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1 Introduction

Stochastic control models in economics aim at obtaining qualitative properties of value
functions and at deriving optimal control policies in order to analyse various economic
questions and to propose quite explicit recommendations. To meet this objective, economists
always follow a standard route which consists in building value functions in two steps:

i) derive the associated HJB equation whose solution gives a candidate value function,
and, as a by-product, a candidate optimal policy, if any,

ii) apply a verification theorem based on Itô’s formula which asserts that a smooth solution
to the HJB equation coincides with the value function.

The key of this approach is to show that the HJB equation admits a solution that is regular
enough to apply the Itô’s formula needed in the verification theorem. However, it is well-
known that the value function of a stochastic control problem is generally a solution to
the associated HJB equation in some weak sense such as in the viscosity sense. For one-
dimensional stochastic control problems, a recent literature has given results to check at
hand the regularity of value functions. For instance, Strulovici and Szydlowski (2015) avoid
the concept of viscosity solutions and use a shooting method to prove regularity results.
Pham (2007) shows that the value functions of a class of optimal switching problems are
differentiable by means of viscosity solutions. Yet, the concept of viscosity solution does not
give a clear set of conditions to derive regularity results for multi-dimensional problems, even
if has proved to be very efficient to provide numerical approximations of value functions,
which forces to argue case by case.

Motivated by economic relevance, two-dimensional stochastic control problems have
emerged recently from dynamic contracting in corporate finance.1 In a two-dimensional
setting, existence of derivatives of value functions, regularity properties and existence of
optimal controls can be very challenging. In this paper, we provide a complete solution of a
two-dimensional control problem arising from the optimal exit problem under moral hazard.
Our mathematical results go beyond our model and complement the heuristic derivation
of regularity results made in recent economic studies on dynamic contracting in corporate
finance.

Dynamic contracting models in corporate finance are based on the premise that two
factors drive the relationship between firm’s owner (principal) and firm’s manager (agent).
First, owners delegate tasks to managers. Second, incentives of managers and those of
owners are not fully aligned. Firm’s manager may take some actions providing him private
benefits and having a negative externality on the firm’s cash flows. This impacts firm’s
owner payoff. Those actions taken by firm’s manager are typically unobservable. Hence,
the firm’s owner problem is to find the best contract that aligns the interest of the firm’s
manager with her own. Clearly, the mathematical formulation of the problem depends on
the modeling of the cash flows. A common assumption is to model cash flows generated by
the firm as the increment of an arithmetic Brownian motion

dYt = µ dt+ σ dZt, (1)

1See e.g. Williams (2009), Strulovici (2011), Faingold and Vasama (2014), De Marzo and Sannikov
(2017), Vasama (2017).
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where Z is a standard Brownian motion. The process Y represents the cumulative cash flows,
its increment dYt the cash flows over a period [t, t+dt), and its drift µ the firm’s growth rate.2

In this environment, shocks on cash flows are identically, independently distributed. As
pointed out in the literature3, dynamics (1) is merely for the sake of tractability and does not
account for elementary stylized facts. For instance, cash flows are usually serially correlated
over time. Also, cumulated cash flows up to any given time corresponds to the difference
between two increasing processes, cash inflows and cash outflows, and, as such should be
modeled as a finite variation process, clearly a property that does not satisfy dynamics (1).
The attraction of modeling cumulative cash flows as an arithmetic Brownian motion comes
from the simple form taken by incentive compatibility conditions. The principal problem
reduces then to a tractable one-dimensional Markov control problem whose value function
has well established regularity properties.4

In this paper we consider a setting in which, the firm’s growth rate fluctuates and follows
a Brownian motion with volatility σ. Specifically, the cumulative cash flows process Y follows
the dynamics

dYt = Xt dt,

whereXt = x+σZt. In this setting cash flows are serially correlated over time and cumulative
cash flows have finite variations. In sharp contrast with the environment defined by (1), the
principal is concerned with the random growth rate of the firm (that may induce him to
liquidate it for pure profitability reasons) and by the agent’s actions. These two concerns
are very much interconnected. We show that the principal’s problem takes the form of a
Markovian two-dimensional control problem with state variables, the so-called continuation
value of the agent, and the level of the firm’s growth rate or profitability. Following the
literature, we solve the firm’s owner problem in the set of contracts that induce the manager
to exert full effort all the time. We establish all the required regularity properties of the
associated value function. We point out at each step of our analysis the novelty of our results
and explain how they complement recent studies. Notably, we clarify the importance of the
regularity of the value function at the boundaries in solving the two-dimensional control
problem.

The outline of the paper is as follows. Section 2 develops the mathematical model
and writes the principal’s control problem. Section 3 derives the incentive compatibility
conditions and the Markovian representation of the principal’s problem. Section 4 contains
our main results. We derive regularity properties of the value function of the principal’s
problem and characterize the optimal contract in the class of contracts inducing effort at
any time. Section 5 discusses our results and presents open questions for future research.

2 The model

Principal and agent. We consider a firm that hires a manager to operate a project. The
firm’s owner, or the principal, has access to unlimited funds and the manager, or agent, is
protected by limited liability. The agent and the principal both agree on the same discount

2See the seminal paper De Marzo and Sannikov (2006).
3See for instance, Zhang (2009).
4See e.g. Sannikov (2008), De Marzo and Sannikov (2006) and Strulovici and Szydlowski (2015).
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rate r. We assume that, at any time t, the project produces observable cash flows if and
only if the manager is in charge. In particular, the project is abandoned when the manager
is fired and we assume without loss of generality that its scrap value is zero. The cumulative
cash flows process (Yt)t≥0 and the growth rate process (Xt)t≥0 evolve as

dYt = Xt dt and dXt = −δat dt+ σdZa
t , X0 = x (2)

where δ and σ are positive constants, Za
t is a Brownian motion, and at ∈ [0, 1] is the agent’s

unobservable action. The unobservable action at = 0 is called the effort action, the unob-
servable action at > 0 is called the shirking action. Thus, shirking has a negative effect −δat
on the growth rate. Whenever the agent shirks, he receives a private benefit Bat dt where
B is a positive constant.

Probabilistic model. Formally, we consider the probability space Ω = C([0,∞),R), the
set of continuous real functions on [0,+∞) endowed with the Wiener measure denoted by
P0. Let Z = (Zt)t≥0 be a Brownian motion under (P0,Ft) where Ft is the completion of
the natural filtration generated by Z. Under P0, we assume that the project’s growth rate
evolves as

dXt = σdZt.

