 0 ă FXpxq ă 1. Under Assumptions (H.1), (H.2)and (H.3),

as nÑ8 with α “ O
`

n´1{pβ`1q
˘

,

E
´

||pSαY x ´ SY x ||
2
¯

“ O
`

n´β{pβ`1q
˘

.

The key element in the proof is decomposing the quadratic risk into a squared bias term ||SαY x ´ SY x ||
2

and a variance term E
´

||pSαY x ´ S
α
Y x ||

2
¯

.

Lemma 1. Under Assumptions (H.1), (H.2)and (H.3), we have for all α ą 0,

||SαY x ´ SY x ||
2 “ Opαβq.
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Lemma 2. Under Assumptions (H.1)and (H.2), we have for all α ą 0,

E
´

||pSαY x ´ S
α
Y x ||

2
¯

“ O
´ 1

αn

¯

.

The analysis of the variance term does not require Assumption (H.3). This condition is only needed to

control the bias term. If it is not satisfied, a different proof may show that the bias term goes to zero when

αÑ 0 [see, for instance, Kreiss (1999), Section 16.5]. It follows then that E
´

||pSαY x ´ SY x ||
2
¯

Ñ 0 if αÑ 0

and αnÑ8.

Remark 1. The so-called source condition (H.3) eliminates pathological cases leading to very low rates

of convergence such as, for instance, logpnq [see Carrasco and Florens (2009)]. Note that this assumption

is not incompatible with normal errors as shown in Appendix A.2 through a simple example. In case of a

normal error, it just requires that the signal be sufficiently regular. This source condition may be derived

from a degree of ill-posedness (linked to the smoothness of the error distribution) and from a regularity of

the unknown distribution [more details can be found in e.g. Carrasco et al. (2014)]. Intuitively, the degree

of ill-posedness depends on the rate of decline of ψε|Xpt|xq, and the degree of regularity depends on the rate

of decline of ψY |Xpt|xq. Assumption (H.3) warrants a compatibility condition between these two rates.

Remark 2. In what concerns the squared bias term, even if ||SαY x´SY x ||
2 Ñ 0 as αÑ 0, we need to restrict

the family of SY x in order to define a speed of convergence of this regularization bias. More generally, the

theory of inverse problems characterizes families G of suitable functions g such that ||SαY x´SY x ||
2 “ Opgpαqq

with gpαq Ñ 0 as αÑ 0. Then, under the assumption that SY x P G, we have

||pSαY x ´ SY x ||
2 “ O

´ 1

αn
` gpαq

¯

.

An optimal α is obtained by solving 1{n “ αgpαq, and hence the optimal rate of convergence can be derived.

To ease the presentation, we restrict to a Hölder condition SY x P Range
`

K˚K
˘β{2

by Assumption (H.3).

This results in a family G of functions gpαq “ αβ which satisfies the condition ||SαY x ´ SY x ||
2 “ Opαβq.

A weaker characterization of the family G may also be given in terms of Hilbert scale [see Carrasco et al.

(2014)]. Other types of functions gp¨q have been suggested in the literature as can be seen from Dunker et

al. (2014) and the references therein.

Remark 3. It should also be pointed out that, due to the qualification of the Tikhonov regularization, we

restrict ourselves to the case β ď 2. Values of β ą 2 involve some mathematical difficulties that would

require more complicated methods such as, for instance, iterated Tikhonov.

3.2. Asymptotic normality of
?
n
`

pSαY x ´ SY x
˘

By standard theory of empirical processes, it is not hard to verify that
?
n
“

ppSn,Zx´ pSn,εxq´pSZx´Sεxq
‰

converges in the Hilbert space E to a zero mean Gaussian process with a variance operator Σ defined as

pΣgqpzq “

ż 8

´8

Γpy, zqgpyqdy, (25)
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where

Γpy, zq “
`

SZxpyq ´ Sεxpyq
˘

¨
“

´
`

SZxpzq ´ Sεxpzq
˘

´ Sε|Xpz|xq
‰

`FXpxq ¨
“

SZ|Xpy _ z|xq ´ Sε|Xpy|xqSZ|Xpy|xq
‰

.

Then, we obtain from (19) and (20) that

?
n
`

pSαY x ´ S
α
Y x

˘ L
ÝÑ N p0, pαI `K˚Kq´1K˚ΣKpαI `K˚Kq´1

˘

, nÑ8,

for any fixed α ą 0. Hence, we get for all δ P E ,

A?
n
`

pSαY x ´ S
α
Y x

˘

, δ
E

L
ÝÑ N

`

0,
@

pαI `K˚Kq´1K˚ΣKpαI `K˚Kq´1δ, δ
D˘

,

or equivalently,

A?
n
`

pSαY x ´ S
α
Y x

˘

, δ
E

xpαI `K˚Kq´1K˚ΣKpαI `K˚Kq´1δ, δy
1{2

L
ÝÑ N p0, 1q. (26)

For these results to remain valid when the regularization parameter α “ αpnq Ñ 0 as a function of the

sample size n, we shall need to verify a Lyapunov type condition [see Carrasco et al. (2007), Proposition

3.2]. More specifically, since

pSn,Zxpzq ´ pSn,εxpzq “
1

n

n
ÿ

j“1

ηjpzq,

where

ηjpzq :“ 1IpZxj ą zq ´ Sε|Xpz|xq 1IpXj ď xq ´ r1´ 1IpXj ď xqs1Ipz ă 0q,

we have

K˚
`

pSn,Zx ´ pSn,εx
˘

”
1

n

n
ÿ

j“1

K˚ηj ,

and hence the needed Lyapunov condition [see Carrasco et al. (2007), Assumption (3.27), p.83] reads as

follows:

(K.1) There exists d ą 0 such that

E
@

pαI `K˚Kq´1K˚ηj , δ
D2`d

||
a

VarpηjqpαI `K˚Kq´1δ||2`d
“ Op1q.

Of course, the denominator of (26) should be bounded in order to achieve the
?
n speed of convergence.

This is obtained under an additional regularity condition on δ by following the arguments of Carrasco et al.

