
AVERTISSEMENT 

 
 
Ce document est le fruit d’un long travail approuvé par le jury de 
soutenance et mis à disposition de l’ensemble de la 
communauté universitaire élargie. 
 
Il est soumis à la propriété intellectuelle de l’auteur : ceci 
implique une obligation de citation et de référencement lors de 
l’utilisation de ce document. 
 
D’autre part, toute contrefaçon, plagiat, reproduction illicite de 
ce travail expose à des poursuites pénales. 
 
Contact : portail-publi@ut-capitole.fr 
 
 
 
 
 

LIENS 

 
 
Code la Propriété Intellectuelle – Articles L. 122-4 et L. 335-1 à 
L. 335-10 
Loi n°92-597 du 1er juillet 1992, publiée au Journal Officiel du 2 
juillet 1992 
http://www.cfcopies.com/V2/leg/leg-droi.php 
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm 



 
 
 
 
 

THÈSE 
En vue de l’obtention du 

 
 

DOCTORAT DE L’UNIVERSITE DE TOULOUSE 
 

Délivré par l’Université Toulouse Capitole 
 

École doctorale : Mathématiques, Informatique  

et Télécommunications de Toulouse 

 
Cotutelle internationale avec Western Sydney University, Australie 

 
 

Présentée et soutenue par 

XIAO Zhanhao 
 

le 12 décembre 2017 

 

Raffinement des Intentions - Refinement of Intentions   
 
 

 

Discipline : Informatique 

Spécialité : Intelligence Artificielle 

Unité de recherche : IRIT (UMR CNRS 5505) 

Codirecteur de thèse : M. Andreas HERZIG, Directeur de Recherches, CNRS 

Codirecteur de thèse : M. Dongmo ZHANG, Associate Professor, Western Sydney University 

 

JURY 
 
 Rapporteurs  M. Brian LOGAN, Associate Professor, Univ. of Nottingham, Royaume-Uni 
  M. Kewen WANG, Professor, Griffith Univ., Australie 

 
 Membres  Mme Célia DA COSTA PEREIRA, Maître de Conférences, Univ. de Nice 
  M. Malik GHALLAB, Directeur de Recherches, LAAS 

 M. Laurent PERRUSSEL, Professeur, Univ. Toulouse Capitole 
 M. Abdallah SAFFIDINE, Research Associate, Univ. of New South Wales, Australie  
 M. Bruno ZANUTTINI, Maître de Conférences, Univ. de Caen  

 



➞2017 - Zhanhao Xiao

All rights reserved.







Thesis co-supervisors Author

Andreas Herzig (UT) Zhanhao Xiao

Laurent Perrussel (UT)

Dongmo Zhang (WSU)

Refinement of Intentions

Abstract
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The mental attitudes, such as belief, desire, and intention, play a central role in

the design and implementation of autonomous agents. In 1987, Bratman proposed

a so-called belief-desire-intention (BDI) theory which inspired a multitude of BDI

logics and BDI architectures. Bratman highlighted the fundamental role of an

agent’s future-directed intentions: they are high-level plans to which the agent is

committed. Such high-level plans cannot be executed directly: they have to be

stepwise refined into more elaborated plans. Ideally the plans at the end of the

refinement process contain only basic actions which the agent can perform directly.

The process of intention refinement is crucial to the BDI theory and every step

of refinement establishes a means-end relation between the refined intentions and

the intentions refining it. However, there are very few accounts of hierarchical

intention refinement in the existing BDI logics.

The concept of automated planning is central in Bratman’s theory. As a traditional

research community of artificial intelligence, automated planning has attracted

numerous attentions and it has already been integrated into BDI architectures.

In particular, the way of generating solutions in hierarchical task network (HTN)

planning is refining high-level actions step-by-step until basic actions. Thus, the

idea of HTN planning should be revelent for BDI agents. However, except for the

line of work of de Silva and Sardina et al., hierarchical intention refinement has

been scarcely considered in the existing BDI agents.

The aim of this thesis is to provide a logic-based comprehensive analysis of the

hierarchical refinement process. In this thesis, intention refinement is considered

from two perspectives: the entailment and the primitive. From the former, in-

tentions are managed in a co-called belief-intention database where refinement is

3



Abstract 4

addressed via the logical entailment based on the action law; while from the latter,

refinement is defined in an explicit and static way, just as in HTN planning.

From the entailment perspective, this thesis starts with an extension of Shoham’s

database framework on beliefs and intentions by introducing the notions of high-

level intentions and environmental events. In a belief-intention database, a set of

intentions can refine an intention if the set is minimal and suffices to guarantee

the satisfaction of the intention. This thesis also investigates the complexity of the

decision problems of satisfiability, consequence, refinement, instrumentality in the

proposed database framework, which are all PSPACE-complete. Furthermore,

this thesis explores the relations between the database framework and two logics:

propositional linear temporal logic and dynamic logic with propositional assign-

ment. The reductions to these two logics contribute to finding a set of intentions to

refine a high-level intention via invoking the automated tools for these two logics.

From the primitive perspective, this thesis provides a logical semantics for HTN

planning based on propositional dynamic logic. In the dynamic framework, re-

finement is captured by the program inclusion operator. By equipping high-level

actions with pre- and postcondition, a coherence condition for HTN domains is

proposed to evaluate the correctness of the predefined refinement methods. More-

over, the postulates of soundness and completeness for high-level actions are given

under the dynamic semantics. When it comes to the completeness, it is usually

a big challenge to define all possible refinement methods in HTN planning. It is

promising to relax some restrictions on solutions: Geier & Bercher’s HTN planning

with task insertion (TIHTN) allows solutions obtained by inserting actions. To

capture the pre- and postcondition of actions, this thesis further extends TIHTN

by introducing state constraints and calls the extension TIHTNS planning. It

has been shown that the property of acyclic decomposition still holds in TIHTNS

planning and then an acyclic progression operator for finding a plan is proposed.

Based on the progression operator, it is proved that the additional consideration of

state constraints does not increase the complexity of the plan-existence problem,

staying in 2-NEXPTIME-complete.
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Raffinement des Intentions

Résumé

Mots-clés: Logique BDI, Intentions, Raffinement, Planification Automatisée,

Planification Hiérarchique

La conception et l’implémentation d’agents autonomes font appel aux concepts

cognitifs centraux de croyances, désirs et intentions. En 1987, Bratman a proposé

une théorie alliant ces trois notions et fondant la notion d’agents BDI (belief-

desire-intention) aujourd’hui encore très populaire en intelligence artificielle. Les

intentions des agents ont deux caractéristiques essentielles : (i) elles décrivent

ce que sera le futur de l’agent, autrement dit elles peuvent être vues comme des

plans ou actions de haut niveau et (ii) elles engagent l’agent à réaliser celles-ci. Ces

plans de haut niveau ne peuvent toutefois pas être exécutés directement : l’agent

va raffiner ceux-ci afin d’obtenir des plans plus élaborés. Cette procédure de

raffinement doit être comme un processus hiérarchique allant d’un niveau abstrait

très général à un niveau détaillé et concret. L’aboutissement de ce raffinement

est l’obtention d’un ensemble d’intentions basiques représentées par des actions

directement exécutables. Cette thèse a pour objectif de proposer une analyse

logique de ce raffinement, thème qui a été peu abordé dans les logiques BDI.

La notion de planification est centrale selon Bratman et quelques travaux ont

montré comment la planification automatique pouvait être intégrée à un agent

BDI. La planification hiérarchique (Hierarchical Task Network ou HTN planning)

permet une génération de plans selon une approche allant d’actions de haut niveau

vers des actions de bas niveau. Exceptés les travaux de da Silva, Sardina et

al., très peu de travaux ont exploré le rapprochement entre planification HTN et

raffinement d’intentions.

Dans cette thèse, nous considérons une double perspective sur le raffinement

d’intentions: raffinement “par implication” et raffinement “déclaratif”. Dans la

perspective “par implication”, les intentions sont représentées par une “base de

données” de croyances et d’intentions et la relation de raffinement est déduite

à partir des lois d’actions. Dans la perspective “déclaratif”, le raffinement est

explicitement défini de manière similaire à ce qui est fait dans la planification

hiérarchique.
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Dans la perspective “par implication”, le point de départ est une extension des

bases de données “croyances-intentions” proposée par Shoham. Cette approche

est plus simple que les formalismes logiques basés sur les logiques modales mais

plus riche que les formalismes ayant pour objectif l’implémentation d’agents BDI.

Notre première contribution est l’introduction de hiérarchie entre intentions afin

d’expliciter la notion de raffinement. Nous avons aussi considérer l’agent et son en-

vironnement, en proposant d’introduire dans la base de données la notion d’évène-

ments. Nous avons ensuite logiquement analysé le raffinement et proposé une anal-

yse de la complexité des problèmes de décision pour la satisfaction, conséquence,

raffinement et instrumentalité. Nous montrons que tous ces problèmes de décision

sont PSPACE-complete. L’analyse logique est aussi effectuée en montrant com-

ment la base de données-peut être encodées en logique temporelle et logique dy-

namique. Les réductions dans ces logiques contribuent à résoudre le problème du

choix du raffinement en profitant des outils logiciels pour ces logiques.

Dans la perspective “déclaratif”, nous proposons dans un premier temps une car-

actérisation d’un fragment de la planification hiérarchique en logique dynamique

propositionnelle: les actions sont vues comme des programmes et les méthodes

sont caractérisées à l’aide d’un opérateur d’inclusion entre programmes. A l’aide de

cette représentation en logique, nous pouvons exprimer des notions sémantiquement

riches comme la modularité ainsi que l’expression de pre et post conditions pour

les actions de haut niveau. Nous montrons que cette formalisation en logique dy-

namique permet d’exprimer les notions d’adéquation et complétude des méthodes

HTN, notions difficiles à exprimer avec une sémantique opérationnelle.

Dans un second temps, nous abordons le problème de la définition préalable

de l’ensemble des décompositions possibles (bibliothèque de méthodes). Cette

étape est cruciale et délicate à effectuer. La planification HTN avec insertion de

tâches (TIHTN) permet de répondre partiellement à cette difficulté en permettant

l’obtention des solutions de décomposition qui n’auraient pas été préalablement

encodées dans la bibliothèque de méthodes. Cela est possible en insérant dy-

namiquement des tâches dans les méthodes de décomposition prédéfinies. Dans

cette thèse, nous proposons une extension de la planification TIHTN par la prise en

compte des pre et post conditions sur les actions de haut niveau. Nous montrons

que la complexité pour l’existence d’un plan n’est pas impactée par ces contraintes

d’état et reste 2-NEXPTIME-complet. Cela est démontré à l’aide d’un opérateur

de progression acyclique.
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Chapter 1

Introduction

1.1 Motivation

A mental state is a state of mind that an agent is in.1 The fundamental mental

states include the attitudes of beliefs, desires, and intentions, which play a central

role in the design and implementation of autonomous agents. Beliefs have a ‘mind-

to-world’ direction of fit: agents try to adapt their beliefs to the truths of the

world, while intentions have a ‘world-to-mind’ direction of fit: agents try to make

the world match their goals. These concepts have been well studied in philosophy,

psychology and cognitive science but were new to computer scientists until being

introduced by the researchers of artificial intelligence and multi-agent systems.

In 1987, Bratman proposed a so-called belief-desire-intention (BDI) theory [Brat-

man, 1987] which inspired a multitude of BDI logics and BDI architectures. Brat-

man highlighted the fundamental role of an agent’s future-directed intentions:

they are high-level plans to which the agent is committed. Being high-level plans,

intentions typically cannot be executed directly: they have to be refined as time

goes by, resulting in more and more elaborate plans. Ideally the plans at the

end of the refinement process contain only basic actions, which are the actions

the agent can directly execute. The process of intention refinement is crucial to

1Refer to https://en.wikipedia.org/wiki/Mental_state (accessed on 27 Sep. 2017).

1
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the BDI theory. As pointed out in [Rao and Georgeff, 1991], “the potential of

non-primitive events for decomposition into primitive events can be used to model

hierarchical plan development”. For example, assume I have a high-level intention

to go to Melbourne. In order to achieve this intention, I further refine it and I

decide to fly to Melbourne by plane. The intention to fly to Melbourne can be

refined into going to the airport and taking the plane. Figure 1.1 shows such a

process of refinement.

Figure 1.1: An Example of Intention Refinement

Forming future-directed intentions enables agents to extend the influence of their

deliberations beyond the present moment. This is important given that the cogni-

tive capacities and time for deliberation are limited or the environment in which

the agent stay is frequently changing. Specifically, it would be the case that at

some moment an agent has little time to deliberate and think through all her

options. For example, I may decide on Sunday what to do for the next weekend

since I know that I will be very busy during weekdays and will have no time to

make my plan for the weekend.

Intention refinement should be a central ingredient of any theory of autonomous

agents. However, there are few accounts of hierarchical intention refinement in the

existing BDI logics or BDI agents. The aim of this thesis is to provide a logic-based

comprehensive analysis of the hierarchical refinement process.

A notable exception that considers intention refinement is the strand of work re-

lated the agent programming language CANPLAN [Sardina et al., 2006] which
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import ideas from hierarchical task network (HTN) planning. HTN planning

concerns a hierarchy over actions (‘tasks’) that are either basic (‘primitive’) or

high-level (‘compound’) [Erol et al., 1994a]. The HTN solutions are generated

by decomposing higher-level actions step-by-step into lower-level actions. This

decomposition process actually is the refinement process from higher-level inten-

tions towards lower-level intentions, until basic actions. In HTN planning, the

decomposition of actions is restricted in an explicit and predefined way where the

step-by-step decomposition is done according to the given decomposition meth-

ods. Every decomposition method actually defines a refinement relation between a

high-level action and a set of actions which are called subtasks. It requires that the

HTN domain designer considers all possible decomposition methods for all actions

and provides the complete domain knowledge, which depends on the expertise of

the designer. However, it is always a big challenge for the HTN domain designer.

As pointed out in [Kambhampati et al., 1998], “most real-world domains tend to

be ‘partially hierarchical’ in that human expertise, in the form of task reduction

knowledge, exists for only some parts of the domain.” In the case of numerous

actions, the refinement relation may be hidden among various actions and it is

easy to neglect some subtasks which are necessary or helpful to accomplish the

high-level actions. Taking the example of Figure 1.1, an action of buying the flight

ticket may be forgotten in the decomposition method with respect to the action of

flying to Melbourne. Formalizing the refinement relation in a logical framework,

which is the aim of this thesis, contributes to finding the potential refinement re-

lation. The logic-based analysis of the refinement relation would assist the HTN

domain designer to improve the HTN domain: the discovery of the implicit refine-

ment relation between actions provides the clues for the decomposition methods.

Additionally considering the action of buying the ticket as a subtask is necessary

to achieve the action of flying to Melbourne.

When we start to build up a logical framework for the refinement of intentions,

there are several questions occurring to us:

1. How can we model high-level intentions?
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2. How to model the refinement of a high-level intention?

3. How to refine an intention into executable plans?

4. Is the refinement operation correct?

The above questions are essential for the operation of intention refinement. We

will keep these questions throughout the thesis and answer them one by one in the

end of this thesis.

1.2 BDI Logics and BDI Implementations: A

Summary of the State of the Art

Since Bratman’s BDI theory [1987], numerous approaches were built on the BDI

paradigm, both practical (BDI architectures and BDI agents) and theoretical (BDI

logics). In this section, we first introduce the two main BDI logics and then

summarize the shortcomings of the existing BDI agent languages.

1.2.1 Cohen & Levesque’s Logic and Rao & Georgeff’s

Logic

The logical approaches that were most influential are due to [Cohen and Levesque,

1990] and [Rao and Georgeff, 1991].

Cohen & Levesque’s Linear Time Logic Cohen and Levesque [1990]2 pro-

vided a seminal logical modeling of Bratman’s BDI model. Their approach ac-

counts for achievement intentions (as opposed to maintenance intentions). It dis-

tinguishes intention-to-do and intention-to-be and mainly focuses on the latter.

The definition of intention-to-be comes in four steps—chosen goals, achievement

2The paper was awarded the IFAAMAS most influential paper award in 2006.
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goals, persistent goals and intentions—that are couched in a quantified modal logic

of linear time, action, and belief.

1. Chosen goals correspond to future states where the agent would like to be.

2. Achievement goals are chosen goals that are not true yet (more precisely:

that the agent believes to be false now).

3. Persistent goals are achievement goals that are only abandoned when they

are either achieved, or learned to be non-achievable, or ‘for some other rea-

son’.

4. Intentions are persistent goals for which the agent is prepared to act; this

excludes persistent goals to which the agent cannot contribute anything,

such as my persistent goal that there be snow at Christmas.

While Cohen & Levesque’s approach is much cited, it is fair to say that it is rather

complicated. Some early criticisms of technical details can be found in [Singh,

1992]. In Shoham and Leyton-Brown’s textbook [2008], the approach to model

intentions is called “the road to hell”. It speaks for itself that its mathematical

properties—such as axiomatizability, decidability and complexity of fragments—

were never investigated. Cohen & Levesque’s approach moreover has three major

shortcomings. First, it does not provide a solution to the frame problem3: what

is true at different time points t and t′ may vary wildly and is not determined by

the actions occurring between t and t′. Second, it does not account for intention

refinement. Third, it does not fully account for revision; indeed, while Cohen &

Levesque provide some criteria for the abandonment of intentions through the no-

tion of rational balance (forbidding to intend something that is true or believed to

be impossible to achieve), it does not further analyze the ‘other reasons’ for which

a persistent goal is abandoned. These reasons should mainly cover abandonment

of goals that are instrumental for another, higher-level goal that is dropped, and

more generally intention reconsideration.

3 The frame problem, one of the main and oldest problems in reasoning about actions, concerns
the specification of the effects of actions [McCarthy and Hayes, 1969]. The main challenge is
to characterize these effects without explicitly specifying which conditions are not affected by
executing actions.
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Rao & Georgeff’s Branching Time Logic Contrarily to Cohen & Levesque’s

logic, [Rao and Georgeff, 1991] embrace a primitive notion of intention in their

branching time logic which is based on computational tree logic CTL*.

Just as Cohen & Levesque’s approach, Rao & Georgeff’s suffers from the short-

comings that we have listed above: intention revision is basically absent from the

picture and the frame problem is not solved. Indeed, due to the temporal logic

framework agents can perform actions whose effects are not further specified. It

is also not described how beliefs are preserved while agents act.

Rao & Georgeff’s approach was fleshed out by Michael Winikoff et al. [2002] who

link intentions4 to the actions associated to them by means of transition rules in a

predefined way. The logical framework they propose, called Conceptual Agent No-

tation, is defined in terms of a declarative and an operational semantics. Together,

they allow to reason about the relations between goals, such as dependence, mu-

tual consistency, and mutual support. Overall, the framework is rather complex

and, just as all other existing BDI logics, the frame problem remains unsolved: the

framework describes how sub-goals may be inferred (with respect to some library

of plans) but does not keep track of these steps. In other words, no means-end

relation between the ongoing goals can be exhibited and consequently revision

cannot be handled in a rational way.

1.2.2 BDI Implementations and Their Shortcomings

After Bratman’s book [1987], the BDI paradigm inspired a multitude of models

and platforms aiming at the implementation of software agents: so-called BDI

agents, such as LORA [Wooldridge, 2000], KARO [Meyer et al., 2001], 3APL [Das-

tani et al., 2003], dMars [d’Inverno et al., 2004], AgentSpeak-Jason [Bordini and

Hübner, 2010], GOAL [Hindriks et al., 2012], CANPLAN [Sardina et al., 2006, Sar-

dina and Padgham, 2011] and its extension CANPLAN+ [Bauters et al., 2014a].

All these software platforms are made up of a ‘B’, a ‘D’, and an ‘I’ component

4 They use the term goals.
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that are interfaced appropriately. Such architectures are inspired by the Intelligent

Resource-bounded Machine Architecture proposed by [Bratman et al., 1988a].

1.2.2.1 Lack of Formal Logical Semantics

Most BDI software models and platforms are semi-formal: while they provide

a taxonomy of basic concepts and their relationships, the agent programming

languages are usually equipped with an operational semantics only and lack a

formal logical semantics. Typically, they support the specification of BDI agents

with respect to some specific BDI implementations. For instance, the language of

AgentSpeak [Bordini et al., 2007] enables to express what are the initial beliefs,

actions and plans available in an AgentSpeak-Jason implementation of a multi-

agent system. More generally speaking, there are only few attempts to formally

relate BDI implementations and BDI logics. For example, AgentSpeak does not

enable reasoning about the consequences of an action. The main exception is the

line of work on the KARO framework [Hindriks and Meyer, 2006, Hustadt et al.,

2001, Meyer et al., 2001]. However, it seems to be fair to say that this logic and

its mathematical properties are not well understood yet.

A further weak point of BDI architectures is that their associated agent language

is often severely restricted: it consists of literals, i.e., propositional variables or

their negations. Typically, the agent language dMars requires that beliefs are only

sets of literals. In our view this is a major obstacle to the use of BDI agents,

for two reasons. First, it does not allow second-order beliefs, i.e., beliefs about

other agents’ beliefs. Such beliefs—and more generally higher-order beliefs—are

however central for the reasoning of a socially intelligent agent. Their fundamental

role in human intelligence was highlighted in experiments such as false belief tasks

[Bolander, 2014]. In Game Theory, higher-order beliefs are at the heart of the

definition of notion of equilibrium as each agent has to assume that the other agents

are rational [Lorini and Moisan, 2011, Strzalecki, 2014, Weinstein and Yildiz, 2007].

Second, except for some agent languages that allow disjunctions, such as 3APL,

KQML [Labrou and Finin, 1994] and FIPA-ACL [O’Brien and Nicol, 1998], a big
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part of them do not allow disjunctions. For example, AgentSpeak does not allow

to express disjunctive beliefs. This is clearly a disadvantage: for example, goals

to know whether some proposition is true cannot be expressed. Furthermore, this

is highly problematic if one wants to employ BDI agents as conversational agents.

For instance, agent i’s yes-no question whether ϕ is conditioned by i’s goal to know

whether ϕ is true. Another example is that i’s speech act of informing j that ϕ

is conditioned by i’s belief that j does not know whether ϕ. These situations are

quite common in game playing.

1.2.2.2 Lack of Intention Refinement

As we have said, the concept of intention refinement is crucial in the BDI theory.

However, the literature on BDI logics and BDI agents only contain few contribu-

tions to intention refinement. Indeed, from [Ingrand et al., 1992] to recent work

[Waters et al., 2015], mainstream implementations of BDI-agents have adopted

plan libraries: functions associating to each intention the set of plans that can

achieve it. Actually, the inter-relationships between intentions are taken into ac-

count for handling plan execution failures and avoiding conflicts [Clement and

Durfee, 1999a,b, Shaw and Bordini, 2007, Yao et al., 2016]. However, the existing

approaches on BDI agents do not formalize the refinement relation among inten-

tions which is a kind of means-end relation. This is also the case even when the

focus is on the dynamics of the intention base [Schut et al., 2004]. We believe that

this is a major shortcoming of such approaches.

As mentioned above, a notable exception is the line of work of de Silva and Sar-

dina et al. [de Silva, 2017, de Silva and Padgham, 2004, de Silva et al., 2009,

Sardina et al., 2006] which import ideas from HTN planning. In [de Silva and

Padgham, 2004], the authors showed through experiments that BDI systems are

more suitable when facing highly dynamic environments, while HTN solutions are

more efficient in a static context. In [Sardina et al., 2006], Sardina et al. integrated

a BDI agent system with a offline HTN planner as a “lookahead” component and
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developed a BDI agent language CANPLAN. In their architecture, an agent is al-

lowed to perform lookahead deliberation from user-defined points in the agent’s

goal-plan hierarchy where an intention is a program consisting of primitive actions

and operations of testing, sequence, concurrency and backup. The intention is

considered to be successfully executed if its corresponding HTN network task is

accomplished. Later in [de Silva et al., 2009], the authors proposed a notion of

‘ideal’ (precisely, minimal non-redundant maximally-abstract) plan and compute a

suboptimal ‘ideal’ plan, which is non-redundant and preserves abstract as much as

possible, based on the decomposition hierarchy of HTN planning. While [Sardina

et al., 2006] showed how CANPLAN libraries is translated into equivalent HTN

planning domains, [de Silva, 2017] showed the other way around. The above ap-

proaches inherently restrict intentions to be handled by an underlying predefined

set of decomposition methods in a static way. However, as we have noted above,

defining all possible decompositions in the beginning is a challenge for the designer

as the expertise is usually partial in many real-world scenarios.

To sum up, the account of hierarchical intention refinement in the existing BDI

implementations is still underdeveloped. We believe that it is crucial to incorporate

means-end relations between intentions into the new generation of BDI models and

that the untapped potentials in intention refinement will contribute to closing the

gap between BDI theories and BDI implementations.

1.3 BDI Theories and Automated Planning

As a traditional research community of artificial intelligence, automated planning

has gained numerous attentions. Being a central concept in BDI theories, au-

tomated planning naturally is connected with intention refinement. Consider an

intention to achieve a goal which is in the simplest case a propositional formula:

if we restrict to one step of refinement, the process of refining the intention is

relegated to the planning process in classical planning.



Chapter 1. Introduction 10

Apart from the line of work [Sardina et al., 2006] on the integration of HTN

planning into BDI agents, there exist a number of promising contributions aiming

at a connection between the automated planning community and BDI agents.

Conformant planning has also been considered in BDI agents [Bauters et al., 2014b,

Ma et al., 2014].

When it comes to the case of multiple steps, intention refinement is similar to

HTN planning. Inspired by [Sardina et al., 2006], we summarize the similar entries

between BDI theories and HTN planning in Table 1.1.

Table 1.1: BDI Theories and HTN Planning

BDI theories HTN planning
belief state

intention task
basic intention primitive task

high-level intention compound task
refinement decomposition

According to this point of view, it seems to us that time has come to reconsider the

link between BDI models and plan generation: the integration of HTN planning

into BDI logics that we have mentioned above is a promising first step. However,

decomposition methods bring a too rigid solution for defining the refinement re-

lation between intentions: the refinement relation has to be declared explicitly in

HTN planning domain. A more general perspective, such as the one offered by

hybrid planning [Kambhampati et al., 1998], is to consider that high-level actions

also have effects. Characterizing such effects is not trivial, as it raises the question

of the main (‘primary’) effect of an action. As a further work, [de Silva et al.,

2009] mix BDI reasoning and hybrid planning but the primary effect of an action

is not clearly characterized. On the other hand, the expensive computational cost

of HTN planning, which is EXPTIME-complete even for the propositional case

with tasks being totally-ordered, stops its integration into the BDI community.

To sum up, most BDI agents, except for the line of work on CANPLAN, consider

intention as an atomic concept and only consider plan libraries in a predefined way.
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Figure 1.2: Comparison between BDI Agents and Automated Planning 1

On the other hand, in classical planning, there are no high-level actions, conse-

quently no refinement. While high-level actions are considered in HTN planning,

but the decomposition has to be compiled in advance. The comparison among

them is shown in Figure 1.2.

Different from Cohen & Levesque’s linear time logic and Rao & Georgeff’s branch-

ing time logic, [Shoham, 2009] proposed an alternative and simpler account on be-

liefs and intentions, called database perspective, where intentions to do are stored

in a database. The database framework actually is closely connected with auto-

mated planning where in the extreme case, the planning process is relegated to

the database. Thus, we are convinced that it is a promising basis to consider

Shoham’s database perspective for designing a logical framework which takes in-

tention refinement into account.

1.4 Major Contributions of the Thesis

This thesis provides a comprehensive analysis of intention refinement. We ana-

lyze intention refinement from two perspectives: the entailment and the primi-

tive. From the entailment perspective, we consider intentions in a belief-intention
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database where refinement is addressed via the logical entailment based on the ac-

tion law; while from the primitive perspective, refinement is defined in an explicit

and static way, just as defined in HTN planning. The main contributions of this

thesis are summarized as follows:

❼ Establish a logical formalism for beliefs and intentions accounting for inten-

tion refinement

We start with an extension of Shoham’s database framework on beliefs and

intentions by introducing the notions of high-level intentions and environ-

mental events. In the extended database, an intention is refinable to a set

of intentions if the set is minimal and suffices to guarantee the satisfaction

of the intention. Furthermore, we investigate the complexity of the deci-

sion problems of satisfiability, consequence, refinement, instrumentality in

the proposed database framework, which are all PSPACE-complete.

❼ Propose two approaches for the decision problem of refinement

We explore the relations between the database framework and two logics:

propositional linear temporal logic and dynamic logic with propositional as-

signment. The reductions to these logics contribute to deciding whether an

intention is refinable to an intention set via invoking the existing automated

tools for these two logics.

❼ Provide a dynamic logic account of HTN planning

As HTN planning only has an operational semantics, it is difficult to evaluate

the correctness of HTN planning domains. We examine a restricted version of

HTN planning in the framework of propositional dynamic logic (PDL) where

refinement is captured by the program inclusion operator. In the dynamic

framework, by equipping high-level actions with pre- and postcondition, we

define the coherence condition of HTN planning domains to evaluate the

correctness of the predefined refinement methods. Furthermore, we explore

the soundness and completeness postulates of actions based on the semantics.

❼ Extend HTN planning with task insertion by introducing state constraints
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When it comes to the completeness, it is usually a big challenge to define all

possible refinement methods in HTN planning. It is promising to relax some

restrictions on solutions: Geier & Bercher’s HTN planning with task inser-

tion (TIHTN) allows solutions obtained by inserting actions. We further

extend their framework by introducing state constraints so that the pre- and

postcondition of high-level actions are captured, and we call the extension

TIHTNS planning. We also show that the property of acyclic decomposition

holds in TIHTNS planning and then we propose an acyclic progression oper-

ator for finding a plan. Based on the progression operator, we prove that the

additional consideration of state constraints does not increase the complexity

of the plan-existence problem, staying 2-NEXPTIME-complete.

1.5 Outline of Chapters

In Chapter 2, we recall Shoham’s database perspective which accounts beliefs and

intentions in the databases and notions of automated planning including classical

planning and HTN planning.

In Chapter 3, we follow Shoham’s database perspective and extend his belief-

intention database framework by introducing high-level actions and exogenous

events. In the extended framework, an intentions is considered as a high-level

action with a duration. Based on the databases, we define the refinement rela-

tion between higher-level and lower-level intentions. A means-end relation among

intentions follows the refinement of intentions, alias instrumentality relation, link-

ing higher- and lower-level intentions. We also investigate the complexity of the

decision problems of satisfiability, consequence, refinement and instrumentality

in belief-intention databases, which are all PSPACE-complete. This chapter is

based on [Herzig et al., 2016b] and [Xiao et al., 2017b].

In Chapter 4, we embed the decision problems of satisfiability, consequence, refine-

ment and instrumentality in the belief-intention databases into the satisfiability

and validity problems of propositional linear temporal logic (PLTL) and dynamic
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logic with propositional assignment (DL-PA). The part about the translation to

PLTL in this chapter is based on [Xiao et al., 2017b].

In Chapter 5, we propose a semantics of propositional dynamic logic for HTN

planning. Based on the framework of dynamic logic, we investigate and formalize

the coherence condition of HTN planning domains. We also propose three postu-

lates for HTN planning: modularity, soundness and completeness. This chapter is

based on [Herzig et al., 2016a].

In Chapter 6, we extend HTN planning with task insertion by introducing state

constraints, which is called TIHTNS planning. We show that all solutions of TI-

HTNS planning can be obtained by decomposing the tasks acyclically and inserting

tasks, entailing that it is decidable to find a solution for TIHTNS planning prob-

lem. Furthermore, we propose a progression operator of acyclic decomposition and

prove that the plan-existence problem for TIHTNS planning is 2-NEXPTIME-

complete. We also embed hierarchy-relaxed hierarchical goal network planning

(HR-HGN) in TIHTNS without introducing fresh operators. This chapter is based

on [Xiao et al., 2017a].

In Chapter 7, we conclude the thesis with answering the research questions and

discuss the future work.



Chapter 2

Shoham’s Database Perspective

and Automated Planning

In the previous chapter, we have introduced the two most influential BDI logics,

Cohen & Levesque’s and Rao & Georgeff’s, which however are rather complicated.

In this chapter, we start by introducing Shoham’s alternative simplified account

on beliefs and intentions, called database perspective, which is simpler than the

BDI logics rooted in these two logics and at the same time is more suitable for a

logical analysis than the existing, heavily implementation-driven BDI agents. We

also introduce two logics inspired by Shoham’s database perspective.

As mentioned in the previous chapter, automated planning is a central concept in

Bratman’s BDI theory. In the second part of this chapter, we recall the notions

of two planning approaches: classical planning and HTN planning. In particu-

lar, HTN planning is strongly connected with the theory of intention refinement

where the decomposition process in HTN is actually the process of refinement. In

the literature of automated planning, the object “action” is represented by dif-

ferent terminologies, which makes it difficult to integrate the research results of

BDI theories and automated planning. To pave the avenue to combine them, we

summarize and categorize the terminologies of actions.

15



Chapter 2. Shoham’s Database Perspective and Automated Planning 16

This chapter is organized as follows. In Section 2.1, we introduce Shoham’s

database perspective and two logics inspired by it. In Section 2.2, we recall classi-

cal planning and HTN planning. In Section 2.3, we give the uniform terminology

of actions and in Section 2.4 we summarize the chapter.

2.1 Shoham’s Database Perspective

Cohen & Levesque’s commitment-based logic provided a seminal logical modeling

of Bratman’s BDI theory. While this approach is much cited, it is rather compli-

cated. (it is even called “the road to hell” in [Shoham and Leyton-Brown, 2008]).

None of the BDI logics that were introduced subsequently—starting with [Rao

and Georgeff, 1991]—fully adopted Cohen & Levesque’s definition of intention.

Almost 20 years later, Shoham argued for a simpler approach that he baptized

with database perspective [Shoham, 2009]. His aim is to define a framework that is

simpler than Cohen & Levesque’s and Rao & Georgeff’s and that thereby provides

a more suitable basis for the design and implementation of BDI agents. Instead

of expressing achievement goals by means of the temporal ‘eventually’ modality

as Cohen and Levesque do, he assigns propositional variables to time points. The

central idea is to organize beliefs and intentions, which are intentions-to-do, in

two temporal databases. A belief database B is a set of pairs made up of time

points t in the set of non-negative integers N0 and literals p.1 They are written pt

and read “p is true at t”. Similarly, an intention database I is a set of pairs made

up of time points t and (basic) actions a. They are noted at and read “the agent

intends to do action a at time t”.

Generally, each action a has pre- and postcondition. They are described by func-

tions pre and post mapping each action a to special atomic formulas2 pre(a) and

post(a).

1 Shoham mentioned that a belief could be any formula indexed by multiple time values, but
does not elaborate this further. Such a generalization should come with more complex notation
and new semantical and computational problems.

