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Abstract

As illustrated by the recent terrorist attacks in the U.S., one must often take

preventive actions to fight risks before having precise information on their

probability distribution. In this paper, we explain how to adapt cost-benefit

analysis to this situation. In an uncertain environment, the occurrence or

the absence of loss allows the decision maker to update his belief about the

frequency of losses in the future. Using a Bayesian expected utility model,

we show that the uncertainty on the distribution of the loss raises the initial

level of prevention if and only if the ratio of absolute prudence to absolute

risk aversion is smaller than 2. In a numerical exercice, we show that the

effect of this uncertainty may be large.

Keywords: learning, parameters uncertainty, predictability, precaution-

ary principle, risk management, phantom risk.



1 Introduction

In traditional models of risk prevention,1 the economy is static and the dis-
tribution of potential damages is known with certainty. This modeling is
therefore not satisfactory to examine various relevant policy questions deal-
ing with risk prevention. Consider for example the recent ”mad cow crisis”.
One could reduce the potential damages to the health of the population by
investing in various prevention activities, as for example by eliminating the
use of animal-based feeds for cow, or even by excluding generations of cows
borne before 1996 from the human diets. In France, the cost of this latter
policy has been estimated to around 3 billions euros. The difficult challenge
for economists is to determine how to use the standard cost-benefit analysis
to determine the efficiency of the preventive policy when the distribution of
potential damages to health is unknown. It is interesting to observe that
economists have been particularly silent during the different stages of the
crisis, leaving politicians facing the problem alone with agricultural lobbies,
medical experts, sociologists and philosophers.

In this paper, we examine the problem of the optimal risk management
of phantom risks, namely risks whose actual distribution is uncertain. It is
a paradox that in spite of the ever improving scientific knowledge, the list of
phantom risks is increasing over time. Here is a partial list of risks that have
been phantom risks in the past, or are still considered as phantom: cancer
from asbestos in the 50’s, cancer from smoking in the 60’s, contamination
of AIDS by blood transfuses in the early 80’s, environmental and health
damages due to genetic manipulations of maize, global warming generated by
the concentration of carbon dioxide in the atmosphere, health risks faced by
individuals exposed to low nuclear radiations (or to electromagnetic fields, as
those emitted by cellular phones), long term side effects of new drugs, effects
due to the presence of various hazardous wastes, and the list of illustrations
could go on by the hundreds.

What is the effect of the uncertainty affecting the distribution of a risk
on the way we should perceive its prevention? The so-called precautionary
principle,2 which is now a legal rule in several European countries, states

1See Ehrlich and Becker (1972), Briys and Schlesinger (1990), Konrad and Skaperdas
(1993), Lee (1998) and Jullien, Salanié and Salaníe (1999).

2For a detailled discussion of the precautionary principle, see Godard (1997) and Gollier
and Treich (2000).
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that ”where there are threats of serious or irreversible damage, lack of full
scientific certainty shall not be used as a reason for postponing cost-effective
measures to prevent environmental degradation” (Principle 15 of the 1992
Rio Declaration). It is still an open question to determine what this state-
ment means for the cost-benefit analysis. In particular, it does not explain
which distribution of the risk should be considered to measure costs and
benefits when this distribution is uncertain.

In any static model, because expected utility is linear in the vector of
probability p of the various states of nature, expected utility maximizers
facing some uncertainty about p should do as if the distribution of the risk
would be certain and fixed at the mean Ep. However, Ellsberg (1961) showed
that several agents do not behave in the face of ambiguous probabilities like
expected-utility maximizers. Gilboa and Schmeidler (1989) proposed a de-
cision criteria in which agents would be averse to ambiguity. Under this
criteria, agents compute their expected utility (EU) for the various possible
distributions, and they do as if the distribution generating the lowest EU
would hold with certainty. This min-max criteria raises several difficulties.3

We will therefore assume in this paper that the population maximizes ex-
pected utility.

A common feature of the above-mentioned examples of phantom risks
is that there is some uncertainty about the intensity of the risk, but this
uncertainty will be reduced over time. This resolution of the uncertainty is
expected to come either from the observation of actual damages by those

3First, it is hard to believe that people are as much pessimistic. In a world where
extreme potential distributions of risk can rarely be excluded, the use of such a criteria
leads to a dead end. In the case of the mad cow for example, we don’t see a majority of
consumers completely eliminating beef from their diet (see Gollier (2001b)), a strategy that
would be optimal under ambiguity aversion. Second, such a model cannot be applied in a
dynamic framework as long as we have no sensible rule to update ambiguous probabilities
in a way similar to the Bayes rule for unambiguous probabilities. We believe that the
dynamic aspect of risk management is an essential element of the problem. Third, on
a more empirical ground, Viscusi and Chesson (1999), using a sample of 266 business
owners facing risks from climate change, show evidence of both ambiguity-seeking behavior
and ambiguity-averse behavior. More precisely, people seem to exhibit fears effect of
ambiguity for small probabilities of suffering a loss, and hope effects for large probabilities.
Fox and Tversky (1995) also showed in a series of experimental studies that ambiguity
aversion, present in comparative contexts in which a person is confronted to both clear and
ambiguous prospects, seems to disappear in noncomparative contexts in which a person
evaluates only one of these prospects in isolation.
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exposed to the risk, or by scientific progresses. In most cases, it seems that
the first source of information dominates the second. It is the observation of
recent extreme weather events that brings new knowledge about the risk of
global warming, more than the improvement of climate modelling by meteo-
rologists. It is the observation of the number of consumers hit by the human
form of the mad cow disease in the U.K. that is the first source of informa-
tion allowing for an update of our beliefs, as it happened that no apparent
progress has been made about our understanding the biological mechanisms
underlying the disease. Thus, our paper focuses on the optimal prevention
of a recurrent risk whose distribution is updated from observing its past
realizations by using Bayes rule.