Thus, P0 corresponds to the probability distribution of the growth rate when the agent
chooses at any time the effort action. For any action process a = (at)t≥0 which is assumed
to be a Ft adapted process with values in [0, 1], we define

γat = exp

[∫ t

0

−
(
δas
σ

)
dZs −

1

2

∫ t

0

(
δas
σ

)2

ds

]
.

Because the action process a is bounded, the process (γat )t≥0 is an Ft- martingale. We then
define a probability Pa on Ω such that

dPa

dP0
|Ft = γat .

The process (Za
t )t≥0 with

Za
t = Zt +

∫ t

0

(
δas
σ

)
ds

is a Brownian motion under Pa. Therefore, any action process a induces a probability mea-
sure Pa on Ω for which the dynamics of cash flows is given by Equation (2).

Problem formulation. Following the literature (see for instance Zhu (2012)), a contract
is a triplet (C, τL, a) that specifies nonnegative transfers C = (Ct)t≥0 (remuneration) from
the principal to the agent, a stopping time τL at which the project is liquidated and an
action process a that the principal recommends to the agent. The process C is FX-adapted,
nondecreasing (reflecting agent’s limited liability), τL is an FX-stopping time, and, for any
action process a, we assume

Ea
(∫ τL

0

e−rsdCs

)
< +∞.
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Throughout the paper FX denotes the Pa-augmentation of the filtration generated by (Xt)t≥0

and T X the set of FX-stopping times.
For a fixed contract Γ = (C, τL, a). The agent’s expected profit and the principal’s

expected profit associated to Γ are respectively,

VA(Γ) = Ea
(∫ τL

0

e−rt(Bat dt+ dCt)

)
,

and

VP (Γ) = Ea
(∫ τL

0

e−rt(Xt dt− dCt)
)
.

An incentive-compatible action process a∗(C, τL) = (a∗t (C, τL))t≥0 is an agent best reply
in term of effort to a given remuneration and liquidation policy (C, τL). That is, for any
action process a, the action process a∗(C, τL) satisfies

Ea
(∫ τL

0

e−rt(Bat dt+ dCt)

)
≤ Ea∗(C,τL)

(∫ τL

0

e−rt(Ba∗t (C, τL) dt+ dCt)

)
.

We say that a contract (C, τL, a) is incentive compatible or (C, τL) induces an effort
strategy a∗(C, τL) if a = a∗(C, τL). An optimal contract is an incentive compatible contract
that maximizes the expected principal’s profit at date 0 subject to delivering to the agent
a payoff larger than her reservation utility w0 > 0. The principal problem is then to find, if
any, an optimal contract. Formally, the principal studies the problem

sup
C,τL

Ea∗(C,τL)

(∫ τL

0

e−rt(Xt dt− dCt)
)

(3)

s.t Ea∗(C,τL)

(∫ τL

0

e−rt(Ba∗t (C, τL) dt+ dCt)

)
≥ w0. (4)

We refer inequality (4) to the agent’s participation constraint.

3 Incentive compatibility and Markov formulation

This section develops in our setting a result due to Sannikov (2008) and generalized by Cvi-
tanic, Possamäı and Touzi (2016) and (2017): the continuation value to the agent (defined
below) characterizes the incentive compatible actions and allows for a Markov formulation
of the principal’s problem (3)-(4).

Fix a contract Γ and assume for a while that a is incentive compatible in order to have
the same set of information for both players, namely FXt = Ft. Let us define W Γ = (W Γ

t )t≥0

with

W Γ
t = Ea

(∫ τL

t

e−r(s−t)(Basds+ dCs) | FXt
)
.

The process W Γ corresponds to the agent’s continuation value process associated to contract
Γ. Because C is an increasing process, W Γ

t ≥ 0 for all t ≤ τL with W Γ
τL

= 0 by construction.
Moreover, if one of the two processes (at)t≥0 and (Ct)t≥0 is nonzero then, τL is the first
hitting time of 0 for the agent’s continuation value. The following holds.
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Lemma 1 The continuation value process W Γ satisfies under Pa the dynamics

dW Γ
t = (rW Γ

t −Bat) dt+ βt(Γ) dZa
t − dCt for t ≤ τL, (5)

where the process β(Γ) = (βt(Γ))t≥0 is FX predictable and uniquely defined. It is called
hereafter the sensitivity process.

Proof of Lemma 1. By assumption (2), the process

Yt = e−rtW Γ
t +

∫ t

0

e−rs(Basds+ dCs) = Ea
(∫ τL

0

e−rs(Basds+ dCs)|FXt
)

is a uniformly integrable martingale under Pa. By the martingale Representation theorem,
there exists a unique FXt predictable process β(Γ) such that

Yt = Y0 +

∫ t

0

e−rsβs(Γ) dZa
s ,

with

Ea
(∫ τL

0

e−2rsβs(Γ)2 ds

)
< +∞.

Then, Itô’s formula, yields (5). 2

Thus, a contract Γ = (C, τL, a) defines a unique sensitivity process β(Γ) = (βt(Γ))t≥0

by the representation theorem for Brownian martingale that yields (5), the dynamics of
the continuation value process under Pa. We could interpret Lemma 1 in the framework of
BSDE as follows: for any given incentive compatible contract Γ = (C, τL, a), there exists an
unique pair of FXt adapted process (Wt(Γ), βt(Γ)) such that{

W Γ
τL

= 0,
dW Γ

t = (rW Γ
t −Bat) dt+ βt(Γ) dZa

t − dCt.

However, the question of characterizing incentive-compatible contracts that satisfy the agent’s
participation constraint (4) remains unanswered: we have to characterize the set Γ(w0) of
contracts Γ for which W Γ

0 is greater than w0.
To solve this problem, the idea of Sannikov (2008) is to see the sensitivity process β(Γ)

as a control. To this end, let us consider the class of FX measurable processes β = (βt)t≥0

such that

Ea
(∫ ∞

0

e−2rsβ2
s ds

)
< +∞, (6)

and, for any fixed increasing process (Ct)t≥0, let us consider the process W β = (W β
t )t≥0 that

satisfies the controlled stochastic differential equation under Pa,

dW β
t = (rW β

t −Bat) dt+ βt dZ
a
t − dCt with W β

0 ≥ w0.