2Shoham does not specify the form of precondition and postcondition in [Shoham, 2009]. But
they are in the form of atomic formulas in his future work [Icard et al., 2010].
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Similarly to Cohen & Levesque’s notion of rational balance, Shoham requires the

following coherence constraints: let Bt be the set of t-indexed literals of B and It

be the set of t-indexed actions of I,

1. Every Bt is consistent;

2. Every It is either empty or a singleton;

3. If a ∈ It then Bt 6|= ¬pre(a);

4. If a ∈ It then Bt+1 |= post(a).

Shoham’s perspective was subsequently worked out in [Icard et al., 2010], which

provided a semantics for belief-intention databases in terms of paths and an ax-

iomatization for such belief-intention databases in terms of sets of paths. A path

ρ associates to every non-negative integer t a set of propositional symbols and an

action: the propositional symbols that are true at t and the action that is going

to be performed by the agent at t. A set of paths Π is appropriate if

(1) on each path, the postcondition of each action performed at time t is true

at time t+1and

(2) once the precondition of an action is satisfied at time t on ρ then it must be

performed on some path that is identical to ρ up to time t−1.3

For a belief base B, Icard et al. define a set of paths where beliefs in B is true at

time point 0, noted ρ(B).

Given an appropriate set Π of paths, a modal operator of historic possibility ✸ is

interpreted by:

Π, ρ, t |=Π ✸ϕ iff ∃ρ′ ∈ Π such that ρ and ρ′ agree up to t and Π, ρ′, t |= ϕ.

3 The time parameter t−1 is missing in [Icard et al., 2010].
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They defined the coherence condition between belief database B and intention

database I as follows: the agent considers it possible to do all actions she intends

with respect to some appropriate set of paths. Formally,

there is a ρ ∈ ρ(B) such that ρ(B), ρ, 0 |= ✸

∧

at∈I

pre(a)t.

Based on this formalization, Icard et al. propose AGM-like postulates for the joint

revision of beliefs and intentions and provide a representation theorem.

[van Zee et al., 2015a] recently criticized that Icard et al.’s logic is unsound be-

cause the axiom pre(a)t → ✸do(a)t is not valid. They adapted Icard et al.’s logic

by moving to a semantics in terms of CTL∗-like tree structures, plus a language

with time-indexed modalities. They also provided a sound and complete axioma-

tization of their new logic w.r.t. the class of all models. They moreover gave an

example showing that Icard et al.’s coherence constraint (which only considers the

precondition of actions) is too weak. They proposed a stronger coherence con-

dition where the pre- and postcondition of actions and beliefs are always jointly

consistent.

Based on their logic, van Zee et al. focused on the AGM-like revision of beliefs

about actions and time [van Zee and Doder, 2016, van Zee et al., 2015b]. They

adapted the AGM semantics of belief revision by adding a condition saying that

infinite models with the same finite prefix have the same priority in the revision

preorder. They then proved representation theorems in the style of Katsuno-

Mendelzon and Darwiche-Pearl.

According to [Shoham, 2016], the database perspective is at the heart of the Per-

sonal Time Assistant (PTA), which is a next-generation calendar helping people

to manage time. His Timeful application has intentions as its basic concept and

was developed within a start-up company that was acquired by Google in 2015.
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2.2 Classical Planning & HTN Planning

In this section, we introduce two important approaches in deterministic automated

planning: classical planning and Hierarchical task network (HTN) planning.

The representation of planning problems is based on notations derived from first-

order logic. States are represented as sets of atoms that are true or false within

some interpretation.

2.2.1 Classical Planning

There are different ways to represent classical planning problems. Here we follow

the presentation given in Section 2.3 of [Ghallab et al., 2004].

Let us start with a function-free first-order language L whose vocabulary includes

a finite set of predicates and constants and an infinite set of variables. Every term

t of L consists of variables and constants.

A state is a set of ground atoms of L . Since L has no functions, the set of ground

atoms of L , denoted by Atm(L0), is finite and thus the set S of all possible states is

guaranteed to be finite. The truth conditions are defined as usual. More precisely,

a ground atom p holds in s iff p ∈ s. If G is a set of literals (i.e., atoms and negated

atoms), we say s satisfies G, denoted by s |= G, when there is an assignment µ

such that every positive literal of µ(G) is in s and no negated literal of µ(G) is

in s. Here we use the closed-world assumption: an atom that is not explicitly

specified in a state does not hold in that state.

In classical planning, actions are described by operators that change the truth val-

ues of the atoms in L . An operator o is a tuple (name(o), pre(o), eff+(o), eff−(o))

where name(o) is syntactically an atom, called the name of the operator; pre(o)

is a formula in L , called the precondition of the operator; eff+(o), eff−(o) are

two sets of atoms which are totally disjoint after grounding the atoms, called the

positive and negative effects of the operator, respectively.
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The purpose of an operator name, is to provide an unambiguous way to refer

to the operator or to substitution instances of the operator without having to

write the whole tuple explicitly. If o is an operator or an operator instance (i.e., a

substitution instance of an action), then name(o) refers unambiguously to o. Thus,

when it is clear from the context, we will write action name(o) to refer to the entire

operator o.

An action is any ground instance of an operator. A set of actions O determines a

state-transition function γ : 2Atm(L0) ×O −→ 2Atm(L0), where:

❼ γ(s, o) is defined iff s |= pre(o);

❼ γ(s, o) = (s \ eff−(o)) ∪ eff+(o) if γ(s, o) is defined.

A sequence of actions 〈o1, . . . , on〉 is executable in a state s0 iff there exists a

sequence of states s1, . . . , sn such that for all 1 ≤ i ≤ n, γ(si−1, oi) = si.

A planning domain is a tuple D = (O, γ) where O is a set ground operators and γ

is a state-transition function. A ground (“propositional”) classical planning prob-

lem is a tuple P = 〈D, sI , G〉 where sI is the initial state and G is a conflict-free

conjunction of literals. The solution of a classical planning problem P is a sequence

of actions in O which is executable in the initial state sI . The decision problem

for the classical planning problem is called the plan-existence problem, which is to

decide whether there is a solution for the classical planning problem.4 The com-

plexity of the plan-existence problem for the ground case is PSPACE-complete

[Bylander, 1994]. For the non-ground case where the planning domain consists

of non-ground planning operators, the plan-existence problem is EXPSPACE-

complete [Ghallab et al., 2004]. The reason is that when we restrict all atoms to

be ground, the number of operator instances and the size of each state reduce from

exponential to polynomial.

The number of actions in a sequence of action is called the length of the sequence.

If the length of solutions is restricted to be less than a natural number δ we

4If it is clear from the context, we abbreviate “plan-existence problem for classical planning”
as “classical planning problem” simply.
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call such problem a plan-existence problem with bounded horizon, denoted by

Pδ = 〈D, sI , G, δ〉. Interestingly, the restriction does not reduce the complexity

and when the bound is bigger than 1, the complexity of the plan-existence problem

with bounded horizon for ground classical planning is still PSPACE-complete

[Bylander, 1994].

2.2.2 HTN Planning

Different from classical planning, hierarchical task network (HTN) planning [Erol

et al., 1994a] is a planning formalism which is based on domain-specific heuristics

about the hierarchical decomposition of compound tasks, until primitive tasks

are obtained. [Erol et al., 1994a] proposes a model-theoretic semantics for HTN

planning which is operational. In this thesis, we adapt the presentation way of

operators in HTN planning to conform with that of operators in classical planning,

which is used in [Ghallab et al., 2004].

HTN planning is also defined on a function-free first-order language L whose

vocabulary includes a finite set of predicates and constants and an infinite set

of variables. In addition, the vocabulary of L includes a finite set of primitive

task symbols, a finite set of compound task symbols and an infinite set of task

labeling symbols which are used to identify tasks, so that multiple instances of

task symbols are allowed. All these sets are mutually disjoint.

In HTN planning, task symbols are syntactically atoms and fall into two categories:

primitive task symbols that can be executed directly and compound task symbols

that cannot. Every task syntactically is a pair of (t : α) where t is a task labeling

symbol that cannot occur more than once in the planning problem and α is a

task symbol.5 A primitive task is associated with an operator. Just as classical

planning, every operator has the form of o = (name(o), pre(o), eff+(o), eff−(o))

where its name name(o) is syntactically an atom n(t); its precondition pre(o) is

a formula in L ; its positive effect eff+(o) and its negative effect eff−(o) are two

5We usually use the task labeling symbol to denote the entire task.
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sets of atoms, respectively. We suppose that after grounding the atoms, these two

sets are disjoint. Similarly, we usually take the task symbol as name(o) and use it

to denote the entire operator o.

A task network is a couple d = [T, ϕ] consisting of a set of tasks T and a boolean

formula ϕ. The boolean formula ϕ is constructed6 from variable binding con-

straints such as (v = v′) and (v = c), ordering constrains such as (t ≺ t′), and

state constraints such as (t, l), (l, t), (t, l, t′) where v, v′ are propositional variables,

l is a literal, c is a constant, and n, n′ are tasks in T . Intuitively, ordering con-

straint (t ≺ t′) means task t has to be performed before task t′; state constraints

(t, l), (l, t) and (t, l, t′) mean that l must be true in the state immediately after t,

immediately before t, and in all states between t and t′. The task network [T, ϕ]

is achieved if the set of tasks T is achieved and the boolean formula ϕ holds.

A task network is called primitive if it only contains primitive tasks. A task

network is ground if all variables in all tasks and constraint formula are ground.

A decomposition method (α, d) specifies that the compound task α can be decom-

posed into the task network d: α is going to be achieved once d is achieved. For

example, the action of submitting a paper can be decomposed into a task network

d = [T, ϕ] where T consists of the two actions of writing a paper and uploading it

and constraint ϕ expresses that the writing action has to be performed before the

uploading action.

An HTN planning domain is a tuple D = (O,M) where O is a set of operators

andM is a set of decomposition methods. An HTN planning problem is a tuple

P = (D, sI , d) where D is an HTN planning domain, sI is the initial state which

is also a set of ground atoms and d is the initial task network to plan for. If all

actions and atoms are ground in the HTN planning problem, we call it ground (or

propositional) HTN planning problem, Let us introduce the operational semantics

of HTN planning.

6Logical connectives ¬,∧,∨ are allowed.
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Just as in classical planning, the change of the world is defined by the state-

transition function, which is determined by a set of ground primitive tasks O:

γ : 2Atm(L0) ×O −→ 2Atm(L0), where:

❼ γ(s, o) is defined iff s |= pre(o);

❼ γ(s, o) = (s \ eff−(o)) ∪ eff+(o) if γ(s, o) is defined.

A plan is a sequence of ground primitive tasks. As before, a plan 〈o1, . . . , on〉 is

executable in a state s0 iff there exists a sequence of states s1, . . . , sn such that for

all 1 ≤ i ≤ n, γ(si−1, oi) = si.

A plan σ is a completion of a primitive task network d in state sI , denoted by

σ ∈ comp(D, sI , d), if σ is a total ordering of a ground instance of d that satisfies

the constraint formula and is executable in sI .

Definition 2.1. For a ground primitive task network d = [{t1, . . . , tn}, ϕ], let

σ = 〈f1, . . . , fn〉 ∈ comp(D, sI , d) and π be a permutation such that whenever

π(i) = j, αi = fj. Then the constraint formula in task network d is evaluated as

follows:

❼ (ci = cj), if ci, cj are the same constants

❼ first[ti, tj, . . .] is min{π(i), π(j), . . .}

❼ last[ti, tj, . . .] is max{π(i), π(j), . . .}

❼ (ti ≺ tj) is true if π(i) < π(j)

❼ (l, ti) is true if sπ(i)−1 |= l

❼ (ti, l) is true if sπ(i) |= l

❼ (ti, l, tj) is true if sk |= l for π(i) ≤ k < π(j)

❼ logical connectives ¬,∧,∨ are evaluated as in propositional logic
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where min{.} and max{.} are the minimum and maximum number of the natural

number set, respectively.

Tasks in a task network are called totally ordered if there is only a total ordering

of tasks to satisfy the constraints in the task network.

If d is a primitive task network containing variables, then

comp(D, sI , d) = {σ | σ ∈ comp(D, sI , d
′), d′ is a ground instance of d}.

If a task network d contains non-primitive tasks, then the set of completions for d

is the empty set.

Next we introduce how to decompose tasks.

Definition 2.2. For a task network d = [{t, t1, . . . , tn}, ϕ] where t : α is a non-

primitive task, let m = (α, [{t′1, . . . , t
′
k}, ϕm]) be a decomposition method.7 Then

we define reduce(d, t,m) as follows:

reduce(d, t,m) = [{t′1, . . . , t
′
k, t1, . . . , tn}, ϕm ∧ ψ]

where ψ is obtained from ϕ with the following modifications:

❼ replace (t ≺ ti) with (last[t′1, . . . , t
′
k] ≺ ti), as ti must be after every subtask

of t

❼ replace (ti ≺ t) with (ti ≺ first[t′1, . . . , t
′
k]), as ti must be before every

subtask of t

❼ replace (l, t) with (l, first[t′1, . . . , t
′
k]), as l must be true immediately before

the first subtask of t

❼ replace (t, l) with (last[t′1, . . . , t
′
k], l), as l must be true immediately after the

last subtask of t

7We suppose the task symbols in the decomposition method m have been renamed with task
symbols which do not occur anywhere else.
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❼ replace (ni, l, t) with (ni, l, f irst[t
′
1, . . . , t

′
k]), as l must be true between ti and

the first subtask of t

❼ replace (t, l, ti) with (last[t′1, . . . , t
′
k], l, ti), as l must be true between the last

subtask of t and ti

❼ replace every occurrence of t in the expressions first[.] and last[.] in ϕ with

t′1, . . . , t
′
k

Intuitively, reduce(d, t,m) is the task network obtained from task network d by

replacing t with the subtasks in the decomposition method m and incorporating

the constraint formula of the decomposition method into the constraint formula

of d.

Then we define the set of reductions of d = [T, ϕ] in state sI and domain D,

denoted by red(D, sI , d), as follows:

red(D, sI , d) = {reduce(d, t,m) | t ∈ T,m ∈ D}.

The solution for an HTN planning problem P = (D, sI , d) is a plan such that the

task network d will be achieved by decomposing compound tasks iteratively via

the decomposition methods in D, starting from the initial state sI .

More precisely, A plan σ solves a primitive task network d in the initial state sI ,

iff σ ∈ comp(D, sI , d); a plan σ solves a non-primitive task network d in the initial

state sI iff σ solves some reduction d′ ∈ red(D, sI , d) in the initial state sI .

Definition 2.3. We define the set of plans sol(D, sI , d) which solve an HTN plan-

ning problem P = (D, sI , d):

sol1(D, sI , d) = comp(D, sI , d)

solk+1(D, sI , d) = solk(D, sI , d) ∪
⋃

d′∈red(D,sI ,d)

solk(D, sI , d
′)

sol(D, sI , d) =
⋃

k

solk(D, sI , d)
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Intuitively, solk(D, sI , d) is the set of plans that can be derived in k steps of re-

finements, while sol(D, sI , d) is the set of plans that can be derived in any finite

number of steps.

The decision problem for HTN planning is called the plan-existence problem for

HTN planning which is to decide whether there is a solution of the HTN planning

problem. The plan-existence problem for HTN planning, whether variables are

allowed or not, is undecidable [Erol et al., 1996]. Alford et al. [2015a] summarize

the complexity results of the plan-existence problem for HTN planning with var-

ious restrictions, which range from PSPACE up to undecidable. In particular,

if all tasks in task networks are totally ordered by the constraints, the complex-

ity for propositional HTN planning is EXPTIME-complete and the complexity

for non-ground HTN planning is 2-EXPTIME-complete because of the exponen-

tial size expansion caused by the grounding procedure. If we additionally restrict

the decomposition of tasks not to be recursive, the complexity for propositional

HTN planning reduces to PSPACE-complete and EXPSPACE-complete for the

non-ground case.

2.3 Uniform Terminology

In the literature on classical planning and HTN planning, one can find different

terminologies on the object “action”. For example, to represent an action instance,

“operator” is used in classical planning and “task” is used in HTN planning. In

this section, we summarize and categorize the terminologies about “action”, as

shown in Table 2.1. Usually, we define what type of actions can be performed or

accomplished in the domain and we call them “action types”. Here we use first

order atoms to syntactically represent action types, we call them “ground action

types” (or “propositional action types”) after grounding. In order to capture

multiple occurrences of the same (ground) action, we instantiate action types

into “action token” which should be identified in the context. Notice that “task

symbol” is used to represent “action type” in the formalism of [Erol et al., 1994a]
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(noted [1] in Table 2.1) while in the formalism of [Geier and Bercher, 2011] (noted

[2] in Table 2.1) it is used for “action token”.

Table 2.1: The Uniform Terminology of Actions

action type ground action type action token

high-level action
[1] compound task symbol [1] ground compound task symbol [1] labeling symbol
[2] compound task name [2] ground compound task name [2] task symbol

basic action
classical operator ground operator/actions

HTN
[1] primitive task symbol [1] ground primitive task symbol [1] labeling symbol
[2] operator [2] ground operator [2] task symbol

As the concept of actions is fundamental in both automated planning and BDI

theories, an uniform terminology of actions contributes to integrating the research

results of these two communities. In this thesis, we stipulate that the (ground)

action type for the compound task is called “(ground) high-level action” and for

the primitive task is called “(ground) basic action” and that the action token in

HTN planning is simply called “compound task” and “primitive task”.

2.4 Summary

In this chapter, we have recalled Shoham’s database framework on beliefs and

intentions. Compared with Cohen & Levesque’s logic, Shoham’s database frame-

work is a much simpler account that is based on a database of time-indexed basic

actions and beliefs. Compared with the existing BDI agents, the belief-intention

database is more logical and more suitable for revising beliefs and intentions. Al-

though Shoham’s database perspective lacks an account of intention refinement,

we believe it to be a promising basis for a logic-based comprehensive analysis of be-

liefs and intentions. In the next chapter, we put the notion of intention refinement

into Shoham’s database perspective.

Now, we have a better understanding on the difference between existing theories

and automated planning. Updating the figure about the comparison between BDI

agents and automated planning (1.2), we obtain a new figure (Figure 2.1) about

the comparison between BDI theories and automated planning.
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Figure 2.1: Comparison between BDI Theories and Automated Planning 2

In the real word, HTN planning is widely used for practical application scenarios

[Biundo et al., 2011, de Silva et al., 2015, Dvorak et al., 2014, Lin et al., 2008].

This is partly because the hierarchy of actions provides a convenient way to write

problem-solving “recipes” that correspond to how a human domain expert might

think about solving a planning problem. However, HTN only has an operational

semantics and it lacks semantics for decomposition methods8 which can help evalu-

ate the correctness of decomposition methods. In Chapter 5, we provide a dynamic

logic account on HTN planning via propositional dynamic logic and evaluate the

coherence condition of domains.

Another problem is that it is usually a challenge to provide a complete domain

which includes all decomposition methods for all compound tasks. Defining only a

partially hierarchical domain is not sufficient to produce all desired solutions. Sev-

eral HTN researchers have investigated how partially hierarchical domain knowl-

edge can be exploited during planning without relying on the standard HTN for-

malism [Biundo and Schattenberg, 2001, Geier and Bercher, 2011, Kambhampati

et al., 1998, Shivashankar et al., 2013]. In the original HTN planning, high-level

action has no an explicit “postcondition” as defined for basic actions, which is

8As refinement is considered as decomposition in HTN planning, in this thesis the term
“refinement method” is also used for “decomposition method”.
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instead captured by a state constraint expressing that a formula holds immedi-

ately after the action. But in different decomposition methods for the high-level

action, it has different implicit postconditions because there may be serval state

constraints stipulating different formulas to hold immediately after performing the

action. Indeed, Kambhmpati [1998] advocates that the high-level action should

use a primary effect which is nothing but the postcondition, distinguished with the

effects of basic actions. Based on that, we also propose a completeness postulate in

Chapter 5, apart from a soundness postulate. On the other hand, hierarchical task

network with task insertion (TIHTN) planning [Geier and Bercher, 2011] relaxes

the restriction to allow solutions generated by both the decomposition of com-

pound tasks and the insertion of tasks from outside the decomposition hierarchy.

Indeed, [Geier and Bercher, 2011] proposes an alternative simplified formalism of

HTN planning. Here we omit this formalism and show the details in Chapter 6

which extends TIHTN further by state constraints.

We are convinced that the uniform terminology of actions is supposed to be the

first step to combine the HTN planning and BDI agents.



Chapter 3

Refinement of Intentions in the

Databases

Inspired by Shoham’s database perspective, we view basic and high-level inten-

tions as organized in a belief-intention database that specifies the temporal inter-

vals within which the corresponding actions have to be performed. This database

also contain beliefs about the environment and its change. Actions and events are

defined in terms of their pre- and postcondition. Higher intentions can be refined

by choosing several possible lower-level intentions to implement them. Based on

the refinement of intentions, by adding those lower-level intentions, the database

may be further refined. A means-end relation on intentions follows the refine-

ment of intentions, alias instrumentality relation, linking higher- and lower-level

intentions. We investigate the decision problems in the database which are the

satisfiability problem, the consequence problem, the deciding-refinement problem

and the deciding-instrumentality problem. We establish the complexity results of

these decision problems which are all PSPACE-complete.

This chapter is organized as follows. Section 3.1 introduces the notions of events

and high-level actions and defines dynamic theories. Section 3.2 presents belief-

intention databases and gives their semantics. Section 3.3 defines refinement rela-

tion of intentions and the refinement operation of intention database. We define

30
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instrumentality relation based on refinement of intentions in Section 3.4. Section

3.5 introduces the complexity results of the decision problems for satisfiability, con-

sequence, refinement and instrumentality. Section 3.6 discuss the two perspectives

of considering refinement and summarizes this chapter.

3.1 Dynamic Theories

As mentioned in the last chapter, none of the BDI logics that are rooted in Co-

hen & Levesque’s and Rao & Georgeff’s logics fully adapted Cohen & Levesque’s

definition of intention and they are still rather complicated. Shoham’s database

perspective on beliefs and intentions is a much simpler account than the rather

complex theories of intention due to Cohen & Levesque and to Rao & Georgeff and

others, while being more suitable for a logical analysis than the existing, heavily

implementation-driven BDI agents. Therefore, we take it to be a starting point

for designing a logical framework of beliefs and intentions.

The common point between all these theories is the assumption that intentions are

organized in a flat way: there is no notion of high- and low-level intentions. This

is clearly a major shortcoming with respect to [Bratman et al., 1988b]. Intentions

might be defined at high level and next refined in order to obtain executable

actions.

The database approach up to now did not also cater for environment actions, alias

events. For that reason, the existing approaches—despite their STRIPS-like action

theories—fail to solve the frame problem: contrarily to what one may expect, the

agent’s beliefs at time point t together with her action a at t do not determine her

beliefs at t+1 (only belief related to the effects of a can be determined).

Remark 3.1. In Shoham’s database perspective, the terms “goal” and “desire”

are not used and from some perspective, they are considered as the postcondition

of intentions. By considering the frame axiom, beliefs in our framework are also

considered as goals or desires in a way that beliefs must be satisfied in the future.
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In this chapter, we go beyond the initial Shoham’s database framework by not

only considering the actions of the agent under concern, but also the environment’s

actions. Taking the perspective of the planning agent, we call the latter ‘events’

and the former just ‘actions’. We only consider basic events, each of which takes

one time unit. We allow for several events to occur simultaneously, allowing thus

for environments with multiple agents. In other words, we have a planning agent

who is proactive and who has beliefs about a reactive environment: with respect

to her beliefs, she believes the environment will react accordingly.

The first thing we have to do is to define dynamic theories which describes the

behavior of actions and events.

Let Evt0 = {e, f, . . .} be a set of basic events and Act0 = {a, b, . . .} a set of basic

actions. Basic events and basic actions take one time unit. Basic actions can

be directly executed by the planning agent. The set Act0 is contained in the set

of all actions Act = {α, β, . . .} which also contains non-basic, high-level actions.

The set of propositional variables is P = {p, q, . . .}. The language of propositional

formulas built on P is denoted by LP. We suppose that the sets P, Evt0, and Act

are all finite. The behavior of actions and events is described by dynamic theories

where basic actions and events have the same description.

Definition 3.1. (Dynamic theory)A dynamic theory is a tupleD = 〈pre, post〉

with pre, post : Act∪Evt0 −→ LP, such that the effects of basic actions and events

are conjunctions of literals: there are functions eff+, eff− : Act0∪Evt0 −→ 2P such

that for every x ∈ Act0 ∪ Evt0,

|= post(x)↔
(

∧

p∈eff+(x)

p
)

∧
(

∧

p∈eff−(x)

¬p
)

(3.1)

where eff+(x) ∩ eff−(x) = ∅.

In other words, basic actions and events are STRIPS-like. For example, for the

basic empty action wait we have pre(wait) = ⊤ and eff+(wait) = eff−(wait) =

∅. The functions pre, post, eff+ and eff− are naturally extended to sets, e.g.

pre(X) =
∧

x∈X pre(x) for X ⊆ Act0 ∪ Evt0.
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We use |S| to denote the cardinality of a set S. We use length(ϕ) to denote the

length of a propositional formula ϕ which is the number of symbols except for

parentheses in the formula. We use length(D) to denote the length of dynamic

theory D which is the sum of the length of all pre- and postcondition formulas in

D.

Definition 3.2. (Coherence) A dynamic theory D is coherent if and only if for

every basic action a ∈ Act0 and event set E ⊆ Evt0, if pre({a} ∪ E) is consistent

then post({a} ∪ E) is consistent.

Notice that the exponential number of pairs of basic action and set of events

entails a potential exponential number of consistency tests. To avoid this issue,

we introduce a formula checking coherence with a polynomial length of dynamic

theory and propositional variables.

Proposition 3.1. A dynamic theory D is coherent iff the following formula, de-

noted by Coh(D), is valid:

∧

e∈Evt0,x∈Act0∪Evt0,
eff+(e)∩eff−(x) 6=∅ or eff−(e)∩eff+(x) 6=∅

(pre(e) ∧ pre(x)→ ⊥).

Proof. “⇒”: Suppose dynamic theory D is coherent and post({a} ∪ E) is incon-

sistent. Because all basic actions and events have a consistent postcondition in

form of a conjunction of literals, only a pair of an action or event x ∈ {a} ∪ E

and an event e ∈ E such that one has a positive effect on propositional variable

p and the other has a negative effect on p, would make post({x, e}) inconsistent

and further post({a} ∪ E) inconsistent. According to the definition of coherence

their jointly precondition pre({x, e}) is inconsistent. Thus Coh(D) is valid.

“⇐”: Suppose Coh(D) is valid and there exists some action a and event set E

such that pre({a} ∪ E) is consistent while post({a} ∪ E) is inconsistent. As

post(a) and post(E) can be rewritten into a conjunction of literals as formula

(3.1), there must exist a pair of p and ¬p occurring in post({a} ∪E). Then there

are x, y ∈ {a} ∪ E such that x 6= y and p ∈ eff+(x) ∩ eff−(y). Due to Coh(D),
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we have pre(x) ∧ pre(y)→ ⊥, which entails pre(a) ∧ pre(E)→ ⊥, contradicting

that pre({a} ∪ E) is consistent.

Let us now prove that checking coherence is co-NP-complete.

Theorem 3.2 (Complexity of Coherence). Given any dynamic theory D, to

decide whether D is coherent is co-NP-complete.

Proof. As the length of formula Coh(D) is bounded by O(|Act0∪Evt0|
2×length(D)),

deciding whether the formula is valid is in co-NP, in consequence deciding coher-

ence is in co-NP.

To establish hardness, consider a propositional formula ϕ. Let Act0 = {a}, Evt0 =

{e} and let D be a dynamic theory with pre(a) = pre(e) = ϕ, post(a) = p and

post(e) = ¬p. As post(a) ∧ post(e) is inconsistent, ϕ is inconsistent iff D is

coherent. It follows that deciding coherence is co-NP-hard.

Now we use a simple example to show what a coherent dynamic theory is.

Example 3.1. Alice has a high-level action buy of buying a movie ticket and

the basic actions of buying a ticket online buyWeb, going to the cinema gotoC,

and buying a ticket at the cinema counter buyC. Moreover, there is an event of

the website delivering the electronic ticket deliver. Let the propositional variables

PaidWeb, Ticket and InC respectively stand for “Alice has paid online”, “Alice has

a ticket” and “Alice is in the cinema”. The actions and events obey the following

coherent dynamic theory D:

pre(wait) = ⊤ post(wait) = ⊤

pre(buyWeb) = ⊤ post(buyWeb) = PaidWeb

pre(gotoC) = ⊤ post(gotoC) = InC

pre(buyC) = InC post(buyC) = Ticket

pre(buy) = ⊤ post(buy) = Ticket

pre(deliver) = PaidWeb ∧ ¬Delivered post(deliver) = Ticket ∧ Delivered

The following is a counterexample of coherent dynamic theory.
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Example 3.2. Alice has a basic action to close the door closeDoor and there is

an event openDoorAuto that the door is open automatically if there is someone is

in front of the door which is denoted by propositional variable FrontDoor. We use

propositional variable DoorClosed to denote that the door is closed. We have a

dynamic theory D′ which includes this basic action and event:

❼ pre(closeDoor) = FrontDoor, post(closeDoor) = DoorClosed

❼ pre(openDoorAuto) = FrontDoor, post(openDoorAuto) = ¬DoorClosed

As the postcondition of basic action closeDoor and event openDoorAuto are incon-

sistent and they have the same precondition, the above dynamic theory D′ is not

coherent.

3.2 Belief-Intention Databases

We extend the Shoham’s belief-intention database with events: an agent’s database

then contains her intentions plus her beliefs about the states and event occurrences.

Her beliefs about the latter two may be incomplete. Occurrence of an event

e ∈ Evt0 at time point t is noted (t, e). We also want to be able to talk about the

non-occurrence of events. To that end we define the set Evt0 = {ē : e ∈ Evt0} of

event complements. Non-occurrence of e is noted (t, ē).

An intention is a triple i = (t, α, d) ∈ N
0 × Act×N with t < d. It represents that

the agent wants to perform α in the time interval [t, d]: action α should start after

t and end before d. When α ∈ Act0 then i is a basic intention. We use i, j, . . . to

denote intentions and J, J1, . . . to denote sets thereof.

Definition 3.3 (Belief-Intention Database). A belief-intention database ∆ is

a finite set

∆ ⊆ (N0 ×LP) ∪ (N0 × Evt0) ∪ (N0 × Evt0) ∪ (N0 × Act× N).
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We often partition the database into belief base, event base and intention base by

means of the following functions:

B(∆) = ∆ ∩ (N0 ×LP)

E(∆) = ∆ ∩ (N0 × (Evt0 ∪ Evt0))

I(∆) = ∆ ∩ (N0 × Act× N)

Given an intention i = (t, α, d), we define end(i) = d. For a database ∆, we let

end(∆) be the greatest time point occurring in ∆. This is well defined as database

are finite. When B(∆) = E(∆) = I(∆) = ∅ then we set end(∆) = 0.

We reconsider the previous example to show what a database is.

Example 3.3. [Example 3.1, continued] Alice’s initial database only contains

∆c = {(0,buy, 2)}, i.e., Alice intends to buy a movie ticket within the temporal

interval [0, 2]. According to the dynamic theory D there are two ways to achieve

this intention: either perform buyWeb at 0 and then wait (believing event deliver

will occur at 1 because its precondition is PaidWeb∧¬Delivered); or perform gotoC

at 0 and buyC at 1.

3.2.1 Semantics

The semantics of dynamic theories and databases is in terms of paths. A path

defines for each time point which propositional variables are true, which basic

actions the agent will perform, and which events will occur. Basic actions and

events share the same description in the definition, but they differ in the semantics:

basic actions are proactive while events are reactive.

Definition 3.4 (D-path). A D-path is a triple ρ = 〈V,H,D〉 with V : N0 −→ 2P,

H : N0 → 2Evt0 , and D : N0 → Act0.

A path ρ associates to every time point t a valuation V (t) (alias a state), a set of

basic events H(t) happening at t, and a basic action D(t) that the agent does at

t. database is interpreted given a background dynamic theory.



Chapter 3. Refinement of Intentions in the Databases 37

Definition 3.5 (D-model). A model of D, or D-model, is a path ρ = 〈V,H,D〉

such that for every time point t ∈ N
0,

eff+
(

H(t)∪{D(t)}
)

∩ eff−
(

H(t)∪{D(t)}
)

= ∅ (3.2)

and

V (t+1) =
(

V (t) ∪ eff+
(

H(t)∪{D(t)}
))

\ eff−
(

H(t)∪{D(t)}
)

H(t) = {e ∈ Evt0 | V (t) |= pre(e)}

D(t) ∈ {a ∈ Act0 | V (t) |= pre(a)}

So a path is a D-model when (1) the action D(t) to be performed and the events

H(t) to happen are consistent; (2) a minimal change condition is satisfied: the

state at t and the basic action and events occurring at t determine the state at

t+1; (3) the environment is reactive: event e occurs iff pre(e) is true; (4) the

agent is autonomous: if pre(a) is true then the agent can perform a, but does

not necessarily do so. Note that when D is coherent then the constraint (3.2) in

Definition 3.5 is always satisfied.

We are now ready to define the satisfaction relation 
D between a path and an

intention or a database.

Definition 3.6 (Satisfaction of an intention). Intention i = (t, α, d) is satisfied

at a path ρ = 〈V,H,D〉, noted ρ 
D i, if there exist t′, d′ such that t≤t′<d′≤d,

V (t′) |= pre(α), V (d′) |= post(α), and α ∈ Act0 implies D(t′) = α.

An intention i = (t, α, d) is satisfied at ρ if the intended action α can start at some

t′ ≥ t where the precondition of α holds and can end at some d′ ≤ d where the

postcondition of α holds. Moreover, when α is basic then α is indeed performed

at the starting point t′ according to the ‘do’-function D of ρ.

Definition 3.7 (Satisfaction of a database). A D-model ρ = 〈V,H,D〉 is a

D-model of ∆, noted ρ 
D ∆, if
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❼ for every (t, ϕ) ∈ B(∆): V (t) |= ϕ;

❼ for every (t, e) ∈ E(∆): e ∈ H(t);

❼ for every (t, ē) ∈ E(∆): e 6∈ H(t);

❼ for every i ∈ I(∆): ρ 
D i.

So when ρ 
D ∆ then the agent’s beliefs about the state B(∆) and about the

(non-)occurrence of events E(∆) are correct w.r.t. ρ, and all intentions in I(∆)

are satisfied on ρ. A database ∆ is D-satisfiable when ∆ has a D-model.

Let us reconsider the previous example and describe the D-model with a graph.

Example 3.4 (Example 3.3, continued). Suppose Alice chooses to buy the ticket

online. Let ρ = 〈V,H,D〉 be the D-model of Figure 3.1, where we suppose that

V (0) = ∅

V (1) = {PaidWeb}

V (2) = {PaidWeb,Ticket}

H(0) = ∅, H(1) = {deliver}

D(0) = buyWeb, D(1) = wait

As V (0) |= pre(buy) and V (2) |= post(buy), we have ρ 
D (0,buy, 2).

Figure 3.1: A D-Model of the Database ∆ of Example 3.4

∆ is a D-consequence of ∆′, noted ∆′ |=D ∆, if every D-model of ∆′ is also a

D-model of ∆. When ∆ is a singleton {i} we write ∆′ |=D i instead of ∆′ |=D {i}.
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3.3 Refinement

3.3.1 Refining an Intention

A high-level intention cannot be executed directly by the agent: it can only be

refined into lower-level intentions, until basic intentions are produced. For exam-

ple, my high-level intention i to submit a paper to conference before its deadline

(suppose Jun. 30) is decomposed into intention i1 to log in the paper submission

management system before Jun. 30 and then intention i2 to upload a paper as a

PDF file; etc.