(2014). We need that

(K.2) δ P Range
`

K˚K
˘1{2

,

or equivalently that δ “
`

K˚K
˘1{2

µ for some element µ P E [see Proposition 3.2 in Carrasco et al. (2014)

for more details].
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Under the same assumption (K.2), the asymptotic normality remains still valid when eliminating the bias

due to regularization. Indeed, on one hand, the numerator of (26) can be written as
A?

n
`

pSαY x ´ SY x ´ pS
α
Y x ´ SY xq

˘

, δ
E

and, on the other hand, it can be shown under our regularity assumption on δ that
@?

n
`

SαY x ´ SY x
˘

, δ
D

Ñ 0

when nÑ8. To verify this result we have

@?
n
`

SαY x ´ SY x
˘

, δ
D

“

A?
n
`

K˚K
˘1{2`

SαY x ´ SY x
˘

, µ
E

,

for some µ P E . As it follows from Lemma 1 that

A?
n
`

K˚K
˘1{2`

SαY x ´ SY x
˘

, µ
E2

“ O
`

nαpβ`1q^2
˘

,

we gain one unit in the exponent of α due to the factor K˚K. Hence, to get the desired convergence
@?

n
`

SαY x ´ SY x
˘

, δ
D

Ñ 0 as n Ñ 8, we need a smaller order for α than the optimal size derived above in

Theorem 1 to satisfy α Ñ 0, αn Ñ 8 and nαpβ`1q^2 Ñ 0. To summarize, we obtain the following result

which will be particularly useful below to derive the asymptotic normality of our estimator of the robust

order-m frontier.

Theorem 2. Under Assumptions (H.1), (H.2)and (H.3), we have for α Ñ 0 such that nα Ñ 8 and

nαpβ`1q^2 Ñ 0, and for all δ P E satisfying (K.1)and (K.2),

A?
n
`

pSαY x ´ SY x
˘

, δ
E

xpαI `K˚Kq´1K˚ΣKpαI `K˚Kq´1δ, δy
1{2

L
ÝÑ N p0, 1q, nÑ8,

where Σ is described in (25).

3.3. Selection of the regularization parameter

Several approaches were proposed in the literature on inverse problems to select the regularization param-

eter. Prominent among these approaches is the iterated Tikhonov technique described below. The solution

will select an optimal α having the appropriate order n´1{pβ`1q. By iterating the Tikhonov principle a second

time, we can define

pS
α,p2q
Y x “ arg min

SPE

!

||KS ´ ppSn,Zx ´ pSn,εxq||
2 ` α||S ´ pSαY x ||

2
)

which leads, by solving the first order condition, to the following estimator of the unconditional survivor

function

pS
α,p2q
Y x “ pαI `K˚Kq´1

`

K˚ppSn,Zx ´ pSn,εxq ` αpS
α
Y x

˘

.

By convoluting this estimator with the noise, we obtain an estimator of the survivor function of the noisy

signal Zx,

pS
α,p2q
Zx pzq ´ pSn,εxpzq “

ż 8

0

pS
α,p2q
Y x pyq fε|Xpz ´ y|xq dy.
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Finally, the optimal value of α is given by the solution

pα “ arg min
αą0

||pSαY x ||
2||pS

α,p2q
Zx ´ pSn,Zx ||

2

“ arg min
αą0

ż 8

0

`

pSαY xpyq
˘2
dy

ż 8

´8

“

pS
α,p2q
Zx pzq ´ pSn,Zxpzq

‰2
wpzqdz.

It is not hard to verify that this solution satisfies pα “ Opn´1{pβ`1qq for β P p0, 2s. We refer to Engl et al.

(2000, Proposition 4.37) for a proof and to Fève and Florens (2014) for more thorough discussion.

4. Estimation of partial and full production frontiers

We can now use the estimator pSαY x of SY x defined in (20) to estimate the partial order-m production

function ϕmpxq as well as the true full frontier function ϕpxq.

4.1. Estimation of the expected maximum output frontier

By definition (6) we have

ϕmpxq “

ż 8

0

 

1´ r1´ SY xpyqs
m
(

dy

”

ż τ

0

 

1´ r1´ SY xpyqs
m
(

dy, (27)

for any arbitrary large positive number τ satisfying τ ě ϕpxq. Then, by substituting pSαY x in place of SY x ,

we get the trimmed estimator

pϕαmpxq “

ż τ

0

 

1´ r1´ pSαY xpyqs
m
(

dy. (28)

In practice, it suffices to prespecify any trimming number τ larger than the maximum of the observed

contaminated outputs Z1, . . . , Zn. Next we establish an indicative rate of convergence of the quadratic risk

for the estimator pϕαmpxq.

Theorem 3. Under the conditions of Theorem 1, we have for any fixed m ě 1,

E |pϕαmpxq ´ ϕmpxq|
2
“ O

`

n´β{pβ`1q
˘

.

If m “ mpnq Ñ 8 with m “ O
`

nβ{p2pβ`1qq
˘

, then E |pϕαmpxq ´ ϕmpxq|
2
“ m2O

`

n´β{pβ`1q
˘

.

By making use of the results of Section 3.2, we can also derive the asymptotic normality of the m-frontier

estimator pϕαmpxq.

Theorem 4. Let m ě 1 be a fixed integer. Under the conditions of Theorem 2 with β ą 1, if δ :“ 1Ip¨ ď

τqFm´1
Y x satisfies (K.1)and (K.2), then

?
n
`

pϕαmpxq ´ ϕmpxq
˘

m xpαI `K˚Kq´1K˚ΣKpαI `K˚Kq´1δ, δy
1{2

L
ÝÑ N p0, 1q, nÑ8.
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4.2. Estimation of the full production frontier

For estimating the true frontier function itself we need an extra regularity condition on the behavior

of the unconditional survivor function SY xpyq ” FXpxqr1 ´ FY |Xpy|xqs near the frontier point ϕpxq. This

condition indicates the rate at which the survivor function reaches the value 0 when y Ò ϕpxq:

(K.3) For some constants `x ą 0 and ρx ą 0,

SY xpyq “ `x
`

ϕpxq ´ y
˘ρx

` o
`

pϕpxq ´ yqρx
˘

as y Ò ϕpxq.

