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Abstract

This paper considers auction environments with a (possibly corre-

lated) common prior over bidders’ values, where each bidder may have

additional information (e.g., through information acquisition). Under

certain conditions, we characterize the optimal mechanisms in terms of

the expected revenue that is guaranteed given whatever additional in-

formation is available to the bidders. Even if the values are correlated,
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we do not necessarily have full-surplus extraction, and moreover, the

optimal mechanism resembles those in the independently distributed

cases. Specifically, we show that (i) a second-price auction is optimal

among all the efficient mechanisms, and (ii) it is rate-optimal among

all the mechanisms.

Keywords: Mechanism design, Auction, Correlated private information,

Information acquisition, Revenue guarantee

1 Introduction

In many real auctions, bidders’ valuations for auctioned objects exhibit cor-

relation.1 Despite the practical importance of optimal auction mechanism

design with correlated private information, however, most of the papers in

the Bayesian mechanism design literature focus on independently distributed

valuations, with little focus on the correlated cases. This may be partly be-

cause of the extremely positive result obtained by Crémer and McLean (1985,

1988) in “generic” correlated environments.2 Crémer and McLean (1985,

1988) show that, with a generic correlated distribution, any allocation rule is

implementable without any information rent, and in this sense, the first-best

outcome for the seller is always possible, even though the valuations are the

bidders’ private information. This observation is very different from the in-

dependent case (e.g., Myerson (1981)), where implementable allocation rules

must be monotonic and bidders earn some information rent.

1For example, imagine auctions of oil tracts, spectra, sovereign bonds, and so on.
2See also McAfee and Reny (1992), Heifetz and Neeman (2006), Chen and Xiong (2013),

and Gizatulina and Hellwig (2014).
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Within the literature, this stark difference or discontinuity between the

independent and correlated cases has been considered to be rather perplex-

ing.3 On the one hand, it seems that the bidders’ valuations are correlated in

many auctions. On the other hand, however, the observations in independent

cases may seem to be more sensible, in that the bidders’ private information

restricts implementable objectives and the seller’s ability to extract informa-

tion rent. Also, the optimal mechanism obtained by Crémer and McLean

(1985, 1988), which may be interpreted as a combination of a second-price

auction and side bets, is often criticized as highly unrealistic.

A crucial (implicit) assumption in Crémer and McLean (1985, 1988) is

that the bidders cannot have additional information about each other’s valu-

ation (in addition to the correlated common prior). For example, this means

that each bidder cannot engage in information acquisition about other bid-

ders’ valuations. This assumption is crucial for their side-bet mechanism to

extract information rents, where each bidder “bets” on other bidders’ valua-

tions. Naturally, if a bidder can acquire additional information about other

bidders, he would have a strong incentive to do so, because then he could

earn positive (possibly large) information rent. This means, in turn, that

the seller can no longer extract all of the surplus of the bidders.4 Also, this

assumption of no information acquisition seems unrealistic in many auction

environments. For example, in the auctions of oil tracts, bidders (e.g., oil

companies) often have the technologies to acquire more precise information

about the tracts before the bidding stage.

3See, for example, Crémer and McLean (1985, 1988), McAfee and Reny (1992), and
Milgrom (2004).

4This impossibility of full-surplus extraction is formally observed by Bikhchandani
(2010).
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This suggests that the possibility of additional information (e.g., through

information acquisition) plays a crucial role in mechanism design with corre-

lated information. Therefore, in this paper, we assume that each bidder may

have arbitrary additional information (about others’ private information),

and that the seller does not know what kind of additional information is

available to each bidder. Given such “uncertainty” or “ambiguity” about ad-

ditional information, our goal is to characterize the highest expected revenue

that can be guaranteed given whatever additional information the bidders

may have. Although there may be many other ways to model the bidders’

additional information, such a “pessimistic” approach may be reasonable

when bidders have more expertise than the seller (e.g., an auction of oil

tracts), so that it is difficult for the seller to know what kind of information

acquisition technologies are ever available to the bidders. More generally,

avoiding any ad hoc restriction on the bidders’ possible additional informa-

tion, we can avoid the optimal mechanism highly dependent on the structure

of additional information. This feature may be preferable in view of the

“detail-freeness” in Wilson (1987).

The paper is structured as follows. In Section 2, we introduce a single-

good, private-value auction model with (correlated) common prior over bid-

ders’ valuations.5 We formally define the bidders’ (arbitrary) additional in-

formation and the concept of revenue guarantee. In private-value auctions,

each agent knows his willingness-to-pay for the object, and in this sense,

such additional information is payoff-irrelevant. However, it could be impor-

5Although some results can be extended to non-auction environments or
interdependent-value (or common-value) environments, the main part of the paper focuses
on this simple setting in order to convey clearer intuition. See Supplementary Materials.
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tant in determining his (possibly high-order) belief about the other bidders’

private information, and hence important for determining his behavior. In

particular, the side-bet mechanism of Crémer and McLean (1985, 1988) can

no longer guarantee the first-best level of expected revenue with additional

information, and moreover, it often fails to be optimal in terms of revenue

guarantee.

Section 3 provides characterization of the (exact or approximate) highest

revenue guarantee in various settings. In Section 3.1, we show that, from

amongst all efficient6 auction mechanisms, a second-price auction is optimal

in the sense of revenue guarantee. Therefore, the result provides a ratio-

nale for a benevolent principal (e.g., a government selling its asset) to use

a second-price auction regardless of the valuation distribution; a simple and

common auction format. Note that this result is not driven by a standard

revenue-equivalence argument. Because of a correlated prior and additional

information, we cannot apply the standard revenue-equivalence theorem in

this environment. Theorem 1 of Bergemann and Morris (2005) implies that,

in a quasilinear environment where the designer’s goal is to implement a

social choice function (such as an efficient allocation rule) regardless of the

agents’ additional information, then only a dominant-strategy incentive com-

patible social choice function is implementable. Their result does not answer,

however, if a dominant-strategy mechanism is revenue-maximizing amongst

all mechanisms that implement the social choice function. Our result shows

that, for an efficient allocation rule, it is indeed the case that a second-price

6An auction mechanism is efficient if a highest-value bidder always wins the object,
regardless of additional information of the bidders.
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auction is revenue-maximizing.7

In Section 3.2, we show that, even if an arbitrary (possibly inefficient)

auction mechanism is allowed, under certain regularity conditions, a second-

price auction is still approximately optimal. More precisely, taking the high-

est value among all the bidders as the benchmark revenue,8 we show that

the difference between the benchmark expected revenue and the expected

revenue in a second-price auction is O
(

1
N

)
, and furthermore, for any mech-

anism, the difference cannot be smaller than O
(

1
N

)
. Following the language

in statistics, a second-price auction is rate-optimal.9 Chung and Ely (2007)

is an important precursor regarding this result. They show that (i) if the

bidders have arbitrary (high-order) beliefs about each other’s private infor-

mation, which is not necessarily consistent with any common prior, then

a dominant-strategy mechanism is optimal in revenue guarantee among all

auction mechanisms; and (ii) if the bidders’ (high-order) beliefs are consis-

tent with a common prior, there is a (counter)example of a value distribution

such that a dominant-strategy mechanism is strictly suboptimal. Regarding

(i), our result is partly stronger in the sense that the set of possible beliefs

the bidders may possess in our environment is smaller. In particular, in our

7As a natural extension, we investigate whether the same result holds for some other
dominant-strategy incentive compatible social choice functions. See Supplementary Ma-
terials.

8An alternative natural benchmark revenue may be the second-best revenue under
no additional information. However, notice that they are the same in the correlated
environment where Crémer and McLean (1988) apply.

9Investigation of convergence rates is ubiquitous in mechanism design / market de-
sign to study asymptotic performances of mechanisms. However, establishing the rate-
optimality of those mechanisms (in environments where exactly optimal mechanisms are
unknown) seems less popular, maybe because it is much harder in certain environments.
An important exception is Andreyanov and Sadzik (2016) in mechanism design in an ex-
change environment, who establish the rate-optimality of their σ-Walrasian Equilibrium
mechanism.
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model, the bidders’ beliefs are always consistent with the original correlated

prior regardless of additional information, while in the model of Chung and

Ely (2007), the bidders may believe very different priors from each other.10

Such heterogeneous priors may be difficult to justify in some contexts, such

as those where some data about past auctions of similar objects is publicly

available.11 On the other hand, their result is stronger than ours in the sense

that they obtain exact optimality, rather than approximate optimality (and

in this sense, the two papers are complementary). For this point, recall that

their result (ii) shows that exact optimality of a dominant-strategy mecha-

nism is impossible in our environment. Our result shows that, nevertheless,

a dominant-strategy mechanism is not “too far” from the optimum.