How does this form of learning affect the initial risk-taking attitude of
risk-averse expected-utility maximizers? The occurrence of a large loss in
the first period has two effects. First, it reduces wealth and it raises the
marginal utility of this wealth. Second, it induces agents to revise the prob-
ability of the worse scenario. The intuition suggests that this shift in the
expected distribution of the risk should raise the marginal value of wealth.
If this is true, then learning raises the marginal value of wealth where it is
large, and reciprocally, it reduces the marginal value of wealth where it is
low. In consequence, the process of learning plays a role on the initial risk
attitude that is equivalent to an increase in risk aversion. In other words,
the uncertainty about the distribution of damages makes agents more averse
to the risk, i.e., they will invest more in prevention. This is compatible with
the precautionary principle.

However, this result relies on the assumption that a bad news, i.e. an
increase in the probability of the bad scenario, raises the marginal value of
wealth. This is not true in general, however. Intuitively, an increase in the
probability of damages has two effects on the marginal value of wealth. First,
it makes agents poorer in expectation in the future. This wealth effect raises
the marginal value of wealth. The intensity of this effect is increasing with
the speed at which the marginal utility of consumption decreases with con-
sumption, namely, it is increasing in the degree of absolute risk aversion A.
But there is a second effect that goes the opposite direction. The increase
in the probability of loss induces agents to reduce their exposure to the risk
in the future. That yields a negative precautionary effect, in the sense that
the reduced future risk makes wealth accumulation less valuable for a pre-
cautionary saving motive. This negative effect is increasing in the intensity
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of the precautionary saving motive which is proportional to absolute pru-
dence P , an index introduced by Kimball (1990) to measure the degree of
convexity of marginal utility. We are thus in a situation to understand that
an increase in the loss probability raises the marginal value of wealth only
if the wealth effect is sufficiently stronger than the negative precautionary
effect. This is the case only if the ratio of absolute risk aversion to absolute
prudence is larger than a critical level which we show to be equal to 1/2.
If, on the contrary, this ratio is less than 1/2, the uncertainty surrounding
the distribution of the risk should induce the social planner to reduce the
prevention effort targeted to this risk in comparison to risks that are better
known, contradicting the precautionary principle.

It is not a simple task to determine whether A/P is larger than 1/2 be-
cause there is no estimation of absolute prudence in the literature. Following
most researches in macroeconomic and finance, let us make the assumption
that relative risk aversion is constant. Under this assumption it is easy to
check that A/P ≥ 0.5 if and only if relative risk aversion is larger than
1. This is a widely accepted assumption. Therefore, our model provides
an argument in favor of the precautionary principle by claiming that more
prevention efforts should be targeted to more uncertain risks.

This work is related to a reviving literature of learning in dynamic portfo-
lio management. Our model is an example of a decision problem in which the
future investment opportunity set is stochastic. Merton (1973) was the first
to characterize rules for the optimal dynamic portfolio management. Detem-
ple (1986), Gennotte (1986), Brennan (1998) and Brennan and Xia (1999)4

examined the specific case where the opportunity set is stochastic due to the

initial parameter uncertainty of the dynamic stochastic process. They solved

various continuous-time infinite-horizon portfolio problems by assuming that

relative risk aversion is constant. They showed that the sign of the effect of

4McCardle and Winkler (1992) examined a similar problem applied to gambling. In a
casino, there is an urn of indistinguishable coins, half of which are ”good” and half ”bad”.
The good coins land heads with different probabilities that are known a priori. A single
coin is picked at random from the urn that is used for n plays of the game. At each play of
the game, you choose how much you want to bet. What is the optimal dynamic strategy
in this game against nature? McCardle and Winkler (1992) raised this question to over
200 students and obtained that most people prefer not to bet at first, in order to gather
information about the coin. This is fully compatible with our result under the assumption
that A/P ≥ 0.5.
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learning on the initial optimal portfolio depends upon whether relative risk

aversion is larger or smaller than unity. One of the achievements of our paper

is to provide an intuition to this result by relying on the relative strength of

the wealth effect and of the precautionary effect generated by a change in

the distribution of the underlying risk.

Section 2 is devoted to the presentation of a simple two-period model.