Remark 4. [Hidden extreme-value condition] The rationale for Assumption (K.3) relies on an interesting

connection between our class of expected maximum production functions tϕmpxq : m ě 1u defined in (6)

and the popular FDH estimator pϕpxq described in (2) and (5). It is immediate from (5) and (6) that

E
“

pϕpxq
‰

“ E
“

maxpY x1 , . . . , Y
x
n q

‰

” ϕnpxq, for all n ě 1. (29)

Equivalently, for any trimming number m ě 1, ϕmpxq is identical to the expectation of the FDH estimator

based on them-tuple tY xi “ Yi1I pXi ď xq , i “ 1, . . . ,mu. As elucidated in Daouia et al. (2010, Theorem 2.1),

there exists bn ą 0 such that b´1
n ppϕpxq ´ ϕpxqq converges in distribution (as nÑ8) if and only if, for some

ρx ą 0,

lim
tÑ8

t1´ FY |Xpϕpxq ´ 1{tz|xqu{t1´ FY |Xpϕpxq ´ 1{t|xqu “ z´ρx for all z ą 0

rregular variation with exponent ´ ρx, notation 1 ´ FY |Xpϕpxq ´
1
t |xq P RV´ρxs. As also pointed out in

Daouia et al. (2010, Remark 2.1), this necessary and sufficient condition for the standard FDH estimator

pϕpxq to converge in distribution is equivalent to the representation

FXpxqr1´ FY |Xpy|xqs “ Lx
`

tϕpxq ´ yu´1
˘

pϕpxq ´ yqρx as y Ò ϕpxq,

or equivalently

SY xpyq “ Lx
`

tϕpxq ´ yu´1
˘

pϕpxq ´ yqρx as y Ò ϕpxq, (30)

where Lxp¨q P RV0 stands for a slowly varying function. As a matter of fact, Assumption (K.3) is

hidden in Condition (30). Both conditions are equivalent when Lx
`

tϕpxq ´ yu´1
˘

„ `x, or equivalently,

Lx
`

tϕpxq ´ yu´1
˘

“ `x ` op1q, as y Ò ϕpxq. While the necessary and sufficient condition (30) is sometimes

difficult to verify, the sufficient von Mises assumption (K.3) may be more helpful. Under this sufficient

condition, it is shown in Daouia et al. (2010, Corollary 2.1) that bn „ pn`xq
´1{ρx as nÑ8.

We know by Theorem 2.1(iii) in Daouia et al. (2010) that the convergence in distribution of the FDH

estimator pϕpxq implies the convergence of moments. More precisely, given (30), limnÑ8 E
 

b´1
n pϕpxq ´

pϕpxqq
(k
“ Γp1` kρ´1

x q, for all integer k ě 1. In particular, it follows from (29) and for k “ 1 that

ϕpxq ´ ϕnpxq “ ϕpxq ´ E
“

pϕpxq
‰

“ bnΓp1` ρ´1
x q ` o

`

bn
˘

, nÑ8.
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We also know from Remark 4 that, under the sufficient condition (K.3), we have bn „ pn`xq
´1{ρx as nÑ8.

Therefore, using m instead of n, we get

ϕpxq ´ ϕmpxq “ pm`xq
´1{ρxΓp1` ρ´1

x q ` o
`

m´1{ρx
˘

, mÑ8. (31)

This result will be crucial for our setup to derive the speed of convergence of the quadratic risk for the

regularized estimator pϕαmpxq when it estimates ϕpxq itself, with m “ mpnq Ñ 8 as nÑ8.

Remark 5. [Connection with the joint density and intuitive meaning for the exponent ρx] In the econo-

metrics and statistical literatures on frontier analysis, it is common to assume that the joint density fpx, yq

of pX,Y q is an algebraic function of the distance pϕpxq ´ yq from the efficient frontier, that is

fpx, yq “ cx tϕpxq ´ yu
γx ` optϕpxq ´ yuγxq as y Ò ϕpxq, (32)

for some constants cx ą 0 and γx ą ´1. For nonparametric approaches to frontier estimation, we refer to

Hardle et al. (1995), Hall et al. (1998), Gijbels and Peng (2000), Park et al. (2000), Hwang et al. (2002)

and Daouia et al. (2010, 2012), to cite a few. In all parametric approaches, the shape parameter γx of the

joint density as well as cx are assumed to be known. The traditional assumption (32) is actually hidden in

Condition (30) and is more stringent than Condition (K.3). It is obtained by considering the class of slowly

varying functions Lxp¨q satisfying Lx
`

tϕpxq ´ yu´1
˘

“ `x as y Ò ϕpxq. Then, if `x ą 0, ρx ą p and ϕpxq

are differentiable as functions of x with first partial derivatives of ϕpxq being strictly positive, one can easily

recover the usual assumption (32), with

γx “ ρx ´ pp` 1q,

by simply differentiating both sides of (30) [see also Daouia et al. (2010, Corollary 2.2)]. Accordingly, the

joint density has an interesting connection with the regular variation exponent ρx and the dimension pp`1q:

When ρx ą p ` 1, the joint density decays to zero at a speed of power ρx ´ pp ` 1q of the distance from

the frontier point ϕpxq. When ρx “ p ` 1, the density has a sudden jump at the frontier. Finally, when

ρx ă p` 1, the density rises up to infinity at a speed of power ρx ´ pp` 1q of the distance from the frontier.

Next, we establish the rate of convergence of the quadratic risk E
“

ppϕαmpxq ´ ϕpxqq
2
‰

by applying Theo-

rem 3 in conjunction with (31).

Theorem 5. Under (K.3) and the conditions of Theorem 1, if m “
`

ρ´1
x n

β
β`1

˘

ρx
2p1`ρxq , then

E
“

ppϕαmpxq ´ ϕpxqq
2
‰

“ O
`

n´
β

pβ`1q
1

p1`ρxq
˘

.

Under the conditions of this theorem we have that

rn |pϕ
α
mpxq ´ ϕpxq| “ Opp1q,

where rn “ nκ with κ ě β
2pβ`1qp1`ρxq

. Under the common assumption in most nonparametric frontier

estimation approaches that the joint density of pX,Y q has a jump at its efficient support boundary, we have
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p1 ` ρxq “ p ` 2 (see Remark 5). Hence, if for instance β “ 2, we get the rate rn ě n
1

3pp`2q , which is still

polynomial in n.

Remark 6. [Tuning parameters selection] Critical to the quality of the stochastic frontier approximation is

the selection of the trimming number m. We propose to choose m by an analogy to the method motivated

in the deterministic frontier model, in Section 2.4 of Daouia et al. (2018), by substituting the stochastic

frontier estimator pϕαm in place of pϕm and using the observed contaminated outputs Zj instead of Yj . This

method is applied below in Section 5 through simulated and real data sets. The regularization parameter

α “ pα is obtained following the guidelines described in Section 3.3. As shown in the examples below, these

selection techniques aim to balance the robustness of the estimate to outliers (not too large m) with the

desire of reaching the full sample frontier (sufficiently large m).

Remark 7. [Isotonized estimators] The regularized estimator pSαY x may not automatically inherit the mono-

tonicity property of the true survival function SY x . One way to monotonize this unconstrained estimator is

by using the isotonic version

qSαY x “ rS
α

Y x ` S
α
Y xs{2,

with

S
α

Y xpyq “ sup
y1ěy

pSαY xpy
1q and SαY xpyq “ inf

y1ďy

pSαY xpy
1q,

where y and y1 run over R`. Both S
α

Y x and SαY x are monotone non-increasing such that SαY x ď
pSαY x ď S

α

Y x .

