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Abstract

We examine the conditions under which independent risks are substitutes
or complements. They are substitutes if the opportunity to invest in one
risky project reduces the optimal investment in any other independent risky
project. We obtain the following two results on the substitutability of in-
dependent risks. A necessary condition is that absolute risk aversion be
convex, which is a sensible hypothesis on preferences. A sufficient condition
is that absolute prudence be decreasing and less than twice the absolute risk
aversion.



1 Introduction

How is the optimal exposure to one risk affected by the presence of other
risks? This question is relevant in many circumstances e.g. for entrepreneurs
who face different non-exclusive risky investment projects, portfolio man-
agers who can invest in different currencies and sectors, or for policyholders
who must select their level of insurance deductibles for their two cars.

The characterization of the optimal behavior of a risk-averse expected-
utility (EU) maximizer toward a single risk is well documented in the litera-
ture, since Pratt (1964) and Arrow (1971). But progresses of the analysis for
situations with multiple sources of risk have been extremely slow. Because
of the nonlinearities of the EU objective function with respect to contingent
payofts, adding a second risky project to an initial one has a complex effect
on the demand for it. This is the case even when these risks are independent,
except when absolute risk aversion is constant since in this case the demands
for the different risks are independent of each other.

Most people would argue that independent risks should be substitutes in
the sense that the opportunity to invest in one risk should reduce the demand
for other independent risks. For example, reducing the barriers to the ability
of citizens of one country to invest in other countries should reduce the size
of their investments in their own country.

The idea that independent risky projects are substitutes has not received
the imprimatur of the theory, however. In fact, additional restrictions to
the EU model are necessary to sustain this idea. For instances, to analyze
the substitutability between independent take-it-or-leave-it risks, Pratt and
Zeckhauser (1987) had to introduce the notion of proper risk aversion. Risk
aversion is proper if an undesirable risk cannot become desirable if another
undesirable risk is added to wealth. To simplify, this means that two inde-
pendent risks cannot be complement. In the EU paradigm, not all increasing
and concave utility functions u are proper. For example, a necessary con-
dition for properness is that the fourth derivative of the utility function be
negative, and that absolute risk aversion be decreasing. Ross (1999) found
the terminology of Pratt and Zeckhauser (1987) improper. As Ross claims,
another sensible property would be that a desirable risk can never be made
undesirable by the addition of another desirable risk. In a sense, by suggest-
ing that this would be a proper property of preferences under uncertainty,
Ross rejects the idea that independent risks can be substitutes. Empirical
researches are needed to check whether people have ”proper” risk aversion.



In their papers, Pratt and Zeckhauser (1987) and Ross (1999) considered
the case of fixed size lotteries in the face of which the decision maker can
either accept or reject each lottery. In the present paper, we suppose alter-
natively that the decision-maker can decide the size of his exposure to each
of the potential risks that he faces. This is the case for example when he can
purchase more than one share of a given stock, or when he can select the level
of insurance deductibility to cover a risk of damage. Then the question of the
substitutability of independent risks is whether the opportunity to take an
optimal exposure to one risk does reduce the optimal exposure to any other
independent risk.

The bottom line of the controversy on risk substitutability is that there is
no obvious argument for or against such a form of risk substitutability, either
on the ground of common sense or on the theoretical ground. The absence
of any such strong argument results from the existence of two contradictory
effects of the option to invest in a risk. Indeed, introducing a new asset
has a wealth effect and a pure risk effect. The wealth effect comes from
the increase in the expected wealth generated by investing in this new risky
asset. If investing in it would have a negative expected return, no risk-averse
investor would participate. Under decreasing absolute risk aversion, this
increase in expected wealth has a positive effect on the demand for other
independent risks. If this would be the only effect, independent risky assets
would be complements. But the opportunity to invest in a new risky asset has
not the same comparative statics effect as just adding its certainty equivalent
to the initial wealth of the investor. It also introduces a zero-mean, or pure,
risk to background wealth. Gollier and Pratt (1996) examined the effect
of a zero-mean background risk on the demand for stocks. They showed
that it has a tempering effect if the agent is ”risk vulnerable”, a condition on
preferences that is more general than properness. Thus, the pure risk effect is
compatible with the substitutability of independent risks. It implies that risk
vulnerability is a necessary condition for the substitutability of independent
risks. Whether the effect of risk vulnerability dominates the wealth effect or
not is the open question that we address in this paper.!

