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Abstract
The paper studies compactness properties of the affine Sobolev

inequality of Gaoyong Zhang et al [15, 8] in the case p = 2, and
existence and regularity of related minimizers, in particular, solutions
to the nonlocal Dirichlet problems

−
N∑

i,j=1

(A−1[u])ij
∂2u

∂xi∂xj
= f in Ω ⊂ RN ,

and

−
N∑

i,j=1

(A−1[u])ij
∂2u

∂xi∂xj
= uq−1 , u > 0, in Ω ⊂ RN ,

where Aij [u] =
∫

Ω
∂u
∂xi

∂u
∂xj

dx and q ∈ (2, 2N
N−2).
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1 Introduction

The affine Sobolev inequality of Gaoyong Zhang [15, 8]:

Jp(u)
def
=

(∫
SN−1

dSω
‖ω · ∇u‖Np

)−1/N

≥ C‖u‖p∗ , (1.1)

where SN−1 is the unit sphere in RN , 1 ≤ p < N , p∗ = pN
N−p , ‖ · ‖p

denotes the Lp(RN )-norm, and the integration is with respect to the
Riemannian measure of the unit sphere, is a refinement of the limiting
Sobolev inequality ‖∇u‖p ≥ C‖u‖p∗ in the sense that Jp is bounded
by the gradient norm ‖∇ · ‖p (inequality (7.1) in [8] that easily fol-
lows from the definition), but not vice versa. Similarities between
functionals Jp and u 7→ ‖∇u‖p, in addition to dominating the norm
of Lp

∗
(RN ), include the following immediate properties: both func-

tionals are invariant with respect to actions of translations, dilations,
and orthogonal rotations, and, furthermore, they coincide on radially
symmetric functions. In addition to that, however, the affine Sobolev
functional is invariant with respect to the action of the group SL(N)
of unimodular matrices, i.e. Jp(u◦T ) = Jp(u) whenever detT = 1. On
the other hand, supdetT=1 ‖∇(u◦T )‖p =∞ for any u ∈ C∞0 (RN )\{0},
as it can be easily tested on diagonal matrices, which implies that the
inequality ‖∇u‖p ≤ CJp(u) is false. Applications of the affine Sobolev
inequality to information theory are discussed in [8].

In the present paper we study the case p = 2, where there is a
simple relation (2.8) between the affine Sobolev functional J2 and the
gradient norm (cursively mentioned on p. 20 of [8]).This relation yields
a one-line proof (see (2.12) below) of the affine Sobolev inequality (1.1)
for this case.

We will use the following notations for Sobolev spaces. Let Ω ⊂
RN , N ≥ 2, be an open set. The space H1,p(Ω), 1 ≤ p < ∞ is the
space of all Lp(Ω)-functions whose weak derivative is Lp-integrable,

with the norm given by ‖u‖p def
= ‖u‖pp + ‖∇u‖pp. The space H1,p

0 (Ω) is
the closure of C∞0 (Ω) in H1,p(Ω). Whenever Ω is such that Friedrichs
inequality holds (in particular, if Ω is bounded), we consider H1,p

0 (Ω)
equipped with the equivalent norm ‖∇u‖p. The space Ḣ1,p(RN ) is the
completion of C∞0 (RN ) with respect to the norm ‖∇u‖p. This space
has a continuous embedding into) a functional space Lp

∗
(RN ) when

p < N , but otherwise it lacks embedding into a functional space.
The main objective of this paper is to study compactness properties

of the affine Sobolev inequality and existence of minimizers in varia-
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tional problems involving the functional J2. We prove that, similarly
to Sobolev embeddings, the set {u ∈ H1

0 (Ω), J2(u) ≤ 1} is relatively
compact in Lp(Ω), 1 ≤ p < 2N

N−2 , whenever Ω is a bounded domain (or,
more generally, unbounded domains of the null-flask type defined be-
low). The method of the proof is, however, different from the classical
Sobolev case and is based on the concentration compactness argu-
ment, more specifically, on profile decompositions of functions with
the bounded J2. This profile decomposition is then used to study ex-
istence of solutions of variational problems involving J2. In Section 2
we outline some basic properties of the functional J2. In Section 3 we
study compactness properties of J2 and some simple variational prob-
lems. A short Section 4 presents profile decompositions for sequences
with a J2-bound. Section 5 return to variational problems, which are
handled with the help of the profile decomposition. In Section 6 we
list some open problems. The Appendix contains another proof of the
affine Sobolev inequality for the case p = 2 and, for the convenience
of the reader, cites profile decomposition theorems for H1,2(RN ) and
Ḣ1,2(RN ).