The link between learning and the marginal value of wealth is established

in section 3. In section 4, we show that the effect of an increase in the loss

probability in the second period raises the marginal value of wealth in the

first period if and only if A/P is larger than 0.5. Our main result for the

two-period prevention problem is established in section 5. We show that our

main result can be extending to more than two periods in section 6, whereas

section 7 provides a numerical illustration of the effect of the uncertainty

surrounding the probability of loss.

2 The two-period model

We consider an economy with a representative agent leaving for two periods
t = 0, 1. At the beginning of period t, the agent earns a sure income wt.
Consumption takes place at the end of each period. The von Neumann-
Morgenstern utility function u on consumption is assumed to be increasing,
concave and three time continuously differentiable. His lifetime utility is
u(c0) + βu(c1), where ct is the consumption at the end of period t and β is
the discount factor.
At each period t, the agent faces a risk x̃t of loss L with probability p.

We assume that x̃0 and x̃1 are i.i.d.. Whereas L is perfectly known, the
probability p is subject to some uncertainty. Let π̃0 be the random variable
representing the prior uncertainty about the probability of the loss. Let
p0 = Eπ̃0 be the expected prior probability of the loss.
At the end of the first period, the representative agent updates his beliefs

about the probability of the loss. Let π̃L and π̃N be the posterior distribution
of this probability respectively in the loss state and in the no loss state.
Using Bayes’ rule, it is straightforward to check that pL = Eπ̃L is larger than
pN = Eπ̃N : observing a loss in the first period raises the probability of a
loss in the second period.
At the beginning of each period, the representative agent has to determine
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Consumption c 1

first period second period

Return r on savings

Figure 1: The timing of the decision process

how much to invest in a preventive activity. Each dollar invested in it reduces
the loss by k ≥ 1 dollars if it occurs. If k is smaller than the inverse of the
probability of loss, the investment in prevention is actuarially unfair, and
the myopic representative agent does not fully prevent the loss to occur, i.e.,
the investment is less than L/k. We hereafter assume that k is smaller than
the inverse of the largest possible ex post expected probability of loss, i.e.,
k ≤ 1/pL. This assumption implies that the nonnegativity constraint on the
investment on prevention is never binding. This assumption could be relaxed
at the cost of more technicalities. Our results are robust to this relaxation.
A crucial element of the model is the opportunity for the agent to save

some of his initial income for consumption in the second period. Let R = 1+r
be the gross interest rate in the economy. We assume that it is not affected
by first period state. The saving decision takes place after observing the first
period state. The timing of the decision process is described in Figure 1.
We solve the problem of the decision maker by backward induction. We

start with the second period prevention problem, given saving s and the
first-period state x. It is written as

max
α

E [π̃
x
u(w1 +Rs − α − (L− kα)) + (1− π̃

x
)u(w1 +Rs− α)] , (1)
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where α is the amount invested in prevention in the second period. Because of
the linearity of the objective function with respect to probabilities, program
(1) can be rewritten as

v(s, px) = max
α

pxu(w1+Rs−α− (L−kα))+(1−px)u(w1+Rs−α). (2)

The decision maker just need to know the expected probability of loss to
solve his problem. The ambiguity about π̃ does not matter, as is standard
under expected utility. This principle was also recognized in Gennotte (1996)
who stated that the agent solves his dynamic decision problem in two stages.
First, the agent updates his beliefs using Bayes’ rule. Second, there is a
choice stage in which the agent maximizes his expected utility by using the
estimated probabilities obtained in the first stage. In general, the optimal
prevention α∗(s, px) depends upon the level of savings s and the expected
probability p

x
.

One can use the maximal expected utility v(s, p
x
) of the second period

consumption to solve the saving problem that arises at the end of the first
period. Let z denote the cash-on-hand of the agent at the end of the first
period, that is after incurring the first period loss if any, but before first
period consumption. The consumption-saving problem is written as follows:

V (z, px) = max
s

u(z − s) + βv(s, px). (3)

It can be verified that V is increasing and concave with respect to its first
argument.

Finally, the agent solves the first period prevention problem:

max
α

p0V (w0 − α− (L− kα), pL) + (1− p0)V (w0 − α, pN). (4)

The optimal level of prevention in the first period is denoted α∗

0
.We again

used the linearity of the objective function with respect to probabilities to

replace the uncertainty on π̃0 by its expectation p0. The difficulty of this

decision problem comes from the state dependency of the indirect utility

function V . However, because the objective function is a weighted sum of

concave functions of the decision variable, the first-order condition is neces-

sary and sufficient for an optimum.

Our objective in this paper is to compare α∗

0
to the optimal level of initial

prevention when the probability of loss is known with certainty and is equal
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to p0. Notice that there is no learning in this alternative model. The decision

problem of the representative agent is written as

max
α

p0V (w0 − α− (L− kα), p0) + (1− p0)V (w0 − α, p0). (5)

We want to determine the condition under which the optimal solution α̂0 of

this program is smaller than α
∗

0
, the optimal level of prevention when the

probability of loss is uncertain, but with the same prior expected loss.