We would like the process (W β
t )t≤τL to play the role of the agent continuation value associated

to some contract Γ ∈ Γ(w0). This requires W β
t ≥ 0 up to the termination date of the contract

Γ. Therefore, we introduce

τβ0 (C) = inf{t ≥ 0 , W β
t = 0}.
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Condition (6) implies that

(
e−rtW β

t +

∫ t

0

e−rs(Bas ds+ dCs) = W β
0 +

∫ t

0

e−rsβs dZ
a
s

)
t≤τβ0 (C)

is a uniformly integrable martingale under Pa. Therefore, Optional sampling Theorem gives

w0 ≤ W β
0

= Ea
(∫ τβ0 (C)

0

e−rs(Basds+ dCs)

)
= W Γ̃

0 (7)

where Γ̃ = ((Ct)t, τ
β
0 (C), a) belongs to Γ(w0). On the other hand, any contract Γ ∈ Γ(w0)

can be uniquely written in the form ((Ct)t, τ
β(Γ)
0 (C), a) by uniqueness of the BSDE repre-

sentation.
Let us recall that we have assumed so far that a is incentive compatible. The next lemma

characterizes incentive compatible contracts as a deterministic function of the control process
β. To ease notations, we write in the sequel W in place of W β.

Lemma 2 A contract Γ = (C, τβ0 (C), a) is incentive compatible if and only if at = 11βt<σλ
with λ = B

δ
.

Proof of Lemma 2. For any contract Γ = (C, τβ0 (C), a), we will show that

Ea∗
(∫ τβ0 (C)

0

e−rt(Ba∗tdt+ dCt)

)
≥ Ea

(∫ τβ0 (C)

0

e−rt(Batdt+ dCt)

)
. (8)

where a∗t = 11βt<λσ.
Let W ∗, the continuation value associated to action strategy a∗. We have, under Pa∗

dW ∗
t = (rW ∗

t −Ba∗t )dt + βtdZ
a∗

t − dCt.

with

W ∗
0 = Ea∗

(∫ τβ0 (C)

0

e−rs(Ba∗t + dCt) dt

)
.

Under Pa,
dW ∗

t = (rW ∗
t + (

δ

σ
βt −B)11βt<λσ −

δ

σ
βtat) dt+ βtdZ

a
t − dCt

with

W ∗
0 = Ea

(∫ τβ0 (C)

0

e−rs(Batdt+ dCt)

)
+ Ea

(∫ τβ0 (C)

0

e−rtψ(at, βt)dt

)
where ψ(a, β) = ( δ

σ
β − B)a − ( δ

σ
β − B)11β<σλ. Now, if β < λσ then, for any a ∈ [0, 1],

ψ(a, β) = ( δ
σ
β −B)(a− 1) ≥ 0. If β ≥ λσ then, for any a ∈ [0, 1], ψ(a, β) = ( δ

σ
β −B)a ≥ 0.

Thus, (8) is satisfied. 2

7



Therefore, the principal’s problem is to find a contract Γ = (C, τβ0 (C), 11β<λσ) that max-
imizes his expected profit at date 0. This leads to the following Markov formulation of
problem (3)-(4).

VP (x,w0) = max
w≥w0

VP (x,w) (9)

where

VP (x,w) = sup
C,β

Ea∗
(∫ τβ0 (C)

0

e−rs(Xs ds− dCs)

)
with a∗ = (a∗t )t≥0 and a∗t = 11β<σλ,

such that
dXt = −δ11βt<σλ dt + σdZt with X0 = x, (10)

dWt = (rWt −B11βt<σλ) dt+ βtdZt − dCt with W0 = w. (11)

The last result of this section shows that the optimal remuneration scheme postpones
payments. It is a key result because it allows the principal to focus only on a remuneration
scheme that consists in a terminal lump-sum payment.

Lemma 3 It is always optimal for the principal to postpone payments and to pay the agent
only at liquidation time with a lump-sum payment.

Proof of Lemma 3. First, observe that, from (7), the Principal’s value function (9) can
be re-written as VP (x,w0) = maxw≥w0(v(x,w)− w) where

v(x,w) = sup
C,β

Ea∗
(∫ τβ0 (C)

0

e−rs(Xs +B11βs<λσ) ds

)
s.t (10) and (11). (12)

The amount v(x,w) corresponds to the total surplus generated by the project in our moral
hazard framework.

Second, note that τβ0 (C) = σβ0 ∧ τ̃
β
0 (C) where for any fixed increasing process (Ct)t≥0, we

have
τ̃β0 (C) = inf{t ≥ 0, W β

t− = 0},

and
σβ0 = inf{t ≥ 0, (∆C)t = W β

t− and (∆C)t > 0}.

Third, with no loss of generality, a remuneration process can be written under the form
(Ct)t<τβ0 (C) + W(τβ0 (C))−11t=τβ0 (C). Therefore, A control policy can be viewed as a pair (C, β)

and a stopping time τ at which the Principal pays W β
τ− and liquidate. Thus, we have

v(x,w) = sup
C,β,τ

Ea∗
(∫ τ∧τ̃β0 (C)

0

e−rs(Xs +B11βs<λσ) ds

)
.
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Now, noting that τ̃β0 (C) ≤ τ̃β0 (0) where the latter stopping time corresponds to the
situation where the principal postpones payments up to liquidation, we have

v(x,w) ≥ sup
β,τ

Ea∗
(∫ τ∧τ̃β0 (0)

0

e−rs(Xs +B11βs<λσ) ds

)
(13)

≥ Ea∗
(∫ (σβ0∧τ̃

β
0 (C))∧τ̃β0 (0)

0

e−rs(Xs +B11βs<λσ) ds

)

= Ea∗
(∫ σβ0∧τ̃

β
0 (C)

0

e−rs(Xs +B11βs<λσ) ds

)
. (14)

Taking the supremum over the controls C, β in (14) yields v(x,w). It then follows from (13)
that

v(x,w) = sup
β,τ

Ea∗
(∫ τ∧τ̃β0 (0)

0

e−rs(Xs +B11βs<λσ) ds

)
, (15)

which proves that it is optimal to postpone payments. 2

We summarize our findings as follows. The principal solves the maximization problem

max
w≥w0

(v(x,w)− w)

where

v(x,w) = sup
β,τ

Ea∗
(∫ τ∧τ̃β0

0

e−rs(Xs +B11βs<λσ) ds

)
, (16)

with
τ̃β0 = inf{t ≥ 0, Wt− = 0};

The Markov process (X,W ) is defined by

dXt = −δ11βt<σλ dt + σdZt with X0 = x,

dWt = (rWt −B11βt<σλ) dt+ βtdZt with W0 = w.