2 Elementary properties of the affine

Sobolev functional

2.1 An equivalent definition of J2

Invariance of the functional Jp with respect to actions of unimodu-
lar matrices is immediate from the following identity from [8] (easily
derived by radial integration):

Jp(u) =

(
1

(N − 1)!

∫
RN

e−‖ξ·∇u‖pdξ

)−1/N

. (2.1)

In what follows we always assume p = 2 and N > 2. If we set

Ai,j [u](x)
def
=

∂u

∂xi

∂u

∂xj
, (2.2)

we can represent the L2-norm in (1.1) as

‖ξ · ∇u‖22 =

∫
RN

A[u](x)ξ · ξ dx, ξ ∈ RN . (2.3)

3



Let now

Ai,j [u]
def
=

∫
RN

Ai,j [u](x)dx. (2.4)

Substituting (2.2) into (2.1) and taking η = A[u]1/2ξ, we have∫
RN

e−‖ξ·∇u‖2dξ =

∫
RN

e−(
∫
RN A[u](x)ξ·ξ dx)1/2

dξ

=

∫
RN

e−(A[u]ξ·ξ)
1
2 dξ =

∫
RN

e−|η|(detA[u])−1/2dη

= ωN (N − 1)!(detA[u])−1/2,

where ωN is the area of the unit sphere in RN . We conclude that

J2(u) = ω
−1/N
N (detA[u])1/2N . (2.5)

Note that this expression presumes that the matrixA[u] is well-defined,
which is the case if and only if ∇u ∈ L2. In what follows we will fix
the domain of J2 as Ḣ1,2(RN ).

We will also consider below a functional

J2,Ω(u)
def
= ω

−1/N
N (detAΩ[u])1/2N

where AΩ[u] =
∫

ΩAi,j [u](x)dx, Ω ⊂ RN is an open set, and u ∈
H1,2(Ω). Note that if J2,Ω(u) = 0, and Ω is convex, then there is a
family of parallel hyperplanes, restricted to Ω {x ∈ Ω : α · x = λ}λ,
such that u is dependent only on variables x ⊥ α. Indeed, in a suitable
basis we (AΩ[u])11 = 0, which implies A11[u] = 0 almost everywhere,
which gives ∂u

∂x1
= 0 almost everywhere. Since Ω is convex, this implies

that u is independent of x1.

2.2 Reduction to the gradient norm

We would like to characterize the behavior of the matrix (2.4) relative
to action of unimodular matrices.

Lemma 2.1. Let T ∈ SL(N) and let u ∈ Ḣ1,2(RN ). Then

A[u ◦ T ] = T ∗A[u]T. (2.6)

In particular for every u ∈ Ḣ1,2(RN ) there is a T0 ∈ O(N) such that
A[u◦T0] is diagonal, and a T ∈ SL(N) such that A[u◦T ] = det(A[u])I
and

detA[u]1/2N = detA[u ◦ T ]1/2N =
1√
N
‖∇(u ◦ T )‖2. (2.7)

4



Proof. Equation (2.6) follows by elementary computation from the
change of variable Tx = y, taking into account that ∂iu(Tx)∂ju(Tx) =
[T ∗A[u](y)T ]ij and dx = dy. A suitable T0 ∈ O(N) makes T ∗0A[u]T0

a diagonal matrix.
Applying the same transformation once again, with a diagonal uni-

modular matrix T ′ = det(A[u◦T0])1/2A[u◦T0]−1/2, we get A[u◦T0T
′] =

det(A[u ◦ T0])I = det(A[u])I. The last assertion follows once we note
that ‖∇u ◦T0T

′‖22 = N det(A[u])1/N , since the latter expression is the
trace of the diagonal matrix A[u◦T0T

′] with N equal eigenvalues.

Corollary 2.2. If u ∈ Ḣ1,2(RN ), then

J2(u) =
ω
−1/N
N√
N

min
T∈SL(N)

‖∇(u ◦ T )‖2. (2.8)

Proof. Since for any v ∈ Ḣ1,2(RN ), ‖∇v‖22 = trA[v] the inequal-

ity between the arithmetic and geometric mean gives detA[u]
1
N ≤

1
N ‖∇(u ◦ T )‖22 for any v ∈ Ḣ1,2(RN ) and T ∈ SL(N). By Lemma 2.1
the minimum is attained.

In view of (2.8) it is convenient to change the scalar multiple in
the definition of the “energy” functional associated with J2. Namely,
we introduce

E2(u)
def
= N detA[u]1/N = Nω

2/N
N J2(u)2. (2.9)

In particular, with such normalization, (2.8) becomes

E2(u) = min
T∈SL(N)

‖∇(u ◦ T )‖22, (2.10)

and E2(u) = ‖∇u‖22 on all radial functions in Ḣ1,2(RN ). We also
introduce an analogous functional E2,Ω defined on H1,2(Ω).