The ambition of this paper is to characterize the conditions under which

Tt is important to stress the difference between our approach and that adopted in
earlier papers on the subject (e.g. Sandmo (1969) and Dalal (1983)) where substitutability
between assets is studied in the framework of Slutsky equation so that wealth effect is
eliminated. In the present paper, we examine the total impact of introducing a new asset
upon the demand for another asset.



the option to purchase one risk reduces or increases the optimal exposure to
another independent risk. Relating these conditions to other known proper-
ties of the optimal risk-taking behavior will provide arguments for or against
the hypothesis that independent risks are substitutes.

It is a tradition in economics to isolate each decision problem from the
remaining environment of the decision maker. For example, when we study
the level of optimal deductible of insurance, we do not take into account the
policyholder’s opportunity to invest in stocks. When we examine the socially
efficient policy to reduce the risk of global warming, we do not consider the
other risks surrounding the population. If we can confirm that independent
risks are substitutes, this would tell us that such a procedure leads to an over-
estimation of the optimal risk exposure. An application of this idea is to the
equity premium puzzle (Mehra and Prescott (1985), Kocherlakota (1996)).
If the calibrator assumes that US citizens have no other opportunities than
to invest in US stocks and bonds, he would overestimate the demand for US
stocks, which would yield in turn an underestimation of the equity premium.

2 The effect of the introduction of an indi-

vidually optimal risk

2.1 Definition

In this section, we consider a model with three assets: one is risk free with a
zero return, whereas the other two assets are risky with independent returns
2 and vy, respectively. How does the opportunity to invest in z affect the
optimal exposure to risk y7 We consider an expected-utility-maximizer with
an increasing and concave utility function u. We also assume that u has
three continuous derivatives. The decision problem for the agent with initial
wealth z is written as

max  K(a, B) = Bu(z + o + B7). (1)

The domain of u is R™, and we assume that lim, .o u/(z) = 4+o00. This implies
that the optimal solution is bounded.

We say that = and y are uncompensated substitutes (resp. uncompensated
complements) if the introduction of an individually optimal risk z reduces
(resp. increases) the optimal exposure to risk y. Without loss of generality,
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let us suppose that it is optimal to invest 1 dollar in the asset with return
when this is the only available risky investment. This means that
oK _
—(0,1) = Eyu/(z +3) = 0. (2)
op
We now introduce an independent risk  whose size is optimal when taken
in isolation, i.e.,

oK ~ ~

%(1, 0) = Ezu/(z +7) = 0. (3)
This means that o = 1 is optimal when 7z is taken in isolation. Risks = and
y are uncompensated substitutes if adding x to wealth reduces the optimal

exposure to y. This is true if?

0K _ -

%(1,1) = Eyu'(z+2+y) <0. (4)
To sum up, the utility function has the uncompensated risk substitutability
property if and only if

Eyu(z+79) =0

2 = yu’ T <
Exu’(z+x):0} — Eyu(z+7+7y) <0, (5)

for all pairs of independent random variables z and ¥, and at any wealth level
z. In other words, adding an optimal risk exposure z reduces the demand
for any other independent risk.