3 The effect of the state dependent utility on

the optimal prevention

The first-order condition for the first period level of prevention when there
is no uncertainty about the probability of loss yields

(k − 1)p0
∂V

∂z
(zL, p0) = (1 − p0)

∂V

∂z
(zN , p0), (6)

where zL = w0− α̂0− (L− kα̂0) is the cash-on-hand when a loss occurs, and
zN = w0 − α̂0 is the cash-on-hand when there is no accident. Because the
objective function of program (4) is concave in the decision variable α, its
optimal solution will be larger than α̂0 if and only if its derivative with respect
to α is positive when evaluated at α = α̂0. This condition is equivalent to

(k − 1)p0
∂V

∂z
(zL, pL)− (1− p0)

∂V

∂z
(zN , pN ) ≥ 0. (7)

Eliminating k from this condition by using equation (6) makes it equivalent
to

∂V

∂z
(zL, pL)

∂V

∂z
(zL, p0)

≥

∂V

∂z
(zN , pN)

∂V

∂z
(zN , p0)

. (8)

This condition would be satisfied if an increase in the probability of loss would
raise the marginal value of cash-on-hand. Indeed, this would imply that the
left-hand side of the above equality would be larger than unity, whereas the
right-hand side would be smaller than unity. We thus proved the following
Lemma.

8



Lemma 1 The uncertainty about the probability of loss increases (resp. re-
duces) the optimal initial level of prevention if the marginal value of wealth
(∂V/∂z) is an increasing (resp. decreasing) function of the probability of loss.

This result is intuitive. Suppose that the marginal value of wealth is
increasing in the probability of loss. The occurrence of a loss in the first
period raises the probability of loss in the second period. This raises the
marginal value of wealth in a state where it is already large because of the
loss itself. On the contrary, the absence of a loss in the first period reduces
the probability of a loss in the second period. It also reduces the marginal
value of wealth in a state where it is already relatively small because the
agent is wealthy. In comparison to the case where the probability of a loss is
certain, the learning process reduces the marginal value of wealth where it is
low and it increases it where it is large. These effects are thus equivalent to
an increase in the concavity of the value function with respect to wealth. In
conclusion, this raises the optimal investment in prevention.

4 The effect of an increase in the probability

of loss on the marginal value of wealth

We must thus examine the conditions under which an increase in the prob-
ability of loss raises the marginal value of wealth. We do this in two steps.
First, we consider the pure static prevention problem (2). We derive the con-
dition for ∂v(s, p)/∂s to be increasing in p. We then extend the analysis to
take into account of the saving problem ( 3), by showing that this property
is inherited by function V .

The following second Lemma relies on two indexes: the index of absolute
risk aversion A(c) = −u′′(c)/u′(c) which measures the concavity of u, and the
index of absolute prudence P (c) = −u′′′(c)/u′′(c), which measures the degree
of convexity of marginal utility. This latter concept has been introduced by
Kimball (1990) to measure the strength of the precautionary saving motive
in a lifecycle consumption model.

Lemma 2 An increase in the expected probability of loss raises (resp. re-
duces) the marginal value of savings ∂v/∂s defined by program (2) if and
only if the ratio of absolute prudence to absolute risk aversion is smaller
(resp. larger) than 2.
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Proof: The first-order condition to problem (2) is written as:

(k − 1)pu′

L
= (1 − p)u′

N
, (9)

where u
(n)
L

= u
(n)(w1 +Rs−α

∗

− (L− kα
∗)) and u

(n)
N

= u
(n)(w1 +Rs−α

∗).
Fully differentiating this condition with respect to p yields

∂α∗

∂p
= −

(k − 1)u′

L
+ u′

N

(k − 1)2pu′′

L
+ (1 − p)u′′

N

. (10)

The envelope theorem implies that

∂v

∂s
= R [pu′

L
+ (1− p)u′

N
] .

By fully differentiating this condition with respect to p, we obtain that

1

R

∂2v

∂s∂p
= u′

L
− u′

N
+ [(k − 1)pu′′

L
− (1− p)u′′

N
]
∂α∗

∂p
.

If we replace ∂α∗/∂p by its expression in (??), we obtain that the left-hand
side of the above equality is positive if and only if

u
′

L
− u′

N
≥

(k − 1)pu′′

L
− (1 − p)u′′

N

(k − 1)2pu′′

L
+ (1− p)u′′

N

[(k − 1)u′

L
+ u′

N
] .