The common qualitative feature of these results is that, even though we

consider Bayesian incentive compatibility with a correlated common prior,

the optimal mechanism in revenue guarantee is a dominant-strategy incentive

compatible mechanism. With independent common priors, Myerson (1981)

shows optimality of a second-price auction (with a reserve price). Our re-

sults may be interpreted as a generalization in correlated environments when

revenue guarantee is concerned.12

It should be noted that the literature already raises a number of critiques

on the surplus extraction result by Crémer and McLean (1988), based on, for

example, a possibility of collusion (Laffont and Martimort (2000)), risk-averse

10Börgers (2013) raises a concern about revenue-maximizing Bayesian mechanism design
with risk-neutral agents and without a common prior.

11Furthermore, our common-prior model admits a natural interpretation that the bid-
ders’ additional information comes from their information acquisition. See Supplementary
Materials.

12As in Segal (2003), this type of result has been conjectured in the literature.
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bidders (Robert (1991)), and bidders’ information acquisition (Bikhchandani

(2010)). The current paper builds on the idea raised by Bikhchandani (2010)

suggesting the importance of information acquisition in correlated auction

environments. Leaving aside the fact that we consider different kinds of

“challenges” to the designer in order to circumvent the surplus-extraction re-

sult, our marginal contribution is characterization of (exact / approximate)

optimal mechanisms in a general auction setting given the possibility of ad-

ditional information.13

At the methodological level, the idea that agents may know more than the

available information to the “outside observer” is studied by Forges (1993)

and Bergemann and Morris (2013) in game theory (i.e., for arbitrarily fixed

games). In the sense that essentially no restriction is made in terms of

which additional information may be available, that studied by Bergemann

and Morris (2013) is the closest to our approach. Although our revenue-

guarantee problem can be seen as a mechanism-design application of their

concept of Bayes correlated equilibrium, we develop a different methodology

to analyze our mechanism design problem. We discuss why such a different

methodology is necessary in mechanism design in Section 3.

Finally, Section 4 concludes the paper.

In Supplementary Materials sections, we discuss four related topics. First,

we discuss the relationship between one of our assumptions and exchange-

ability. Second, we present the third application (sequential pricing). Third,

we endogenize the information acquisition decisions of the bidders, and show

that we obtain similar results as in Section 3 under certain conditions. This

13A notable exception is Laffont and Martimort (2000) who characterize the optimal
mechanism given the possibility of collusion, but they focus on a two-agent, two-type case.
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suggests that the worst-case evaluation adopted in this paper may indeed be

relevant if the bidders themselves choose their information structure. Finally,

we discuss some possible generalizations such as non-auction environments

and common / interdependent valuations.

2 Auction environment

There are N bidders, i = 1, . . . , N . Each bidder i knows his value vi ∈ Vi =

[0, 1] for the object (“private values”). Let V =
∏

i Vi. His utility is given by

viqi − pi, where qi ∈ [0, 1] is the probability that he is assigned the object,

and pi ∈ R is his payment. The set of feasible allocations is denoted by

X = {(q, p) = (qi, pi)
N
i=1|

∑
qi ≤ 1}. Given v = (vi)

N
i=1 ∈ V , let v(k) denote

the k-th highest value among v1, . . . , vN .

As in the standard Bayesian mechanism design approach, we assume that

the bidders commonly know a probability distribution over the values, de-

noted by F ∈ ∆(V ), and F is known to the designer as well. The assumption

that the distribution over the values is common knowledge may be considered

to be a reasonable assumption in some cases, for example, when “similar”

goods have been auctioned many times and the data for the value distribu-

tions is publicly available. We also assume that F admits a density that is

everywhere positive.

If F exhibits certain correlation, and moreover, if the bidders do not

have any additional information, then as in Crémer and McLean (1988), the

designer can attain full-surplus extraction based on their “side-bet” mecha-

nism. However, if the bidders may have additional information, then such a
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mechanism may raise revenue much lower than other mechanisms (and recall

that Bikhchandani (2010) shows that, indeed, each bidder has a significant

incentive for acquiring additional information). We consider the designer

who is extremely pessimistic with respect to the possibility of the bidders’

additional information, and aims to construct an auction mechanism that

guarantees a good amount of expected revenue given whatever additional

information the bidders have.

First, let S =
∏

i Si, each Si is a measurable space, and G ∈ ∆(V × S).

Each Si is interpreted as the space of additional information available to

bidder i, and G is a joint probability distribution over V × S. We assume

that each i observes both vi ∈ Vi and si ∈ Si before playing a mechanism,

and G is commonly known among the bidders.

Definition 1. (S,G) is F -feasible if the consistency between F and G is

maintained in the sense that, for each measurable Ṽ ∈ V , we haveG(Ṽ ×S) =

F (Ṽ ).

Let Gi(·|vi, si) ∈ ∆(V−i×S−i) denote i’s conditional probability distribu-

tion over V−i × S−i given his own signal vi, si.

An auction mechanism is denoted by Γ = 〈M, q, p〉, where each Mi is

a message set for each i, M =
∏

iMi, and (q, p) : M → X is an outcome

function. We assume that eachMi has a message that corresponds to “opting-

out”, and whenever i chooses that message, he is assigned (qi, pi) = (0, 0).

Given (V, F ;S,G) such that (S,G) is F -feasible, the bidders play a Bayesian

equilibrium in mechanism Γ. Let σi : Vi × Si →Mi be i’s (pure) strategy in
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Γ. We say that σ∗ = (σ∗i )
N
i=1 is a Bayesian equilibrium if, for each i, vi, si,mi:∫

V−i×S−i

viqi(σ
∗
i (vi, si), σ

∗
−i(v−i, s−i))− pi(σ∗i (vi, si), σ∗−i(v−i, s−i)) dGi(v−i, s−i|vi, si)

≥
∫
V−i×S−i

viqi(mi, σ
∗
−i(v−i, s−i))− pi(mi, σ

∗
−i(v−i, s−i)) dGi(v−i, s−i|vi, si).

The designer evaluates an auction mechanism according to its worst-case

expected revenue across (S,G).

Definition 2. The revenue guarantee of mechanism Γ is

R(Γ) = inf
(S,G):F -feasible

∫
V×S

[∑
i

pi(σ
∗(v, s))

]
dG.

That is, for any (S,G) that is F -feasible, there exists a Bayesian equilib-

rium σ∗ such that expected revenue at least as high as R(Γ) is attained.

Our objective is maximization of R(Γ). Of course, based on the revelation

principle, even though the designer does not know (S,G) originally, he can

always extract that information for free from the bidders (because (S,G)

is common knowledge among them). Therefore, in principle, we can first

obtain the optimal mechanism for each (S,G), and then minimize that value

function across all F -feasible (S,G).

However, this direct approach is in general very difficult, because (i) each

bidder has multi-dimensional private information, and (ii) the distribution

G may not be “nicely regular” even if F is. Therefore, we take a different

approach, by first characterizing its lower bound. For this purpose, we con-

sider a second-price auction. Because truth-telling is a dominant-strategy

equilibrium in this auction mechanism, regardless of (S,G), it attains ex-
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pected revenue E[v(2)], where v(2) is the second-highest valuation among N

bidders.14 That is, its revenue guarantee is E[v(2)].

In general, it is not necessarily the case that this lower bound is tight.

However, in the two applications studied in this paper (and in some other

cases in Supplementary Materials), we show that this lower bound is exactly

/ approximately tight.

Remark 1. In this definition, we evaluate a mechanism based on its worst-

case expected revenue in terms of all additional information structures, (S,G),

but on its “best-case” expected revenue in terms of equilibrium selection.

Such a best-case approach in equilibrium selection is standard in mecha-

nism design. An alternative approach is to consider the worst case also

in terms of equilibrium selection.15 In the current context of private-value

auction environments, however, the difference is small. As we find later,

dominant-strategy mechanisms are often optimal or close to optimal, and

such a dominant-strategy mechanism can be slightly trembled so that truth-

telling is strictly dominant (and hence the equilibrium is unique regardless

of (S,G)).