Remark 2.3. The gradient norm and the functional Jp for general
p ≥ 1 are connected by an inequality ([7, Theorem 1.2]):

C ′ min
T∈SL(N)

‖∇(u ◦ T )‖p ≤ Jp(u) ≤ C min
T∈SL(N)

‖∇(u ◦ T )‖p. (2.11)

2.3 Proof of the affine Sobolev inequality

The affine Sobolev inequality (1.1) for p = 2 can be now easily derived
from the usual Sobolev inequality and (2.8):

‖u‖2∗ = inf
T∈SL(N)

‖u◦T‖2∗ ≤ C inf
T∈SL(N)

‖∇(u◦T )‖2 = CJ2(u) (2.12)

See Appendix for an alternative proof.
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2.4 The affine Laplacian

Let Ω ⊂ RN be a domain. By analogy with the p-Laplacian which
equals the Frechet derivative of −1

p

∫
|∇u|p, we may also define the

affine Laplace operator ∆A(u) by differentiation of −1
2E2 in a suitable

space, e.g. in Ḣ1,2
0 (Ω) for the Dirichlet affine Laplacian or in H1,2(Ω)

for the Neumann affine Laplacian. Since Ai,j [u]′ =
(∫

Ω∇iu∇ju dx
)′

=
−2(∇i∇ju)ij , we have, formally,

detA[u]′ = detA[u] tr(A−1[u]A[u]′) = −2 detA tr(A−1[u]u′′),

where u′′(x) is the Hessian of u, i.e. the matrix with components
∇i∇ju(x). Then

∆A(u) = −N
2

(detA[u]
1
N )′

= −1

2
(detA[u])

1
N
−1(detA[u])′

= (detA[u])
1
N tr(A−1[u]u′′). (2.13)

It is easy to see that for any u ∈ Ḣ1,2
0 (Ω) this expression is a Frechet

derivative of −1
2E2 and that E2 ∈ C1(Ḣ1,2

0 (Ω)). In what follows the
notation ∆A will be reserved for the affine Dirichlet Laplacian, that
is, for the Frechet derivative above.

We have the following elementary identity:

∆A(u ◦ S) = ∆A(u) ◦ S, S ∈ SL(N). (2.14)

If T ∈ SL(N) is as in the last assertion of Lemma 2.1, i.e. A[u ◦ T ] is
a multiple of identity, then we have

(∆A(u)) ◦ T = ∆(u ◦ T ). (2.15)

Consequently, both the strong and the weak maximum principle apply
to classical solutions of ∆A(v) = f , exactly in the same form as for the
classical Laplacian. On the other hand, we have a different comparison
principle.

Proposition 2.4 (Comparison principle). Let u1, u2 ∈ Ḣ1,2(RN ) be
classical solutions to

∆A(ui) = fi, i = 1, 2, (2.16)

in RN . Let Ti ∈ SL(N) be as in the second assertion of Lemma 2.1
relative to ui. If f1 ◦ T−1

1 ≥ f2 ◦ T−1
2 in RN , then u1 ◦ T−1

1 ≤ u2 ◦ T−1
2

in RN .
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Proof. By (2.15),

∆(u1 ◦ T−1
1 − u2 ◦ T−1

2 ) = f1 ◦ T−1
1 − f2 ◦ T−1

2 ,

and apply the maximum principle for the usual Laplacian.

2.5 Friedrichs and Poincaré inequalities

The Friedrichs inequality for the affine Sobolev norm follows from the
following elementary consequence of the first fundamental theorem
of calculus. Let Ω ⊂ RN be a bounded convex domain. For each
u ∈ C∞0 (Ω), ∫

Ω
|u|2dx ≤ C

∫
Ω
|∇iu|2dx, (2.17)

i = 1, . . . , N . Assuming that u has a support in a subset of Ω we may
drop the requirement of convexity. Due to Lemma 2.1 we may assume
without loss of generality that A[u] is a diagonal matrix. Taking the
product over i in the inequality above gives

‖u‖2,Ω ≤ CJ2,Ω(u).

An immediate analog of the Poincaré inequality,

J2,Ω(u)2 +

(∫
Ω
u

)2

≥ C‖u‖22,Ω,

is false, since the left hand side will vanish on any nonzero function
dependent only on x1, whose integral over Ω is zero.

3 Some variational problems

In what follows the norm of a matrix T will be denoted as |T |. We
note that a sequence (T )k ⊂ SL(N) is either unbounded in norm, or
has a subsequence convergent to a matrix in SL(N).