While S
α

Y x is the smallest monotone function that lies above the unconstrained estimator pSαY x , SαY x is

the largest monotone function that lies below pSαY x . As a matter of fact, any convex combination of these

envelope estimators would have sufficed as a definition of qSαY x , but we do not see any reason to bias the

restricted estimator one way or the other. By substituting in (28) the monotone estimator qSαY x in place of

the unconstrained version pSαY x , we get the refined frontier estimator

qϕαmpxq “

ż τ

0

 

1´ r1´ qSαY xpyqs
m
(

dy.

The isotonic estimator qSαY x reduces the sup-norm error in the following sense

sup
yě0

ˇ

ˇ qSαY xpyq ´ SY xpyq
ˇ

ˇ ď sup
yě0

ˇ

ˇ pSαY xpyq ´ SY xpyq
ˇ

ˇ.

This can easily be checked by applying Lemma 3.1 of Daouia and Simar (2005). A deeper study of the

properties of such a projection-type technique of isotonization can be found in Daouia and Park (2013).

In particular, it follows from their generic Theorem 1 that the monotonized estimator qSαY xpyq inherits the

same asymptotic first-order properties of the unrestricted estimator pSαY xpyq if the latter is asymptotically

equicontinuous as a process indexed by y. Establishing the asymptotic equicontinuity of this process will

lead to further investigations that are outside the scope of the present paper.

Remark 8. [Case of a Gaussian noise with unknown variance] The concern was raised by a referee that the

noise distribution is fully known (i.e. εj given Xj ď x is Gaussian with known variance). Let us comment
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briefly the case where εj given Xj ď x has a normal distribution with zero mean and unknown variance

σ2pxq. The identification follows from e.g. Theorem 2.1 in Schwarz and Van Bellegem (2010), because the

support of Y given X ď x is a subset of R`. We do not enter here into the important issue of simultaneous

estimation of the frontier function ϕpxq and the variance parameter σ2pxq. We only describe a way to

estimate σ2pxq in a first stage before applying our estimation procedure of ϕpxq in a second stage. Very

few estimators have been proposed in the literature to address the problem of simultaneous estimation, but

they tend to be either much more computationally expensive and/or very disappointing in terms of rates of

convergence [see e.g. Kneip et al. (2015)].

Attempts to estimate σ2pxq have been proposed, for instance, by Meister (2006) and Butucea et al.

(2008). The identification in these works comes from the assumption that the tails of the characteristic

function of Y given X ď x decay at a slower rate than the tails of the characteristic function of the normal

distribution, which seems unsuitable for our framework. In addition, these approaches are very difficult to

implement in practice.

Instead, we follow in our experiments with simulated and real data an alternative heuristic path based

on a sensitivity analysis with several choices of σ2pxq. The basic idea is to first compute the estimate pSαY x

by selecting a value for σ2pxq, potentially different from the true variance, and then evaluate the L2pR, wq

distance in F between the re-convoluted estimator of SZxpzq, obtained by plugging in (10) our regularized

estimate pSαY x , and the observed empirical pSn,Zx :

∇L2pxq “

ż 8

´8

´

pSαZxpzq ´
pSn,Zxpzq

¯2

wpzqdz. (33)

A small value of this distance should indicate a better fit of the observed data, and hence an appropriate

estimate of σ2pxq would be obtained by minimizing the criterion ∇L2pxq. The merits of this approach are

not justified theoretically here, but our experience with simulated data below indicates that the resulting

estimates of σ2pxq are quite reasonable. We shall also discuss this idea on a concrete application to two real

datasets in Section 5.2.

5. Numerical illustrations

Section 5.1 comments on some implementation details and reports some simulation illustrations. Section

5.2 explores the new unconditional m-frontier estimates for two datasets in the sector of Delivery Services.

5.1. Simulated example

We simulate the data pXi, Yiq following a uniform distribution on the region D “ tpx, yq | 0 ď x ď 1, 0 ď

y ď ϕpxqu, where ϕpxq “ 2 ` x and x P r0, 1s. Then we introduce the noise εi „ Np0, σ2q producing the

observed production levels Zi “ Yi ` εi. We use in all our simulations the sample size n “ 200 and the two

values σ “ 0.20, 0.40.
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In the Hilbert space F “ L2pR, wq, we choose a uniform weight function w on the interval rτ1 “ ´20, τ2 “

20s. With this choice and the Gaussian noise, it is not hard to verify that the kernel function defining K˚K

and given in (21) has the form

cpy, ξq “
1

τ2 ´ τ1
φN py ´ ξ; 0,

?
2σq

„

ΦN

´

τ2;
y ` ξ

2
,
σ
?

2

¯

´ ΦN

´

τ1;
y ` ξ

2
,
σ
?

2

¯



,

where φN p¨; a, bq and ΦN p¨; a, bq denote, respectively, the pdf and cdf of N pa, b2q. The one-dimensional

integrals involving z, e.g. for computing bpy|xq in (23), are performed by a trapezoidal rule over a grid of

801 equi-spaced values in rτ1, τ2s. The solution of the linear system in (24) was done for a grid of k “ 801

points yj in r0,maxpZi|Xi ď xq ` 3σs. The estimators of the survivor and frontier functions have to be

evaluated at fixed values of x: we selected here a grid of 91 equidistant values in r0.1, 1s. When σ “ 0.20,

the 91 optimal values of α obtained by the iterative Tikhonov method are ranging form 0.0184 ˚ 10´3 upto

0.4914 ˚ 10´3 with an average of 0.2081 ˚ 10´3. We then computed the m-frontier estimates over various

values of the trimming order m ranging from 1 up to 5000, and for each value we computed the percentage

of points left above the m-frontier. We selected an appropriate high value of m by looking to the place where

an “elbow” effect appears in the curve of the percentage of points above the m-frontier as a function of m.

The evolution of this percentage, graphed in Figure 1, indicates that the curve becomes almost horizontal

from m “ 600. Figure 2 shows the resulting frontier estimates for various trimming orders m around the

selected value 600, namely 400 ď m ď 900. We can see that the results are rather stable with respect to the

choice of m in the displayed range. The final frontier estimate pϕαm of order m “ 600 is graphed in Figure 3

along with its isotonized version qϕαm.
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Figure 1: Simulated example with σ “ 0.20. The evolution of the percentage of observations left outside the m-frontier.
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Figure 2: Simulated example with σ “ 0.20. Order-m frontier estimates for some selected values of m along with the true

frontier.
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Figure 3: Simulated example with σ “ 0.20. Final m-frontier estimate along with its isotonized version and the true frontier.