After eliminating terms, this condition is equivalent to

u′′

N

(u′

N
)2
≤

u
′′

L

(u′

L
)2
. (11)

Because we assumed that k ≤ 1/p, the first-order condition (9) implies that
u′

L
≥ u′

N
. This means that L − kα∗ is positive, namely, that the loss is not

fully covered. It implies that consumption is larger in the no loss state than
in the loss state. This implies that condition (11) is satisfied if and only
if the function φ defined by φ(c) = u′′(c)/(u′(c))2 is decreasing in c. This
is equivalent to requiring that u′′′(c)(u′(c))2 − 2u′(c)(u′′(c))2 be nonpositive.
This is the case if and only if P/A is uniformly smaller 2.�

Thus, when P/A is smaller than 2, an increase in the probability of loss

raises the marginal value of savings. Of course, it also increases the optimal

level of savings and the marginal value of cash-on-hand in the first period,

as stated in the following Lemma.
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Lemma 3 An increase in the expected probability of loss raises (resp. re-
duces) the marginal value of cash-on-hand ∂V/∂z defined by program (3) and
savings if and only if the ratio of absolute prudence to absolute risk aversion
is smaller (resp. larger) than 2.

Proof: Using the envelope theorem for program (3) yields

∂V

∂z
(z, p) = u′(z − s∗) = β

∂v

∂s
(s∗, p).

Fully differentiating this system with respect to p, we obtain that

∂s∗

∂p
= −

∂
2v

∂s∂p
(s∗, p)

β−1u′′(z − s
∗) + ∂2v

∂s2
(s∗, p)

,

and
∂2V

∂z∂p
(z, p) = −u′′(z − s∗)

∂s∗

∂p
.

Because v is concave in s, we directly obtain that ∂s∗/∂p and ∂2V/∂z∂p have
the same sign than ∂2v/∂s∂p. Lemma 2 yields the result.�

There is an intuition for this result. Consider the special case p = 1/k
as our benchmark. In such a situation, the investment in prevention is ac-
tuarially fair, and it is optimal to fully prevent the risk. Suppose now that
the probability of loss is reduced, thereby making the investment in preven-
tion actuarially unfair. This reduction in the probability of loss increases
the expected final consumption. Because the agent wants to smooth his con-
sumption over time, this reduction in the probability reduces his willingness
to save. The strength of this consumption smoothing effect is proportional to
the index A of aversion to consumption fluctuation over time. But because
the return on the preventive investment is actuarially unfair, it is optimal
not to eliminate the risk completely. The presence of this future risk induces
the representative agent to accumulate precautionary saving. The strength
of this precautionary effect is proportional to P , as shown by Kimball (1990).
Thus, a reduction in the probability of loss reduces savings if and only if the
precautionary effect is dominated the consumption smoothing effect. This
is the case when P/A is sufficiently small. From the above Lemma, this is
in fact the case when P/A is smaller than 2. If the level of savings is re-
duced, the first period consumption is increased, and the marginal utility of
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consumption, together with the marginal value of cash-on-hand, is reduced.
Thus, when P/A is smaller than 2, the optimal saving and the marginal value
of cash-on-hand are positively correlated with the probability of loss.

Notice that the above results do not hold only for the case of a departure
of p from the fair situation p = 1/k. They also hold for any marginal changes
in the probability of loss. A marginal reduction in the probability of loss raises
the expected final consumption, and it also raises the size of the optimal risk
taken by the decision maker. The same consumption smoothing effect and
the same precautionary effect work at the margin.

5 The main result and its discussion

We can combine our three lemmas to derive the following result, which is our
main result.

Proposition 1 The uncertainty about the probability of loss raises (resp.
reduces) the efficient level of the preventive effort in the first period if the
ratio of absolute prudence to absolute risk aversion is smaller (resp. larger)
than unity.

To sum up, when P/A is smaller than 2, the consumption smoothing effect
dominates the precautionary effect. In such a situation, learning reduces the

marginal value of wealth in the no loss state, and it raises the marginal value

of wealth in the loss state. This induces the representative agent to raise

the investment in the preventive activity. Notice that, as is well-known, log

utility decision maker are optimally myopic. In this specific environment, this

means that their optimal investment in prevention in the first period is not

affected by the uncertainty surrounding the probability of loss.

Condition P/A ≤ 2 is not new in the economics of uncertainty. De-
termining whether P/A is smaller than 2 or equivalently whether 1/u′(c)
is convex in c appeared in different contexts. Drèze and Modigliani (1972)
examined the reduction in the level of savings due to the introduction of com-
plete insurance markets. They proved that the level of savings decreases in
such a circumstance if and only if d2(U1/U2)/dc

2

2
≥ 0 where Uj denotes par-

tial derivatives of a non time-separable utility function U(c1, c2). Assuming
U(c1, c2) = u(c1) + v(c2) this condition becomes 1/v′ convex.
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Condition P/A ≤ 2 is also useful in industrial economics. For example,
Gabel and Sinclair-Desgagné (1997) uses it in a problem of optimal audit in
the principal-agent model. Finally, Debreu and Koopmans (1982) argue that
a good measure of risk aversion should be the ”concavity index” −u′′/(u′)2. If
we admit the Debreu and Koopmans index, decreasing absolute risk aversion
is thus equivalent to P/A ≥ 2. The Debreu-Koopmans index was recently
used in political economy theory. For example, Alesina and Tabellini (1990)
showed that the uncertainty in the identity of the median tomorrow generates
a bias towards deficit if the concavity index is decreasing.