The supremum in (16) is taken over the class of FX-adapted processes β such that

Ea∗
(∫ ∞

0

e−2rsβ2
s ds

)
< +∞

and over stopping time τ ∈ T X .

Solving problem (16) remains very challenging and so far an open question, to the best
of our knowledge. The next section restricts the analysis to contracts that are incentive
compatible with the full effort action process at = 0 for every t.
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4 Full effort contracts.

We focus on the full-effort contracts, that is the class of contracts that induces the agent to
exert effort at any time. It follows from Lemma 2 that the full-effort action process a = 0
is incentive compatible if and only if βt ≥ λσ. Restricting the analysis to contracts that
incentivize the full-effort action leads to re-write problem (16) as follows

Find a contract Γ = (Wτ−11t=τ , τ ∧ τ̃β0 , 0) solution to

v(x,w) = sup
β,τ

E0

(∫ τ∧τ̃β0

0

e−rsXs ds

)
(17)

such that
dXt = σdZt with X0 = x, (18)

dWt = rWt + βtdZt with W0 = w, and βt ≥ λσ (19)

where
τ̃β0 = inf{t ≥ 0, Wt− = 0}.

Problem (17) boils to a two-dimensional optimal exit decision, hence optimal stopping theory
is from now the key mathematical tool.

Let us consider the sub-solution to problem (17)-(19) where the constraint on the incen-
tives contract is binding (that is when βt = λσ). This yields the two-dimensional constrained
optimal stopping problem

u(x,w) = sup
τ

E0

(∫ τ∧τ̃λσ0

0

e−rsXs ds

)
(20)

such that
dXt = σdZt with X0 = x,

dWt = rWt dt+ λσdZt with W0 = w,

and
τ̃λσ0 = inf{t ≥ 0, Wt− = 0}.

Observe also that the unconstrained stopping problem

v0(x) = sup
τ

E0

(∫ τ

0

e−rsXs ds

)
(21)

corresponds to the firm value in a frictionless world in which there are no asymmetry of
information and private benefits. Problem (21) is a standard real option problem that has
an explicit solution (see for instance Dixit and Pindyck (1994)). We have

v0(x) =
x

r
− x∗

r
eθ(x−x

∗), with θ =
−
√

2r

σ
and x∗ =

1

θ
.

The threshold x∗ is the (expected) profitability threshold below which it is optimal to trigger
the firm liquidation in the frictionless world. That is, the stopping time

τ ∗ = inf{t ≥ 0, Xt ≤ x∗}

10



is optimal for (21).

We are ready to state our main result.

Theorem 1 The following holds

(i) For all (x,w) ∈ R × R+, v(x,w) = u(x,w). Furthermore, u(x,w) = v0(x) for all
(x,w) ∈ R× R+ such that w ≥ λ(x− x∗).

(ii) The contract ((Wτ∗−
11t=τ∗)t≥0, τ

∗ ∧ τ̃λσ0 , 0) is a solution to problem (17), (18), (19).

Thus, the principal optimally postpones payments and pays to the agent the amount Wτ∗−

if τ ∗ ≤ τ̃λσ0 or nothing if τ ∗ > τ̃λσ0 . Either the principal stops at the frictionless threshold
τ ∗, or stops at τ̃λσ0 because, the cost of incentivizing the agent is too high.

The proof of Theorem 1 is challenging and requires a series of steps. We comment each
step, pointing out the novelty of our results. To ease the reading, we develop into the ap-
pendix the most technical arguments.

Proof of Theorem 1. To alleviate notations, we write in the sequel τ0 in place of τ̃λσ0 .
We use whenever needed the following notations: (Xx

t )t≥0 (resp. (Ww
t )t≥0) denotes the

process (Xt)t≥0 starting at X0 = x (resp. the process (Wt)t≥0 starting at W0 = w), and τ ∗

the stopping time inf{t ≥ 0 : Xx
t = x∗} (resp. τw0 , the stopping time inf{t ≥ 0 : Ww

t− = 0}).

We start with the study of constrained optimal stopping problem (20). We show the
following.

Proposition 1 The exit time τR = τ ∗ ∧ τ0 of the open rectangle R = (x∗,+∞) × (0,+∞)
is optimal for (20). That is,

u(x,w) = E0

(∫ τR

0

e−rsXs ds

)
.

Moreover, if w ≥ λ(x− x∗) then, u(x,w) = v0(x).

Proof of Proposition 1. We first show that u(x,w) = v0(x) for every w ≥ λ(x−x∗). Note
that (Wt−λXt)t≥0 is an increasing process up to time τ0 because d(Wt−λXt) = rWt dt ≥ 0,
and thus Wt −w ≥ λ(Xt − x). Therefore, if w ≥ λ(x− x∗), we have Wt ≥ λ(Xt − x∗). As a
consequence, the first time the agent’s continuation value Wt hits zero will occur after the
first time the cash-flows hit the threshold x∗ almost surely. Thus, for w ≥ λ(x− x∗),

v0(x) ≥ u(x,w)

≥ E0

(∫ τ∗∧τ0

0

e−rsXs ds

)
= E0

(∫ τ∗

0

e−rsXs ds

)
= v0(x).
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Second, we show that for all x > x∗ and w > 0, u(x,w) is strictly positive. Let 0 < w <
λ(x− x∗) and ε = λ(x− x∗)− w. Let us introduce the finite stopping time

τε = inf{t ≥ 0, Xt = x∗ +
ε

λ
}.

Because, Wt ≥ λ(Xt − x∗) − ε, we have τ0 ≥ τε almost surely. Dynamic programming
principle implies

u(x,w) ≥ E0

(∫ τε

0

e−rsXs ds

)
+ E0(e−rτεu(Xτε ,Wτε))

≥ E0

(∫ τε

0

e−rsXs ds

)
=
x

r
−
x∗ + ε

λ

r
eθ(x−(x∗+ ε

λ
))

> 0 because ε > 0.

This latter result allows us to conclude the proof. Because u > 0 on R, the process

Mt = e−r(t∧τR)u(Xt∧τR ,Wt∧τR) +

∫ t∧τR

0

e−rsXs ds

is a martingale according to the optimal stopping theory. Optional sampling theorem gives
for all t ≥ 0,

u(x,w) = E0

(
e−rt∧τRu(Xt∧τR ,Wt∧τR) +

∫ t∧τR

0

e−rsXs ds

)
.