Definition 3.8. We say that an intention i ∈ ∆ is refined in ∆ when ∆\{i} |=D i;

otherwise we say that i has not been refined yet.

Intuitively, to refine an intention i means to add a minimal set of new intentions

J to the database which, together with other intentions but i, suffice to guarantee

satisfaction of i.

Definition 3.9 (Intention refinement). Let ∆ be a database. Let i ∈ I(∆) and

let J be some set of intentions. Then i is refinable to J in ∆, noted ∆ |=D i✁ J ,

iff

1. there is no j ∈ J such that ∆ |=D j;

2. ∆ ∪ J has a D-model;

3. (∆ ∪ J) \ {i} |=D i;

4. (∆ ∪ J ′) \ {i} 6|=D i for every J ′ ⊂ J ;

5. end(J) ≤ end(i).

Intuitively, Condition 1 states that refinement consists of adding new intentions,

Condition 2 enforces consistent refinement, Condition 3 states that new added

intentions must satisfy the refined intention i, Condition 4 enforces minimality of

refinement. The last condition checks that time constraints are actually satisfied.
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Example 3.5 (Example 3.4, continued). Suppose Alice’s current database is ∆c

and she decides to buy a ticket online. Let i = (0,buy, 2) and j = (0, buyWeb, 1).

We have that ∆c 6|=D j and (∆c ∪ {j}) \ {i} |=D i and ∆c \ {i} 6|=D i. Therefore

satisfying j guarantees the satisfaction of i: we have ∆c |=D i✁ {j}.

The following proposition shows that refinement is minimal:

Proposition 3.3. Let ∆ |=D i✁ J . Then:

1. ∆ has a D-model;

2. J ∩ I(∆) = ∅ and i 6∈ J ;

3. there is no J ′ ⊂ J such that ∆ |=D i✁ J ′;

4. J = ∅ iff i is already refined in ∆.

Proof. Let ∆ |=D i✁ J .

1. ∆ must be D-satisfiable because of Condition 1 of Def. 3.9 (and also because

of Condition 2).

2. Suppose j ∈ J ∩ I(∆). Let J ′ = J \ {j}. Then ∆ ∪ J ′ equals ∆ ∪ J , and

as (∆ ∪ J) \ {i} |=D i we also have (∆ ∪ J ′) \ {i} |=D i. The latter violates

condition 4 of minimality of Def. 3.9.

3. Suppose there is a J ′ ⊂ J such that ∆ |=D i✁ J ′. Then by the definition of

refinement we would have (∆ ∪ J ′) \ {i} |=D i, contradicting ∆ |=D i✁ J .

4. J = ∅ implies that i is already refined in ∆, i.e., ∆ \ {i} |=D i, by condition

3 of Def. 3.9. The other way round, if ∆ \ {i} |=D i then all the conditions

for ∆ |=D i✁ J will be satisfied.

It immediately follows from item 2 of Proposition 3.3 that ∆ |=D i ✁ J implies

i 6∈ J .
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3.3.2 Refining the Database

Let us show how the refinement relation between intentions contributes to refining

a database. Intuitively, a given database ∆ can be refined by means of the following

procedure:

1. select an intention i of ∆;

2. find a set of intentions J such that ∆ |= i✁ J ;

3. add J to ∆.

The refinement relation between intentions can be extended to database:

Definition 3.10 (Database refinement). A database ∆ is one-step refinable to

∆′, noted ∆ ✁∆′, iff there is an i in ∆ and a nonempty set of intentions J such

that ∆ |= i✁ J and ∆′ = ∆ ∪ J .

For n ≥ 0, we write ∆ ✁
n ∆′ when there exist ∆1, . . . ,∆n such that ∆ = ∆1 ✁

∆2, . . . ,∆n−1 ✁∆n = ∆′. (For n = 0 we suppose that ∆ = ∆′.)

Example 3.6 (Example 3.5, continued). Let ∆′
c be the result of adding to ∆c

intention set {(0, buyWeb, 1)} to refine intention i = (0,buy, 2). We have ∆c✁∆′
c.

The following proposition shows that a model of a refined database is also a model

of the original database, but the converse does not necessarily hold. Moreover, the

refinement operator preserves satisfiability.

Proposition 3.4. Let ∆✁
n ∆′ and n ≥ 1. Then:

1. ∆′ |= ∆;

2. ∆ 6|= ∆′;

3. if ∆ is D-satisfiable then ∆′ is D-satisfiable;
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Proof. The proof is by induction on n. For n = 1 we have ∆✁∆′. So there is an

i ∈ ∆ and a set of intentions J such that ∆ |=D i✁ J and ∆′ = ∆ ∪ J . The first

item is clear because ∆ ⊂ ∆′. It also follows that there is at least one such j ∈ ∆′

such that ∆ 6|=D j by condition 1 in Def. 3.9. So we cannot have ∆ |=D ∆′. The

third item is trivial due to Condition 2 in Def. 3.9.

Let n = k + 1, k ≥ 1 and ∆ ✁
k ∆k, ∆k

✁ ∆′. Suppose the three conditions are

satisfied for ∆k. Then ∆′ |=D ∆ and ∆′ |=D ∆k because ∆ ⊂ ∆k ⊂ ∆′. From

assumption we get ∆ 6|=D ∆k, if ∆ |=D ∆′ then due to ∆′ |=D ∆k we get ∆ |=D ∆k,

which contradicts the assumption. So ∆ 6|=D ∆′. If ∆k is D-satisfiable then ∆′ is

D-satisfiable. Item 3 is then also proved.

Our notion of refinement is strict (or proper): the models of the refined database

are a strict subset of the models of the original database. We may then complete

the database: intentions which are entailed by a database but not belonging to it

are explicitly added.

Definition 3.11 (Database completion). An intention i completes a database

∆ if ∆ |= i, i 6∈ ∆ and end(i) ≤ end(∆). ∆′ is a completion of ∆ if there exists an

i completing ∆ such that ∆′ = ∆ ∪ {i}.

The completed database is clearly equivalent to the original one. Moreover, as

database and actions are finite, only a finite number of completion steps can be

made.

Let us now give a sufficient condition for the elaboration of a database.

Proposition 3.5. If a D-satisfiable ∆ contains a non-basic intention that is not

refined then ∆ can be either completed or refined.

Proof. Consider a path ρ = 〈V,H,D〉 such that ρ 
D ∆. Let J0 = {(s,D(s), s+1) |

s < end(i)}. So the non-basic and non-refined intention i is not in the set of basic

intentions J0 and J0 is finite. We have (∆ \ {i}) ∪ J0 |= i. Let J ⊆ J0 be an

inclusion-minimal set such that (∆∪J)\{i} |= i. (When J = ∅ then i has already
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been refined by item 4 of Proposition 3.3.) If there is an intention j ∈ J with

∆ |=D j, then ∆ can be completed by j (because j /∈ ∆ due to minimality of J).

Otherwise ∆ has more than one model ∆ |=D i✁ J and ∆✁∆ ∪ J .

As we require refinements to be proper, when all D models of a database share

the same fragment from 0 to end(∆), the database cannot be refined further. So

every database can be refined in a finite number of steps.

Proposition 3.6. For every satisfiable database ∆ there is an n ≤ |I(∆)| and a

satisfiable database ∆′ such that ∆✁
n ∆′ and ∆′ cannot be refined.

Proof. We follow the reasoning in the proof of Proposition 3.5, refining one by one

all those intentions in ∆ that are non-basic and have not been refined yet. Each

of these refinement steps only adds basic intentions, therefore we terminate after

at most |I(∆)| steps.

3.4 Instrumentality from Refinement

A high-level intention cannot be executed directly by the agent: it can only be

refined into lower-level actions, until a database containing one basic intention

per time point is obtained. In an online planning view—that also conforms to

Bratman’s idea that ‘the further the future is away, the more uncertain it is’—

one may be less demanding and only require a basic intention to start with: the

agent can then perform the associated action and later refine the rest. So I start by

refining the paper writing intention (down to the intention to start by, say, typing

the central proof of the paper) and postpone how I am going to deal precisely

with Easychair. A high-level intention cannot be executed directly by the agent:

it can only be refined into lower-level actions until an executable plan obtains. In

the previous section we have described how higher-level intention could be refined

by lower-level intentions. The higher- and lower-level intentions should stand in

naturally a kind of means-end relation: the lower-level means contributes to the

higher-level end. Indeed this relation is also called instrumentality relation which
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is a notion used frequently, such as [Audi, 1982, Bratman, 2009, Dignum and

Conte, 1997, Lorini and Herzig, 2008].

Instrumentality cannot be defined from an action theory alone, for several reasons.

First, the time point of action execution matters. For example, let us take up our

intention of attending the conference which supposed to be held in August. Sup-

pose I also have to go to the conference host city (suppose Melbourne) in February,

for some other reason. The postcondition of that action—to be in Melbourne—

entails one of the preconditions of the attend-conference action. However, as I am

going to come back from Melbourne by the end of February, my February inten-

tion does not contribute to my August intention. So the former is not necessarily

instrumental for the latter. It may actually happen that j is instrumental for i

although the postcondition of j are inconsistent with the precondition of i. For

example, suppose a robot needs to recover a ball from a locked box and unlocking

the box uses up all its energy; however, it needs energy to pick up the ball: while

unlocking the box is a way to pick up the ball, its postcondition is inconsistent

with the precondition of the ball-taking action.

Second, the precondition of the means are typically more demanding than the pre-

conditions of the end; similarly, the postcondition of the means are more detailed

than the effects of the end. For example, buying a movie ticket requires cash in

your pocket while buying a ticket online may require an account. The precondi-

tion of former action should a priori not involve the online account because I can

choose another way to buy a ticket.

Formally, the instrumentality relation relates a refined high-level intention to a set

of lower-level intentions, given a background database.

Definition 3.12 (Instrumentality). Let ∆ be a D-satisfiable database. Let

i ∈ I(∆) and let J ⊆ I(∆). Then J is instrumental for i in ∆, noted ∆ |=D J ⋗ i,

iff

1. ∆ \ J 6|=D i;

2. (∆ \ J) ∪ {j} |=D i for every j ∈ J ;
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3. end(J) ≤ end(i).

When ∆ |=D J⋗i then J is a minimal set of intentions satisfying the counterfactual

“if J was not in ∆ then i would no longer be guaranteed by ∆” (Condition 1). Next,

the presence of all intentions of J in ∆ is mandatory for satisfying i (Condition

2). Moreover, the intentions of J have to be terminated before or together with i

(Condition 3).

For example, consider a database ∆ where I have refined my intention of submit-

ting a paper to a conference to the intention of writing a paper and the intention

of uploading it to the paper submission management system (and where these two

intentions are not refined further). Then under an appropriate action theory D,

both the writing intention and the uploading intention are instrumental for the

submitting intention.

Let us use a simple example with a graph to show the instrumentality works in

the hierarchy of actions.

Example 3.7. Consider the database ∆ of Figure 3.2. Let i = (t0, α, t5), i1 =

(t0, α1, t2), etc. If α11, α12 are not the unique way to achieve α1, which means

∆ \ {α11} 6|=D α11 and ∆ \ {α12} 6|=D α12, and α21, α22 together are the unique way

for α2, then the sets of intentions that are instrumental for i in ∆ are {i, i1, i11},

{i, i1, i12}, {i, i2, i21, i22}, {i, i3}, while {i, i1, i2} and {i, i1, i2} are not.

Figure 3.2: The database ∆ of Example 3.7.

Example 3.8 (Example 3.6, continued). The only set of intentions that is in-

strumental for (0,buy, 2) in ∆′
c is {(0,buy, 2), (0, buyWeb, 1)}. That is, ∆′

c |=D

{(0,buy, 2), (0, buyWeb, 1)}⋗ (0,buy, 2).
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Note that it is decidable whether ∆ |=D J⋗i, because instrumentality results from

checking satisfiability and checking consequence of databases. When ∆ |=D J ⋗ i

then clearly ∆ |=D i (because i ∈ ∆). The following are some properties of

instrumentality.

Proposition 3.7. Let ∆ |=D J ⋗ i. Then i ∈ J and:

❼ J = {i} iff ∆ \ {i} 6|=D i;

❼ J = {i, j} iff ∆ \ {i} |=D i, ∆ \ {i, j} 6|=D i, and end(j) ≤ end(i).

Proof. It is easy to check by the definition of instrumentality (Definition 3.12).

Consequently when ∆ |=D J⋗ i then J cannot be empty and i ∈ J . We now relate

intention refinement to instrumentality: when ∆ |=D i✁ J then every element of

J is instrumental for i in the new database ∆ ∪ J .

Theorem 3.8. If ∆ |=D i✁ J then ∆ ∪ J |=D {i, j}⋗ i for every j ∈ J .

Proof. Let ∆ |=D i✁ J and j ∈ J . We show that ∆ ∪ J |=D {i, j}⋗ i:

1. (∆∪J)\{i, j} 6|=D i holds because ∆ |=D i✁J implies (∆∪(J\{j}))\{i} 6|=D i.

2. (∆∪J) \ J ′ |=D i holds for every J ′ ⊂ {i, j}:

❼ (∆∪J) \ {i} |=D i follows from ∆ |=D i✁ J ;

❼ (∆∪J) \ {j} |=D i holds because ∆ contains i and i 6= j by Proposition

3.3.

3. end({i, j}) ≤ end(i) holds as ∆ |=D i✁ J implies end(J) ≤ end(i).

The converse does not hold: instrumentality can not guarantee that the added

intentions are new, contradicting item 1 of in the definition of intention refinement

(Definition 3.9).
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3.5 Complexity

In this section, we will show the complexity results of the decision problems of

satisfiability, consequence, refinement and instrumentality in the belief-intention

database.

3.5.1 Complexity of Satisfiability

The coherence condition guarantees that there is no conflict on the effect of the

action and the events occurring simultaneously at every time points, entailing the

constraint formula (3.2) in the definition of D-models (Definition 3.5):

eff+
(

H(t)∪{D(t)}
)

∩ eff−
(

H(t)∪{D(t)}
)

= ∅

In other words, if dynamic theory D is coherent, then the empty database is D-

satisfiable. Therefore, given a coherent dynamic theory, it is not necessary to check

whether the infinite path is a D-model of a database and we only need to check

the former part bounded by the greatest time point occurring in the database.

We define the restriction of natural number set N by a natural number δ as a set

of sequential natural numbers [0, . . . , δ], denoted by Nδ. We define the restriction

of a function f : N −→ S such that the domain is natural number set to a natural

number δ as f |δ = {(n, s) | n ∈ Nδ}.

Next we introduce the notion of bounded paths.

Definition 3.13. For a path ρ = 〈V,H,D〉 and a natural number δ we call the

tuple ρ = 〈V |δ+1, H|δ, D|δ, δ〉 a bounded path of ρ and call δ the bound of ρ.

Then we define bounded models by bounded paths.

Definition 3.14 (Bounded D-model). Given a coherent dynamic theory D, a

D-model ρ and a database ∆ such that ρ 
D ∆, we call the bounded path ρ of

ρ a bounded model of ∆, denoted by ρ 
D ∆, if the bound of ρ is greater than

end(∆).
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The coherence condition of the dynamic theory allows us to decide if a database

has a model by checking a finite path, stated as follows.

Proposition 3.9. Given a coherent dynamic theory D, a database ∆ is D-satisfiable

iff ∆ has a bounded model.

Proof. “⇒”: Straightforward.

“⇐”: When the dynamic theory D is coherent, for every time point t, the sets

eff+
(

H(t)∪{D(t)}
)

and eff−
(

H(t)∪{D(t)}
)

are totally disjoint. So, there is no

state in which the performed action has an effect conflicting with the effect of the

events which are happening. Thus, we can construct an infinite D-model starting

from the bounded model according to the definition of D-models.

The lower bound of the complexity comes from the reduction to a plan-existence

problem. Different from that shown in Section 2.2, here we rewrite the plan-

existence problem with bounded horizon as a tuple P = 〈DAct0 , I,G, δ〉 where δ is

a natural number, I is a subset of propositional variable and G is a conflict-free

conjunction of literals and DAct0 is a dynamic theory only for basic actions. The

plan-existence problem with bounded horizon is to decide whether there exists a

sequence of basic actions, with a length less than δ from a initial state I to a goal

state satisfying G. Recall that the plan-existence problem with bounded horizon

is PSPACE-complete [Bylander, 1994].

Theorem 3.10. Given a coherent dynamic theory D, the D-satisfiability problem

of a belief-intention database is PSPACE-complete.

Proof. First, we prove the problem is in PSPACE. Suppose the number of inten-

tions in ∆ is m. Consider a memory space with the size of |P| + 2m. When the

|P| cells can denote a state, the 2m cells can indicate the satisfaction of pre- and

postcondition of the action in the corresponding intentions.

Guess a path ρ = 〈V,H,D, end(∆)〉, we can change the |P| cells according to the

valuation of each time point defined by ρ. Because the basic actions and events
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are finite, it can be checked whether ρ is a D-model in polynomial time. The 2m

cells are initially set to 0 and with time point changing, we change the 2m cells

according to the satisfaction of intentions. To be specific, consider an intention

i = (t, α, d), from time point t if pre(α) is satisfied then the cell corresponding to

the precondition of i is set to 1. Then in the following time points once post(α)

is satisfied the cell corresponding to postcondition of i is set to 1. Unless this cell

is 1 at time point d, we stop and conclude that the path guessed does not satisfy

i and further does not satisfy ∆. Therefore, we can check whether the path is a

D-model of ∆ in polynomial time, because every effect, pre- and postcondition is

defined as a propositional formula which can be decided to be satisfied by the state

in polynomial time. As only finite sets of basic actions, events, and propositional

variables can be nondeterministically chosen, deciding whether the path guessed

is a D-model of ∆ is in NPSPACE. Because NPSPACE = PSPACE, the

D-satisfiability problem is in PSPACE.

Next we prove the problem is PSPACE-hard by reducing the plan-existence prob-

lem with bounded horizon. For a plan-existence problem Pδ = 〈DAct0 , I,G, δ〉, we

construct a dynamic theory D by extending DAct0 with a high-level action Goal ∈

Act\Act0 such that pre(Goal) = ⊤ and post(Goal) = G. We also suppose the event

set Evt0 is empty, entailing that D is coherent. Suppose ϕI =
∧

p∈I p∧
∧

q∈P\I ¬q.

Then the database ∆ = {(0, ϕI), (0,Goal, δ)} has a D-model iff there exists a plan

in P . So the D-satisfiability problem is PSPACE-hard.

Hence the D-satisfiability problem is PSPACE-complete.

So, we have the decidability of the satisfiability problem as the following corollary

states.

Corollary 3.11. Given a coherent dynamic theory D, the D-satisfiability problem

of a belief-intention database is decidable.
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3.5.2 Complexity of Consequence

Next we will show the complexity of the consequence problem in belief-intention

databases which is also PSPACE-complete.

Theorem 3.12. Given a coherent dynamic theory D, the D-consequence problem

deciding whether ∆′ |=D ∆ is PSPACE-complete.

Proof. Consider the special case that ∆′ |=D ⊥ which means ∆′ is D-unsatisfiable.

Because the D-satisfiable problem is PSPACE-complete by Theorem 3.10, the

problem deciding whether ∆′ is D-unsatisfiable is co-PSPACE-complete. As co-

PSPACE = PSPACE, the D-consequence problem PSPACE-hard.

Then we prove the D-consequence problem is in PSPACE. Suppose the number

of intentions in ∆ and ∆′ is m and m′ respectively. As D is coherent, we can

consider the complementary problem deciding whether there exists a path which

D-satisfies ∆′ but not ∆. Consider a memory space with a size of |P|+2(m+m′)

where the |P| cells can denote a state and the 2(m + m′) cells can indicate the

satisfaction of pre- and postcondition of the action in the corresponding intentions

in ∆ and ∆′.

Suppose k = max(end(∆), end(∆′). Guess a path ρ = 〈V,H,D, k〉, we can change

the |P| cells according to the valuation of each time point defined by ρ. Because the

basic actions and events are finite, it can be check if ρ is a D-model in polynomial

time. The 2(m+m′) cells are initially set to 0 and with time point changing, we

change the 2(m+m′) cells according to the satisfaction of intentions. Consider an

intention i = (t, α, d), in the time points after t if pre(α) is satisfied then the cell

corresponding to the precondition of i is set to 1. Then in the following time points

once post(α) is satisfied the cell corresponding to the postcondition of i is set to

1. Unless this cell is 1 at time point d, we stop and conclude that the path guessed

does not satisfy i and further does not satisfy the database including i. Therefore,

we can check whether the path is a D-model of ∆ or ∆′ in polynomial time, because

every effect, pre- and postcondition is defined as a propositional formula which

can be checked to be satisfied by the state in polynomial time. As only finite sets
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of basic actions, events, and propositional variables can be nondeterministically

chosen, deciding whether the path guessed is a D-model of ∆′ but not ∆ is in

NPSPACE. Because NPSPACE = PSPACE, the D-consequence problem is

in PSPACE.

Hence, the D-consequence problem is PSPACE-complete.

So, we have a corollary for the consequence problem as follows.

Corollary 3.13. Given a coherent dynamic theory D, the D-consequence problem

deciding whether ∆′ |=D ∆ is decidable.

3.5.3 Complexity of Refinement and Instrumentality

From the definition of refinement and instrumentality, we know that satisfiability

and consequence are subproblems of deciding refinement and instrumentality. So,

deciding refinement and instrumentality are both PSPACE-hard. Next we show

that these two problems are also PSPACE-complete by translating them into

several satisfiability and consequence problems.

Theorem 3.14. Given a coherent dynamic theory D and a database ∆, to decide

whether an intention i ∈ ∆ is refinable to an intention set J in ∆ is PSPACE-

complete.

Proof. Condition 1, 2 and 4 are D-satisfiability problems and condition 3 is a D-

consequence problem and it is easy to check condition 5 in polynomial time. As the

refinement checking problem can be reduced to several D-satisfiability problems

and a D-consequence problem which are all in PSPACE, the refinement checking

problem is also in PSPACE. As the D-satisfiability problem is its subproblem,

deciding refinement is PSPACE-complete.

Theorem 3.15. Given a coherent dynamic theory D and a database ∆, to decide

whether an intention set is instrumental for an intention in ∆ is PSPACE-

complete.
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Proof. (1) condition 1 is a D-satisfiability problem; (2) condition 2 is a set of D-

consequence problems with a number of |J |; (3) it is easy to check condition 3 in

polynomial time. As the instrumentality checking problem can be reduced polyno-

mially to a D-satisfiability problem and a D-consequence problem which are both

in PSPACE, the instrumentality checking problem is also in PSPACE. As the

D-satisfiability problem is its subproblem, deciding instrumentality is PSPACE-

complete.

So, we have the decidability result for the two decision problems, as the following

corollary shows.

Corollary 3.16. Given a coherent dynamic theory D and a database ∆, the check-

ing refinement problem and the instrumentality problem are decidable.

3.6 Discussion and Summary

Compared with Shoham’s database framework, our contribution differs in two key

points. First, we introduce high-level actions and consider high-level intentions

in a flexible way: in our running example, Alice intends to buy a ticket (buy)

during some time interval. While in Shoham’s database framework, Alice can

only intend at a specific time point to buy a ticket online (buyWeb) or in the

cinema (buyC). Second, by considering in an explicit way the environment we

solve the frame problem: our semantics enables Alice to predict that the online

system will give a ticket while she waits. We stress that this last issue is also

unsolved in other existing frameworks related to Shoham’s database perspective.

For instance, [van Zee and Doder, 2016] which proposes an AGM-like revision of

beliefs and intentions in a temporal logic does not bring any solution for the frame

problem.

Let us come back to the two perspectives of considering refinement: the entailment

and the primitive. When refinement is primitive, just as HTN planning does, all
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refinement methods have to be defined by hand by the designer. In our running ex-

ample, it means that Alice should already set before buying a ticket the refinement

methods: either buying a ticket online (and wait) or in the cinema. This contrasts

with our belief-intention database, which does not require such work: given the

action theory and the current database, the refinement relation is defined based

on logically entailment.

In this chapter, we extend Shoham’s database framework by the fundamental con-

cept of high-level intentions with a flexible duration. The integration of STRIPS-

like environment events has allowed us to solve the frame problem. Also, the addi-

tional introduction of high-level actions does not cause undecidability for checking

satisfiability and consequence relation. Our database framework is about high-

and low-level intentions that are related by the refinement operator, which is,

in some way, a well-founded database expansion. More general expansion may

lead to unsatisfiable database and raises the issue about withdrawal or revision of

intentions.

In the next chapter, we will solve the problems of deciding refinement and instru-

mentality by translating into the satisfiability and validity problems in proposi-

tional linear temporal logic and dynamic logic with propositional assignment.



Chapter 4

Deciding Refinement via

Translating to PLTL and DL-PA

In the previous chapter, we have introduced the refinement relation among inten-

tions in the database perspective which plays a fundamental role in BDI theories.

The decision problem to check whether an intention can be refined into some in-

tentions would be one of the most important problems to solve. In this chapter,

we will introduce reductions from the decision problems in our framework to the

satisfiability and validity problems in Propositional Linear Temporal Logic (PLTL)

and Dynamic Logic of Propositional Assignment (DL-PA).

Linear temporal logics are widely used to describe infinite behaviors of discrete

systems. Taking advantage of the efficient theorem provers of PLTL, we can solve

the decision problems of satisfiability, consequence, refinement and instrumentality

of belief-intention databases by translating them into the satisfiability and validity

problems in PLTL.

On the other hand, Dynamic Logic of Propositional Assignment (DL-PA) was pro-

posed in [Herzig et al., 2011] which is an instantiation of Propositional Dynamic

Logic (PDL) [Harel, 1984, Harel et al., 2000]. As DL-PA only considers two as-

signment programs which change the truth value of a propositional variable every

time, it allows us to represent the frame axiom of the dynamic theory models

54
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naturally and easily. It is shown that [Balbiani et al., 2013, Herzig et al., 2011]

that every DL-PA formula can be reduced to an equivalent propositional formula.

We thereby translate the decision problems in the belief-intention databases into

the satisfiability problem and the validity problem in classical propositional logic

and then can utilize the state of the art in efficient SAT solvers.

We will organize this chapter as follows: Section 4.1 first introduces the syntax and

semantics of PLTL and then translates the satisfiability and consequence problems,

under a coherent dynamic theory and a general dynamic theory, into the satisfi-

ability and validity problems in PLTL, and proves the translations. Section 4.2

recalls briefly the syntax and semantics of DL-PA and translates the satisfiability

and consequence problems under a coherent dynamic theory into the satisfiabil-

ity and validity problems in DL-PA, with proving the translations. Section 4.3

summarizes this chapter.

4.1 Translating to PLTL

Over the last few decades, propositional linear temporal logic (PLTL) has obtained

a lot of attentions from researchers, both theocratically and practically. The de-

cision procedure for the satisfiability problem and the validity problem in (PLTL)

has been studied [Shilov, 2005, Wolper, 1985] and the automated tools are quite

mature. Various of model checking techniques for PLTL have been developed, such

as approaches based on binary decision diagrams (BDD-based) [Burch et al., 1992]

and based on propositional satisfiability problems (SAT-based) [Biere et al., 1999].

Besides, by translating to Büchi automata, several model checkers for PLTL have

been developed, such as LTL3BA [Babiak et al., 2012] and SPOT [Duret-Lutz and

Poitrenaud, 2004]. Taking advantage of the automated tools of PLTL1, we can

solve the decision problems of satisfiability, consequence, refinement and instru-

mentality in belief-intention databases by translating them into the satisfiability

and validity problems in PLTL.

1Several theorem provers of PLTL can be found on
http://users.cecs.anu.edu.au/~rpg/PLTLProvers/ (accessed on 27 Sep. 2017).

http://users.cecs.anu.edu.au/~rpg/PLTLProvers/
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In this section we translate the satisfiability and consequence problems, either

under a coherent dynamic theory or not, in the database into those problems of

PLTL. The translations are not in polynomial time, but nevertheless we believe

that the translations can help us to solve the decision problems of databases due

to the existence of the existing theorem provers of PLTL.

4.1.1 Syntax and Semantics of PLTL

Following the notations in [Emerson, 1990], PLTL is defined on a countably infinite

set PL of propositional variables, classical propositional connectives and temporal

operators X (next) and F (sometimes). PLTL formulas are defined in the stan-

dard way with abbreviating G as ¬F¬ and Xn as n contiguous operator X. In

particular, X0 is empty.

Next, we introduce the semantics of PLTL which is based on a linear-time struc-

tures. A linear-time structure is a pair ofM = (S, ε) where S is a set of states and

ε : S → 2PL is a function mapping each state si to a set of propositional variables

which hold in si. Let M be a linear-time structure, i ∈ N
0 a position, and ϕ, ψ

are PLTL formulas. We define the satisfiable relation |= as follows:

M, i |= p iff p ∈ ε(si), where p ∈ PL

M, i |= ¬ϕ iff M, i 6|= ϕ

M, i |= ϕ ∧ ψ iff M, i |= ϕ and M, i |= ψ

M, i |= Fϕ iff for some j ≥ i,M, j |= ϕ

M, i |= Xϕ iff M, i+ 1 |= ϕ

If there exists a linear-time structureM such thatM, 0 |= ϕ, we say ϕ is satisfiable.

If for all linear-time structure M we have M, 0 |= ϕ, we say ϕ is valid.
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4.1.2 Translation to PLTL

We first start by defining some auxiliary propositional variables. To capture the

occurrence of events and the execution of basic actions, for every event e we intro-

duce an auxiliary propositional variable he, defining the set Ph = {he | e ∈ Evt0}

and for every basic action a we introduce an auxiliary propositional variable doa,

defining the set Pd = {doa | a ∈ Act0}. Moreover, we introduce a set Pc auxiliary

propositional variables preα, postα, pree and poste for every action and event to

denote their pre- and postcondition. Formally, Pc = {preα, postα, pree, poste | α ∈

Act, e ∈ Evt0}. With the variables in Pc, we can reduce the size of the resulting

PLTL formula by avoiding multiply quoting the pre- and postcondition of actions.

Definition 4.1. Given a coherent dynamic theory D, we define a conjunction of

formulas ΓL(D) as:

∧

a∈Act0

(

doa → prea

)

∧
∧

e∈Evt0

(

he ↔ pree

)

(4.1)

∧
∨

a∈Act0

doa ∧
∧

a,b∈Act0,a 6=b

¬
(

doa ∧ dob
)

(4.2)

∧
∧

p∈P

(

Xp↔
∨

e∈Evt0
p∈eff+(e)

he ∨
∨

a∈Act0
p∈eff+(a)

doa ∨ (p ∧
∧

e∈Evt0
p∈eff−(e)

¬he ∧
∧

a∈Act0
p∈eff−(a)

¬doa)
)

(4.3)

∧
∧

α∈Act

(

(preα ↔ pre(α)) ∧ (postα ↔ post(α))
)

(4.4)

∧
∧

e∈Evt0

(

(pree ↔ pre(e)) ∧ (poste ↔ post(e))
)

(4.5)

Intuitively, formula (4.1) means that basic action a is executable if its precondition

is satisfied and that events are reactive: when their precondition is satisfied they

will happen. Formula (4.2) says that exactly one basic action is allowed at one

time point. Formula (4.3) means propositional variable p is true in the next state

if and only if either there is a basic action or event making it true or it is true

currently and there is no basic action or event making it false. Formula (4.4)

and (4.5) link the formulas of pre- and postcondition of actions and events with

propositional variables. Finally, ΓL(D) captures the definition and progression

of valuations, which must be satisfied at every time point. In other words, the
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linear-time structure should satisfy GΓL(D). But when it comes to deciding the

satisfiability of the database with respect to a coherent dynamic theory, we only

need to consider the initial fragment of the path instead of the whole infinite path,

because the path is able to progress infinitely under the coherent condition. So,

to denote D is satisfied in the beginning n valuations from V (0), Then we define

ΓL(n,D) as ΓL(D)∧XΓL(D) ∧ ... ∧XnΓL(D) to capture the first n time points of a

D-model.

Definition 4.2. We translate a database ∆ into a conjunction of formulas ΓL(∆)

as follows:

∧

(t,ϕ)∈∆

Xtϕ ∧
∧

(t,e)∈∆

Xthe ∧
∧

(t,ē)∈∆

Xt¬he (4.6)

∧
∧

α 6∈Act0
(t,α,d)∈∆

∨

t≤t′<d′≤d

(Xt′preα ∧Xd′postα) (4.7)

∧
∧

a∈Act0
(t,a,d)∈∆

∨

t≤t′<d

Xt′doa (4.8)

The above definition actually formalizes the satisfaction of database in a path. For

a coherent dynamic theory, we only consider the fragment of D-model from time

point 0 to end(∆). The following theorem shows the satisfiability problem in the

database is connected to the satisfiability problem of PLTL.

Theorem 4.1. Given a coherent dynamic theory D, a database ∆ is D-satisfiable

iff ΓL(end(∆),D) ∧ ΓL(∆) is satisfiable.

Proof. Let M = (S, ε) be a linear-time structure where S = {s0, s1, ...} and ε :

S → 2PL such that PL = P ∪ Pd ∪ Ph ∪ Pc.

“ ⇒ ” : Suppose there exists a D-model ρ = 〈V,H,D〉 of ∆. Let us build a

linear-time structure M as follows: for every time point ω,

❼ ε(sω) ∩ P = V (ω);

❼ ε(sω) ∩ Ph = {he | e ∈ H(ω)};
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❼ if D(ω) = a then ε(sω) ∩ Pd = doa;

❼ ε(sω) ∩ Pc = {prex, posty | V (ω) |= pre(x), V (ω) |= post(y), x, y ∈ Act ∪

Evt0}.

Now we first prove M, 0 |= ΓL(end(∆),D). According to the definition of D-

models (Definition 3.5), if D(ω) = a and e ∈ H(ω) then V (ω) |= pre(a) ∧ pre(e).

If V (ω) 6|= pre(e) then e must not be in H(ω). Also, because ρ is a D-model of ∆,

we have eff+(H(ω)∪{D(ω)}) ⊆ V (ω+1) and eff−(H(ω)∪{D(ω)})∩V (ω+1) = ∅,

then M,ω+1 |= post(D(ω)) ∧ post(H(ω)) follows. Immediately we have M,ω |=

(4.1) for each time point ω. As only one action will be done at every time point,

M,ω |= (4.2). For every propositional variable p, M,ω+1 |= p iff either there is

a basic action or event to make it true or M,ω |= p and there is no action or

event to make it false. Thus, ∀ω,M, ω |= (4.3). According to the assignment of

Pc, we know that M,ω |= (4.4) ∧ (4.5). Thus, for every time point ω, we obtain

M,ω |= ΓL(D) and then M, 0 |= ΓL(end(∆),D).

Next we need to prove M, 0 |= ΓL(∆). For every (t, ϕ) ∈ ∆, we obtain M, t |= ϕ.

For every (t, e) ∈ E(∆), M, 0 |= Xthe because e ∈ H(t) and he ∈ ε(st). So, we

have M, 0 |= 4.6. Similarly, for every (t, ē) ∈ E(∆), we have M, 0 |= Xt¬he. By

the definition of satisfaction of an intention (Definition 3.6), if ρ 
D i we have

M, 0 |= (4.7) ∧ (4.8). So we have M, 0 |= ΓL(∆).