2.2 A necessary condition

Defining v(w) = Eu(w + 7) for all w, with Ezu/(z + Z) = 0, condition (5) is
equivalent to

Eyd(z+y)=0 = Ey(z+7y)<O0. (6)

Whereas z + Z and z + 7 are in the domain of u, it is not necessarily true that the
support of z+Z+7 is in the same domain. This is a standard difficulty of doing comparative
statics analysis with non marginal changes in the parameters. However, it is easy to check
that when the support of z + Z + 7 is not in the domain of u, then the optimal 3 is less
than 1 when 7 is introduced.



Condition (6) is necessary and sufficient for agent v to demand less risky
assets than agent u who has the same wealth level z. As is well-known, a
necessary condition for this is that —v”(z)/v'(2) be larger than —u"(2) /u/(2).
Thus, using the definition of function v, a necessary condition for uncompen-
sated substitutability is:

Ve, 7 ERu (2 4+3) =0 = _i?;'iz++%f) > _ulfl('g). (7)

In other words, we must determine whether an optimal risk exposure in-
creases local risk aversion. Let X denote the cumulative distribution function
of z. Denoting absolute risk aversion by A(w) = —u"(w)/u/(w), the above
condition is rewritten as

/xu’(z+x)dX(m) — / CHD) A+ 2)dX () > Al). (8)

Eu'(z+ )

The risk-neutral cumulative distribution X is defined as

S u(z+ )
dX(r) = ———=dX(x). 9
(@) = Byt X (@) )
Using Eh = [h(z ) for the expectation operator under the risk

neutral probablhty dlstrlbutlon condition (7) is equivalent to
V2,7: Ex =0 = FEA(z+1)> A(2). (10)

Obviously, this is true if and only if the Arrow-Pratt absolute risk aversion is
a convex function of wealth. This proves the following Proposition, which has
originally been obtained by Gollier and Kimball (1997) who used a different
technique of proof.

Proposition 1 Adding an optimal risk exposure to wealth increases (re-
duces) local risk aversion if and only if absolute risk aversion is convez (con-
cave) in wealth. Convez absolute risk aversion is a necessary condition for
risk substitutability.

All familiar utility functions as the power and logarithmic ones satisfy
the condition that absolute risk aversion is convex in wealth.



2.3 The necessary and sufficient condition

Lemma 1, a standard hyperplane separation theorem, is useful for deriving
the necessary and sufficient condition for (uncompensated) risk substitutabil-
ity. This result is also in Gollier and Kimball (1997), but we provide a new
proof of it.

Lemma 1 Consider a set of functions f;, + = 0,1,...,n, from R to R. The
following two conditions are equivalent:

o Efi(z)=0 i=1,..,.n= Efy(x) <0 forallz;

e There exists a vector (my,...,my) such that fo(x) < 7 m;fi(x) for
all x.

Moreover, if fi(0) = 0 and f!(0) exists, for all i = 0,1,...,n , vector
(my, ..., my,) must satisfy the following condition:

f3(0) = 3_mifi(0) = 0. (11)

Finally, if f; is twice differentiable, i = 0,1, ...,n, then a necessary condition
15 that

f5(0) - Z m;f; (0) < 0. (12)

When n = 1, condition (11) provides the only potential candidate for m,
which is equal to f{(0)/f1(0).

The following Proposition is obtained by using the n = 1 version of
Lemma 1 twice.

Proposition 2 Independent risky assets are uncompensated substitutes (resp.
complements) if and only if function H(z,z,y) defined by equation (13) is

nonpositive (resp. nonnegative) for every (z,x,y) in the feasible domain.

H(z,z,y) =y{u'(z+x+y)u'(z) = (z+2)u' (2 +y)} (13)

oy (2 + 2 (2 + ) [Alz + ) — A(2)].



It is important to observe that the convexity of absolute risk aversion
guarantees that H is convex in y locally around (z,z,0). Indeed, we have
that

0*H
Y |,

=2u'(2)u'(z + x) [A(2) + 2A'(2) — A(z + 2)] . (14)

Because H and its derivative with respect to y at (2, z,0) are zero, it implies
that adding endogenous risk = reduces the demand for any other endogenous
risk ¥ whose optimal exposure is small, i.e. for risk ¥ whose expectation is
small with respect to its standard deviation.