When σ “ 0.40, the 91 optimal Tikhonov regularization parameters α range from 0.0206 ˚ 10´3 to

1.5537 ˚ 10´3 with an average of 0.6223 ˚ 10´3. The obtained order-m frontier estimates, the percentage

curve which suggests the choice of m “ 325, and the final frontier estimates are shown in Figures 4 to 6.
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Figure 4: Simulated example with σ “ 0.40. The evolution of the percentage of observations left outside the m-frontier.
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Figure 5: Simulated example with σ “ 0.40. Order-m frontier estimates for selected values of m and the true frontier.
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Figure 6: As before with the final m-frontier estimate and its isotonized version.

The calculation above has been done with the noise distribution being fully known. It is clear that a

misspecified value of the variance σ2 would have an impact on the frontier estimation: if we select a value

σmis ‰ σ, the corresponding estimated frontier is expected to lie above the estimate obtained with the

well-specified variance if σmis ă σ (little or almost no noise in this case, so the estimate tends to envelop

more data points). The opposite is expected if σmis ą σ. This is illustrated, when σ “ 0.20, in Figure 7 for

σmis “ 0.5σ and in Figure 8 for σmis “ 2σ (note that the new values of m have been selected here according

to the same rule as above). The correct frontier estimate, obtained by using the well-specified variance

σ “ 0.20, can be visualised in Figure 3. By comparing Figures 3 and 7, it may be seen that the choice of

a too small σ results in a frontier estimate slightly above the correct one. By contrast, as visualised more

clearly from Figures 3 and 8, the choice of a too large σ results in a frontier estimate below the correct one.
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Figure 7: The final m-frontier estimate (dashed blue) and its isotonized version (solid red), when the true σ “ 0.20 and the

misspecified σmis “ 0.5σ “ 0.10. Here m “ 350 with 8% of data points above the frontier.
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Figure 8: The final m-frontier estimate (dashed blue) and its isotonized version (solid red), when the true σ “ 0.20 and the

misspecified σmis “ 2σ “ 0.40. Here m “ 700 with 17% of data points above the frontier.

When the variance is unknown, it is then crucial to have a rule for selecting the value of σ in order to

avoid the misspecification effects. As described above in Remark 8, we propose to use a heuristic method

based on the evaluation of the quality of the fit via the criterion ∇L2pxq defined in (33). We calculate this

distance at each point of the chosen grid of values of x, before computing the average ∇L2 of ∇L2pxq over

the 91 values of the grid. A small value of ∇L2 should indicate a better fit of the observed data. Table 1

displays the averaged estimates ∇L2 for several values of the misspecified σmis (in the first column), for the

sample sizes n “ 200, 400 and 800 (in columns 2-4), and for the true values σ “ 0.20 (in the top part of
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the table) and σ “ 0.40 (in the bottom part of the table). We see clearly in both cases that the procedure

provides reasonable estimates of σ. Of course, this tentative conclusion follows from only one sample, and

this does not prove the consistency of the procedure. Still the results are promising, which merits to be fully

explored from a theoretical point of view in a separate research.

Table 1: Simulated examples—the table give the values of ∇L2 , an average measure of the quality of the fit of pSn,Zx for various

sample sizes n and various misspecified values σmis. In bold the minimum of the averaged values within the same column (for

a fixed sample size n).

Case I: true σ “ 0.20

σmis n “ 200 n “ 400 n “ 800

0.10 2.9841ˆ 10´5 4.9058ˆ 10´6 1.0818ˆ 10´4

0.15 1.1826ˆ 10´5 1.3532 ˆ 10´6 4.4450ˆ 10´6

0.20 7.2351ˆ 10´6 2.6118ˆ 10´6 2.5367 ˆ 10´6

0.25 5.0618 ˆ 10´6 5.2855ˆ 10´6 2.9511ˆ 10´6

0.30 7.2159ˆ 10´6 8.7844ˆ 10´6 3.8063ˆ 10´6

Case II: true σ “ 0.40

σmis n “ 200 n “ 400 n “ 800

0.20 5.8825ˆ 10´5 3.0659ˆ 10´5 2.9828ˆ 10´4

0.30 1.8649ˆ 10´5 7.0668ˆ 10´6 1.1967ˆ 10´5

0.40 1.0380 ˆ 10´5 6.8141ˆ 10´6 3.3817 ˆ 10´6

0.50 1.2041ˆ 10´5 5.1337 ˆ 10´6 6.2561ˆ 10´6

0.60 2.3734ˆ 10´5 7.1865ˆ 10´6 1.3726ˆ 10´5

5.2. Real data examples

We consider the same datasets from the sector of Delivery Services as in the study of Daouia et al. (2018).

The first dataset involves 2,326 European post offices observed in 2013, and the second dataset comprises

4,000 French post offices observed in 1994. For each post office j, the input Xj is the labor cost measured

by the quantity of labor, and the output Yj is the volume of delivered mail in number of objects. The

scatterplots are displayed in the bottom of Figures 9 and 10.

In contrast to Daouia et al. (2018), here we consider that some noise may perturb the data of delivery

post offices. We assume that the noise εj given Xj ď x has a normal distribution with zero mean and

unknown variance σ2
εx . As above we estimate the various m-frontiers at fixed values of x over a grid of

100 equidistant values covering most of the range of X. For selecting the values of σ2
εx , we apply the

device described in Remark 8 and tested in the two simulated examples above. We perform here the

sensitivity analysis at different levels of the noise-to-signal ratio ρnts P t0.01, 0.05, 0.10, 0.20, 0.40, 0.80u, so
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that σεx “ ρnts ˆ stdpZi|Xi ď xq at each given value of x, allowing thus for a heteroskedastic noise (though

we assume ρnts to be constant over the values of x). We first estimate the survivor function SY xpyq for

each x over a grid of k “ 1000 values of y. In each case, the optimal regularization parameter is computed

by the iterated technique described above. The one-dimensional integrals involving z are performed by a

trapezoidal rule over a grid of 1000 equidistant values in rτx1 , τ
x
2 s, where τx1 “ minipZi|Xi ď xq ´ 2σεx and

similarly, τx2 “ maxipZi|Xi ď xq ` 2σεx .