Thus, we can conclude that M, 0 |= ΓL(end(∆),D) ∧ ΓL(∆).

“ ⇐ ” : Suppose there exists a linear-time structure M which is a model of the

resulting formula. In other words, M, 0 |= ΓL(end(∆),D) ∧ ΓL(∆). Now we build

a path ρ = 〈V,H,D〉 as follows: for every time point ω ≤ end(∆),

❼ V (ω) = ε(sω) ∩ P;

❼ H(ω) = {e | he ∈ ε(sω) ∩ Ph};

❼ D(ω) = a if doa ∈ ε(sω).
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For those time points ω > end(∆), we must be able to construct an infinite ρ

according to the definition of D-models (Definition 3.5), because D is coherent.

Next we show ρ is a D-model. For every time point ω ≤ end(∆), due to (4.2),

there must be an action a such that M, t |= doa. So M,ω |= pre(a) then we have

V (ω) |= pre(a) and D(ω) = a. Because M,ω |= he iff M,ω |= pre(e), we have

H(ω) = {e | V (ω) |= pre(e)}.

For propositional variable p and time point ω, let us consider the case that there

exists an event e or action a which make p be true such thatM,ω |= he∨doa (Case

1). It entails that p ∈ eff+(H(ω) ∪ {D(ω)}) and M,ω |= Xp then p ∈ V (ω + 1).

As D is coherent, there is no event e′ or action a′ which make p false happening

at ω. So, we have p 6∈ eff−(H(ω) ∪ {D(ω)}) and then p ∈ V (ω + 1). Thus, Case

1 satisfies the progression criterion of Function V in D-model. Let us consider

the negation of Case 1, that is, there is no event or action which make p be true

happening at ω. Then there are two cases: either there is an event e′ or action

a′ which make p false happening ar ω (Case 2) or not (Case 3). For Case 2, it

entails that there is no disjunct in right part in formula (4.3) holding. So, we

have p ∈ eff−(H(ω) ∪ {D(ω)}) and M,ω 6|= Xp then p 6∈ V (ω + 1). By the

negation of Case 1, p 6∈ eff+(H(ω) ∪ {D(ω)}), which entails that p 6∈ V (ω + 1).

So, Case 2 satisfies the progression criterion of Function V . For Case 3, it entails

p ∈ eff+(H(ω)∪ {D(ω)})∪ eff−(H(ω)∪ {D(ω)}). In this case, the formula (4.3)

reduces to Xp ↔ p and we have p ∈ V (ω + 1) iff p ∈ V (ω). So, Case 3 satisfies

the progression criterion of Function V . So we can conclude that ρ is a D-model.

Now we need to prove ρ 
D ∆. Due to (4.6), we have ρ 
D B(∆) ∪ E(∆). For

α 6∈ Act0, if M, 0 |= Xt′pre(α) ∧ Xd′post(α), then ρ 
D (t′, α, d′). Because of

t ≤ t′ < d′ ≤ d, we get ρ 
D (t, α, d). When it comes to basic action (t, a, d),

there exists a time point t′ such that D(t′) = a since (4.8). By the definition of

satisfaction of databases (Definition 3.7), we prove ρ 
D ∆.

The next theorem states the equivalence between the consequence problem in

belief-intention database and the validity problem in PLTL.



Chapter 4. Deciding Refinement via Translating to PLTL and DL-PA 61

Theorem 4.2. Given a coherent dynamic theory D, ∆′ is a D-consequence of ∆

iff ΓL(max(end(∆), end(∆′)),D) → (ΓL(∆) → ΓL(∆′)) is valid where max(m,n)

is the greater one for natural number m and n.

Proof. Suppose k = max(end(∆), end(∆′)).

“⇒”: for all D-models of ∆, we have ΓL(end(∆),D)∧ΓL(∆). Then if these models

are also models of ∆′, then (ΓL(end(∆),D) ∧ ΓL(∆))→ (ΓL(end(∆′),D) ∧ ΓL(∆′)).

Because D-model is infinite on time, no matter whether end(∆) ≥ end(∆′) or not,

ΓL(k,D) is satisfied. Thus, we have ΓL((k,D)→ (ΓL(∆)→ ΓL(∆′)).

“⇐”: from the proof of Theorem 4.1, if ΓL(k,D) is satisfied we can construct a

D-model ρ. Further if ΓL(∆) is satisfied then ρ 
D ∆. Thus, if ΓL(∆) → ΓL(∆′),

then we have ∆ |=D ∆′.

The translation ΓL is based on the assumption of coherent dynamic theory. It

will be wrong when the dynamic theory is not coherent, because the formula (4.3)

cannot avoid the events or actions whose negative effect conflict with the positive

effect of other events and actions, as shown in the following example.

Example 4.1. [Example 3.2 continued] Let’s recall the incoherent dynamic theory

D′:

❼ pre(closeDoor) = FrontDoor, post(closeDoor) = DoorClosed

❼ pre(openDoorAuto) = FrontDoor, post(openDoorAuto) = ¬DoorClosed

Consider the case that Alice is in front of the door and intends to close the door

at time point 0. Then we have the path ρ such that V (0) = {FrontDoor}, V (1) =

{FrontDoor,DoorClosed} and H(0) = {openDoorAuto}, D(0) = {closeDoor}. It

is clear that it is not a D′-model because it violates the constraint formula 3.2

in the definition of D′-model (Definition 3.5). However, the linear-time structure

M built from ρ where ε(s0) = {FrontDoor, docloseDoor, hopenDoorAuto} and ε(s1) =

{FrontDoor,DoorClosed, hopenDoorAuto} satisfies the formula 4.3 where XDoorClosed
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and docloseDoor hold. It entails that there exists a linear-time structure satisfying

the translating formula.

Indeed the coherence assumption guarantees that once he or doa holds, there is no

he′ or doa′ , whose effect contradicts the effect of e or a, holding.

Now we relax the coherence assumption from the dynamic theory. While for-

mula (4.3) captures how propositional variables change positively, we still need to

capture the negative change for propositional variables. That is, a propositional

variable is false in the next state if and only if there either is a basic action or

event which make it false or it is false in the current state and there is no basic

action or event to make it false. To satisfy the constraint of D-model, we define

R¬(P) as

∧

p∈P

(

X¬p↔
∨

e∈Evt0
p∈eff−(e)

he ∨
∨

a∈Act0
p∈eff−(a)

doa ∨ (¬p ∧
∧

e∈Evt0
p∈eff+(e)

¬he ∧
∧

a∈Act0
p∈eff+(a)

¬doa)
)

(4.9)

So, if there exists a D-model of ∆, its corresponding linear-time structure will

satisfy R¬(P)∧(4.3). The other way round, R¬(P)∧(4.3) guarantees that the path

must satisfy the constraint formula (3.2) in the definition of D-models (Definition

3.5).

Let us come back Example 4.1, by formula (4.3), we haveM, 0 |= XDoorClosed be-

cause ofM, 0 |= docloseDoor; while by formula R¬(P), we haveM, 0 |= X¬DoorClosed

because of M, 0 |= hopenDoorAuto. So, there is a conflict on DoorClosed.

We next use operator G in PLTL to guarantee that an infinite path conforms to

the constraint of D-model.

Theorem 4.3. Given any dynamic theory D, a database ∆ is D-satisfiable iff

G(ΓL(D) ∧R¬(P)) ∧ ΓL(∆) is satisfiable.

Proof. Similar with the proof of Theorem 4.1.

Theorem 4.4. Given any dynamic theory D, ∆ |=D ∆′ iff G(ΓL(D) ∧ R¬(P))→

(ΓL(∆)→ ΓL(∆′) is valid.
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Proof. Similar with the proof of Theorem 4.2.

The problems deciding the refinement relation and the instrumentality relation are

based on the satisfiability and consequence problems. According to the definition

of refinement (Definition 3.9), the deciding-refinement problem can be decomposed

into D-satisfiability problems (Condition 1,2 and 4) and a D-consequence problem

(Condition 3). The following theorem states the correctness of the translation.

Theorem 4.5. Given any dynamic theory D, ∆ |=D i✁ J , iff the following hold:

❼ for all j ∈ J , every G(ΓL(D) ∧R¬(P)) ∧ (ΓL(∆) ∧ ¬ΓL({j}) is satisfiable

❼ G(ΓL(D) ∧R¬(P)) ∧ ΓL(∆ ∪ J) is satisfiable

❼ G(ΓL(D) ∧R¬(P))→
(

ΓL((∆ ∪ J) \ {i})→ ΓL({j})
)

is valid

❼ for all j ∈ J , every G(ΓL(D) ∧ R¬(P)) ∧ ΓL((∆ ∪ J) \ {i, j}) ∧ ¬ΓL({i}) is

satisfiable

❼ end(J) ≤ end(i)

Proof. It is straightforward by the definition of intention refinement and the above

theorems.

Furthermore, by the definition of instrumentality (Definition 3.12), the deciding-

instrumentality problem can be decomposed into a D-satisfiability problem and

a D-consequence problem. By the following theorem, we show the translation is

sound and complete.

Theorem 4.6. Given any dynamic theory D, ∆ |=D J ⋗ i, iff the following hold:

❼ G(ΓL(D) ∧R¬(P)) ∧ ΓL(∆ \ J) ∧ ¬ΓL({i}) is satisfiable

❼ G(ΓL(D) ∧R¬(P))→ (ΓL(∆ \ J) ∧ (
∨

j∈J Γ
L({j}))→ ΓL({i})) is valid

❼ end(J) ≤ end(i)
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Proof. It is straightforward by the definition of instrumentality and the above

propositions.

By Theorem 4.5 and Theorem 4.6, we can solve the decision problems of refinement

and instrumentality by taking advantage of the efficient theorem provers of PLTL.

Remark 4.1. The complexity of the fragments of PLTL with different restrictions

has been summarized in [Demri and Schnoebelen, 2002]. The satisfiability problem

in PLTL without any operators but X is NP-complete while its validity problem

is co-NP-complete.

For the database, time points as natural numbers are encoded in a binary way

while they are considered as decimal in the size of the resulted PLTL formula. For

example, if (e, 10) ∈ ∆ then we have X10he ∈ ΓL(∆). In this case, the time point

10 in the binary encoding occupies log 10 on size in belief-intention database, while

X10 which is a sequence of ten continuous operators X occupies 10 on size in PLTL.

Therefore, the size of the resulting formula is not polynomial with respect to the

size of the database. Notice that for the database, time points are encoded in a

binary way and in consequence the translations are exponential. Although the

satisfiability of PLTL is NP-complete, we cannot conclude that the satisfiability

of database is NP-complete. Actually it is PSPACE-complete as shown in the

previous chapter.

4.2 Translating to DL-PA

In this section, we introduce the translation from the decision problems of the

databases to Dynamic Logic of Propositional Assignment (DL-PA). [Herzig et al.,

2011] and [Balbiani et al., 2013] show that every DL-PA formula can be reduced

to an equivalent propositional formula. We thereby further translate the deci-

sion problems into the satisfiability problem and the validity problem in classical
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propositional logic and then invoke efficient SAT solvers to solve the problem of

deciding refinement.2

4.2.1 Syntax and Semantics of DL-PA

The first studies of assignments in the context of dynamic logic are due to [Tiomkin

and Makowsky, 1985]. Dynamic Logic of Propositional Assignment (DL-PA) was

proposed in [Herzig et al., 2011] which is an instantiation of Propositional Dynamic

Logic (PDL) [Harel, 1984, Harel et al., 2000]. Let us first briefly recall the syntax

and semantics of DL-PA.

Just as in PDL, DL-PA programs describe the evolution of the world, while DL-PA

formulas describe the state of the world. Different from PDL, only two kinds of

atomic programs are considered in DL-PA: for a propositional variable p, it can

be assigned to true or false, written by p← ⊤ and p← ⊥. Just as in PDL, these

two kinds of atomic programs can be combined via program operators: sequential

(‘;’), nondeterministic composition (‘⊔’), finite iteration (‘∗’), and test (‘?’).

The models of DL-PA is simpler than PDL’s Kripke models: we use valuations

of classical propositional logic. A valuation3 associates a truth value to each

propositional variable in P and we identify valuations with subsets of P and use

v, v1, v2, etc. to denote them. Note that the set of all valuations is V = 2P We use

v(p) = 1 to denote p ∈ v and v(p) = 0 to denote p 6∈ v. The assignment program

p ← ⊤ adds the current valuation by p, while the assignment program p ← ⊥

removes p from the valuation.

Propositional formulas are built from propositional variables by means of the stan-

dard boolean connectives in classical propositional logic. A DL-PA formula consists

of propositional formulas and programs, denoted by ϕ, ψ, etc. For a given propo-

sitional formula ϕ, we use Pϕ to denote the set of propositional variables occurring

2Several efficient SAT solvers can be found in the SAT Competition 2017 http://www.

satcompetition.org/ (accessed on 27 Sep. 2017).
3We use the same term “valuation” to denote the state in DL-PA and the belief-intention

database. To distinguish them, we use v for the valuations of DL-PA and use V for those of the
database.

http://www.satcompetition.org/
http://www.satcompetition.org/
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in ϕ. For example, Pp∧q = {p, q}. A given valuation determines the truth values

of every propositional formula and we call a valuation where formula ϕ is true as

ϕ− valuation. The language of DL-PA is defined as follows:

ϕ ::= p | ⊤ | ⊥ | ϕ ∨ ϕ | 〈π〉ϕ

π ::= p← ⊤ | p← ⊥ | π; π | π ⊔ π | π∗ | ϕ?

where p ranges over P. The atomic programs of DL-PA is of the form p← ⊤ and

p← ⊥. The operators of DL-PA are sequential composition (‘;’), nondeterministic

composition (‘⊔’), finite iteration (‘∗’), and test (‘?’). Particularly, we use ;
and

⊔

for the operators ; and ⊔ applied on the sets, respectively. Formally, for

a set A of propositional variables and an expression f(p) related with proposi-

tional variable p, the formulas ; p∈A f(p) and
⊔

p∈A f(p) respectively represent

f(p1); f(p2); . . . ; f(pn) and f(p1)⊔ f(p2)⊔ . . .⊔ f(pn) where p1, p2, . . . , pn ∈ A. In

particular, we use ;
k
f to represent the sequence f ; f ; . . . ; f with the number of

k.

We abbreviate the logical connectives ∧,→ and ↔ in the usual way. Moreover,

we abbreviate ¬〈π〉¬ϕ as [π]ϕ. Intuitively, formulas of the form 〈π〉ϕ means that

formula ϕ is true after some possible execution of π while [π]ϕ means that formula

ϕ is true after every possible execution of π.

The length of a formula ϕ, denoted by |ϕ|, is the number of symbols used to write

down ϕ without “〈”,“〉” and parentheses. The length of a program π, denoted by

|π|, is defined in the same way. For example |〈p← ⊤〉(p→ q)| = 3 + 3 = 6.

DL-PA programs are interpreted by means of relations between valuations. The

atomic programs p ← ⊤ and p ← ⊥ update valuations just as update actions do

(see the preceding section), and complex programs are interpreted just as in PDL

by mutual recursion. Next we give the interpretation of formulas and programs

where ◦ is relation composition.

||p|| = {v | p ∈ v}
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||⊤|| = V = 2P

||⊥|| = ∅

||¬ϕ|| = 2P \ ||ϕ||

||ϕ ∨ ψ|| = ||ϕ|| ∪ ||ψ||

||
〈

π
〉

ϕ|| =
{

v | ∃v1 s.t. 〈v , v1〉 ∈ ||π|| and v1 ∈ ||ϕ||
}

||α|| =
{

〈v1, v2〉 | v2 = v1 ⋄ {α}
}

||π; π′|| = ||π|| ◦ ||π′||

||π ⊔ π′|| = ||π|| ∪ ||π′||

||π∗|| =
⋂

k∈N0

||π||k

||ϕ?|| =
{

〈v , v〉 | v ∈ ||ϕ||
}

A formula ϕ is DL-PA valid iff ||ϕ|| = 2P = V. It is DL-PA satisfiable iff ||ϕ|| 6= ∅.

For example, the formulas 〈p←⊥〉⊤ and 〈p←⊥〉¬p are all DL-PA valid, entailing

that they are all DL-PA satisfiable.

In particular, the truth test ⊤? means doing nothing. Moreover, the conditional

program “if ϕ then π1 else π2” is expressed by (ϕ?; π1) ⊔ (¬ϕ?; π2). Specially,

the conditional program without negative branch “if ϕ then π1” is represented by

(ϕ?; π1)⊔¬ϕ? instead of ϕ?; π1. Furthermore, the loop program “while ϕ do π” is

expressed by (ϕ?π)∗;¬ϕ?.

We abbreviate the assignments of literals to variables as follows:

p← q = if q then p← ⊤ else p← ⊥

= (q?; p← ⊤) ⊔ (¬q?; p← ⊥)

p← ¬q = if q then p← ⊥ else p← ⊤

= (q?; p← ⊥) ⊔ (¬q?; p← ⊤)

Intuitively, p ← q assigns to p the truth the value of q: if q is true then p will be

true otherwise p will be false. While the program p ← ¬q assigns to p the truth
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value of ¬q.

To change the truth value of some propositional variables, [Herzig, 2014] define a

program: for a set of propositional variables P ,

Flip(P ) = ;
p∈P

(

p←⊤⊔ p←⊥
)

.

The program Flip(P );ϕ? means to nondeterministically change the truth value of

some variables in the set P to satisfy the formula ϕ.

Observe that if p does not occur in ϕ then formulas such as ϕ → 〈p←⊤〉ϕ and

ϕ→ 〈p←⊥〉ϕ are valid.

A distinguishing feature of DL-PA is that its dynamic operators can be eliminated

(which is not possible in PDL). Just as for QBF, the resulting formula may be

exponentially longer than the original formula.

Theorem 4.7 ([Balbiani et al., 2013]). Every DL-PA formula has an equivalent

boolean formula.

For example, the DL-PA formula 〈p←⊥〉(¬p ∧ ¬q) is equivalent to the formula

〈p←⊥〉¬p ∧ 〈p←⊥〉¬q, which is by itself equivalent to ⊤ ∧ ¬q. Therefore, the

DL-PA formula 〈p←⊥〉(¬p ∧ ¬q) is reduced to the boolean formula ¬q.

Every sequence of assignment programs π1; . . . ; πn is a deterministic program that

is always executable: for a given v , there is exactly one v ′ such that 〈v , v ′〉 ∈

||π1; . . . ; πn||. Moreover, the order of the πi in a sequential composition is irrelevant

when a set of assignment programs {π1, . . . , πn} is consistent.

4.2.2 Translation to DL-PA

Before defining the translation from the belief-intention database to DL-PA, we

use the following abbreviations for programs. Just as for the reduction to PLTL

in Section 4.1, we use the same auxiliary propositional variables for basic actions,
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events and their pre- and postcondition: Pd = {doa | a ∈ Act0}, Ph = {he |

e ∈ Evt0} and Pc = {preα, postα, pree, poste | α ∈ Act, e ∈ Evt0}. Similar to

the translation ΓL(D) (Definition 4.1), at every time point the following formulas

should hold:

Φd =
∧

a∈Act0

(

doa → prea)
)

∧
∨

a∈Act0

doa ∧
∧

a,b∈Act0,a 6=b

¬(doa ∧ dob)

Φh =
∧

e∈Evt0

(

(he ↔ pree)
)

Φc =
∧

α∈Act

(

(preα ↔ pre(α)) ∧ (postα ↔ post(α))
)

∧

∧

e∈Act

(

(pree ↔ pre(e)) ∧ (poste ↔ post(e))
)

The formula Φd means that at every time point (or valuation), there is one and

only one basic action chosen to perform and if a basic action is chosen then its

precondition must be satisfied. The formula Φh means that events happen if

and only if their precondition are satisfied and the formula Φc links the auxiliary

variables in Pc with the pre- and postcondition of basic actions and events.

We now define a function, Pc : 2
P −→ 2Pc , to extract the auxiliary propositional

variables of pre- and postcondition from valuations. Formally, for a time point ω

and a D-model 〈V,H,D〉,

Pc(V (ω)) = {prex, posty | V (ω) |=pre(x), V (ω) |=post(y) and x, y ∈ Act0∪Evt0}.

Next we introduce a program to capture the effect of basic actions and events. For

every x ∈ Act0 ∪ Evt0, we define the program Effect to capture the effect of x as

follows:

Effect(x) = ;
p∈eff+(x)

(p←⊤); ;
q∈eff−(x)

(q←⊥)

For the basic action of buying ticket online buyWeb, the program Effect(buyweb)

is PaidWeb←⊤.



Chapter 4. Deciding Refinement via Translating to PLTL and DL-PA 70

For a coherent dynamic theory, the current valuation and the action being per-

formed determine the next valuation. So, the effect of basic actions and events

is achieved by a sequence of assignment programs on propositional variables: the

variables in the positive effect will be assigned to true while those variables in the

negative effect will be assigned to false.

Actions = Flip(Pd); Φd?;
⊔

a∈Act0

(

doa?;Effect(a)
)

Events = ;
e∈Evt0

(

(he?;Effect(e)) ⊔ ¬he?
)

Update = Flip(Ph ∪ Pc); (Φh ∧ Φc)?

Dyn = Actions;Events;Update

As there is no operator for concurrence in DL-PA, we use sequential programs to

capture the concurrence of basic actions and events. Basic actions and events are

different: at every time point there is one and only one basic action performed while

events can occur simultaneously if their preconditions are satisfied. We model them

in different ways: for basic actions, the agent is proactive in choosing actions by

means of the program Flip(Pd) and the chosen action has to satisfy the formula

Φd; whereas events occur reactively which is captured by the program “if he then

Effect(e)”. After the program Actions, the valuation actually changes because of

Effect(a) and the formula pre(e) may become unsatisfied even though it is satisfied

before performing action a. So, we use he, which is equivalent to pre(e) before

performing action a, as the condition to determine whether the event will happen.

Intuitively, the program Actions chooses a basic action to perform. For every event

with a satisfied precondition, the program Events actives it. Finally, the program

Update changes auxiliary variables in Ph ∪ Pc to satisfy the formula Φh ∧ Φc so

that these auxiliary variables can correctly capture the pre- and postcondition of

actions and events. Intuitively, the program Dyn describes the minimal change

of valuations which satisfying the frame axiom according to the definition of the

dynamic theory model (Definition 3.5).
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Note that if the dynamic theory is coherent, there is no conflict between the effects

of actions and events, so ||Actions;Events|| is equivalent to ||Events;Actions||.

The next proposition states that Dyn captures the progression of valuations in the

D-model.

Proposition 4.8. Given a coherent dynamic theory D and a D-model 〈V,H,D〉,

for every time point ω, there exist (v, v′) ∈ ||Dyn|| where v ∩ P = V (ω) and

v′ ∩ P = V (ω + 1), v′ ∩ Ph = H(ω + 1), v′ ∩ Pd = D(ω), v′ ∩ Pc = Pc(V (ω + 1)).

Proof. Given a D-model 〈V,H,D〉, we will construct a pair (v, v′) ∈ ||Dyn|| by

induction. According to the semantics of DL-PA, the following holds: for every

formula ϕ,

〈

Flip(Pd); Φd?
〉〈

⊔

a∈Act0

(

doa?;Effect(a)
)

;Events
〉〈

Update
〉

ϕ↔
〈

Dyn
〉

ϕ.

For the purpose of simplicity, we use π1, π2, π3 to denote these three programs,

respectively. Then we will construct a sequence of valuations v, v1, v2, v
′ according

to the sequential partition π1, π2, π3 of the program Dyn.

Base case. When ω = 0, let valuation v = V (0)∪{he | e ∈ H(0)}∪Pc(V (0)). Then

we construct v1 = v∪{doa | a = D(0)}. By the definition of D-models (Definition

3.5), we have V (0) |= pre(D(0)). Because pre(a) ↔ prea and doa → prea are in

the formula Φd, we have (v, v1) ∈ ||π1||. Next we construct

v2 = (v1 \ eff
−(H(0) ∪ {D(0)})) ∪ eff+(H(0) ∪ {D(0)}).

As he and doa depends on H(0) and D(0) respectively and Effect(x) makes p in

eff+(x) be true and q in eff−(x) be false, we have (v1, v2) ∈ ||π2||. Now we

construct

v′ = (v2 \ (Ph ∪ Pc)) ∪ {he | e ∈ H(1)} ∪ Pc(V (1)).

Because Φh ∧ Φc is satisfied, (v2, v
′) ∈ ||π3||. So, we have (v, v′) ∈ ||π1; π2; π3||

which entails that (v, v′) ∈ ||Dyn||.
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Inductive step. Suppose when t = k the proposition holds. When ω = k + 1, let

valuation

v = V (k + 1) ∪ {he | e ∈ H(k + 1)} ∪ Pc(V (k + 1)) ∪ {doa | a = D(k)}.

Next we construct v1 = (v \ Pd) ∪ {doa | a = D(k + 1). By the definition of

D-models (Definition 3.5), we have V (k+1) |= pre(D(k+1)) and the formula Φd

is satisfied, entailing that (v, v1) ∈ ||π1||. Then we construct

v2 = (v1 \ eff
−(H(k + 1) ∪ {D(k + 1)})) ∪ eff+(H(k + 1) ∪ {D(k + 1)}).

Due to Effect(x), we have (v1, v2) ∈ ||π2||. Now we construct

v′ = (v2 \ (Ph ∪ Pc)) ∪ {he | e ∈ H(k + 2)} ∪ Pc(V (k + 2)).

It is not difficult to conclude that (v2, v
′) ∈ ||π3||. So, we have (v, v

′) ∈ ||Dyn||.

The next proposition states that a sequence of program Dyn can generate a

bounded dynamic theory model.

Proposition 4.9. Given a coherent dynamic theory D and a natural number k,

the formula Φh ∧Φc ∧
〈

; k Dyn
〉

⊤ is DL-PA satisfiable iff there exists a bounded

D-model ρ = 〈V,H,D, k〉.

Proof. Proposition 4.8 states that two time points in a D-model are linked by the

program Dyn. Then the sequence ;
k
Dyn generates a sequence of time points

in a bounded D-model with bound k. In particular, the initial valuation should

satisfy the formula Φh ∧ Φc to guarantee that every event is reactive.

As intentions are defined in a flexible way, we need to represent whether the

high-level actions actually start and finish. To do so, for every intention i in the

database, we introduce pairs of auxiliary propositional variables, bi and fi, where

bi means the corresponding action of intention i has been already started; fi means
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the action has been finished.

BegInt(t, α, d) = if preα then b(t,α,d)←⊤

= (preα?; b(t,α,d)←⊤) ⊔ ¬preα?

FinHInt(t, α, d) = if b(t,α,d) ∧ postα then f(t,α,d)←⊤

= ((b(t,α,d) ∧ postα)?; f(t,α,d)←⊤) ⊔ ¬(b(t,α,d) ∧ postα)?

FinBInt(t, a, d) = if doa then f(t,a,d)←⊤

= (doa?; f(t,a,d)←⊤) ∪ ¬doa?

Intuitively, the program BegInt(t, α, d) means that if the precondition of α is sat-

isfied, then intention (t, α, d) will be started while the program FinHInt(t, α, d)

means that if intention (t, α, d) has already been started and the postcondition of

high-level action α has been satisfied, then the intention will be finished. For basic

intentions, the program FinBInt(t, a, d) means that if basic action a has been done

then intention (t, α, d) will be finished.

Based on the above programs, we can introduce the programs of starting and

finishing intentions for every time point. For all time points ω ∈ N
0 and all

intentions i = (t, α, d) ∈ ∆:

Begin(ω) = ;
i∈∆
t≤ω<d

BegInt(i)

Finish(ω) = ;
i∈∆

α 6∈Act0
t<ω≤d

FinHInt(i); ;
i0∈∆
α∈Act0
t<ω≤d

FinBInt(i0)

Intuitively, the program Begin(ω) starts the intentions which can be started in time

point ω and the program Finish(ω) finishes the intentions which can be finished

in time point ω. At time point ω, only those intentions such that t ≤ ω < d are

possible to start and only those intention with t < ω ≤ d are possible to finish.

As we stated before, DL-PA programs describe the evolution of the world while DL-

PA formulas describe the state of the world. We have already defined the programs
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which capture how the basic actions and events change the world and which decide

if an intention is started and finished, then we describe how the valuation should

satisfy the database by means of DL-PA formulas:

τDS (∆, ω) =
∧

(ω,ϕ)∈∆

ϕ ∧
∧

(ω,e)∈∆

he ∧
∧

(ω,ē)∈∆

¬he ∧
∧

i=(t,α,ω)∈∆

fi

Intuitively, the formula ΓDS (∆, ω) describes that at time point ω, both the beliefs

and the (non-)occurrence of events labeled by ω should be satisfied and that all

intentions whose deadline is ω should be accomplished.

Init =
∧

i∈∆

(

¬bi ∧ ¬fi
)

∧ Φh ∧ Φc

The formula Init enforces that no intention is started or finished initially.

Given a dynamic theory D and database ∆, we can define the translation for the

satisfiability inductively:

ΓDS (D,∆, ω) =























〈

Dyn
〉

⊤, ω = end(∆) + 1

〈

Progress(ω)
〉(

τDS (∆, ω) ∧ ΓDS (D,∆, ω+1)
)

, 1 ≤ ω ≤ end(∆)

Init ∧ τDS (∆, 0) ∧
〈

Begin(0)
〉

ΓDS (D,∆, 1), ω = 0

where Progress(ω) = Dyn; Finish(ω);Begin(ω).

When ω = 0, it is the initial case that the beliefs on valuation and environmental

change are true and only those intentions whose corresponding precondition is sat-

isfied will be started. With the time running, some action is performed and some

events occur and then their effect will change the valuation. Meanwhile, some in-

tentions are finished while some intentions are started. Because the finishing-check

of intentions depends on the starting-check of intentions, the program Finish(ω)

has to be ahead of Begin(ω). For a coherent dynamic theory, we only need to

consider a bounded D-model with a bound end(∆).

Theorem 4.10. Given a coherent dynamic theory D, a database ∆ is D-satisfiable

iff the formula ΓDS (D,∆, 0) is DL-PA satisfiable.
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Proof. “⇒:” Suppose there is a D-model ρ = 〈V,H,D〉. Let v0 = V (0)∪{he | e ∈

H(0)} ∪ Pc(V (0)). Then we will prove v0 ∈ ||Γ
D
S (D,∆, 0)||.

By the definition of satisfaction of a database (Definition 3.7), we have V (0) |=
∧

(0,ϕ)∈∆ ϕ∧
∧

(0,e)∈∆ he∧
∧

(0,ē)∈∆ ¬he. As there is no intention such that 〈t, α, 0〉 ∈

∆, we have v0 ∈ ||Init ∧ τ
D
S (∆, 0)||. Next we construct v′0 = v0 ∪ {b0,α,t | V (0) |=

pre(α), 〈0, α, t〉 ∈ ∆}. Due to Φc, we have (v0, v
′
0) ∈ ||Begin(0)||. Then we con-

struct

v′′0 = V (1) ∪ {he | e ∈ H(1)} ∪ Pc(V (1)) ∪ {doa | a = D(0)}.

By Proposition 4.8, we have (v′0, v
′′
0) ∈ ||Dyn||. Now we construct

v1 = v′′0 ∪ {f(0,α,1) | V (1) |= post(α), b(0,α,1) ∈ v
′′
0 , (0, α, 1) ∈ ∆, α ∈ Act \ Act0}

∪ {f(0,a,1) | D(0) = a, (0, a, 1) ∈ ∆}

∪ {b(1,α,d) | V (1) |= pre(α), (1, α, d) ∈ ∆, α ∈ Act \ Act0}

It is easy to check that (v′′0 , v1) ∈ ||Finish(1);Begin(1)||.

For (0, α, 1) ∈ ∆ where α ∈ Act \ Act0, because of ρ 
D (0, α, 1), we have V (1) |=

post(α) and V (0) |= pre(α) which entails b(0,α,1) ∈ v
′′
0 . So, we have f(0,α,1) ∈ v1.

For (0, a, 1) ∈ ∆ where a ∈ Act0, we have D(0) = a and then have f(0,a,1) ∈ v1. So

we have (v0, v1) ∈ ||Begin(0);Progress(1)||. As v1 ∩ P = V (1), it is easy to check

that v1 ∈ ||τ
D
S (∆, 1)||.

Next, for the case 1 ≤ ω ≤ end(∆), we will show that there is a sequence of

valuations v1, . . . , vend(∆) where for k = 1, . . . , end(∆) − 1, vk ∈ ||τ
D
S (∆, k)|| and

(vk, vk+1) ∈ ||Progress(k + 1)|| by induction.

Base case. We construct

v′1 = V (2) ∪ {he | e ∈ H(2)} ∪ Pc(V (2)) ∪ {doa | a = D(1)}.

By Proposition 4.8, we have (v1, v
′
1) ∈ ||Dyn||. Now we construct

v2 = v′1 ∪ {f(t,α,d) | V (2) |= post(α), b(t,α,d) ∈ v
′
1, t < 2 ≤ d, α 6∈ Act0}
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∪ {f(t,a,d) | D(1) = a, t < 2 ≤ d, (t, a, d) ∈ ∆}

∪ {b(t,α,d) | V (2) |= pre(α), t ≤ 2 < d, (t, α, d) ∈ ∆}

It is easy to check that (v′1, v2) ∈ ||Finish(2);Begin(2)||.

For (t, α, d) ∈ ∆ where α ∈ Act \ Act0, if d = 2, because of ρ 
D (t, α, 2), we

have V (2) |= post(α) and there exists t ≤ t′ < 2 such that V (t′) |= pre(α) which

entails that either b(t,α,2) ∈ v′0 or b(t,α,2) ∈ v1. As there is no program to make

b(t,α,2) be false, if b(t,α,2) ∈ v
′
0 then b(t,α,2) ∈ v1. So, we have f(t,α,2) ∈ v2.

For (t, a, d) ∈ ∆ where a ∈ Act0 and t < 2 ≤ d, because ρ 
D (t, a, d), there exists

0 ≤ t′ ≤ 1 such that D(t′) = a. As there is no program to make f(t,a,d) be false,

if t′ < 2, we have f(t,a,d) ∈ v2. So, v2 ∈ ||
∧

i=(t,α,2)∈∆ fi||. As v2 ∩ P = V (2), it is

easy to check that v2 ∈ ||τ
D
S (∆, 2)||. Therefore, we have (v1, v2) ∈ ||Progress(2)||.

Inductive step. As an inductive hypothesis, we suppose a valuation sequence

v1, . . . , vn where 2 ≤ n ≤ end(∆) − 1 and for k = 1, . . . , n − 1, vk ∈ ||τ
D
S (∆, k)||

and (vk, vk+1) ∈ ||Progress(k + 1)||.

Now we will construct a valuation vn+1 such that vn+1 ∈ ||τ
D
S (∆, n + 1)|| and

(vn, vn+1) ∈ ||Progress(n+ 1)||.

We first construct

v′n = V (n+ 1) ∪ {he | e ∈ H(n+ 1)} ∪ Pc(V (n+ 1)) ∪ {doa | a = D(n)}.