One might believe that imposing the local convexity of A at any wealth
level, i.e., global convexity, would imply that the local property obtained in
the corollary would be global. Let us make a parallel with the notions of local
and global risk aversion. Local risk aversion means that the agent rejects any
small fair risk, whereas global risk aversion means that the agent rejects any
fair risk. We know since Pratt (1964) that if an agent is locally risk-averse at
any wealth level, then he is globally risk-averse. To show that this kind of
property does not hold here, we propose the following counterexample. The
investor has a power utility function

217

u(z) = T, (15)

where v > 0 is the constant relative risk aversion (CRRA). The degree of
absolute risk aversion equals A(z) = «/z, which is a convex function of z.
Function H is then written as

H(z,z,y) =y {(z—{—y ta) 2 — (4 2) M(z4y) T — yyx(z +x)—7(z+y)—w}

2(z+y)
(16)

By Proposition 2, independent risks are uncompensated substitutes if H is
nonpositive for all (z, x, y) in the feasible domain {z + 2 > 0;z+y >0and z+ 2z +y > 0}.
Fix z and y positive, and let z approach 0. Then, the first and the third
terms in the right-hand side of (16) tend to infinity. If +y is larger than 1, this
is the first which dominates, and H tends to +oc. Function H is depicted in
Figure 1 fory =5, 2 =1, x = 1. We see that H and 0H/0y are both zero
at (z,z,0). The convexity of A implies that 9>H/dy? is negative at (z,z,0),

7



0.0008¢
0.0006}
0.0004¢
0.0002¢

-0.0002 y
-0.0004:
-0.0006%

-0.0008¢

Figure 1: Evaluation of H(1,1,y) for the CRRA utility function, with v = 5.

which implies that H is nonpositive in the neighborhood of y = 0. But H is
not nonpositive everywhere.

To be more explicit, take the CRRA utility function with v =5, z =1
and = and y being iid. and distributed as (—0.1,4/10;10,6,/10). After
some computations, we get that the optimal investment when only one risky
asset is offered is 0.1678. When the second risky asset is also offered, the
investor increases his demand for the first asset up to 0.1707. Our conclu-
sions from this example are twofold: first, the convexity of absolute risk
aversion is not sufficient for uncompensated substitutability. Second, CRRA
utility functions with a relative risk aversion larger than unity may not yield
uncompensated substitutability for all pairs of independent risks.

2.4 A sufficient condition for uncompensated substi-
tutability

Remember that uncompensated risk substitutability means that adding an
optimal risk exposure = reduces the demand for any other independent risk.
Kimball (1993) examined the same question, but replacing the restriction
that = be optimal by the restriction that z be expected-marginal-utility in-
creasing: Eu'(z + ) > u/(z). Kimball proved that decreasing absolute pru-
dence and decreasing absolute risk aversion are necessary and sufficient for
this property. Absolute prudence is defined as P(w) = —u"(w)/u"(w). It



measures the willingness to save in the face of uncertain future incomes.
Positive prudence is necessary for decreasing absolute risk aversion. Kim-
ball (1990) provided arguments to justify decreasing absolute prudence. In
particular, decreasing absolute prudence implies that the level of saving by
wealthier people is less sensitive to an increase in risk on future incomes.

From these observations, decreasing absolute risk aversion and decreasing
absolute prudence would be sufficient for uncompensated substitutability if
an optimal risk would raise expected marginal utility, i.e., if

Etu(z+7)=0 = FEJ(2+7)>d(2). (17)

Using risk-neutral probabilities as defined in equation (9), we can rewrite
property (17) as®
~ ~ 1 1

Ei=0 = Eu'(z+55)§u/(z)' (18)

This is true if and only if 1/’ is concave. The reader can easily check that
this is equivalent to P > 2A.