3.1 Affine Laplace equation

Definition 3.1. We shall say that a function f ∈ L
2N
N+2 (Ω) is of class

LA(Ω) if for any sequence (Tk) ∈ SL(N), |Tk| → ∞, one has

f ◦ Tk|Ω → 0 in L
2N
N+2 (Ω).
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In particular, if Ω is bounded, LA(Ω) = L
2N
N+2 (Ω), and if Ω = RN ,

LA(Ω) = {0}.
In what follows we consider a variational problem with the func-

tional E2, with the original domain H1,2(RN ), restricted to a sub-
space H1,2

0 (Ω). The derivative for the restricted functional is still
calculated as in (2.13), and in the notation ∆A we follow the ambi-
guity of traditional notations that use ∆ for both the operator in the
functional-analytic sense (in this paper we consider only the Dirichlet
affine Laplacian) and for the differential expression in an equation.
The expression A[u], used in the definition of the affine Laplacian, re-
stricted to functions in the subspace H1,2

0 (Ω) coincides of course with
AΩ[u].

Theorem 3.2. Let Ω ⊂ RN be a domain with a piecewise-C1 bound-
ary. If f ∈ LA(Ω), then the infimum

κf
def
= inf

u∈Ḣ1,2
0 (Ω)

1

2
E2(u)−

∫
Ω
f(x)u(x)dx (3.1)

is attained. If, additionally, f ∈ L2(Ω), then this minimizer is a
classical solution of{

∆A(u)(x) + f(x) = 0, x ∈ Ω,

u|∂Ω = 0.
(3.2)

Proof. Note first that κf < 0. Indeed, let w ∈ C1
0 (Ω) be such that∫

Ω fwdx < 0. Then for t > 0 sufficiently small the functional in (3.1)
evaluated on tw will be negative, since the first term is quadratic in t.

By (2.10) we can rewrite (3.1) as

κf = inf
v∈Ḣ1,2

0 (TΩ), T∈SL(N)

1

2

∫
TΩ
|∇v|2dx−

∫
Ω
f(x) v(Tx)dx. (3.3)

Let ((vk, Tk))k∈N ⊂ C∞0 (TkΩ) × SL(N) be a minimizing sequence
for (3.3). Note that ‖∇vk‖22 ≤ 2κf + 2‖f‖ 2N

N+2
‖vk‖2∗ + o(1), which

implies that ‖∇vk‖2 is bounded.
Consider (vk) as a sequence in Ḣ1,2(RN ). Assume first that |Tk| →

∞. Then, by Hölder inequality, taking into account that f ∈ LA(Ω),
and that ‖∇vk‖2 is bounded (and thus ‖vk‖2∗ is bounded as well), we
have∣∣∣∣∫

Ω
f(x)vk(Tkx)dx

∣∣∣∣ =

∣∣∣∣∫
TkΩ

f(T−1
k x)vk(x)dx

∣∣∣∣ ≤ ‖f◦T−1
k ‖ 2N

N+2
‖vk‖2∗ → 0.
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This implies κf ≥ 0, which is false. Consequently, we have, on a
renamed subsequence, Tk → T ∈ SL(N) and vk ⇀ v in Ḣ1,2(RN )

with v = 0 outside of TΩ, which means that u
def
= v ◦T−1 ∈ Ḣ1,2

0 (Ω) is
a required minimizer. Equation (3.2) (in the weak sense) follows, and
the regularity of the solution is a consequence of the standard elliptic
regularity.

Remark 3.3. In absence of a simple comparison principle we have
no immediate uniqueness theorem.

3.2 Isoperimetric problems, the case of RN

The following statement addresses existence of the minimizer in the
affine Sobolev inequality

J2
2 + λ‖u‖22 =

(∫
SN−1

dSω

‖ω · ∇u‖N2

)−2/N

+ λ‖u‖22,≥ C‖u‖22∗ , λ ≥ 0,

(3.4)
that trivially follows from (1.1) for p = 2. Note that it suffices to prove
existence of minimizer for one positive value of λ, since the problem
with any other positive λ reduces to the given value of λ by scaling.
We recall that J2 is a scalar multiple of E2.

Theorem 3.4. The minimal values in the problems

inf
u∈Ḣ1,2(RN ),‖u‖2∗=1

E2(u), (3.5)

and
inf

u∈H1,2(RN ),‖u‖p=1
E2(u) + ‖u‖22, 2 < p < 2∗, (3.6)

are attained.

The first part of the theorem was proved in [8] for the affine p-
Laplacian, but for the case p = 2 there is an elementary proof that we
include here.

Proof. By (2.10), for every u ∈ Ḣ1,2(RN ) there is T ∈ SL(N) such
that E2(u) = ‖∇(u ◦ T )‖22. Therefore

inf
u∈Ḣ1,2(RN ),‖u‖2∗=1

E2(u) = inf
u∈Ḣ1,2(RN ),‖u‖2∗=1

‖∇u‖22 (3.7)
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and

inf
u∈H1,2(RN ),‖u‖p=1

E2(u) + ‖u‖22 = inf
u∈H1,2(RN ),‖u‖p=1

‖∇u‖22 + ‖u‖22.