By Proposition 4.8, we have (vn, v
′
n) ∈ ||Dyn||. Now we construct

vn+1 = v′n ∪ {f(t,α,d) | V (n+ 1) |= post(α), b(t,α,d) ∈ v
′
n, t < n+ 1 ≤ d, α 6∈ Act0}

∪ {f(t,a,d) | D(n) = a, t < n+ 1 ≤ d, (t, a, d) ∈ ∆}

∪ {b(t,α,d) | V (n+ 1) |= pre(α), t ≤ n+ 1 < d, (t, α, d) ∈ ∆}

It is easy to check that (v′n, vn+1) ∈ ||Finish(n+ 1);Begin(n+ 1)||.
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For i = (t, α, d) ∈ ∆ where α ∈ Act \ Act0 and t < n + 1 ≤ d, because of ρ 
D i,

there exist t′, d′ such that t ≤ t′ < d′ ≤ d and such that V (d′) |= post(α) and

V (t′) |= pre(α). Suppose t′ and d′ is the smallest time points which start and

finish the intention i. That is, there is no t ≤ t′′ < t′ and t ≤ d′′ < d′ such that

V (t′′) |= pre(α) and V (d′′) |= post(α). As BegInt(i) is a subprogram of Begin(t′),

we have if t′ = 0 bi ∈ v
′
0 otherwise bi ∈ vt′ . As there is no program to make bi be

false, if t′ < n + 1, we have bi ∈ vn. If t′ = n + 1, then bi ∈ vn+1. On the other

hand, because FinHInt(i) is a subprogram of Finish(d′) and there is no program to

make fi be false, if d′ < n + 1, then fi ∈ vn and fi ∈ vn+1. If d′ = n + 1, then

fi ∈ vn+1. So, if d = n+ 1, we have f(t,α,n+1) ∈ vn+1.

For i0 = (t, a, d) ∈ ∆ where a ∈ Act0 and t < n + 1 ≤ d, because of ρ 
D i0,

there exists t′ such thatt ≤ t′ < d and D(t′) = a. Suppose t′ is the smallest time

point in which basic action a is performed. In other words, there is no t ≤ t′′ < t′

such that D(t′′) = a. As FinBInt(i0) is a subprogram of Finish(t′), if t′ < n, then

fi0 ∈ vn−1, fi0 ∈ vn and fi0 ∈ vn+1. If t
′ = n, then fi ∈ vn+1. So, if d = n + 1, we

have f(t,a,n+1) ∈ vn+1.

As vn+1 ∩ P = V (n+ 1), it is easy to check that vn+1 ∈ ||τ
D
S (∆, n+ 1)||. Thus, we

have (vn, vn+1) ∈ ||Progress(n+ 1)||.

Therefore, there is a sequence of valuations v1, . . . , vend(∆) such that for k =

1, . . . , end(∆)−1, vk ∈ ||τ
D
S (∆, k)|| and (vk, vk+1) ∈ ||Progress(k + 1)||.

Next we construct

vend(∆)+1 = vend(∆) ∪ {he | e ∈ H(end(∆) + 1)} ∪ Pc(V (end(∆) + 1))

∪ {doa | a = D(end(∆))}.

By Proposition 4.8, we have (vend(∆), vend(∆)+1) ∈ ||Dyn||. So, v0 ∈ ||Γ
D
S (D,∆, 0)||

and the DL-PA formula ΓDS (D,∆, 0) is satisfiable.

“⇐”: Suppose v0 ∈ ||Γ
D
S (D,∆, 0)|| and n = end(∆). Then there exists a valuation

sequence v0, v1, . . . , vn, vn+1 such that:
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(i) (v0, v1) ∈ ||Begin(0);Progress(1)|| and v0 ∈ ||τ
D
S (∆, 0)||;

(ii) for k = 1, . . . , n− 1, (vk, vk+1) ∈ ||Progress(k + 1)|| and vk ∈ ||τ
D
S (∆, k)||;

(iii) (vn, vn+1) ∈ ||Dyn||.

Now we construct a bounded path ρ = 〈V,H,D, n〉 where for ω ∈ Nn, V (ω) =

vω ∩P, H(ω) = vω ∩Ph, D(ω) ∈ vω+1 ∩Pd and V (n+1) = vn+1 ∩P. Then we will

first show that ρ is a bounded model and then prove that ρ 
D ∆.

The program Flip(Pd); Φd? decides that only one doa is true and that prea ∈

vω. As the program Flip(Pd); Φd? is a subprogram of the program Dyn, we have

doa ∈ vω+1 and vω+1 ∩ Pd = {doa}. So, it satisfies the definition of D-models

(Definition 3.5) on D-function: D(ω) ∈ {a ∈ Act0 | V (ω) |= pre(a)}. Due to

the subprogram Update of the program Dyn, by the formula Φh ∧ Φc, we have

H(ω) = {e ∈ Evt0 | V (ω) |= pre(e)}, which is the definition of D-models on H-

function. Because only programs doa?;Effect(a) and he?;Effect(e) can change the

truth value of propositional variables in P and dynamic theory D is coherent, it

satisfies the definition of D-models (Definition 3.5) on valuations: for every time

point ω ∈ Nn,

V (ω+1) =
(

V (ω) ∪ eff+
(

H(ω)∪{D(ω)}
))

\ eff−
(

H(ω)∪{D(ω)}
)

.

Therefore, ρ is a bounded D-model.

Next we will prove that ρ 
D ∆. For every time point ω, vω ∈ ||τ
D
S (∆, ω)||, so ρ

satisfies all beliefs and (non-)occurrence of events in ∆ which are the first three

criteria in the definition of database satisfaction (Definition 3.7).

Next we will show that for all intentions i ∈ ∆, ρ 
D i. For an intention i =

(t, α, d) ∈ ∆, because vd ∈ ||τ
D
S (∆, d)||, we have fi ∈ vd. In the case that α 6∈ Act0,

the variable fi only can be assigned to be true by the program FinHInt(i) where

the prerequisite of the assignment is bi ∧ postα. As the program FinHInt(i) only

included in the programs Finish(ω) such that t < ω ≤ d, we can conclude that

fi is assigned in some program Finish(d′) such that t < d′ ≤ d. It entails that
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postα ∈ vd′ and then V (d′) |= postα. For one of the prerequisites bi, because it

only can be assigned to be true by the program BegInt(i) and for every time point

ω, the program Finish(ω) is ahead of the program Begin(ω), there exists t′ such that

t ≤ t′ < d′ and the assignment program bi←⊤ happens. As the prerequisite of

the assignment of bi is preα, we have preα ∈ vt′ and then V (t′) |= preα. Therefore,

by the definition of intention satisfaction (Definition 3.6), we have ρ 
D i. In

the case that α ∈ Act0, the variable fi only can be assigned to be true by the

program FinBInt(i) where the prerequisite of the assignment is doα. Because the

program FinBInt(i) is only included in the programs Finish(ω) such that t < ω ≤ d

and fi ∈ vd, we can conclude that fi is assigned in some program Finish(d′) such

that t < d′ ≤ d. It entails that doα ∈ vd′ and then D(d′ − 1) = a. Thus, by the

definition of intention satisfaction (Definition 3.6), we have ρ 
D i.

Therefore, the bounded D-model ρ constructed from the sequence of valuations

v0, v1, . . . , vn+1 is a bounded model of ∆. As the dynamic theory D is coherent,

the database ∆ is satisfiable.

Here is a simple example:

Example 4.2. Consider the database ∆ = {(0, p), (1, e), (0, α, 3), (1, b, 2)}. We

can get formula ΓDS (D,∆, 0) =

¬b(0,α,3) ∧ ¬b(1,b,2) ∧ ¬f(0,α,3) ∧ ¬f(1,b,2) ∧ p

∧ 〈π1〉
(

he ∧ 〈π2〉
(

f(1,b,2) ∧ 〈π3〉(f(0,α,3) ∧ 〈Dyn〉⊤)
)

)

where

π1 = Begin(0);Dyn; Finish(1);Begin(1)

= BegInt(0, α, 3);Dyn; FinHInt(0, α, 3);BegInt(0, α, 3);BegInt(1, b, 2)

π2 = Dyn; Finish(2);Begin(2)

= Dyn; FinHInt(0, α, 3); FinBInt(1, b, 2);BegInt(0, α, 3)

π3 = Dyn; Finish(3);Begin(3)

= Dyn; FinHInt(0, α, 3)
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Next we translate the consequence problem in the database into the validity prob-

lem in DL-PA. Given a dynamic theory D and two databases ∆1 and ∆2, suppose

n = max(end(∆1), end(∆2)), we can define the translation for the consequence

inductively:

ΓDC(D,∆1,∆2, ω) =























[

Dyn
]

⊤, ω = n+ 1

[

Progress′(ω)
](

τDC (∆1,∆2, ω) ∧ ΓDC(D,∆1,∆2, ω+1)
)

, 1 ≤ ω ≤ n

Init ∧ τDC (∆1,∆2, 0) ∧
[

Begin′(0)
]

ΓDC(D,∆1,∆2, 1), ω = 0

where

Begin′(ω) = ;
i∈∆1∪∆2

t≤ω<d

BegInt(i)

Finish′(ω) = ;
i∈∆1∪∆2

α 6∈Act0
t<ω≤d

FinHInt(i); ;
i0∈∆1∪∆2

α∈Act0
t<ω≤d

FinBInt(i0)

Progress′(ω) = Dyn; Finish′(ω);Begin′(ω)

τDC (∆1,∆2, ω) = τDS (∆1, ω)→ τDS (∆2, ω)

While the translation for the satisfiability guarantees there exists a sequence of

valuations satisfying the criterion of D-models, the translation ΓDC requires that for

all such sequences of valuations, they satisfy ∆1, entailing the they also satisfy ∆2.

The following theorem shows the correctness of the translation for the consequence

problem.

Theorem 4.11. Given a coherent dynamic theory D, ∆1 |=D ∆2 iff the formula

ΓDS (D,∆1, 0)→ ΓDC(D,∆1,∆2, 0) is DL-PA valid.

Proof. “⇒:” Suppose ∆1 |=D ∆2 and we need to prove the translating formula is

DL-PA valid. Let us consider two cases: ∆1 is D-satisfiable and ∆1 is not.

For the case that ∆1 is D-satisfiable. By Theorem 4.10, the formula ΓDS (D,∆1, 0) is

DL-PA satisfiable. Note that the program Progress′ differs from Progress in Begin′
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and Finish′ which does not influence propositional variables in ΓDS (D,∆1, 0). Then,

by the proof of Theorem 4.10, the program Begin′(0); ;
1≤ω≤n Progress

′(ω);Dyn

actually generates sequences of DL-PA valuations v0, v1, . . . , vn+1 such that

(i) (v0, v1) ∈ ||Begin(0);Progress(1)|| and v0 ∈ ||τ
D
S (∆, 0)||;

(ii) for k = 1, . . . , n− 1, (vk, vk+1) ∈ ||Progress(k + 1)|| and vk ∈ ||τ
D
S (∆, k)||;

(iii) (vn, vn+1) ∈ ||Dyn||.

Every such sequence of valuations corresponds to a bounded D-model of ∆1 and

vk |= τDS (∆1, k) for 0 ≤ k ≤ n + 1. By the assumption ∆1 |=D ∆2, those bounded

D-models also satisfy ∆2 and then vk |= τDS (∆2, k) for 0 ≤ k ≤ n + 1. Thus, we

have vk |= τDS (∆1, k) ∧ τ
D
S (∆2, k) for 0 ≤ k ≤ n + 1, entailing that the formula

ΓDC(D,∆1,∆2, 0) holds.

For the case that ∆1 is not D-satisfiable, we have the DL-PA formula ΓDS (D,∆1, 0)

is false.

So, the translating formula ΓDS (D,∆1, 0)→ ΓDC(D,∆1,∆2, 0) is DL-PA valid.

“⇐:” Suppose the translated formula is DL-PA valid and we show that ∆1 |=D ∆2.

Let us consider two cases: the formula ΓDS (D,∆1, 0) is true or not.

For the case that ΓDS (D,∆1, 0) is false, by Theorem 4.10, we have ∆1 is D-

unsatisfiable, and in consequence ∆1 |=D ∆2.

For the case that ΓDS (D,∆1, 0) is true, we have ∆1 is D-satisfiable and the formula

ΓDC(D,∆1,∆2, 0) is true. Similarly, by the proof of Theorem 4.10, The valuation

sequence of all bounded models of ∆1 with a bound n can be introduced by the

program Begin′(0); ; 1≤ω≤n Progress
′(ω);Dyn from the valuation v0 such that v0 |=

Init∧τDS (∆1, 0). Therefore, for a valuation sequence V (0), V (1), . . . , V (n), V (n+1)

of a bounded model ρ of ∆1, there exists a valuation sequence v0, v1, . . . , vn, vn+1

where

(i) for every time point 0 ≤ ω ≤ n+ 1, vω ∩ P = V (ω);
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(ii) (v0, v1) ∈ ||Begin(0);Progress(1)|| and v0 ∈ ||τ
D
S (∆, 0)||;

(iii) for k = 1, . . . , n− 1, (vk, vk+1) ∈ ||Progress(k + 1)|| and vk ∈ ||τ
D
S (∆, k)||;

(iv) (vn, vn+1) ∈ ||Dyn||.

As ΓDC(D,∆1,∆2, 0) is true, for every time point 0 ≤ ω ≤ n + 1, we have vω ∈

||τDC (∆1,∆2, ω)||, and in consequence vω ∈ ||τ
D
S (∆2, ω)||. So, the bounded model ρ

is also a model of ∆2, entailing ∆1 |=D ∆2.

Note that the above translations are based on the coherence assumption of dy-

namic theories. Just as for the translation to the satisfiability and consequence

problems in PLTL, the problems deciding refinement and instrumentality can also

be embedded in DL-PA. The following theorem states the correctness of the trans-

lation for the deciding-refinement problem.

Theorem 4.12. Given a coherent dynamic theory D, ∆ |=D i✁J , iff the following

hold:

❼ for all j ∈ J , every ΓDC(D,∆, {j}, 0) is not DL-PA valid

❼ ΓDS (D,∆ ∪ J, 0) is DL-PA satisfiable

❼ ΓDC(D, (∆ ∪ J) \ {i}, {i}, 0) is DL-PA valid

❼ for all j ∈ J , every ΓDC(D, (∆ ∪ J) \ {i, j}, {i}, 0) is not DL-PA valid

❼ end(J) ≤ end(i)

Proof. It is straightforward by the definition of intention refinement and the above

theorems.

Furthermore, the deciding-instrumentality problem can be embedded in the satis-

fiability and validity problems in DL-PA, as shown in the following theorem.

Theorem 4.13. Given a coherent dynamic theory D, ∆ |=D J⋗i, iff the following

hold:
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❼ ΓDS (D,∆ \ J, 0)→ ΓDC(D,∆ \ J, {i}, 0) is not DL-PA valid

❼ ΓDS (D, (∆ \ J) ∪ {j}, 0)→
∧

j∈J Γ
D
C(D, (∆ \ J) ∪ {j}, {i}, 0) is DL-PA valid

❼ end(J) ≤ end(i)

Proof. It is straightforward by the definition of instrumentality and the above

theorems.

4.3 Summary

In this chapter, we translate the decision problems of satisfiability, consequence,

refinement and instrumentality in the belief-intention database into the satisfiabil-

ity and validity problems in PLTL, in the cases whether the given dynamic theory

is coherent or not. The state of the art in the automated tools of PLTL contributes

to develop a solver for refining high-level intentions.

Furthermore, we encode the satisfiability, consequence, deciding-refinement and

deciding-instrumentality problems via DL-PA, under the coherence assumption of

the dynamic theory. The reduction from DL-PA formulas to propositional formulas

allows us to decide refinement between higher and lower intentions via invoking a

SAT solver.4

4The research team I am currently involved is working on developing a theorem prover for DL-
PA via translating into QBF formulas whose satisfiability and validity problems are PSPACE-
complete.



Chapter 5

HTN Planning in PDL

In Chapter 2, we have shown the semantics of hierarchical task network (HTN)

planning. Unfortunately, HTN only has an operational semantics and it lacks a

more logical semantics. As we can see, decomposition is performed in an incremen-

tal way and no global perspective on the HTN specification is considered. In this

chapter we examine restricted HTN planning in the framework of propositional

dynamic logic (PDL) where actions are viewed as programs and decomposition

methods are captured by the program inclusion operator. We restrict all tasks to

be totally ordered by the constraints and that the “maintenance” state constraints

are not considered. Kambhampati et al. [1998] advocate that high-level actions

(“compound tasks”) are supposed to have a primary effect which is nothing but

the postcondition, in order to distinguish them with the effects of basic actions.

For every high-level action, its postcondition is required to be satisfied in its each

execution, while for every basic action, it is supposed that the environment be-

yond its effect should not change. Thus, we introduce pre- and postcondition into

high-level actions in HTN planning. Under the dynamic framework, we first in-

vestigate the modularity of HTN planning domains. Based on the introduction of

pre- and postcondition, we give a coherence condition for HTN planning domain,

which requires that once an action is performed, its postcondition holds; once an

action is refined, its refinement also satisfy its postcondition. Next, we propose

the soundness postulate for actions: when the precondition of a high-level action

84
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holds then every refinement (decomposition) of it guarantees its postcondition.

Furthermore, we also discuss the completeness of actions under the dynamic view:

when the precondition of a high- level action is true then it can be accomplished,

entailing that there is a way to refine it into an executable plan.

This chapter is organized as follows. Section 5.1 addresses the coherence issue of

HTN domains. Section 5.2 introduces the language and semantics of PDL and

briefly recall how classical planning can be defined in PDL. In Section 5.3 we

introduce a PDL-based presentation of HTN planning domains. In Section 5.4 we

recast the standard, operational definition of solutions of a HTN planning problem

in PDL. In Section 5.5 we propose and discuss rationality principles for HTN

planning domains: criteria of modularity and of soundness and completeness of

action refinement. Section 5.6 discusses related work and summarizes this chapter.

5.1 Soundness and Completeness of Decomposi-

tion Methods

Compared with classical planning, hierarchical task network (HTN) planning cap-

tures domain-specific heuristics for search plans. HTN planning is strictly more

expressive than classical planning [Erol et al., 1994a]. That is, solutions of HTN

problems may be structured in a way that are more complex than solutions of

classical planning problems [Höller et al., 2014]. It also means that it is more

difficult to find a more “logical” semantics for HTN planning than for classical

planning.

The semantics of HTN planning offered by [Erol et al., 1994a] is operational and

parallels the planning algorithm UMCP proposed in [Erol et al., 1994b]. In such an

operational semantics, by using the decomposition methods in HTN domains, the

domain design is simplified via avoiding the need for the complete causal models

which require the complete precondition and postcondition, and allow the domain

designer to stipulate that certain actions will be performed “just because he says
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so.” In other words, the way to refine high-level actions extremely depends on

the knowledge of the domain designer on the scenario. However, as mentioned in

Chapter 1, in most real-world domains, it is difficult for a domain designer, as a

human being, to consider all possible decomposition methods. Furthermore, an

alternative question may arise: are these decomposition methods sound? Unfortu-

nately, there is no a clear semantics for HTN decomposition methods to evaluate

the coherence of domains.

Let us illustrate the coherence issue by an abstract example. Suppose the only

decomposition method for high-level action α is (α, [{(t : β)}, (t, p)]). The pair

[{(t : β)}, (t, p)] is a task network which only contains a task (t : β) a constraint

(t, p) stipulating that p should be true immediately after t. So the only way to

perform α is by performing β, with a postcondition p. Suppose moreover that β is

also a high-level action and that its only decomposition method is (β, [{(γ, t′)}, ∅]).

So the only way to perform β is to apply γ and now suppose γ has a postcondition

of ¬p. No task involving α can ever be solved. We call such a HTN planning

domain description unsound. It is reasonable to expect HTN planning domain

descriptions not to contain unsound decomposition methods. This is a simple

example, and more complex unsound decomposition methods can be designed. In

order to evaluate the coherence of domains, we need to go beyond the operational

semantics.

In HTN planning, high-level actions do not have preconditions and effects. This

contrasts with basic actions, which are described by their preconditions and ef-

fects just as in classical planning. One may bring forward philosophical reasons

against such a heterogeneous representation of knowledge. We do not enter that

debate here, but rather observe that several authors gave more practical arguments

for equipping high-level actions with preconditions and effects, leading to hybrid

planning [Kambhampati et al., 1998] which is a combination of HTN planning

and classical planning. Kambhampati et al. advocate high-level actions to have

pre- and postcondition, just as for basic actions. The postcondition of high-level

actions is called primary effect which holds after performing the high-level action

and is an arbitrary formula while the postcondition of basic actions is in form of a
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conjunction of literals. The pre- and postcondition of actions can be captured by

state constraints: (l, t) with meaning that the literal l holds immediately before

the action t and (t, l) with meaning that l holds immediately after t. Whereas, a

high-level action may have multiple ways to accomplish, it may have different after-

state constraints. For example, the action “gotoMelbourne” has at least two de-

composition methods: by train and by plane. The by-train decomposition method

includes after-state constraints (AtTrainStation, t) and (AtMelbourne, t) while the

by-plane decomposition method includes after-state constraint (AtAirport, t) and

(AtMelbourne, t) where t is the last subtask in the two decomposition methods

respectively. In this example, AtMelbourne is the primary effect of the high-level

action gotoMelbourne. The postcondition of high-level actions indeed is considered

to capture their intentional goals.

Indeed, it is not obvious to describe all effects of a high-level action α, one of the

reasons being that these effects may in particular be conditional on the refinement

of α to be chosen. For example, the primary effect of the high-level action of

building a house is that I have a house. Further effects may obtain, depending

on whether I build the house myself or hire a builder: I either have a bad back,

or an empty bank account. These two effects are non-deterministic and do not

dominate in all effects of the action of building a house. We therefore consider that

high-level actions are not described by their effect but only by their postcondition,

i.e., primary effects.

In this chapter we introduce the precondition and postcondition of high-level ac-

tions which are both in form of arbitrary formulas1. Based on the pre- and postcon-

dition of actions, we illustrate the coherence condition of the HTN domains. Next

we address the soundness postulate of high-level actions: when the precondition

of the action α holds then all refinements of α should guarantee the postcondition

of α. We also illustrate the completeness postulate of high-level actions: when the

precondition of a high-level action is true then it can be accomplished, entailing

that there is a way to refine it into an executable plan. Our completeness postulate

1In some literature, “effect” is particularly for basic actions which is usually in form of two
sets of variables with meaning positive and negative effects.



Chapter 5. HTN Planning in PDL 88

is similar the “planner completeness” in [Kambhampati et al., 1998]: the planner

is able to return every solution that can be generated by applying decomposition

methods. The completeness postulate can be weakened by requiring refinability

unless there is no executable plan achieving the postcondition of the high-level

action. In this chapter we model HTN planning in the framework of propositional

dynamic logic and examine the soundness and completeness under the dynamic

framework.

5.2 Propositional Dynamic Logic PDL

In the present section we provide the necessary syntactic and semantic definitions

for an extension of propositional dynamic logic [Harel, 1984, Harel et al., 2000]

with intersection and inclusion of programs and with only boolean test programs.

This allows us to define classical planning problems and their solutions in PDL.

5.2.1 Language

Let P be a finite set of propositional variables, with typical elements p, q,. . . Let

Act be a finite set of actions, with typical elements α, β,. . . In examples we use

capital letters for propositional variables (such as HasHouse) and small letters for

actions (such as buildHouse).

Boolean formulas are defined as usual. The set of boolean formulas is noted LP.

Programs are defined by the following grammar:

π ::= α | π; π | π ⊔ π | π ⊓ π | π∗ | ϕ0?

where α ranges over Act and ϕ0 over LP. The programs π; π′, π ⊔ π′ and π ⊓ π′

are respectively the sequential, nondeterministic and parallel composition of the

programs π and π′; π∗ is bounded iteration of π and ϕ0? is the test of ϕ0.
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Then formulas are defined by:

ϕ ::= p | ⊥ | ϕ→ ϕ | 〈π〉ϕ | π⊑π

The formula 〈π〉ϕ reads “there is a possible execution of π after which ϕ is true”.

The formula π′⊑π reads “every execution of π′ is also an execution of π”, or “the

effects of π′ are implied by the effects of π”.

Other connectives can be defined in the standard way as abbreviations, e.g. the

formula [π]ϕ abbreviates ¬〈π〉¬ϕ, and the program while ϕ0 do π abbreviates

(ϕ0?; π)
∗;¬ϕ0?.

The set of all PDL programs is noted Ξ. A theory is a set of formulas.

5.2.2 Semantics

A model is a tripleM = 〈W,R, V 〉 where W is a non-empty set of possible worlds,

R : Ξ −→ 2W×W associates an accessibility relation Rπ to every program in Ξ,

and V : P −→ 2W associates a set V (p) ⊆ W to every propositional variable p.

The function R must satisfy some constraints:

Rπ1;π2 = Rπ1 ◦Rπ2

Rπ1⊔π2 = Rπ1 ∪Rπ2

Rπ1⊓π2 = Rπ1 ∩Rπ2

Rπ∗ = (Rπ)
∗

Rϕ? = {〈w,w〉 |M,w 
 ϕ}

The pair (M,w) where w ∈ W is called pointed model.

Due to the last clause these constraints have to be defined by mutual recursion

with the truth conditions for formulas:
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M,w 
 p iff w ∈ V (p)

M,w 6
 ⊥

M,w 
 ϕ→ ϕ′ iff M,w 6
 ϕ or M,w 
 ϕ′

M,w 
 〈π〉ϕ iff M, v 
 ϕ for some v ∈ Rπ(w)

M,w 
 π⊑π′ iff Rπ(w) ⊆ Rπ′(w)

where Rπ(w) = {v | 〈w, v〉 ∈ Rπ}.

A set of formulas Γ is true in a model M , written M 
 Γ, if M,w 
 ϕ for every

w ∈ W and ϕ ∈ Γ. A formula ϕ is a consequence of Γ, written Γ |= ϕ, if M 
 Γ

impliesM 
 ϕ for every modelM . A PDL formula ϕ is satisfiable if it has a model

and ϕ is valid if it is a consequence of ∅. The following proposition will be useful.

Proposition 5.1. The following formulas are valid:

π′⊑π → (〈π′〉ϕ→ 〈π〉ϕ) π′⊑π → (π′⊔π2)⊑(π⊔π2)

(ϕ0?; π)⊑π
′ ↔ (ϕ0 → π⊑π′) π′⊑π → (π1⊔π

′)⊑(π1⊔π)

π′⊑π → (π′; π2)⊑(π; π2) π′⊑π → (π′⊓π2)⊑(π⊓π2)

[π1](π
′⊑π)→ (π1; π

′)⊑(π1; π) π′⊑π → (π1⊓π
′)⊑(π1⊓π)

π′⊑π →
(〈

π′
〉

⊤ →
〈

π′ ⊓ π
〉

⊤
)

Proof. We only prove the first item. For every model M and every w ∈ W , if

M,w 
 π⊑π′, then Rπ(w) ⊆ Rπ′(w). Further, if M,w 
 [π′]ϕ then M, v 
 ϕ for

every v ∈ Rπ′(w). So M,w 
 [π]ϕ due to Rπ(w) ⊆ Rπ′(w).

5.2.3 Classical Planning in PDL

Dynamic logic constructors have been widely used for reasoning about actions,

starting from [de Giacomo and Lenzerini, 1995]. Now we show how to model

propositional classical planning in PDL.

Let us recall the notions of classical planning which are shown in Section 2.2.

A propositional planning domain is a tuple D = (O, γ) where O is a set of basic
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actions and γ is a state-transition function on O. A propositional classical planning

problem is a tuple P = 〈D, sI , G〉 where sI is the initial state and G is a conflict-

free conjunction of literals. The solution of a classical planning problem P is a

sequence of actions in O which is executable in the initial state sI .

Just as for the belief-intention databases in Chapter 3, we rewrite the domain of

classical planing as a dynamic theory. In propositional classical planning, only

ground basic actions are considered and we use Act0 to denote the set of basic ac-

tions, which is the name of actions in O. The behavior of basic actions is described

by a dynamic theory D = 〈pre, post〉: the precondition and postcondition of basic

actions are described by mappings pre, post : Act0 −→ LP associating to each

action a boolean formula, and Formally, the classical planning domain D = (O, γ)

is written as the dynamic theory Dclass = 〈pre, post〉 such that:

for every (α, pre(o), eff+(α), eff−(α)) ∈ O, pre(α) =
∧

p∈pre(α) and post(α) =
(
∧

p∈eff+(α) p
)

∧
(
∧

p∈eff−(α) ¬p
)

.

The intended behavior of actions can be captured in PDL by the following theories:

Fml(pre) = {pre(α)↔ 〈α〉⊤ | α ∈ Act0}

Fml(post) = {[α]post(α) | α ∈ Act0} ∪

{p→ [α]p | p /∈ eff−(α)} ∪

{¬p→ [α]¬p | p /∈ eff+(α)}

The formulas in Fml(pre) say that each action α is executable exactly when its

precondition pre(α) is true. The formulas in Fml(post) say that the effects of

each action α obtain, that the variables that are not negatively impacted by α

remain true and that the variables that are not positively impacted by α remain

false. Note that Fml(post) is finite because P is so.

For a classical planning domain D, we define its theory by

Fml(Dclass) = Fml(pre) ∪ Fml(post)
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When M 
 Fml(Dclass) then we say that M is a model of Dclass.

For a classical planning problem P = 〈D, sI ,Goal〉, we define a formula for the

initial state sI as Init =
∧

p∈sI
p and suppose Dclass is the dynamic theory for the

classical planning domain.2 A solution to P is a sequence α1; · · · ;αn of actions such

that Fml(Dclass) |= Init → 〈α1; · · · ;αn〉Goal. The following proposition rephrases

solution in terms of more general consequence:

Proposition 5.2. There exists a solution to P if and only if

Fml(Dclass) |= Init→
〈(

⊔

α∈Act

α
)∗〉

Goal.

5.3 HTN Planning Domains in PDL

In Chapter 2, we have clarified the terminologies about actions in classical planning

and HTN planning. In this chapter, we stipulate that the ground action type in

HTN planning, for “compound task” is called high-level action and for “primitive

task” is called basic actions. Here we omit the terminology for the action token.

In propositional HTN planning, it is presupposed that the set of actions Act is

partitioned into two sets:the set of basic actions Act0 and the set of high-level

actions Act \ Act0. We use α, β for arbitrary elements of Act as before and use

a, b, . . . for typical elements of Act0. A plan is a sequence of basic actions and

a primitive program is a program which does not include any high-level actions.

The formula consists of primitive programs and boolean formulas is called primitive

formula.

As we have said in Section 5.1, standard presentations of HTN planning contain

explicit descriptions of preconditions and effects only for the basic actions. We

here suppose that all actions have preconditions and effects. While we require the

effects to be STRIPS-like for the basic actions, we allow high-level actions to have

2It is usually supposed that Init completely describes a classical valuation and Goal is a
conjunction of literals, but we allow Init to be incomplete and Goal to be any boolean formula
here.
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any boolean formula as an effect. For example, the effect of the high-level action of

travelling abroad could be a formula such as ¬InFrance∧(InGermany∨InChina∨. . .).

5.3.1 HTN Planning Domains with Pre- and Postcondi-

tion

Recall that in the propositional HTN planning domain D = (O,M), the set O

is the set of operators which are basic action types and the set M consists of

decomposition methods (α, d) which means that the high-level action α can be

decomposed into the task network d. Similar for the domain of classical plan-

ning, we take all the action names in O into a set of basic actions Act0. Here

we restrict the HTN planning domain to only include task networks in which

all tasks in d are totally ordered by the constraints and in which the “main-

tenance” state constraints (t, l, t′) are not considered. Formally, for the sub-

task network d = [{(t1 : α1), . . . , (tn : αn)}, ϕ], we define a sequential program

πd = 〈ϕi1?;αi1 ;ϕi1?;ϕ
i2?;αi2 ;ϕi2?; . . . ;ϕ

in?;αin ;ϕin?〉 where

❼ the total order 〈ti1 , ti2 , . . . , tin〉 satisfies the constraint formula ϕ by the def-

inition of satisfaction of constraints (Definition 2.1)

❼ ϕik =
∧

(ψ,tik )∈ϕ
ψ

❼ ϕik =
∧

(tik ,ψ)∈ϕ
ψ

Intuitively, ϕik captures all the state constraints (ψ, tik) which hold immediately

before tik and ϕik captures all the state constraints (tik , ψ) which hold immediately

after tik . Note that the formula ψ is restricted as a literal in standard HTN

planning but here it is allowed to be any boolean formula.

Remark 5.1. To relax the restriction of totally ordered tasks, we can enumerate all

possible sequences on tasks which satisfy the partial orders among tasks and then

use the non-deterministic operator to combine these sequences. Formally, suppose

tasks in a task network d = [{(t1 : α1), . . . , (tn : αn)}, ϕ] are not totally ordered.
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Then let d1, . . . , dl be all sequences of all tasks in d which satisfy the constraints in

d. The PDL program of task network d is represented by d1⊔ . . .⊔dl, which means

that only one order of tasks needs to be chosen to do. However, as the number

of the possible ordering, in the worst case, is factorial in the number of tasks, the

length3 of the PDL programs is also factorial. For the purpose of simplicity, in this

chapter we suppose all tasks are totally ordered.

An HTN planning domain D = (O,M) is rewritten as a dynamic theory Dhtn =

〈pre, post, ref〉 where

pre : Act −→ LP

post : Act −→ LP

ref : Act −→ 2Ξ

and where the effect function post is STRIPS-like for basic actions: for every

a ∈ Act0, post(a) is of the form
(
∧

p∈eff+(a) p
)

∧
(
∧

p∈eff−(a) ¬p
)

for some sets

eff+(a) and eff−(a) such that eff+(a)∩ eff−(a) = ∅ and the refinement function

ref associates to each high-level action α the set of sequential programs πd corre-

sponding to the subtask network d for every (α, d) ∈ M. We also suppose that

there is no basic action a such that post(a) is equivalent to ⊥ and the pre- and

postcondition of high-level actions are arbitrary boolean formulas. The refinement

function ref must be such that basic actions cannot be refined: ref(a) = ∅ for every

a ∈ Act0.

For the unsound abstract example in Section 5.1, we have ref(α) = {(β; p?)} and

ref(β) = {γ}. Let us formalize this example and put the test program p? into the

postcondition of α. Then we get the following dynamic theory.

Example 5.1. Suppose the high-level action α has postcondition p and its subtask

β has a valid postcondition for the purpose of simplicity. Suppose furthermore

that β has only one refinement γ which is a basic action with an effect ¬p. Let us

3The length of PDL programs is defined as the length of DL-PA programs, i.e., the number of
symbols used to write down the program without “〈”,“〉” and parentheses.
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Table 5.1: An HTN Planning Domain DAB
htn: Traveling from A to B

pre(goAB) = AtA post(goAB) = AtB ref(goAB) = {TaxiAB,walkAB}

pre(TaxiAB) = AtA post(TaxiAB) = AtB ref(TaxiAB) = {(rideAB; pay)}

pre(walkAB) = AtA post(walkAB) = AtB∧¬AtA ref(walkAB) = ∅

pre(rideAB) = AtA post(rideAB) = AtB∧¬AtA ref(rideAB) = ∅

pre(pay) = Money post(pay) = ¬Money ref(pay) = ∅

suppose that there are no other postcondition.

pre(α) = ϕα post(α) = p ref(α) = {β}

pre(β) = ϕβ post(β) = ⊤ ref(β) = {γ}

pre(γ) = ⊤ post(β) = ¬p ref(γ) = ∅

Next let us consider a typical example that is inspired from [Erol et al., 1996].