14More specifically, given v = (v1, . . . , vN ), v(1) = max{v1, . . . , vN} and v(2) =
max[{v1, . . . , vN} \ {v(1)}]. Then, E[v(2)] =

∫
v
v(2)dF (v), which depends on F but not

on G.
15As we discuss later, in that case, the solution concept would be equivalent to the worst-

case Bayes correlated equilibria (Bergemann and Morris (2013)). Du (2016), Bergemann,
Brooks, and Morris (2016a), Bergemann, Brooks, and Morris (2016b) apply this solution
concept to (pure) common-value auction environments.
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3 Revenue guarantee

To explain the critical (S,G) that attains the revenue guarantee, first, observe

that such (S,G) is not a trivial one (e.g., S is singleton and G is essentially

equivalent to F ), because for such (S,G), surplus extraction as in Crémer and

McLean (1988) would be possible. More generally, any (S,G) that exhibits

much correlation would not be such a worst-case information structure. This

includes, as a special case, the “full-information” (S,G), that is, Si = V for

all i and G assigns probability one on the even that s1 = . . . = sN = v (recall

that v is the profile of the bidders’ values) for all v. In such a full-information

structure, the principal can again achieve the full-surplus extraction.

This means that the critical (S,G) is “somewhere between” no-information

and full-information. As we see in each subsection, G rather exhibits cer-

tain (conditional) independence conditions. More specifically, the agents’

value profile v = (vi)i∈I is independently distributed in G conditional on

any realization of payoff-irrelevant signal profile s = (si)i∈I . This condi-

tional independence implies optimality of dominant-strategy mechanisms in

the applications below. More generally, under such critical G, the conditional

distribution of v|s does not satisfy the belief-determines-preference property

(Neeman (2004)), even if the standard type space (i.e., that without any

additional information) has this property.

In game theory, Forges (1993) and Bergemann and Morris (2013) intro-

duce several versions of incomplete-information correlated equilibria, and at

the conceptual level, the revenue-guarantee problem in auction can be seen

as a mechanism-design application of the concept of robust prediction in

Bergemann and Morris (2013). However, we use a different methodology to
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identify the optimal mechanism. To explain this, recall that, in their robust

prediction, Bergemann and Morris (2013) develop the concept of Bayes cor-

related equilibrium to identify all Bayesian equilibrium outcomes given any

(F -feasible) (S,G). Their approach has a great advantage in predicting pos-

sible outcomes in the sense that they do not need to consider all possible

F -feasible (S,G). Rather, as in the complete-information correlated equilib-

rium (Aumann (2013)), the Bayes correlated equilibria are simply character-

ized by a number of inequalities that correspond to the obedience conditions

for the agents to follow the “mediator’s recommendation” (in this sense,

their approach treats additional information in an “implicit” manner).16 In

mechanism design, there is a difficulty in treating correlated equilibrium as

a solution concept: as far as I am aware, it is not possible to apply the

revelation principle (at least in a straightforward manner) to focus on direct

mechanisms in seeking optimal mechanisms. Therefore, despite the useful-

ness of their concept in the prediction in any fixed games, we take another,

more “explicit” way to predict the agents’ behavior given each specific (S,G),

and to identify (S,G) that corresponds to the worst-case scenario for the de-

signer. This explicit approach allows us to apply the standard revelation

principle for Bayesian mechanisms.17

16Based on this solution concept, Bergemann, Brooks, and Morris (2015) study
monopoly pricing, and Bergemann, Brooks, and Morris (2017) study expected revenue
in first-price auction. Du (2016), Bergemann, Brooks, and Morris (2016a), Bergemann,
Brooks, and Morris (2016b) study the optimal mechanism in (pure) common-value auction
with the worst Bayes correlated equilibrium.

17Of course, there may be an appropriate version of revelation principle for correlated
equilibrium, which allows us to directly apply the Bayes correlated equilibria of Bergemann
and Morris (2013). Whether or not such a version of revelation principle exists is an open
question.

14



3.1 Revenue guarantee by efficient mechanism

First, we study the maximum expected revenue that can be guaranteed from

amongst all efficient auction mechanisms. Such a question may be relevant

when the designer is a public entity selling its asset: its primary concern may

be to allocate the asset in the most efficient way, but if there are multiple ways

to sell the asset efficiently the entity may desire to achieve higher revenue.18

If F satisfies independence, then it is the expected value of the second highest

value, which is, for example, achieved by a second price auction. If F has

certain correlation, then as in Crémer and McLean (1985, 1988), full surplus

extraction is possible (and hence the expected revenue is the expected value of

the highest value) if there is no additional information. However, if additional

information is available to the bidders, full surplus extraction is no longer

possible. Furthermore, we show that, if any additional information is allowed,

then given any F (independent or correlated), the highest expected revenue

we can guarantee is the expected value of the second highest value.

Definition 3. Γ = 〈M, q, p〉 is efficient given F if, for any (S,G) that is

F -feasible, there is a Bayesian equilibrium σ∗ such that, for each v, s:

∑
i|vi=v(1)

qi(σ
∗(v, s)) = 1.

Given any F , the set of efficient mechanisms is nonempty, because a sec-

ond price auction is efficient. Other examples of efficient mechanisms include

(not necessarily pivotal) VCG mechanisms which satisfy ex post individual

18Note that, with a correlated prior and arbitrary additional information, the standard
revenue equivalence result does not generally hold, and hence, there may be multiple
efficient mechanisms with different revenue levels.
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rationality. There are also non-dominant-strategy mechanisms that are effi-

cient. A simple example is a second-price auction with side bets, where the

side bets are separated from the winner determination and their expected

payments do not violate ex post (with respect to v) individual rationality.

We show that E(v(2)) is the highest revenue we can guarantee from

amongst all efficient mechanisms, which implies that a second-price auction

is optimal for this problem.

Theorem 1. E(v(2)) is the highest expected revenue we can guarantee from

amongst all efficient mechanisms.

Proof. We consider the following information structure. Given each v dis-

tributed according to F , if there is i such that vi > v
(1)
−i (= maxj 6=i vj), then

every agent observes (i, v−i) as a public (among the agents) information.19

More precisely, we let Sj = {1, . . . , N} × [0, 1]N−1(3 (i, v−i)) for each j,

and G be the following. Let δ(s) ∈ ∆(S) be a Dirac measure for s ∈ S (i.e.,

for any measurable A ⊆ S, δ(A) = 1 if s ∈ A, and δ(A) = 0 if s /∈ A). Then,

for each measurable B ⊆ V × S:

G(B) =
N∑
i=1

∫
(v,s)∈B

1{vi > v
(1)
−i }dδ((i, v−i), . . . , (i, v−i))dF.

In this information structure, (i, v−i) ∈ Sj indicates that i is the highest-

value bidder, v−i are the losers’ values, and this signal is common knowledge

among the bidders. Thus, the only asymmetric information among the bid-

ders is the highest bidder i’s value, vi, which is known solely to i.20

19We ignore ties without loss of generality.
20Similar information structures are considered in ? and ? although in quite differ-

16



To characterize the maximum revenue from amongst all efficient mecha-

nisms, we first consider the following “relaxed” problem. Imagine that the

designer can also observe (i, v−i), but not vi (except that vi > v
(1)
−i ). Then,

in an efficient mechanism, i must always win conditional on s, which implies

that the maximum payment the mechanism can charge is v
(1)
−i (= v(2)). The

maximum expected revenue in this relaxed problem is thus E[v(2)].

3.2 Approximate revenue guarantee

Next, we study the maximum expected revenue that can be guaranteed from

amongst all (not necessarily efficient) mechanisms. As opposed to the first

result, we do not characterize the maximum expected revenue that can be

guaranteed. Instead, under certain condition on F , we show that the second-

price auction is rate-optimal with respect to N in the sense that: (i) E[v(1)]−

E[v(2)] = O
(

1
N

)
; and (ii) for any mechanism Γ, its revenue guarantee satisfies

E[v(1)] − R(Γ) ≥ O
(

1
N

)
, i.e., no mechanism can achieve a strictly faster

convergence rate than 1
N

.21

ent contexts (I thank an anonymous referee in a previous submission). ? considers the
worst-case information structure amongst those satisfy the affiliation property in a specific
English auction (which is equivalent to a second-price auction with private values), while
we show that, given this information structure, a second-price auction is optimal amongst
all efficient mechanisms. ? considers the worst-case information structure amongst all
private-value type spaces, which includes minimization with respect to the value distribu-
tion (i.e., F in our notation), and shows that a second-price auction (with “surveying” of
losers) is optimal. Modulo many differences in the details, our result is partly stronger
than his: we show optimality of a second-price auction for any F , while ? shows it for the
worst-case F .