Note that τR ≤ τ ∗ which is the hitting time of x∗ by a Brownian motion. Therefore, τR is
almost surely finite. Moreover, u = 0 on the boundaries of R. Letting t to +∞ gives

u(x,w) = E0

(∫ τR

0

e−rsXs ds

)
.

This concludes the proof. 2

To prove Theorem 1, it remains to show that functions u and v coincide. The road map
is as follows. We consider the HJB equation formally associated to the value function v,
that is

max(max
β≥λσ
L(β)v,−v) = 0 on R× R+, (22)

with boundary conditions v(x, 0) = 0 and where L(β) is the differential operator

L(β)V ≡ −rV (x,w) + x+ rw
∂V

∂w
(x,w) +

1

2
σ2∂

2V

∂x2
(x,w) +

1

2
β2∂

2V

∂w2
(x,w) + σβ

∂2V

∂x∂w
(x,w).

We prove that u is a smooth solution to (22). Then, a standard verification argument based
on Itô’s formula yields u = v. The novelty of our analysis is to establish required continuity
and smoothness properties of the value function u. The more involved results are about reg-
ularity properties of u with respect to w. Notably, the fact that u is locally Lipschitz with
respect to w ((assertion ii) in the Proof of Proposition 2 and Lemma 4) and the existence
and uniqueness of ∂u

∂w
(x, 0) (Proposition 3).
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Proposition 2 Value function u is jointly continuous over [x∗,+∞)× [0,∞) and C∞ over
R = (x∗,+∞)× (0,+∞). Furthermore, it satisfies

max(L(λσ)u,−u) = 0 (23)

almost everywhere on R× R+.

Proof of Proposition 2. Clearly, u(x) = 0 for x ≤ x∗. To show that u is jointly continuous
over [x∗,+∞)× [0,∞), we prove that, for any (x,w) ∈ [x∗,+∞)× [0,+∞),

i) u is Lipschitz with respect to x, uniformly in w,

ii) u is locally Lipschitz with respect to w.

According to Proposition 1, we have for every x > x0,

u(x,w)− u(x0, w) = E0

(∫ τ∗,x∧τ0

0

e−rsXx
s ds

)
− E0

(∫ τ∗,x0∧τ0

0

e−rsXx0
s ds

)
where τ ∗,x = inf{t ≥ 0, x + σZt ≤ x∗}. Because the stopping time τ ∗,x ∧ τ0 is suboptimal
starting from X0 = x0, we get

u(x,w)− u(x0, w) ≤ E0

(∫ τ∗,x∧τ0

0

e−rs(x− x0) ds

)
≤ x− x0

r
.

Thus assertion (i) is proven. The proof assertion (ii) is more involved and relies on the
following lemma proved in the appendix.

Lemma 4 For every couple (x,w) ∈ (x∗,+∞) × (0,+∞), there is a constant C such that
u(x,w) ≤ C(1 + x)w.

For every w > w0, we have τw0 ≥ τw0
0 a.s. and thus by Strong Markov Property, we have

using u(x∗, w) = 0 for all w > 0,

u(x,w)− u(x,w0) = E0

(∫ τ∗∧τw0

0

e−rsXx
s ds

)
− E0

(∫ τ∗∧τw0
0

0

e−rsXx0
s ds

)
= E0

(
e−rτ

w0
0 11τw0

0 ≤τ∗
u(Xτ

w0
0
, (w − w0)erτ

w0
0 )
)

≤ CE0(Xτ
w0
0

+ 1)(w − w0),

where the last inequality follows from Lemma 4. Now, observe that for every t ≥ 0, we have
Wt−w0 ≤ λ(Xx

t − x) and thus Xτ
w0
0
≤ x which ends the proof of assertion (ii) and, in turn,

the proof that u is jointly continuous over [x∗,+∞)× [0,∞).

Now, from optimal stopping theory, the continuous value function u is a viscosity solution
to (23) (see for instance, Pham (2010), Theorem 4.3.1). We show that, for any ε > 0, u

13



satisfies (23) over Rε = (x∗,+∞) × (ε,+∞) in a classical sense. To this end, we introduce
a deterministic transformation of the process (X,W ) where{

dXt = σdZt,
dWt = rWt dt+ λσdZt.

Such transformation unveils a parabolic nature of the problem and is similar to the method
of characteristics in PDE analysis. Given (x,w) ∈ Rε, let us define

St = λXt −Wt − λx∗ with S0 = s = λ(x− x∗)− w.

We have {
dSt = −rWt dt,
dWt = rWt dt+ λσdZt.

Consider the function û(s, w) = u(x∗ + 1
λ
(w + s), w). The function û is jointly continuous

because u is jointly continuous. By results on interior regularity for solution to parabolic
PDE (see, Krylov (2008), Ch 2, Sect. 4, Corollary 3), for any ε > 0, the solution on any
rectangle R̂ε = (0,+∞)× (ε,+∞) to

rw
∂f

∂s
= rw

∂f

∂w
+
λ2

2

∂2f

∂w2
+ x∗ +

1

λ
(w + s)

with boundary condition f = û on ∂R̂ε, is C∞(R̂ε) and coincides with û. Therefore, for any
ε > 0, û is C∞(R̂ε) which, in turn, implies that u is C∞(Rε) and satisfies L(λσ)u = 0 on the
set R where u > 0 or, equivalently, u satisfies

max(L(λσ)u,−u) = 0

almost everywhere. This ends the proof of Proposition 2. 2

We need additional properties to prove that value function u is also a smooth solution
to (22) almost everywhere on R× R+.

Because, u = 0 and L(β)u ≤ 0 for every β ≥ λσ on the set {x ≤ x∗}, it is enough
to prove that u satisfies maxβ≥λσ L(β)u = 0 over R = (x∗,+∞) × (0,+∞). We use the
following result that we prove in the Appendix.