Example 5.2. Suppose an agent intends to travel from A to B and the HTN

planning domain DAB
htn is described by Table 5.1. The set of basic actions is Act0 =

{pay, rideAB, walkAB}. The refinement ways of travelling from A to B are walking

and going by taxi which is refined into riding the taxi and then paying. Note that

post(goAB) does not mention the possible effect ¬Money, which is only produced

when goAB is refined to TaxiAB.

5.3.2 Expressing HTN Planning Domains in PDL

Just as for classical planning, the behavior of actions is captured in PDL by the

following theories:

Fml(pre) = {〈α〉⊤ ↔ pre(α) | α ∈ Act}

Fml(post) = {[α]post(α) | α ∈ Act} ∪

{p→ [a]p | a ∈ Act0 and p /∈ eff−(a)} ∪

{¬p→ [a]¬p | a ∈ Act0 and p /∈ eff+(a)}

Fml(ref) = {〈α〉⊤ → π⊑α | α ∈ Act, π ∈ ref(α)}
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Note that all these sets are finite because Act and P are so. So basic actions

behave like STRIPS actions, while the description of high-level actions are less

constrained, leaving room for side effects and conditional effects. We define the

theory of an HTN planning domain by:

Fml(Dhtn) = Fml(pre) ∪ Fml(post) ∪ Fml(ref).

When M 
 Fml(Dhtn) then we say that M is a model of Dhtn.

We now list some properties of HTN theories that will be useful in the sequel.

Proposition 5.3. Let α ∈ Act. Then

Fml(post) |= π ⊑ α→
[

π
]

post(α).

Proof. Suppose M is a model of Fml(post) and M,w 
 π ⊑ α, i.e., Rπ(w) ⊆

Rα(w). As M,w 
 [α]post(α) we have M, v 
 post(α) for every v ∈ Rπ(w). So

M,w 
 [π]post(α).

The next result says that basic actions behave in a deterministic way.

Proposition 5.4. Let a ∈ Act0 be basic actions and let ϕ0 ∈ LP be a boolean

formula. Then

Fml(post) |= 〈a〉ϕ0 → [a]ϕ0.

Proof. Suppose M is a model of Fml(post). Then, for any w in M :

M,w 
 [a]
(

(

∧

p∈eff+(a)

p
)

∧
(

∧

p∈eff−(a)

¬p
)

)

∧

(

∧

p/∈eff−(a)

p→ [a]p
)

∧
(

∧

p/∈eff+(a)

¬p→ [a]¬p
)

It is easy to check that the valuation associated to each possible world v ∈ Ra(w)

is unique: if p ∈ eff+(a)∪eff−(a) then the truth value of p is defined with respect

to the effect functions; if p 6∈ eff+(a) ∪ eff−(a) then the truth value of p in v is
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determined by its truth value at w. So if M, v 
 ϕ0 holds for some v ∈ Ra(w)

then M, v 
 ϕ0 holds for every v ∈ Ra(w).

Observe that due to Proposition 5.1,

Fml(post) |= (a1;. . .;an)⊑π →
(〈

a1;. . .;an
〉

⊤ →
〈

(a1;. . .;an) ⊓ π
〉

⊤
)

.

always holds. The converse implication fails to hold:

Fml(post) 6|=
〈

(a1;. . .;an) ⊓ π
〉

⊤ → (a1;. . .;an)⊑π

because a possible world may have more than one Ra1;···an-successor.

5.4 HTN Planning Problems and Their Solutions

in PDL

In this section we encode HTN planning problems and their solutions in PDL.

5.4.1 HTN Planning Problems

For an HTN planning problem Phtn = 〈D, sI , d〉 where the tasks in the initial

task network d are totally ordered by the constraints in d, we define a formula

for the initial state sI as Init =
∧

p∈sI
p and suppose Dhtn is the dynamic theory

for the HTN planning domain.4 Then we rewrite the HTN planning problem as

Phtn = 〈Dhtn, Init, π
d〉.

An HTN planning problem of Example 5.2 is a triple 〈DAB
htn, Init, goAB〉 where

Init = AtA ∧ ¬AtB ∧Money.

4It is usually supposed that Init is a complete description of a state, but we do not need that
requirement here.
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5.4.2 Solutions of HTN Planning Problems

The definitions of solutions of HTN planning problems that can be found in the

literature are mainly in terms of fixed-points [Erol et al., 1994a]. These solutions

are basically obtained by refining the ‘goal program’ step-by-step until a primitive

program is obtained. We now recast this definition in PDL, in three steps.

First, for a primitive program π0 which does not include any high-level actions,

we can define its completion in PDL as follows:

comp(Dhtn, Init, π0) = {a1;. . .;an | Fml(pre)∪Fml(post) |= Init→〈(a1;. . .;an)⊓π0〉⊤}.

So the completion of a primitive program is the set of all plans that are executable

in the initial state and compatible with the primitive program.

Second, the reduction of a program π in an HTN planning domain Dhtn is defined

by:

red(Dhtn, π) = {π
α
pre(α)?;π′ | α occurs in π and π′ ∈ ref(α)}

where πα
pre(α)?;π′ is obtained from π by replacing some occurrence of α in π by

pre(α)?; π′. Observe that when π is a primitive program then red(Dhtn, π) = ∅.

The function red(Dhtn, π) behaves in a way such that, under Dhtn, only programs

included in π are produced. This is stated as the next result.

Proposition 5.5. If π′ ∈ red(Dhtn, π) then Fml(Dhtn) |= π′⊑π.

Proof. Suppose Fml(Dhtn) is satisfiable. The proof is by induction on the structure

of π and uses Proposition 5.1. For the base case π is one action α and α′ ∈ ref(α)

and then π′ = pre(α)?;α′. As Fml(Dhtn) |= 〈α〉⊤ → α′ ⊑ α and pre(α) ↔

〈α〉⊤, then Fml(Dhtn) |= pre(α) → α′ ⊑ α. By Proposition 5.1, Fml(Dhtn) |=

pre(α)?;α′⊑α. So Fml(Dhtn) |= π′ ⊑ π.

For the induction step, we only prove the case π = π1; π2 such that π′
1; π2 ∈

red(Dhtn, π). Suppose the induction hypothesis holds that if π′′
1 ∈ red(Dhtn, π1) then
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Fml(Dhtn) |= π′′
1⊑π1. According to the definition of red, we have π′

1 ∈ red(Dhtn, π1).

Then Fml(Dhtn) |= π′
1⊑π1. Then by Proposition 5.1, Fml(Dhtn) |= π′

1; π2⊑π1; π2.

Finally, the solutions of an HTN planning problem are primitive plans that defined

recursively as follows:

sol1(Dhtn, Init, π) =











comp(Dhtn, Init, π) if π is primitive

∅ otherwise

solk+1(Dhtn, Init, π) = solk(Dhtn, Init, π) ∪
⋃

π′∈red(Dhtn,π)

solk(Dhtn, Init, π
′)

sol(Dhtn, Init, π) =
⋃

k

solk(Dhtn, Init, π)

Now we connect solutions of HTN planning problems and consequence in PDL:

Theorem 5.6. Let Phtn = 〈Dhtn, Init, π〉 be an HTN planning problem. Then

a1;. . .;an ∈ sol(Dhtn, Init, π) implies Fml(Dhtn) |= Init→ 〈(a1;. . .;an) ⊓ π〉⊤.

Proof. Suppose Fml(Dhtn) is satisfiable. The proof is by induction on the number

of iterations that are required to obtain the solution a1;. . .;an. For the base case

k = 1, when a1;. . .;an ∈ sol1(Dhtn, Init, π) then π must be a primitive plan. It

follows by the definition of comp that Fml(Dhtn) |= Init→ 〈(a1;. . .;an) ⊓ π〉⊤.

For the induction step, suppose the induction hypothesis holds up to k steps, i.e.,

a1;. . .;an ∈ solk(Dhtn, Init, π) implies

Fml(Dhtn) |= Init→ 〈(a1;. . .;an) ⊓ π〉⊤.

Suppose a1;. . .;an is in solk+1(Dhtn, Init, π), but not in solk(Dhtn, Init, π). Then

by definition of solk there exists a π′ ∈ red(Dhtn, π) such that a1;. . .;an is in

solk(Dhtn, Init, π
′). By induction hypothesis we have

Fml(Dhtn) |= Init→ 〈(a1;. . .;an) ⊓ π
′〉⊤.
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As π′ ∈ red(Dhtn, π), by Proposition 5.5 we have Fml(Dhtn) |= π′⊑π. Therefore by

Proposition 5.1 we have

Fml(Dhtn) |= Init→ 〈(a1;. . .;an) ⊓ π〉⊤.

The converse of Theorem 5.6 and its corollary do not hold because every plan has

to be able to be generated by reductions. To see this consider Example 5.2, where

Fml(DAB
htn) |= AtA → 〈rideAB ⊓ goAB〉⊤ but rideAB /∈ sol(DAB

htn,AtA, goAB). That

is, the plan rideAB of just taking the taxi without paying also achieves the primary

effect of goAB, but it cannot be obtained by refinements.

The following proposition bridges PDL and the plan-existence problem for HTN

planning.

Proposition 5.7. Let Phtn = 〈Dhtn, Init, π〉 be an HTN planning problem. If Phtn

has a solution then

Fml(Dhtn) |= Init→ 〈
(

⊔

Act0
)∗
⊓ π〉⊤.

Proof. By the valid formula 〈a1;. . .;an〉ϕ→ 〈(
⊔

Act0
)∗
〉ϕ.

5.5 Rationality Postulates for HTN Planning

We now formulate and discuss several postulates that, we claim, reasonable HTN

planning domains should satisfy.

5.5.1 Modularity Postulate of HTN Domains

Intuitively, planning domains should satisfy several properties that can be related

to the concept of modularity. Such principles were studied in the reasoning about
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actions literature [Herzig et al., 2006, Herzig and Varzinczak, 2007, Varzinczak,

2010]. One of these principles says that pre contains all information about action

executability. (This hypothesis of complete information is also made by Reiter

w.r.t. his Poss predicate specifying action preconditions [Reiter, 2001]). Our Ex-

plicit Executability Constraint (EE) states this principle as follows:

If Fml(Dhtn) |= 〈α〉⊤ ↔ ϕ then Fml(pre) |= 〈α〉⊤ ↔ ϕ. (EE)

Let us use the following example to illustrate this constraint.

Example 5.3. Consider the following HTN planning domain Dhtn:

Fml(pre) = {〈α〉⊤ ↔ ϕα, 〈β〉⊤ ↔ ϕβ}

Fml(post) = {[α]p, [β]¬p}

Fml(ref) = {〈α〉⊤ → β⊑α, 〈β〉⊤ → πβ⊑β}

Suppose M be a model of Fml(Dhtn). Suppose M contains a possible world w

such that M,w 
 ϕα. Then Rα(w) is non-empty due to formula 〈α〉⊤ ↔ ϕα in

Fml(pre). Due to formula 〈α〉⊤ → β⊑α in Fml(ref) we moreover have M,w 


β⊑α, and therefore Rα(w) ⊆ Rβ(w). However, it entails that for every w′ ∈

Rα(w), M,w′

 p ∧ ¬p. Thus, such a world w cannot exist. It follows that for

every model M such that M 
 Fml(Dhtn) we have M 
 ¬ϕα, that is, Fml(Dhtn) |=

〈α〉⊤ ↔ ⊥. So Dhtn violates Constraint (EE) as we have Fml(Dhtn) |= 〈α〉⊤ ↔ ⊥

but we don’t have Fml(pre) |= 〈α〉⊤ ↔ ⊥.

A second principle that should hold is that information about refinement should

not be relevant for the status of primitive formulas that do not include high-level

actions. Primitive Modularity Constraint (PM) states this principle as follows:

for every primitive formula ϕ0,

if Fml(Dhtn) |= ϕ0 then Fml(pre) ∪ Fml(post) |= ϕ0. (PM)

The following example shows that Constraint (PM) is not always satisfied.
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Example 5.4. Let Act0 = {a} and let Act = Act0∪{α, β}. Let Dhtn be a planning

domain as captured by the following formulas:

Fml(pre) = {〈α〉⊤ ↔ ⊤, 〈β〉⊤ ↔ ⊤, 〈a〉⊤ ↔ ⊤}

Fml(post) = {[a]⊤, [α]q, [β]¬q} ∪ {p→ [a]p | p ∈ P} ∪ {¬p→ [a]¬p | p ∈ P}

Fml(ref) = {〈α〉⊤ → a⊑α, 〈β〉⊤ → a⊑β}

We have Fml(Dhtn) |= a⊑α ∧ a⊑β due to Fml(pre) and Fml(ref). By Proposi-

tion 5.1 we then have Fml(Dhtn) |= [a]q ∧ [a]¬q due to Fml(post), and therefore

Fml(Dhtn) |= ⊥ due to Fml(pre). However, it is not the case that Fml(pre) ∪

Fml(post) |= ⊥ and consequently Constraint (PM) is violated.

5.5.2 Coherence Condition of HTN Domains

Another important postulate of HTN planning domains concerns coherence. The

dynamic logic actually provides HTN planning with a logical semantics to evaluate

the soundness of HTN domains.

Definition 5.1. An HTN planning domain Dhtn is coherent if Fml(Dhtn) is satis-

fiable.

Intuitively, the soundness of HTN planning domains captures that once an action

is performed, its postcondition will hold and that once an action is refined, its

refinement will satisfy its postcondition.

Let us revisit the abstract example:

Example 5.5. The planning domain of Example 5.1 is captured by

Fml(pre) = {〈α〉⊤ ↔ ϕα, 〈β〉⊤ ↔ ϕβ , 〈γ〉⊤ ↔ ⊤}

Fml(post) = {[α]p, [β]⊤, [γ]¬p, }

Fml(ref) = {〈α〉⊤ → β⊑α, 〈β〉⊤ → γ⊑β}

Suppose the above HTN domain is coherent and M is one of its model. When

ϕα ∧ ϕβ is satisfiable then there exists a pointed model (M,w) such that M,w 
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ϕα ∧ ϕβ. Then we have M,w 
 β⊑α ∧ γ⊑β, and in consequence M,w 
 γ⊑α.

By [α]p ∧ [γ]¬p, for every w′ ∈ Rα(w), M,w′

 p ∧ ¬p. Thus, such a world w

cannot exist and there is some logical inconsistency between the precondition of

the actions.

When ϕα∧ϕβ is unsatisfiable then the HTN domain is coherent, but action α can

never be refined into a plan.

5.5.3 Soundness Postulate of Actions

We now formulate a soundness postulate for high-level actions. It requires that

when a high-level action α is executable then every possible refinement of α guar-

antees the postcondition of α. This is conditional on the precondition of α: if

they are false then there is no point in refining α and π may have arbitrary con-

sequences.

Definition 5.2. Given a model M and world w in M of HTN planning domain

Dhtn, we say that the high-level action α ∈ Act is soundly refinable at (M,w) on

Dhtn if and only if either M,w 6
 pre(α) or for every π ∈ ref(α) and v ∈ Rπ(w),

M, v 
 post(α).

If the action α is soundly refinable at every pointed model (M,w) in HTN planning

domain Dhtn, we say α is soundly refinable in Dhtn.

Indeed a coherent HTN planning domain guarantees the soundly refinability of

actions, as the theorem shows:

Theorem 5.8. If the HTN planning domain Dhtn is coherent, then every high-level

action in Act is soundly refinable in Dhtn.

Proof. Suppose the HTN planning domain Dhtn is sound then Fml(Dhtn) is satisfi-

able. Assume M is a model of Fml(Dhtn) and M contains a possible world w. If

M,w 6
 pre(α) then α is soundly refinable at (M,w). Otherwise, by Fml(ref), for

all π ∈ ref(α), we haveM,w 
 π⊑α. As Fml(post),M,w 
 [α]post(α). It entails
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that for every v ∈ Rπ(w), M, v 
 post(α), and in consequence that α is soundly

refinable at (M,w).

From the above theorem, we can conclude that for every high-level action, the

following holds:

Fml(Dhtn) |= pre(α)→
[

⊔

ref(α)
]

post(α).

Actually, the consequent captures the soundly refinability of action α.

5.5.4 Completeness Postulate of Actions

Symmetrically to soundness postulate, one may formulate a postulate of com-

pleteness: when the precondition of a high-level action is true then it should be

refinable in some way.

Definition 5.3. Given a model M and world w in M of HTN planning domain

Dhtn we say that high-level action α ∈ Act is completely refinable at (M,w) on

Dhtn if and only if either M,w 6
 pre(α) or there is a π ∈ ref(α) such that Rπ(w)

is not empty.

If the action α is completely refinable at every pointed model (M,w) in HTN

planning domain Dhtn, we say α is completely refinable in Dhtn.

In other words, in every possible, as long as the precondition of α is true, then

one of the programs refining α is executable. Next we show that the completely

refinability can be captured in PDL.

Theorem 5.9. A high-level action α ∈ Act \ Act0 is completely refinable in HTN

planning domain Dhtn if and only if

Fml(Dhtn) |= pre(α)→
〈

⊔

ref(α)
〉

⊤.
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Proof. “⇒:” Assume the high-level action α is completely refinable in the HTN

domain Dhtn. Suppose M is a model of Fml(Dhtn) and M,w 
 pre(α). Then there

is a π ∈ ref(α) such that Rπ(w) is not empty. So Fml(Dhtn) |=
〈

π
〉

⊤. By the

existence of π, we have
〈
⊔

ref(α)
〉

⊤.

“⇐:” Assume Fml(Dhtn) |= pre(α) →
〈
⊔

ref(α)
〉

⊤. If M,w 6
 pre(α) then α is

completely refinable at (M,w). Else as
〈
⊔

ref(α)
〉

⊤, we have one π ∈ ref(α) such

that M,w 
 〈π〉⊤. It means Rπ(w) is not empty, entailing that α is completely

refinable at (M,w).

The soundness of HTN planning domains can not guarantee the completely refin-

ability of every high-level action. Let us take up the example of travelling from A

to B:

Example 5.6. Consider the theory Fml(DAB
htn) in Example 5.2, it is not difficult to

check Fml(DAB
htn) is satisfiable, that is, the HTN planning domain DAB

htn is sound. The

high-level action goAB is completely refinable in DAB
htn, because goAB can be refined

into walkAB, it means that once the precondition AtA of the action goAB holds, one

of its refinements walkAB can performed. But, the high-level action TaxiAB is not

completely refinable in DAB
htn, because its unique refinement (rideAB; pay) requires

Money which the precondition AtA of the action TaxiAB can not entail.

We conclude this section by showing that complete refinability can be weakened,

viz. by requiring that an executable high-level α must be refinable unless there is

no primitive plan achieving the primary effect of α. In formulas, we require

Fml(Dhtn) |=
(

pre(α) ∧
〈(

⊔

Act0
)∗〉

post(α)
)

→
〈

⊔

ref(α)
〉

⊤.

This is similar to what is called planner completeness in [Kambhampati et al.,

1998], which, as we understand it, requires that every solution that can be obtained

by a classical planner is also obtainable by the HTN planner. This requirement

is different from what is called schema completeness in [Kambhampati et al.,

1998], which is difficult to capture formally: it basically requires that ref lists all

refinements that are intuitively desirable.
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Example 5.7. For the weaken completeness postulate, the high-level action TaxiAB

in Example 5.2 is still not completely refinable in DAB
htn.

5.6 Discussion and Summary

Our work is related to the representation of HTN in Situation Calculus by Baral

and Son [1999] who extended the high-level action programming language Con-

Golog by adding a special HTN construct. Later, Gabaldon [2002] encoded HTN

planning problem by Golog and ConGolog by means of the their proc operator,

without adding an HTN construct. In both cases, they did not question the prop-

erties of the HTN planning domain by taking advantage of the reasoning potential

of the Situation Calculus. More recently, Goldman [2009] gave a semantics in

terms of ConGolog where HTN domains are restricted to be totally ordered by

the constraints or not to be ordered at all.

The soundness problem of HTN planning also concerns the verification problem.

[Behnke et al., 2015] defined HTN plan verification as the problem of determining

whether a task network is a solution to a planning problem. Later they consid-

ered to verify a sequence of primitive tasks instead of a primitive task network

[Behnke et al., 2017, Bercher et al., 2016]. But in this chapter, we evaluate the

coherence of the HTN planning domain rather than evaluate the verification of a

task network. Indeed, for an HTN problem with an incoherent planning domain,

it is possible to find a solution to the planning problem, in the case that there are

no contradictive decomposition methods selected. In other words, we focus on the

whole planning domain while the verification problem is in terms of a sequence of

applying decomposition methods.

In this chapter we proposed a representation of HTN in PDL augmented by pro-

gram inclusion. Taking advantage of the PDL program operators, we can repre-

sent more general HTN decomposition methods compared with the standard HTN

planner, such as the iteration of actions. Moreover, we discussed postulates which

a reasonable HTN planning domain should have, including modularity postulate
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and coherence condition for domains and soundness and completeness postulates

for high-level actions, with formalizing them in PDL.

The extension of PDL with the inclusion of programs is related to grammar logics

[Demri, 2001, Fariñas del Cerro and Penttonen, 1988]. Later, Zhou and Zhang

[2009] proposed the idea of inclusion in PDL and proved that the extension is more

expressive than the standard PDL. But the decidability and complexity are absent.

However, given results on grammar logics, our extension of PDL is undecidable

where the undecidability comes from the reduction of the ambiguity problem for

the context-free grammar. However, we are convinced that in particular for HTN

planning, it is possible to find a fragment corresponding to regular grammars are

decidable by restricting the syntax of PDL.

In this chapter, we only consider a restricted HTN problems where all tasks are

totally ordered by the constraints and the “maintenance” state constraints are not

allowed so that they can be expressed by sequential composition and tests. We

believe that the rich language of programs of PDL, with such as the iteration, helps

us to design a more general way to refine high-level actions.



Chapter 6

HTN with Task Insertion and

State Constraints

As mentioned before, solutions of hierarchical task network (HTN) planning are

generated only by refining high-level actions step-by-step. It is usually a challenge

to provide a complete domain which includes all possible decomposition meth-

ods for all compound tasks, while defining only a partially hierarchical domain

is not sufficient to produce all desired solutions. Hierarchical task network with

task insertion (TIHTN) planning [Geier and Bercher, 2011] relaxes the restric-

tion on solutions and allows solutions generated not only by the decomposition

of high-level actions, but also by the insertion of basic actions from outside the

decomposition hierarchy.

The complexity of the plan-existence problem for HTN planning is undecidable,

even for propositional HTN planning [Erol et al., 1994a]. While for TIHTN plan-

ning, the complexity of the plan-existence problem is reduced to NEXPTIME-

complete for propositional case and to 2-NEXPTIME-complete for lifted case

[Alford et al., 2015b]. The lifted TIHTN problem differs from propositional TIHTN

problem in the input language: the former accepts first-order language without

function while the latter accepts a propositional language.

108
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Unfortunately, only ordering constraints are considered in TIHTN planning. In

this chapter, we further extend the TIHTN planning by adding state constraints

which are used to specify some states should satisfy some formulas. We show that

just as for TIHTN planning, the solutions of extended TIHTN planning can be

obtained by acyclic decomposition and task insertion, entailing that it is decid-

able without any restriction on decomposition methods. We also prove that the

extension by state constraints does not cause an increase in the complexity of the

plan-existence problem, which stays 2-NEXPTIME-complete (NEXPTIME-

complete for the propositional case), based on an acyclic progression operator.

We also show that TIHTNS planning includes lifted TIHTN planning. As under

task insertion semantics, hierarchical goal network (HGN) planning [Shivashankar

et al., 2013] and goal-task network (GTN) planning [Alford et al., 2016] can be

converted into lifted TIHTN planning. Thus, our framework, TIHTNS planning,

actually covers these two kinds of planning approaches. In addition, we give an al-

ternative embedding of hierarchy-relaxed HGN (HR-HGN) planning [Shivashankar

et al., 2017] in TIHTNS planning without introducing fresh actions.

The rest of the chapter is structured as follows. Section 6.1 shows the motivation

of taking state constraints into account. Section 6.2 presents the definitions of

TIHTNS planning. Section 6.3 presents the acyclic decomposition property of

TIHTNS planning. Section 6.4 proposes the decidability and complexity results

of TIHTNS Section 6.5 shows how to embed lifted TIHTN and HR-HGN into

TIHTNS. Section 6.6 summarizes this chapter.

6.1 State Constraints

State constraints are considered in the conventional HTN planning [Erol et al.,

1994a], but they are not taken into account in TIHTN planning. State constraints

can capture the pre- and postcondition of compound tasks, though in the standard

HTN planning there is no notion of pre- and postcondition of compound tasks.

A compound task is considered as accomplished if its subtasks are accomplished.
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With a state constraint, a formula, as a postcondition, can be required to hold

after accomplishing a compound task.

Every ordering constraint requires that a task t1 must be performed ahead of

another task t2, denoted by t1 ≺ t2. However, ordering constraints cannot fully

represent state constraints. The ‘immediate’ state constraint, which requires a

formula holds immediately before or after a compound task, can be simulated via

introducing a virtual subtask to check whether the formula holds. However, the

‘maintenance’ state constraints (also called trajectory constraints in the Planning

Domain Definition Language 3 (PDDL3) [Gerevini and Long, 2005]) cannot be

represented easily. For instance, suppose a robot is required to always keep 10%

battery for emergency. Its initial compound task is to “clean a room”, decomposed

into “clean the ground” (t1) and “clean the table” (t2). Suppose that “clean the

ground” requires the full battery. Then there is no solution for the TIHTNS

planning problem with such a state constraint. For the original TIHTN planning,

there is an intuitive attempt to simulate that constraint: introducing a virtual

primitive task pt whose precondition is “more than 10% battery” and introducing

two ordering constraints t1 ≺ pt and pt ≺ t2. Assume “charge” means to charge

the battery, then the plan 〈t1;“charge”;pt;t2〉 is a solution of the original TIHTN

planning problem. But it is counter-intuitive and the state constraint of keeping

10% battery is still violated after performing t1.

Furthermore, state constraints are introduced into PDDL3 [Gerevini and Long,

2005] to support hard constraints over state properties of a trajectory and the

specification of preferences. Later, [Sohrabi et al., 2009] extends PDDL3 into

HTN planning where state constraints are used to capture user preferences. State

constraints are also necessary in real-world applications, such as in web service

composition where state constraints are used to describe user preferences [Lin

et al., 2008] and to additionally capture the enforcement of regulations [Sohrabi

and McIlraith, 2009].
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6.2 HTN with Task Insertion and State Con-

straints

In the section, we show how state constraints can be smoothly integrated into

TIHTN planning and we call the extension as hierarchical task network planning

with task insertion and state constraints (TIHTNS).

Actually, [Geier and Bercher, 2011] proposes an alternative simplified formalism

of HTN planning, compared to the conventional HTN of [Erol et al., 1994a]. They

also extend propositional HTN planning into propositional TIHTN planning, based

on the simplified formalism. The lifted TIHTN planning [Alford et al., 2015b] ex-

tends the propositional TIHTN planning by accepting first-order language. Their

semantics are the same and after grounding, a lifted TIHTN problem becomes a

propositional TIHTN problem. Now, we extend the lifted TIHTN planning into

TIHTNS planning, following their formalism. As we show in Chapter 2, Geier and

Bercher use an alternative terminology which is different from that of Erol. For

example, Geier and Bercher use “task name” to denote “action type” while Erol

use “task symbol”. Let us recall the unification of the terminology: the action

type for the compound task is called “high-level action” and for the primitive task

is called “basic action” and that the action token is simply called “task”.

Next we adapt the input language of the lifted TIHTN planning in [Alford et al.,

2015b] based on our unified terminology.

First, we define a function-free first order language L from a set of variables and

a finite set L0 of predicates and constants. We use Atm(L ) to denote the set of

atomic formulas of L and Atm(L0) to denote the set of ground atoms of L .

Next we use tasks, which are syntactically variables, to identify different action

tokens. Every task is associated with an action, which is syntactically a first-

order atom with variables and constants in L . That is, every action typically is

associated with an arity and contains variables which are quantified in a static

domain, so that they can be grounded in the usual way. Those actions which
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can be executed directly are called basic actions, noted O, while others are called

high-level actions, noted C.

Just as for the database perspective, we use a dynamic theory to describe the

behavior of actions.1 Similar to Definition 3.1, a dynamic theory is a tuple D =

〈pre, eff+, eff−〉 where pre : O −→ L and eff+, eff− : O −→ 2Atm(L ) where

eff+(o) ∩ eff−(o) = ∅ for every o ∈ O.

We suppose that O contains the ’empty’ basic action skip where pre(skip) = ⊤

and eff+(skip) = eff−(skip) = ∅.

For a function f : R −→ S, its restriction to a subset X of its domain is f |X =

{(r, s) ∈ f | r ∈ X}. Given a binary relation Q ⊆ R× R, we define its restriction

to X ⊆ R by Q|X = Q ∩ (X ×X); similarly for ternary relations. We extend the

set union basic action ∪ to relations: (R1, R2)∪ (R
′
1, R

′
2) = (R1∪R

′
1, R2∪R

′
2) and

extend functions to sequences: f(〈t1, . . . , tn〉) = 〈f(t1), . . . , f(tn)〉.

6.2.1 HTN Problems

We start to introduce the syntax of HTN planning by task networks.

Definition 6.1 (Task networks). A task network tn = (T,∆, α) is a tuple, where

❼ T is a finite and non-empty set of tasks;

❼ ∆ ⊆ (T ∪ {nil})×L × (T ∪ {nil}) is a set of constraints over T

❼ α : T → C ∪O labels every task with an action.

A task is an instance of an action. With the function α, we allow multiple instances

of an action in a task network. If a task is associated with a high-level action, we

call it compound task, otherwise primitive task. A task network is primitive if it

only contains primitive tasks, otherwise non-primitive.

1In the literature of TIHTN planning, basic actions (operators) are denoted in the form of
tuples of name, precondition, postcondition, as we show in Section 2.2.
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Compared to the ordering constraints in TIHTN planning which are in form of

task-task pairs, we use a triple (ti, ϕ, tj) to denote a state constraint which intu-

itively means that formula ϕ must be true in all states between ti and tj. Specially,

we introduce an idle task nil which designates a task that is accomplished imme-

diately: (nil, ϕ, tj) and (ti, ϕ, nil) mean formula ϕ holds immediately before tj and

after ti, respectively. We suppose nil only occurs in constraints. When ϕ is the

truth constant⊤ then the state constraint (ti, ϕ, tj) becomes an ordering constraint

that just requires that ti is before tj.

Definition 6.2 (Isomorphic task networks). We say that two task networks

tn = (T,∆, α) and tn′ = (T ′,∆′, α′) are isomorphic, noted tn ∼= tn′, if there exists

a bijection δ : T → T ′ where for all t, t′ ∈ T it holds that α(t) = α′(δ(t)) and

(t, ϕ, t′) ∈ ∆ iff (δ(t), ϕ, δ(t′)) ∈ ∆′.

Non-primitive task networks contain compound tasks which cannot be executed

directly by the agent, and decomposition methods tell us how to decompose these

hierarchically.

Definition 6.3 (Methods). Each decomposition method m is a tuple (c, tnm),

where c is a high-level action, called the decomposition method’s head, and tnm is

a task network, whose inner tasks are called the decomposition method’s subtasks.

The intuition of decomposition methods is that high-level action c can be reduced

by the subtask network tnm.

A TIHTNS (planning) problem only differs from an HTN problem or a TIHTN

problem in the solution criterion and they share the syntactical problem descrip-

tion. An HTN problem is based on an HTN domain.

Definition 6.4 (HTN domains). An HTN domain D is a tuple (L , C,O,D,M)

where L is the input language, M is a set of decomposition methods, D is the

dynamic theory, C and O are the sets of high-level actions and basic actions,

respectively, such that C ∩ O = ∅.

Now we have prepared to define HTN problems.
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Definition 6.5 (HTN problems). Given an HTN domain D, an HTN problem

is a tuple P = (D, sI , tnI) where sI is the ground initial state which is a subset of

Atm(L0) and tnI is the initial task network.

Particularly, if D does not contain any variables, we call the problem P a propo-

sitional problem.

The semantics of HTN planning is given through grounding. As the set of predi-

cates and constants L0 is finite, it is easy to translate a lifted HTN problem into

a ground HTN problem. Next we introduce how to ground the HTN problem

P = (L , C,O,D,M, sI , tnI).

Formulas in the first-order language L and actions are grounded in the usual

way: assigning variables in L to constants in L . Let V be all assignments of

L , we use C = {c[v] | c ∈ C} and O = {o[v] | o ∈ O} to denote respectively the

ground high-level action set and the basic action set, where for every assignment

v ∈ V , the syntax χ[v] s.t. (χ = c, o, tn), denote syntactic variable substitution of

the variables in expression χ, with the matching terms from v. For example, by

grounding the action “openDoor(X)” where X is quantified in a “door” domain

{d1, d2, ...}, we can obtain a set of ground actions “openDoor(d1)”, “openDoor(d2)”,

etc.

The dynamic theory needs to be adapted to the basic actions: the variables in

pre(o), eff+(o) and eff−(o) associated with the variables in the basic action o

are instantiated simultaneously while other variables are grounded in the usual

way. For example, given the basic action o = openDoor(X) where pre(o) =

∃Y.HasKey(Y ) and eff+(o) = Opened(X), eff−(o) = ∅ where Y is quanti-

fied in a “key” domain K, by substituting X with d1, we obtain a basic action

o′ = openDoor(d1) with pre(o′) =
∨

k∈K HasKey(k) and eff+(o′) = Opened(d1),

eff−(o′) = ∅. We use D0 to denote the ground dynamic theory obtained from the

dynamic theory D.

Similarly, the ground decomposition method set M obtained from decomposition

method setM is given by
⋃

v∈V {(c[v], tn[v]) | (c, tn) ∈M}.
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Then we call the tuple D
0 = (L , C,O,D0,M) a ground HTN domain of the

domain D = (L , C,O,D,M). For the problem P = (D, sI , tnI), we say P0 =

(D0, sI , tn
0
I), where tn0I is a grounding of the initial task network tnI , is a ground

problem of the problem P . The solutions of an HTN problem are all solutions of

its ground problems. Observe that the ground problem is actually a propositional

HTN problem.

A ground state is a subset of Atm(L0). A set of basic actions O determines a

state-transition function γ : 2Atm(L0) ×O −→ 2Atm(L0), where:

❼ γ(s, o) is defined iff s |= pre(o);

❼ γ(s, o) = (s \ eff−(o)) ∪ eff+(o) if γ(s, o) is defined.

A sequence of basic actions 〈o1, . . . , on〉 is executable in a state s0 iff there exists

a sequence of states s1, . . . , sn such that for all 1 ≤ i ≤ n, γ(si−1, oi) = si.

Here is a simple example of propositional HTN planning problem.