21Given that we obtain this rate-optimality result based on some specific (S,G), it may
be tempting to conjecture that, for a “better” choice of (S,G), the lower bound becomes a
tight bound. However, this is in general impossible: recall a coutnerexample by Chung and
Ely (2007) where the revenue guarantee of any dominant-strategy mechanism is strictly
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To facilitate understanding of the result of this section, first, suppose that

each vi follows an independent uniform distribution over [0, 1]. Then, we have

E[v(1)] = N
N+1

and E[v(2)] = N−1
N+1

, and hence E[v(1)]−E[v(2)] = O
(

1
N

)
(i.e., (i)

above). Regarding (ii), recall that Myerson (1981) shows that a second-price

auction with a reserve price 1
2

is optimal, which attains expected revenue
N−1+( 1

2)
N

N+1
= E[v(1)] − O

(
1
N

)
. Therefore, no mechanism can achieve strictly

better than E[v(1)]−O
(

1
N

)
.

The goal of this section is to show that, even if v is correlated according

to F , we obtain a similar result under certain conditions. We now introduce

the key assumption of this section.

Assumption 1. There exists (i) a measurable set Θ, (ii) µ ∈ ∆(Θ), and (iii)

Hθ
i ∈ ∆([0, 1]) for each θ ∈ Θ, that satisfies the following.

(I) For any measurable Ai ⊆ [0, 1] for i:

F (
N∏
i=1

Ai) =

∫
Θ

N∏
i=1

Hθ
i (Ai) dµ.

(II) There exists 0 < a < b < ∞ such that, for each θ ∈ Θ, Hθ
i admits

differentiable density hθi with hθi (x) ∈ [a, b] for x ∈ [0, 1].22

The assumption says that, even though we do not a priori assume an

independent distribution, F can be written as a mixture of conditionally

independent distributions with bounded density.

Although it is not an innocuous assumption, we believe that it is not

too restrictive either. Notice that any F with a full-support density can

suboptimal.
22Note that we necessarily have a < 1 < b.
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always be represented as a mixture of independent distributions (as (Hθ
i )i,θ

above with property (I)). In this sense, the assumption may be interpreted

as regularizing each such independent distribution, in a standard way in the

literature (that is, with a smooth and bounded density: (II)).23 Moreover,

a special case of the property (I) is exchangeability, a standard assumption

in applied probability theory with large samples such as Bayesian statistics.

See Supplementary Materials for a more formal relationship between our

Assumption 1 and exchangeability.

Theorem 2. Under Assumption 1, we have E[v(1)] − E[v(2)] = O( 1
N

), and

E[v(1)]−R(Γ) ≥ O( 1
N

) for any mechanism Γ.

Proof. First, we show E[v(1)]−E[v(2)] = O( 1
N

). BecauseE[v(k)] = E[E[v(k)|θ]]

for each k = 1, 2, where the inner expectation is with respect to
∏

iH
θ
i

and the outer expectation is with respect to µ, it suffices to show that

E[v(1)|θ]− E[v(2)|θ] = O( 1
N

) for each θ.

Fix an arbitrary θ, and let H(k),θ denote the cdf of v(k)|θ for k = 1, 2.24

Then,

H(1),θ(x) =
N∏
i=1

Hθ
i (x),

H(2),θ(x) = Pr(v(1) ≤ x) +
N∑
i=1

(1−Hθ
i (x))

∏
j 6=i

Hθ
j (x),

23Note that we do not even need other regularity properties in the literature, such as
the monotone hazard rate condition, although additional regularity property may enable
us to obtain a better convergence result.

24Hθ
i is originally introduced as a probability measure in Assumption 1, but in what

follows it also denotes a corresponding cdf. I believe this abuse does not cause any confu-
sion.
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and thus,

E[v(1) − v(2)|θ] =

∫ 1

0

xdH(1),θ(x)−
∫ 1

0

xdH(2),θ(x)

=

∫ 1

0

H(2),θ(x)−H(1),θ(x)dx

=

∫ 1

0

N∑
i=1

(1−Hθ
i (x))

∏
j 6=i

Hθ
j (x)dx.

Because 1−Hθ
i (x) ≤ b(1− x) and Hθ

j (x) ≤ 1− a(1− x), we have

E[v(1) − v(2)|θ] ≤
∫ 1

0

Nb(1− x)(1− a(1− x))N−1dx

= bN

∫ 1

1−a

1− y
a

yN−1dy

≤ b

a
· 1

N + 1
,

and similarly, because 1−Hθ
i (x) ≥ a(1−x) and Hθ

j (x) ≥ max{0, 1−b(1−x)},

we have

E[v(1) − v(2)|θ] ≥
∫ 1

1− 1
b

Na(1− x)(1− b(1− x))N−1dx

= aN

∫ 1

0

1− y
b

yN−1dy

=
a

b
· 1

N + 1
.

Next, we show E[v(1)]−R(Γ) ≥ O( 1
N

). Consider the following information

structure: each bidder “observes” θ ∈ Θ as public (among them) information,

while each vi is i’s private information.

More precisely, we let Si = Θ for each i, and G be the following. Let
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δ(s) ∈ ∆(S) be a Dirac measure for s ∈ S. Then, for each measurable

A ⊆ V × S:

G(A) =

∫
θ

∫
(v,s)∈A

dHθdδ(θ, . . . , θ)dµ,

where Hθ =
∏

iH
θ
i .

In this information structure, θ indicates the “realized” value of the fun-

damental, which is common knowledge among the bidders. Obviously, the

designer can also know this θ for free.

Conditional on θ, the bidders’ values are then conditionally independently

distributed according to Hθ.25 Thus, the problem is then a standard opti-

mal auction problem with independently distributed values. The maximum

expected revenue given θ is achieved by virtual-value maximization, which is

given by

Rθ ≡
∫
v

(
max

i=0,...,N
γi(v)

)
dHθ(v),

where γ0(v) ≡ 0 and γi(v) = vi − 1−Hθ
i (vi)

hθi (yi)
for each i = 1, . . . , N . We use∫

θ
Rθdµ(θ) as an upper bound of R(Γ) for any mechanism Γ.

Fix ε > 0, θ, and v such that v(2) ≥ 1 − ε. To achieve Rθ, the bidder

with the highest virtual value must win, while a second-price auction chooses

the bidder with the highest value, and given the potential asymmetry of the

value distributions, these two bidders may be different. In terms of the virtual

value, therefore, the optimal mechanism can achieve a higher virtual value

25Farinha Luz (2013) studies the optimal mechanisms under conditionally independent
value distributions.
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than the second-price auction by at most

sup
v(1),x,i,j

γj(x)− γi(v(1))

sub. to i, j ∈ {1, . . . , N}, v(1) ≥ x ≥ 1− ε.

By Taylor’s theorem, γi(x) = 1− (1− x)(2 + o(1− x)) for all x ≥ 1− ε,26

implying that the above expression is bounded from above by o(ε2).

Because
∫
θ
Rθdµ(θ) is an upper bound of R(Γ) for any mechanism Γ, for

a sufficiently small ε > 0, we have

R(Γ)− E[v(2)] ≤
∫
θ

[
Pr(v(2) ≤ 1− ε|θ) + Pr(v(2) ≥ 1− ε|θ)o(ε2)

]
dµ

≤ (1− aε)N +Nbε(1− aε)N−1 + o(ε2).

Thus, by taking ε = 1√
N

, we obtain

(1− aε)N +Nbε(1− aε)N−1 = (1− a√
N

+ b
√
N)(1− a√

N
)N−1

= exp(log(1− a√
N

+ b
√
N) + (N − 1) log(1− a√

N
))

≤ exp(log(1 + b
√
N)− (N − 1)

a√
N

)

≤ exp(
a

2

√
N + γ − a

√
N + a)

≤ o(
1

N
),

where the first inequality is because log(1+x) ≤ x for all x > −1, the second

inequality is because log(1 + x) ≤ cx + c − 1 − log c for all x > −1 and all

c > 0, where we set c = a
2b

and γ = a
2b
− 1− log

(
a
2b

)
, and the last inequality

26Note that the bound is uniform across N .
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is because exp(−dx) ≤ 1
1+dx+dx2

≤ 1
dx2

for all d, x > 0.