The more general condition P/A ≥ m is useful for various values of scalar
m. For example, the case m = 0 corresponds to positive prudence, a condi-
tion that is standard since Leland (1968) to justify the precautionary motive
to saving. The stronger condition corresponding to m = 1 is equivalent to
decreasing absolute risk aversion. This condition is also very natural. How-
ever, decreasing absolute risk aversion (P/A ≥ 1) may be compatible either
with P/A ≤ 2 or with P/A ≤ 2. In particular, the condition P/A ≤ 2
that is compatible with the precautionary principle means that absolute risk
aversion can be decreasing, but not too much decreasing.

Because there does not exist any reliable estimation of the degree of ab-
solute prudence, determining whether P/A is smaller or larger than 2 is thus
an open question. Some light can be shed on this question by limiting the
analysis to utility functions exhibiting constant relative risk aversion, namely
those with u′(c) = c−γ . In that case, relative risk aversion is constant and
equal to γ. Moreover, P/A = (γ + 1)/γ. Therefore, when relative risk aver-
sion is constant, P/A is smaller than 2 if and only if relative risk aversion is
larger than unity. There exist compelling evidence that most people have a
relative risk aversion larger than unity. For example, as is well-known from
the so-called equity premium puzzle, it is hard to explain the observed asset
prices over the century without relying to preferences exhibiting a degree
of relative risk aversion smaller than 30. Gollier (2000a) presents a similar
puzzle on the insurance demand: the standard insurance model cannot ex-
plain the very low level of deductible in insurance without making a similar
assumption. An experienced reader in macroeconomics and in finance would
observe that most researchers calibrate their model by using an index of rel-
ative risk aversion between 1 and 10. We conclude that there is a consensus
on this interval in our profession, and that P/A should be smaller than 2,
assuming that relative risk aversion be constant. According to Proposition
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1, we should observe that agents invest more in prevention for risks whose
probability of loss is more uncertain, ceteris paribus.

In this paper, we assume that the only source of information comes from
observing the realization of the risk in the first period. As in Gollier, Jullien
and Treich (2000), we could have considered the possibility to update our
beliefs by observing other signals, as those coming from the improvement of
scientific knowledge. However, it can be inferred from Gollier (2000b) that
this form of learning has no effect on the optimal risk exposure in the first
period when relative risk aversion is constant.

6 Extension to more than 2 periods

In this section, we show that our two-period model can be extended to any
finite horizon T model without affecting our result.

Let Jt(s, π̃) be the value of wealth at the beginning of period t. It is a
function of wealth s available at that date, and of the current distribution π̃

of the probability of loss. We have JT+1(s, π̃) = u(wT +Rs). Within period
t, two different decisions are taken. At the end of the period, there is a
consumption-saving decision which is written as

Vt(z, π̃t+1) = max
s

u(z − s) + βJt+1(s, π̃t+1) (12)

for a given cash-on-hand z available after the realization of risk x̃t during the
period and the corresponding updated distribution π̃t+1 of the loss probabil-
ity. Ex-ante, before the realization of x̃t, the representative agent determines
the optimal level of prevention by solving the following problem:

Jt−1(s, π̃t) = max
α

[Eπ̃t]Vt(wt +Rs−α− (L− kα), π̃t+1 | π̃t, x̃t = L) (13)

+(1− [Eπ̃t])Vt(wt +Rs− α, π̃t+1 | π̃t, x̃t = 0).

We would be done if the condition P/A ≥ 2 or P/A ≤ 2 would be trans-
mitted from Jt+1 to Vt, and from Vt to Jt−1. We hereafter show that these
inheritance properties hold. By using backward induction and Proposition
1, we will conclude that the initial level of prevention would be increased by
the uncertainty surrounding the probability of loss.
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Observe first that both the consumption-saving problem (12) and the
prevention problem (13) can be written can be written as

h(w) = max
c(.)

Eg(c(s̃), s̃) (14)

s.t. Eη(s̃)c(s̃) = w, (15)

for some random variable s̃, some function g(., .) that is concave with re-
spect to its first argument and some positive function η(.). For exam-
ple, the consumption-saving problem corresponds to a binary distribution
of s̃ ∼ (1,1/(1 + β); 2, β/(1 + β)), g(c, 1) = u(c), g(c, 2) = Jt+1(c, π̃t+1),
η(1) = β + 1, η(2) = (β + 1)/β and z = w. A similar exercise can be done
for program (13). Thus the question is to determine whether function h in
program inherits property Ph/Ah = h′′′h′/h′′2 ≥ (≤)2 from property

Pg

Ag

=

∂3g

∂c3
∂g

∂c[
∂2g

∂c2

] ≥ (≤)2.

This property is proved in the next Proposition, whose technical proof is rel-
egated to the Appendix. This result is extracted from Gollier (2001, Propo-
sition 53, chapter 14).