(3.8)
Thus the infimum (3.5) is uniquely attained at the Talenti-Bliss mini-
mizer under any combined action of translations, dilations, and affine
transformations, and the infimum (3.6) is attained at well-known unique
radial minimizer under any combined action of translations and affine
transformations.

3.3 Affine-null domains and compactness in Lp

In what follows |Ω| will denote the Lebesgue measure of a set. Recall
the definition of the lower limit for a sequence (Xk) of sets:

lim inf Xk
def
=
⋃
n∈N

⋂
k≥n

Xk.

Definition 3.5. A subset Ω of RN will be called affine-null set if for
any sequences (Tk) ⊂ SL(N) and (yk) ⊂ ZN , such that |Tk|+ |yk| →
∞,

| lim inf T−1
k (Ω− yk)| = 0. (3.9)

Note that any bounded set is affine-null. An example of an un-
bounded affine null set is {(x1, x̄) ∈ R × RN−1 : |x̄| < e−x

2
1}. Not

every null set relative to the group of shifts alone (i.e. ∀(yk) ⊂ RN
| lim inf(Ω − yk)| = 0) is affine-null. In particular, the set {(x1, x̄) ∈
R× RN−1 : |x̄| < (1 + log |x1|)−1} is shifts-null but not affine-null.

Theorem 3.6. Let Ω ⊂ RN be an affine-null domain [for example,
a bounded domain]. Then the set B1 = {u ∈ H1,2

0 (Ω); E2(u) ≤ 1} is
relatively compact in Lp(Ω), 2 < p < 2∗.

Note that the set B1 is not bounded in H1,2
0 (Ω).

Proof. Let (uk) ⊂ B1 and consider it as a sequence in H1,2(RN ).
Let Tk ∈ SL(N) be as in (4.5). Let vk = uk ◦ Tk. Then (vk) is a
bounded sequence in H1,2

0 (Ω), which we will consider as a sequence
in H1,2(RN ). If |Tk| → ∞ then by (3.9), vk(· − yk) ⇀ 0 in H1,2(RN )
for any sequence (yk) ⊂ RN (for details see the argument in the proof
of Lemma 4.1 in [13]), which implies (e.g. by Proposition 5.6) that
vk → 0 in Lp, 2 < p < 2∗, and thus uk → 0 in Lp. Otherwise, there is a
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renamed subsequence of (Tk) convergent to some T ∈ SL(N). Passing
again to a renamed weakly convergent subsequence we may assume
that vk ⇀ v in H1,2(RN ), and thus uk ⇀ v ◦ T−1 in H1,2

0 (Ω). On the
other hand, from (3.9) we can infer that for any sequence (yk) ⊂ RN ,

(vk − v)(· − yk) ⇀ 0 in H1,2(RN ) and thus, setting u
def
= v ◦ T−1,

‖uk − u‖p ≤ ‖vk − v‖p + ‖u ◦ T − u ◦ Tk‖p → 0.

3.4 A semilinear problem in an affine null do-
main

Theorem 3.7. Let Ω ⊂ RN be an affine-null domain [for example, a
bounded domain] with a piecewise-C1-boundary. Then the minimum
in the problem

κp = inf
u∈H1,2

0 (Ω),‖u‖p,Ω=1
E2(u), 2 < p < 2∗, (3.10)

is attained.

Proof. Let (uk) ⊂ H1,2
0 (Ω) be a minimizing sequence. Consider it as a

sequence in H1,2(RN ). Let Tk ∈ SL(N) be as in (4.5). Repeating the
argument in the proof of Theorem 3.6, we may assume, for a suitable
renamed subsequence, that either |Tk| → ∞ and then uk → 0 in Lp,
or Tk → T ∈ SL(N), and uk converges weakly in H1,2

0 (Ω) as well as in
Lp(Ω) to some u. The former case is ruled out, since by assumption
‖uk‖p,Ω = 1. In the latter case, lower semicontinuity of the norm
implies that ‖∇u‖22 ≤ κp. Then by (2.10) E2(u) ≤ κp, and thus u is
necessarily a minimizer.