Therefore, we obtain

R(Γ)− E[v(2)] ≤ o(
1

N
),

which implies

E[v(1)]−R(Γ) = E[v(1)]− E[v(2)]− (R(Γ)− E[v(2)])

≥ O(
1

N
) + o(

1

N
)

= O(
1

N
).

Remark 2. Obviously, a second-price auction is just one of the rate-optimal

mechanisms. This may raise the question as to whether or not “many”

mechanisms are rate-optimal. Although there are indeed multiple such mech-

anisms, these must be all “close to” a second-price auction in the following

sense: first, except for a probability at most o( 1
N

), the highest-value bidder

must win the auction; second, the expected information rent for the winner

i must not deviate from that in a second-price auction by more than o( 1
N

).

These are the consequence of characterization of Rθ, i.e., the upper-bound

expected revenue if the principal could know θ. In this sense, although there

are multiple rate-optimal mechanisms, we argue that this “second-price prop-

erty” is close to necessary and sufficient for optimal revenue guarantee.

For example, a first-price auction is known to achieve asymptotically the

same expected revenue as a second-price auction for a class of symmetric
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(but not necessarily independent) value distributions, so-called asymptotic

revenue equivalence (Bali and Jackson (2002)).27 This suggests that a first-

price auction may also be rate-optimal, at least for a restricted class of F .28

As another example, a posted-price mechanism is dominant-strategy in-

centive compatible and its revenue guarantee approaches E[v(1)] as N →∞,

but with a much slower convergence rate (hence, it is not rate-optimal).29

Imagine a procedure where the seller specifies a price in advance, and if there

exist buyers whose values are above the price, then one of those buyers is

randomly chosen as the winner (otherwise, no winner). To provide an idea

of the convergence rate, suppose that vi ∼ U(0, 1) independently (perhaps

for some given θ). Its expected revenue given price p is p(1−pN), and hence,

with the optimal price of p∗ = 1
N+1

1
N , we obtain

p∗(1− (p∗)N) ≤ (
1

N
)

1
N

= exp(− logN

N
)

≤ 1

1 + logN
N

=
N

N + logN
.

27Gavish, Fibich, and Gavious (2017) conjecture that a similar asymptotic result holds
with a specific convergence rate even with asymmetric (and not necessarily independent)
distributions.

28Bergemann, Brooks, and Morris (2017) identify a maximization problem that provides
the revenue guarantee of a first-price auction, and obtain a solution when each bidder’s
value is binary (a closed-form solution is obtained with two bidders). They also discuss
why it would be difficult to generalize their approach to the case with more than binary
values.

29I thank Drew Fudenberg for this remark.
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Thus,

E[v(1)]− p∗(1− (p∗)N) ≥ N

N + 1
− N

N + logN

=
N(logN − 1)

(N + 1)(N + logN)

≥ logN − 1

4N

= O(
logN

N
),

and therefore, the convergence rate is much slower than O( 1
N

).

To evaluate the difference in convergence rates especially for relatively

small values of N , imagine again an iid uniform distribution over [0, 1]. In

this case, we have: E[v(1)] = N
N+1

, E[v(2)] = N−1
N+1

, Rθ = N−1
N+1

+ 1
(N+1)2N

, and

p∗(1− (p∗)N) = ( 1
N+1

)
1
N

N
N+1

. The differences are plotted in the left panel of

Figure 1 (up to N = 10).
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Figure 1

As is clearly seen, the convergence between E[v(1)]−E[v(2)] and E[v(1)]−

Rθ occurs very quickly (even around N = 5), while E[v(1)]− p∗(1− (p∗)N) is

still much above.

The right panel extends these graphs until around N = 100, and the

difference between E[v(1)] and the posted-price revenue seems still significant.

To help understanding the source of the difference, the figure also has two

additional plots: 1
N

and logN
N

. The difference between E[v(1)] and E[v(2)]

converges to 1
N

, while the difference between E[v(1)] and the posted-price

revenue converges to logN
N

(with a significant difference between 1
N

and logN
N

even around N = 100). This suggests that the approximation argument

above is valid not only at the limit (N →∞) but for much smaller values of

N .
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4 Conclusion

In this paper, we consider auction environments with a (possibly correlated)

common prior over bidders’ values, where each bidder may have additional in-

formation (e.g., through information acquisition). Under certain conditions,

we characterize the optimal mechanisms in terms of the expected revenue

that is guaranteed given whatever additional information is available to the

bidders. Specifically, we show that a second-price auction is optimal from

amongst all the efficient mechanisms, and it is rate-optimal from amongst all

the mechanisms.

Although the paper focuses on simple auction environments, the idea of

decomposing a (possibly correlated) distribution into multiple independent

distributions (with the interpretation of the agents’ additional information)

could be useful in other mechanism design contexts, as we discuss in Supple-

mentary Material.
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Supplementary Materials

(not for publication)

A Assumption 1 and Exchangeability

In Section 3.2, we show the rate-optimality of a second-price auction under

Assumption 1; a possibility of representing F as a mixture of conditionally

independent distributions. As we discuss there, Assumption 1 is related to

exchangeability, a common assumption in applied probability theory with

large samples. Here, we discuss a more formal relationship between Assump-

tion 1 and exchangeability.

Recall that exchangeability is about the distribution of a countably infi-

nite sequence of random variables. Let FN ∈ ∆([0, 1]N) denote a probability

distribution over a countably infinite sequence of random variables, each tak-

ing a value in [0, 1]. A possible (though not necessary) interpretation is that

there are potentially an infinite number of bidders i = 1, 2, . . ., and FN pro-

vides a (possibly correlated) joint distribution over the values of all those

bidders. Consider any finite permutation of the identities of the bidders. Let

F̃N denote the joint distribution over the values of all the bidders, but with

the permuted identities. We say that FN is exchangeable if FN = F̃N for every

finite permutation. We say that F (a distribution over N bidders’ values) is

exchangeable if it can be expressed as a marginal of an exchangeable FN on

N variables.30

30Note that, by exchangeability, “which” N variables one fixes does not make any dif-
ference.
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The following theorem, called de Finetti theorem, says that exchangeable

FN can be represented as a mixture of conditionally independent and identical

distributions.

Lemma 1. (de Finetti theorem) If FN is exchangeable, then there exists a

profile of (i) a measurable set Θ, (ii) µ ∈ ∆(Θ), and (iii) Hθ ∈ ∆([0, 1]) for

each θ ∈ Θ, such that, for any measurable Ai ⊆ [0, 1] for i ∈ N, we have:

FN(
∞∏
i=1

Ai) =

∫
Θ

∞∏
i=1

Hθ(Ai) dµ.

Therefore, Property (I) in Assumption 1 is obtained by assuming ex-

changeability of F . We obtain the same result as in the main text.

Theorem. Let FN ∈ ∆([0, 1]N) be exchangeable, and assume there exists

0 < a < b < ∞ such that, for each θ ∈ Θ, Hθ
i admits differentiable density

hθi with hθi (x) ∈ [a, b] for x ∈ [0, 1]. Then, we have E[v(1)]− E[v(2)] = O( 1
N

),

and E[v(1)]−R(Γ) ≥ O( 1
N

) for any mechanism Γ.

B Revenue guarantee in sequential sales

The third application considers a sequential-sales setting. Consider a discrete-

time (t = 1, 2, . . .) dynamic environment where each agent i is available only

at time t = i. The designer (a seller) has an indivisible good, and attempts

to time the sale of it in order to maximize expected revenue. Although our

model introduced in Section 2 is static, we treat this dynamic environment as

an application of our model by requiring that a feasible mechanism should be

such that the allocation for agent i given a message profilem = (m1, . . . ,mN),
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(qi(m), pi(m)), can only be a function of mi ≡ (m1, . . . ,mi) but not of

mi+1, . . . ,mN .