Proposition 3 For any x > x∗,
∂u

∂w
(x, 0) exists and is finite. Moreover, for any (x,w) ∈ R,

the value function u satisfies

(i)
∂u

∂w
(x,w) = E0

(
11τ0≤τ∗

∂u

∂w
(Xτ0 , 0)

)
≥ 0,

(ii)
∂2u

∂w2
(x,w) < 0,

(iii) (
∂2u

∂x∂w
+ λ

∂2u

∂w2
)(x,w) < 0.
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Proposition 3 appears in the literature in different settings, (see for instance, Faingold
and Vasama (2014), De Marzo and Sannikov (2017), and Vasama (2017)). Assertion (ii)
corresponds to a concavity property of the value function with respect to the agent’s con-
tinuation value w. This property is standard in one dimensional agency models.5 Together
with assertion (iii), it implies that choosing β > λσ is suboptimal in the (two-dimensional)
HJB equation (22). In their respective settings, recent contributions provide heuristic jus-
tifications of properties (ii) and (iii) based on a stochastic representation for ∂v

∂w
, this latter

representation is obtained by differentiating the HJB equation associated to the value func-
tion v of the principal’s problem. In particular, the regularity properties of the value function
v over R needed to establish the stochastic representation are not proven. The main forget-
ting is the proof of the existence and finiteness of ∂v

∂w
(x, 0) that is instrumental in the proof

of assertions (i), (ii) and (iii). To the best of our knowledge our paper is the first that offers
a complete proof of Proposition 3.

The next Proposition follows from Propositions 2 and 3 and concludes the proof of
Theorem 1.

Proposition 4 Value function u satisfies the HJB equation

max
β≥λσ
L(β)V = 0, on R, (24)

with boundary conditions V (x∗, w) = 0 and V (x, 0) = 0. Therefore, the two value functions
u and v coincide.

Proof of Proposition 4. Let us consider any function V regular solution to (24) with
V (x∗, w) = 0 and V (x, 0) = 0 and such that for any (x,w) ∈ R, the mapping

β −→ 1

2
β2∂

2V

∂w2
(x,w) + σβ

∂2V

∂x∂w
(x,w) takes its maximum over [λσ,∞) at β = λσ. (25)

Then, such a function V is clearly a smooth solution to (24). It is easy to check that, a
sufficient condition for (25) is that ∂2V

∂w2 < 0 and ∂2V
∂x∂w

+ λ∂
2V
∂w2 < 0. From Proposition 3,

value function u satisfies these two properties. Together with Proposition 2, we get that u
satisfies (24) on R. Finally, the fact that functions u and v coincide follows from a standard
verification result. This ends the proof of Proposition 4 and Theorem 1. 2

5 Concluding remarks

In this paper, we have built a dynamic contracting model in corporate finance with moral
hazard in which the principal is concerned by the agent’s action on the random growth rate
of the firm. In contrast to standard environment, cash flows are serially correlated over time
and cumulative cash flows have finite variations. This led us to study a two-dimensional
control problem. We derived the Markovian formulation of the principal’s problem and

5See the seminal papers of Sannikov (2008) and De Marzo and Sannikov (2006).
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proved regularity properties of the associated value function that allow to derive the optimal
contract. These regularity properties appeared in previous studies in different environment.
Their proofs remained up to now heuristic.

We derived the optimal contract of principal’s problem in the class of full effort contracts.
We know from previous studies that, when cash flows are defined as the increment of an
arithmetic Brownian motion, we can find restrictions on the parameters of the model that
ensure never inducing shirking is indeed optimal.6 This remark has been taken as a rationale
for restricting attention to full effort contracts in economic applications. We show below
that this result does not extend to our setting in which the firm’s growth rate fluctuates. To
see this point, let us consider the HJB equation formally associated to the value function v
in (15), that is

max(max
β

(L0(β)V + (B(1− ∂V

∂w
(x,w))− δ∂V

∂x
(x,w))11β<λσ),−V ) = 0 (26)

and consider (x,w) with w ≥ λ(x − x∗). It is easy to see that v0 does not satisfy the HJB
equation (26). Indeed, a direct computation yields

max
β

(L0(β)v0(x) + (B − δ∂v0

∂x
(x)) = B − δ

r
(1− eθ(x−x∗)) > 0,

where the inequality holds for any (x,w) such that w ≥ λ(x − x∗) and x in a right neigh-
borhood of x∗. It then follows from Theorem 1 that, incentivizing the agent to exert full
effort at any time cannot be optimal. The economic intuition is simple: when the realized
expected growth rate is close to the profitability threshold that triggers liquidation in a
frictionless world, incentivizing the agent becomes very costly and taking action a = 0 is no
longer optimal. Clearly, this situation does not occur in a setting in which the profitability
of the firm is constant.

Problem (26) relates to optimal control problems with discontinuous coefficients. Typ-
ically, a class of problems about which we know very little. Characterizing the optimal
contract in a moral hazard environment with random growth rate and identifying when to
release pressure on a firm’s manager are clearly important economic issues. This and related
questions must await for future work.

6 Appendix

Proof of Lemma 4. We start with the following observation: for every couple (x,w) ∈
(x∗,+∞)× (0,+∞), there is some C > 0 such that u(x,w) ≤ C(1 + x). Indeed,

u(x,w) ≤ E0

(∫ ∞
0

e−rs|x+ σZs| ds
)

≤ x

r
+ σE0

(∫ ∞
0

e−rs|Zs| ds
)

=
x

r
+ σ

√
2

π
E0

(∫ ∞
0

e−rs
√
s ds

)
≤ C(1 + x).

6See DeMarzo and Sannikov (2006), Zhu (2012).
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Therefore, Lemma 4 holds for w ≥ 1. Let us now consider w ∈ (0, 1). We decompose u(x,w)
as follows u(x,w) = u1(x,w) + u2(x,w), with

u1(x,w) = E0

(
11{τw0 <τw1 }

∫ τ∗∧τw0

0

e−rs(x+ σZs) ds

)
,

u2(x,w) = E0

(
11{τw0 >τw1 }

∫ τ∗∧τw0

0

e−rs(x+ σZs) ds

)
.

On the event {τw0 < τw1 }, we have for every t ≤ τ ∗ ∧ τw0 < τw1 the inequality Xt ≤ 1
λ

+ x.
Therefore,

u1(x,w) ≤
(

1

λ
+ x

)
E0

(
11{τw0 <τw1 }

∫ τw0

0

e−rs ds

)
.

Conditioning the process (Wt)t∈[0,τw1 ] on the event {τw0 < τw1 } and using Doob h-transform
(see Rogers and Williams (2000) for a definition) makes (Wt)t∈[0,τw1 ] a diffusion absorbed at
0 with generator

L̃ =
λ2σ2

2

∂2.

∂w2
+

(
rw + λσ

h′(w)

h(w)

)
∂.

∂w

where

h(w) = P0(τw0 < τw1 )

=

∫ 1

w
e−rs

2
ds∫ 1

0
e−rs2 ds

.