Lemma 2 An optimal risk exposure raises the expected marginal utility if

and only if absolute prudence s larger than twice absolute risk aversion:
P(z) > 2A(z) for all z.

The intuition to explain that prudence must be sufficiently larger than risk
aversion is quite simple. An optimal risk must have a positive expectation.
Because marginal utility is decreasing, this increase in expected consumption
has a negative impact on expected marginal utility. The intensity of this
effect depends upon the sensitivity of v’ to change in consumption, which is
measured by A. In addition to this wealth effect, there is a risk effect: the
uncertainty affecting the return around its means increases expected marginal
utility if marginal utility is convex. The size of this effect is proportional to
the degree of convexity of v/, which is measured by P. The risk effect must be
sufficiently larger than the wealth effect for an optimal risk to raise expected
marginal utility.

3The risk-neutral expectation of 1/u’(z + ¥) exists because it must be that the support
of 2+ be in the domain of u. Otherwise a = 1 would not be optimal when Z is considered
in isolation.



Notice that condition P > 2A is stronger than decreasing absolute risk
aversion, which is itself equivalent to condition P > A. Indeed, we have that
A'(w) = A(w) [A(w) — P(w)] . This equation also tells us that

A(w) = A(w) [A(w) — P(w)] [24(w) — P(w)] = A(w) P'(w). (19)

In consequence, decreasing absolute prudence and P > 2A imply that A is
convex.
We can now combine the following results:

e (Kimball (1993)) An expected-marginal-utility-increasing risk reduces
the demand for other independent risk if and only if absolute risk aver-
sion and absolute prudence are decreasing;

e (Lemma 2) All optimal risk exposures are expected-marginal-utility-
increasing if P is larger than 2A;

This yields the following Proposition.

Proposition 3 Independent risks are uncompensated substitutes if absolute
prudence is decreasing and larger than twice the absolute risk aversion.

Another question is whether this sufficient condition is far from the nec-
essary and sufficient condition presented in Proposition 2. To answer this
question, let us consider again the case of utility functions with constant rel-
ative risk aversion, for which we know that absolute risk aversion is convex
in wealth. If we assume that u satisfies condition (15), condition P > 2A
becomes equivalent to relative risk aversion v being less than 1, since A(w) =
v/w and P(w) = (y+ 1)/w in that case. Our results in the CRRA case are
gathered in the following Corollary.

Corollary 1 Suppose that relative risk aversion is constant. Then, small
independent risks are uncompensated substitutes. Moreover, the following
properties hold:

1. independent risks are uncompensated substitutes if relative risk aversion
15 less than or equal to unity.

2. it is always possible to find a pair of independent risks that are uncom-
pensated complements if relative risk aversion is larger than unity.
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Proof: The fact that small independent risk are uncompensated substi-
tutes comes from the fact that absolute risk aversion is convex for CRRA
utility functions. Property 2 in this corollary comes from the fact that H
is not nonpositive when + is larger than unity. As observed earlier, if ~ is
larger than 1, H(z,z,y) tends to +0o when z tends to zero and x and y are
positive. B

3 The compensated substitutability of inde-
pendent risky assets

In the previous section, we examined the condition under which the introduc-
tion of an individually optimal risk = reduces the demand for any independent
risk y. This condition, which we called uncompensated substitutability, does
not necessarily imply substitutability. Risks are substitutes if the introduc-
tion of the opportunity to invest in any risk z reduces the demand for any
other independent risk .

Characterizing the necessary and sufficient condition for risk substitutabil-
ity is more complex when risks are not identically distributed. Let (a*, 5%)
be the pair which maximizes K(«a,3) = Eu(z + oz + [fy). Assuming that
Eyu'(z+7y) = 0, risks = and y will be substitutes if 5* is less than 1. Because
K is concave, the standard method to determine whether §* is less than
unity consists in first obtaining the o that maximizes K(«,1). Let us denote
it &. Then, 8" is less than 1 if %—g is negative when evaluated at (@, 1).