Because the allocation for agent 1 can only be a function of his own

message, it is in general impossible to extract the “full” surplus. However, if

F exhibits certain correlation as in Crémer and McLean (1985), Crémer and

McLean (1988), or McAfee and Reny (1992), and if we do not allow for any

additional information for the agents, then no information rent would be left

for all of the other agents i 6= 1. In this sense, much of the surplus could still

be extracted by a similar side-bets mechanism as in those papers.

If the agents have additional information, however, then this surplus ex-

traction result no longer holds. Furthermore, we show that the highest rev-

enue guarantee is attained by a dominant-strategy mechanism. More specifi-

cally, it is a sequential posted-price mechanism where the price for each agent

i is adjusted by the previous agents’ reports, v1, . . . , vi−1. Therefore, this is

an instance where the revenue-maximizing seller finds it optimal (exactly,

rather than approximately) to use a dominant-strategy mechanism.

First, we characterize the optimal dominant-strategy mechanism, which

is obtained by a backward-induction argument. Let vi = (v1, . . . , vi). First,

consider the last buyer, i = N . If each agent j < N has been assigned the

good with probability qj, then the optimal dominant-strategy mechanism
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solves:

RN(q1, . . . , qN−1) = max
qN (vN ),pN (vN )

E(qN(vN)pN(vN))

sub. to qN(vN)(vN − pN(vN)) ≥ qN(vN−1, v′N)(vN − pN(vN−1, v′N)),

qN(vN)(vN − pN(vN)) ≥ 0,
N−1∑
j=1

qj + qN(vN) ≤ 1.

By an induction argument, let Ri+1(q1, . . . , qi) be the expected revenue

from the agents k = i+1, . . . , N in the optimal dominant-strategy mechanism

given that each agent j ≤ i has been assigned the good with probability qj.

Now, regarding the allocation for agent i, the optimal dominant-strategy

mechanism solves:

Ri(q1, . . . , qi−1) = max
qi(vi),pi(vi)

E(qi(v
i)pi(v

i) +Ri+1(q1, . . . , qi(v
i)))

sub. to qi(v
i)(vi − pi(vi)) ≥ qi(v

i−1, v′i)(vi − pi(vi−1, v′i)),

qi(v
i)(vi − pi(vi)) ≥ 0,

i−1∑
j=1

qj + qi(v
i) ≤ 1.

Therefore, we obtain the following.

Lemma 2. The expected revenue of the optimal dominant-strategy mecha-

nism is given by R1.

We now show that R1 is indeed the highest revenue guarantee.

Theorem 3. The highest revenue guarantee among all feasible mechanisms

in the sequential-sales environment is R1.
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Proof. We consider the information structure such that bidder i observes

vi = (v1, . . . , vi). More precisely, we let Si = V i ≡ V1 × · · · × Vi for each i,

and G be the following. Let δj(sj) ∈ ∆(Sj) be a Dirac measure for sj ∈ Sj.

Then, for each measurable A ⊆ V × S:

G(A) =

∫
(v,s)∈A

N∏
i=1

dδi(v
i)dF.

Suppose that there exists a feasible mechanism Γ = (M, q̃, p̃) and its

Bayesian equilibrium σ given this information structure that yields a strictly

higher expected revenue than R1.

In the following, we only consider the case where σ is a pure-strategy

equilibrium, but a similar logic also applies to mixed-strategy equilibria. For

each i and v, let qi(v
i) = q̃i(σ

i(vi)) and pi(v
i) = p̃i(σ

i(vi)).

First, consider the last buyer, i = N . Because this buyer knows the

realized vN , the Bayesian equilibrium condition is that, for each mN ∈MN :

q̃N(σN(vN), σN−1(vN−1))(vN − p̃N(σN(vN), σN−1(vN−1)))

≥ q̃N(mN , σ
N−1(vN−1))(vN − p̃N(mN , σ

N−1(vN−1))),

which implies that, for each v′N ∈ V :

qN(vN)(vN − pN(vN)) ≥ qN(vN−1, v′N)(vN − pN(vN−1, v′N)).
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Therefore, the expected revenue from this buyer is at most:

max
qN (vN ),pN (vN )

E(qN(vN)pN(vN))

sub. to qN(vN)(vN − pN(vN)) ≥ qN(vN−1, v′N)(vN − pN(vN−1, v′N)),

qN(vN)(vN − pN(vN)) ≥ 0,
N−1∑
j=1

qj(v
j) + qN(vN) ≤ 1,

which is RN(q1(v1), . . . , qN−1(vN−1)).

By an induction argument, suppose that Ri+1(q1(v1), . . . , qi(v
i)) is an

upper-bound expected revenue from the agents k = i + 1, . . . , N . Now,

regarding the allocation for agent i, because this agent knows the realized vi,

the Bayesian equilibrium condition is that, for each mi ∈Mi:

q̃i(σi(v
i), σi−1(vi−1))(vi − p̃i(σi(vi), σi−1(vi−1)))

≥ q̃i(mi, σ
i−1(vi−1))(vi − p̃i(mi, σ

i−1(vi−1))),

which implies that, for each v′i ∈ V :

qi(v
i)(vi − pi(vi)) ≥ qi(v

i−1, v′i)(vi − pi(vi−1, v′i)).
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Thus, the expected revenue is at most:

max
qi(vi),pi(vi)

E(qi(v
i)pi(v

i) +Ri+1(q1, . . . , qi(v
i)))

sub. to qi(v
i)(vi − pi(vi)) ≥ qi(v

i−1, v′i)(vi − pi(vi−1, v′i)),

qi(v
i)(vi − pi(vi)) ≥ 0,

i−1∑
j=1

qj + qi(v
i) ≤ 1,

which is Ri(q1(v1), . . . , qi−1(vi−1)).

Therefore, the expected revenue is at most R1, which contradicts our

initial supposition.

C Endogenous information acquisition

In the previous sections, we model the bidders’ additional information struc-

ture in a general way, so that the results would not depend on ad hoc restric-

tions. However, it also seems reasonable to ask if such a critical information

structure can be “endogenously chosen” by the bidders’ equilibrium infor-

mation acquisition decisions.31 Here, we show a simple model of information

acquisition in the context of the efficient auction of Section 3.1, with which

the seller’s best expected revenue can be made arbitrarily close to E(v(2)),

31An alternative question is whether or not such a critical information structure can be
an endogenous outcome of the bidders’ communication or information sharing. I thank
Juuso Valimaki for suggesting that our critical (S,G) may be obtained if the bidders play
an English auction before they play the current mechanism. Interestingly, Vartiainen
(2013) shows that such an information structure eliminates the (non-committed) seller’s
incentive of “re-auctioning”, which is a different kind of robustness concern.
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and in this sense, a second-price auction is “virtually” optimal.32

Assume that each bidder i simultaneously chooses an information acqui-

sition action ai ∈ A after he learns vi and observes the mechanism, but

before playing the mechanism. Let A = {(S0, G0), (S1, G1)}, where (i) S0 is

singleton (and G0 collapses to F ) so that (S0, G0) corresponds to “no infor-

mation acquisition”, and (ii) (S1, G1) is the critical information presented in

the proof of Theorem 1. The set A can contain more alternatives, but it is

not essential in the following argument. Bidder i’s information acquisition

cost enters into his payoff function in an additively separable manner, is zero

for (S0, G0), and is ci ≥ 0 for (S1, G1), where ci is his private information.

For simplicity, assume that each ci follows a distribution γ independently

from (c−i, v), and that the probability of ties in v is zero.

Intuitively, if the seller offers a second-price auction or any other dominant-

strategy mechanism, then no one engages in information acquisition (except

for the zero-cost type, which is indifferent). On the other hand, if the seller

offers a Cremer-McLean mechanism, then a bidder may have an incentive to

pay the cost to acquire the critical information to “protect” himself from sur-

plus extraction. Characterizing the optimal mechanism would be, in general,

difficult given a multi-dimensional type space and endogenous information

acquisition. However, as long as each ci is small in expectation, we can

show that a second-price auction, which does not induce costly information

acquisition, is close to being optimal.

Proposition 1. For any mechanism and its Bayesian equilibrium where the

32Admittedly, the model presented here may look somewhat “extreme”. It is beyond the
scope of this paper to examine whether or not there exists a “more natural” information
acquisition model that achieves the same result.
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highest-value bidder always wins, the expected revenue cannot be greater

than E(v(2)) + E(ci)N .