Let us denote τ̃w0 = inf{t ≥ 0, W̃w
t = 0} where

dW̃t =

(
rW̃t + λσ

h′(W̃t)

h(W̃t)

)
dt+ λσdZt.

We have

E0

(
11{τw0 <τw1 }

∫ τw0

0

e−rs ds

)
= P0(τw0 < τw1 )E0

(∫ τ̃w0

0

e−rs ds

)
≤ E0

(∫ τ̃w0

0

e−rs ds

)
= φ̃(w).

The function φ̃ satisfies
L̃φ̃− rφ̃ = 0

with φ̃(0) = 0. Because rw+λσ h
′(w)
h(w)

< 0 and φ̃ is nondecreasing, we deduce that φ̃ is convex

and thus satisfies φ̃(w) ≤ Cw which implies u1(x,w) ≤ C(1 + x)w.
Now, we decompose u2 as follows:

u2(x,w) = E0

(
11{τw0 >τw1 }

∫ τ∗∧τw1

0

e−rs(x+ σZs) ds

)
+ E0

(
11{τw0 >τw1 }

∫ τ∗∧τw0

τ∗∧τw1
e−rs(x+ σZs) ds

)
= u3(x,w) + u4(x,w).
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Because for every s ≤ τw1 , we have Xs ≤ 1
λ

+ x, it follows that

u3(x,w) ≤
(

1

λ
+ x

)∫ ∞
0

e−rs ds P0(τw0 > τw1 )

=
1
λ

+ x

r
P0(τw0 > τw1 )

=
1
λ

+ x

r
(1− h(w))

≤ C(1 + x)w.

Finally, Strong Markov property implies

u4(x,w) = E0
(
11{τw0 >τw1 }e

−r(τ∗∧τw1 )u(Xτ∗∧τw1 ,Wτ∗∧τw1 )
)

≤ E0
(
11{τw0 >τw1 }e

−rτw1 u(Xτw1
, 1)
)

≤ C(1 + x)P0(τw0 > τw1 )

≤ C(1 + x)w,

where the first inequality holds because u(x∗,Wτ∗) = 0. This ends the proof of Lemma 4. 2

Proof of Proposition 3. We show that, for w sufficiently small, u(x,w) = c(x)w + o(w)
where c(x) is a real constant. This will imply the existence of ∂u

∂w
(x, 0). We have

u(x,w) = E0(

∫ τw0

0

e−rs(x+ Zs) ds)− E0(

∫ τw0

τR

e−rs(x+ Zs) ds). (27)

Observe that

E0

(∫ τw0

0

e−rs(x+ Zs) ds

)
=
x

r
(1− h(w)) + E0

(∫ τw0

0

e−rsZs ds

)
, (28)

where, the function h(w) ≡ E0(e−rτ
w
0 ) is twice continuously differentiable over (0,∞) and

satisfies the ordinary differential equation

σ2λ2

2
h
′′

+ rwh′ − rh = 0,

h(0) = 1, lim
w→+∞

h(w) = 0.

It follows that, for w sufficiently small, 1 − h(w) = −h′(0+)w + o(w). We now study the
second term on the rhs of (28). We have

E0

(∫ τw0

0

e−rsZs ds

)
= −E0

(∫ ∞
τw0

e−rsZsds

)
= −1

r
E0(e−rτ

w
0 Zτw0 ) (29)

where the second equality follows from the strong Markov property. The process (Mt)t≥0

with

Mt ≡ e−rtWt = we−rt + re−rt
∫ t

0

Ws ds+ λσe−rtZt
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is a uniformly integrable martingale under P0, thus the optional sampling theorem yields

0 = wE0(e−rτ
w
0 ) + rE0

(
e−rτ

w
0

∫ τw0

0

Ws ds

)
+ λσE0

(
e−rτ

w
0 Zτw0

)
. (30)

Using (29) and (30) one gets

E0

(∫ τw0

0

e−rsZs ds

)
=

1

λσr
wE0(e−rτ

w
0 ) +

1

λσ
E0

(
e−rτ

w
0

∫ τw0

0

Ws ds

)
=

1

λσ

(
1

r
wh(w) + E0

(∫ ∞
0

e−rτ
w
0 11s≤τw0 Ws ds

))
=

1

λσ

(
1

r
wh(w) + E0

(∫ ∞
0

E0(e−rτ
w
0 |Fs)11s≤τw0 Ws ds

))
=

1

λσ

(
1

r
wh(w) + E0

(∫ τw0

0

e−rsh(Ws)Ws ds

))
,

where the last equality follows from the strong Markov property. Below, we prove that, for
w sufficiently small,

g(w) ≡ E0

(∫ τw0

0

e−rsh(Ws)Ws ds

)
= cw + o(w).

First, we show that

g∞(w) ≡ E0

(∫ ∞
0

e−rsh(Ws)Ws ds

)
is a well defined bounded function and consequently the random variable

∫∞
0
e−rsh(Ws)Ws ds

is integrable. To this extent, let us consider the real function θ ≡ k − h where k(w) =∫∞
w
e−

r
σ2λ2

t2 dt∫∞
0
e−

r
σ2λ2

t2 dt
is the smooth solution to

σ2λ2

2
k
′′

+ rwk′ = 0, (31)

k(0) = 1, lim
w→+∞

k(w) = 0. (32)

Note that the function θ is twice continuously differentiable and bounded over (0,∞), sat-
isfies θ(0) = limw→+∞ θ(w) = 0 together with

σ2λ2

2
θ
′′

+ ryθ′ = −rh ≤ 0.

Then, Itô’s formula gives

0 = E0(θ(Wτw0
))

= θ(w)− E0

(∫ τw0

0

h(Ws) ds

)
.
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It follows that θ ≥ 0 over [0,∞) and, thus h(w)w ≤ k(w)w over [0,∞). We deduce that
lim
w→∞

wk(w) = 0 and thus lim
w→∞

wh(w) = 0. Therefore, the function w → wh(w) is bounded

on [0,∞). It follows that, g∞ is a well defined bounded function on [0,∞). Now, let f be a
bounded C2 solution7 to the differential equation, .

σ2λ2

2
f
′′

+ rwf
′ − rf + wh(w) = 0, f(0) = 0. (33)

Itô’s formula yields for every T > 0,

E0
[
e−r(T∧τ

w
0 )f(WT∧τw0 )

]
= f(w)− E0

(∫ T∧τw0

0

e−rsh(Ws)Ws ds

)
Observe that

E0
[
e−r(T∧τ

w
0 )f(WT∧τw0 )

]
≤ ||f ||∞e−rT .