Table 2 reports the main results. First, it indicates that the obtained values of α slightly vary when

changing the level of the noise. The table gives also the average ∇L2 of the 100 values of ∇L2pxq evaluated

at each grid point. As small values of ∇L2 should indicate a better fit of the observed data, the analysis of

∇L2 as a function of ρnts can then be utilized to select a reasonable value of ρnts, and hence an appropriate

value of σεx at each point x. In Case I of n “ 2326, where the data seems more reliable (less hectic

and extreme data points), this empirical rule determines a small value of the noise-to-signal ratio around

ρnts “ 0.05. In Case II of n “ 4000, the empirical rule suggests ρnts “ 0.10.

The selected values of m, displayed in columns 6, are quite stable. Unsurprisingly, we see a great difference

between the two cases due to the obvious spread and over-dispersion of the data points in Case II. The choice

of ρnts “ 0.05 in Case I leads to mopt “ 650, while ρnts “ 0.10 in Case II leads to mopt “ 450. Compared

to the results obtained in the deterministic setting in Section 2.4 of Daouia et al. (2018), we get here lower

trimming numbers m since a part of extreme data points is handled by the noise.

The final results are graphed in Figure 9 for Case I and in Figure 10 for Case II. In each figure we

represent the percentage curve (top), some frontier estimates of trimming orders around the selected value

mopt (middle), and the mopt-frontier estimate itself along with its isotonized version (bottom). In the top

figures, the flatness of the percentage curves from the values mopt might confirm the relevance of our choice

of the noise-to-signal ratio ρnts in each case. The cloud of data points in case I is more concentrated than

in case II, resulting in larger percentage of observations above the final estimate. This data concentration

in case I generates an isotonized frontier estimator almost confounded with the unrestricted version in the

bottom of Figure 9. Also, it may be seen from the figures in the middle that the results in both cases are

rather stable to the choice of the trimming parameter in the selected range of values near mopt.
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Table 2: Examples with the Delivery post offices—Estimates computed over 100 equi-spaced values of the input x. ρnts is the

chosen global noise to signal ratio, ∇L2 is an average measure of the quality of the fit of pSn,Zx , mopt is the selected value of

m and %out is the percentage of observations left above a smoothed version of the resulting pϕαmopt
pxq.

Case I: n “ 2326

ρnts αmin ᾱ αmax ∇L2 mopt %out

0.01 2.124ˆ 10´3 1.582ˆ 10´2 5.387ˆ 10´2 6.644ˆ 10´4 600 31.40

0.05 2.194ˆ 10´4 7.267ˆ 10´4 5.181ˆ 10´3 1.421ˆ 10´5 650 31.32

0.10 5.801ˆ 10´5 7.720ˆ 10´4 8.729ˆ 10´3 2.963ˆ 10´5 700 33.35

0.20 1.452ˆ 10´5 9.763ˆ 10´4 1.047ˆ 10´2 4.392ˆ 10´5 800 35.85

0.40 8.644ˆ 10´7 1.634ˆ 10´3 1.909ˆ 10´2 1.837ˆ 10´4 800 42.76

0.80 1.210ˆ 10´4 3.892ˆ 10´3 2.125ˆ 10´2 1.451ˆ 10´4 900 51.31

Case II: n “ 4000

ρnts αmin ᾱ αmax ∇L2 mopt %out

0.01 3.729ˆ 10´6 5.340ˆ 10´6 8.969ˆ 10´6 2.711ˆ 10´4 400 1.33

0.05 1.559ˆ 10´9 1.684ˆ 10´7 3.280ˆ 10´6 6.786ˆ 10´6 600 1.31

0.10 7.101ˆ 10´10 4.774ˆ 10´7 1.086ˆ 10´5 6.687ˆ 10´6 450 1.94

0.20 1.479ˆ 10´9 7.166ˆ 10´6 1.875ˆ 10´5 1.397ˆ 10´5 450 1.48

0.40 6.640ˆ 10´9 3.483ˆ 10´7 7.977ˆ 10´7 4.317ˆ 10´5 500 1.94

0.80 9.438ˆ 10´8 3.528ˆ 10´6 2.827ˆ 10´5 1.027ˆ 10´3 450 2.29
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Figure 9: Final results for Case I: n “ 2326 and ρnts “ 0.05.
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Figure 10: Final results for Case II: n “ 4000 and ρnts “ 0.10.
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6. Conclusions

A new approach is suggested to estimate nonparametrically and in a robust way stochastic frontier

functions. We suppose that the noise has a given density (e.g. Gaussian) to ensure the identification of

the model. For a prespecified level of inputs of interest x, the basic idea is to first transform the pp `

1q-dimensional random vector pX,Y q into a dimensionless variable Y x, and then employ deconvolution

techniques in conjunction with a Tikhonov regularization to estimate the underlying unconditional survivor

function SY x . By integrating powers of the latter, we get robust estimators of the partial m-frontier functions

as well as the true full production function (corresponding to the limiting case mÑ8). As in most studies

on deconvolution, we suppose in this first work that the variance of the noise is known, and derive under some

regularity conditions the rate of convergence of quadratic risk for the proposed estimators as well as their

asymptotic distributions. The practical implementation of the presented procedure is first described through

a simulated example. Then we analyze the expected maximum production and the optimal production

function itself in the sector of postal services by exploring two concrete datasets on delivery offices. Through

this application we highlight the usefulness and the flexibility of our device even if the variance of the noise

is unknown.

The difficult question of estimating simultaneously the frontier function and the variance parameter of

the noise is a topic of interest for future research. The difficulty of this more general problem comes from the

heavy dependence of the operator K, defining the integral equation, on the unknown variance. Yet, at this

stage of our research, we suggest to apply a heuristic method, based on the evaluation of the quality of the

fit of the observed data, in order to select in practice a reasonable estimate for σ2pxq. The simulated data

examples and the application to the two real datasets provide very promising results, but further theoretical

research remains to be done for this idea to receive due appreciation.

Appendix

The proofs of all theoretical results are provided in Section A.1. Some examples illustrating the source

condition (H.3) are presented in Section A.2.

A.1. Proofs

Proof of Theorem 1. The risk of our estimator can be decomposed into two terms:

E
´

||pSαY x ´ SY x ||
2
¯

“ ||SαY x ´ SY x ||
2 ` E

´

||pSαY x ´ S
α
Y x ||

2
¯

,

where the first element is the square of a bias term introduced by the regularization and the second element

is a variance term.
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(i) Analysis of the bias term (Proof of Lemma 1): by making use of (13) we obtain

SαY x ´ SY x “ pαI `K˚Kq´1K˚KSY x ´ SY x

“ pαI `K˚Kq´1
`

K˚K ´ pαI `K˚Kq
˘

SY x

“ ´αpαI `K˚Kq´1SY x .