Example 6.1. Suppose we have an initial high-level action gMC for “go to Mel-

bourne center”, the basic action flyM for “fly to Melbourne”, and the basic action

takeTaxi for “take a taxi to the center”. We use At(Mc)and At(Ma) to denote “be-

ing at Melbourne center” and “being at Melbourne airport”. The dynamic theory

D
0 is given by:

❼ pre(flyM) = ⊤, eff+(flyM) = At(Ma), eff−(flyM) = ∅

❼ pre(takeTaxi) = At(Ma), eff+(takeTaxi) = At(Mc), eff−(takeTaxi) = At(Ma))

and the decomposition method is:

❼ m = (gMC, tnm), where tnm = (t2, ∅, (t2, flyM))

Then we have an HTN problem P = (L , gMC, {flyM, takeTaxi},D0,m, sI , tnI) with

sI = ∅ and tnI = (t1, (t1,At(Mc), nil), (t1, gMC)).2

2 We will sometimes omit the braces of singleton sets.
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6.2.2 Task Decomposition

Next we borrow the notion of decomposition in [Geier and Bercher, 2011] and

define how to decompose a compound task with a task network.

In order to indicate the starting point and the end point of a compound task t,

we introduce a pair of ’dummy’ primitive tasks, noted ∗t and t∗.

As nil only occurs in constraints, we suppose the restriction of constraint set ∆ to

a set of tasks T is ∆|T = ∆ ∩ ((T ∪ {nil})×L × (T ∪ {nil})).

Definition 6.6 (Decomposition). Given a ground HTN domain, and a task

network tn=(T,∆, α). Let t ∈ T be a compound task andm =(α(t), (Tm,∆m, αm))

be a decomposition method. Suppose a task network tn′m = (T ′
m,∆

′
m, α

′
m) such

that tn′m
∼= tnm and T ′

m ∩ T = ∅. The decomposition of task t by decomposition

method m is tn′ = (T ′,∆′, α′) where

T ′ = (T \ {t}) ∪ T ′
m ∪ {∗t, t∗}

∆′ = ∆|T\{t} ∪∆′
m ∪ {(∗t,⊤, tj), (tj,⊤, t∗) | tj ∈ T

′
m}

∪ {(t1, ϕ, ∗t) | (t1, ϕ, t) ∈ ∆}

∪ {(t∗, ϕ, t2) | (t, ϕ, t2) ∈ ∆}

α′ = α|T\{t} ∪ α
′
m ∪ {(∗t, skip), (t∗, skip)}

We write tn −−→
t,m

tn′ when tn′ is the decomposition of t by m.

In the resulting task network, the decomposed compound task is replaced with sub-

tasks defined by the decomposition method applied and its corresponding starting

and terminating tasks. The latter two are dummy tasks and are mapped to the

action skip. All state constraints about the decomposed task t are propagated to

∗t and t∗ in ∆′. More precisely, if ϕ holds before t then it also holds before ∗t

and if ϕ′ holds after t then it also holds after t∗. Subtasks should satisfy the inner

constraints introduced by the decomposition method m and should be performed

between ∗t and t∗. In order to distinguish the tasks in the original task network
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tn, the introduced subtask network tn′m is isomorphic with the subtask network

tnm defined in the domain, guaranteeing that all introduced subtasks T ′
m are fresh.

Here we show an example of a step of task decomposition.

Example 6.2 (Example 6.1 continued). We apply the decomposition method m

in tnI to decompose t1, i.e., tnI −−→
t1,m

tn′, where tn′ is:

T ′ ={t2, ∗t1, t1∗}

∆′ ={(t2,⊤, t1∗), (∗t1,⊤, t2), (t1∗,At(Mc), nil)}

α′ ={(t2, flyM), (∗t1, skip), (t1∗, skip)}

After a step of task decomposition, we introduce the hierarchical procedure of task

decomposition which can be viewed as a tree. As the initial task network may

contain more than one task and every task generates a tree via decompositions,

it leads to a forest for the initial task network. In order to integrate them into a

tree, we create a “root”: we introduce a new high-level action ctop not occurring

in D with meaning “to accomplish all the initial tasks” and use a new task t0 to

identify it. We restrict ctop to only decompose into the original initial task network

tnI for the ground HTN problem.

Definition 6.7 (Decomposition trees). Given a ground HTN domain D
0 =

(L , C,O,D0,M), a decomposition tree is a five-tuple Tr = (T,E,∆, α, β) where

❼ (T,E) is a tree, rooted in t0, with nodes T and with directed edges E pointing

towards the leaves;

❼ ∆ is a set of constraints over T ;

❼ Function α : T −→ C ∪O ∪ {ctop} links tasks and actions where α(t0) = ctop

such that ctop is the unique high-level action;

❼ Function β : T −→ M ′ labels inner nodes with decomposition methods

where M ′ =M ∪ {(ctop, tn0)} and tn0 is some task network.
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We write τ(Tr) for the set of the nodes (tasks) of the decomposition tree Tr and

ch(Tr, t) for the set of the direct children of t ∈ τ(Tr) in Tr. We use sub(t) to denote

the set of subtasks of t. We say the task network introduced by the leaf nodes of

Tr together with the constraints about these nodes as the leaf task network of Tr,

denoted by ϑ(Tr).

Definition 6.8 (Valid decomposition trees). A decomposition tree Tr is valid

w.r.t. a ground HTN problem P0 = (D0, sI , tn
0
I) iff the root node of Tr is t0 where

β(t0) = (ctop, tn
0
I) for any inner node t where β(t) = (c, tnm), the following hold:

1. α(t) = c

2. ch(Tr, t) = sub(t) ∪ {∗t, t∗} such that

❼ (sub(t),∆|sub(t), α|sub(t)) ∼= tnm

❼ for every t′ ∈ sub(t): (t′,⊤, t∗), (∗t,⊤, t′) ∈ ∆

3. for every t′ ∈ τ(Tr) ∪ {nil}:

❼ if (t, ϕ, t′) ∈ ∆ then (t∗, ϕ, t′) ∈ ∆

❼ if (t′, ϕ, t) ∈ ∆ then (t′, ϕ, ∗t) ∈ ∆

4. there is no constraint in ∆ except for those demanded by criterion 2. and 3.

When tn′ is reachable from tn by a finite sequence of decompositions then we write

tn −→∗
D tn′.

The decomposition tree focuses on the whole procedure of decomposition and

records all intermediate tasks and constraints during the procedure. In contrast,

in a task network the application of a decomposition method abandons the de-

composed task. However, they are compatible as the following proposition states.

Proposition 6.1. Given a ground HTN problem P0, tn0I −→
∗
D tn iff there exists

a valid decomposition tree Tr with respect to P where ϑ(Tr) = tn.
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Proof. “⇒”: We use induction over the number of inner nodes of the valid decom-

position tree Tr. As a valid decomposition tree has a root t0 with β(t0) = (ctop, tn0),

Tr at least has one inner node and |T 0
I | leaf nodes where |T

0
I | is the number of the

tasks in the initial task network tn0I . We take one inner node as the base case and

then we have ϑ(Tr) = sub(t0) = tn0I .

For the inductive step, suppose a valid decomposition tree Tr with n inner nodes

and tn0I −→
∗
D tn and ϑ(Tr) = tn. Let a compound task t be leaf node in Tr and

suppose t has a decomposition methodm = (α(t), tnm) and the task network tn′m =

(T ′
m, C

′
m, α

′
m) where symbols in Tm are fresh is isomorphic with tnm. By adding

edges from t to nodes ∗t, t∗ and all nodes Tm, we can get a new decomposition

tree

Tr′ = (T ∪ T ′, E ∪ Em,∆ ∪∆′, α ∪ α′, β ∪ {(t,m)})

where T ′,∆′ and α′ are defined as in the definition of decomposition (Definition

6.6) and Em is the set of the adding edges. It is easy to check that Tr′ satisfies all

criteria in the definition of the valid decomposition tree (Definition 6.8) and that

Tr′ is a valid decomposition tree. Then ϑ(Tr′) = (T ′,∆′, α′) and tn −−→
t,m

ϑ(Tr′).

“⇐”: We use induction over the steps of decomposition starting from tn0I to prove

there exists such a valid decomposition tree. For the base case that there is no

decomposition applied, we have a valid decomposition tree Tr whose root is t0 and

ϑ(Tr) = tn0I .

For the inductive step, suppose tn2 is obtained by n steps of decomposition from

tn0I and Tr is a valid decomposition tree with ϑ(Tr) = tn2. Suppose tn2 −−→
t,m

tn1.

We can extend Tr = (T,E,∆, α, β) as

Tr′ = (T ∪ T ′, E ∪ E ′,∆ ∪∆1, α ∪ α1, β ∪ {(t,m)})

where T ′ = T1\T2, E
′ is the set of edges from t to nodes in T ′ and T1, T2 are the task

sets of tn1 and tn2, respectively. The adding tasks T ′ actually are Tm ∪ {∗t, t∗}

and the adding constraints ∆1 \ ∆ are about the nodes in T ′ and inherit the

constraints about t. We have that Tr′ satisfies all the criteria in the definition of
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valid decomposition tree (Definition 6.8) and is therefore a valid decomposition

tree; moreover, ϑ(Tr′) = tn1.

The above proposition also states that every set of decomposition methods corre-

sponds to a valid decomposition tree.

The following proposition states that the procedure of decomposition propagates

the state constraints about compound tasks into primitive tasks.

Proposition 6.2. For two task networks tn = (T,∆, α) and tn′ = (T ′,∆′, α′) such

that tn →∗
D tn′, the following holds:

❼ for every (nil, ϕ, t) ∈ ∆, (nil, ϕ, ∗t) ∈ ∆′

❼ for every (t, ϕ, nil) ∈ ∆, (t∗, ϕ, nil) ∈ ∆′

❼ for every (ti, ϕ, tj) ∈ ∆ with α(ti), α(tj) 6∈ O, (ti∗, ϕ, ∗tj) ∈ ∆′ 3

Proof. It is straightforward by Definition 6.6.

6.2.3 Solutions

A solution of an HTN problem is a sequence of primitive tasks which is also called

a plan of the problem.

Definition 6.9 (Consistency with constraints). Given a primitive task net-

work tn = (T,∆, α) where |T | = n, let σ : T → {1, . . . , n} be a bijection. We use

σ to form a total ordering, noted σ(tn), of tasks in T as: 〈σ−(1), . . . , σ−(n)〉 where

σ− is the inverse function of σ, i.e., σ−(σ(t)) = t. Suppose α(σ(tn)) is executable

in s0, i.e., there exists a sequence s1, . . . , sn such that γ(si−1, α(ti)) = si for every

i such that 1 ≤ i ≤ n. We say that σ(tn) is consistent with ∆ in s0 if for every

σ−(i), σ−(j) ∈ T the following hold:

❼ for every (nil, ϕ, σ−(j)) ∈ ∆, sj−1 |= ϕ;

3 ti, tj cannot be nil because α(nil) is not defined
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❼ for every (σ−(i), ϕ, nil) ∈ ∆, si |= ϕ;

❼ for every (σ−(i), ϕ, σ−(j)) ∈ ∆, i < j and sk |= ϕ for every i ≤ k<j.

Intuitively, a ‘maintenance’ state constraint (t, ϕ, t′) is satisfied if all states between

t and t′ satisfy ϕ. An ‘immediate’ state constraint (nil, ϕ, t) is satisfied if ϕ holds

in the state right before ∗t occurs (or t if t is a primitive task), in other words

right before all subtasks of t. Finally, an ‘immediate’ state constraint (t, ϕ, nil) is

satisfied if ϕ holds right after the state where ∗t (or t if t primitive task) occurs,

in other words right after all subtasks of t. Note that it is impossible to satisfy

(t,⊥, t′) because there is no state s such that s |= ⊥.

As a solution, a sequence of primitive tasks should be executable as well.

Definition 6.10 (Executability). A task network tn is primitive iff it contains

only primitive tasks. A primitive task network tn is executable in a state s iff

there exists a total ordering σ(tn) of the tasks in tn that is consistent with ∆ in

s. We called such a σ(tn) a plan of tn in s, noted σtn,s.

It is possible that the task network is not executable in a state. For instance,

the primitive task network tn′ in Example 6.2 is not executable in sI because

apart from skip it only involves the basic action flyM and it is impossible to satisfy

At(Mc). However, if we extend the task network by inserting some tasks, then we

can make it executable.

Definition 6.11 (Insertion). Let tn = (T,∆, α) and tn′ = (T ′,∆′, α′) be two task

networks where tn′ is primitive. Inserting tn′ into tn results in the task network

tn1 = tn ∪ tn′.

Note that it is not required that T ′∩T = ∅ because tn′ may involve some constraints

about tasks in tn.

With respect to some task network tn, if tn′ is reachable by a finite sequence of

decompositions and an insertion, we write tn −→∗
DI tn′. Now we have already

prepared to define the solutions of HTN and TIHTNS problems. As mentioned
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above, HTN problems and TIHTNS problems have the identical problem descrip-

tion, they differ from each other in the ways of generating solutions.

Definition 6.12 (Solutions). A plan obtained only by decomposition is called

an HTN solution; a plan obtained additionally by an insertion is called a TIHTNS

solution:

Let tn be a primitive task network such that there exists a plan of tn in sI . Given

a propositional HTN problem P , we call σtn,sI an HTN solution of P if tnI →
∗
D tn;

we call σtn,sI a TIHTNS solution of P if tnI →
∗
DI tn.

The solutions of an HTN problem are the set of all solutions of its ground problems.

Indeed, HTN problems and TIHTNS problems only differ in the criterion of solu-

tions. When considering whether a problem P has a TIHTNS solution, we call P

a TIHTNS problem.

Example 6.3 (Example 6.2 continued). The plan 〈∗t1, t2, t3, t1∗〉 where α(t3) =

takeTaxi is a TIHTNS solution of P.

The next proposition states that the state constraints about compound tasks intro-

duced in the decomposition procedure are satisfied by the solutions of the problem.

Proposition 6.3. Given a TIHTNS problem P, suppose Tr is a valid decompo-

sition tree with respect to P and tn′ is a primitive task network obtained from

ϑ(Tr) by an insertion and σtn′,sI is a solution of P. Then all constraints in the

decomposition tree Tr are also satisfied by σtn′,sI .

Proof. Suppose there are two compound tasks ti and tj in Tr and tn′ = (T ′,∆′, α′).

For every (ti, ϕ, tj) ∈ ∆, we have (ti∗, ϕ, ∗tj) ∈ ∆′ and then all states sk such that

σ(ti∗) ≤ k < σ(∗tj), sk |= ϕ.

For every (ti, ϕ, nil) ∈ ∆, we have (ti∗, ϕ, nil), (st,⊤, ti∗) ∈ ∆′ for all subtasks

st ∈ sub(ti) and then sσ(ti∗) |= ϕ and σ(st) < σ(ti∗) for all st ∈ sub(ti).
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For every (nil, ϕ, tj) ∈ ∆, we have (nil, ϕ, ∗tj), (∗tj,⊤, st) ∈ ∆′ for all subtasks

st ∈ sub(tj) and then sσ(∗tj) |= ϕ and σ(st) > σ(∗tj) for all st ∈ sub(tj).

If one or both of ti, tj are primitive then just consider ∗tj and ti∗ as tj and ti,

respectively. The above three cases still hold.

Then all constraints in Tr are satisfied.

Remark 6.1. In the formalism of [Alford et al., 2015b] and in TIHTNS planning,

the grounding of the problem has been done in the beginning while in the formalism

of Erol’s [Erol et al., 1995], the grounding happens after a primitive task network

is obtained.

Remark 6.2. The semantics of state constraints here is weaker than the semantics

of the original HTN planning [Erol et al., 1995]. Their semantics considers every

compound task starts by its first ‘real’ subtask and terminates by its last ‘real’

subtask instead of the virtual starting and terminating tasks. The distinction

between two semantics stands on whether it is allowed to insert tasks between ∗t

and the first real subtask of t (between the last real subtask and t∗). Our weaker

semantics can capture the pre- and postcondition of high-level actions in a better

way. In Example 6.1, after the subtask t2 of gMC is accomplished, the agent’s

desirable goal “being in the center” is not satisfied while by allowing the insertion

of t3, the goal is achieved.

The following proposition states that if a TIHTNS problem is solvable, then its

subproblems are also solvable.

Proposition 6.4. If the problem P = (D, sI , tnI) where tnI = (TI ,∆I , αI) has

a TIHTNS solution, then problem P ′ = (D, sI , tn
′
I) where tnI = (T ′

I ,∆I |T ′

I
, αI |T ′

I
)

and T ′
I ⊆ TI also has a TIHTNS solution.

Proof. Suppose Tr is a valid decomposition tree with respect to the ground HTN

problem P0 of P . If we prune the branches about nodes in TI \T
′
I and abandon the

constraints about these subtrees and replace (ctop, tnI) by (ctop, tn
′
I), then the new

decomposition tree Tr′ is valid with respect to P ′. As the task set and constraint
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set in the leaf task network ϑ(Tr′) are the subsets of the task set and constraints

set in ϑ(Tr) respectively, Tr′ can form a plan of P ′.

The following proposition states that if a compound task has a decomposition

method, then the resulting task network obtained by decomposition preserves

solvability.

Proposition 6.5. For a TIHTNS problem P1=(D, sI , tn1) where tn1=(T1,∆1, α1),

if P1 is solvable and there exists t ∈ T1 such that α1(t) has only one decomposition

method m in M , then P2=(D, sI , tn2) where tn1 −−→
t,m

tn2 is also solvable.

Proof. It is straightforward.

6.3 Acyclic Decomposition

In this section, we introduce the notion of acyclic decomposition sequence. We

show that all solutions of TIHTNS problems can be obtained by acyclic decom-

position sequence and insertion, which is the foundation of the decidability of the

plan-existence problem. It allows us to compute the solution in a finite space

rather than to search the solution in a infinitely iterative decomposition.

We first start by adapting the operation of subtree substitution initially proposed

in [Geier and Bercher, 2011] which replaces a subtree with another subtree.

Given a decomposition tree (T,E,∆, α, β) and a node t ∈ T , we define the subtree

of Tr induced by t, as Tr[t] = (T ′, E ′,∆|T ′ , α|T ′ , β|T ′) where (T ′, E ′) is the subtree

in (T,E) which is rooted in t.

Definition 6.13 (Subtree substitution). Let Tr = (T,E,∆, α, β) be a decom-

position tree and ti, tj ∈ T be two nodes of Tr where ti is an ancestor of tj. We

define the result of the subtree substitution on Tr that substitutes ti by tj, written

Tr[ti ← tj] = (T ′, E ′,∆′, α|T ′ , β|T ′), where

T ′ = (T \ τ(Tr[ti])) ∪ τ(Tr[tj])
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E ′ = E|T ′ ∪ {(p, tj) | (p, ti) ∈ E}

∆′ = (∆|T ′ \ {(nil, ϕ1, ∗tj), (tj∗, ϕ2, nil) ∈ ∆})

∪ {(tj, ϕ1, t1), (tj∗, ϕ1, t1) | (ti, ϕ1, t1) ∈ ∆}

∪ {(t2, ϕ2, tj), (t2, ϕ2, ∗tj) | (t2, ϕ2, ti) ∈ ∆}

Different from the decomposition tree in [Geier and Bercher, 2011], the decompo-

sition tree defined in this thesis, the constraints about a compound task are not

propagated to its subtasks. So, the constraints about the starting and terminating

tasks corresponding to tj need to be dropped, because they are generated from

tj’s parent in the original tree. The following proposition states that the resulting

tree is still valid.

Proposition 6.6. Let Tr = (T,E,∆, α, β) be a valid decomposition tree with re-

spect to TIHTNS problem P and two nodes ti ∈ T, tj ∈ τ(Tr[ti]) with α(ti) = α(tj).

Then Tr[ti ← tj] is also a valid decomposition tree w.r.t. P.

Proof. Suppose Tr′ = Tr[ti ← tj] = (T ′, E ′,∆′, α′, β′). We first show that (T ′, E ′)

is still a tree whose root is still t0 by the definition of the decomposition tree

(Definition 6.7) Next we prove that Tr′ satisfies the criteria in the definition of the

valid decomposition tree (Definition 6.8).

As α′ = α|T ′ and β′ = β|T ′ , we have α′ ⊆ α and β′ ⊆ β. Then criterion 1 holds

because α(ti) = α(tj).

Suppose p is the parent of ti in Tr.

For criterion 2, we consider two cases: t = p and t 6= p. If t = p, no matter whether

p = t0 or not, ch(Tr
′, t) differs from ch(Tr, t) in tj instead of ti because (p, tj) ∈ E

′.

According to the definition of the valid decomposition tree (Definition 6.8) those

constraints about ti are also with respect to tj. So, the task network induced by

sub(t) in Tr′ is also isomorphic to tnm of p. Also, if p 6= t0, we have (tj,⊤, t∗) and

(∗t,⊤, tj). Thus, when t = p, criterion 2 holds. For the case t 6= p, if t is in the

subtree Tr[tj], criterion 2 holds because Tr[tj] is a subtree of a valid decomposition
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tree Tr. As the substitution is in Tr[ti], it does not change other nodes in Tr except

for p or those nodes in Tr[tj] and they still satisfy criterion 2.

For criterion 3, we know that for all (ti, ϕ1, t1), (t2, ϕ2, ti) ∈ ∆, t1 and t2 must

be in ch(Tr, p). By the definition of the valid decomposition tree (Definition 6.8)

if (ti, ϕ1, t1) ∈ ∆, then (tj, ϕ1, t1), (tj∗, ϕ1, t1) ∈ ∆′. It also holds for the case

(t2, ϕ2, ti) ∈ ∆. Thus, for tj criterion 3 holds. In addition, if (ti, ϕ1, ∗t1) ∈ ∆, we

have (tj, ϕ1, ∗t1) ∈ ∆′ and if (t2∗, ϕ2, ti) ∈ ∆ we have (t2∗, ϕ2, tj) ∈ ∆′. Therefore,

all children of p satisfy criterion 3. As Tr[tj] is a subtree of a valid decomposition

tree, criterion 3 holds for all nodes of Tr′.

For criterion 4, we need to show that all constraints in ∆′ are demanded by

criterion 2 and 3. We first consider two cases: t = p and t 6= p. If t 6= p,

the constraints (nil, ϕ1, ∗tj), (tj∗, ϕ2, nil) ∈ ∆ are demanded by the decomposi-

tion method of the parent of tj in Tr and they are removed in the Tr′. Other

constraints in ∆|T ′ necessary for criterion 2 and 3 with respect to Tr are still

necessary for criterion 2 and 3 with respect to Tr′. When t = p, those con-

straints (tj, ϕ1, t1), (t2, ϕ2, tj) ∈ ∆′ are necessary due to being isomorphic with

the subtask network tnm; (tj∗,⊤, t1), (t2,⊤, ∗tj) ∈ ∆′ are necessary due to the

starting and ending tasks of tj which is also a condition in criterion 2; and

(tj∗, ϕ1, t1), (t2, ϕ2, ∗tj) ∈ ∆′ are necessary due to criterion 3.

Now we define the notion of acyclic decomposition sequence. The sequence of

decompositions is acyclic if for every node t in its corresponding decomposition

tree Tr, the ancestors of t have different actions. We also say the decomposition

tree Tr is acyclic.

The insertion of tasks allows us to break the loop of generating same compound

tasks during the decomposition procedure and find a shortcut to generate the so-

lution. The idea of eliminating the loop by subtree substitution and task insertion

is shown in 6.1.

The following theorem states that we only need to consider the acyclic sequences

of decompositions to compute the solution.
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Figure 6.1: Elimination of Recursion by Subtree Substitution and Insertion

Theorem 6.7. A TIHTNS problem P has a solution iff P has a solution which

is generated by an acyclic sequence of decompositions and an insertion.

Proof. The right-to-left direction is straightforward. Now we prove the left-to-right

direction.

Suppose σtn,sI is a TIHTNS solution of P where tnI →
∗
D tn1 and tn is obtained

from tn1 by insertion. Then tn1 is a primitive task network. If the sequence of

decompositions from tnI to tn1 is acyclic, then it is proved.

Now we suppose the sequence is not acyclic. Then in its corresponding tree Tr,

there exist two ancestors ti, tj of some t such that α(ti) = α(tj). By Proposition

6.6, the tree Tr[ti ← tj] is valid with respect to P . By Proposition 6.1, there exists

a primitive task network tn2 such that tn2 = ϑ(Tr[ti ← tj]) and tnI →
∗
D tn2. As

the substitution does not introduce any new node, the leaf nodes of Tr[ti ← tj] are

a subset of the leaf nodes of Tr. The only state constraints about leaf nodes which

are introduced by the substitution are (tj∗, ϕ1, t1) and (∗tj, ϕ2, t2). Now we replace

all occurrences of tj∗ with ti∗, ∗tj with ∗ti in Tr[ti ← tj]. Then except for those

constraints between subtasks of tj and either tj∗ or ∗tj, in form of (∗tj,⊤, t) and

(t,⊤, tj∗), the constraints in tn2 are a subset of the constraints of tn1. Because

ti is an ancestor of tj in Tr, there must be some tasks t′, t′′, . . . , t(k)such that

(∗ti,⊤, t
′), (t′,⊤, t′′), . . . , (t(k),⊤, ∗tj). Thus, in the plan σtn,sI , ∗ti is before ∗tj and

then before all subtasks of tj. Then those constraints (∗tj,⊤, t) are satisfied; the

case of tj∗ is similar. So σtn,sI includes all tasks in tn2 and is consistent with all

constraints in tn2 and then tn can be obtained from tn2 by inserting an appropriate

task network.
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6.4 Decidability and Complexity

The complexity of the plan-existence problem for HTN planning is undecidable

even for propositional HTN planning [Erol et al., 1994a]. With different restric-

tions, the complexity for HTN planning ranges fromPSPACE to 2-NEXPTIME,

as shown in [Alford et al., 2015a].

In the above section, we show that the solutions of TIHTNS can be obtained by

acyclic decomposition. Based on it, we in this section show that the plan-existence

problem of TIHTNS is decidable and the introduction of state constraints does not

increase the complexity, staying 2-NEXPTIME-complete.

Theorem 6.7 allows us to only check the solutions generated by an acyclic decom-

position sequence for the plan-existence problem. Next we show that the tasks

generated by an acyclic decomposition sequence are finite.

By the grounding way introduced above, we know that the cardinality of ground

atoms Atm(L0) depends on their arity and the number of constants and predicates.

Let c and p be the number of constants and predicates in L respectively and n be

the maximal arity of any predicate, then we have |Atm(L0)| ≤ p×cn. Similarly, the

cardinality of ground high-level actions, which are syntactically atomic formulas,

also depends on their arity and the number of constants in L , apart from the

cardinality of high-level actions. More precisely, |C| ≤ |C| × cm, where c is the

number of constants and m is the maximal arity of any high-level action.

Lemma 6.8. Given a TIHTNS problem P = (L , C,O,D,M, sI , tnI), for any

acyclic valid decomposition tree Tr with respect to P, the number of the tasks in

the leaf task network is bounded by (k+2)(|C|×c
m)+1, where k is the maximal number

of subtasks in any decomposition method inM and the initial tasks TI .

Proof. Because there is no recursion in Tr, it entails that in the path from the root

t0 to a leaf node, different tasks correspond to different high-level actions. That

is, the depth of Tr is at most |C|+ 1 where |C| ≤ |C| × cm and 1 is because of the

unique high-level action ctop. In the decomposition tree Tr, every inner node has
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at most k + 2 children nodes which include the starting and ending tasks ∗t and

t∗. Thus, Tr has at most (k + 2)(|C|×c
m)+1 leaf nodes.

Besides the tasks obtained by acyclic decompositions are finite, the next lemma

shows that the number of the inserted tasks between two tasks obtained by de-

composition is also finite.

Lemma 6.9. Suppose the TIHTNS problem P = (D, sI , tnI) has a plan σtn,sI and

Tr is its decomposition tree, then P has a plan with a length bounded by |T |×2
p×cn

where T is the task set in leaf task network ϑ(Tr).

Proof. Suppose two primitive tasks ti and tj in T which are neighbors in the

sequence σtn,sI , regardless of tasks not in T . The plan σtn,sI defines a sequence of

states starting from sI and we use σs to denote this state sequence. As the number

of states is bounded by 2|Atm(L0)|, if there are more than 2|Atm(L0)| tasks inserted

between ti and tj in σtn,sI , there must be one state being visited twice and hence σs

must contain a cycle of states. By removing all states in the cycle, we can form a

new sequence of primitive tasks from σtn,sI where there are at most 2|Atm(L0)| tasks

inserted between ti and tj. The new sequence of primitive tasks is still executable

in the state sI , entailing that it is still a solution. By eliminating all cycles, there

is a solution with a length of at most |T |×2|Atm(L0)| where |Atm(L0)| ≤ p×cn.

With the above two lemmas, we only need to check whether there is a solution

with an upper bound on length for the plan-existence problem.

Proposition 6.10. If TIHTNS problem P = (L , C,O,D,M, sI , tnI) has a solu-

tion then P also has a solution with a length of at most (k + 2)(|C|×c
m)+1 × 2

p×cn
.

Proof. By Lemma 6.8, an acyclic valid decomposition tree Tr has only at most

(k + 2)|C|+1 leaf nodes. By Lemma 6.9, there exists a plan of P with a length of

at most (k+ 2)|C|+1× 2|Atm(L0)| where |Atm(L0)| ≤ p× cn and |C| ≤ |C| × cm.

Up to now, we have shown that checking solutions reduces to checking finite solu-

tions. Next we introduce an acyclic progression operator to find the solution.
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Before define the progression operator, we first define the regression of the basic

action. As the state-transition function γ satisfies the frame axiom, before per-

forming a basic action we can check whether a formula is true in the next state.

Given a formula ϕ and a basic action o, we use ϕ−
o to denote the formula obtained

from ϕ by replacing p with ⊤ and q with ⊥ for all p ∈ eff+(o) and q ∈ eff−(o). As

all variables outside the effect of basic action o keep their truth value, we can check

whether a formula ϕ holds in the next state before basic action o is performed, as

the following lemma states.

Lemma 6.11. s |= ϕ−
o iff γ(s, o) |= ϕ.

Proof. Suppose ϕ and ϕ−
o are in negation normal form (NNF) where all negation

connectives ¬ are only applied before atoms and only conjunction connectives ∧

and disjunction connectives ∨ are allowed. According to [Robinson and Voronkov,

2001], every propositional formula has an equivalent formula in NNF.

We prove the lemma by induction in the construction of ground formula.

Base case. If ϕ is a positive ground literal p, there are three cases: p ∈ eff+(o),

p ∈ eff−(o) and p 6∈ eff+(o)∪eff−(o). Then there are three cases respectively for

formula ϕ−
o : ⊤, ⊥ and p. For every ground atom q in Atm(L0), we have s |= q iff

q ∈ s.

❼ In the case of p ∈ eff+(o), we have p ∈ γ(s, o) and then γ(s, o) |= p. So,

s |= ⊤ iff γ(s, o) |= p.

❼ In the case of p ∈ eff−(o), we have p 6∈ γ(s, o) and then γ(s, o) 6|= p. So,

s |= ⊥ iff γ(s, o) |= p.

❼ In the case of p 6∈ eff+(o) ∪ eff−(o), p ∈ s iff p ∈ γ(s, o). So, s |= p iff

γ(s, o) |= p.

Now let us consider ϕ is a negative ground literal ¬p. Similarly, there are three

cases: p ∈ eff+(o), p ∈ eff−(o) and p 6∈ eff+(o) ∪ eff−(o). Then there are still

three cases respectively for formula ϕ−
o : ⊥, ⊤ and ¬p.
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❼ In the case of p ∈ eff+(o), we have p ∈ γ(s, o) and then γ(s, o) |= p. Thus,

γ(s, o) 6|= ¬p. So, s |= ⊥ iff γ(s, o) |= ¬p.

❼ In the case of p ∈ eff−(o), we have p 6∈ γ(s, o) and then γ(s, o) |= ¬p. So,

s |= ⊤ iff γ(s, o) |= ¬p.

❼ In the case of p 6∈ eff+(o) ∪ eff−(o), p 6∈ s iff p 6∈ γ(s, o). So, s |= ¬p iff

γ(s, o) |= ¬p.

Therefore, if ϕ is a ground literal, we have s |= ϕ−
o iff γ(s, o) |= ϕ.

Inductive step. Consider the forms of formula: ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2.

In the case of ϕ1 ∧ ϕ2. As an inductive step, we suppose that s |= (ϕ1)
−
o iff

γ(s, o) |= ϕ1 and that s |= (ϕ2)
−
o iff γ(s, o) |= ϕ2. Suppose s |= (ϕ1)

−
o ∧ (ϕ2)

−
o .

Then we have γ(s, o) |= ϕ1 ∧ ϕ2. As (ϕ1 ∧ ϕ2)
−
o = (ϕ1)

−
o ∧ (ϕ2)

−
o , s |= ϕ−

o entails

γ(s, o) |= ϕ. Vice verses. So, s |= ϕ−
o iff γ(s, o) |= ϕ.

In the case of ϕ1 ∨ ϕ2. As an inductive step, we suppose that s |= (ϕ1)
−
o iff

γ(s, o) |= ϕ1 and that s |= (ϕ2)
−
o iff γ(s, o) |= ϕ2. Suppose s |= (ϕ1)

−
o ∨ (ϕ2)

−
o .

Then we have s |= (ϕ1)
−
o or s |= (ϕ2)

−
o . Thus, we have γ(s, o) |= ϕ1 or γ(s, o) |=

ϕ2. By the semantics of propositional logic, we have γ(s, o) |= ϕ1 ∨ ϕ2. As

(ϕ1 ∨ ϕ2)
−
o = (ϕ1)

−
o ∨ (ϕ2)

−
o , s |= ϕ−

o entails γ(s, o) |= ϕ. Vice verses. So, s |= ϕ−
o

iff γ(s, o) |= ϕ.

Now we adapt the acyclic progression operator proposed in [Alford et al., 2015b]

to TIHTNS planning.

To capture the ‘maintenance’ state constraints we introduce a set Σ of pairs (ϕ, t) of

a formula and a task which means ϕ should be satisfied until performing t. We use

Fml(Σ) to denote the conjunction of all formulas in Σ where the identical formulas

only occur once. So, by checking whether (Fml(Σ))−o holds at the current state s,

we know whether constraints are going to hold in the next state after performing

o. To forbid the recursion of tasks, when decomposing a compound task t by

decomposition method m, its subtasks cannot contain t’s ancestors denoted by
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function h(t), where h : T −→ 2C . We say a task t in task network tn = (T,∆, α)

is unconstraint if there is no t′ such that t′ 6= nil and (t′, ϕ, t) ∈ ∆.

We define an acyclic progression operator for TIHTNS planning as a procedure

that performs progression on the current state. Formally, we use a tuple (s, tn,Σ, h)

to represent that task network tn still needs to achieve at the current state s.

Definition 6.14 (Acyclic progression). Given a tuple (s, tn,Σ, h), we define its

acyclic progression is (s′, tn′,Σ′, h′) with tn′ = (T ′,∆′, α′), which is obtained from

three possible options:

❼ Task insertion: if s |= pre(o) ∧ (Fml(Σ))−o then

– s′ = γ(s, o)

– tn′ = tn,Σ′ = Σ, h′ = h

The inserted task should satisfy the state constraints.