Because
∫∞

0
e−rsh(Ws)Ws ds is integrable and f(0) = 0, the monotone convergence theorem

gives

lim
T→+∞

E0

(∫ T∧τw0

0

e−rsh(Ws)Ws ds

)
= g(w).

Letting T goes to +∞, we thus have f = g. Therefore, g is a bounded, twice continuously
differentiable function over (0,∞) and thus g(w) = g′(0+)w + o(w).

Summing up our results, we have obtained

ũ(x,w) ≡ E0

(∫ τw0

0

e−rs(x+ Zs) ds

)
= c(x)w + o(w).

We now turn to the second term of (27). We show that, for w sufficiently small,

R(x,w) ≡ E0

(∫ τw0

τR

e−rs(x+ Zs) ds

)
= o(w).

We have

R(x,w) = E0

(
11{τ∗<τw0 }

∫ τ0

τ∗
e−rs(x+ Zs) ds

)
= E0

(
11{τ∗<τw0 }e

−rτ∗ũ(x∗,Wτ∗)
)
,

where the equality comes from the strong Markov property. Proceeding analogously as in
Lemma 4, we prove the inequality ũ(x,w) ≤ c(x)w and thus

|R(x,w)| ≤ c(x)E0(11{τ∗<τw0 }e
−rτ∗Wτ∗).

Let us consider again the uniformly martingale (Mt)t≥0 under P0, and let us define the

equivalent probability measure P̂0, such that

dP̂0

dP0
|Ft =

Mw
t

w
,

7The proof of the existence of a bounded solution to (33) is left as an exercise to the reader.
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with
dP̂0

dP0
|F∞ =

Mw
∞
w

.

Then, we deduce from lim
w−→0

P0(τ ∗ ≤ τw0 ) = 0 that E0(11{τ∗<τw0 }e
−rτ∗Wτ∗) = wP̂0(τ ∗ ≤ τw0 ) =

o(w). This ends the proof that ∂u
∂w

(x, 0) exists and is finite.

Proof of assertion (i). We have for ε > 0,

u(x,w + ε)− u(x,w) = E0

(∫ τεR

0

e−rsXs ds

)
− E0

(∫ τR

0

e−rsXs ds

)
where τ εR = inf{t ≥ 0, (x + σZt, w + ε +

∫ t
0
rWs ds + λσZt) /∈ R}. Strong Markov property

gives for the first term

E0

(∫ τεR

0

e−rsXs ds

)
= E0

(∫ τR

0

e−rsXs ds

)
+ E0

(
e−r(τ

∗∧τ0)u(Xτ∗∧τ0 ,W
w+ε
τ∗∧τ0)

)
.

Using u(x∗, w) = 0 for all w > 0, we get

1

ε
(u(x,w + ε)− u(x,w)) =

1

ε
E0
(
e−rτ0u(Xτ0 ,W

w+ε
τ0

)11τ∗≥τ0
)
.

Now, observe that Ww+ε
τ0

= εerτ0 and thus

1

ε
(u(x,w + ε)− u(x,w)) = E0

(
u(Xτ0 , εe

rτ0)

εerτ0
11τ∗≥τ0

)
≥ 0. (34)

We know that ∂u
∂w

(x, 0) exists and is finite. Then, the dominated convergence Theorem yields
assertion (i) by letting ε tend to zero in (34).

Proof of Assertion (ii). We note that Xx
τ
w0
0
≥ Xx

τ
w1
0

for any w0 ≤ w1. Indeed, using

λdXt = dWt − rWt dt,

we obtain

λ(Xx
τ
w0
0
−Xx

τ
w1
0

) = w1 − w0 + r

∫ τ
w1
0

τ
w0
0

Ws ds ≥ 0.

According to assertion (i),

∂u

∂w
(x,w0) = E0

(
11τw0

0 ≤τ∗
∂u

∂w
(Xx

τ
w0
0
, 0)

)
≥ E0

(
11τw0

0 ≤τ∗
∂u

∂w
(Xx

τ
w1
0
, 0)

)
≥ E0

(
11τw1

0 ≤τ∗
∂u

∂w
(Xx

τ
w1
0
, 0)

)
=

∂u

∂w
(x,w1).
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Thus, the function ∂u
∂w

is a decreasing function of w on R. Because we know that u is twice
continuously differentiable over R, we get assertion (ii).

Proof of assertion (iii). Let us consider f defined as

f(x) =
∂u

∂w
(x, λ(x− c)) for x ≥ x∗.

To prove assertion (iii), we show that f is decreasing for any c such that (x, λ(x− c)) is in
R. Take x0 ≤ x1 and wi = λ(xi − c) for i = 0, 1. From assertion (ii), we have

f(x0) = E0

(
11τw0

0 ≤τ∗,x0
∂u

∂w
(Xx0

τ
w0
0
, 0)

)
Proceeding as previously,

λ(Xx0
τ
w0
0
−Xx1

τ
w1
0

) = w1 − w0 + r

∫ τ
w1
0

τ
w0
0

Ws ds ≥ 0.

Thus,

f(x0) ≥ E0

(
11τw0

0 ≤τ∗,x0
∂u

∂w
(Xx1

τ
w1
0
, 0)

)
We will end the proof by showing that 11τw0

0 ≤τ∗,x0
≥ 11τw1

0 ≤τ∗,x1
or equivalently that

{τw0
0 > τ ∗,x0} ⊂ {τw1

0 > τ ∗,x1} which will imply f(x0) ≥ f(x1). On the set {τw0
0 > τ ∗,x0}, we

have

Xx1
τ∗,x0 = x∗ + x1 − x0

Ww1
τ∗,x0 = Ww0

τ∗,x0 + (w1 − w0)erτ
∗,x0 .

Therefore,

Ww1
τ∗,x0 − λX

x1
τ∗,x0 = Ww0

τ∗,x0 + (w1 − w0)erτ
∗,x0 − λ(x∗ + x1 − x0)

≥ λ(x1 − x0)(erτ
∗,x0 − 1)− λx∗

≥ −λx∗

and thus for all t ≥ τ ∗,x0 , we have Ww1
t ≥ λ(Xx1

t − x∗) which implies τw1
0 > τ ∗,x1 and thus

the result.
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