Corollary 3.8. Let Ω ⊂ RN be a bounded domain with a piecewise C1-
boundary. Then (3.10) has a minimizer that, up to a scalar multiple,
is a smooth positive classical solution of the boundary problem

−
N∑

i,j=1

(A−1[u])ij
∂2u

∂xi∂xj
= up−1 in Ω, u|∂Ω = 0. (3.11)

Proof. Note that if u ∈ H1,2
0 (Ω) is a minimizer for (3.10), then so is
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|u| by (2.10):

κp = inf
u∈H1,2

0 (Ω),‖u‖p,Ω=1
E2(u)

= inf
u∈H1,2

0 (Ω),‖u‖p,Ω=1,T∈SL(N)
‖∇(u ◦ T )‖22

= inf
u∈H1,2

0 (Ω),‖u‖p,Ω=1,T∈SL(N)
‖∇|u ◦ T |‖22

= inf
u∈H1,2

0 (Ω),‖u‖p,Ω=1
E2(|u|),

so we can without loss of generality assume that u ≥ 0. Then, for
some λ > 0, the function u satisfies, in the weak sense,

−
N∑

i,j=1

(A−1[u])ij
∂2u

∂xi∂xj
= λup−1 in Ω. (3.12)

Note that A[u]−1 is a positive constant matrix, as an inverse of a
positive constant matrix, so the standard elliptic regularity and the
bootstrap argument yield the smoothness of the solution. The solution
is strictly positive by maximum principle for uniformly elliptic opera-
tors. Finally, note that the left hand side of (3.12) is of homogeneity
−1 6= p− 1, so a suitable scalar multiple of u satisfies (3.11).

4 Profile decompositions

In this section we outline concentration behavior of sequences with
bounded values of E2 (note that they are not necessarily bounded in
the Sobolev norm).

Theorem 4.1. Let (uk) ⊂ Ḣ1,2(RN ) satisfy E2(uk) ≤ C. There exist

(Tk) ⊂ SL(N), w(n) ∈ Ḣ1,2(RN ), (y
(n)
k )k∈N ⊂ RN , (j

(n)
k )k∈N ⊂ Z

with n ∈ N, and disjoint sets N0,N+∞,N−∞ ⊂ N, such that, for a
renumbered subsequence of (uk),

2−
N−2

2
j
(n)
k uk(Tk(2

−j(n)
k ·+y(n)

k )) ⇀ w(n), n ∈ N, (4.1)

|j(n)
k − j(m)

k |+ |2j
(n)
k (y

(n)
k − y(m)

k )| → ∞ for n 6= m, (4.2)∑
n∈N
‖∇w(n)‖22 ≤ lim inf E2(uk), (4.3)

uk −

[∑
n∈N

2
N−2

2
j
(n)
k w(n)(2j

(n)
k (· − y(n)

k ))

]
◦ T−1

k → 0 in L2∗ ,(4.4)
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and the series in the square brackets above converges in Ḣ1,2(RN )
unconditionally and uniformly with respect to k.

Moreover, 1 ∈ N0, y
(1)
k = 0; j

(n)
k = 0 whenever n ∈ N0; j

(n)
k → −∞

(resp. j
(n)
k → +∞) whenever n ∈ N−∞ (resp. n ∈ N+∞); and y

(n)
k = 0

whenever |2j
(n)
k y

(n)
k | is bounded.

Proof. Let Tk ∈ SL(N) such that, according to Lemma 2.1

E2(uk) = E2(uk ◦ Tk) = ‖∇(uk ◦ Tk)‖22. (4.5)

Let vk = uk ◦ Tk and apply Theorem 5.5 from the Appendix. To
conclude the proof of Theorem 4.1 it remains to note that (5.15) gives
(4.4) by composing the left and the right hand side with T−1

k on the
right, and that the right hand side of (5.14) yields the right hand side
of (4.3) by (4.5).

A analogous decomposition for sequences with bounded E2 + ‖ · ‖22
can be derived in a completely analogous way from Proposition 5.6 in
the Appendix:

Proposition 4.2. Let (uk) ∈ H1,2(RN ) be a sequence such that E2(uk)+

‖uk‖22 ≤ C. There exist w(n) ∈ H, (Tk) ⊂ SL(N), and (y
(n)
k )k∈N ⊂

ZN , y
(1)
k = 0, n ∈ N, such that, on a renumbered subsequence,

uk(Tk(·+ y
(n)
k )) ⇀ w(n), (4.6)

|y(n)
k − y(m)

k | for n 6= m, (4.7)∑
n∈N
‖w(n)‖2H1,2 ≤ lim sup ‖uk‖2H1,2 , (4.8)

uk −

[∑
n∈N

w(n)(· − y(n)
k )

]
◦ T−1

k → 0 in Lp(RN ), p ∈ (2, 2∗),(4.9)

and the series in the square brackets above converges in H1,2(RN )
unconditionally and uniformly in k.