Therefore, by using the SVD and the notations introduced above, we have pαI `K˚Kqφj “ pα` λ
2
j qφj , so

that the eigenvalues of pαI `K˚Kq´1 are pα` λ2j q
´1. Since for any δ P E , ||δ||2 “

ř

j xδ, φjy
2
, it is easy to

show that

||SαY x ´ SY x ||
2 “ α2

ÿ

j

xSY x , φjy
2

pα` λ2j q
2
.

By Assumption (H.3), and using the fact that
@

pK˚Kqβ{2δ, φj
D

“
@

δ, pK˚Kqβ{2φj
D

(because K˚K is auto-

adjoint), we obtain

||SαY x ´ SY x ||
2 “ α2

ÿ

j

λ2βj
pα` λ2j q

2
xδ, φjy

2

ď αβ
ÿ

j

xδ, φjy
2
“ Opαβq.

(ii) Analysis of the variance term (Proof of Lemma 2): We have

pSαY x ´ S
α
Y x “ pαI `K

˚Kq´1K˚
“

ppSn,Zx ´ pSn,εxq ´ pSZx ´ Sεxq
‰

.

First note that
?
n
“

ppSn,Zx ´ pSn,εxq´ pSZx ´Sεxq
‰

converges in the Hilbert space E to a zero mean Gaussian

process with a variance operator Σ described in (25) [see Cazals et al. (2002)]. This variance is “trace class”,

i.e., its trace is finite, or for any basis of E ,
ř

j xΣφj , φjy “ trΣ ă 8. Second, we have

E
´

||pSαY x ´ S
α
Y x ||

2
¯

“ trVar
`

pSαY x ´ S
α
Y x

˘

“ O
´ 1

n
tr
“

pαI `K˚Kq´1K˚ΣKpαI `K˚Kq´1
‰

¯

“ O
´ 1

n

ÿ

j

@

pαI `K˚Kq´1K˚ΣKpαI `K˚Kq´1φj , φj
D

¯

“ O
´ 1

n

ÿ

j

λ2j
pα` λ2j q

2
xφj , φjy

¯

.

Since λ2j{pα` λ
2
j q

2 “ Op1{αq, we get E
´

||pSαY x ´ S
α
Y x ||

2
¯

“ O
´

1
αn

¯

.

(iii) Bound for the risk: Finally, we obtain the following order of the risk for our estimator

E
´

||pSαY x ´ SY x ||
2
¯

“ O
´

αβ `
1

nα

¯

.

We see indeed that when αÑ 0, the contribution of the variance term increases but the contribution of the

bias term decreases, so we need αÑ 0 and αnÑ8 to get consistency. As usual, an optimal value for α will

be found in this situation by balancing the squared bias and the variance. This results in α “ O
`

n´1{pβ`1q
˘

giving a risk bounded by O
`

n´β{pβ`1q
˘

. This completes the proof of the theorem.
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Proof of Theorem 3. We have

pϕαmpxq ´ ϕmpxq “

ż τ

0

 

r1´ SY xpyqs
m ´ r1´ pSαY xpyqs

m
(

dy.

A Taylor expansion of r1´ SY xpyqs
m ´ r1´ pSαY xpyqs

m leads to

pϕαmpxq ´ ϕmpxq “ m

ż τ

0

r1´ SY xpyqs
m´1

 

pSαY xpyq ´ SY xpyq
(

dy ` rm,n, (A.1)

where

rm,n “ ´
1

2
mpm´ 1q

ż τ

0

 

pSαY xpyq ´ SY xpyq
(2
rbxpyqs

m´2 dy,

with r1 ´ pSαY xpyqs ^ r1 ´ SY xpyqs ď bxpyq ď r1 ´ pSαY xpyqs _ r1 ´ SY xpyqs. Since 0 ď bxpyq ď 1, we have

|rm,n| ď
1
2m

2||pSαY x ´ SY x ||
2, and hence

rm,n “ m2Op
`

n´β{pβ`1q
˘

(A.2)

in view of Theorem 1. On the other hand, we have

ˇ

ˇ

ˇ

ˇ

m

ż τ

0

r1´ SY xpyqs
m´1

 

pSαY xpyq ´ SY xpyq
(

dy

ˇ

ˇ

ˇ

ˇ

2

ď m2 τ ||pSαY x ´ SY x ||
2.

Therefore

|pϕαmpxq ´ ϕmpxq| ď

ˇ

ˇ

ˇ

ˇ

m

ż τ

0

r1´ SY xpyqs
m´1

 

pSαY xpyq ´ SY xpyq
(

dy

ˇ

ˇ

ˇ

ˇ

` |rm,n|

ď mτ1{2 ||pSαY x ´ SY x || `
1

2
m2||pSαY x ´ SY x ||

2

ď mτ1{2Op
`

n´β{2pβ`1q
˘

`m2Op
`

n´β{pβ`1q
˘

.

Then for fixed m, we have E |pϕαmpxq ´ ϕmpxq|
2
“ O

`

n´β{pβ`1q
˘

. If m “ mpnq Ñ 8 such that m “

Opnβ{p2pβ`1qqq, then E |pϕαmpxq ´ ϕmpxq|
2
“ m2O

`

n´β{pβ`1q
˘

.

Proof of Theorem 4. By (A.1) we have

?
n
`

pϕαmpxq ´ ϕmpxq
˘

“ m
?
n

ż τ

0

r1´ SY xpyqs
m´1

 

pSαY xpyq ´ SY xpyq
(

dy `
?
nrm,n,

where it follows from (A.2) that

?
n rm,n “ m2

?
nOp

`

n´β{pβ`1q
˘

“ m2Op
`

np1´βq{2pβ`1q
˘

. (A.3)

On the other hand, the leading term in the decomposition can be written as

m
?
n

ż 8

0

1Ipy ď τqFm´1
Y x pyq

 

pSαY xpyq ´ SY xpyq
(

dy

“ m ă
?
n
`

pSαY x ´ SY x
˘

, 1Ip¨ ď τqFm´1
Y x ą .

Putting δpyq :“ 1Ipy ď τqFm´1
Y x pyq, we have δ P E . Under the conditions of Theorem 2, if δ satisfies (K.1)and

(K.2), then

m ă
?
n
`

pSαY x ´ SY x
˘

, δ ą

m ă pαI `K˚Kq´1K˚ΣKpαI `K˚Kq´1δ, δ ą1{2

L
ÝÑ N p0, 1q, nÑ8,
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or equivalently

?
n
`

pϕαmpxq ´ ϕmpxq
˘

´
?
n rm,n

m ă pαI `K˚Kq´1K˚ΣKpαI `K˚Kq´1δ, δ ą1{2

L
ÝÑ N p0, 1q, nÑ8.