We normalize & to unity, which means that

0K - -
o~ ~ . . OK ~ - :
Risks z and y are substitutes if 8_[3(1’ 1) = Eyu/(z+ x4+ y) < 0, otherwise

they are complements. To sum up, independent risky assets are substitutes
if and only if

Eyu'(z4+y) =0

~, _
E’fu’(z+§+@:o} — Eyu(z+7+7y) <0, (21)

Observe that this definition of risk substitutability differs from the definition
of uncompensated substitutability appearing in equation (5) only by the
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replacement of condition Ezu'(z + =) = 0 by condition Ezu'(z + 7 +y) = 0.
Risk z may not be individually optimal. Rather, its size must be optimal when
added to the individually optimal risk 3. Risks are substitutes if adding a
new risk whose size is optimal given the existence of the other risk in the
portfolio induces the agent to reduce the size of this other risk.

We now prove that the sufficient condition for uncompensated substi-
tutability that we presented in Proposition 3 is also sufficient for the sub-
stitutability of independent risks. The proof of this result is based on the
property that the indirect utility function inherits the property that P > 2A
from the original utility function, as stated in the following Lemma.

Lemma 3 Consider any random variable y and define the associated indirect
utility function w by u(w) = Eu(w+y) for allw. Suppose that —u"' (w)/u" (w)
is smaller than —2u" (w) /u'(w) for allw. Then, -u" (w)/u"(w) is smaller than
—2u"(w) /u' (w).

Proof: See the Appendix. The proof is based on Lemma 1.

Proposition 4 Independent risks are substitutes if absolute prudence is de-
creasing and larger than twice the absolute risk aversion.

Proof: Kimball (1993) proved that decreasing absolute risk aversion and
decreasing absolute prudence are necessary and sufficient for the following
property to hold:

Eyu'(z4+y) =0
Eu(z+2+7Yy) > Eu(z+7Y)
As before, we would be done if we could prove that

Eiu'(z472+9y)=0 = FEu(z+7+79y)>FEd(z+7y), (23)

} —  Eju(z+74+7) <0 (22)

or, equivalently, if
Exu(z4+47)=0 = FEu(z+71)>71(z,) (24)

where u(w) = Eu(w+y). By Proposition 2, we know that property (24) holds
if and only if the absolute prudence of u is larger than twice the absolute risk
aversion of 7. From Lemma 3, we know that this is true when the absolute
prudence of u is larger than twice the absolute risk aversion of u. B

Thus, the sufficient condition for uncompensated risk substitutability is
also sufficient for the more demanding condition of risk substitutability.
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4 Conclusion

Pratt and Zeckhauser (1987) suggested that independent risks should be sub-
stitutes in the sense that two individually undesirable risks should never be
jointly desirable. They showed that this is true only under some specific
restrictions on preferences that they called ”properness”. In this paper, we
considered another concept of substitutability. Independent risks are substi-
tutes if the opportunity to invest in one risk always reduces the investment in
other risks. Our conclusions are twofold. First, the hypothesis that indepen-
dent risks are substitutes seems plausible if we consider small risks. Indeed,
the only condition on preferences that is required to get this result is that
absolute risk aversion be convex. Under DARA, this means that the risk
premium associated to a small risk is decreasing with wealth at a decreasing
rate. Second, this hypothesis is questionable for larger risks. In particular,
we can always find a pair of independent risks that are complements when
the utility function exhibits constant relative risk aversion larger than unity.
However, a sufficient condition for the substitutability of independent risks is
that absolute prudence be decreasing and larger than twice the absolute risk
aversion. Whether actual preferences exhibit this property is an empirical
question that is left for future research.
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Proof of Lemma 1