5 Affine-flask sets. Poblems with penalty

Definition 5.1. An open subset Ω of RN will be called affine-flask set
if for any (Tk) ⊂ SL(N) and (yk) ⊂ ZN , such that |yk| + |Tk| → ∞,
there exist a y ∈ ZN and a T ∈ SL(N) such that∣∣lim inf T−1

k (Ω− yk) \ (TΩ + y)
∣∣ = 0. (5.1)

13



In other words, lim inf T−1
k (Ω − yk) is contained, up to a set of

measure zero, in the image of Ω under some affine transformation.
Obviously an affine-null set as well as RN are affine flask sets. The

union of unit balls
⋃
n∈NB1(n4e0), |e0| = 1, is an affine flask set. If

one connects consecutive balls by circular cylinders of corresponding
radius e−n that have Re0 as their common axis, one gets a connected
affine flask set. On the other hand a cylindrical domain with a smooth
boundary is an affine flask set only if it is RN . Indeed, let Ω = R× ω
and let Tk be a diagonal matrix with diagonal entries k1−N , k, . . . , k.
Then lim inf TkΩ = RN .

Theorem 5.2. Let p ∈ (2, 2∗) and let Ω ⊂ RN be an open affine flask
set with a piecewise-C1 boundary [for example, Ω = RN ]. Then the
minimum in the problem

κ = inf
u∈H1,2

0 (Ω):‖u‖p,Ω=1
E2(u) + ‖u‖22 (5.2)

is attained.

Proof. Let (uk) ⊂ H1,2
0 (Ω) be a minimizing sequence. Consider it as

a sequence in H1,2(RN ). Let (Tk) ⊂ SL(N) and let w(n), n ∈ N, be
as in Theorem 4.2, so we have E2(uk ◦Tk) = ‖∇(uk ◦Tk)‖22. From the
iterated Brezis-Lieb Lemma (see e.g. [5]) we have

1 = ‖uk‖pp =
∑
n

‖w(n)‖pp. (5.3)

Let tn = ‖w(n)‖pp.
By (4.8)

κ = limE2(uk(Tk · −y + y
(n)
k )) + ‖uk(Tk · −y + y

(n)
k )‖22

≥
∑
n∈N
‖∇w(n)‖22 + ‖w(n)‖22

≥
∑
n∈N

E2(w(n)) + ‖w(n)‖22. (5.4)

Equation (5.1) implies that with some T (n) ∈ SL(N) and some yn ∈
RN one has

uk(Tk((T
(n))−1 · −yn) + y

(n)
k ) ⇀ w(n)((T (n))−1(· − yn)) ∈ H1,2

0 (Ω).
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From (5.4) we have

κ ≥
∑
n∈N

κt2/pn , (5.5)

which can hold only if tn = 0 for n 6= m and tm = 1 with some m ∈ N.
Consequently w(m)((T (m))−1(· − ym)) is a minimizer.

Remark 5.3. Any minimizer for the problem (5.1) is, up to a scalar
multiple, a positive smooth solution of the boundary value problem

−detA[u]1/N
N∑

i,j=1

(A−1[u])ij
∂2u

∂xi∂xj
+ u = up−1, u|∂Ω = 0. (5.6)

The argument copies that of Corollary 3.8 with one modification: in
the proof of the corollary we omitted the scalar factor detA[u]1/N in the
Frechet derivative of the left hand side. We do not omit it here, and as
a consequence the left hand side is now of homogeneity 1 < p−1, which
allows to replace u by its scalar multiple while setting the Lagrange
multiplier to 1.

Theorem 5.4. Let p ∈ (2, 2∗) and let V ∈ L∞(RN ) satisfy lim|x|→∞ V (x)→
1 and V (x) ≤ 1, assuming that the latter inequality is strict on a set
of positive measure. Then the minimum in the problem

κ′ = inf
u∈H1,2(RN ),‖u‖

p,RN =1
E2(u) +

∫
RN

V (x)u(x)2dx (5.7)

is attained.

Proof. Let (uk) ⊂ C∞0 (RN ) be a minimizing sequence. Let (Tk) ⊂
SL(N) and let w(n), n ∈ N, be as in Theorem 4.2, so we have E2(uk ◦
Tk) = ‖∇(uk ◦ Tk)‖22. From the iterated Brezis-Lieb Lemma we have

1 = ‖uk‖pp =
∑
n

‖w(n)‖pp. (5.8)

Let tn = ‖w(n)‖pp.
Let us represent E2(uk ◦ Tk) +

∫
V (x)uk(x)2dx as ‖∇(uk ◦ Tk)‖22 +

‖uk ◦ Tk‖22 +
∫

(V (x)− 1)uk(x ◦ Tk)2dx and note that the last term is
weakly continuous in H1,2(RN ).
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Assume first that |Tk| → ∞. Then by (4.8) we have