Proposition 2 Consider problem (14),(15) with a positive function η and a
function g(., .) that is three time continuously differentiable and concave with
respect to its first argument. Consider also any scalar m. Ph/Ah is uniformly
smaller (resp. larger) than m whenever Pg/Ag is uniformly smaller (resp.
larger) than m. It implies that the result presented in Proposition 1 holds
when the time horizon has more than 2 periods.

This result is related to the one by Caroll and Kimball (1996) who have
shown that condition P/A ≥ m is a property that value functions inherits

from the utility function in the standard consumption-saving problem, and

for the standard portfolio problem. It is important to stress that the opposite

property P/A ≤ m does not hold in general for the portfolio problem, when

markets are incomplete. Our result states that this property is also inherited

by the value function from the utility function when markets are complete,

which is implicitly the case in our model with two states and two investment

opportunities.
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7 A numerical example with infinite horizon

It is not easy to describe the state contingent optimal prevention strategy

in a finite horizon model, because this strategy depends upon the number of

periods remaining. In this section, we estimate the effect of the uncertainty

surrounding the probability of loss by assuming that the representative agent

has an infinite horizon. The assumption that the time horizon is infinite is

for the sake of simplicity, as it makes the optimal strategy independent of

time. Our computations show that agents with a finite horizon follow almost

the same strategy than if the horizon would be infinite if they have more

than, say, 20 periods remaining. This is a standard ”turnpike” property of

dynamic strategies.

In an infinite horizon model, it is easier to consider a timing of the intra-

period t by looking at the joint saving st and prevention αt+1 decisions that

take place after the realization of risk x̃t. We therefore take the cash-on-hand

z at that time as the state variable. This has the advantage to make the

consumption in period t dependent of the risk in t only through the state

variable zt.

We assume that the agent has a constant income w per period. We

suppose that the probability p of loss can be either p1 or p2 ≤ p1. This
implies that the beliefs in period t is completely characterized by πt, the
probability that p be equal to p1. Using Bayes’ rule, this probability will be
increased to

πt+1(πt, x̃t = L) =
πtp1

πtp1 + (1 − πt)p2

in period t+1 if a loss is incurred in period t. On the contrary, it is reduced
to

πt+1(πt, x̃t = 0) =
πt(1− p1)

πt(1 − p1) + (1− πt)(1− p2)

if no loss was observed in period t. Let z represent the cash-on-hand before
consumption. The Bellman equation is written as

J(z, π) = max
s,α

u(z − s)

+β(πp1 + (1 − π)p2)J(w +Rs− α− (L− kα), πt+1(π,L))

+β(1− πp1 − (1− π)p2)J(w +Rs− α, πt+1(π, 0))
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where J is the value function depending upon the two state variables z and
π. After some manipulations, we can rewrite the Bellman equation as

J(z, π) = max
C,A

u(C) + βE [J(w +R(z − C) +Ag(x̃), πt+1(π, x̃)) | π] ,

where C is the level of consumption, A is the non-prevented loss L − kα,
w = w − k−1L is the per-period income net of the cost of eliminating the
risk, and g(L) = k−1 − 1 and g(0) = k−1.

We hereafter assume that the representative agent has a constant relative
risk aversion γ which is larger than 1. Then, the value function and the policy
functions are separable:

J(z, π) = j(π)
(z + (w/R))1−γ

1− γ
,

C(z, π) = c(π) (z + (w/R)) ,

and
A(z, π) = a(π) (z + (w/R)) .

The level of consumption and the non-prevented loss are proportional to the
level of wealth measured by the sum of cash-on-hand and the present value
of the next net income. We hereafter focus on the policy functions where
(z + (w/R)) has been normalized to unity.

Functions j(.), c(.) and a(.) must satisfy the following conditions:

c(π)−γ = βRE
[
j(πt+1(π, x̃))(R(1 − c(π)) + a(π)g(x̃))−γ | π

]
,

E
[
j(πt+1(π, x̃))g(x̃)(R(1 − c(π)) + a(π)g(x̃))−γ | π

]
= 0,

and

j(π) = (c(π))1−γ + βE
[
j(πt+1(π, x̃))(R(1 − c) + ag(x̃))1−γ | π

]
,

for all π ∈ [0,1] .
There is no hope to solve this system analytically, except in the loga-

rithmic case (γ = 1). In the following, we present two simulations in which
relative risk aversion is set to 2, the rate of pure preference for the present is
equal to 2% (β = 0.98) and the interest rate is fixed to 1% (R = 1.01). More-
over, we assume that k = 2 : each dollar invested in prevention reduces the
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loss by 2 dollars. In Figure 2, we draw an heavy curve describing the optimal
level of non-prevented loss when the probability of loss is either p1 = 10%
with probability π, or p2 = 1% with probability 1−π. We compare this policy
to the one (thin curve) that would be optimal without any uncertainty on the
probability of loss that would be set to p = πp1+(1−π)p2. In accordance to
our main result, the parameter uncertainty reduces the optimal level of the
non-prevented loss, i.e., it raises the initial prevention effort. Consider for
example a situation in which there is no uncertainty about the probability
of loss, which would be set equal to p = 0.055. Compare this situation with
the one in which the probability of loss is distributed as (0.1, 0.5; 0.01, 0.5).
Notice that the expected probability of loss is p = 0.055 in the two situations.
In Figure 2, we see that the optimal size of the non-prevented loss is reduced
by 7%, coming from 104% to 97% of current wealth.