We first prove that condition fy(x) < >, m;fi(x) is necessary and suf-
ficient for Ffy(z) < 0 whenever Ef;(z) = 0 for all i = 1,...,n. A counter-
example would be found by characterizing a random variable z such that
Efi(z) = 0 for all i, with Efy(Z) positive. Our best chance to get this is
obtained by finding the cumulative distribution function GG of  that satisfies
the constraint and which maximizes the expectation of f,. Thus, we should
first solve the following problem:

maxga>o0 fb f() )dG(l‘)
s.t. f filx (:1: i=1,...,n (25)
K dG ~ 1.

The second constraint simply states that G is indeed a cumulative distri-
bution function. Let G* be the distribution function of the best candidate
random variable to violate The first condition in Lemma 1. The Kuhn-Tucker
conditions for this maximization problem are written as:

=D mifi(x) +k { p 8 li zggg i (26)

for all z, where m; and k are the Lagrangian multipliers associated respec-
tively to conditions [ f;(z)dG(z) =0 and [ dG(x) = 1. Let I C [a,b] be the
subset of points with a positive density ( dG*(z) > 0). From condition (26),
we obtain that

/fo )dG* (x /fo )dG* (x ZmZ/f )dG* (z +k:/dG*()
(27)

Because G* must satisfy the constraints of program (25), we obtain from the
above equality that the best candidate to violate property (25) is such that
Efo(z) = k. Thus a necessary and sufficient condition for the first property
in Lemma 1 to hold is that k& be negative. From conditions (26), this means
that we need that

h(z,m1, ..., my) = fa(x) — Zmzfz(‘r) <0 (28)
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for all x in [a,b].

Suppose now that f;(0) = 0 and f; is differentiable at zero, for all ¢ =
0,1, ...,n. Then, we have that h(0, m) = 0, and h is differentiable with respect
to x at © = 0. A necessary condition for h(z, m) to be nonpositive for all z is
that Oh/O0x evaluated at x = 0 be zero. This implies condition (11). Another
necessary condition is that §%h/dz* evaluated at x = 0 be nonpositive. This
implies condition (12).1H

Proof of Proposition 2

We use Lemma 1 twice. Define indirect utility function v as v(w) =
Fu(w + 7) with Ezu/(z + z) = 0. Then, condition (5) is rewritten as, ¥y :

Eyi(z+y)=0 = Ey'(2+y)<0. (29)

Using Lemma 1, this is equivalent to

V' (z +y) v'(2)
u'(z +vy) = yu’(z) (30)

for all y. Now, we remember the way we constructed function v. Condition
(30) is thus equivalent to

Ef'(2+7) =0 = yE[(z+7+y'(2) —u'(z+ D)/ (2 +y)] <0,
(31)

Using Lemma 1 again yields the result.ll
Proof of Lemma 3

Condition 717,:”2(,)2) > 275,’(’2(,)2) may be rewritten as follows:

E'(z4+3) + M (z+7)]=0 = BE["(z+7)+2\"(2+7)] >0

Using, Lemma 1, we know that this condition holds for any z and z if and
only if there exists m = m(\, z) such that

u"(z+ )+ 20" (z+x) > mu(z+x) + M (2 + x)] (32)
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for all z.
By risk aversion, condition P > 2A implies that

u"(z + ) + 2 " (2 + x) —A(z +z)u/(z + z) 2\ — P(z + 2)]

; —2A(z 4+ x)u'(z 4+ x) [N — A(z + 7)]. (33)

—

We are looking for a m such that

2Az+ 2 (z+x) [ A—Az+z)] >mu' (z+2) + W (z+2x)] (34)
Combining conditions (33) and (34) would yield the necessary and sufficient

condition (32). Taking m = —2A\ is a good candidate, since condition (34) is
then equivalent to

2/ (z + x) [\ — A(z + z)]* > 0,

which is true. B
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