Proof. Fix an arbitrary mechanism and its Bayesian equilibrium where the

highest-value bidder always wins. In the following, we only consider the case

with a pure-strategy equilibrium for simplicity. The same argument holds

for the case with a mixed-strategy equilibrium, but with more complicated

notation.

Let Ui(vi, ci) denote bidder i’s equilibrium expected payoff given his value

type vi and cost type ci, i.e.:

Ui(vi, ci) = Ev−i,c−i [q
∗
i (v, c, s(α

∗(v, c)))vi − p∗i (v, c, s(α∗(v, c)))− α∗i (vi, ci)ci|vi, ci],

where α∗i (vi, ci) ∈ {0, 1} represents bidder i’s equilibrium probability of ac-

quiring the critical information given (vi, ci), s(α
∗(v, c)) = (sj(α

∗
j (vi, ci)))

N
j=1,

and q∗i , p
∗
i represent the implied probability of winning and expected payment

of bidder i.

First, consider the case with ci = 0. His possible deviation is to acquire

the critical information, and then in the mechanism, (i) behave the same way

as supposed in the equilibrium as long as his auction payoff Ec−i [q
∗
i (v, c, s(α

∗(v, c)))vi−

p∗i (v, c, s(α
∗(v, c)))|v, ci = 0] is non-negative, and (ii) refuse participation oth-

erwise. This is always a weakly profitable deviation, and is strictly profitable

if case (ii) happens. Therefore, Ec−i [q
∗
i (v, c, s(α

∗(v, c)))vi−p∗i (v, c, s(α∗(v, c)))|v, ci =

0] should be non-negative for any v, which implies Ec−i [p
∗
i (v, c, s(α

∗(v, c)))|v, ci =

0] ≤ vi. Furthermore, we obtain the following restriction on his payment.

Lemma 3. For each v such that vi > v
(1)
−i , Ec−i [p

∗
i (v, c, s(α

∗(v, c)))|v, ci =
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0] ≤ v
(1)
−i .

Proof. Suppose contrarily that, for some v with vi > v
(1)
−i , Ec−i [p

∗
i (v, c, s(α

∗(v, c)))|v, ci =

0] = xi(v) > v
(1)
−i .

Bidder i’s alternative possible deviation is to acquire the critical infor-

mation, and then in the mechanism, behave as if his value type is v′i ∈

(v
(1)
−i , xi(v)). Because efficiency implies that he wins for sure both in the

equilibrium and also in this deviation:

vi − xi(v) ≥ vi − Ec−i [p∗i (v′i, v−i, c, si(1), s−i(α
∗
−i(v−i, c−i)))|v, ci = 0]

= vi − xi(v′i, v−i)

≥ vi − v′i,

which implies xi(v) ≤ v′i, which contradicts v′i ∈ (v
(1)
−i , xi(v)).

The lemma implies that:

Ui(vi, 0) ≥ Ev−i [1{vi > v
(1)
−i }(vi − v

(1)
−i )|vi].

Now consider bidder i with type (vi, ci). His possible deviation is to

acquire the critical information, and then in the mechanism, behave as if his

type is (vi, 0). Thus:

Ui(vi, ci) ≥ Ui(vi, 0)− ci

≥ Ev−i [1{vi > v
(1)
−i }(vi − v

(1)
−i )|vi]− ci.
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Therefore, the seller’s expected revenue is:

E(v(1))−
∑
i

Evi,ci [Ui(vi, ci)]

≤
∫
c

∫
v

1{vi > v
(1)
−i }(vi − (vi − v(1)

−i )) +
∑
i

cidF dΓ

≤ E(v(2)) + E(ci)N.

Therefore, as E(ci) vanishes, a second-price auction becomes close to

being optimal. Of course, if E(ci) is very large, then a second-price auction

is far from optimal, but this is not surprising. If information acquisition is

prohibitively costly, we return to the Cremer-McLean case where there is no

information acquisition and hence full extraction is possible.

D Discussion: Some possible generalizations

Although we consider private-value auction environments, the methodology

developed in this paper can be generalized into a number of other environ-

ments. In this section, we propose some possible generalizations based on

the efficient-auction problem in Section 3.1.

First, consider the following interdependent/common-value environment.

Instead of valuation vi, imagine that bidder i has a signal ti ∈ Ti = [0, 1],

where the common prior for t = (ti)
N
i=1 is denoted by F , and i’s valuation is

vi(t). Assume that (i) the bidders are symmetric in the sense that vi(t) =

vj(t
′) if t′ satisfies t′i = tj, t

′
j = ti and t′k = tk for k 6= i, j, (ii) vi is strictly
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increasing in ti, and (iii) the following single-crossing condition holds (Maskin

(1992) and Dasgupta and Maskin (2000)). For each i 6= j, ti < t′i and t−i,

vi(ti, t−i) ≥ vj(ti, t−i) implies vi(t
′
i, t−i) > vj(t

′
i, t−i).

Under these conditions, efficiency means that the bidder with the highest

ti wins. Then, with an analogous information structure (S,G) as in the proof

of the theorem (i.e., where every bidder knows who should be the winner and

all the losers’ t’s), the best expected revenue is given by the optimal ex post

incentive compatible mechanism. For example, an English ascending auction

is one such mechanism.

More generally, consider a general mechanism design environment where

each agent has a payoff type ti ∈ Ti, and the principal desires to implement

some social choice function that only depends on the bidders’ payoff types

(e.g., efficient allocation), φ : T → Q, where Q denotes a general non-

monetary allocation space. Note that we do not have any restriction on each

Ti and Q (e.g., not necessarily intervals). Each agent’s payoff is Vi(t, q)− pi
where t is a payoff type profile, q ∈ Q is an allocation and pi is his payment

to the mechanism. This is a separable environment of Bergemann and Morris

(2005), where their result implies the following.

Lemma 4. Suppose that, for any (S,G), there exists a transfer function for

each i, pi : S × T → R, such that truth-telling (of realized (s, t) ∈ S × T ) is

a Bayesian equilibrium in mechanism (φ, p1, . . . , pN).33 Then, there exists a

monetary transfer function for each i, pEPi : T → R, such that truth-telling

(of realized t ∈ T ) is an ex post equilibrium in mechanism (φ, pEP1 , . . . , pEPN ).

33One may imagine, though not necessarily, that this corresponds to the revenue-
maximizing mechanism among those which implement φ, when the principal knows (S,G).
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Proof. By the proof of their Proposition 1, φ is ex post implementable if φ is

Bayesian (or interim) implementable with every information structure such

that all but one agent’s payoff types are common knowledge. Note that such

an information structure can be represented as a feasible (S,G), and hence,

their result immediately applies.

The result does not exclude a possibility that there is a mechanism that

Bayesian implements φ with higher expected revenue than that of the ex post

incentive compatible mechanism (with pEPi ). Recall that, with arbitrary

(S,G), our environment does not generally admit such a “revenue equiva-

lence” sort of property. Nevertheless, under appropriate choice of (S,G), we

can indeed have revenue equivalence, and hence obtain optimality of the ex

post mechanism (with pEPi ) in the sense of revenue guarantee.34

To show this, we first observe that any F can be represented as a mixture

of independent (though not necessarily identical) distributions, i.e., there

exists a measurable space Θ, a probability measure µ over Θ and a family of

independent distributions {Hθ}θ∈Θ over T such that F (T̃ ) =
∫

Θ
Hθ(T̃ )dµ.35

Then, we can apply appropriate versions of revenue-equivalence results. For

example:

Theorem 4. 1. Suppose that Q ⊆ [0, 1]N(3 (qi)
N
i=1), Ti is a compact

interval of R, Vi(t, q) = vi(t)qi where vi is increasing in ti, and satisfies

34Note the two different roles of additional information in this argument. First, con-
sidering (S,G) used in Bergemann and Morris (2005), the property of implementable φ is
derived. Then, considering different (S,G), revenue guarantee is characterized.