κ′ = lim ‖uk(Tk · −y + y
(n)
k )‖2H1,2

≥
∑
n∈N
‖∇w(n)‖22 + ‖w(n)‖22

≥
∑
n∈N

E2(w(n)) + ‖w(n)‖22 (5.9)

≥
∑
n∈N

κt2/pn ≥ κp, (5.10)

where κp is the constant (3.10). Evaluation of the left hand side of
(5.7) at the minimizer of (5.2) gives, however, that κ′ < κp, which is a
contradiction. Consequently, on a suitable renamed subsequence, we
have Tk → T ∈ SL(N). In this case uk ⇀ w(1) ◦ T−1 and (4.8) gives

κ′ = lim ‖uk ◦ Tk‖2H1,2 +

∫
(V (x)− 1)(w(1) ◦ T−1)2dx

≥ κ′t
2/p
1 +

∞∑
n=2

κt2/pn , (5.11)

which is false unless tn = 0 for n > 1 and t1 = 1. Consequently
w(1) ◦ T−1 is a minimizer.

Appendix

1. Inequality (1.1) in the case p = 2 can be also easily derived from
the intermediate step in the Nirenberg’s proof of the usual Sobolev
inequality ([9], reproduced in the book [6]):

∫
RN

|u|
N

N−1 dx ≤ C

(∏
i

∫
RN

|∇iu|dx

) 1
N−1

.
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Setting u = |v|
2N−2
N−2 we have∫

RN

|v|2∗dx =

∫
RN

|u|
N

N−1 dx

≤ C

(∏
i

∫
RN

|∇iu|dx

) 1
N−1

= C

(∏
i

∫
RN

|∇iv||v|
N

N−2 dx

) 1
N−1

≤ C

(∫
RN

|v|2∗dx

) N
2(N−1)

(∏
i

∫
RN

|∇iv|2dx

) 1
2(N−2)

.

Note now that the latter product is detA[v] whenever A is a diagonal
matrix. Since by Lemma 2.1, any matrix A[v] can be diagonalized by
setting v = w ◦T with a suitable T ∈ O(N), inequality (1.1) for p = 2
is proved. �

2. The following theorem from [10] is a trivial refinement of the main
theorem in [11] (Sergio Solimini).

Theorem 5.5. Let (vk) ⊂ Ḣ1,2(RN ), N > 2, be a bounded sequence.

There exist w(n) ∈ Ḣ1,2(RN ), (y
(n)
k )k∈N ⊂ RN , (j

(n)
k )k∈N ⊂ Z with n ∈

N, and disjoint sets N0,N+∞,N−∞ ⊂ N, such that, for a renumbered
subsequence of (vk),

2−
N−2

2
j
(n)
k vk(2

−j(n)
k ·+y(n)

k ) ⇀ w(n), n ∈ N, (5.12)

|j(n)
k − j(m)

k |+ |2j
(n)
k (y

(n)
k − y(m)

k )| → ∞ for n 6= m, (5.13)∑
n∈N
‖∇w(n)‖22 ≤ lim sup ‖∇vk‖22, (5.14)

vk −
∑
n∈N

2
N−2

2
j
(n)
k w(n)(2j

(n)
k (· − y(n)

k ))→ 0 in L2∗(RN ),(5.15)

and, the series above converges in Ḣ1,2(RN ) unconditionally and uni-
formly with respect to k.

Moreover, 1 ∈ N0, y
(1)
k = 0; j

(n)
k = 0 whenever n ∈ N0; j

(n)
k → −∞

(resp. j
(n)
k → +∞) whenever n ∈ N−∞ (resp. n ∈ N+∞); and y

(n)
k = 0

whenever |2j
(n)
k y

(n)
k | is bounded.
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Note that the unconditional convergence of the series is not stated
in the original version of the theorem, but can be easily inferred from
the proof. This omission has been remedied in the Banach space
version of the theorem in [12]. This remark applies also to the be based
on the profile decomposition in H1,2(RN ) from [13], Corollary 3.3 (it
also can be derived from the result of Solimini in [11])

Proposition 5.6. Let uk ∈ H1,2(RN ) be a bounded sequence. There

exist w(n) ∈ H, (y
(n)
k )k∈N ⊂ ZN , y

(1)
k = 0, with n ∈ N, such that, on a

renumbered subsequence,

uk(·+ y
(n)
k ) ⇀ w(n), (5.16)

|y(n)
k − y(m)

k | → ∞ for n 6= m, (5.17)∑
n∈N
‖w(n)‖2H1,2 ≤ lim sup ‖uk‖2H1,2 , (5.18)

uk −
∑
n∈N

w(n)(· − y(n)
k )→ 0 in Lp(RN ), p ∈ (2, 2∗), (5.19)

and the series in (5.19) converges in H1,2(RN ) unconditionally and
uniformly in k.
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