Of course the effect of parameter uncertainty is increasing with the size of
the uncertainty. In Figure 3, we draw the optimal policy when the probability
of loss is either p1 = 0.5 with probability π or p2 = 0.01 with probability
1−π. Suppose that π = 0.5. In such an uncertain environment, the optimal
value of a equals 0.045. On the contrary, when there is no uncertainty about
the probability of loss fixed at p = 0.255, the optimal a is equal to 0.504.
This means that the uncertainty on p reduces the optimal retained loss by
more than 90%. In fact, the optimal level of prevention with a = 0.045 would
be optimal in the absence of parameter uncertainty only if the probability of
loss would be fixed at p = 0.48. In other words, the parameter uncertainty
should induce the representative agent to do as if the probability of loss would
be set to p = 0.48, very close to the worst case scenario with p1 = 0.5! This
effect is increasing with the degree of risk aversion.

8 Conclusion

People should devote more preventive effort, not less effort, when the risk is
more uncertain. The uncertainty surrounding the intensity of a risk should
not be taken as an excuse to delay investing in prevention. We show that
this intuitive guideline is indeed optimal for expected-utility maximizers as
soon as the ratio of their absolute prudence to their absolute risk aversion is
uniformly smaller than 2, as is the case when their relative risk aversion is
constant and larger than unity. Because this latter assumption is sustained by
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Figure 2: Optimal level of non-prevented loss when the probability of loss is
distributed as (0.1, π; 0.01,1 − π) (thick curve).
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Figure 3: Optimal level of non-prevented loss when the probability of loss is
distributed as (0.5, π; 0.01,1 − π) (thick curve).
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the data, this paper provides a strong argument in favor of the precautionary
principle.

Our model has its own limitations that should call for extensions. For
example, we assumed that the size of the risk taken in the first period does
not affect the quality of the signal. In reality, it is possible that the quality
of the signal be increasing in the accepted size of the risk exposure. It could
be interesting to examine the effect of this experimentation problem on the
initial risk-taking attitude. A second potential extension would come from
relaxing our assumption that the signal is immediately observed. In some
cases, as for the mad cow disease or global warming, signals are observed a
long time after risks have been undertaken. How do these delays affect the
optimal dynamic risk management? Finally, we assumed in this paper that
past decisions do not affect the current level of the risk. In many instances,
there is a phenomenon of accumulation that takes place: the larger the risk
accepted in the past, the larger the risk exposure today. For example, the risk
of global warming in 100 years of now will depend upon the accumulation
of greenhouse gas emissions. Gollier, Jullien and Treich (2000) examined a
similar question, but without allowing for endogenous learning.
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Appendix: Proof of Proposition 2

Let Tf (w) = −f ′(w)/f ′′(w) denote the degree of absolute risk tolerance
of function f, with f being function h(.) or g(., s). In the latter case, the
derivatives are taken with respect to the first argument of the function. No-
tice that

T ′

f (w) = −1 +
Pf (w)

Af(w)
.

Therefore Pf/Af is larger (smaller) than m if T ′

f is larger (smaller) than
m−1. Let c(.) = ψ(., w) characterize the solution of program (14),(15). The
first-order condition for this program is written as

g′(ψ(s,w), s) = ξ(w)η(s)

for all s, where ξ(z) is the Lagrangian multiplier associated to constraint
(15). Fully differentiating the first-order condition with respect to z yields

g′′(ψ, s)
∂ψ

∂w
= ξ ′(w)η(s).

Eliminating η(s) from the last two equalties implies that

∂ψ

∂w
=
−ξ ′(w)

ξ(w)
Tg(ψ, s).

But notice that, by fully differentiating constraint (15) yields

1 = Eη(s̃)
∂ψ(s̃, w)

∂w
=
−ξ′(w)

ξ(w)
Eη(s̃)Tg(ψ(s̃, w), s̃). (16)

It implies that
−ξ(w)

ξ ′(w)
= Eη(s̃)Tg(ψ(s̃, w), s̃).

But by the envelope theorem, h′(w) = ξ(w) and, thus, Th(w) = −ξ(w)/ξ ′(w).
We conclude that

Th(w) = Eη(s̃)Tg(ψ(s̃, w), s̃)

and

T ′

h(w) = Eη(s̃)
∂ψ(s,w)

∂w
T ′

g(ψ(s̃, w), s̃).
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Because of the first inequality in (16), we see that the above equality means
that T ′

h is a weighted average of T ′

g(ψ, s).
Suppose that Pg/Ag is uniformly smaller than m, then T ′

g is uniformly
smaller than m − 1. Because T ′

h is a weighted average of T ′

g(ψ(., w), .), T
′

h

must be uniformly smaller than m−1, which in turn means that Ph/Ah must
be smaller than m. �
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