❼ Task performance: for a primitive task t ∈ T , if t is unconstraint and s |=

pre(α(t)) and the following hold:

– s |= (Fml(Σ−t))
−
α(t) where Σ−t = Σ \ (L × {t, t}) where t is the original

compound task if t is its starting task, i.e., if t = ∗tj, then t = tj

– for every (nil, ϕ, t) ∈ ∆, s |= ϕ

– for every (t, ϕ, t′) ∈ ∆, s |= ϕ−
α(t)

then

– T ′ = T \ {t}, ∆′ = ∆|T ′ , α′ = α|T ′

– Σ′ = Σ−t ∪ {(ϕ, t
′) | (t, ϕ, t′) ∈ ∆ and t′ 6= nil}

– h′ = h|T ′ and s′ = γ(s, α(t))

A primitive task is chosen only if its all predecessors have been accomplished,

its precondition is satisfied and the state constraints in Σ, except for those

constraints ending with the primitive task, will hold after performing it.

The ‘maintenance’ state constraints starting from the primitive task will be

added into Σ.
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❼ Task decomposition: for a compound task t ∈ T and a decomposition method

m = (α(t), (Tm,∆m, αm)) ∈M , if h(t) ∩ Tm = ∅, then tn −−→
t,m

tn′ and

– h′ = h|T ′ ∪ {(tm, h(t) ∪ {α(t)}) | tm ∈ Tm}

– Σ′ = Σ|T ′ ∪ {(ϕ, ∗t) | (ϕ, t) ∈ Σ}

For a compound task, the decomposition method chosen to decomposed

cannot contain an action which is its ancestor in order to avoid the recursion

of tasks.

Note that the cardinality of Σ may be exponential on size but Fml(Σ) is polynomial

because Fml(Σ) consists of the formulas of the constraints in M . It entails that

applying a step of acyclic progression is in P.

Notably, acyclic progression is only acyclic over decompositions, not states reached.

That is, it is possible that a state is visited more than one time. Actually, in the

sequence of applying progression, the decomposition operators commute with the

operators of task performance and task insertion, as the following lemma states.

Lemma 6.12. If (s, tn,Σ, h) is obtained from (sI , tnI , ∅, hI) by applying acyclic

progressions, then there exists a tuple χ = (sI , tn
′,Σ′, h′) such that there exist a

sequence of decomposition operators from (sI , tnI , ∅, hI) to χ and a sequence of task

performance and insertion from χ to (s, tn,Σ, h).

Proof. Suppose the sequence of acyclic progressions applied from (sI , tnI , ∅, hI) to

(s, tn,Σ, h) is σAP . Because for every compound task t, all constraints (t′, ϕ, t) are

propagated to (t′, ϕ, ∗t) and in every operator of task decomposition (ϕ, ∗t) are

added into Σ′, the decomposition operators in the sequence σAP can put ahead

of the insertion and performance operators. When performing ∗t, the constraint

(ϕ, ∗t) is not in Σ−∗t, neither is (ϕ, t). In other words, the formula ϕ holds until t

if and only if ϕ holds until its start task ∗t, even though t has been decomposed

and removed. Thus, there is a sequence σ′
AP from (sI , tnI , ∅, hI) to (sI , tn

′,Σ′, h′)

and then to (s, tn∅, ∅, ∅) where tn′ is a primitive task network. The sequence

σ′
AP is partitioned into two subsequences: the former subsequence only contains
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decomposition operators and the latter subsequence only contains operators of

insertion and performing.

The task network in the tuple includes the tasks needs to accomplish and a step

of acyclic progression may eliminate a task in the task network. If all tasks are

eliminated by the acyclic progression, then the TIHTNS problem has a solution:

Proposition 6.13. Given a ground TIHTNS problem P0 = (D0, sI , tnI), P
0 has

a solution iff there is a sequence of acyclic progressions from (sI , tnI , ∅, hI) to

(s, tn∅, ∅, ∅) where hI = αI and tn∅ is the empty task network.

Proof. “⇐:” If P0 has a solution, by Theorem 6.7, there exists a solution σtn,sI

where tn is generated by an acyclic decomposition sequence and an insertion from

tnI . Suppose Tr is the valid decomposition tree corresponding to σtn,sI . Then Tr

is acyclic. As function h models the acyclic property of the decomposition tree,

we can applied task decompositions according to Tr and generate a sequence of

acyclic progressions from (sI , tnI , ∅, hI) to (sI , ϑ(Tr),Σ, h).

By Proposition 6.3, all constraints in Tr are satisfied in σtn,sI . Then we can apply

the operators of task insertion and task performance according to the order in σtn,sI

on the tuple (sI , ϑ(Tr),Σ, h). As all primitive tasks in ϑ(Tr) are also included in

σtn,sI and every step of task performance removes a task t in ϑ(Tr) and the pairs

corresponding to t in Σ and h, we finally obtain a tuple (s, tn∅, ∅, ∅).

“⇒:” Suppose there is a sequence σAP of acyclic progressions from (sI , tnI , ∅, hI)

to (s, tn∅, ∅, ∅). By Lemma 6.12, there is a sequence σ′
AP from (sI , tnI , ∅, hI) to

(sI , tn
′,Σ′, h′) and then to (s, tn∅, ∅, ∅) where tn′ is a primitive task network and

σ′
AP is partitioned two subsequence: the former subsequence σ′

D only contains

decomposition operators and the latter subsequence σ′
PI only contains operators

of insertion and performing.

Since task performance only removes primitive tasks, σ′
D is a sequence of decompo-

sition from the initial task network tnI to the primitive task network tn′. Function

h guarantees that σD is acyclic. As for every step of insertions and performances,
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the constraints in Σ are satisfied in the state and the next state, the sequence σ of

basic actions corresponding to σ′
PI is consistent with the constraint set in tn′. As

σ′
PI starts from the tuple (sI , tn

′,Σ′, h′), the basic action sequence σ is executable

in the initial state sI . Therefore, σ is a solution of P0.

The next theorem states the upper bound of the complexity of the plan-existence

problem for TIHTNS planning.

Theorem 6.14. Deciding whether a propositional TIHTNS planning problem has

a solution is in NEXPTIME.

Proof. Theorem 6.7 reduces deciding the problem into checking all solutions gen-

erated by acyclic decomposition and Proposition 6.10 reduces further deciding the

problem into checking solutions with an upper bound on length of (k + 2)|C|+1 ×

2Atm(L0). By introducing a counter on basic actions according to [Alford et al.,

2015b], the length of a solution can be restricted with a polynomial translation on

the problem. Additionally because the number of decomposing compound tasks

is bounded by k|C|, every sequence of acyclic progression must terminate after

an exponential number of steps of insertions, performings and decompositions.

Therefore, by a non-deterministic application of acyclic progressions with an ex-

ponential number, either it can reach a solution or it cannot progress any more

which entails that the problem has no solution.

Theorem 6.15. Deciding whether a TIHTNS planning problem has a solution is

in 2-NEXPTIME.

Proof. As the solutions are bounded by (k+2)(|C|×c
m)+1×2

p×cn
, Every sequence of

acyclic progression must terminate after a double-exponential number of steps of

insertions, performances and decompositions. So, by a non-deterministic applica-

tion of acyclic progressions with a double-exponential number, either it can reach

a solution or it cannot progress any more which entails that the problem has no

solution.
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The upper bound of the complexity entails that deciding whether a TIHTNS

problem has a solution is decidable.

Corollary 6.16. The plan-existence problem for TIHTNS planning is decidable.

The lower bound of the complexity for TIHTNS comes from lifted TIHTN plan-

ning, whose plan-existence problem is 2-NEXPTIME-complete [Alford et al.,

2015b].

Let us now translate lifted TIHTN into our extended TIHTNS. By replacing all

occurrences of ti ≺ tj in lifted TIHTN problem P with (ti,⊤, tj), we obtain a

TIHTNS problem, noted ΓT (P). It is easy to check that the translation is poly-

nomial.

The following proposition shows that the two problems are equivalent.

Proposition 6.17. For a lifted TIHTN problem P, a sequence of basic action σ

is a solution of P iff σ is also a solution of ΓT (P).

Proof. Under the lifted TIHTN semantics, consider the decomposition of t by m,

the new ordering constraint set is obtained as:

(1) keep the constraints not involving t;

(2) introduce the constraints about the subtasks;

(3) if t is before t′ then all subtasks are before t′;

(4) if t is after t′ then all subtasks are after t′.

Under the extended semantics, according to Definition 6.6, the change of state

constraints includes (1) and (2) and is analogous to (3) and (4). If t is before t′,

i.e., (t,⊤, t′), there will be (t∗,⊤, t′) introduced. As (tm,⊤, t∗) for all subtasks tm

are introduced, it entails that (tm,⊤, t
′) which means tm is before t′. Then (3) is

simulated and the case of (4) is similar. The proposition follows.
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The above translation tells us that every TIHTN problem can translated polyno-

mially into an equivalent TIHTNS problem, entailing that the TIHTNS problem is

at least as hard as TIHTN problems. With the lower bound obtained from TIHTN

problem, we have the completeness of the complexity for TIHTNS planning:

Theorem 6.18. Deciding whether a TIHTNS planning problem has a solution is

2-NEXPTIME-complete.

Proof. As the translation ΓT from lifted TIHTN problem to TIHTNS problem

is polynomial and the plan-existence problem for lifted TIHTNS planning is 2-

NEXPTIME-complete, the plan-existence problem for TIHTNS planning is 2-

NEXPTIME-hard.

With the upper bound stated in Theorem 6.15, the plan-existence problem for

TIHTNS planning is 2-NEXPTIME-complete.

Initially, the complexity of plan-existence problem for propositional TIHTN plan-

ning was shown in EXPSPACE in [Geier and Bercher, 2011]. But the complexity

has been tightened inNEXPTIME-complete in [Alford et al., 2015b], which actu-

ally provides a lower bound of the complexity for propositional TIHTNS planning:

Theorem 6.19. Deciding whether a propositional TIHTNS planning problem has

a solution is NEXPTIME-complete.

Proof. It is proved by Theorem 6.14 and Theorem 6.18.

6.5 Relation with GTN and HGN

Hierarchical planning approaches are often chosen for real world application sce-

narios, such as [Biundo et al., 2011, Lin et al., 2008], due to the ability to specify

solution strategies in terms of decomposition methods, but also because human ex-

pert knowledge is often structured in a hierarchical way and can thus be smoothly

integrated into HTN planning models. On the other side, these decomposition
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methods also make HTN planning less flexible than non-hierarchical approaches,

because only those solutions may be generated that are “reachable” via the de-

composition of the decomposition methods. Therefore, defining only a partially

hierarchical domain is not sufficient to produce all desired solutions.

Recently HTN researchers work on enhancing the semantics of HTN planning and

have proposed variants of HTN planning. Besides TIHTN planning, hierarchy goal

network (HGN) planning [Shivashankar et al., 2012] operates over a hierarchy of

goals with decomposition methods that decompose goals with further subgoals.

[Alford et al., 2016] combined HTN and HGN planning into goal-task network

(GTN) planning where an element of the network consists of a goal and a task.

They also show that allowing task (goal) insertion, HGN and GTN planning prob-

lems can be translated polynomially into lifted TIHTN problems. Therefore, our

extension TIHTNS actually also covers them.

In addition, [Shivashankar et al., 2017] relaxed the hierarchy of HGN planning and

translate this variant which is called hierarchy-relaxed hierarchy goal network (HR-

HGN) planning into classical planning. Hereafter, we detail that how lifted TIHTN

and HR-HGN planning can be easily encoded in our framework in polynomial time.

Different from HTN planning, HGN planning talks about goal network gn = (G,≺)

where G is a set of formulas in disjunctive normal form over ground literals, called

goal formulas, and ≺⊆ G×G is a strict partial order on G. Just as HTN problems,

an HGN problem is a tuple P = (L , O,M, sI , gnI) where M is a set of HGN

decomposition methods and gnI is an initial goal network.

For an HR-HGN problem, the decomposition method set M is empty. The so-

lutions of HR-HGN are defined as the set of all basic action sequences that are

executable in the initial state sI and that achieve all initial goals according to the

order.

In [Shivashankar et al., 2017], by introducing fresh basic actions with the number

of |gnI |, an HR-HGN problem can be translated into a classical planning problem.

Now, we translate HR-HGN planning into our framework without introducing
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any fresh basic actions. Allowing task insertion, state constraints simulate a goal

formula by requiring that the formula holds immediately before an empty task.

Formally, given an HR-HGN problem P = (L , O, sI , gnI), we define a TIHTNS

problem ΓG(P) = (L , ∅, O, ∅, sI , tn) as:

❼ for every g ∈ GI , λg ∈ tn and (nil, g, λg) ∈ ∆ and α(λg) = skip

❼ for every gi ≺ gj, (λgi ,⊤, λgj)

Next we show that the translation ΓG is correct.

Proposition 6.20. For an HR-HGN problem P, a sequence of basic actions σ is

a solution of P iff σ is also a solution of ΓG(P).

Proof. Suppose σtn′,sI is a solution of ΓG(P). Then tn′ is obtained from tn by an

insertion. It forms a sequence s0, . . . , sn where s0 = sI . For every g ∈ GI , we have

λg ∈ T
′ and (nil, g, λg) ∈ ∆′ then si |= g where σ(λg) = i; for every gi ≺ gj, we

have (λgi ,⊤, λgj)∆
′ then i′ < j′ and si′ |= gi, sj′ |= gj,where σ(λgi) and σ(λgj).

6.6 Summary

In this chapter, we extend TIHTN planning into TIHTNS planning so that state

constraints can be captured. We also show that TIHTNS planning keeps the

property of acyclic decomposition, entailing that the plan-existence problem is

decidable. In addition, based on this property, we propose an acyclic progression

operator for TIHTNS planning. With the progression operator, we show that

the extension it does not increase the complexity of plan-existence, staying in

2-NEXPTIME. Finally, we investigate the relation between TIHTNS planning

and other two kind of HTN-like planning formalism: TIHTNS planning can cover

not only HR-HGN planning, but also GTN and HGN with allowing task (goal)

insertion.
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In PDDL3 [Gerevini and Long, 2005], the trajectory constraints are associated

with time which are in form of formulas in linear temporal logic. Note that in the

definition of the consistency with state constraints (Definition 6.9), the consistency

is defined on the sequence of states. It actually paves the way for TIHTNS planning

to model the linear temporal property of state constraints and then to capture

trajectory constraints.

Generally, HTN planners solve problems either using decomposition directly, such

as [Erol et al., 1994b] and [Bercher et al., 2014], or using progression [Nau et al.,

2003]. Since progression-based HTN algorithms can be efficient across a number

of syntactically identifiable classes of HTN problems [Alford et al., 2015a], we are

convinced that our acyclic progression operator is a starting point for designing

an efficient TIHTNS planner.



Chapter 7

Conclusion and Future Work

This thesis aims to provide a comprehensive analysis of intention refinement. In

the last chapter, let’s come back to the research questions and discuss what could

be done in the future.

7.1 Summary

In this thesis, we analyze the refinement in two main frameworks: the belief-

intention database and HTN planning. Let us start this section by answering the

questions proposed in Chapter 1 on these two frameworks:

1. How can we model high-level intentions?

A high-level intention is considered as a high-level action with a flexible du-

ration in belief-intention database and as a compound task in HTN planning,

respectively.

2. How to model the refinement of a high-level intention?

Database Whether an intention can be refined into a set of intentions is

based on the entailment relation defined over belief-intention databases.

HTN The refinement relation is precompiled via decomposition methods.

141
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Figure 7.1: Comparison between BDI Theories and Automated Planning 3

3. How to refine an intention into executable plans?

Database Every step of refining intentions expands the database, leading

it to be more concrete. The process of refinement is finite and finally

results in an executable plan.

HTN Plans are built via step-wise refinement of high-level actions into

lower-level actions in a top-down manner, according to the predefined

decomposition methods.

4. Is the refinement operation correct?

Database The refined intention and the lower-level intentions satisfy the

instrumentality relation.

HTN The refinement relation among actions is predefined in the decompo-

sition methods and we evaluate the coherence condition for the domain

via PDL.

Now we have a more complete picture on the frameworks concerning this the-

sis. By updating Figure 2.1, we compare them in Figure 7.1. In the figure, our

belief-intention database framework lies above Shoham’s database framework, be-

cause our database is an extension of Shoham’s database by considering high-level



Chapter 7. Conclusion and Future Work 143

actions. On the other hand, compared to TIHTN planning, the completeness

of decomposition methods for TIHTNS planning is less demanding and for our

belief-intention databases, it is not necessary to precompile decomposition meth-

ods. Interestingly, from HTN, TIHTN, TIHTNS to our database framework, the

precompilation of decomposition methods required becomes less and less, while

the complexity of the plan-existence or satisfiability problem tend to be lower,

from undecidability to PSPACE-complete.

A number of challenges to establish the new generation of BDI theory are listed

in [Herzig et al., 2017]. Apart from intention refinement, the issues of the frame

problem, integration with automated planning and revision theory are on the list.

For the frame problem, by introducing the STRIPS-like actions and events, it

is addressed in the belief-intention database. To link belief-intention database

and automated planning, we have uniformed the terminology about actions and

used dynamic theories to syntactically describe the behaviors of actions in the

presentation of both databases and HTN planning. Furthermore, a theory of

intention revision should be based on the instrumentality relation which stems

from refinement. We are convinced that our research on intention refinement

leads to progress within the near future and it is our long term goal to tackle the

new challenges which we may meet in the foundation of new BDI theories.

7.2 Going Further

7.2.1 Intention Revision

As emphasized by Bratman, intentions are high-level plans to which the agent is

committed. In this thesis we have studied the “high-level” property, while the

“committed” property concerns another significant concept – intention revision.

Being commitments, intentions are stable mental attitudes. Indeed, there are only

two possible reasons to abandon an intention:
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1. either it turns out to be impossible to satisfy,

2. or it is only instrumental for another, higher-level intention the agent is

about to abandon.

Here is an example involving both processes: suppose I intend to take out a loan

in order to buy an expensive house and learn that it has already been sold. The

revision of my beliefs about the future should make me drop these two intentions:

I first then abandon my high-level intention to buy that house because it cannot

be achieved, and then my instrumental intention to borrow.

The proposed notion of instrumentality based on intention refinement paves the

way for revision of intentions: when dropping a high-level intention, we also drop

the lower-level intentions that are instrumental for it. Up to now, there is little

work on linking intention revision with instrumentality, except for [Shapiro et al.,

2012] which models intention revision by considering relations between a prede-

fined library of plans and intentions. When it comes to revision theory, we have to

mention the milestone of the belief revision theory, the AGM model [Alchourrón

et al., 1985]. As mentioned in Chapter 2, [van Zee and Doder, 2016] proposed

AGM-like revision postulates for beliefs and intentions. Although the instrumen-

tality relation is not accounted and the frame problem is not addressed, we believe

that our database framework, combined with them, provides a good starting point

for an intention revision theory that is based on the instrumentality relation.

7.2.2 Improving HTN Domains

On one hand, the decomposition methods in HTN domains simplify the domain

design by avoiding the need for the complete causal models which require the com-

plete precondition and postcondition. On the other hand, the way to decompose

high-level actions extremely depends on the expertise of the domain designer on

the scenario, where the domain designer stipulates that certain actions will be

performed “just because he says so.” However, in most real-world domains, the

designer may have the expertise for only some parts of the domains. For instance,
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it is possible that the non-achievement of a compound task results from the lack

of some subtasks. This is probably caused by an omission: the designer forgot to

consider the subtask in the decomposition method. Taking the example of Figure

1.1 in the introduction, the action of buying the flight ticket is a prerequisite of

taking the plane to Melbourne and it is missed, as a subtask of the action of flying

to Melbourne. Nevertheless, there is no HTN solution because the missing subtask

is not in the task network and will never be produced, in consequence the initial

logistics task cannot be accomplished. The approach of TIHTN planning indeed

fills up the plans by adding the missing actions to accomplish the initial tasks.

Actually, we have already implement a TIHTN planner via ASP, shown in Ap-

pendix B. One benefit of implementing the TIHTN planner via ASP lies in the

computation of all solutions, which include all possible insertion of basic actions.

It enables to provides clues to complete decomposition methods by adding the

inserted actions into the decomposition methods, and further to improve HTN do-

mains. Preliminary experimental results show that if there exists at least a plan,

the improvement obtained from the TIHTN planner speeds up problem solving.

As mentioned above, the human expertise, in many real-world scenarios, is only

partial. It is necessary to help the HTN domain designer to improve the domain

via finding potential refinement relation among actions. Consider refinement from

the entailment perspective, in which the belief-intention database does, contributes

to the discovery of the hidden refinement relation.
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Appendix B

A TIHTN Planner Based on ASP

In this appendix, we give a decomposition-first algorithm for TIHTN planning

and encode it into ASP programs, implementing a TIHTN planner. In TIHTN

planning, only ordering constraints are considered. Here we adjust the presentation

way of TIHTNS planning in Chapter 6 by using a pair of an action and an integer

to denote a task.

A task network tn = (T,≺) is a tuple:

❼ T ⊆ (C∪O)× N

❼ ≺⊆ T × T is a set of ordering constraints over T

In a task network, every task is a pair of an action a and an integer identifier

i. With the same action, different identifiers indicate different tasks. For a task

t = (a, i), we define α(t)=a. A task t is called primitive if α(t) is a basic action,

otherwise it is called compound. A task network is called primitive iff it contains

only primitive tasks.

High-level actions cannot be directly executed by the agent and each high-level

action is decomposed into a task network according to decomposition methods.

Each decomposition method m=(c, tn′) consists of a high level action c and a task

network tn′ whose inner tasks are called subtasks.

148
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The decomposition procedure for TIHTN planning are similar with that of TI-

HTNS planning. Every step of decomposition removes the decomposed task and

adds the subtask network into the task network. The problem description and

solution criterion for TIHTN planning are identical as those of TIHTNS planning.

B.1 Encoding HTN Problems and Operators

First we show how to translate a TIHTN problem into a set of ASP facts. As each

step of applying decomposition generates a task network, we use the number D of

the decompositions that were applied to identify the task network. More formally,

we use an ASP atom tn(A, I, D) to denote a task (A, I) is in the task network D.

Without loss of generality, we only give the encoding for the propositional HTN

problems. For a propositional HTN problem P = (D, sI , (TI ,≺I)), we define a set

ΠP of ASP facts as follows:

❼ for every o ∈ O, primitive(o).

❼ for every c ∈ C, compound(c).

❼ for every mk = (c, (Tk,≺k)) ∈M , method(c, k).

- for every (a, j) ∈ Tk, sub(c, k, a, j).

- for every (a1, j1)≺k(a2, j2), mSucc(c,k,a1,j1,a2,j2).

❼ for every p ∈ sI , holds(p, 0).

❼ for every (a, i) ∈ TI , tn(a, i, 0).

❼ for every (a1, i1)≺I(a2, i2), succ(a1, i1, a2, i2, 0).

Next we encode the state transition system and planning operators in ASP. To be

simple, we suppose the precondition of each operator is in CNF and NNF. That

is, every precondition can be rewritten as a conjunction of literals. In each state

S, there is one and only one applicable basic action O performed. Due to negation
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as failure, each variable P is false in S+1 by default unless either it is added in S

or it already holds and is not deleted in S. We use ΠO to denote the set of facts

and formulas as follows:

For every o ∈ O and (pre(o), eff+(o), eff−(o)) ∈ D,

❼ for every p ∈ eff+(o), add(p, o).

❼ for every p ∈ eff−(o), del(p, o).

❼ for pre(o) = p1 ∧ ... ∧ pn ∧ ¬q1 ∧ ... ∧ ¬qm,

pre(o,S) :- holds(p1,S), ..., holds(pn,S), not holds(q1,S),...,not holds(qm,S).

and

1 {do(O, S) : operator(O)} 1 :- state(S). (B.1)

:- not pre(O, S), do(O, S). (B.2)

holds(P, S+1) :- add(P, O), do(O, S). (B.3)

holds(P, S+1) :- not del(P, O), do(O, S), holds(P, S). (B.4)

B.2 Acyclic Decomposition

In Chapter 6, we have proposed an acyclic progression operator on the current

state and task network. Every step of progression updates the state or the task

network. In the state s and task network tn, there are three choices to progress:

(1) insertion is to find an applicable basic action in s to do; (2) performing a

primitive task t requires that t is unconstrained, i.e., all predecessors of t have

already been performed and that t’s precondition holds in s, and removes t from

tn; (3) selecting a compound task t and its decomposition method m to decompose

requires that t is unconstrained and thatm cannot contain a subtask st where α(st)

is in h(t), i.e., α(st) is an ancestor of t, and updates tn and Function h. If all tasks

are removed via the progression operator, then a plan is found.



Appendix B. A TIHTN Planner Based on ASP 151

Actually, it is not necessary to require the task to be unconstrained when de-

composing it, because all constraints about it are propagated to its subtasks and

the decomposition does not change the state. After removing the unconstraint

requirement, the progression operator can still find the plan:

Lemma B.1. If there is a sequence of acyclic progressions from (sI , tnI) to (s, ∅),

then there exists a primitive task network tn′ such that tnI →
∗
AD tn′ and there

exists a sequence of task performance and insertion from (sI , tn
′) to (s, ∅).

Intuitively, if a sequence of progression forms a plan, then by putting the steps of

decompositions ahead of all steps of performance and insertion, it still forms the

plan. By this lemma, we first acyclically decompose the initial task network into

a primitive network; then serialize it to find a plan.

Next we show how to use ASP to describe the procedure of acyclic decompositions.

According to [Geier and Bercher, 2011], the maximum number of tasks in the

task network which is generated via acyclic decomposition is k|C|, where k is the

maximum number of tasks inside the task networks in decomposition methods and

the initial task network and |C| is the number of ground high-level actions. Thus,

we use decompNo(D) to denote D is within the scope from 0 to k|C|.

If there exists a compound task in the task network D, then it needs to be decom-

posed.

todecomp(D) :- tn(C, I, D), compound(C), decompNo(D). (B.5)

Each decomposition is caused by one and only one decomposition method of com-

pound task. Formula (B.6) states it is possible for every compound task to be

selected but formula (B.7),(B.8) guarantee only one can be selected and formula

(B.9),(B.10) guarantee there is at least one selected. Formula (B.11) means if C, I

is selected to decompose, then there is one and only one decomposition method

C, K selected. Formula (B.12) means every subtask SA is not an ancestor of C, I
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and guarantees the procedure of decompositions is acyclic.

0 {sel(C, I, D)} 1 :- tn(C, I, D), compound(C). (B.6)

:- sel(C1, I1, D), sel(C2, I2, D), C1!=C2. (B.7)

:- sel(C1, I1, D), sel(C2, I2, D), I1!=I2. (B.8)

sel(D) :- sel(C, I, D). (B.9)

:- not sel(D), todecomp(D). (B.10)

1 {selM(C, K, D) : method(C, K)} 1 :- sel(C, I, D). (B.11)

:- selM(C, K, D), sub(C, K, SA, SI), h(C, I, SA). (B.12)

We use max(A, I, D) to denote the maximum identifier I for action A in the task

network D. If an action is not in the task network, its maximum identifier is 0.

max(A, I, D) :- tn(A, I, D), not tn(A, I+1, D). (B.13)

max(C, 0, D) :- not tn(C, 1, D), compound(C), decompNo(D). (B.14)

max(O, 0, D) :- not tn(O, 1, D), primitive(O), decompNo(D). (B.15)

Next we show how the decomposition results in the new task network. The new

identifier of the introduced subtask (SA, SI) is its maximum identifier J in task

network D plus SI, which guarantees every introduced subtask differs from the

existing tasks. By negation as failure, those tasks which are not selected to de-

compose remain in the task network.

tn(SA,J+SI,D+1) :- selM(C,K,D), sub(C,K,SA,SI), max(SA,J,D). (B.16)

tn(A, N, D+1) :- tn(A, N, D), not sel(A, N, D), todecomp(D). (B.17)

Subtasks inherit the constraints about the selected compound task. Formally,

for every subtask (SA, SI) of decomposition method (C, K), if (A1,J1)≺(C,I), then

(A1,J1)≺(SA,J+SI); if (C, I)≺(A2, J2), then (SA, J+SI)≺(A2, J2); Also, the order-

ing constraints among subtasks are kept in the resulting task network. With
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negation as failure, formula (B.21) means the constraints unrelated to the selected

task are preserved.

succ(A1, J1, SA, J+SI, D+1) :- succ(A1, J1, C, I, D),

sel(C, I, D), sub(C, K, SA, SI), max(SA, J, D).
(B.18)

succ(SA, J+SI, A2, J2, D+1) :- succ(C, I, A2, J2, D),

sel(C, I, D), sub(C, K, SA, SI), max(SA, J, D).
(B.19)

succ(SA1, J1+SI1, SA2, J2+SI2, D+1) :- selM(C, K, D),

mSucc(C, K, SA1, SI1, SA2, SI2), max(SA1, J1, D), max(SA2, J2, D).
(B.20)

succ(A1, J1, A2, J2, D+1) :- succ(A1, J1, A2, J2, D),

not sel(A1, J1, D), not sel(A2, J2, D), todecomp(D).
(B.21)

Next we show how to update Function h. Formula (B.22) states that every com-

pound task takes itself as an ancestor. The ancestors A of the decomposed task

(C, I), including itself, are also the ancestors of all its subtasks (SA, J+SI).

h(C, I, C) :- tn(C, I, D), compound(C). (B.22)

h(SA, J+SI, A) :- sel(C, I, D), selM(C, K, D), h(C, I, A),

sub(C, K, SA, SI), max(SA, J, D).
(B.23)

The termination condition for the decomposition procedure is that there is no

compound task. When endDecomp is generated, the primitive task network D s.t.

final(D) is obtained. Formula (B.26) restricts that it has to be obtained.

final(D) :- not todecomp(D), todecomp(D-1). (B.24)

endDecomp :- final(D). (B.25)

:- not endDecomp. (B.26)

We use ΠDe to denote the set of formulas (B.5)–(B.26) and it describes how to refine

the initial task network into a primitive task network, as the following proposition
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states.

Proposition B.2. For a TIHTN problem P = (D, sI , tnI), tnI →
∗
AD tn where tn

is primitive iff tn is obtained from an answer set of ΠP ∪ ΠDe.

Sketch. As ΠDe describes the acyclic procedure of decompositions, the task network

D where final(D) holds is a primitive task network. Given the upper bound k|C| for

D, ΠP∪ΠDe has an answer set including endDecomp iff the decomposition procedure

terminates.

B.3 Inserting and Performing Tasks

After decomposing into a primitive task network, we need to generate a plan which

covers all primitive tasks and satisfies the constraints. As shown in Algorithm 1,

we give a decomposition-first algorithm for TIHTN planning: first find a primitive

task to do whose predecessors have already been done and whose precondition

holds; if there is no such a primitive task then we choose an applicable basic

action to do repeatedly until we find such a primitive task. In Algorithm 1, we

define Function dotask to record the state in which every primitive task is done

and Function uncons to search the unconstrained primitive tasks in the ongoing

state. By Geier and Bercher [2011], if a TIHTN problem has a plan, then it has a

plan where the number of the actions is at most k|C|(2|L |+1), which is the bound

n of states.

As the sequences of acyclic decompositions and basic actions are finite, Algorithm

1 outputs the failure if it cannot find a plan after a traversal of all sequences.1

Next we implement the serialization of the primitive task network via ASP pro-

grams. Different from Algorithm 1, we first find an executable action sequence

by formula (B.1) then schedule the primitive tasks into the sequence. If O is per-

formed in S, it is possible to consider the primitive task (O, J) to be performed.

1We omit the conditions to jump out the loops in Algorithm 1.
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Algorithm 1: Decomposition-first TIHTN Planning

input : P = (L , O, C,M, sI , tnI) and a state bound n
output: o1, . . . , om and dotask

1 while true do
2 decompose until tn is primitive
3 repeat
4 for i = 0→ n− 1 do
5 s← si
6 while there is no (o, j) ∈ uncons(T, s) such that s |= pre(o) do
7 choose an o where s |= pre(o)
8 oi ← o
9 s← (s \ eff−(o)) ∪ eff+(o)

10 i← i+ 1

11 choose a (o, j) ∈ uncons(T ) where s |= pre(o)
12 dotask(o, j)← i
13 oi ← o
14 s← (s \ eff−(oi)) ∪ eff

+(oi)
15 i← i+ 1

16 until for all (o, j) ∈ T , dotask(o, j) is defined ;
17 return o1, . . . , om and dotask

Every primitive task is performed once and only one primitive task is selected to

perform in a state.

0 {dotask(O, J, S)} 1 :- do(O, S), tn(O, J, D), final(D). (B.27)

:- dotask(O, J, S1), dotask(O, J, S2), S1!=S2. (B.28)

:- dotask(O, J1, S), dotask(O, J2, S), J1!=J2. (B.29)

The schedule of primitive tasks satisfies the constraint ≺:

:- dotask(O1, J1, S1), dotask(O2, J2, S2),

S1>S2, succ(O1, J1, O2, J2, D), final(D).
(B.30)

If every primitive task is performed, then the plan is found.

dotask(O, J) :- dotask(O, J, S). (B.31)

:- not dotask(O, J), tn(O, J, D), final(D). (B.32)
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We use ΠS to denote the set of formulas (B.27)–(B.32). Then we define Π =

ΠP ∪ΠO ∪ΠDe ∪ΠS and its every answer set forms a plan of the TIHTN problem:

Theorem B.3. For a TIHTN problem P, if Π has an answer set, then P is

solvable.

Sketch. As ΠDe decomposes the initial task network into a primitive task network,

ΠO finds an action sequence executable in sI and ΠS schedules all primitive tasks

into the sequence which is consistent with the constraints. Given the bound n of

states, a basic action sequence is a plan of P iff it is formed by an answer set of

Π.

If before the scheduling of tasks finishing, i.e., unfin(S), every action on the se-

quence is a task, it forms an HTN solution. Then we define Π′ from Π by adding

the formulas:

state dotask(S) :- dotask(O, J, S). (B.33)

done(O, J, S) :- dotask(O, J, S). (B.34)

done(O, J, S+1) :- done(O, J, S), state(S+1). (B.35)

unfin(S) :- tn(O,J,D), final(D), not done(O, J, S), state(S). (B.36)

:- not state dotask(S), unfin(S). (B.37)

Lemma B.4. For an HTN problem P, if Π′ has an answer set then P has a

solution.
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automata translation: fast and more deterministic. In Proceedings of the 17th

International Conference on Tools and Algorithms for the Construction and

Analysis of Systems TACAS, pages 95–109. Springer.

Balbiani, P., Herzig, A., and Troquard, N. (2013). Dynamic logic of propositional

assignments: a well-behaved variant of PDL. In Proceedings of the 28th Annual

IEEE/ACM Symposium on Logic in Computer Science (LICS), pages 143–152.

IEEE.

157



Bibliography 158

Baral, C. and Son, T. C. (1999). Extending ConGolog to allow partial ordering. In

Proceedings of the 6th International Workshop on Agent Theories, Architectures,

and Languages, pages 188–204. Springer.

Bauters, K., Liu, W., Hong, J., Sierra, C., and Godo, L. (2014a). CAN(PLAN)+:

Extending the operational semantics of the BDI architecture to deal with un-

certain information. In Proceedings of the 30th Conference on Uncertainty in

Artificial Intelligence (UAI), pages 52–61. AUAI Press.

Bauters, K., Liu, W., Hong, J., Sierra, C., and Godo, L. (2014b). CAN(PLAN)+:

extending the operational semantics of the BDI architecture to deal with un-

certain information. In Proceedings of the 13th Conference on Uncertainty in

Artificial Intelligence (UAI), pages 52–61. AUAI Press.
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