35There can be multiple ways to decompose F into independent distributions. A trivial
way is to set Θ = T and each Ht as a Dirac distribution on t ∈ T . Whether or not there
exists a more “nontrivial” or “looking natural” decomposition would depend on F and the
specificity of environments. I thank Gabriel Carroll for this point.
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single-crossing: for each i 6= j, ti < t′i and t−i, vi(ti, t−i) ≥ vj(ti, t−i)

implies vi(t
′
i, t−i) > vj(t

′
i, t−i). Then, for any F that is full-support

and any φ that is implementable given any (S,G), the optimal revenue

guarantee is given by an ex post mechanism.36

2. Suppose that Q is the set of all probability distributions over a finite set

of social alternatives {1, . . . , K}, Ti = RK , Vi(t, q) =
∑K

k=1 ti(k)q(k),

and φ is efficient (i.e., φ(t) maximizes
∑

i Vi(t, q) for all t). Then, for

any F , the optimal revenue guarantee is given by a dominant-strategy

mechanism.37

3. Suppose that Ti is a convex subset of Rd, and Vi(t, q) is convex in ti.

Then, for any F that is full-support and any φ that is implementable

given any (S,G), the optimal revenue guarantee is given by an ex post

mechanism.38

Even if revenue equivalence in the above sense does not hold, our result

may still be generalized. Specifically, consider an “auction-like” separable

environment where a (non-monetary) allocation q ∈ Q is not simultaneously

relevant to multiple agents, in the following sense: there exist (bi)
N
i=1 ∈ RN

such that vi(t, q) 6= bi for some i implies vj(t, q) = bj for j 6= i. In this case,

agent i is not necessarily the “winner” in an appropriate sense (e.g., vi(t, q)

can be less than bi), but a crucial property is that only i’s value matters as

long as q is to be chosen.

36See Mookherjee and Reichelstein (1992) for the private-value case, and Jehiel and
Moldovanu (2001) for the interdependent-value case.

37See Krishna and Perry (2000).
38See Krishna and Maenner (2001).
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For example, consider an allocation problem of an indivisible bad,39 where

bi denotes i’s (publicly known) benefit of a noxious facility such as nuclear

power plants or garbage disposal. An allocation is q ∈ Q = {0, 1, . . . , N},

where q = 0 means no facility (hence every agent earns 0), and q = i means

that the facility is located at i’s location, which makes j’s payoff bj − 1{i =

j}cj. This ci may be privately known by agent i (i.e., ti = ci), or alternatively,

agent i only knows a noisy information ti about the cost, and the actual cost

may depend also on the others’ information t−i (hence denoted by ci(t)).

Another, related, example may be a variant of the partnership dissolution

problem of Cramton, Gibbons, and Klemperer (1987). Consider a company

owned by N shareholders, and assume that, with the same ownership struc-

ture (q = 0), each shareholder i’s payoff is publicly known as −bi(≥ 0). The

principal designs a mechanism to reallocate the shares among the agents or

keep the status quo (hence, q ∈ Q = {0, 1, . . . , N}). If i is assigned the full

ownership (q = i), then he earns πi(t), potentially as a function of all the

shareholders’ payoff-relevant information. If i loses his ownership (q 6= 0, i),

then he earns 0. After renormalization of each i’s payoffs by adding bi, this

example also fits the “auction-like” separable environment.

For those examples, q simply indicates who is relevant (as in an auction),

but q can be more complex in other cases. For example, the authority may

choose a firm which operates in a regulated industry, through a reverse auc-

tion. Then the regulation contract between the authority and the winning

firm may depend on the other relevant information.40 In this case, we may

39This is called a NIMBY (“not-in-my-backyard”) problem. Often for this problem, not
only efficiency but also fairness is a central issue. See, for example, Sakai (2012).

40For example, a higher-cost firm may produce less goods. See Laffont and Tirole (1986)
and Laffont and Tirole (1987).

47



let Q = {1, . . . , N} × R+(3 (q1, q2)), where q1 ∈ {1, . . . , N} indicates which

firm wins and q2 ∈ R+ represents how much this firm produces.

Instead of this strong assumption that only one agent is relevant, we

can allow for multidimensional payoff types, interdependence, non-monotone

payoff functions, and so on, with which the standard revenue equivalence

results may not hold.

Theorem 5. In the “auction-like” separable environment as above, the high-

est revenue guarantee among all mechanisms that implements φ (given every

feasible (S,G)) is achieved by an ex post incentive compatible mechanism.

Proof. Define T 1 ⊆ T as the set of all type profiles t ∈ T with which any

agent j 6= 1 is irrelevant, i.e., vj(t, φ(t)) = bj for j 6= 1. Then, inductively

from i = 2 to N , define T i ⊆ T \ (
⋃
j<i T

j) as the set of all type profiles

t ∈ T \ (
⋃
j<i T

j) with which any agent j 6= i is irrelevant, i.e., vj(t, φ(t)) = bj

for j 6= i. Note that {T i}Ni=1 is a partition of T .

We consider the following information structure. Given each t distributed

according to F , if t ∈ T i, then every agent j observes (i, t−i) as a public

(among the agents) information.

More precisely, we let Sj = {(i, t−i)|i ∈ {1, . . . , N}, t−i ∈ T−i} for every

agent j, and G be the following. Let δ(s) ∈ ∆(S) be a Dirac measure for

s ∈ S. Then, for each measurable B ⊆ T × S:

G(B) =
N∑
i=1

∫
(t,s)∈B

1{t ∈ T i}dδ((i, t−i), . . . , (i, t−i))dF.

In this information structure, (i, t−i) ∈ Sj indicates that i is the relevant

agent (i.e., t ∈ T i), and t−i are all the irrelevant agents’ payoff types, and this
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signal is common knowledge among the bidders. Thus, the only asymmetric

information among the bidders is the relevant agent i’s payoff type, ti, which

is known solely to i.

Consider the relaxed problem where the designer can always observe this

additional information (i, t−i) whenever t ∈ T i. In the optimal mechanism,

we collect bj from agent j 6= i, and for i’s payment, his incentive compatibility

and participation constraint given t−i must be satisfied. More precisely, the

optimal mechanism is given by:

max
p

∫
t

∑
i

pi(t)dF (t)

sub. to ∀i, ∀t /∈ T i, bi − pi(ti, t−i) = 0,

∀i, ∀t ∈ T i, vi(ti, t−i, φ(ti, t−i))− pi(ti, t−i)

≥ max{0, vi(ti, t−i, φ(t′i, t−i))− pi(t′i, t−i)}.

Let p∗ = (p∗i (t))i,t solve this problem. Let pEP = (pEPi (t))i,t denote the

payment scheme in the optimal ex post incentive compatible mechanism (that

implements φ). Our goal is to show that mechanism (φ, p∗) is ex post incen-

tive compatible, and hence achieves the same expected revenue as pEP . The

only non-trivial part is to show that, given t−i such that (ti, t−i) /∈ T i, agent

i with type ti has no incentive to pretend to be another type t′i.

Note that, in pEP , we have bi−pEPi (t) = 0 for t /∈ T i: if bi−pEPi (t) = ε > 0

for some i and t = (ti, t−i) /∈ T i, then for any t′i ∈ Ti, vi(t′i, t−i, φ(t′i, t−i)) −

pEPi (t′i, t−i) ≥ ε by ex post incentive compatibility. But this means that

the principal can increase pEPi (t′i, t−i) by ε for all t′i without violating any

constraint.
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Given each i and t−i, let T ∗i (t−i) ⊆ Ti denote the set of ti such that

p∗i (ti, t−i) > pEPi (ti, t−i). Then, consider a new payment scheme p∗∗ =

(p∗∗i (t))i,t such that:

p∗∗i (t) = max{p∗i (t), pEPi (t)}.

We show that a mechanism (φ, p∗∗) is ex post incentive compatible, im-

plying that the expected revenues in p∗∗, p∗, pEP are all the same, as desired.

For each i, t such that p∗∗i (t) = pEPi (t), ex post incentive compatibility

continues to be satisfied, because p∗∗i (t′i, t−i) ≥ pEPi (t′i, t−i) for all t′i 6= ti, and

pEPi is ex post incentive compatible. For each i, t such that p∗∗i (t) = p∗i (t) >

pEPi (t), we have t ∈ T i (otherwise, p∗i (t) = pEPi (t) = bi), and thus, for each

t′i 6= ti:

vi(ti, t−i, φ(ti, t−i))− p∗∗i (ti, t−i) = vi(ti, t−i, φ(ti, t−i))− p∗i (ti, t−i)

≥ vi(ti, t−i, φ(t′i, t−i))− p∗i (t′i, t−i)

≥ vi(ti, t−i, φ(t′i, t−i))− p∗∗i (t′i, t−i),

implying ex post incentive compatibility. Therefore, p∗∗ is indeed ex post

incentive compatible.
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