Therefore, if ?
n rm,n

m ă pαI `K˚Kq´1K˚ΣKpαI `K˚Kq´1δ, δ ą1{2
“ opp1q, nÑ8, (A.4)

we get immediately the asymptotic normality of
?
n
`

pϕαmpxq ´ ϕmpxq
˘

. Since m ě 1 is fixed and α Ñ 0 as

nÑ8, then (A.4) holds as long as
?
nrm,n “ opp1q, which in turn happens if β ą 1 in view of (A.3).

Proof of Theorem 5. We have

E
”

`

pϕαmpxq ´ ϕpxq
˘2
ı

ď 2E
”

`

pϕαmpxq ´ ϕmpxq
˘2
ı

` 2
`

ϕmpxq ´ ϕpxq
˘2
.

Under Assumption (K.3), we have seen in (31) that

ϕpxq ´ ϕmpxq “ pm`xq
´1{ρxΓp1` ρ´1

x q ` o
`

m´1{ρx
˘

, mÑ8.

Then
`

ϕmpxq ´ ϕpxq
˘2
“ O

`

m´2{ρx
˘

, as m Ñ 8. On the other hand, we have by Theorem 3 that

E
”

`

pϕαmpxq ´ ϕmpxq
˘2
ı

“ O
`

m2 n´β{pβ`1q
˘

, for any sequence m “ mpnq Ñ 8 such that m “ Opnβ{p2pβ`1qqq.

Thus

E
”

`

pϕαmpxq ´ ϕpxq
˘2
ı

“ O
´

m2 n´β{pβ`1q `m´2{ρx
¯

, nÑ8.

While the variance term m2 n´β{pβ`1q increases with m, the squared bias term m´2{ρx (introduced by using

a partial m-frontier to estimate the full frontier) decreases with m. Balancing both terms gives the following

optimal order for m, as a function of n,

m “ mpnq “
`

ρ´1
x n

β
β`1

˘

ρx
2p1`ρxq .

The corresponding risk is given by O
 

n´
β
β`1

1
1`ρx

(

.

A.2. Illustrating examples of Assumption (H.3)

We give here two examples illustrating our Assumption (H.3). The first one provides a full analytical

treatment, and the second one involves a complex expression that can easily be treated numerically.

Example 1. Consider for a fixed value of x the survivor function

SY xpyq “

$

’

’

’

&

’

’

’

%

1 for y P r0, 1s

1´ py ´ 1q3 for y P r1, 2s

0 for y P r2,8q.

We choose ε given X ď x to be uniform on r´1, 1s, and the weight function in F to be uniform on r´1, 1s.

It is not hard to check that this survival function belongs to RangepK˚Kqβ{2 with β “ 1. For this, one has
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to prove that SY x P RangepK˚q or, equivalently, that SY x “ K˚ψ for some ψ P F . Indeed, an elementary

calculus shows that if the function ψ is defined as

ψpzq “

$

&

%

0 for z ď 0

3z2 for z ą 0,

then the survivor function can be written, for any y ě 0, as

SY xpyq “

ż 8

´8

ψpzq1I pz ´ x P r´1, 1sq 1I pz P r´1, 1sq dz.

Example 2. Here we consider a sophisticated analytical framework, where the distribution of ε given X ď x

is Np0, σ2q and the weight function in F is given by a normal density with mean 0 and variance τ2. We

assume that the frontier point is ϕpxq “ 0, so that the survivor function starts from zero. By analytical

developments using (21) we then arrive at

cpy, ξq “ p2πq´1 1

aστ
exp

"

´
1

2σ2

ˆ

y2 ` ξ2 ´
y2 ` ξ2

a2

˙*

,

where a2 “ 2 ` σ2{τ2 ą 2. Now we have to show that there exists a function φ P E such that K˚Kφ is

a survivor function SY x . If such is the case, we would have by construction SY x P RangepK˚Kqβ{2 with

β “ 2. It can be shown after some analytical manipulations that

K˚Kφpyq “ p2πq´1 1

aστ
e´by

2

σ̃Φpµ̃{σ̃q
?

2πE
“

φpW q
‰

,

where b “ pa2´2q
2σ2pa2´1q ą 0, Φp¨q is the standard normal distribution function and W „ N`pµ̃, σ̃2q is a

truncated normal (ě 0) random variable, with µ̃ “ y{pa2 ´ 1q and σ̃ “ aσ{
?
a2 ´ 1. By choosing, for

instance, φpuq “ c0e
´tu for some constants t, c0 ą 0, the expectation in the last equation is c0mW p´tq,

where mW p¨q is the moment generating function of W . Thus, we find after some calculations that

K˚Kφpyq “ Cpt, c0q exp
 

´ by2 ´
t

a2 ´ 1
y
(

Φ

ˆ

y

aσ
?
a2 ´ 1

´
aσ

?
a2 ´ 1

t

˙

,

where Cpt, c0q “ c0
1

τ
?

2πpa2´1q
epσatq

2
{p2pa2´1qq is a positive constant. Now, we have to prove that SY xpyq :“

K˚Kφpyq is a survivor function on R`. For any t, the constant c0 can be tuned to get SY xp0q “ 1. Clearly,

SY xpyq ą 0 and limyÑ8 SY xpyq “ 0. It remains to show that for an appropriate choice of t, we have

gpyq :“ S1Y xpyq ă 0 for all y ą 0. Without loss of generality, we can fix σ “ 1 and easily check that

gpyq “ Cpt, c0qe
´by2´ t

a2´1
y

„

1

a
?
a2 ´ 1

Φ1
ˆ

y

a
?
a2 ´ 1

´
a

?
a2 ´ 1

t

˙

´

´

2by `
t

a2 ´ 1

¯

Φ

ˆ

y

aσ
?
a2 ´ 1

´
aσ

?
a2 ´ 1

t

˙

,

where Φ1p¨q is the standard normal density function. For instance, with a “ 4 and t “ 0.9, we find that

gp0q “ ´0.1376 and the function gpyq is non-positive for all y ě 0, as shown on the left panel of Figure .11.

In this case, the function SY xpyq is well decreasing and can be evaluated numerically. Its plot is displayed

on the right panel of Figure .11.
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Figure .11: Left panel—the function gpyq giving the derivative of SY x pyq. Right panel—the survivor function SY x pyq.
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